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Abstract

This thesis reveals that many properties of the non-modal propositional

language L and logics on L which is interpreted on transitive frames.

We can �nd that there are many unexpected phenomena in L and these

logics on transitive frames as compared with them on quasi-ordered frames.

There are no di�erences as for the properties of their model theory, for in-

stance, the duality theorem holds, generated subframes and homomorphisms

preserve validity from their original structures. However, by lacking re
ex-

ivity, it is showed that the expressive powers of L are weaker than that of

modal propositional language, and an induced conseqeuce relation of some

logics (for instnace, basic propositional logic BPL) does not satisfy the de-

duction theorem, etc. We gave one reason to de�ne extensions on BPL not

only as a formula-extension but also as a rule-extension, and discussed their

model theory. We also indicate that these di�erences disappear by adding a

new implication to L.
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Chapter 1

Introduction

This thesis is a report on extensions of the non-modal propositional logic

which is characterized by the class of transitive frames with an intuitionistic

interpretation. We show that there exist unexpected di�erences between

those extensions and propositional intermediate logics and we introduce a

way to remove these di�erences.

1.1 Historical background

There exists a semantics called frame semantics in the logic. A frame F =

hW;Ri is a pair of a non-empty set W which elements are called possible

world and a relation R on W . A frame semantics treats this frame structure.

This frame semantics is well-known in the research into the arti�cial intelli-

gence, and the frame structures which relation is transitive are treated very

often in the computer and informaiton science. Our interests are this tran-

sitive frame semantics and the propositional language which express these

structures under the intuitionistic interpretation.

It is well-known that some logic is complete with respect to some class of

frames. In particular, the intuitionistic logic Int and the modal logic S4 are

complete with respect to the class of quasi-ordered frames, and the modal

logic K4 is complete with respect to the class of transitive frames.

There are many way to investigate properties of di�erent logics which

have similar models. One way of investigation is an embedding, and it is

as follows: Suppose that two logics L1 and L2 are given. If there exists a

function f from the language of L1 to the language of L2 such that it maps

1
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IntFPL

BPL K4

GL S4

Non-modal Modal

Figure 1.1: The relationship with propositional logics

all theorems and non-theorems of L1 to theorems and non-theorems of L2,

respectively, we call this function an embedding of L1 into L2, and we say

that L1 is embeddable into L2.

One of well-known embeddings is G�odel translation ([G�od33]). Through-

out the thesis, let T stand for G�odel translation. T is also known as McKinsey-

Tarski translation, ([MT48]), and S. Maehara obtained the same result in-

dependently ([Mae54]). T is an embedding of Int into S4. We can think

of the modal operator 2 of S4 as expressing informal provability, whereas,

the modal operator 2 of G�odel-L�ob logic GL expresses the provability of

Peano arithmetic. GL enjoys a �xed point theorem, and we can also prove

G�odel's incompletness theorem from this fact. Modal logic K4 is sometimes

called basic modal logic. Both S4 and GL are normal extensions of K4. It

is well-known that there are no normal extensions of S4 which are consistent

normal extensions of GL.

A. Visser looked for a propositional logic that represents formal provabil-

ity and enjoys a �xed point theorem. In 1981, he found such a logic system

and introduced it as a natural deduction proof system ([Vis81]). He called it

Formal Propositional Logic FPL, and showed that FPL is embeddable into

GL by T. He also introduced Basic Propositional Logic BPL embeddable

into K4 by T and complete with respect to transitive frames again, as a nat-

ural deduction proof system. The propositional logic which is characterized

by the class of linear transitive frames is denoted BPLL. Int and FPL (and

also BPLL) are extensions of BPL. Visser pointed out that there are no

extensions of Int which are consistent extensions of FPL simultaneously.
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The relationship with these propositional logics is shown in the �gure 1.1 .

The three arrows \ ", \ " and \ " denote respectively, embeddablity

by T, extension by adding rules and extension by adding axioms.

The main results of this thesis are included in [SWZ97], [SO97] and

[SWZ98].

We started our investigation by considering these notions introduced by

Visser. Since any possible world of transitive frame is not need to be re
exive

on any possible worlds, we can easily �nd models in which all formulas which

the outer most connective is implication, for instance, :>, are true.

Throughout this thesis, we will divide the provability into a consequence

relation and a provability of theorem. Let a system L be given. When a

formula ' is derived from a set � of formulas in this system L, this denoted

by � `L ', and we call `L a consequence relation. This consequence relation

is di�erent from a provablity of theorem which is a possibilty of deducing a

formula ' without any assumption in L ; `L ' This division of the prov-

abilities yields that a division of modus ponens. Of course we explain this in

the corresponding chapter, however we will also explain it here to emphasize

this di�erence of modus ponens. Usually, modus ponens is expressed as the

following �gure:
' '!  

 :

The modus ponens of consequence relation means that

� `L '!  ;� `L ' implies �;� `L  ;

while, the modus ponens of provability means that

`L ';`L '!  implies `L  :

In this thesis, we call the later as modus ponens. The former is called impli-

cation elimination as like an inference rule of natural deduction. The former

property is known as the deduction theorem. It is well-known that the de-

duction theorem holds in Int. We proved that the deduction theorem does

not hold on the consequence relation of BPL not only on implication connec-

tive but also on abstract implication connectives. In 1995, M. Ardeshir and

W. Ruitenburg developed Gentzen style propositional sequent calculus for

BPL ([AR95]). M. Ardeshir, in his doctoral thesis, introduced Gentzen type

sequent calculus of Basic Predicate Calculus GBQC and proved that cut-

elimination theorem holds ([Ard95]). In 1996, M. Ardeshir and W. Ruiten-

burg described fundamental properties of Gentzen style predicate calculi of
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BQL and BPL ([AR96]). In 1997, M. Ardeshir investigated strong per-

sistence of BPL ([Rui97]). We can introduce a Hilbert-style system which

yields the provability of theorem by the axioms proposed by H. Ono ([Ono97],

[SO97]). K. Sasaki also introduced a Hilbert-style system using the same ax-

ioms ([Sas98]). In particular, he proved that the consequence relation of

BPL cannot be introduced by using weak modus ponens. In this thesis, we

quoted his results to clarify the provability of theorem in BPL.

It is useful that treating semantics when we discuss general properties of

extensions of logic. We adopt the general frame semantics as Visser adopted

([Vis81]) and the algebraic semantics by Ardeshir and Ruitenburg ([AR95]).

The similar results of Int's case hold on semantic structures and their sub-

structures, and the duality between frames and algebras also holds.

There exists a question that what kind of extensions we ought to de-

�ne. For the case of Int, it is usual that any extension is de�ned by adding

formulas as axioms to Int. However, for the case of BPL, some problems

occur by using such a extending way, and it is revealed by a notion of expres-

sive powers. For quasi-ordered frame semantics, it is showed that expressive

powers of the non-modal propositional language is same to that of the modal

propositinoal language. It is proved, for instance, by using the embedding T.

While, for transitive frame semantics, it is revealed that expressive powers

of the non-modal propositional language is weaker than that of the modal

propositional language, and the class of quasi-ordered frames cannot be ax-

iomatizable. But, Visser showed that the class of all quasi-ordered frames

is axiomatizable by adding inference rules ([Vis81]). We also adopt Visser's

way, that is, an extension of BPL is de�ned by adding inference rules. We

showed that there exists a logic characterized by �nite frames which is not

Kripke complete, and there are not isomorphism between extensions of FPL

and normal extensions of GL like the Blok-Esakia theorem.

These di�erences disappear, however, when we add a new implication

connective.

1.2 Organization of the thesis

Our goal is to clarify di�erent properties of non-modal propositional logics,

which are characterized by a class of quasi-ordered frames and a class of

transitive frames. It means that we will advance our research by a comparison

with results that hold on intermediate logics and normal extensions of S4. In
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Chapter 2, we will review those results, which are related to our investigation,

of intermediate logics, modal logics and their semantics.

