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Hitoshi KIHARA and Hiroakira ONO

ALGEBRAIC CHARACTERIZATIONS

OF VARIABLE SEPARATION PROPERTIES

A b s t r a c t. This paper gives algebraic characterizations of

Halldén completeness (HC), and of Maksimova’s variable separa-

tion property (MVP) and its deductive form. Though algebraic

characterizations of these properties have been already studied for

modal and superintuitionistic logics, e.g. in Wroński [12], Maksi-

mova [7], [9], a deeper analysis of these properties and non-trivial

modifications of these results are needed to extend them to those

for substructural logics, because of the lack of some structural

rules in them. The first attempt in this direction was made in the

dissertation [4] of the first author. Results of this paper are partly

announced (sometimes in their weaker form) also in Chapter 5 of

the book [2].

.1 Preliminaries

In the following, we assume a certain familiarity with definitions and results

introduced in [3]. They are also discussed in detail in [2]. Here we will
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briefly describe some of them to make our paper self-contained.

A residuated lattice is an algebra A = 〈A,∧,∨, ·, \, /, 1〉 such that

〈A,∧,∨〉 is a lattice, 〈A, ·, 1〉 is a monoid, and the monoid operation ·

is residuated with respect to the order by both the left- and right-division

operations \, /, i.e., for all x, y, z ∈ A,

x · y ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z.

An FL-algebra is an algebra A = 〈A,∧,∨, ·, \, /, 1, 0〉 with a residuated

lattice 〈A,∧,∨, ·, \, /, 1〉 and an arbitrary element 0 of A. An FL-algebra is

an FLe-algebra if the monoid operation · is commutative. An FL-algebra

is an FLew-algebra if it is an FLe-algebra satisfying that 0 ≤ x ≤ 1 for each

element x. It is easy to show that in any FL-algebra the commutativity of

the monoid operation is equivalent to x\y = y/x. In this case we sometimes

denote x\y by x → y. It is easy to see that the class FL of FL-algebras

forms a variety. We denote the subvariety lattice of FL by S(FL).

We adopt the convention that the monoid operation has priority over

the division operations, which have priority over the lattice operations. So,

for example, we write x/yz ∧ u\v for [x/(y · z)] ∧ (u\v).

The class of FL-algebras provides algebraic semantics for the substruc-

tural logic FL, called the full Lambek calculus. For the precise definition

of the sequent calculus FL, see [3]. By a substructural logic (over FL),

we mean an axiomatic extension of FL. Here, a sequent calculus is an

axiomatic extension of FL with axioms {αj : j ∈ J} if it is obtained from

FL by adding each sequent of the form ⇒ ϕ as a new initial sequent,

where ϕ is a substitution instance of some axiom αj. When a substructural

logic is obtained from L by adding axioms {βk : k ∈ K}, it is denoted by

L + {βk : k ∈ K}. As usual, we identify a given substructural logic L with

the set of formulas provable in it.

The substructural logic FLe (FLew) is usually introduced as a sequent

calculus obtained from FL by adding the exchange rule (the exchange rule,

and left- and right-weakening rules, respectively). It can be easily seen that

both of them are in fact axiomatic extensions of FL. Obviously, the set of

all substructural logics over FL (as sets of formulas) forms a lattice SL.

For an arbitrary class K of FL-algebras, let L(K) be the set of formulas

that are valid in all FL-algebras in K. Then, we can show that L(K) is a
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substructural logic for any K. When K consists of a single algebra A, we

denote L(K) by L(A). Conversely, for a given substructural logic L, let

V (L) be the class of all FL-algebras in which every inequation 1 ≤ ϕ holds

for ϕ ∈ L. Then V (L) belongs to S(FL). Moreover, we have the following.

Proposition 1.1. The maps L : S(FL) → SL and V : SL → S(FL)

are mutually inverse, dual lattice isomorphisms.

For a set of formulas Γ and a formula ψ, we say that ψ is deducible from

Γ in FL (Γ ⊢FL ψ, in symbol), when there is a proof of ⇒ ψ in the calculus

FL adding new initial sequents of the form ⇒ γ for each γ ∈ Γ. Different

from the definition of an axiomatic extension, here we cannot use a sequent

⇒ δ as an initial sequent when δ is a substitution instance of a formula in

Γ, exept the case where δ itself belongs to Γ.

The deducibility relation is naturally extended to each substructural

logic L in the following way. For a set of formulas Γ ∪ {ψ}, we write

Γ ⊢L ψ when Γ ∪ L ⊢FL ψ. Then we can show that the relation ⊢L is a

finitary, substitution invariant consequence relation (in the sense of abstract

algebraic logic). See [3] for the details.

For formulas α,ϕ, the left conjugate λα(ϕ) and the right conjugate ρα(ϕ)

of ϕ (with respect to α) are formulas (α\ϕα)∧1 and (αϕ/α)∧1, respectively.

An iterated conjugate γ of ϕ is a composition of left- and right- conjugate

of the form δα1
(δα2

(· · · δαm
(ϕ) · · · )) for some formulas α1, . . . , αm (called

parameters), where each δαi
is either left or right conjugate. The following

theorem, called the parameterized local deduction theorem, is shown in [3].

Here, Π means a finite product of formulas by the fusion.

Proposition 1.2. If Γ ∪ Σ ∪ {ψ} is a set of formulas and L is a logic

over FL then

Γ,Σ ⊢L ψ iff Γ ⊢L (Πn
i=1γi(ϕi))\ψ,

for some n, some iterated conjugates γi of a formula ϕi ∈ Σ for each i < n.

