
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
フローショップ問題:特殊条件下の完了時刻和最小化の

解析

Author(s) 岡田, 政則

Citation

Issue Date 1998-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/858

Rights

Description Supervisor:Milan Vlach, 情報科学研究科, 博士

Special Flowshop Problems

to Minimize Total Completion Time

By Masanori Okada

A thesis submitted to

School of Information System Science,

Japan Advanced Institute of Science and Technology,

in partial ful�llment of the requirements

for the degree of

Doctor of Information System Science

Graduate Program in Information Science

Written under the direction of

Professor Milan Vlach

January 16, 1998

Abstract

In this dissertation we are concerned with deterministic
owshop problems where the

objective is to minimize the sum of completion times of all jobs. With a few exceptions

owshop problems of this type are known to be computationally intractable. Therefore

we have restricted our attention to the following two special cases.

The �rst case deals with two types of specially structured dominance among the ma-

chines. It is known [1, 7] that under such a dominance the best schedule among the so

called \permutation schedules" can be found in polynomial time. Here we prove that the

schedules constructed as in [1, 7] are not only the best permutation schedules but are the

optimal ones. In fact we prove a much more general result, namely that under the above

machine dominance constraints, the search for optimal schedule can be restricted to the

set of all permutation schedules not only for the sum of completion times criterion but

for an arbitrary regular objective function.

The second case deals with two machine problems. We study the two machine prob-

lems under the assumption that no idle machine time between the consecutive operation

is allowed. First we show that some claims in the literature are incorrect. Then we prove

statements which have similar \
avor" as the original incorrect claims. From Chapter 5

on, the focus of our study is on the subproblem speci�ed by the additional constraint that

all operations on the �rst machine have the same length. We describe several variants

of the branch and cut technique for solving this strongly NP-hard problem and report

results of computational experiments.

i

Acknowledgments

The author wishes to express his sincere gratitude to his principal advisor Professor

Milan Vlach of Japan Advenced Institute of Science and Techology for his constant en-

couragement and kind guidance during this work. The author would like to thank his

advisor Associate Professor Kunihiko Hiraishi of Japan Advanced Institute of Science and

Technology.

The author is grateful to Professor Hiroaki Ishii of Osaka University for their helpful

suggestions and discussions.

The author also wishes to express his thanks to Professor Masayuki Kimura and Tetuso

Asano of Japan Advanced Institute of Science and Technology for their suggestions.

The author is grateful to all who have a�ected or suggested his areas of research.

Visiting Associate Ond�rej �Cepek of Japan Advanced Institute of Science and Technology

inspired the author through his constant activities on scheduling theory, and gave the

author valuable suggestions and kind encouragements.

The author devotes his sincere thanks and appreciation to all of them, and his col-

leagues.

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 2

2 Basic de�nitions, notation, and results 6

3 Flowshop with machine dominance 9

4 Two-machine
owshop 14

5 Branch-and-Cut technique 21

5.1 Feasibility . 22

5.2 Lower bounds . 24

5.2.1 Simple lower bounds . 24

5.2.2 Improved lower bounds . 25

5.2.3 Lower bounds based on LP relaxation 27

5.3 Branching rule . 29

5.4 Dominance rules . 30

5.4.1 Zero-gap dominance rules . 30

5.4.2 Nonzero-gap dominance rules . 31

5.5 Initialization . 32

5.6 Termination . 32

6 Computational experiments 33

7 Concluding remarks 39

Publications 43

1

Chapter 1

Introduction

Sequencing and scheduling theory is concerned primarily with the development of math-

ematical models and techniques for analyzing and solving problems arising in situations

in which scarce resources have to be allocated to activities over time. The early research

was motivated mainly by problems from manufacturing and processing industries. The

resources were usually machines and activities were jobs to be executed on the machines.

However, analogous problems arise in such a variety of situations that the number of prob-

lem types is practically unlimited. For example, several new classes of practically relevant

and theoretically interesting scheduling problems have come to existence in connection

with the development of
exible manufacturing systems and technological advances in ro-

botics. Another fundamentally new direction has been connected with a rapid expansion

of computer science. This in
uence has taken several forms. On the one hand, results

in complexity theory led to deeper understanding of the inherent di�culty of scheduling

problems and to devising new techniques for obtaining bounds on performance of ap-

proximation algorithms. On the other hand, scheduling theory has devised new models

in studies of multiprocessors systems, distributed systems and computer networks. The

authors in this area refer to machines as processors and to jobs as tasks. We shall be

using the classical terminology, that is we shall be talking about jobs and machines.

In this dissertation we are concerned only with cases where all problem data are exact

and known in advance. These deterministic problems have the form of the following

optimization problem: Given a �nite number of jobs J1; J2; � � � ; Jn which have to be

processed on a system of a �nite number of machines M1;M2; � � � ;Mm, �nd a feasible

schedule that minimize the value of a given objective function.

Before specifying exactly the special structured class of deterministic problems which

the dissertation is devoted to, we shall brie
y recall some basic models of deterministic

machine scheduling. In all these models the following three assumptions are conventional.

� Each machine is always available throughout a given scheduling period, usually the

interval [0;1).

� No machine is able to process more than one job at a time.

� Each job can be processed by at most one machine at a time.

It is an established tradition to distinguish three types of multi-operation models:

openshops, jobshops and
owshops. In all these three models, each jobs Jk consists of m

operations O1k; O2k; � � � ; Omk. Each operation Oik must be executed on machine Mi and

2

has a positive processing time pik. In the openshop, no particular processing order through

the machines is prescribed. In the jobshop and
owshop a processing order through the

machines is prescribed for each job. In the jobshop this order may vary from job to job,

whereas in the
owshop all jobs have the same order through the machines. If m = 1,

then all three models reduce to the single machine problem.

Generally speaking, a schedule must specify when the jobs are processed on the ma-

chines within the scheduling period. The assumptions stated above make it possible to

express the required information with the help of an orderedm-tuple S = (S1; S2; � � � ; Sm)

of functions each of which maps the scheduling period into the set f0; 1; � � � ; ng. The cor-

responding interpretation is rather obvious. Namely, the equality Si(t) = k means that

jobs Jk is processed on machineMi at time t, whenever k 6= 0. If k = 0, that is if Si(t) = 0,

then machine Mi is idle at time t.

Of course not every ordered m-tuple (S1; S2; � � � ; Sm) of such piece-wise constant func-

tions represents a feasible schedule. Besides some purely mathematical technicalities

we have to require that the assumptions above are satis�ed and that each job must be

processed to completion within the scheduling period. In addition to these basic feasibility

requirements, several other constraints may limit the choice of schedules. In most cases

they represent limits on the capacity of available resources or various types of technolog-

ical or organizational requirements. For example, the feasibility may depend on whether

or not

� the processing of a job on a machine may be interrupted and resumed at a later

time;

� a precedence ordering is imposed on the jobs;

� job-dependent deadlines or release times are given.

All such constraints can be formulated in terms of functions S1; S2; � � � ; Sm. In this way

we obtain a well-de�ned concept of a feasible schedule which can be easily graphically

represented, manipulated and analyzed.

As soon as it is clear which schedules are feasible, then the �rst question to be asked

is whether a feasible schedule exists. In general, this question may be very hard, because

already the problem of deciding whether or not a feasible schedule exists is NP-complete

in the single-machine case, provided arbitrary integer processing times, release dates and

deadlines are permitted. However, in the dissertation, we are concerned with problems in

which this question is trivial. In fact, we shall deal with situations in which there exist

in�nite number of feasible schedules. In such situation we need a tool for their mutual

comparison. The standard approach is to compare the quality of schedules with the help

of a real valued function f de�ned on the set of schedules in such a way that schedule S

is better than schedule S0 if and only if f(S) < f(S0). Such function is called an objective

function, and the problem is to minimize f on the set of feasible schedules. Usually the

objective functions of the basic models are so called regular measures of performance. By

this term it is meant that f depends on the completion times C1(S); C2(S); � � � ; Cn(S)

of jobs in schedule S in such a way that if Cj(S) � Cj(S
0) for each 1 � j � n, then

f(S) � f (S0). In other words, if schedule S is better than S 0, then at least one job must

be completed under schedule S earlier than under schedule S 0.

Essentially two types of regular objective functions are appearing in the basic models.

They are composed from nondecreasing real valued functions '1; '2; � � � ; 'n associated

3

with individual jobs as follows:

fmax(S) = max1�k�n'k(Ck(S));

fsum(S) =
nX
i=1

'k(Ck(S)):

As a rule, these so called cost or penalty functions '1; '2; � � � ; 'n are based on extremely

simple quantities involving explicitly or implicitly the concept of job due dates. As typical

example we can mention

Lateness : 'k(t) = Lk(t) = t� dk

Tardiness : 'k(t) = Tk(t) = maxf0; t� dkg

Unit Penalty : 'k(t) = Uk(t) =

(
1 if t > dk
0 if t � dk

where dk stands for the due date of jobs Jk.

Several classi�cation and notation scheme for deterministic scheduling problems have

been suggested. We have followed the scheme proposed by Graham et al. [6] in which

a problem type is speci�ed in term of the following three-�eld classi�cation �j�j
. The

�rst �eld speci�es the machine environment. For example, if � = J then we have general

jobshop, and if � = F2, then we have the two machine
owshop problem. the second �eld

is concerned with job characteristics. For example, if � = prec then a general precedence

relation is permitted, and if � = pmtn then preemption is allowed. The third �eld refers

to the objective function. For example: if
 = Tmax, then the maximum tardiness is to

be minimized, and if
 =
P
Uj then the number of tardy jobs should be minimized. For

a detailed description of the scheme and a survey of complexity and algorithms we refer

to [12].

In this dissertation we are concerned with a special class of deterministic
owshop

problems. As already mentioned, in the deterministic
owshop problems, a set of n jobs

J1; J2; � � � ; Jn is to be processed through m machines M1;M2; � � � ;Mm under the techno-

logical constraints demanding that the jobs pass among the machines in the same order.

Without loss of generality we may assume that the machines are numbered according to

the technological constraints, that is we may assume that each job must be processed �rst

on machine M1, then on machine M2, and so on, until it is �nally processed on machine

Mm. The order of jobs on any given machine is not prescribed and may vary from ma-

chine to machine. No machine may process more than one job at a time, and no job can

be processed by several machines simultaneously. Each job consists of m operations, one

operation per machine. The operation of job Jj on machineMi is denoted by Oij and the

processing time of operation Oij is denoted by pij. Once a processing of an operation Oij

starts, it cannot be interrupted, i.e. operation Oij then occupies the machine Mi for the

next pij time units. In scheduling theory literature operations ful�lling the last condition

are called nonpreemptable. Some other technological or organizational constraints on the

feasibility of schedules may also be given. The general problem is then to �nd a feasible

schedule minimizing a prescribed objective regular function de�ned on the set of feasible

schedules.