In Chapter 3, we will introduce proof systems of BPL. Visser introduced

BPL because it is embeddable in K4 ([Vis81]). He seems to de�ne his

natural deduction proof system of BPL from transitive frame semantics. We

will present it in Section 3.1 . Then we will brie
y mention Visser's natural

deduction proof system of BPL. In his system, no implication elimination

rule is introduced. It leads to the fact that �;� `  is, in general, not

derivable from � ` '!  and � `  . Indeed, in Section 3.2, we will prove

that deduction theorem hold neither for the implication! nor any formulas

whatsoever. This result is forcing us to consider the consequence relation

\`" when we investigate an extension of BPL. The question of a Hilbert

style calculus for BPL, which had been an open problem, is taken up in

Section 3.3 . We introduce a system HB which is identical to BPL ([SO97])

with respect to the provability of theorems. In system HB, we showed that

deduction theorem does not hold not only on usual implication but also on

another complex connectives. In Section 3.4, we will address a result of

Sasaki's related to HB ([Sas98]). Sasaki indicates that we can de�ne the

consequence relation of BPL by axioms of HB and modus ponens without

any sets of assumptions. He also stated that we cannot get the consequence

relation of BPL by implication elimination rule alone. The results in Chapter

3 are also important when we discuss the extensions of BPL in Chapter 5.

In Chapter 4, after introducing an algebraic semantics of BPL, we will

analyse the relationship between transitive frames and algebraic structures.

We will proved that these are similar to the case of Int. One of main results

in Chapter 4 is a duality theorem, that is showed in Section 4.2 . Generated

subframes and p-morphisms are discussed in Section 4.3 and 4.4, respectively.

We need them in Chapter 5.

Then, we turn to the relationship between BPL and modal logic. It is

well-known that there is a one-to-one correspondence between extensions of

Int (intermediate logics) and normal extensions of Grzegorczyk logic Grz.

This result is called Blok{Esakia theorem ([Esa79a, Esa79b, Blo76]). The

modal operator 2 of Grz corresponds to the provability in a set theory. We

will discuss whether or not a similar relationship holds between FPL and

GL, and we will clarify relations between extensions of BPL and normal

extensions of K4 in general. However, since in BPL, implication elimination

does not hold, some problem occurs. First we will introduce a notion of

global expressive power to clarify the relationship between BPL and K4. By
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FPL

BPL

Cl

GL

K4

S4

Grz

Int

Blok-Esakia

Figure 1.2: Lattice structures of extensions

this notion, it is proved that the frames of all quasi-ordered frames is not

obtained by adding any number of axioms to BPL. This result leads us that

not only axioms but also inference rules are good to de�ne an extension of

BPL. Therefore, consequence relations play main role whenever we consider

extensions of BPL. These results are introduced in Section 5.1 and 5.2 .

In the case of Int and its extensions, we de�ne their semantics by using a

validity on a class of frames (and, on a class of algebras). On the other

hand, extensions of BPL will be de�ned by a consequence relation. Thus

we have to introduce consequence relations in terms of semantics. They are

discussed in Section 5.3 . Consequence relations of BPL and its extensions,

and also consequence relations of semantic structures are de�ned, and Kripke

completeness on some consequence relations is discussed in Section 5.4 . It is

completely di�erent from intermediate logics that there exists an extension,

which is characterized by a �nite general frame but Kripke incomplete. One

object of this research is to clarify whether Blok-Esakia type theorem holds

or not on extensions of FPL and normal extensions of GL. In Section 5.5,

using these consequence relations and some caliculations, we show that there
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Int BPL

deduction theorem 
 �0

duality theorem 
 
0

generation theorem 
 
0

substructures and

homomorphisms

 
0

Blok-Esakia theorem 
 �0

Kripke completeness

with �nite general frames

 �0

quasi-ordered frame transitive frame

global expressiveness 
0 �0

local expressiveness 
0 �0

Table 1.1: Results of this thesis. (The symbols with 0 are our results.)

is no isomorphism between extensions of FPL and normal extensions of GL.

This result can be illustrated by Figure 1.2.

In Chapter 6, it is proved that some properties which don't hold in BPL

but hold in Int, hold by introducing another new implication \,!" to the

propositional language. In Section 5.1, to clarify what BPL lacks in compar-

ison with Int, we will introduce a notion that local expressive power and we

will show that a relationship between local expressiveness of quasi-ordered

frames and local exrpressiveness of transitive frames. Conspicuous di�erences

occur because \!" in transitive frames is not able to talk about re
exivity.

Thus, our solution is simple. We will introduce a new implication which can

talk about the re
exivity and will show that the di�erences among BPL and

Int are recovered by the help of this implication. The logic obtained from

Int by adding axioms for ,! is denoted by BiPL. It is proved that BiPL

can be translated into an intuitionistic modal logic since the behavior of \,!"

is the same of the implication of Int. In Section 6.3, many properties hold

on BiPL as similar to Int. For instance, it is proved that the Blok-Esakia

theorem holds on transitive frames.

In Chapter 7, we will discuss existing representative researches of BPL,

its related logics, and further works. This attractive subject related to BPL

is not studied enough. The contents of the researches are classi�ed into topics

in terms of syntax and semantics.

Before closing Chapter 1, we put our results of this thesis into Table 1.1.
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In the above table, our results is added a prime symbol.

Throughout this thesis, \Theorem" means a new result obtained in our

thesis, whlie \Proposition" means a result which is shown already.



Chapter 2

Intuitionistic logic and basic

modal logic

In this chapter, we will give a short survey on intuitionistic propositional

logic Int, basic modal logic K4 and their extensions. Here, we will explain

the terminology and notions which are used in this thesis. We will also recall

basic properties in order to compare them with basic propositional logic BPL

discussed in the present thesis. For the detail we refer here the reader e.g.,

to [CZ97] or [MR74].

We will start with Int. After introducing the Hilbert style proof system,

we will explain both frame semantics and algebraic semantics for Int. We will

also give the notion of consistent extensions (intermediate logics) of Int. We

will show that there exists a direct correspondence between frame semantics

and algebraic sematnics.

Sometimes, modal logicK4 is called basic modal logic, since some impor-

tant modal logics are extensions of K4. Modal logicK4 is itself an extension

of K. Thus, we will �rst give the Hilbert style proof system of K. In exten-

sions of modal logics, some complex problems occur in treating the modal

operator 2. Here, we will discuss only normal extension. After introducing

the Hilbert style proof system of K4 and S4, we will mention a complete-

ness theorem of K4 and S4, with respect to transitive frame semantics and

quasi-ordered frame semantics, respectively.

Modal logics S4 and G�odel-L�ob Logic (GL) are normal extensions of K4.

An embedding of a logic L into another logic L0 is a function translating the-

orems (and non-theorems) of L into theorems (and non-theorems) of another

logic. One of well-known embeddings is the G�odel translation T. T embeds

9
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Int into S4, but it can also be regarded as an embedding of each extension

of Int into a normal extension of S4. The study of this translation T is in-

teresting, since some properties can be preserved by T. Also, we will explain

the Blok-Esakia theorem without proofs.

2.1 Syntax of Int

In the present thesis, we will �x a (non-modal) propositional language L.

Let Prop be the set of propositional variables. Letters p; q; r; : : : will denote

propositional variables. ForL denotes the set of formulas constructed from

Prop;^;_;! and ? in the usual way. Greek letters ';  ; �; : : : will denote

formulas. When we want to emphasize that a given formula is an element of

ForL, we will call it an L-formula. We consider > and the negation :' of a

formula ' as abbreviations of ?! ? and '!?, respectively.

The Hilbert style proof system of Int consists of the following axiom

schemes and inference rules:

Axiom schemes:

(A1) '! ( ! '),

(A2) ('! ( ! �))! (('!  )! ('! �)),

(A3) ' ^  ! ',

(A4) ' ^  !  ,

(A5) '! ( ! ' ^  ),

(A6) '! ' _  ,

(A7)  ! ' _  ,

(A8) ('! �)! (( ! �)! (' _  ! �)),

(A9) ?! ';

Inference rule:

� Modus ponens (MP): from ' and '!  , infer  .
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A derivability `Int of this system is de�ned in the usual way. We identify a

system L with the set of theorems of L in this chapter. Thus, Int means the

set f' 2 ForL :`Int 'g of theorems of Int.