In particular, if L is over FLe then

Γ,Σ ⊢L ψ iff Γ ⊢L (Πn
i=1(ϕi ∧ 1)) → ψ,

for some n and some ϕi ∈ Σ for each i < n. Moreover, if L is a logic over

FLew then

Γ,Σ ⊢L ψ iff Γ ⊢L (Πn
i=1ϕi) → ψ,

for some n and some ϕi ∈ Σ for each i < n.
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In the above, iterated conjugates, and therefore parameters do not ap-

pear in the second and the third results. Hence, they are called simply the

local deduction theorem. They are derived from the first one by using the

fact that for every formula ϕ, ϕ follows from each of left and right conjugate

of ϕ with respect to 1, and also that ϕ implies both (α\ϕα) and (αϕ/α)

for any formula α in FLe.

The following proposition, called the algebraization theorem, is funda-

mental when we consider relations between logic and algebra, though we

omit the detailed explanation here. Note that Proposition 1.1 follows from

the following proposition. For further information, consult [3].

Proposition 1.3. For every substructural logic L over FL, the de-

ducibility relation ⊢L is algebraizable with defining equation 1 = x ∧ 1 and

equivalence formula x\y∧ y\x. An equivalent algebraic semantics for ⊢L is

the variety V (L).

Let A be an FL-algebra. Then, a subset F of A is deductive filter or

simply filter, if it satisfies the following;

1. 1 ≤ x implies x ∈ F ,

2. x, x\y ∈ F implies y ∈ F ,

3. x ∈ F implies x ∧ 1 ∈ F ,

4. x ∈ F implies a\xa, ax/a ∈ F for any a.

For a subset S of A, let FgA(S) be the filter generated by S, i.e. the

smallest filter containing S. Because of close resemblances between the

deducibility and filter generation which comes from the algebraization the-

orem, we have the following (cf. [3]). Here, we use algebraic analogue of the

notion of conjugates. For an FL-algebra A and a, x ∈ A, the left conjugate

λa(x) of x with respect to a is the element (a\xa) ∧ 1. Right conjugates

and iterated conjugates are defined in the similar way.

Lemma 1.4. Let A be an FL-algebra and S a subset of A. Then

FgA(S) = {x ∈ A : Πn
i=1γi(si) ≤ x for some n, for some si ∈ S,

and some iterated conjugates γi with parameters from A}.
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In particular, if A is an FLe-algebra then

FgA(S) = {x ∈ A : Πn
i=1(si ∧ 1) ≤ x for some n and for some si ∈ S}.

Also, if A is an FLew-algebra then

FgA(S) = {x ∈ A : Πn
i=1si ≤ x for some n and for some si ∈ S}.

It is easy to show that all filters of an FL-algebra A form a lattice

denoted by Fil(A). Let Con(A) be the congruence lattice of A. Then the

following holds (see [3]).

Lemma 1.5. Let A be an FL-algebra. Then, for F ∈ Fil(A) and

θ ∈ Con(A), the maps F 7→ ΘF = {(a, b) ∈ A2 | a\b ∧ b\a ∈ F} and

θ 7→ Fθ = {a ∈ A | (a∧1, 1) ∈ θ} are mutually inverse lattice isomorphisms

between Fil(A) and Con(A).

By the definition of subdirect irreducibility, a non-trivial algebra is sub-

directly irreducible iff it has the second smallest congruence. Thus, by

Lemma 1.5, this condition is equivalent to the condition that it has the

second smallest filter. Clearly, the smallest filter is the filter generated by

the unit 1, which is equal to the set I = {x ∈ A : 1 ≤ x}. Then, the

second smallest filter, if exists, must be generated by a single element, say

a, such that a 6∈ I, and every filter which includes properly I must contain

a. Thus, by using Lemma 1.4, we have the following.

Corollary 1.6. A non-trivial FL-algebra is subdirectly irreducible iff

∃a 6≥ 1,∀x 6≥ 1,∃n ∈ ω and iterated conjugates γi such that Πn
i=1γi(x) ≤ a.

This condition is simplified for an FLe-algebra as;

∃a 6≥ 1,∀x 6≥ 1,∃n ∈ ω such that (x ∧ 1)n ≤ a.

and also for an FLew-algebra as

∃a 6≥ 1,∀x 6≥ 1,∃n ∈ ω such that xn ≤ a.
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.2 Halldén Completeness of logics over FLew

A substructural logic L is Halldén complete (HC), if for all formulas ϕ and

ψ which have no variables in common, if ϕ∨ψ is in L then either ϕ or ψ is in

L. Obviously the disjunction property implies the Halldén completeness,

while it is shown in [1] that the converse does not hold for uncountably

many superintuitionistic logics.

For superintuitionistic logics, both Lemmon [6] and Wroński [12] gave

different characterization results on the Halldén completeness. In this sec-

tion, they can be extended to those for substructural logics over FLew.

On the other hand, these proofs do not work well for substructural logics

in general. In the next section, we show an algebraic characterization of

the Maksimova’s variable separation property for substructural logics over

FL, and as its special case, an alternative way of a characterization of the

Halldén completeness will be obtained for substructural logics over FL.

Here we show some technical lemmas. The first one is on an axiomati-

zation of the meet of logics over FLew. Suppose that two logics L1 and L2

are logics obtained from a logic L by adding axioms ϕ1 and ϕ2, respectively.

Then, we can assume that axioms ϕ1 and ϕ2 have no variables in common,

by renaming propositional variables if necessary.