A great variety of such problems have been studied by both theorists and practitioners

since the pioneering work of J. M. Johnson [10] from mid 50's, which dealt with two-

machine and three-machine problems. In this dissertation we consider
owshop problems

4

where the objective is to minimize the sum of completion times of all jobs. Since this task

is known to be very hard in general, we shall restrict our attention to two subcases. The

�rst subcase studied in Section 3 deals with two types of specially structured dominance

among the machines. It is known [1, 7] that under such a dominance the best schedule

among the so called \permutation schedules" can be found in polynomial time. Here

we prove that the schedules constructed as in [1, 7] are not only the best permutation

schedules but are the best among all feasible schedules, i.e. are optimal. In fact we prove

a much more general result, namely that under the above machine dominance constraints,

the search for optimal schedule can be restricted to the set of all permutation schedules

not only for the sum of completion times criterion but for an arbitrary regular objective

function which ful�lls certain very general properties.

The second subcase which we study in Section 4 is the case of two machines. Following

the notation and terminology of the classi�cation for the deterministic scheduling prob-

lems proposed by Graham et al. [6], we denote this problem as F2jj
P
Cj. One of the �rst

papers to study this particular problem was [9] where a branch-and-bound algorithm for

the problem was developed. The complexity of the problem was later established in [5].

It was proved that F2jj
P
Cj is NP-hard in the strong sense. Given this intractability

result, it comes as a no surprise that a lot of e�ort was put into developing heuristics and

approximation algorithms based on several lower bound techniques (see e.g. [11, 15] or [4]

for survey). All the above algorithms utilize the following fact which is a consequence of a

more general theorem in [3]: it su�ces to optimize over a set of those schedules in which

both machines process jobs in the same order and moreover in which the �rst machine

has no idle time.

This raises a question how does the complexity of F2jj
P
Cj change if we allow no idle

time also on the second machine. We denote this new problem as F2jnmitj
P
Cj where

\nmit" stands for \no machine idle time". Such a restriction may be very natural in some

real life situation, e.g if both machines represent an expensive equipment which has to

be rented for the duration between the start of the �rst operation and the completion

of the last one. First thing to note is that the argument from [3] carries over for this

no-idle case, i.e. again it su�ces to optimize over the set of permutation schedules. To

make this dissertation self-contained, we recall in Section 4 the proof of this fact. We

then commence the study of F2jnmitj
P
Cj by stating two theorems from [1] which deal

with certain properties of optimal schedules. We show that both claims are incorrect.

Moreover, we manage to prove another statement which has a similar \
avor" as the

original (incorrect) claims. Similarly to the argument from [3], also the complexity result

from [5] carries over to F2jnmitj
P
Cj. Therefore it is legitimate to decompose the problem

yet further, and study subproblems of F2jnmitj
P
Cj .

The subproblem that will be in the focus of our study from Section 5 on has the follow-

ing additional constraint: all operations on the �rst machine have a uniform length. The

complexity of this F2jp1j = a; nmitj
P
Cj problem was recently investigated in [8]. Once

again, it was proved that the problem is NP-hard in the strong sense. Although strictly

speaking the authors of [8] work with F2jp1j = aj
P
Cj, i.e. they do not require the \no-

idle" constraint, their proof is valid without any changes for the F2jp1j = a; nmitj
P
Cj

case as well. In Section 5 we describe several variants of the branch-and-cut technique for

solving the F2jp1j = a; nmitj
P
Cj problem and report results of computational experi-

ments.

5

Chapter 2

Basic de�nitions, notation, and

results

Let us start this chapter by introducing some fairly standard notions and stating several

simple results. First we need to formalize the notion of a schedule. A schedule S for a

owshop problem with n jobs on m machines is a set of mn nonnegative numbers CS
ij ,

1 � i � m, 1 � j � n, where each CS
ij denotes the completion time of the operation Oij in

the schedule S. Since the operations cannot be preempted, a system of completion times

CS
ij fully speci�es a schedule as described in the Introduction. In other words, since the

operations can not be preempted the completion time fully speci�es the span in which

each operation is processed, i.e. operation Oij is processed in the interval (CS
ij � pij; C

S
ij),

where pij denotes the prescribed duration of operation Oij. For every job Jj, 1 � j � n,

the job completion time CS
j is the completion time of its last operation, i.e. CS

j = CS
mj.

A schedule S is called feasible if it ful�lls all feasibility constraints. In addition to

the obvious requirement CS
1j � p1j � 0, there are two feasibility constraints for general

owshop problems:

� Machine constraint: each machine may process at most one job at any given time.

Formally

8i 2 f1; : : : ;mg8k; ` 2 f1; : : : ; ng : (k 6= `) =) (CS
ik � pik; C

S
ik)\ (CS

i` � pi`; C
S
i`) = ;:

� Job constraint: no job is processed on more than one machine simultaneously, and

moreover the operations of each job are processed on all machines in the same order.

Formally

8i; j 2 f1; : : : ;mg8k 2 f1; : : : ; ng : (i < j) =) (CS
ik � CS

jk � pjk):

In the main part of this dissertation we will require the schedules to ful�ll an additional

feasibility constraint:

� No-idle constraint: no machine is allowed to have an idle time between processing

any two operations. Formally

8i 2 f1; : : : ;mg8k; ` 2 f1; : : : ; ng : (CS
ik < CS

i` � pi`) =) (9q : CS
ik < CS

iq < CS
i`):

6

The quality of a schedule is measured by an objective function which assigns to every

schedule a real number. The task is then to �nd a feasible schedule which attains the

minimum value of the objective function over the set of all feasible schedules. Every

schedule with this property is called optimal. Typically, the objective function depends

only on the job completion times and furthermore possesses a regularity property. An

objective function f is said to be regular if for every two distinct schedules S1 and S2 the

inequality f(S1) < f(S2) implies CS1
j < CS2

j for at least one j. The objective function

studied in this dissertation is f(S) =
Pn

j=1C
S
j . Clearly, this is a regular objective function.

Let us observe that because there are no deadlines on the completion times of jobs,

there exists a feasible schedule for every instance of the above described no-idle
owshop

problem (which is then of course also a feasible schedule for the \idle time allowed"

version of the problem). Given an instance of the problem, such a schedule can for

instance be created as follows: schedule consecutively all operations on the �rst machine

(in an arbitrary order with no idle time allowed) starting from time 0, then schedule

consecutively all operations on the second machine (in an arbitrary order with no idle

time allowed) starting from time
Pn

j=1 p1j (i.e. starting when the last operation on the

�rst machine is completed) and so on. It is easy to verify that such a schedule is indeed

feasible. Moreover, since there are no deadlines on the completion times of jobs, any

feasible schedule S can be \shifted right" by an arbitrary real number r (replacing every

CS
ij by CS

ij + r) resulting again in a feasible schedule. Therefore there is an uncountable

number of feasible schedules for every instance of every of the
owshop problems being

considered. In order to reduce the number of schedules under investigation, we need the

notion of dominance.

A set of schedules S is said to be dominant if for every feasible schedule S there exists

a feasible schedule S0 2 S such that f(S 0) � f(S). This guarantees that at least one

optimal schedule lies in S and hence it is enough to optimize over S and disregard all

schedules not in S. Now let us show that as long as the objective function is regular there

exists a �nite size dominant set of schedules.

Due to the non-preemptiveness requirement every schedule de�nes for each machine an

order in which the jobs are processed, or in other words a permutation of jobs. Of course

the same set of m permutations (one per each machine) may be de�ned by many di�erent

schedules. However, it is not hard to see that for each �xed set of m permutations, say

�1; : : : ; �m, there is one schedule which dominates all the others in the same group. This

schedule (let us denote it by S�1;:::;�m) can be constructed as follows:

1. Schedule all operations on the �rst machine in the order �1 with no idle time in

between operations starting at time 0.

2. Schedule all operations on the second machine in the order �2 as follows:

� If idle time is allowed then schedule the operations one by one in the order �2
where each operation starts as early as possible, i.e. starts at the time when

the operation of the same job on the previous machine is completed or at the

time when the previous operation on the same machine is completed, whichever

comes last. More formally, the completion time of an operation O2�2(i) for each

1 � i � n is de�ned by

CS
2�2(i)

= maxfCS
1�2(i)

; CS
2�2(i�1)

g+ p2�2(i);

where we assume CS
2�2(0)

= 0 and S = S�1;:::;�m to simplify the notation.

7

� If idle time is not allowed then schedule all the operations in the given order

with no idle time in between the operations starting at the time when the

last operation on the previous machine was completed. Then \shift" all the

operations to the left until the starting time of one of the operations \hits"

the completion time of its corresponding operation on the previous machine.

The job that prohibits further shifting to the left (in case that there are several

such jobs then the leftmost one) is called the blocking job of S for the second

machine and its position in S is called the blocking position of S for the second

machine (see Figure 2.1).

J�1(1) � � � J�1(i) J�1(i+1) � � � J�1(n)

J�2(1) � � � J�2(i�1) J�2(i) � � � J�2(n)

Pi�1
j=1 p2�2(j)

� - Pn
j=i+1 p1�1(j)

� -

CS
1�1(n)

Figure 2.1:

More formally, the operation O2�2(i) (for each 1 � i � n) is �rst assigned

a \tentative completion time" ĈS
2�2(i)

= CS
1�1(n)

+
Pi

j=1 p2�2(j) and then the

(�nal) completion time is calculated by subtracting the \length of the left

shift" ` = minni=1f
Pi�1

j=1 p2�2(j) +
Pn

j=i+1 p1�1(j)g. Hence

CS
2�2(i)

= ĈS
2�2(i)

� ` = CS
1�1(n)

+
iX

j=1

p2�2(j) �
n

min
i=1

f
i�1X
j=1

p2�2(j) +
nX

j=i+1

p1�1(j)g:

3. Repeat step 2 for machines M3;M4; : : : ;Mm.

By construction it is obvious that no operation in S�1;:::;�m can be shifted left without

violating feasibility. On the other hand given any feasible schedule S which de�nes the

same set of permutations �1; : : : ; �m, it is possible to transform S into S�1;:::;�m by per-

forming left shifts on a certain set of operations.1 Therefore f(S�1;:::;�m) � f (S) holds for

every regular objective function f . Consequently the set S = fS�1;:::;�m j �1; : : : ; �m 2 Png

where Pn is the set of all permutations of order n is a dominant set of schedules. Note

that jSj = (n!)m, i.e. S has a �nite size. From now on we shall restrict our attention

exclusively to schedules from the set S.