As for the consequence relation `Int, the following theorem is well-known:

Proposition 2.1 (deduction theorem) Suppose � is a set of formulas,

then

�; ' `Int  if and only if � `Int '!  :

2.2 Semantics of Int

We will refer two kinds of sematics. In this section, we will introduce a frame

semantics of Int, and then an algebraic semantics of Int. At the end of this

section, we will show relationships between frame semantics and algebraic

semantics.

2.2.1 Frame semantics of Int

Let W be a non-empty set called a set of possible worlds, and R be a quasi-

order (i.e., a re
exive and transitive relation) on W . A subset of X of W is

an R-cone when x 2 X and xRy imply y 2 X for any x, y in W . We denote

the set of all R-cones in W by UpW . Note that the empty set ; is a member

of UpW .

Next, we will de�ne the following binary operation � on W , and call it

set implication:

X � Y = fx 2W : 8y(xRy ^ y 2 X ) y 2 Y )g: (2.1)

It is easy to see that ; � ; = W , and X � Y is an R-cone if both X and Y

are so.

An intuitionistic quasi-ordered frame F is a triple hW;R; P i such that W

is a non-empty set of possible worlds, R a quasi-order on W , and P is a set

of R-cones which contains the empty set ; and which is closed under the

set union, set intersection and set implication �. Sometimes, we use the

word an intuitionistic frame to denote a frame F(= hW;R; P i) where P is a

subset of the set of R-cones. For a given frame hW;R; P i, if R is a partial

order (i.e., a re
exive, transitive and anti-symmetric relation) on W , we call

it intuitionistic partially ordered frame.
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If a given intuitionistic frame F is of the form hW;R;UpW i, we call it an

intuitionistic Kripke frame and denote it by hW;Ri.

We often omit the pre�x word \intuitionistic". However, in the later

sections, we will treat a frame structure for modal logic. To distinguish frames

of non-modal propositional logic and modal propositional logic, we add the

pre�x word \intuitionistic" (\modal") to the former (later) structures.

A valuation V on F(= hW;R; P i) is any function from Prop to P . A model

M based on F is de�ned to be a pair hF;Vi of a frame F and a valuation V

on it.

The truth relation j= is de�ned as follows:

(M; x) 6j= ?; (2.2)

(M; x) j= p i� x 2 V(p); (2.3)

(M; x) j= ' ^  i� (M; x) j= ' and (M; x) j=  ; (2.4)

(M; x) j= ' _  i� (M; x) j= ' or (M; x) j=  ; (2.5)

(M; x) j= '!  i� 8y 2W (xRy and (M; y) j= ' imply

(M; y) j=  ): (2.6)

A formula ' is true at x in M if (M; x) j= '. A formula ' is false at x in M

if ' is not true at x in M. If (M; x) j= ' for any x 2 W , we say ' is true in

M and denote it by M j= '. If M j= ' holds for all model M based on F, we

say ' is valid in F and denote it by F j= '. For a given x 2W , if (M; x) j= '

for all models M based on F, we say ' is valid at x in F and we denote it by

(F; x) j= '. Let C be a class of frames. If ' is valid in all frames of C, we say

that ' is valid in C and denote it by C j= '. The above notions of truth and

validity can be extended to any set � of formulas. That is, if all formulas

of � are true (valid) on a semantic structure, then � is true (valid) on that

semantic structure. For instance, � is true at x in M if (M; x) j= ' for any

formula ' of �, and we will denote it by (M; x) j= �. A set � of formulas is

valid in C if C j= ' for any formula ' of �, and is denoted by C j= �. For a

set � of formulas and a class C of frames, if � is equal to the set f' : C j= 'g,

then we say � is characterized (or determined) by C. For any intuitionistic

frame F, any set � of formulas and any formula ', � j=F ' denotes that for

any model M based on F and any possible world x of F, if (M; x) j= � holds

then (M; x) j= ' holds.

We can show the following completeness theorem.
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Proposition 2.2 Let C be the class of intuitionistic partially ordered (or

quasi-ordered) frames. Suppose that � is a set of formulas and ' is a formula.

� `Int ' if and only if for any model M and any x, (M; x) j= � implies

(M; x) j= '.

Suppose F(= hW;R; P i) and G(= hV; S;Qi) are given. A homomorphism

f from F to G is a map from W to V which sati�es the following three

conditions:

1. xRy) f(x)Sf(y),

2. f(x)Sz) 9y 2W (xRy ^ f(y) = z),

3. X 2 Q) f
�1(X) 2 P where f�1(X) = fx 2 W : f(x) 2 Xg.

When a homomorphism from F to G is surjective, we call it a reduction (or

a p-morphism). For given frames F and G, if there exists a homomorphism

from F to G, we say that F is reducible to G. If a homomorphism f from F

to G is a bijective map and f�1 is a homomorphism from G to F, we call f

an isomorphism from F to G. If there exists an isomorphism from F to G, we

denote this as F ' G, and say that F and G are isomorphic. A reduction f

of F to G is called a reduction of a model M = hF;Vi to a model N = hG; Ui

if V(p) = f
�1(U(p)) for every p 2 Prop, i.e.,

(M; x) j= p i� (N; f(x)) j= p:

Models M(= hF;Vi) and N(= hG; Ui) are isomorphic if there is an isomor-

phism f from F to G such that U(p) = f(V(p)) for every p 2 Prop, i.e., for

every x 2W ,

(M; x) j= p i� (N; f(x)) j= p:

We denote it by M ' N.

Proposition 2.3 Let f be a reduction of a model M = hF;Vi to a model

N = hG; Ui. Then, for any point x of F and any formula ', (M; x) j= ' holds

if and only if (N; f(x)) j= ' holds. If F is reducible to G, then for every

formula ', F j= ' implies G j= '.

Another structure-preserving notion is that of a substructure. The follow-

ing is a substructure in the context of frame semantics. A generated subframe

G of a given frame F = hW;R; P i is a structure hV; S;Qi such that V is an

R-cone, S is the restriction of R to V and Q is the set fX \ V : X 2 Pg. It

is easy to show that any generated subframe of intuitionistic quasi-ordered

(partially ordered) frame is an intuitionisitc quasi-ordered (partially ordered)

frame.
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Proposition 2.4 Let G(= hV; S;Qi) be a generated subframe of F. Suppose

that M is hF;Vi and N is hG; Ui, where U(p) = V(p)\V for every propositional

variables p. Then, for any point x of V and any formula ', (M; x) j= ' holds

if and only if (N; x) j= ' holds. Thus, F j= ' implies G j= '.

2.2.2 Algebraic semantics of Int

Suppose hA;^;_; 0; 1i is a bounded distributive lattice. For elements a; b of

A, the greatest element of the set fx 2 A : a^x � bg, if it exists, is called the

relatively pseudo-complement of a with respect to b, and write it as a ! b.

A Heyting algebra A is a structure hA;^;_;!; 0; 1i where hA;^;_; 0; 1i is a

bounded distributive lattice and ! is the relative pseudo-complement.

A valuation V on A is any function from Prop to A. For a given valuation

V, we will associate any formulas to algebraic terms by putting V(?) = 0

and V('�  ) = V(')� V( ) where � 2 f^;_;!g.

A truth relation j= on A is de�ned as follows: For any valuation V on A,

if V(') = 1, we say that ' is valid in A and write A j= '. If A j= ' for all

' 2 �, then we write it as A j= �. For a class C of Heyting algebras, if A j= �

holds for any A 2 C, then we write C j= �.

Suppose � is a set of formulas. If � is �nite,
V
� denotes the conjunction

of all elements of �. For any valuation V on A, if there exists a �nite subset

�0 of � such that V('^
V
�0) = V(

V
�0) (that is, V(

V
�0) � V(')), we denote

it by � j=A '. If � j=A ' for any A in a class C of Heyting algebras, then we

denote this as � j=C '.