Lemma 2.1. Suppose that L is a substructural logic over FLew and

that both L1 and L2 are logics obtained from L by adding axioms ϕ1 and

ϕ2, respectively, such that they have no variables in common. Then, the

meet L1 ∩ L2 is axiomatized over L by the formula ϕ1 ∨ ϕ2.

Proof. It is clear that the formula ϕ1∨ϕ2 belongs to the meet L1∩L2.

Thus it suffices to show that for any formula ψ ∈ L1 ∩ L2, ψ follows in

L from some substitution instances of ϕ1 ∨ ϕ2. Since ψ ∈ L1 ∩ L2, by

using the local deduction theorem for FLew (see Proposition 1.2) there are

substitution instances δi with i = 1, · · · , n of ϕ1, and σj with j = 1, · · · ,m

of ϕ2, respectively, such that both formulas

∏n
i=1 δi → ψ and

∏m
j=1 σj → ψ

are in L. Then the formula
(

∏n
i=1 δi ∨

∏m
j=1 σj

)

→ ψ
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is also in it. On the other hand, using the distributivity of fusion · over

disjunction,

∏n
i=1

∏m
j=1(δi ∨ σj) →

(

∏n
i=1 δi ∨

∏m
j=1 σj

)

is always provable in FLew. Therefore

∏n
i=1

∏m
j=1(δi ∨ σj) → ψ

is also in L. Since ϕ1 and ϕ2 have no variables in common, each formula

δi ∨ σj is a substitution instance of ϕ1 ∨ ϕ2. Thus ψ ∈ L + {ϕ1 ∨ ϕ2}. 2

We say that an FL-algebra A is well-connected if for any x and y in A,

x∨y ≥ 1 implies x ≥ 1 or y ≥ 1. When 1 is the greatest as is in the case for

FLew-algebras, this condition can be replaced obviously by the condition

that if both x < 1 and y < 1 then x ∨ y < 1.

Lemma 2.2. Every subdirectly irreducible FLew-algebra is well-connec-

ted.

Proof. Suppose that an FLew-algebra A is subdirectly irreducible

and both x, y ∈ A is smaller than 1. Then, for some z < 1 there exist

natural numbers m and n such that xm ≤ z and yn ≤ z, using Corol-

lary 1.6. Let t = m + n − 1. Then, by the distributivity of · over ∨,

(x∨ y)t =
∨t

i=0x
i · yt−i. If i ≥ m then xi · yt−i ≤ xi ≤ xm ≤ z. Similarly, if

t− i ≥ n, xi ·yt−i ≤ yt−i ≤ yn ≤ z. But, for each i either i ≥ m or t− i ≥ n

holds, and hence (x ∨ y)t ≤ z. Thus, x ∨ y < 1. 2

The next lemma is on the existence of prime filters of FLew-algebras.

Recall that a filter F of an FLew-algebra A is prime if for all x, y ∈ A,

x ∨ y ∈ F implies either x ∈ F or y ∈ F .

Lemma 2.3. Let G be a proper filter of an FLew-algebra A such that

a 6∈ G. Then there exists a prime filter Fa of A such that a 6∈ Fa and

G ⊆ Fa.

Proof. The proof goes essentially in the same way as the corresponding

result on distributive lattices. Let K be the set of all filters F of A such
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that a 6∈ F and G ⊆ F . By Zorn’s lemma, there exists a maximal element

Fa in K. We show that Fa is prime. Assume that both x 6∈ Fa and y 6∈ Fa.

By the maximality of Fa in K, there exist some natural numbers m and n,

and u, v ∈ Fa such that xm ·u ≤ a and yn ·v ≤ a. Let t = m+n−1. Then,

(x ∨ y)t · u · v =

t
∨

i=0

xi · yt−i · u · v.

By a similar argument, if i ≥ m then xi · yt−i · u · v ≤ xm · u ≤ a, and also

if t− i ≥ n, xi · yt−i · u ≤ a. Since either i ≥ m or t− i ≥ n holds for each

i, (x∨y)t ·u·v ≤ a. Hence x∨y 6∈ Fa. This means that Fa is a prime filter. 2

Corollary 2.4. For each element a of a given FLew-algebra A, if a < 1

then there exists a prime filter F of A such that a 6∈ F and the quotient

algebra A/F is subdirectly irreducible.

Proof. Taking the singleton set {1} for G in the proof of Lemma 2.3,

there exists a prime filter F which is maximal among filters to which a does

not belong. Thus every filter of A which properly includes F contains the

filter FgA(F ∪ {a}) generated by the set F ∪ {a}. Since the congruence

lattice Con(A/F ) is isomorphic to the lattice of filters of A including F

and the latter has the second smallest filter FgA(F ∪ {a}), the quotient

algebra A/F is subdirectly irreducible. 2

The following theorem is obtained by extending results on the Halldén

completeness for superintuitionistic logics to that for substructural logics

over FLew. The equivalence of (1) to (3) is proved by Lemmon [6], and

that to (2) by Wroński [12]. We say a logic L over FLew is meet irreducible

(in the lattice of all substructural logics) if it is not an intersection of two

incomparable logics, or equivalently, if it is not a finite meet of strictly

bigger logics.

Theorem 2.5. The following conditions are equivalent for every sub-

structural logic L over FLew.

(1) L is Halldén complete,

(2) L = L(A) for some well-connected FLew-algebra A,
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(3) L is meet irreducible.