For some
owshop problems it is possible to restrict the set S even further to a set of

the so-called permutation schedules. A schedule S�1;:::;�m 2 S is a permutation schedule

if �1 = �2 = � � � = �m holds, i.e. if the jobs are processed in the same order on all m

machines. The name \permutation schedule" re
ects the fact that a single permutation

speci�es the entire schedule. We denote the set of all permutation schedules by S.

Throughout this dissertation we shall make an assumption that all processing times

pij are integers. It then follows from the construction of the schedules in S that also all

completion times of operations can be assumed integral.

1We omit a formal proof of this fact here. However, the reader can easily verify the claim by induction,

starting with the leftmost operation on which the schedules S and S�1;:::;�m
di�er.

8

Chapter 3

Flowshop with machine dominance

As we already mentioned in the introduction, the problem Fmjj
P
Cj is NP-hard for

m � 2 [5]. That implies that there is little hope to �nd a polynomial time algorithm

which would generate an optimal solution for this problem in its full generality. Hence,

a question arises what additional constraints should be imposed on the problem in order

to make it tractable. Several such constraints are connected to the long-studied concept

of machine dominance [1, 14, 7]. A machine i is said to dominate a machine j (denoted

by Mi �>Mj) if
n

min
k=1

fpikg �
n

max
k=1

fpjkg:

We shall deal here with two special cases studied in [1] and [7]. The machinesM1; : : : ;Mm

are said to form an increasing series of dominating machines (idm) if

Mm �>Mm�1 �> � � � �>M2 �> M1;

and to form a decreasing series of dominating machines (ddm) if

M1 �>M2 �> � � � �> Mm�1 �> Mm:

Both cases are known to be solvable in polynomial time if we restrict our attention to per-

mutation schedules only. Adiri and Pohoryles [1] designed two polynomial time algorithms

constructing the best permutation schedules for Fmjnmit; idmj
P
Cj and Fmjnmit; ddmj

P
Cj

respectively. Ho and Gupta [7] later extended these results for the case when machine

idle time is allowed. In this dissertation we prove that all of the above algorithms con-

struct not only the best permutation schedule for the given problem, but that they in fact

produce optimal schedules. This is achieved by proving that under either of the above

machine dominance schemes (idm or ddm) the set of all permutation schedules S is a

dominant set of schedules. Moreover, our results are more general in the sense, that they

are valid not only for the
P
Cj criterion, but rather for an arbitrary regular objective

function. Let us start with the idm case.

Proposition 1 Let f be an arbitrary regular objective function. Then the set S of all

permutation schedules is a dominant set for both Fmjidmjf and Fmjnmit; idmjf
owshop

problems.

Proof. First let us note that if the machines form an increasing series of dominating

machines then it is not necessary to distinguish the situations when machine idle time

9

is allowed and when it is not allowed. For this it is enough to show that under the idm

constraint no schedule S 2 S may have any idle time inbetween any two consecutively

scheduled operations. However, this is a straightforward consequence of the idm constraint

and the method how the schedules in S are constructed. Also note that for every schedule

S 2 S, the job scheduled as the �rst one on Mi is the blocking job for Mi, 1 � i � m.

Let S 2 S be arbitrary. We shall construct T 2 S such that f(T) � f(S). For that

let � be the permutation of jobs de�ned by the schedule S on the last machine, and let

us denote j = �(1) (job j is scheduled �rst on Mm in S). Before constructing T we �rst

de�ne a schedule R by modifying S as follows:

� On all machines schedule job j at the same time as in S, i.e. set CR
ij = CS

ij for all

1 � i � m.

� On all machines schedule the remaining jobs in an order given by the permutation

� with no idle time inbetween operations. Since the job j is already scheduled,

it determines the completion times of all remaining operations on all machines.

Formally: CR
i�(k) = CR

ij +
Pk

`=2 pi�(`) for all 1 � i � m and 2 � k � n.

First of all let us note that f(R) = f(S) because the schedule on the last machine is

identical in R and S. Secondly let us prove that R is a feasible schedule. By contradiction

let us assume that R is infeasible. Obviously, the only feasibility constraint that R may

violate is the job constraint. So let the job �(k) be such that Oi1�(k) is completed only

after Oi2�(k) already starts for some machines i1 < i2, i.e. let CR
i1�(k)

> CR
i2�(k)

� pi2�(k).

After substituting we get

CR
i1j

+
kX

`=2

pi1�(`) > CR
i2j

+
kX

`=2

pi2�(`) � pi2�(k) = CR
i2j

+
k�1X
`=2

pi2�(`):

Moreover, since S is a feasible schedule we also have

CR
i2j

� pi2j = CS
i2j
� pi2j � CS

i1j
= CR

i1j
:

Putting the above two inequalities together we get

CR
i1j

+
kX

`=2

pi1�(`) > CR
i1j

+ pi2j +
k�1X
`=2

pi2�(`) = CR
i1j

+
k�1X
`=1

pi2�(`)

which implies
kX

`=2

pi1�(`) >
k�1X
`=1

pi2�(`)

which is a contradiction to the fact that Mi2 �> Mi1 . Therefore the schedule R is feasible.

Now we are ready to construct from the schedule R the schedule T 2 S. This is done by

simply eliminating on each machine the (maybe zero length) unnecessary idle time before

the �rst job starts. This is equivalent to shifting the schedule on each of the machines

M2; : : : ;Mm to the left until the job j becomes the blocking job. This implies that all job

completion times can only decrease (i.e. CT
k � CR

k for every 1 � k � n) which together

with the fact that f is regular guarantees that f(T) � f(R) = f(S).

Let us now turn to the ddm case. Unlike in the idm case, this time it is necessary to

distinguish whether a machine idle time is allowed or not. Let us demonstrate this fact

on an example in which we take f =
P
Cj.

10

Example 1 Consider the 3-job instance with p11 = p12 = 3, p13 = 4, p21 = p22 = 1, and

p23 = 2. According to [7] the best permutation schedule for F2jddmj
P
Cj is the one with

an SPT order (jobs sorted by length from short to long) on the �rst machine, for instance

the schedule corresponding to the permutation h1; 2; 3i (see Figure 3.1). On the other

hand, according to [1] the best permutation schedule for F2jnmit; ddmj
P
Cj is the one

with an SPT order on the second machine, except maybe the last job. Since p11 = p12
and p21 = p22 it su�ces to check the schedules where J3 is last on M2 and where (say)

J2 is last on M2, for instance the schedules corresponding to permutations h1; 2; 3i and

h1; 3; 2i. It can be easily veri�ed that the latter is the better of the two (see Figure 3.1).

Note that not only may two schedules corresponding to the same permutation under the

J1 J2 J3

J1 J2 J3

4 7 12

J1 J3 J2

J1 J3 J2

8 10 11

Figure 3.1:

no-idle constraint and without this constraint be di�erent (which implies that the sets S

and also S are di�erent), but moreover that the best permutation schedule is in each case

attained for a di�erent permutation of jobs. This shows that the problems Fmjddmj
P
Cj

and Fmjnmit; ddmj
P
Cj are genuinely di�erent even for m = 2.

Now we are ready to state the variants of Proposition 1 for the problems Fmjddmjf

and Fmjnmit; ddmjf .

Proposition 2 Let f be an arbitrary regular objective function. Then the set S of all

permutation schedules is a dominant set for the Fmjddmjf
owshop problem.

Proof. Let S 2 S be arbitrary. We shall construct T 2 S such that f(T) � f(S). Let

us assume that the jobs are numbered according to their order on M1 in S. Let Mi be

the �rst machine which has in S a di�erent order of jobs than M1, and let j be the �rst

(leftmost) job scheduled on Mi out of the sequence de�ned by M1. Let k be the job that

precedes j on Mi in S. Let us observe several simple facts:

� Since the order of jobs J1; : : : ; Jk is the same onMi�1 andMi in S, the operation Oik

starts immediately after the conclusion of the operation O(i�1)k. This is a simple

consequence of the ddm constraint. Moreover, because p(i�1)(k+1) � pik we have

CS
(i�1)(k+1) � CS

ik.

11

� Since j � k + 2 we also get CS
(i�1)(k+2) � CS

ij � pij.

The above two facts imply that Mi has an idle time of length at least p(i�1)(k+2) � pi(k+1)
between CS

(i�1)(k+1) and the start of operation Oij . However, that means that the operation

Oi(k+1) which is scheduled after Oij in S can be moved inbetween Oik and Oij to start at

CS
(i�1)(k+1). Therefore, after a �nite number of such actions, the order of jobs on Mi can

be made to coincide with the order on M1. The same can be subsequently done for all

remaining machines producing the schedule T . Since all operations either stayed in their

place or were moved left, we have CT
j � CS

j for all 1 � j � n. This together with the fact

that f is regular implies f (T) � f (S).

Proposition 3 Let f be an arbitrary regular objective function. Then the set S of all

permutation schedules is a dominant set for the Fmjnmit; ddmjf
owshop problem.

Proof. Let S 2 S be arbitrary. We shall construct T 2 S such that f(T) � f(S). For

that let � be the permutation of jobs de�ned by the schedule S on the last machine, and

let Jj = J�(q) be the job scheduled last on M1 in S. Before constructing T we �rst de�ne

a schedule R by modifying S as follows:

� On all machines schedule job j at the same time as in S, i.e. set CR
ij = CS

ij for all

1 � i � m.

� Construct a permutation � from the permutation � as follows

�(i) =

8><
>:
�(i) for 1 � i < q,

�(i+ 1) for q � i < n,

�(q) for i = n.

This corresponds to taking the jobs scheduled after Jj onMm in S and moving them

(without changing their order) just in front of Jj.

� On all machines schedule the remaining jobs in an order given by the permutation

� with no idle time inbetween operations. Since the job j is already scheduled, it

determines the completion times of all remaining operations on all machines. Note

that since the job Jj = J�(q) = J�(n) is last on M1 in S, the change to the schedule

R amounts on M1 to reordering the �rst n � 1 jobs according to the permutation

�, which obviously keeps the starting time of the �rst scheduled job at time zero.

Formally: CR
i�(k) = CR

ij �
Pn

`=k+1 pi�(`) for all 1 � i � m and 1 � k � n� 1.