For any A, it is trivial that A j= ' implies � j=A ' for every � and ',

since V(') = 1 holds for any valuaion V on A.

Suppose formulas ' and  are given. We call the form ' =  equation

of formulas ' and  . Let � be a set of equation of formulas. In this set �,

we think of ' �  is the abbreviation for ' ^  = '. We write A j= �, if

V(') = V( ) holds for any equation ' =  of � and any valuation V on A,

and we say � is valid on A.

The following completeness theorem holds:

Proposition 2.5 Let C be the class of Heyting algebras. Suppose � is a set

of formulas and ' is any formula. Then � `Int ' holds if and only if � j=C '

holds.

Suppose A(= hA;^A;_A;!A; 0A; 1Ai) and B(= hB;^B;_B;!B; 0B; 1Bi)

are given. A homomorphism h from A into B is a map from A to B which
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preserves each operation: that is, h(a �A b) = h(a) �B h(b) for each � 2

f^;_;!g, h(0A) = 0B and h(1A) = 1B. If a homomorphism from A into

B is injective, it is called an embedding of A into B. If a homomorphism

from A into B is surjective, it is called an epimorphism, and B is said to be

homomorphic image of A. If an embedding of A into B is onto, we call it

an isomorphism. If there exists an isomorphism of A onto B, we say A is

isomorphic to B and denote it by A ' B.

Proposition 2.6 Let A be a Heyting algebra, and B a homomorphic image

of A. Then, for any formula ', A j= ' implies B j= '.

A subalgebra B of A = hA;^;_;!; 0; 1i is a structure hB;^;_;!; 0; 1i

where B is a subset of A such that B is closed under each operation of A. It

is easy to see that any subalgebra of Heyting algberba is Heyitng algebra.

Proposition 2.7 Let B be a subalgebra of A. Then, for any formula ',

A j= ' implies B j= '.

Suppose a Heyting algebra A(= hA;^;_;!; 0; 1i) is given. A �lter r in

A is a subset of A which satis�es

1) a; b 2 r implies a ^ b 2 r,

2) a 2 r and a � b imply b 2 r.

A proper �lter r is a �lter in A which satis�es

3) r 6= A.

A prime �lter r is a proper �lter such that

4) a _ b 2 r implies a 2 r and b 2 r.

The dual notions of the above �lters are ideal, proper ideal and prime ideal.

That is, an ideal � in A is a subset of A which satis�es

1') a; b 2 � implies a _ b 2 �,

2') a 2 � and b � a imply b 2 �.

A proper ideal � in A is an ideal in A which satis�es

3') � 6= A,

A prime ideal � in A is a proper ideal in A such that

4') a ^ b 2 � implies a 2 � or b 2 �.

When we discuss a representation of Heyting algebras, ideals and prime �lters

play the main role. We will show this in the next section.

2.2.3 Relations between the two semantics

By the completeness theorem of Int with respect to both semantics, we can

show that ' is valid in any inutionisitic partially ordered frame if and only
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if ' is valid in any Heyting algebra. However, this result can be deduced

in a more direct way. In the following, we will give a way of constructing

a Heyting algebra from an intuitionistic partially ordered frame, and vice

versa. Then, we will show that the validity of each formula is preserved by

these constructions.

Suppose that an intuitionistic frame F(= hW;R; P i) is given. The dual of

F
+ is a structure hP;\;[;�; ;;W i, where \, [ and � is the set-intersection,

set-union and set-implication which is de�ned by (2.1), respectively. The

following is well-known.

Proposition 2.8 For any intuitionistic partial-ordered frame F, F+ is a

Heyting algebra. Moreover, for any formula ', F j= ' if and only if F+ j= '.

Conversely, suppose that a Heyting algebra A(= hA;^;_;!; 0; 1i) is

given. Let WA be the set of all prime �lters, p be a map from A to the

power set of WA such that p(a) = fr 2 WA : a 2 rg and PA be the set

fp(a) : a 2 Ag. We will de�ne a relation RA on WA as follows:

r0RAr1 i� 8a; b 2 A(a! b 2 r0 and a 2 r1 imply b 2 r1):

The dual A+ of A is a structure hWA ; RA; PAi. The following result holds.

Proposition 2.9 For any Heyting algebra A, A is an intuitionistic partially

ordered frame. Moreover, for any formula ', A j= ' if and only if A+ j= '.

For a given intuitionistic frame F, the intuitionistic frame (F+)+ is called

the bidual of F. Similarly, for a given Heyting algebra A, the Heyting algebra

(A+)
+ is called the bidual of A. Both kinds of biduals are useful when we

try to construct a counter model for a given formula. When we consider the

bidual (A+)
+ of a given algebra A = hA;^;_;!; 0; 1i where its universe A is

�nite, we may consider a possibility that PA becomes uncountable. However,

for Heyting algebras, the following representation result holds. We will call

the following dualtiy theorem on Heyting algebras.

Proposition 2.10 (duality) For any Heyting algebra A, A ' (A+)
+.

In the case of general frames an analogous result does not hold in general as

the following example shows.

Example 2.11 Let F be hW;R; fW; ;gi where W is the set fa; b; cg and R

is the re
exive and transitive closure of fha; bi; hb; cig. In this case, F+ is

a 2-valued Boolean algebra. Therefore, (F+)+ consists of a single re
exive

point.
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We need the following conditons for a given bidual of a frame to be isomorphic

to an original frame. Let a set X be given. Suppose Y be a subset of the

power set of X. Then, Y has the �nite intersection property if for any �nite

subset Y 0 of Y ,
T
Y
0 6= ;.

De�nition 2.12 F = hW;R; P i is descriptive if

1) x = y i� for any X 2 P (x 2 X , y 2 X),

2) xRy i� for any X; Y 2 P (x 2 X � Y and y 2 X ) y 2 Y ),

3) hW;P i is compact, i.e., for all X � P and all Y � fW � X : X 2 Pg if

X [ Y has the �nite intersection property then \(X [ Y) 6= ;.

Then, we have the following duality theorem on frames.

Proposition 2.13 (duality) For any frame F, F ' (F+)+ if and only if F

is descriptive.

In fact, there exist the following relations between dual structures and

homomorphisms.

Proposition 2.14 (i) If G = hV; S;Qi is a generated subframe of F =

hW;R; P i then the map f from P to Q de�ned by f(X) = X \ V for X 2 P

is a homomorphism from F
+ onto G+.

(ii) If f is a homomorphism from A onto B then f+ from WB to WA

de�ned by f+(r) = f
�1(r) for a prime �lter r of B, is an isomorphism

from B+ onto a generated subframe of A+.

(iii) If h is a reduction of F = hW;R; P i to G = hV; S;Qi then the map

h
+ from P to Q de�ned by h+(X) = h

�1(X) for X 2 Q, is an embedding of

G
+ into F+.

(iv) If B is a subalgebra of A then the map h de�ned by h(r) = r \ B,

r a prime �lter in A and B the universe of B, is a reduction of A+ to B+.

2.3 Intermediate logics

In this section, we will consider extensions of Int which are usually called

superintuitionistic logic. Let us strat with the syntactic side. Any map s from

Prop to ForL is called a substitution. For any formula ' and any substitution

s, 's is de�ned inductively as follows:

1) ps = s(p) for any p 2 Prop,

2) ?s = ?,
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3) ('�  )s = 's�  s for � 2 f^;_;!g.

A set L of formulas is called a superintuitionistic logic (si-logic), if it satis�es

the following three conditions:

� Int � L,

� L is closed under modus ponens (MP),

� L is closed under substitution (Subst):

for any substitution s, ' 2 L implies 's 2 L.

For any set � of formulas, s� is f's : ' 2 �g, and S(�) is the substitution

closure of �, i.e., S(�) = f's : s is any substitution g. A si-logic L is called

intermediate logic if it is consistent (i.e., ? 62 L). We write ExtInt for the

class of intermediate logics.