Proof. First we show that (2) implies (3). Let A be a well-connected

FLew-algebra and L = L(A). Suppose that L = L1 ∩ L2 for some incom-

parable logics L1 and L2. Then there exist some formulas ϕ and ψ such

that ϕ ∈ L1 \L2 and ψ ∈ L2 \L1. Obviously, neither of them belong to L.

We can assume here that ϕ and ψ have no variables in common, since we

can replace variables in ψ by distinct variables which do not appear in ϕ.

Thus there exists an assignment f on A such that f(ϕ) < 1 and f(ψ) < 1.

Since we assume that A is well-connected, f(ϕ ∨ ψ) < 1. On the other

hand, as ϕ ∨ ψ belongs both to L1 and L2, it must belong to L. This is a

contradiction. Thus, L is meet irreducible.

Next, we show that (3) implies (1) by taking contraposition. Suppose

that (1) does not hold. Then, there exist formulas ϕ1 and ϕ2 with no

variables in common such that ϕ1 ∨ ϕ2 is in L while neither ϕ1 nor ϕ2 is

in it. Define logics Li = L + {ϕi} for i = 1, 2. Clearly, both L1 and L2 are

strictly stronger than L. By Lemma 2.1, L1 ∩L2 is axiomatized over L by

the formula ϕ1 ∨ ϕ2. But ϕ1 ∨ ϕ2 is in L by our assumption, and hence

L1 ∩ L2 = L. Thus, L is not meet irreducible.

Lastly, we show that (1) implies (2). Take any FLew-algebra C such

that L = L(C). (For instance, take the Lindenbaum-Tarski algebra of L

for C.) From this C, we will construct a well-connected FLew-algebra A

such that L = L(A) as follows.

Let {Gi : i ∈ I} be an enumeration of all prime filters of C such that

the quotient algebra C/Gj is subdirectly irreducible. For each formula ϕ,

define a subset R(ϕ) of I by

R(ϕ) = {j ∈ I : C/Gj 6|= ϕ}.

Note that each algebra C/Gi is well-connected. When ϕ is not provable in

L, R(ϕ) is nonempty. In fact, if ϕ is not provable in L, f(ϕ) < 1 for an

assignment f in C. Then there exists a prime filter Gk of C such that (a)

f(ϕ) 6∈ Gk by Corollary 2.4 and that (b) C/Gk is subdirectly irreducible.

Define an assignment f∗ in C/Gk by f∗(p) = h(f(p)) for each propositional

variable p, where h is a natural homomorphism induced by the congruence

determined by the prime filter Gk. Then, f∗(ϕ) < 1 in C/Gk. Thus,

k ∈ R(ϕ).

We show next that the set E = {R(ϕ)|ϕ 6∈ L} has the finite intersec-

tion property, i.e. every intersection of finitely many members from E is
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nonempty. To see this, it suffices to show that for each R(ϕ) and R(ψ) in

E there exists a formula γ such that R(γ) ⊆ R(ϕ) ∩ R(ψ) and R(γ) ∈ E.

It may happen that ϕ and ψ have some variables in common. Then we

take a formula ϕ′ which is obtained from ϕ by renaming propositional vari-

ables so that ϕ′ and ψ have no variables in common. Clearly, ϕ′ 6∈ L and

R(ϕ′) = R(ϕ). So we can assume from the beginning that ϕ and ψ have

no variables in common. Since we assume that L is Halldén complete,

R(ϕ∨ψ) ∈ E. Now, we show that R(ϕ∨ψ) ⊆ R(ϕ)∩R(ψ). Suppose that

j ∈ R(ϕ ∨ ψ). Then C/Gj 6|= ϕ ∨ ψ, and hence for some assignment g in

C/Gj , g(ϕ ∨ ψ) = g(ϕ) ∨ g(ψ) < 1. Therefore, C/Gj 6|= ϕ and C/Gj 6|= ψ.

Hence j ∈ R(ϕ) ∩R(ψ).

By the finite intersection property of E, there exists a ultrafilter U over

I such that E ⊆ U . Let A be the ultraproduct (
∏

i∈I(C/Gi))/U . Since

each algebra C/Gi is well-connected and moreover the well-connectedness

can be expressed by a first-order sentence, A is also well-connected. Obvi-

ously, A ∈ V (L). If a formula ϕ is not provable in L then R(ϕ) ∈ U and

hence A 6|= ϕ. Thus, L = L(A). 2

The strict meet-irreducibility is a stronger form of the meet-irreducibili-

ty. That is, a logic L is strictly meet-irreducible if whenever it is an in-

tersection of logics {Ki : i ∈ I} then L = Kj for some j ∈ I. For more

information on strict meet-irreduciblity, see Kracht [5]. We can easily show

the following.

Lemma 2.6. (1) For each logic L over FL, if L is strictly meet-

irreducible then L = L(A) for some subdirectly irreducible FL-algebra

A,

(2) For each logic L over FLew, if L = L(A) for some subdirectly irre-

ducible FLew-algebra A then L is meet-irreducible.

Proof. For (1), suppose that L = L(C) for some FL-algebra C. By

Birkhoff’s theorem, C has a subdirect representation (Ci : i ∈ I) with sub-

directly irreducible factors Ci for i ∈ I. Then, L(C) =
⋂

i L(Ci) holds in

this case. Since L is strictly meet-irreducible, L = L(Ci) with a subdirectly

irreducible Ci for some i ∈ I.