First of all let us note that f(R) � f(S) because f is regular and the schedule on the last

machine in R was obtained from S by shifting some (possibly zero) operations to the left.

Secondly let us prove that R is a feasible schedule. By contradiction let us assume that

R is infeasible. Obviously, the only feasibility constraint that R may violate is the job

constraint. So let the job �(k) be such that Oi1�(k) is completed only after Oi2�(k) already

starts for some machines i1 < i2, i.e. let C
R
i1�(k)

> CR
i2�(k)

� pi2�(k). After substituting we

get

CR
i1j
�

nX
`=k+1

pi1�(`) > CR
i2j
�

nX
`=k+1

pi2�(`) � pi2�(k) = CR
i2j

�
nX

`=k

pi2�(`):

12

Moreover, since S is a feasible schedule we also have

CR
i2j

� pi2j = CS
i2j
� pi2j � CS

i1j
= CR

i1j
:

Putting the above two inequalities together we get

CR
i1j
�

nX
`=k+1

pi1�(`) > CR
i1j

+ pi2j �
nX

`=k

pi2�(`) = CR
i1j
�

n�1X
`=k

pi2�(`)

which implies
nX

`=k+1

pi1�(`) <
n�1X
`=k

pi2�(`)

which is a contradiction to the fact that Mi1 �> Mi2 . Therefore the schedule R is feasible.

Now we are ready to construct from the schedule R the schedule T 2 S. This is done by

simply eliminating on each machine the (maybe zero length) unnecessary idle time before

the �rst job starts. This is equivalent to shifting the schedule on each of the machines

M2; : : : ;Mm to the left until the job j becomes the blocking job. This implies that all job

completion times can only decrease (i.e. CT
k � CR

k for every 1 � k � n) which together

with the fact that f is regular guarantees that f(T) � f(R) � f(S).

13

Chapter 4

Two-machine
owshop

In the rest of this dissertation we shall deal with the two-machine
owshop only. To sim-

plify the notation we replace p1j by aj and p2j by bj for all 1 � j � n, and moreover we

assume without loss of generality that the jobs are numbered according to a nondecreas-

ingly sorted processing times on the second machine, i.e that b1 � b2 � � � � � bn. Such

an order is often called a Shortest Processing Time (or simply SPT) order. Now we are

ready to prove a theorem which is a special case of a more general proposition from [3].

Theorem 1 The set of all permutation schedules S is a dominant set for both F2jj
P
Cj

and F2jnmitj
P
Cj
owshop problems.

Proof. Since S is a dominant set it is enough to prove that for every S 2 S there exists

a permutation schedule S 0 2 S such that
Pn

j=1C
S0

j �
Pn

j=1C
S
j . Note that the set S (and

hence also the set S) is di�erent for each of the two problems under consideration. This

is caused by the di�erent method of constructing the S�1;:::;�m type schedules, depending

on whether idle times are or are not allowed. However, the following simple interchange

argument is the same for both cases and the di�erence between the sets S plays no role

in it. So let S 2 S n S be an arbitrary schedule. Since S 62 S there exists a pair of jobs

Ji and Jj such that O1j is scheduled immediately after O1i in the schedule S (recall that

for all schedules in S there is no idle time on the �rst machine regardless of whether idle

time is allowed or not) while O2i is scheduled after O2j in the schedule S (possibly with

an idle time and/or other jobs scheduled in between).

Now it is obvious that interchanging the position of O1i and O1j leads again to a

feasible schedule. Moreover, such an interchange does not a�ect the value of the objective

function because no operation on the second machine moves. Quite clearly, after a �nite

number of the above described interchanges we arrive to a permutation schedule S0 which

has the same value of the objective function as S. This �nishes the proof.

As we indicated in the introduction, the part of the paper [1] which deals with the

F2jnmitj
P
Cj problem contains incorrect claims. Let us show that this is indeed the case.

Adiri and Pohoryles [1] claim that the optimal schedules have the following properties.

1. If in the optimal schedule for F2jnmitj
P
Cj, the blocking job is the last one, then the

optimal schedule is according to SPT on the second machine, except for the blocking

job that is the one with the minimum processing time on the second machine.

14

2. The jobs that (i) precede (ii) succeed the blocking job in the optimal schedule for

F2jnmitj
P
Ci are ordered according to SPT on M2, provided the no-idle constraint

is not violated.

The following example shows that neither of these claims holds, even if we restrict the

problem by requiring that all processing times on the �rst machine are the same.

Example 2 Consider the 3-job instance with a1 = a2 = a3 = 4, b1 = b2 = 1; b3 = 6.

Since b1 = b2, it su�ces to consider three permutations only, for example, the permuta-

tions h1; 2; 3i; h1; 3; 2i and h3; 1; 2i. The corresponding permutation schedules are given in

Figure 4.1. Obviously the schedule corresponding to the permutation h3; 1; 2i is optimal.

J1 J2 J3

J1J2 J3

11 12 18

J1 J3 J2

J1 J3 J2

8 14 15

J3 J1 J2

J3 J1 J2

11 12 13

Figure 4.1:

Its blocking job is the last one, but its �rst two jobs are not in an SPT order, which

contradicts the claims.

Now we shall prove that although the �rst claim is incorrect, the special schedule

mentioned in the claim does have an interesting property. Let Sk denote the set of all

schedules from S whose blocking position is k, 1 � k � n, and let Ik denote the set of n!

schedules, both feasible and infeasible, de�ned as follows: for each permutation �, create

the schedule in Ik by scheduling the jobs on both machines in the order prescribed by

� (with no idle time), and then aligning the completion time of the operation O1k with

the starting time of the operation O2k. Furthermore, let S� be the schedule (possibly

infeasible) from In corresponding to the permutation such that the last job is the one

with the shortest operation on the second machine and the remaining jobs are ordered in

an SPT order on the second machine.

15

Lemma 1 S� is best in In.

Proof. Let S be an arbitrary schedule from In, � be the permutation de�ning the schedule

S, and let t1 denote the starting time of the �rst job in S on the second machine. It is

J�(n)

J�(n)

0 t1
P
aj

Figure 4.2:

easy to verify (see Figure 4.2) that

t1 =
nX

j=1

a�(j) �
n�1X
j=1

b�(j) =
nX

j=1

aj �
nX

j=1

bj + b�(n):

Since the completion time CS
�(j) of the job in the jth position of schedule S can be

calculated by

CS
�(j) = t1 +

jX
i=1

b�(i):

We have
nX

j=1

CS
j =

nX
j=1

CS
�(j) = nt1 +

nX
j=1

(n� j + 1)b�(j):

Now the substitution for t1 gives

nX
j=1

CS
j = n(

nX
j=1

aj �
nX

j=1

bj) + (n+ 1)b�(n) + nb�(1) + (n� 1)b�(2) + � � �+ 2b�(n�1)

where the �rst term of the sum on the right-hand side does not depend on the order of

jobs. The remaining sum on the right hand side takes a minimum value if the permutation

� corresponds to the schedule S� which �nishes the proof.

Proposition 4 If S� is feasible then it is optimal.

Proof. Let S 2 S be an arbitrary permutation schedule and let S 0 2 In be the schedule

de�ned by the same permutation as S. Obviously, S and S0 are identical on the �rst

machine. Since S is feasible, the last operation onM2 does not start before the conclusion

of the last operation onM1. Therefore S and S0 are identical alsoM2 or S
0 can be produced

from S by shifting the schedule on M2 to the left. Thus
Pn

j=1C
S0

j �
Pn

j=1C
S
j . However,

by Lemma 1
Pn

j=1C
S�

j �
Pn

j=1C
S0

j and therefore S� is optimal.

Remark 1 If ai � bj whenever i 6= j, then S� 2 Sn, and we can conclude that S� is

optimal. In particular, if M1 �> M2 then S� is optimal. The latter is a special case

Theorem 4 of [1], which deals with a decreasing series of dominating machines.

16

It should be pointed out that an argument similar to Lemma 1 cannot be applied to

blocking position k with k < n, because then the sum
Pk

j=1 a�(j) depends on permutation

�. Consequently the starting time of the blocking job on the second machine depends on

the order of jobs on the �rst machine. This obstacle does not occur when the processing

times on the �rst machine are all equal to a prescribed positive number a. Before con-

sidering this special case, we illustrate what type of results can hold for k < n in general

case.

Let us consider the case k = 1. Let S be an arbitrary schedule from S1 and let � be

the permutation de�ning schedule S. Completion time CS
�(i) of the job in the ith position

of S is obviously given by

CS
�(i) = a�(1) +

iX
r=1

b�(r):

Thus the sum of all completion times resulting from schedule S can be computed as

follows:
nX
i=1

CS
�(i) = na�(1) +

nX
r=1

(n� r + 1)b�(r):

If the job in the �rst position of S is job Jj, then we obtain

nX
i=1

CS
�(i) = naj + nbj +

nX
r=2

(n� r + 1)b�(r):

Obviously, this sum is minimized when all the remaining jobs (i.e. all jobs except of Jj)

are scheduled in an SPT order on the second machine. Let (SPT)j denote the schedule

for which this minimum is attained and let S1
j be the set of all schedules from S1 whose

�rst job is Jj . By the above consideration it follows that if (SPT)j belongs to S
1
j , then it

is best in S1
j . Now let S = (SPT)j, i.e. let � be the permutation de�ning (SPT)j . The

completion time Cj

�(i) of the job in the ith position of (SPT)j can be computed as follows

(see Figure 4.3)

Cj

�(i) =

(
aj + bj +

Pi�1
r=1 br for i < j,

aj +
Pi

r=1 br for i � j.

Consequently

nX
i=1

C
j
i =

nX
i=1

C
j

�(i) = naj + (j � 1)bj �
j�1X
i=1

bi +
nX
i=1

(n� i+ 1)bi:

Since the last term is independent of j, we can conclude that the best value is obtained

for j at which the minimum value of

Vj := naj + (j � 1)bj �
j�1X
i=1

bi

is attained. Let j� be such that

Vj� =
n

min
i=1

Vj

where the minimum is taken over all j such that S1
j 6= ;. Since

S1 = S1
1 [S

1
2 [� � � [S1

n =
[

fjjS1
j
6=;g

S1
j ;

17

aj aj + bj Cj

�(i)

Jj

Jj J1 J2 � � � Jj�1 Jj+1 � � � Ji � � � Jn

aj aj + bj C
j

�(i)

Jj

Jj J1 J2 � � � Ji � � � Jj�1 Jj+1 � � � Jn

Figure 4.3:

we conclude that Vj� +
Pn

i=1(n� i+ 1)bi is the minimum value of the objective function

over S1, provided (SPT)j belongs to S
1
j whenever S

1
j 6= ;.