It is well-known that ExtInt forms a lattice by using some operators. We

de�ne + as a binary operator on ForL such that �1 + �2 is the smallest set

containing the union �1[�2 which is closed under both MP and Subst. Since

L = Int+L always holds for any si-logic L, any si-logic L can be represented

in the form Int + � for some set � of fomulas. For instance, the classical

propositional logic Cl has the form Int+ p_ (p!?). Let Li = Int+�i for

i = 1; 2. Then L1 + L2 is equal to Int+ (�1 [ �2).

Let L be Int+ �. For any � and ', we write � `L ' if S(� [�) `Int '.

This is well-known that for all intermediate logics L1 and L2, both L1+L2 and

the intersection L1 \ L2 become intermediate logics. Moreover the following

holds.

Proposition 2.15 hExtInt;\;+; Int;Cli forms a bounded distribuitive lat-

tice.

Next, we will discuss semantics for extensions of Int. Let LogC be the set

of formulas which are valid in C, i.e., LogC = f' : C j= 'g. An intermediate

logic is Kripke complete if it is charcterized by some class of intuitionistic

Kripke frames. An intermediate logic L is strongly characterized by C if for

any set � of formulas and any formula ',

� `L ' i� � j=F '; for every F in C:

Proposition 2.16 Every intermediate logic is characterized by a class of

Heyting algebras. Hence, every intermediate logic is characterized by a class

of intuitionistic general frames.
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L is strongly Kripke complete if L is strongly characterized by some class

of Kripke frames. A logic L is said to be �nitely approximable (or to have a

�nite model property) if L is characterized by a class of �nite frames. It is

known that there exists an intermediate logic L which is not Kripke complete

or which is not �nitely approximable. As for Int, we have the following.

Proposition 2.17 Int is strongly Kripke complete and �nitely approximable.

2.4 Basic modal logic K4 and its extensions

Sometimes,modal logicK4 is called basic modal logic since some of important

modal logics are extensions of K4. We will often use some properties which

are associated with modal logics K4, S4, Grz, GL and their extensions. In

this section, we will recall an introductory information about these logics. We

will begin with the Hilbert-type proof system of K, and its frame semantics.

Here, we will consider only normal extensions ofK4. Then, we will introduce

the syntax and frame semantics of K4 and S4. From the fact that each

extension of S4 has a quasi-ordered frame semantics, there will be a relation

between intermediate logics and extensions of S4. This topic will be discussed

in the next section.

2.4.1 Modal logic K

First, we will �x a modal propositional language ML. The set ForML is

constructed from Prop, ^, _, !, 2 and ? in the usual induction. We call

each element of ForML a modal formula or aML-formula. We take 3' and

2
+
' to be the abbreviation of :2:' and 2'and', respectively, and 2n

'

to denote the following formula:

i) 20
' = ',

ii) 2n+1
' = 22n

'.

The Hilbert-style proof system ofK consists of the following axiom schemes

and inference rules:

Axiom schemes:

(Int) Axiom schemes (A1), : : : , (A9) of Int,

(Cl) ' _ ('!?),
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(dist) 2('!  )! (2'! 2 ).

Inference rules:

� MP,

� Necesitation (RN) : from a formula ', infer 2'.

As usual, `K ' means 1 that ' is derived from the above axiom schemes and

inference rules.

Then, we will introduce frame semantics forML. LetW be a non-empty

set of possible worlds and R a relation on W . The box operator 2 on 2W

(the power set of W ) is de�ned as follows. For any subset X of W ,

2X = fx 2 W : 8y(xRy) y 2 X)g:

A modal frame is a triple hW;R; P i where P is a subset of 2W which contains

both W and ; and is closed under the set-di�erence, set-intersection, set-

union and 2 on 2W . If R is a transitive relation (or a quasi-order) on W , a

frame hW;R; P i is called a modal transitive frame (or a modal quasi-ordred

frame). A modal Kripke frame is a frame of the form hW;R; 2W i, and we

denote it by hW;Ri. A valuation V in a modal frame F(= hW;R; P i) is any

function from Prop to P . A model based on F is de�ned to be a pair hF;Vi

of a frame F and a valuation V in it.

For a given valuation V in a given frame F, the truth relation j= determined

by V is de�ned as follows:

(M; x) 6j= ?; (2.7)

(M; x) j= p i� x 2 V(p); (2.8)

(M; x) j= ' ^  i� (M; x) j= ' and (M; x) j=  ; (2.9)

(M; x) j= ' _  i� (M; x) j= ' or (M; x) j=  ; (2.10)

(M; x) j= '!  i� (M; x) 6j= ' or (M; x) j=  ; (2.11)

(M; x) j= 2' i� 8y 2W (xRy implies(M; y) j= '): (2.12)

Similar to Section 2.2, validity and all associated notions, in a given modal

frame can be de�ned in a usual way. The following completeness theorem is

known.

1Here, we will treat not only a consequence relation of K but also the provability of

theorems of K.
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Proposition 2.18 Let C be the class of modal frames. Then, for any modal

formula ', j=C ' holds if and only if `K ' holds.

When we try to de�ne a consequence relation for a modal logic L, we

meet the following problem, connected with RN. Let us consider the formula

p! 2p. Then, we can easily show that there exists a modelM = hF;Vi such

that it gives F 6j= p! 2p. An example of such a model is given byW = fa; bg,

R = f(a; b)g and V(p) = fag. If we take the de�nition of the consequence

relation `�
K
of modal logic K in the same way as the intuitionistic case, we

can derive p `�
K
2p as we can get 2p by applying RN to p. If moreover the

deduction theorem holds, we get `�
K
p! 2p.

We want to de�ne a consequence relation of modal logic L which would

have \the same meaning" as j=. For that reason, we will allow to apply RN

only to axioms. More precisely, we will de�ne a consequence relation `L for

a modal logic L as follows: Let a derivation '1; : : : ; 'n be given. In this

derivation, we will express that 'k depends on 'i if either k = i or 'k is

obtained by applying MP or RN to formulas, at least one of which depends

on 'i. Then, � `L 'means that there exists a derivation where RN is applied

only to formulas which depend on axioms, but not on other assumptions.

The following is the deduction theorem for modal logic K:

Proposition 2.19 Suppose �; ' `K  and there exists a derivation which

derives  from the assumption � [ f'g by applying RN n-times to formulas

which depend on '. Then � `K 2
0
' ^ : : :^2n

'!  .

2.4.2 Modal logic K4 and its normal extensions

Modal logic K4 is de�ned by adding the following axiom scheme 4 to K:

(4) 2'! 22';

and modal logic S4 is de�ned by adding the following axiom scheme T to

K4:

(T) 2'! '.

A set L ofML-formulas is a normal extension2 of modal logicK if L satis�es

the following four conditions:

2There are other types of extensions of a modal logic. For instance, a quasi-normal

extension is obtained when we drop the condition iv). However, in this thesis, our attention

is only on normal extensions.
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i) K � L,

ii) L is closed under modus ponens (MP),

iii) L is closed under substituition (Subst),

iv) L is closed under necessitation (RN).

Sometimes, a normal extension L of K is called a normal modal logic. When

a modal logic L which is de�ned by adding an axiom scheme  to K it is

denoted by K �  . That is, K �  means that we can apply RN to  

directly. It is clear this modal logic L is a normal extension of K, and �

denotes an operator which \takes a MP, Subst and RN closure of the union

of axiom scheme K and f g". By this notation, we can express K4 as

K � (2' ! 22'). Sometimes, if a given axiom scheme has a name (for

instance, 2'! 22' has a name 4), we will use a name of an axiom scheme

instead of this given axiom scheme in this notation. We can extend this

normal extension from K to all normal extensions of K. For instance, S4 is

a normal extension of K4, and S4 is expressed by K4� T. The class of all

normal extensions of L is denoted by NExtL. The following completeness

results are well-known.

Proposition 2.20 Let C be the class of all modal transitive frames be given.

Then, for any formula ', `K4 ' holds, if and only if, C j= ' holds.

Proposition 2.21 Let C be the class of all modal quasi-ordered frames. Then,

for any modal formula ', `S4 ' holds, if and only if, C j= ' holds.