To show (2), suppose that L = L(A) for some subdirectly irreducible

FLew-algebra A then by Lemma 2.2 A is well-connected. Thus, L is meet-
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irreducible by Theorem 2.5. 2

In [12], Wroński proved that the converse of the above (2) holds always

for superintuitionistic logics. That is, a superintuitionistic logic L is meet-

irreducible, or equivalently, it is Halldén complete iff

L = L(A) for a subdirectly irreducible Heyting algebra A.

This result follows from the proof of our Theorem 2.5, since every algebra

C/Gi in the proof is subdirectly irreducible and the subdirect irreducibility

of Heyting algebras can be expressed by the following first-order sentence:

∃z < 1∀x < 1 x ≤ z.

On the other hand, the subdirect irreducibility of FLew-algebras is written

as:

∃z < 1∀x < 1 for some n ∈ N xn ≤ z,

which is not a first-order sentence. Note that in the proof of Theorem 2.5,

it can take also an enumeration of all prime filters of C for {Gi : i ∈ I}.

On the other hand, we have chosen another set of prime filters to clarify

these differences. When a logic over FLew satisfies the axiom of m-potency,

i.e., αm → αm+1, then we can take a fixed number m for n in the above

statement and hence it becomes a first-order sentence. Thus, we have the

following.

Corollary 2.7. The following two conditions are equivalent for every

substructural logic L over FLew satisfying the axiom of m-potency for some

m.

(1) L is Halldén complete,

(2) L = L(A) for some subdirectly irreducible FLew-algebra A.

We do not know whether the converses of the statements in Lemma 2.6

hold.

A similar result for logics over FLe can be shown, but some modifi-

cations are necessary, since the unit 1 is not always equal to the greatest

element.



54 HITOSHI KIHARA and HIROAKIRA ONO

Theorem 2.8. The following conditions are equivalent for every sub-

structural logic L over FLe.

(1) L is weakly Halldén complete, i.e. for all formulas ϕ and ψ which

have no variables in common, if (ϕ ∧ 1) ∨ (ψ ∧ 1) is in L then either

ϕ or ψ is in L,

(2) L = L(A) for some FLe-algebra A satisfying that x ∨ y = 1 implies

x = 1 or y = 1 for all x, y ∈ A,

(3) L is meet irreducible.

This theorem gives us a characterization rather of the meet- irreducibil-

ity but not of the Halldén completeness for logics over FLe. To discuss the

latter in a more proper way, we give algebraic characterizations of Mak-

simova’s variable separation properties in the next section, from which an

algebraic condition for Halldén completeness will follow as a particular case.

.3 Maksimova’s variable separation property

In this section, we consider algebraic characterizations of two forms of Mak-

simova’s variable separation property. A substructural logic L is said to

have the Maksimova’s variable separation property (MVP), when for all

formulas α1\α2 and β1\β2 that have no propositional variables in common

if a formula (α1∧β1)\(α2∨β2) is provable in L, then either α1\α2 or β1\β2

is provable in it. Note that Halldén completeness follows from the MVP,

by taking the constant 1 for both α1 and β1 in the definition of the MVP.

A substructural logic L has the deductive Maksimova’s variable separa-

tion property (DMVP), when for all formulas α1\α2 and β1\β2 that have no

variables in common, α1∧β1 ⊢L α2∨β2 implies either α1 ⊢L α2 or β1 ⊢L β2.

Since for arbitrary formulas γ and σ, the condition γ, σ ⊢L ψ is equivalent

to the condition γ∧σ ⊢L ψ, and the compactness of the deducibility relation

⊢L, we may state the definition of the DMVP as follows.

A substructural logic L has the DMVP, if for all sets of formulas

Γ∪{ϕ} and Σ∪{ψ} that have no variables in common, Γ,Σ ⊢L

ϕ ∨ ψ implies Γ ⊢L ϕ or Σ ⊢L ψ.



ALGEBRAIC CHARACTERIZATIONS OF VARIABLE SEPARATION PROPERTIES 55

Subalgebras B and C of an FL-algebra A form a strongly well-connected

pair if for all elements b1, b2 ∈ B and c1, c2 ∈ C, b1 ∧ c1 ≤ b2 ∨ c2 implies

b1 ≤ b2 or c1 ≤ c2. When b1 = c1 = 1, the above becomes the condition

that for all elements b ∈ B and c ∈ C, 1 ≤ b ∨ c implies 1 ≤ b or 1 ≤ c.

In this case, we say that B and C form a well-connected pair of A. Thus,

an algebra A is well-connected iff A with itself form a well-connected pair,

and also iff every pair of subalgebras of A form a well-connected pair.

Theorem 3.1. Let L be a logic over FL. Then the following two con-

ditions are equivalent;

(1) L has the MVP,

(2) for every two non-degenerate FL-algebras A,B in V (L), there exist

an FL-algebra C and subalgebras C1,C2 of C in V (L) such that C1

and C2 form a strongly well-connected pair, and moreover that A and

B are homomorphic images of C1 and C2, respectively.

Proof. Suppose first that L has the MVP, and let A and B be non-

degenerate FL-algebras in V (L). Take disjoint sets of variables Y and Z

that are enough big to ensure the existence of surjective maps from Y to A

and Z to B, respectively. Let X be the union of Y and Z, and let C, C1

and C2 be free algebras in V (L), generated by X, Y and Z, respectively.

By the universal mapping property, A and B are homomorphic images of

C1 and C2. Also both C1 and C2 are regarded as subalgebras of C. So, it

remains to show that C1 and C2 form a strongly well-connected pair.