Remark 2 If ai � bj whenever i 6= j, then all sets S1
j are nonempty and (SPT)j belongs

to S1
j for each j. Consequently (SPT)j� is best in S

1. Moreover, S2 = � � � = Sn = ; in this

case. Therefore (STP)j� is best in S. In other words, (SPT)j� is optimal. In particular,

if M2 �> M1 then (SPT)j� is optimal. This is a special case of Theorem 3 of the Adiri

and Pohoryles paper [1] which deals with an increasing series of dominating machines.

From now on let us consider the special case in which the processing times on the �rst

machine are all equal to a given positive integer a, or formally let a1 = a2 = � � � = an = a.

Moreover, we shall assume that minni=1 bi < a < maxni=1bi, because otherwise the problem

is easily solvable due to Remark 2 or Remark 1. For each k, 1 � k � n, and each

permutation � of jobs, let Sk
� denote the schedule (possibly infeasible) constructed as

follows. On the �rst machine, the jobs are scheduled as in the corresponding permutation

schedule. On the second machine, the jobs are scheduled in the same order but so that job

J�(k�1) is completed at time t = ka and no machine idle time exists between consecutive

jobs (see Figure 4.4).

a a � � � a a � � � a

b�(1) � � � b�(k�1) b�(k) � � � b�(n)

k � a

Figure 4.4:

18

-� � -

J�(j�1) J�(j)

J�(j�1) J�(j)

J�(j�1) J�(j)

J�(j�1) J�(j)

J�(j�1) J�(j)

Pl�1
k=1 pk�(j�1)

Pm
k=l+1 pk�(j�1)

Figure 4.5:

Let Ck
�(i) denote completion time of J�(i) in Sk

�. Then

Ck
�(i) =

(
ka�

Pk�1
j=i+1 b�(j) for 1 � i � k � 1

ka+
Pi

j=k b�(j) for k � i � n

and the sum of completion times under schedule Sk
� can be computed as follows:

nX
i=1

Ck
�(i) = nka�

k�1X
i=2

(i� 1)b�(i) +
nX
i=k

(n� i+ 1)b�(i):

Since k
Pn

j=1 bj = k
Pn

i=1 b�(i), we have

nX
i=1

Ck
�(i) = k(na�

nX
j=1

bj)�
k�1X
i=2

(i� 1)b�(i) +
nX
i=k

(n� i+ 1)b�(i) + k
nX
i=1

b�(i)

= k(na�
nX

j=1

bj) +
k�1X
i=1

(k � i+ 1)b�(i) +
nX
i=k

(n+ k � i+ 1)b�(i): (4.1)

The term k(na�
Pn

j=1 bj) does not depend on the order of jobs. Note that in the remaining

two summations each b�(i) appears di�erent number of times: b�(k�1) is in the sum just

twice (and therefore the longest job Jn should be scheduled in the (k � 1)th position),

b�(k�2) three times, and so on until b�(1) appears k times. In the second summation b�(n)
is present k+1 times, b�(n�1) k+2 times, and so on until �nally b�(k) appears n+1 times.

Therefore the minimum value of (4.1) is achieved for the permutation constructed as

follows. First, order the jobs in a nondecreasing order of bi's (SPT order). Then schedule

the �rst segment of n� k + 1 jobs from t = ka and place the remaining segment of k � 1

jobs in front of t = ka without allowing any machine idle time between consecutive jobs.

Since we have assumed that the jobs are numbered in the nondecreasing order of bi's, the

resulting job order is

�̂ = hJn�k+2; Jn�k+3; � � � ; Jn; J1; J2; � � � ; Jn�k+1i:

19

Of course the corresponding schedule Sk
�̂ is not necessarily in Sk. Because all schedules

from Sk have the form Sk
� for some �, the schedule Sk

�̂ provides a lower bound for Sk. As

a consequence, we have the following proposition.

Proposition 5 If Sk
�̂ belongs to Sk, then it is best in Sk.

It should be pointed out that this proposition is of very limited value, because as a

rule Sk
�̂ doesn't belong to Sk. In particular, if 1 < k < n, then bn � a must hold for the

job Jn to start only after its operation on the �rst machine is completed, and similarly

a � b1 must hold so that the job J2 starts only after its operation on the �rst machine

is completed. Therefore Sk
�̂ belongs to Sk if and only if max1�i�nbi � a � min1�i�nbi.

However, it happens if and only if b1 = b2 = � � � = bn = a, and then every permutation

schedule is optimal. The usefulness of schedule Sk
�̂ is in the fact that it provides a lower

bound for Sk.

A further extension of this simple bound and Proposition 5 will be given in the fol-

lowing chapter in connection with the branch-and-cut technique.

20

Chapter 5

Branch-and-Cut technique

In this chapter, we describe the proposed branch-and-cut procedures for solving the prob-

lem F2jp1j = a; nmitj
P
Cj. We assume, without loss of generality, that

b1 � b2 � � � � � bn and b1 < a < bn:

In general terms, we can describe the procedure as follows. At any stage of our

search the set of all permutation schedules is partitioned into a family of subsets. Each

of these subsets represents an active subproblem consisting of minimizing the objective

function on that subset. The strategy is to select some active subproblem, examine

it, and decide whether or not any solution to that subproblem needs to be considered

further in identifying an optimal solution of the original problem. If not, we consider

that subproblem fathomed, and we remove it from the list of active subproblems. If it

cannot be fathomed, then it is replaced in the list of active subproblems by one or more

new active subproblems each of which is derived by imposing some additional constraints.

The entire process can be represented as a tree where nodes in the tree correspond to

subproblems and where branches are formed according to restrictions that are imposed

for creating the subproblems

In the following subsections we specify the general strategy in more detail. For ease

of presentation, we re�ne the previous notation as follows. A permutation of a subset of

jobs is called a partial sequence. If A and B are partial sequences of two disjoint subsets

of jobs, then Sk(B;A) denotes the set of all schedules from Sk in which B is completed at

time ka and A is scheduled immediately after B - see Figure 5.1. In this notation, set Sk

becomes Sk(�;�) where � stands for the partial sequence of empty set. The problem of

B A

ka

Figure 5.1:

minimizing the sum of completion times over Sk(B;A) will be called subproblem P k(B;A).

21

If Sk(B;A) is empty, then we say that P k(B;A) is infeasible, otherwise it is feasible. If A

is a partial sequence, then jAj denotes the number of elements of the corresponding set.

5.1 Feasibility

During the run of the branch-and-cut algorithm subproblems need to be tested for fea-

sibility. This can be done as follows. Let A and B be partial sequences of two disjoint

subsets of jobs and let k be a given integer, 1 � k � n. First obvious condition for a

feasibility of subproblem P k(B;A) is

0 � jBj � k � 1 and 0 � jAj � n� k + 1: (5.1)

To formulate other conditions, suppose that A = hJA
1 ; J

A
2 ; � � � ; J

A
jAji, and let bAi denote the

processing time of JA
i on the second machine. Since the jobs of A must be scheduled from

time ka without any inserted machine idle time, the following system of inequalities must

be satis�ed.

rX
i=1

bAi � ra for 1 � r � jAj � 1 (5.2)

If jAj < n� k + 1, then the previous inequality must hold also for r = jAj, i.e

jAjX
i=1

bAi � jAja: (5.3)

Analogously, let B = hJB
jBj; J

B
jBj�1; � � � ; J

B
1 i and let bBi denote the processing time of JB

i

on the second machine. Then, for the feasibility of P k(B;A), the following system of

inequalities must hold:

rX
i=1

bBi < ra for 1 � r � jBj: (5.4)

The strict inequalities are required, because if the equality holds for some r, then the

resulting schedules does not belong to Sk(B;A) but to Sk�r(C;D) where

C = hJB
jBj; J

B
jBj�1; � � � ; J

B
r+1i;

D = hJB
r ; J

B
r�1; � � � ; J

B
1 ; Ai:

For easy reference, we say that partial sequence A is right-feasible for position k, when

(5.2) and, if applicable, also (5.3) are satis�ed. Similarly, we say that B is left-feasible for

position k, when (5.4) is satis�ed. If A is right-feasible and B is left-feasible for position

k, then we say that hB;Ai is feasible for position k.

If hB;Ai is feasible for position k, then there is a chance that partial sequence hB;Ai

may be extended into a complete sequence which determines a schedule belonging to

Sk(B;A). To see what conditions must be further ful�lled, we �rst observe that k�1�jBj

jobs must be scheduled in front of B and n� k+1� jAj jobs must be scheduled after A.

Let nA; nB ;MA and MB be de�ned as follows:

22

nA := n� k + 1� jAj, nB := k � 1� jBj,

MA :=
PjAj

i=1 b
A
i � jAja, MB := jBja�

PjBj
i=1 b

B
i .

Further, let A0 and B0 be partial sequences of nA and nB jobs belonging neither to A nor

to B. For de�niteness suppose that

A0 = hJA0

1 ; JA0

2 ; � � � ; JA0

nA
i; B0 = hJB0

nB
; JB0

nB�1
; � � � ; JB0

1 i:

It is easy to verify that if the permutation schedule de�ned by hB0; B;A;A0i belongs to

Sk(B;A), then

rX
i=1

bB
0

i < ra+MB for 1 � r � nB; (5.5)

rX
i=1

bA
0

i � ra�MA for 1 � r � nA � 1: (5.6)

Obviously, if these conditions are not satis�ed for A0 and B0 such that

bA
0

1 � bA
0

2 � � � � � bA
0

nA
� bB

0

nB
� bB

0

nB�1
� � � � � bB

0

1 ;

then they cannot be satis�ed for any other choice of A0 and B0. Consequently, in such

cases Sk(B;A) is empty and problem P k(B;A) is infeasible.

Example 3 Consider the instance of 7 jobs with a = 30 and bj given by the following

Table 5.1.

Table 5.1:

j 1 2 3 4 5 6 7

bj 29 31 32 33 33 36 40

1. Consider P 3(�; hJ1; J2i). In this case condition (5.2) is not satis�ed for r = 1,

because
rX

i=1

bAi = bA1 = b1 = 29 < 30 = ra:

Therefore P 3(�; hJ1; J2i) is infeasible.