A consequence relation `K4 (and `S4) for K4 (and S4) is de�ned as

same as the consequence relation `K for modal logic K. Since 2' $ 22'

is provable in S4, we have the following deduction theorem for S4.

Proposition 2.22 For any set � of ML-formulas and for any modal for-

mulas ' and  , �; ' `S4  holds if and only if � `S4 2'!  .

Let M be a normal modal logic and L a normal extension of M . Then,

we can express L in the form M � � for some set � of modal formulas. For

any normal extensions L1 and L2 of M , L1 � L2 is de�ned as M � (�1 [ �2)

where Li =M � �i for i = 1; 2.

Proposition 2.23 Every consistent normal extension L of K4 is charcter-

ized by some class of modal transitive frames.

Similar to Section 2.3, we consider LogC denote the set of modal formulas

which are characterized by a given class C of modal frames. Then,
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Proposition 2.24 Let C be any class of transitive frames. Then, LogC is a

normal extension of K4.

One of important normal extensions of K4 is G�odel-L�ob logic (GL). This

is de�ned by adding the following axiom scheme la to K4:

(la) 2(2'! ')! 2'.

That is, the modal logic GL is de�ned as K4 � 2(2' ! ') ! 2'. This

modal formula 2(2' ! ') ! 2' is known as L�ob-formula. The modal

operator 2 of GL denotes the provability of formal Peano arithmetic (PA).

We will explain this in the following. Let ' be a formula of PA. We suppose

that d'e denotes the G�odel number of a formula '. Moreover, we suppose

n denotes the term of PA which represents the natural number n. G�odel

introduced the predicate Pr(x) in PA which satis�es the following:

`PA Pr(n) i� for some sentence '; n = d'e and `PA ':

We will call a map � from ForML to the set of arithmetic sentences an

arithmetic interpretation if it satis�es the following three conditions:

� ?� is 0 = 1,

� ('�  )� = '
� �  

�, for � 2 f^;_;!g,

� (2')� = Pr(d'�e).

For any propositional variable, � can be corresponded to any sentence, i.e.,

there are many kinds of arithemetic interpretation which depend on corre-

spondece between propositional variables and arithemetic sentences. Solovay

([Sol76]) showed the following.

`GL ' i� `PA '
� for all arithemetic interpretations � :

Therefore, via these arithmetic interpretations, we can view the modal op-

erator 2 of GL as expressing the provability notion of PA. It is easy to see

that GL is not a normal extension of S4 since modal logic (K � T) � la is

inconsistent. Because,

Step i) apply RN to T 2'! ', then we have 2(2'! ');

Step ii) apply MP to la and 2(2'! '), we get 2';

Step iii) apply MP to T and 2', we obtain '.

We will call a frame Noetherian if it does not contain any in�nite strictly

ascending chain. Then, we have the following.
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Proposition 2.25 Let C be the class of Noetherian strict partial-ordered

frame. Then, for any modal formula ', `GL ' holds, if and only if, C j= '

holds.

The proof of the previous proposition is introduced, for instance, in [CZ97]

by the mothod which is called selective �ltration.

The Grzegorczyk logic (Grz) is a normal extension of S4 such that the

modal operator of Grz denotes the provability of ZF-set theory. The logic

Grz is obtained from S4 by adding the following axiom scheme grz:

(grz) 2(2('! 2')! ')! '.

Thus, S4�grz is equal to Grz. It is known thatGrz is also equal to K�grz.

The following completeness result holds for Grz.

Proposition 2.26 Let C be the class of Noetherian partially ordered frame.

Then, for any modal formula ', `Grz ' holds if and only if C j= ' holds.

We can show also the following.

Proposition 2.27 The lattice hNExtK;\;�i of all normal extensions of K

is distributive. Thus, all its sublattices { in particular NExtS4 and NExtGrz

are distributive as well.

2.5 G�odel translation as an embedding

An embedding f of a given logic L1 into another logic L2 is a function trans-

lating formulas of L1 into formulas of L2 in such a way that a formula is a

theorem of L1 if and only if the translated formula is a theorem of L2. We

will call this situation as L1 is embedded into L2 by f. In 1933, G�odel showed

in [G�od33] that the following function T is an embedding of Int into S4:

T(?) = 2?;

T(p) = 2p; for any p 2 Prop;

T(' ^  ) = T(') ^ T( );

T(' _  ) = T(') _ T( );

T('!  ) = 2(T(')! T( )):

In this section we will present a proof of the fact that T is an embedding of

Int not only into S4 but also into Grz.
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Proposition 2.28 Let ' be any L-formula. Then, the following three con-

ditions are equivalent: 1) ' 2 Int, 2) T(') 2 S4, and 3) T(') 2 Grz.

There are many ways of proving this proposition. Here we will give a sketch

of a proof using frame semantics following [CZ97].

For any given modal (or intuitionistic) frame hW;R; P i, de�ne the cluster

C(x) of x(2 W ) as the set fy : xRy and yRxg [ fxg. We will denote the

class of intuitionistic partially ordered frames and the class of modal quasi-

ordered frames, by CInt and CS4, respectively. Then, we de�ne a mapping �

from CS4 to CInt as follows: Suppose a modal (or intuitionistic) quasi-ordered

frame F(= hW;R; P i) is given. For any subset X of W , let �(X) be the set

of clusters of X, i.e., �(X) = fC(x) : x 2 Xg. Then, the skeleton �F of F is

a triple h�W; �R; �P i such that

� �W = fC(x) : x 2Wg,

� C(x)�RC(y) i� xRy,

� �P = f�(X) : X 2 P and X = X"g,

where X" is the set fy 2W : xRy for some x 2 Xg. Note that the condition

X = X" means that X is an upward closed set (with respect to R). It is

easy to show that �R is well-de�ned. If F is a modal quasi-ordered frame,

�F is an intuitionistic partially ordered frame, since �(X") = (�(X))". Next

suppose a model M = hF;Vi is given. We de�ne a map �V from Prop to

2�W by putting �V(p) = �(V(p)) for any p 2 Prop. It is also trivial that

�V is well-de�ned. We call the pair h�F; �Vi the skeleton �M of M. Suppose

that N is an intuitionistic model h�F; Ui based on the skeleton of a modal

quasi-ordered frame F = hW;R; P i where U is an arbitrary valuation. De�ne

the valuation V on F by the condition that for every p 2 Prop

V(p) = fx 2W : C(x) 2 U(p)g:

Then we can show that the skelton of a modal modelM = hF;Vi is isomorphic

to N.

Conversely, we can de�ne a modal frame from a given intuitionistic frame:

Suppose an intuitionistic frame F(= hW;R; P i) is given. An operator � on

2UpW is obtained by taking, for any subset A of UpW , �A to be the Boolean

closure of A, i.e., the set-di�erence, set-union and set-intersection closure of

A. For this operator and in this thesis, the following results are useful:
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Lemma 2.29 For every X � W , X is in �P if and only if

X = (�X1 [ Y1) \ : : :\ (�Xn [ Yn)

for some X1; Y1; : : : ; Xn; Yn 2 P and n � 1.

Lemma 2.30 Suppose that X 2 �P is represented as in Lemma 2.29. Then,

2X = (X1 � Y1) \ : : :\ (Xn � Yn) 2 P � �P:

Proof See, e.g. Lemma 8.32 and Lemma 8.33 [CZ97]. 2

A mapping � from CInt to CS4 is de�ned by �F = hW;R; �P i for every

intuitionistic frame F(= hW;R; P i). By Lemma 2.30, it is obivously true

that �F is a modal frame and ��F ' F for any intuitionistic frame F.

To prove Proposition 2.28, we need the following lemma.