Take arbitrary elements a1, a2 ∈ C1 and b1, b2 ∈ C2. Then there exist

terms s1, s2 over the set Y and terms t1, t2 over Z such that

a1 = s1/≡L, a2 = s2/≡L, b1 = t1/≡L and b2 = t2/≡L.

Here, the binary relation ≡L is a congruence on the set of terms over the

set X defined by:

for all terms s and t, s ≡L t iff (s\t) ∧ (t\s) is provable in L.

Now suppose that a1 6≤ a2 and b1 6≤ b2. Then, neither s1\s2 nor t1\t2
are provable in L. Since s1\s2 and t1\t2 have no variables in common,

(s1∧ t1)\(s2∨ t2) is neither provable in L by our assumption that L has the

MVP. This means that a1 ∧ b1 6≤ a2 ∨ b2. Thus, C1 and C2 form a strongly

well-connected pair.
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Figure 1: An algebraic characterization of the MVP

We show next that the condition (2) implies the MVP of a logic L.

Suppose that for given formulas ϕ1\ϕ2 and ψ1\ψ2 which have no variables

in common, neither ϕ1\ϕ2 nor ψ1\ψ2 are provable in L. Let Y and Z be

the sets of variables appearing in ϕ1\ϕ2 and ψ1\ψ2, respectively. Then

there exist non-degenerate FL-algebras A,B in V (L) and valuations f on

A and g on B such that

f(ϕ1) 6≤A f(ϕ2) and g(ψ1) 6≤B g(ψ2).

By our assumption, for some FL-algebra C and some subalgebras C1,C2

of C in V (L), there exist surjective homomorphisms h from C1 to A and j

from C2 to B such that C1 and C2 form a strongly well-connected pair. We

define a valuation k in C for formulas over the set of variables Y ∪Z so that

k(p) ∈ h−1 ◦ f(p) for each p ∈ Y and k(q) ∈ j−1 ◦ g(q) for each q ∈ Z. Such

a map k exists since both h and j are surjective, and is well-defined since Y

and Z are disjoint. Then, for each formula ϕ over Y , f(ϕ) = h◦k(ϕ) holds

and similarly for each formula ψ over Z, g(ψ) = j ◦ k(ψ) holds. Therefere,

h ◦ k(ϕ1) 6≤A h ◦ k(ϕ2) and j ◦ k(ψ1) 6≤B j ◦ k(ψ2).

Hence,

k(ϕ1) 6≤ k(ϕ2) and k(ψ1) 6≤ k(ψ2).

Since k(ϕ1), k(ϕ2) ∈ C1 and k(ψ1), k(ψ2) ∈ C2,
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k(ϕ1 ∧ ψ1) = k(ϕ1) ∧ k(ψ1) 6≤ k(ϕ2) ∨ k(ψ2) = k(ϕ2 ∨ ψ2)

by the strong well-connectedness of C1 and C2. Thus, (ϕ1 ∧ψ1)\(ϕ2 ∨ψ2)

is not provable in L. Hence, L has the MVP. 2

We assume that both A and B are non-degenerate in the condition (2)

of Theorem 3.1. By checking the above proof carefully, it can be shown that

this assumption is replaced by a stronger assumption that both A and B

are subdirectly irreducible. Also, it is not hard to show that this assumption

can be replaced by a weaker form that both A and B are arbitrary algebras

in V (L).

As we mentioned before, Halldén completeness is a special case of the

MVP. Thus, by replacing strong well-connectedness by well-connectedness

in Theorem 3.1, we get another characterization of the Halldén complete-

ness.

Theorem 3.2. Let L be a logic over FL. Then the following two con-

ditions are equivalent;

(1) L is Halldén complete,

(2) for every two non-degenerate FL-algebras A,B in V (L), there exist

an FL-algebra C and subalgebras C1,C2 of C in V (L) such that C1

and C2 form a well-connected pair and moreover that A and B are

homomorphic images of C1 and C2, respectively.

Again, it is shown that in the condition (2), the assumption for algebras

A and B can be replaced by the condition that they are arbitrary algebras

in V (L).

It will be interesting to compare Theorem 3.2 with an algebraic char-

acterization of the disjunction property (DP), since from a syntactic point

of view the Halldén completeness follows immediately from the disjunction

property. D. Souma [11] pointed out that Maksimova’s characterization of

the DP given in [8] holds for all substructural logics over FL. That is,

Proposition 3.3. Let L be a logic over FL. Then the following two

conditions are equivalent;

(1) L has the disjunction property,
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(2) for all A,B in V (L) there exist a well-connected algebra C ∈ V (L)

and a surjective homomorphism h from C to the direct product A×B

of A and B.

In fact, if there exists such a well-connected algebra C and a surjective

homomorphism h as mentioned in Proposition 3.3, C with itself form a well-

connected pair, and moreover the composition of h and each projection map

gives a surjective homomorphism from C to A or from C to B.

The next theorem says that an algebraic characterization of the deduc-

tive Maksimova’s variable separation property (DMVP) for substructural

logics can be obtained from the algebraic characterization of the MVP in

Theorem 3.1 by replacing the strongly well-connectedness and the exis-

tence of homomorphisms by the well-connectedness and the existence of

isomorphisms, respectively.

Theorem 3.4. Let L be a logic over FL. Then the following two con-

ditions are equivalent;

(1) L has the DMVP,

(2) for every two non-degenerate FL-algebras A,B in V (L), there exist

an FL-algebra D and subalgebras D1,D2 of D in V (L) such that D1

and D2 form a well-connected pair and moreover that A and B are

isomorphic to D1 and D2, respectively. In other words, every two

non-degenerate FL-algebras A,B in V (L) can be jointly embedded

into an FL-algebra D ∈ V (L) and their images form a well-connected

pair.