2. Consider P 4(hJ1i; hJ4i). Now all conditions (5.2)-(5.4) are satis�ed. It remains to

verify conditions (5.5) and (5.6) for A0 = hJA0

1 ; JA0

2 ; JA0

3 i and B 0 = hJB0

2 ; JB0

1 i such

that

bA
0

1 � bA
0

2 � bA
0

3 � bB
0

2 � bB
0

1

where all jobs are di�erent from J1 and J4. It follows that A0 = hJ7; J6; J5i and

B0 = hJ3; J2i Now it is easy to verify that conditions (5.6) are satis�ed, because

b7 = 40 � 30� 3 = a�MA; (5.7)

b6 + b7 = 76 � 2 � 30� 3 = 2a�MA:

23

However, conditions (5.5) are not ful�lled because

b2 = 31 = 30 + 1 = a+MB:

Strict inequality is required instead of the above equality and therefore we again

conclude that P 4(hJ1i; hJ4i) is infeasible.

3. Consider P k(�;�) for 1 � k � 7. First we observe that P k(�;�) is infeasible for

4 � k � 7. This follows from the fact that (5.5) cannot be satis�ed, becauseMB = 0

and b1 + b2 + b3 > 3a. Next we observe that P 3(�;�) is also infeasible because we

must have bB
0

1 < a and bB
0

2 + bB
0

1 < 2a, the latter being impossible. Finally we

observe that the schedule given by hJn; Jn�1; � � � J1i belongs to S1(�;�) and the

schedule given by hJ1; Jn; Jn�1; � � � J2i belongs to S
2(�;�). Therefore both P 1(�;�)

and P 2(�;�) are feasible.

5.2 Lower bounds

During initialization and fathoming some easily computable lower bounds on the value

of optimal solutions of subproblems should be available. In section 4 we have derived

simple lower bounds on the value of the objective function over Sk(�;�). In the simplest

version of our procedure we use the following extension of these simple bounds to arbitrary

Sk(B;A).

5.2.1 Simple lower bounds

Let hB;Ai be feasible for blocking position k. Consider the corresponding subproblem

P k(B;A) and its feasible set Sk(B;A). Let � be a permutation constructed from the

partial sequence hB;Ai by completing it to a complete sequence as follows. From among

the jobs that do not appear in hB;Ai put nB jobs before B and nA jobs after A, in

both cases in an arbitrary order. Having �, we associate with it the following, possibly

infeasible, schedule S. On both machines the jobs are scheduled as in the corresponding

permutation schedule but on the second machine the schedule is shifted so that the job

in the �(k � 1)th position is completed at time t = ka. Let Ck
�(i) denote completion time

of J�(i) under S. Using (4.1) we obtain

nX
i=1

Ck
�(i) = k(na�

nX
j=1

bj) +
k�1X
i=1

(k � i+ 1)b�(i) +
nX
i=k

(n+ k � i+ 1)b�(i)

= k(na�
nX

j=1

bj) +
k�1�jBjX

i=1

(k � i+ 1)b�(i) +
k�1X

i=k�jBj

(k � i+ 1)b�(i)

+

k+jAj�1X
i=k

(n+ k � i+ 1)b�(i) +
nX

i=k+jAj

(n+ k � i+ 1)b�(i): (5.8)

The term k(na�
Pn

j=1 bj) does not depend on the order of jobs, and the terms
Pk�1

i=k�jBj(k�

i+ 1)b�(i) and
Pk+jAj�1

i=k (n+ k � i+ 1)b�(i) do not depend on the order of jobs outside of

24

hB;Ai. It follows from the remaining terms that the minimum value of (5.8) is achieved

for the permutation constructed as follows.

First order all jobs not appearing in hB;Ai according to SPT. Let A0 denote the initial

segment of nA jobs of this order and let B0 denote the remaining segment of nB jobs. Then

order the jobs according to the sequence �(B;A) = hB 0; B;A;A0i and schedule them so

that the completion time of the last job in B on the second machine is kept at ka (i.e. so

that k is the blocking position) and there is no machine idle time between the consecutive

jobs (See Figure 5.2). Since all schedules from Sk(B;A) are constructed as described at

5jobs2jobs

2 5

6

6

5 2

1 3 4 7 8 9 10

assinged

remaining

SPT order

k=5 n=10

Figure 5.2: A permutation for getting lower bound of P 5(hJ5; J2i; hJ6i).

the beginning of this subsection, the schedule corresponding to �̂ gives a lower bound for

Sk(B;A), and if it belongs to Sk(B;A), it is best in Sk(B;A).

5.2.2 Improved lower bounds

The simple lower bounds of the previous subsection can be improved in several ways. In

our computational experiments, we have used an improvement based on the following idea,

which we call \pick up and shift". Consider a feasible subproblem P k(B;A) where hB;Ai

is feasible for position k. The simple lower bound described in the previous subsection is

computed as the value of schedule S de�ned by �(B;A) = hB 0; B;A;A0i with the blocking

position k. If S is feasible, then it is the best one in P k(B;A), and no improvement is

possible. If S is infeasible, then there is a chance for improvement of the lower bound for

P k(B;A). The infeasibility of S can be caused either by the fact that the partial sequence

hA;A0i is not right-feasible for position k or hB0; Bi is not left-feasible for position k (or

both). Without loss of generality let us assume that hA;A0i is not right-feasible for

position k (the other case is symmetric) and let us denote A0 = hJA0

1 ; : : : ; JA0

nA
i. Let q,

1 � q < nA, be the smallest integer such that hA; JA0

q i is right-feasible for k. If no such q

exists, then set q = nA.

Lemma 2 Let q be de�ned as above and let S 0
q be the schedule (possibly infeasible) de�ned

by the sequence �(B; hA; JA0

q i) and such that k is its blocking position. Then the objective

function value of S 0
q provides a lower bound for P k(B;A).

25

Proof Let Jp be an arbitrary job not in A [B and let Sp be the schedule (possibly

infeasible) de�ned by the sequence �(B; hA; Jpi) and such that k is its blocking position.

First let us note that Sp provides a lower bound for P k(B; hA; Jpi). This follows from

the fact that by de�nition of �(B; hA; Jpi) the jobs not in A [B [fJpg are ordered in

Sp in an SPT order, just like if constructing the simple lower bound for P k(B; hA; Jpi).

Since the subproblems P k(B; hA; Jpi) for all choices of Jp 62 A [B constitute a partition

of P k(B;A), it will be enough to prove that S 0
q is not worse than Sp for every Jp 6= JA0

q .

Due to the choice of q we get that for every p such that bp < b0q (where b
0
q is the processing

time of the job JA0

q on the second machine) the subproblem P k(B; hA; Jpi) is infeasible.

Therefore it will be enough to show that the objective function for Sq is not larger than

for Sp whenever bp � b0q. So let Jp be an arbitrary job not in A[B such that bp � b0q. We

shall distinguish two cases.

� Let Jp 2 A0. Therefore we can denote Jp = JA0

r for some r > q (in this notation

Sp = S0
r and bp = b0r). Moreover let Ri denotes the conclusion time of the job JA0

i in

the schedule S 0
r and Qi the conclusion time of the job JA0

i in the schedule S0
q. Then

nX
i=1

C
S0

r

i �
nX
i=1

C
S0

q

i = (
q�1X
i=1

Ri �
q�1X
i=1

Qi) + (Rq �Qq)

+ (
r�1X

i=q+1

Ri �
r�1X

i=q+1

Qi) + (Rr �Qr)

= (q � 1)(b0r � b0q) + (b0r +
q�1X
i=1

b0i)

+ (r � q � 1)b0r � (b0q +
q�1X
i=1

b0i +
r�1X

i=q+1

b0i)

= q(b0r � b0q) +
r�1X

i=q+1

(b0r � b0i) � 0: (5.9)

S 0
r B A JA0

r
JA0

q

S 0
q B A JA0

q JA0

r

��/ ��	

Figure 5.3:

� Let Jp 2 B0. Denote B0 = hJA0

nA+1
; : : : ; JA0

nA+nB
i and let Jp = JA0

r for some r > nA.

Then

nX
i=1

C
S0

r

i �
nX
i=1

C
S0

q

i = (
q�1X
i=1

Ri �
q�1X
i=1

Qi) + (Rq �Qq) + (
nA�1X
i=q+1

Ri �
nA�1X
i=q+1

Qi)

26

+ (RnA �QnA) + (
r�1X

i=nA+1

Ri �
r�1X

i=nA+1

Qi) + (Rr �Qr)

= (q � 1)(b0r � b0q) + (b0r +
q�1X
i=1

b0i) + (nA � q � 1)b0r � (
nX
i=1

bi � b0nA)

+ (r � nA � 1)b0r � (b0q + b0nA +
q�1X
i=1

b0i +
nA�1X
i=q+1

b0i +
r�1X

i=nA+1

b0i �
nX
i=1

bi)

= q(b0r � b0q) +
nA�1X
i=q+1

(b0r � b0i) +
r�1X

i=nA+1

(b0r � b0i) � 0: (5.10)

S 0
r JA0

nA B A JA0

r
JA0

q

S 0
q JA0

r B A JA0

q JA0

nA

��	 ? ��	

Figure 5.4:

Applying the same idea as above to the partial sequence hB0; Bi (if it is not left-

feasible for position k), we obtain an analogous improvement corresponding to a sequence

�(hJB0

q ; Bi; A) for some job JB0

q . By picking the better of the two lower bounds we obtain

the improved lower bound for the problem P k(B;A).

5.2.3 Lower bounds based on LP relaxation

It turns out that the problem F2jp1j = a; nmitj
P
Cj can be formulated as the following

integer programming problem. Let y0 denote the starting time of the �rst job on the

second machine, yk denote the completion time of the job in the kth position, 1 � k � n,

and �naly let xjk be de�ned by

xjk =

(
1 if Jj is in the kth position

0 otherwise

Then the problem can be formulated as follows:

minimize
Pn

k=1 yk

subject to
Pn

j=1 xjk = 1 1 � k � nPn
k=1 xjk = 1 1 � j � n

xjk 2 f0; 1g 1 � j; k � n

yk � yk�1 �
Pn

j=1 bjxjk = 0; 1 � k � n

yk�1 � ka: 1 � k � n

27

By relaxing the constraints xjk 2 f0; 1g to 0 � xjk � 1, we obtain a linear program-

ming problem the optimal value of which gives a lower bound on the optimal value of the

original problem. Since each subproblem P k(B;A) can be obtained by specifying values

of some variables xjk and yk, we can use similar relaxations for calculating lower bounds

for P k(B;A) and testing feasibility. Moreover, the above LP formulation has a hereditary

property. That means that the formulation for subproblems has exactly the same struc-

ture as for the original problem, only on a smaller set of variables. By gradually �xing

the values of variables, the inequalities with no variables left either turn into tautologies,

or (in case of the inequalities of the type yk�1 � ka) turn into feasibility constraints for

the given subproblem.