Lemma 2.31 (skeleton lemma) For every modal modelM based on a modal

quasi-ordered frame F, every L-formula ' and every possible world x in F,

(�M; C(x)) j= ' i� (M; x) j= T(');

and therefore

�F j= ' i� F j= T('):

Proof Our lemma is proved by induction on the complexity of '. Sup-

pose that M is a modal model based on a modal quasi-ordered frame F(=

hW;R; P i). We will show the cases where ' is a propositional variable p

or a formula of the form  ! �. Let ' be p. By the de�nition of �P ,

�V(p) 2 �P implies V(p) = V(p)". Then, x 2 V(p) yields (M; x) j= 2p.

That is, V(p) � V(2p). Since R is re
exive, V(2p) � V(p) holds. Thus

V(p) = V(2p).

(�M; C(x)) j= p , C(x) 2 �V(p)

, x 2 V(p)

, x 2 V(2p)

, (M; x) j= 2p:
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Next, consider the case where ' is  ! �. Then,

(�M; C(x)) 6j=  ! � , 9C(y)(C(x)�RC(y); (�M; C(y)) j=  and

(�M; C(y)) 6j= �)

, 9y(xRy; (M; y) j= T( ) and (M; y) 6j= T(�))

, (M; x) 6j= 2(T( )! T(�))

, (M; x) 6j= T( ! �):

It is easy to see that �F j= ' i� F j= T('). 2

Now, we turn to Proposition 2.28.

Proof (of Proposition 2.28). Suppose T(') 62 S4. Then, there exists a

model M such that (M; x) 6j= T('). By Lemma 2.31, there exist a model �M

and a point C(x) such that (�M; C(x)) 6j= '. That is ' 62 Int. Since Grz is

a normal extension of S4, a modal model of Grz is also a modal model of

S4. Thus, we can derive that ' 62 Int from T(') 62 Grz. For the converse

direction, suppose ' 62 Int. By Proposition 2.17, there exists a �nite model

M(= hF;Vi) such that (M; x) 6j= '. By the fact that ��F ' F, we have an

intuitionistic model h��F;V0i isomorphic to M. As we saw in the above, the

skelton of a �nite modal model N = h�F; Ui is isomorphic to M. Then, by

Lemma 2.31, we have T(') 62 S4. Since every �nite partially ordered frame

is a Noetherian partially ordered frame, we also have T(') 62 Grz. 2

2.5.1 Blok-Esakia theorem

Blok ([Blo76]) and Esakia ([Esa79a, Esa79b]) showed that there is a one-to-

one and onto correspondence between ExtInt and NExtGrz. We call this

result Blok-Esakia Theorem. Here, we will introduce this theorem without

any proofs.

For any M 2 NExtS4 and L 2 ExtInt, we de�ne the following three

maps:

�M = f' 2 ForL : T(') 2Mg; (2.13)

�L = S4� T(L); (2.14)

�L = �L� (grz): (2.15)

The map � is a map from NExtS4 to ExtInt, and both � and � are maps

from ExtInt to NExtS4. Here we use the same symbols � and � as maps
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Int
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Grz
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M
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Figure 2.1: the Blok-Esakia theorem

among the class of frames treated in the previous section. When we try to

show some properties of � (or �) on logics, properties of � (or �) on frames

are used. For instance, if we discuss about �M for any M of NExtS4, it is

easy to �nd a frame by � which determines a logic in ExtInt. This is the

reason why we use the same symbols.

Proposition 2.32 Let �, � and � be maps de�ned by (2.13), (2.14) and

(2.15), respectively. Then,

1. � is a surjective homomorphism of hNExtS4;\;�i to

hExtInt;\;+; Int;Cli,

2. � is an isomorphism of hExtInt;\;+; Int;Cli into hNExtS4;\;�i,

3. (The Blok-Esakia theorem) � is an isomorphism of

hExtInt;\;+; Int;Cli onto hNExtGrz;\;�i.

The Blok-Esakia theorem is illustrated in above Figure 2.1 . Classes ExtInt,

NExtS4 and NExtGrz form bounded distribuitive lattices, and maps �, � , �

are de�ned between ExtInt and NExtGrz. In this �gure,M1 = �L andM2 =
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�L. The arrows and denote � and �, respectively. Proposition

2.32 asserts that for any intermediate logic L,

�
�1(L) = fM 2 NExtS4 : �L � M � �Lg:

In Figure 2.1, the line denotes the range of ��1(L), and, denotes

the map �.

The following proposition asserts that the operator � and � on frame

theory relate the operator � and � on a set of formulas, respectively.

Proposition 2.33 (Lemma 9.67 i) { iii) in [CZ97]) (i) For every intu-

itionistic frame F and logic M 2 NExtS4,

F j= �M i� �F j=M:

(ii) For every intuitionistic frame F and logic L 2 ExtInt,

F j= L i� �F j= �L:

(iii) For every quasi-ordered frame F and intermediate logic L,

�F j= L i� F j= �L:

2.6 Notes

In this chapter, we have surveyed several results about intermediate logics

and modal logics which are related to the present thesis. These contents are

written in most of textbooks on modal logics. Thus any reader will be able to

check the details easily. Our survey is mainly based on the textbooks[CZ97]

and [Boo93].

We note here some relations betweenGrz and GL. It is known that there

exists an embedding of Grz into GL. Let us de�ne a mapping + is a map

from ForML to ForML de�ned as follows:

?
+ = ?;

p
+ = p; for any p 2 Prop;

(' ^  )+ = '
+
^  

+
;

(' _  )+ = '
+
_  

+
;

(2')+ = 2'
+
^ '

+
:



30CHAPTER 2. INTUITIONISTIC LOGIC AND BASIC MODAL LOGIC

Then, we can show that for any modal formula ',

`Grz ' i� `GL '
+
:

Thus, we can say that every theorem ofGrz can be translated into a provable

arithmetic sentence in PA.



Chapter 3

The basic system BPL

In this chapter, we will study basic propositional logic (BPL), in particular

its syntactic properties.

BPL was introduced by A. Visser ([Vis81]). At �rst, Visser looked for a

propositional logic which would be embeddable into the modal logic GL by

the translation T. He found such a logic and called it formal propositional

logic (FPL). He also de�ned another interesting logic called BPL which is

embedded into K4 by T. Thus, by the translation T, Int and FPL corre-

spond to S4 and GL, respectively. On the other hand, both S4 and GL are

extensions of K4, to which BPL corresponds. Therefore, both FPL and Int

turn out to be extensions of BPL. In [Vis81], Visser introduced BPL as a

natural deduction system. He proved also that BPL is complete to the class

of transitive frames. So, we will discuss transitive frame semantics �rst.

Next, we will introduce two kinds of proof systems for BPL. One is the

natural deduction system NBPL by Visser ([Vis81]), and the second is a

Hilbert-style system HB introduced in the author's joint paper with Ono

([SO97]). The completeness theorem of HB is proved similarly to [Cor87].

This is answer to a question raised in [SWZ97].

Then, we will discuss Sasaki's results [Sas98]. Sasaki showed that the

consequence relation of BPL can be de�ned by the axioms ofHB and a weak

modus ponens : � ` ' and ` '!  imply � `  . He investigated V� which

resembles HB. Using V�, Sasaki also proved that no consequece relation

including implication elimination rule (i.e., modus ponens with assumptions :

� ` '!  and � ` ' imply �;� `  ) can not characterize the consequence

relation of BPL.

31
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3.1 Transitive frame semantics

Visser applied the intuitionistic interpretation to transitive Kripke frames

([Vis81]). Here, we will introduce (general) transitive frame semantics and

some notations.

An intuitionistic transitive frame F is a triple hW;R; P i such that W is a

non-empty set of possible worlds, R a transitive relation on W and P is a set

of R-cones which contains both ;, and which is closed under the set-union,

set-intersection and the set-implication operation � de�ned by (2.1). The

notions of R-cone and the set UpW of all R-cones are already introduced

in Chapter 2. Sometimes, we call an intuitionistic transitive frame, simply

a \transitive frame" (or just a \frame"). If a given intuitionisitic transitive

frame F is of the form hW;R;UpW i, we call it intuitionistic transitive Kripke

frame, and abbreviate it to hW;Ri. We denote X [X " as X" for any subset

X of W . Any intuitionistic transitive frame F(= hW;R; P i) is called rooted

if x" = W holds for some element x 2W , and x is called the root of F.