Proof. The proof goes similarly to that of Theorem 3.1. Suppose

that L has the DMVP, and let A and B be non-degenerate FL-algebras

in V (L). Like before, we take disjoint sets of variables Y and Z that are

enough big to ensure the existence of surjective maps from Y to A and Z to

B, respectively. Let X be the union of Y and Z, and let C, C1 and C2 be

free algebras in V (L) generated by X, Y and Z, respectively. Obviously,

C1 and C2 are regarded as subalgebras of C, and by the universal mapping

property, there exist surjective homomorphisms h : C1 → A and k : C2 →

B. Let F1 = h−1(↑ 1A) and F2 = k−1(↑ 1B). Here, ↑ 1A = {a ∈ A : 1 ≤ a},

and similarly ↑ 1B can be defined. Then both F1 and F2 are proper filters

of C1 and C2, respectively, as both A and B are non-degenerate. By the
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homomorphism theorem, A ∼= C/F1 and B ∼= C/F2. We show that there

exists a filter G of C such that

(a) F1 = C1 ∩G and F2 = C2 ∩G,

(b) for any b ∈ C1 and any c ∈ C2, b ∨ c ∈ G implies either b ∈ G or

c ∈ G.

Let G be the filter of C generated by the set F1 ∪ F2. Obviously, G is

written as follows.

G = {x ∈ C : Πn
i=1γi(ai) ≤ x for some ai ∈ F1 ∪ F2 and some

iterate conjugates γi on C with 1 ≤ i ≤ n}.

Now we show that F1 = C1 ∩ G. It is easy to see that F1 ⊆ C1 ∩ G.

For the converse direction, suppose that d ∈ C1 ∩ G. Then, there exist

some ai ∈ F1 ∪ F2 and some iterated conjugates γi on C with 1 ≤ i ≤ m

such that Πm
i=1γi(ai) ≤ d. Since d belongs to C1, there exists a formula

s∗ over Y such that d = s∗/≡L. Similarly, if aj belongs to F1 (F2) there

exists a formula uj over Y (over Z, respectively) such that aj = uj/≡L.

Then, Πm
i=1γi(ai) ≤ d holds in C iff 1C ≤ (Πm

i=1γi(ai))\d holds in C. The

latter implies that (Πm
i=1σi(ui))\s∗ is provable in L, where each σi(ui) is

a formula (over X) corresponding to γi(ai) for each i. Then, this in turn

implies {ui : 1 ≤ i ≤ m} ⊢L s∗. Now let us take a formula t∗ over

Z such that t∗/≡L 6∈ F2, as F2 is a proper deductive filter. Obviously,

{ui : 1 ≤ i ≤ m} ⊢L s
∗ ∨ t∗. Since Y and Z are disjoint, by our assumption

on the DMVP of L either {sj : j ∈ J} ⊢L s∗ or {tp : p ∈ P} ⊢L t∗ holds,

where each sj (and tp) is a formula in {ui : 1 ≤ i ≤ m} over Y (and Z,

respectively). Suppose that {tp : p ∈ P} ⊢L t∗. Let k′ be a valuation on

B defined by k′(z) = k(z/≡L) for z ∈ Z. Then, we have B, k′ |= tp by the

definition of F2, and also k(tp/≡L) ≥ 1B. Hence, B, k′ |= t∗, which implies

k′(t∗) = k(t∗/≡L) ≥ 1B. Hence, t∗/≡L ∈ F2. This contradicts to the choice

of t∗. Thus, {sj : j ∈ J} ⊢L s∗ must hold. Using the same argument as

the above, this implies that d = s∗/≡L ∈ F1. Therefore, F1 = C1 ∩ G.

Similarly, we can show F2 = C2 ∩G.

It remains to show that G satisfies the condition (b). Suppose that

u ∨ v ∈ G for u ∈ C1 and v ∈ C2. Then, by the definition of G, there

exist some ai ∈ F1 ∪ F2 and iterated conjugates γi on C with 1 ≤ i ≤ m

such that Πm
i=1γi(ai) ≤ u ∨ v. Then, there exist formulas s′ over Y and
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t′ over Z such that u = s′/ ≡L and v = t′/ ≡L. Also, there exists a

formula uj over Y (Z) if aj belongs to F1 (F2, respectively) such that

aj = uj/≡L. Then, Πm
i=1γi(ai) ≤ u ∨ v iff 1C ≤ (Πm

i=1γi(ai))\(u ∨ v),

which implies (Πm
i=1σi(ϕi))\(s′ ∨ t′) is provable in L, where each σi(ui) is

a suitable formula (over X) corresponding to γi(ai) for each i. Thus, we

have {ui : 1 ≤ i ≤ m} ⊢L s
′ ∨ t′.

By the DMVP of L, either {sj : j ∈ J} ⊢L s′ or {tp : p ∈ P} ⊢L t′

holds, where each sj (and tp) is a formula in {ui : 1 ≤ i ≤ m} over Y (and

Z, respectively). Suppose that the latter holds. Taking the same valuation

k′ on B introduced in the above, we can show that v = t′/ ≡L∈ F2. Since

F2 = C2 ∩ G holds, we have v ∈ G. Similarly, {sj : j ∈ J} ⊢L s′ implies

u ∈ G. Therefore, either u ∈ G or v ∈ G.