Example 4 Consider the subproblem P 2(�; hJ3i) of a 4-job instance given by a; b1; b2; b3; b4.

Then the relaxation of the original problem is the LP problem

minimize y1 + y2 + y3 + y4

subject to x11 + x21 + x31 + x41 = 1;

x12 + x22 + x32 + x42 = 1;

x13 + x23 + x33 + x43 = 1;

x14 + x24 + x34 + x44 = 1;

x11 + x12 + x13 + x14 = 1;

x21 + x22 + x23 + x24 = 1;

x31 + x32 + x33 + x34 = 1;

x41 + x42 + x43 + x44 = 1;

0 � xjk � 1; 1 � j; k � 4

y1 � y0 � b1x11 � b2x21 � b3x31 � b4x41 = 0;

y2 � y1 � b1x12 � b2x22 � b3x32 � b4x42 = 0;

y3 � y2 � b1x13 � b2x23 � b3x33 � b4x43 = 0;

y4 � y3 � b1x14 � b2x24 � b3x34 � b4x44 = 0;

y0 � a;

y1 � 2a;

y2 � 3a;

y3 � 4a:

The LP relaxation of P 2(�; hJ3i) is obtained by �xing job J3 at the second position. This

means that x32 = 1. It follows that x3s = xr2 = 0 for all r 6= 3 and s 6= 2, and that

28

y1 = 2a; y2 = 2a+ b3. Therefore the resulting LP problem can be written as

minimize y3 + y4

subject to x11 + x21 + x41 = 1;

x13 + x23 + x43 = 1;

x14 + x24 + x44 = 1;

x11 + x13 + x14 = 1;

x21 + x23 + x24 = 1;

x41 + x43 + x44 = 1;

0 � xjk � 1; 1 � j; k � 4

j 6= 3; k 6= 2

2a� y0 � b1x11 � b2x21 � b4x41 = 0;

y3 � (2a+ b3)� b1x13 � b2x23 � b4x43 = 0;

y4 � y3 � b1x14 � b2x24 � b4x44 = 0;

y0 � a;

y3 � 4a:

provided that 2a + b3 � 3a. If the last inequality is not satis�ed, i.e. if b3 < a, then we

conclude that P 2(�; hJ3i) is infeasible, because the inequality y2 � 3a from the original

LP formulation is not ful�lled.

5.3 Branching rule

When a subproblem cannot be fathomed, then further branching from the corresponding

node is performed. Suppose that we must branch from the node representing P k(B;A).

We may assume that nA+nB > 0, because otherwise a complete sequence can be obtained

and no branching is necessary.

If nA 6= 0 and nB � nA, then we generate subproblems P k(B; hA; Jji) such that

� Jj belongs neither to A nor to B,

� hA; Jji is right-feasible for position k.

If nB > nA, then we generate subproblems P k(hJi; Bi; A) such that

� Ji belongs neither to A nor to B,

� hJi; Bi is left-feasible for position k.

Generally not all of the generated subproblems are placed in the list of active sub-

problems. Some of them may be discarded because infeasibility, some because their lower

bounds are greater than or equal to the incumbent upper bound. It may also happen

that a generated subproblem is completely solved. Then its solution is compared with the

incumbent one and the better one is kept as the incumbent solution. Finally, some of the

feasible subproblems may be discarded because they are dominated as explained in the

following section.

29

5.4 Dominance rules

Suppose that we are branching from the node representing subproblem P k(B;A) and

that we are to create subproblems P k(B; hA; Jji) according to the rules described in

the previous section. As pointed out in the previous section, we can discard infeasible

problems. Among feasible ones we may discard those whose lower bounds are greater or

equal to the incumbent upper bound on the optimal value. In addition we may discard

the complete ones after comparison with the incumbent solution. However, there may

still be possible to discard some feasible subproblems, provided they are dominated in the

following sense.

We say that a subproblem dominates another subproblem if the best complete schedule

emanating from the former is no worse than the best schedule emanating from the latter.

Let us now describe the dominance rules we have used in our computational experi-

ments.

5.4.1 Zero-gap dominance rules

Consider a feasible subproblem P k(B; hA; Ji; Jji). It can easily be seen that if hA; Jj; Jii is

right-feasible for position k, then P k(B; hA; Jj ; Jii) dominates P k(B; hA; Ji; Jji) whenever

bi � bj. Indeed, let S be an arbitrary schedule from P k(B; hA; Ji; Jji) and let S 0 be the

schedule obtained from S by interchanging the order of Ji and Jj . It follows from the

right-feasibility of hA; Jj; Jii for k, that S
0 belongs to P k(B; hA; Jj; Jii).

Let t denote the starting time of Ji on the second machine under schedule S. Obviously

(see Figure 5.5), we obtain

S Ji Jj

t CS
i

CS
j

S 0 Jj Ji

t CS0

j CS0

i

Figure 5.5:

nX
k=1

CS
k �

nX
k=1

CS0

k = CS
i + CS

j � (CS0

j + CS0

i)

= CS
i � CS0

j

= t+ bi � (t+ bj)

= bi � bj:

Since bi � bj, the sum of completion times under S0 is better than under S. Conse-

quently, P k(B; hA; Ji; Jji) is dominated by P k(B; hA; Jj; Jii) and therefore P
k(B; hA; Ji; Jji)

can be discarded. By analogous argument, we can show that a feasible subproblem

30

P k(hJj ; Ji; Bi; A) can be discarded, whenever bj � bi, provided hJi; Jj; Bi is left-feasible

for k.

Similar dominance rules can be derived by interchanging pair of jobs or triples of jobs

or longer tuples of jobs instead of interchanging single jobs. In order to distinguish these

rules from those described in the next section we shall call them zero-gap rules and refer

to them asD10-rules, D20-rules, and so on, where the �rst index indicates the length of the

interchange tuples. For example, if P k(B; hA; Jr; Js; Ji; Jji) and P k(B; hA; Ji; Jj ; Jr; Jsi)

are feasible, then the former is dominated by the latter whenever br + bs � bi + bj.

5.4.2 Nonzero-gap dominance rules

Consider feasible subproblem P k(B; hA; Ji; Jg; Jji). Analogously to the previous subsec-

tion, we show that this subproblem is dominated by P k(B; hA; Jj; Jg; Jii) whenever bi � bj ,

provided hA; Jj ; Jg; Jii is right-feasible for k. Let S belongs to P k(B; hA; Ji; Jg; Jji) and

let S 0 be the schedule obtained by interchanging the jobs Ji and Jj and keeping Jg between

them. Then we obtain a schedule from P k(B; hA; Jj; Jg; Jii) such that

nX
k=1

CS
k �

nX
k=1

CS0

k = CS
i + CS

g + CS
j � (CS0

j + CS0

g + CS0

i)

= CS
i + CS

g � (CS0

j + CS0

g)

= t+ bi + t+ bi + bg � (t+ bj + t+ bj + bg)

= 2(bi � bj)

where t denotes the starting time of Ji on the second machine in S (see Figure 5.6).

S Ji Jg Jj

t CS
i

CS
g CS

j

S 0 Jj Jg Ji

t CS0

j CS0

g CS0

i

Figure 5.6:

Analogously we can show that if P k(hJj; Jg; Ji; Bi; A) and P k(hJi; Jg; Jj; Bi; A) are

feasible, then the latter dominates the former whenever bj � bi. Since there is exactly

one job between Ji and Jj we call such rules 1-gap rules and refer to them as D11 rules

where the �rst index indicates that we interchanged single jobs only.

Similarly, we can derive dominance rules in which more jobs than one are kept between

jobs Ji and Jj. Moreover not only single jobs, but also pairs of jobs or triples of jobs or

longer tuples of jobs can be interchanged. Now it should be clear that when we refer to

a D��-rule, we mean a dominance rule in which �-tuples of jobs are interchanged and a

string of � jobs is kept inbetween them.

31

5.5 Initialization

All variants of the proposed procedure are initialized by specifying

� an initial permutation schedule(incumbent solution) and its blocking position;

� an initial upper bound on the optimal value;

� an initial list of active subproblems.

We de�ne these initial objects as follows. As initial incumbent solution we take the sched-

ule corresponding to the SPT sequence hJ1; J2; � � � ; Jni. Obviously, its blocking position k

is given by k = jfijbi < agj+1. As initial upper bound we take the value of the objective

function at the initial incumbent solution. As members of the initial list of active sub-

problems we take all feasible subproblems among P 1(�;�); P 2(�;�); � � � ; P n(�;�) whose

lower bounds are less than the initial upper bound. The initial list is then obtained by

taking nondecreasing order of their lower bounds. Thus initialization involves computa-

tion of lower bounds for the subproblems P k(�;�). If the simple bounds described in

section 5.2 are used, then we also keep track of the corresponding (possibly infeasible)

schedules.

5.6 Termination

The algorithm terminates either by delivering an optimal solution or by exceeding pre-

scribed maximal time. The former case is indicated by the emptiness of the active list.

The incumbent of permutation schedule is then optimal and the incumbent upper bound

is the optimal value.

32

Chapter 6

Computational experiments

We have tested the performance of several variants of the proposed branch-and-cut tech-

nique using instances where the processing times on the second machine were generated

randomly. The objective of these experiments is to evaluate the performance of the de-

veloped heuristics. Here we report the results where:

� number of jobs ranges from 9 to 13;

� processing time on the �rst machine ranges from 31 to 59;

� processing times b1 and bn on the second machine are �xed at b1 = 30 and bn = 59,

respectively, and remaining processing times on the second machine are generated

from a discrete uniform distribution with a range 30 to 59.

We have tested the variants of the proposed lowerbounds and dominance rules. As

described in section 5.2, we have proposed three kinds of lowerbounds, in short , simple(B),

improved(I) and LP(L) lowerbounds. Moreover in section 5.4, we have designed a group

of dominance rule(Dij).

For ease of reference to a particular algorithm, we use the following notation:

� AB , AI and AL denote the algorithms which are based only on the simple bounds,

improved bounds and LP-bounds, respectively. No dominance rule is used.

� A�
�
 where � 2 fB; I; Lg, 1 � � � 4 and 0 �
 � 3; denotes the algorithm based

on bounds � and dominance rules Dij with 1 � i � � and 0 � j �
.