We continue the proof. We show next that both C1/F1 and C2/F2 are

embedded into C/G. Define mappings f : C1/F1 → C/G and g : C2/F2 →

C/G by f(x/F1) = x/G and g(y/F2) = y/G, respectively. Since F1 and F2

are subsets of G, these mappings f and g are well-defined homomorphisms.

For x, x′ ∈ C1, f(x/F1) = f(x′/F1) implies x/G = x′/G, and by the

property of G shown above, x/F1 = x′/F1. Thus, f is injective. Similarly,

g is also injective. Now, let us denote C/G, f(C1/F1) and g(C2/F2) by D,

D1 and D2, respectively. Then, D1 and D2 are subalgebras of D, and A

and B are isomorphic to D1 and D2, respectively. It remains to show that

D1 and D2 form a well-connected pair. Suppose that a∨b ≥ 1D for a ∈ D1

and b ∈ D2. Then there exist a formula s over Y and a formula t over Z such

that a = f(s/F1) and b = g(t/F2). Then, a∨b = s/G∨t/G = (s∨t)/G ≥ 1D

and hence, s ∨ t ∈ G. By using the property (b) of G shown above, either

s ∈ G or t ∈ G. Thus, either a = s/G ≥ 1 or b = t/G ≥ 1 holds. Therefore,

D1 and D2 form a well-connected pair.

Conversely, we assume the second condition (2) in our theorem and

show that L has the DMVP. Suppose that neither ϕ1 ⊢L ϕ2 nor ψ1 ⊢L ψ2

hold for formulas ϕ1, ϕ2, ψ1 and ψ2 such that any variable appearing either

of ϕ1 and ϕ2 appears neither of ψ1 and ψ2. Then, there are FL-algebras

A and B in V (L) and valuations f and g on them such that (i) A, f |= ϕ1

but A, f 6|= ϕ2, and (ii) B, g |= ψ1 but B, g 6|= ψ2. By our assumption,

there exist an FL-algebra D and subalgebras D1,D2 of D in V (L) such

that D1 and D2 form a well-connected pair and moreover that A and B

are isomorphic to D1 and D2, respectively. For the sake of simplicity, we
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identify A with D1 and B with D2, since each of these pairs is isomor-

phic. Because of the disjointness of variables, we can take a valuation h

on D such that h(p) = f(p) for each variable p appearing either of ϕ1

and ϕ2 and h(q) = g(q) for each variable q appearing either of ψ1 and

ψ2. Then h(ϕi) = f(ϕi) and h(ψi) = g(ψi) for i = 1, 2. It is clear that

h(ϕ1∧ψ1) = f(ϕ1)∧g(ψ1) ≥ 1. On the other hand, h(ϕ2) = f(ϕ2) 6≥ 1 and

h(ψ2) = g(ψ2) 6≥ 1. Therefore, h(ϕ2∨ψ2) = h(ϕ2)∨h(ψ2) 6≥ 1, since A and

B form a well-connected pair. That is, D, h |= ϕ1 ∧ψ1 but D, h 6|= ϕ2 ∨ψ2.

Thus, ϕ1 ∧ ψ1 ⊢L ϕ2 ∨ ψ2 doen’t hold. This completes the proof of the

DMVP of L. 2

Similarly to Theorem 3.1, in the condition (2) of Theorem 3.4 the as-

sumption that A and B are non-degenerate is replaced also by a stronger

one that they are subdirectly irreducible. But, we cannot replace it by ar-

bitrary algebras. For, if one is degenerate and the other is non-degenerate,

they cannot be jointly embedded.

Our characterizations given in the present paper can be summerized

as follows. For given two algebras A and B, each of them says about a

condition (a) on two subalgebras of the third algebra and a condition (m)

on mappings from these to A and B.

variable separation

m

(a) strongly well-connected

(m) homomorphisms

deductive variable separation

m

(a) well-connected

(m) isomorphisms

Halldén completeness

m

(a) well-connected

(m) homomorphisms

⇓ ⇓

Figure 2: Relations among MVP, DMVP and HC

If we restrict our attention to logics over FLew, we can give better

results on algebraic characterizations. For example, the following is an

extension of a result by Maksimova [9] for superintuitionistic logics.
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Theorem 3.5. The following conditions are equivalent for every sub-

structural logic L over FLew.

(1) L has the DMVP,

(2) all pairs of subdirectly irreducible algebras in V (L) are jointly embed-

dable into a subdirectly irreducible algebra in V (L).

However, as it happens in the case of the Halldén completeness (see

Theorem 2.5), the characterization of the DMVP using joint embeddability

of V (L) which is mentioned in the above Theorem 3.5 will not be properly

extendible to an arbitrary logic L over FLe. In fact as the following result

shows, the condition (1) does not exactly express the DMVP.

Theorem 3.6. The following conditions are equivalent for every sub-

structural logic L over FLe.

(1) for all formulas α1 → α2 and β1 → β2 that have no propositional

variables in common, α1 ∧ β1 ⊢L (α2 ∧ 1) ∨ (β2 ∧ 1) implies either

α1 ⊢L α2 or β1 ⊢L β2,

(2) all pairs of subdirectly irreducible algebras in V (L) are jointly embed-

dable into a subdirectly irreducible algebra in V (L).

Though the DMVP can be characterized by the joint embeddability of

given two algebras of a given variety into the third, in our characterization

of the MVP we represent these two algebras as homomorphic images of

two subalgebras of the third. This idea works quite well also for algebraic

characterizations of various types of interpolation properties, which will be

discussed in our forthcoming paper.
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