Our experiments consist of �ve parts. The purpose of each experiment are as follows:

1. the evaluation of the in
uence of processing time a on the �rst machine on the

di�culty of problem F2jp1j = a; nmitj
P
Cj (see Figure 6.1, 6.2);

� We show the result of algorithm AB only. The results of AI and AL are similar.

We adopt the most simple algorithm such that we have developed.

2. the comparison of e�ciency of the lowerbounds algorithm(see Figure 6.3, 6.4);

� We show the result of algorithm A�
�2 (� = B; I; L and 1 � � � 3) only. The

results of A�
�
 (
 = 0; 1; 3; 4) are similar and 2-gap dominance rule is the most

e�ective gap rule.

33

3. the evaluation of the zero-gap rules Di0(see Figure 6.5, 6.6);

� We show the result of algorithm AI
�0 (0 � � � 4) only. The results of AB

�
 and

AL
�
 (1 �
) are similar and the algorithm with improved bounds is the fastest.

4. the evaluation of nonzero-gap rules Dij(see Figure 6.7, 6.8);

� We show the result of algorithm AI
�
 (0 � �;
 � 3) only. The results of AB

�

and AL
�
 are similar and the algorithm with improved bounds is the fastest too.

5. Finally, in order to make it possible to compare the proposed technique with var-

ious mixed integer solvers, we formulated the problem as the mixed integer linear

programming problem. We use the mixed integer formulation of the problem given

in the subsection 5.2.3. The results of comparison with the mixed integer solver of

the CPLEX system are summarized in Figure 6.9.

0

5

10

15

20

25

30

30 35 40 45 50 55 60

Searched Nodes(%)

10 instances
n=9 jobs

Algorithm AB

Figure 6.1:

In all variants we used the least-bound strategy for selecting a node from the active

list. The percentage of searched nodes refers to the value of 100m=n! where m denotes

the number of searched nodes and n is the number of jobs. The experiments were done

on Sparc Station 20 with 128Mbyte memory.

34

0

1

2

3

4

5

6

7

30 35 40 45 50 55 60

Solution Time(sec.)

10 instances
n=9 jobs

ABAlgorithm

Figure 6.2:

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2
Searched Nodes(%)

n=10 jobs
No. of jobset=1
a=45(most difficult case)

LP boundsImproved boundsSimple bounds

A
12

AB
12

I

A
12

L

AB
22

AB
32

A
22

I

A
32

I

A
22

L
A
32

L

Figure 6.3:

35

0

200

400

600

800

1000

1200

Simple bounds Improved bounds LP bounds

Solution time(sec.)

A
22

L

A
12

L

A
32

L

A
32

I

A
22

I

A
12

I

AB

A
22

B

A
12

B

32

n=10 jobs
No. of jobset=1
a=45(most difficult case)

Figure 6.4:

1.5

2

2.5

3

3.5

4

4.5

5

5.5
Searched Nodes(%)

n=11
No. of jobset=1
a=45(most difficult case)

AI

A
10

I

A
20

I A
30

I A
40

I

Figure 6.5:

36

60

80

100

120

140

160

180

200

220

240
Solution time(sec.)

n=11
No. of jobset=1
a=45(most difficult case)

A
10

I

A
20

I A
30

I A
40

I

AI

Figure 6.6:

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
Searched Nodes(%)

n=11
No. of jobset=1
a=45(most difficult case)

AI

AI

A
12

A
13

10

11

I

I

AI

AI

A
22 A

23

20

21

I
I

AI

AI

A
32 A

33

30

31

I
I

Figure 6.7:

37

60

65

70

75

80

85

90
Solution time(sec.)

n=11
No. of jobset=1
a=45(most difficult case)

AI

AI

A
12

A
13

10

11

I

I

AI

AI

A
22

A
23

20

21

I

I

AI

AI

A
32

A
33

30

31

I

I

Figure 6.8:

0

10

20

30

40

50

60

70

80

30 35 40 45 50 55 60

Solution time(sec.)

n=11
No. of jobset=1

CPLEX(mip)

Algorithm A
32

I

Figure 6.9:

38

Chapter 7

Concluding remarks

Throughout this dissertation we have been concerned with deterministic
owshop prob-

lems where the objective is to minimize the sum of completion times of all jobs. Since

the problem is known to be very hard in general, we have restricted our attention to two

subcases: problems with special dominance relations among machines and problems with

two machines.

In Chapter 3, we have considered
owshop problems with special structured machine

dominance relation. Adiri and Pohoryles [1] designed two polynomial time algorithms con-

structing the best permutation schedules for Fmjnmit; idmj
P
Cj and Fmjnmit; ddmj

P
Cj

respectively. We have proved that all of the above algorithms construct not only the best

permutation schedules for the given problem, but that they in fact produce optimal sched-

ules. In fact we have proved a much more general result, namely that under the above

machine dominance constraints, the search for optimal schedule can be restricted to the

set of all permutation schedules not only for the sum of completion times criterion but

for an arbitrary regular objective function.

In Chapter 4 and 5, we have considered the case of two machines. Two theorems of

paper [1] which deal with the F2jnmitj
P
Cj problem contain incorrect claims. We have

showed that both claims are incorrect by constructing a counter example. Moreover we

have managed to prove another statement which has a similar \
avor" as the original

(incorrect) claims. Furthermore we have described several variants of the branch-and-

cut technique for solving the F2jp1j = a; nmitj
P
Cj problem and reported results of

computational experiments. Their analysis leads to the following conclusions.

� Figures 6.1 and 6.2 suggest that the instances in which processing time a on the

�rst machine is around the middle of the range of processing times bi on the second

machine are the most di�cult. The reason is that when a is around the middle of the

range of processing times on the second machine, many candidate jobs which might

be assigned either after or before blocking position exist and, therefore, subproblem

P k has many feasible solutions.

� Figure 6.3 shows that the improved bounds and LP bounds decrease the number of

searched nodes. Figure 6.4 shows that the improved bounds decrease solution times

too. In the more detailed observation, we have realized that LP bounds is the most

e�ective around the root of tree.

� Figure 6.5 and 6.6 show that D10-rules and D20-rules increase the e�ciency of algo-

rithms, but there is no improvement when dominance is based on the interchange

39

of i-tuples for i > 2.

� Similarly �gures 6.7 and 6.8 show that Di1-rules and Di2-rules are e�ective in our

algorithms, but no improvement is achieved when gap is based on more than 2 jobs.

Moreover these �gures imply that Dij-rules (i = 1; 2 and 0 � j � 2) are the most

e�ective around the root of the tree.

� A comparison with the mixed integer solver of CPLEX indicates that the proposed

branch-and-cut technique is faster than CPLEX (see Figure 6.9).

40

Bibliography

[1] Adiri, I. and Pohoryles, D. Flowshop/No-idle or No-wait scheduling to minimize the

sum of completion times, Naval Research Logistics Quartely 29, 495-504 (1982)

[2] Baker, K. R. Introduction to sequencing and scheduling, John Wiley & Sons, (1974)

[3] Conway, R. W., Maxwell, W. L., and Miller, L. W. Theory of Scheduling, Addison-

Wesley, Reading, Mass. (1967)

[4] Della Croce, F., Narayan, V., and Tadei, R. The two-machine total completion time

ow shop problem. , European Journal of Operation Research, 90, 227-237(1996)

[5] Garey, M. R. , Johnson, D. S., and Sethi, R. The complexity of
owshop and jobshop

scheduling, Mathematics of Operations Research 1, 117-129 (1976)

[6] Graham, R. L., Lawler, E. L., Lenstra, J. K. and Rinnooy Kan, A. H. G. Optimization

and approximation in deterministic sequencing and scheduling, a survey. Annals of

Discrete Mathematics 5, 287-326 (1979)

[7] Ho, J. C. and Gupta, J. N. D. Flowshop Scheduling with Dominant machines, Com-

puters Ops. Res., 22, No. 2, 237-246(1995)

[8] Hoogeveen, J. A., and Kawaguchi, T. Minimizing total completion time in a two-

machine
owshop: analysis of special cases.

[9] Ignall, E. and Schrage, L. Application of the Branch and Bound Technique to Some

Flow-Shop Scheduling Problems, Oper. Res., 13, 400-412 (1965)

[10] Johnson, S. M. Optimal Two-and Three-Stage Production Schedules with Setup Times

Included, Naval Research Quarterly, Vol. 1, No. 1 (March, 1954)

[11] Kohler, W. H., and Steiglitz, K. Exact, approximate and guaranteed accuracy algo-

rithms for the
owshop problem n/2/F/ �F ., ACM, Vol. 22, No. 1, 106-114(1975)

[12] Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G. and Shmoys, D. B. Sequenc-

ing and Scheduling : Algorithms and Complexity, Handbooks in OR & MS, Elsevir

Science Publishers B. V., Vol. 4 445-522(1993)

[13] Lomnicki, Z. A Branch-and-Bound Algorithm for the Exact Solution of the Three-

Machine Scheduling Problem, Operational Research Quarterly, Vol.16, No. 1 (March,

1965)

41

[14] Monma, C. L. and Rinnooy Kan, A. H. A Concise Survey of E�ciently Solvable

Special Cases of the Permutation Flow-Shop Problem, RAIRO, Vol. 17, No. 2 105-

119(1983)

[15] Van de Velde, S. L. Minimizing the sum of the job completion times in the two-

machine
owshop by Lagrangean relaxation., Annals of Operations Research, 26,

257-268(1990)

42

Publications

[1] M. Okada, K. Tanaka and M. Vlach: \Minimizing total completion time in a
ow

shop under a no-idle constraint," SYMPOSIUM ON OPERATIONS RESEARCH

1997, Jena(Germany),September 3-5,1997.

[2] M. Okada, K. Tanaka and M. Vlach: \No-Idle Flowshop Problem with Sum of

Completion Times Performance Criterion," ,統計数理研究所共同研究リポート 104

「最適化:モデリングとアルゴリズム 11」, pp. 27-45, 1997. 12.

[3] 岡田政則,田中圭介,Milan Vlach: \Minimizing Total Completion Time in the Two-

Machine Flow Shop with No Machine Idle Time Constraint," 研究集会「最適化：
モデリングとアルゴリズム」, 1997. 3. 27-28.

[4] M. Okada, K. Tanaka and M. Vlach: \TWO MACHINE FLOW-SHOP WITH NO

MACHINE IDLE TIME TO MINIMIZE THE SUM OF COMPLETION TIMES",

日本OR学会「意志決定とOR」研究集会講演論文集, pp. 21-22, 1996. 11.

43