A valuation in a frame, a model based on a frame, the truth relation j=,

the notions of vailidty, homomorphism, etc are de�ned in the same way as

the case of intuitionistic quasi-ordered frames.

We have to pay an attention to treating modus ponens in BPL. Since we

don't assume the re
exivity in transitive frame semantics, it sometimes shows

quite di�erent behaviours. Usually, modus ponens is described as follows:

' '!  

 :

However, the meaning of modus ponens on natural deduction system and

on Hilbert-style system di�er. The former rule can be applied not only to

derived theorems but also assumptions, and the later can be applied only to

theorems. That is, their di�erent points are put as follows:

Natural deduction '; '!  `  

Hilbert-style ` ' and ` '!  imply `  

To distuinguish from modus ponens of Hilbert-style system, we will call the

rule in natural deduction system! E rule (or implication elimantion rule).

The following example denotes the di�erence between ? and :>.

Example 3.1 In an irre
exivity Kripke frame with a single possible world,

every formula of the form  ! � is valid. In particular :>(= > ! ?) is

valid in it.
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Example 3.2 Example 3.3

To picture frames or models, we will sometimes use graph diagrams. In

our diagrams, white circles and black circles denote re
exive points and ir-

re
exive points, respectively.

re
exive point

irre
exive point

Names of nodes are written as in a, b, c, x, y, z, ... . Arrows denote the

transitive relation. Since relations are transitive, we will omit trivial ar-

rows induced by the transitivity. In a diagram, capital letters A;B;C; :::

denote non-atomic formulas, and small letters p; q; r; ::: denote atomic for-

mulas (propositional variables). We will sometimes use a realm represented

by a thin line (or, a broken line) to denote an element of P . Since P in-

cludes W and ;, we always omit these trivial elements from a diagram. The

following is an example of a diagram for a frame.

Example 3.2 Suppose W = fa; b; cg, R = f(a; b); (a; c)g and P = f;; fbg;

fb; cg;Wg. Then the above �gure denotes the intuitionistic transitive frame

F = hW;R; P i.

When a given frame F is pictured as a graph and a valuation is given,

we will write a formula A at the left-hand side of x if A is true at x in M,

and write A at the right-hand side of x if A is not true. The following is an

example of a diagram for a model.

Example 3.3 We can show that there exists a frame such that (p ! (q !

r)) ! ((p ! q) ! (p ! r)) is not valid. We present such a frame and a
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valuation in the above �gure. It is easy to calculate that (M; a) 6j= (p! (q!

r))! ((p! q)! (p! r)).

3.2 Natural deduction system of BPL

In [Vis81], A. Visser introduced a natural deduction systemNBPL of BPL,

which we present below.

Inference rules:

_E :
' _  

6'

...
�

6 

...
�

� ;
! I :

6'

...
 

'!  ;
? :

?

' ;

^I :
'  

' ^  ;
^ E :

' ^  

' ;

' ^  

 ;
_ I :

'

' _  ;

 

' _  ;

^I-f :
'!  '! �

'!  ^ � ;
_ E-f :

'! �  ! �

' _  ! � ;
Tr :

'!   ! �

'! � :

Natural deduction system of BPL.

The system di�ers from the natural deduction systemNJ of Int inNBPL

has no! E rule, but it has ^ I-f, _ E-f and Tr, instead. It is easy to see that

these three special rules of NBPL are derivable from ! E rule. However,

as Visser pointed out, ! E rule is not derivable in NBPL.

Let � be a set of formulas. � `BPL ' means ' is derived in NBPL from

�, in other words, � includes the all assumptions of proof of '. If ; `BPL '

holds we will denote it by `BPL '.

Now, we will show an example of a proof inNBPL. The following example

3.4 shows that ! I-f rule
' ^  ! �

'! ( ! �)
is derivable in NBPL.

Example 3.4 A proof of ' ^  ! � `BPL '! ( ! �):

6' 6 

' ^  

 ! ' ^  ' ^  ! �

 ! �

'! ( ! �) :
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The completeness theorem of NBPL was proved by Visser ([Vis81]).

Proposition 3.5 Let C be the class of (rooted) intuitionistic transitive frames.

Suppose that M is an arbitrary model which is based on a frame in C, and x

is a possible world of M. Then,

� `BPL ' i� 8M8x((M; x) j= �) (M; x) j= '):

Let M be a model based on the single irr
exive Kripke frame in Example

3.1, in which p is true in M. Let x stand for the point of M. Then, we

can calculate easily that (M; x) j= p and (M; x) j= p ! q but (M; x) 6j= q.

This means that modus ponens is not a derivable rule in NBPL. Even if,

for any complex connective C, we put that C satis�es modus ponens when

';C(';  ) `BPL  , modus ponens of this type does not hold either. To show

this, we need some terminology. Let a frame F and valuations V and V0 on

F be given. We denote models hF;Vi and hF;V0i as N and N0, respectively.

For any formula ' and any possible world x of F, '(N;x) � '
(N0;x) if ' is

false at x in N or ' is true at x in N0. Suppose that ' includes at least n-

variables p1; : : : ; pn. We will express this by '(p1; : : : ; pn). We call a formula

'(p1; : : : ; pn) monotone at x in F if, for any two modelsM and N based on F,

[8i 2 f1; : : : ; ng(p
(M;x)
i � p

(N;x)
i )]) '

(M;x)
� '

(N;x)
:

Theorem 3.6 There exists no formulas C(p; q) such that, for all �, ',  ,

�; ' `BPL  i� � `BPL C(';  ):

Proof Suppose on the contrary that such a formula C(p; q) exists. Then,

we have

>! ?; ' `BPL  i� >! ? `BPL C(';  ) (3.1)

Here, > is the abbreviation of ?! ?. If >! ? holds in a modelM then M

is a disjoint union of irr
exive points. Then, all formulas, whose outermost

connective is implication, are true, as we saw in Example 3.3 . We can easily

show that any formula is monotone at any point in that frame. And, clearly,

(p ^ q)(M;x) � p
(M;x) for any point x. Thus,

>! ?; C(p ^ q; q) `BPL C(p; q)

By (3.1) and > ! ?; p ^ q `BPL q, we can derive that > ! ? `BPL

C(p ^ q; q). Then, we have > ! ? `BPL C(p; q). And, again by (3.1),

> ! ?; p `BPL q. But, it is clear that > ! ?; p 6`BPL q. This is a

contradiction. 2
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Remark. By Theorem 3.6, whenever we think of an extension L of BPL,

we meet the problem that what kind of extensions are worth condsidering.

Let us consider the case of Int. Suppose L is a superintuitionistic logic

which is axiomatizable by a �nite number of axioms. Then, by deduction

theorem, we are able to translate a theorem of L into a theorem of Int. But

this translation does not go through for the case of BPL by Theorem 3.6.

To solve this problem, we will consider not only a theorem of L but also a

consequence relation of L. We will discuss this problem in Chapter 5, again.

3.3 Hilbert style proof system of BPL

Next, we will introduce a Hilbert-style system of BPL, which was given

[SO97]. Throughout this chapter, we will identify the logic BPL with the set

of theorems of BPL. We start with stating some preliminary facts. Firstly,

the theorem (p! (q! r))! ((p! q)! (p! r)) of Int is not provable in

BPL as we saw in Example 3.3 .

Lemma 3.7 BPL is closed under modus ponens and substituition.

Proof It is easy to see that BPL is closed under substituiton. So we will

show that BPL is closed under modus ponens. Suppose otherwise. Then,

there are formulas ' and  such that '; '!  2 BPL but  =2 BPL. This

means that there is a model M = hF;Vi in which  is refuted at some point

y. Add a new root x to F, and call the resulting frame G. Let U be the

valuation in G such that U(p) = V(p) for every variable p, and N = hG; Ui.

Clearly, (N; y) 6j=  . On the other hand, we have (N; y) j= ' and hence

(N; x) 6j= ' !  , which contradicts the assumption that we can show that

'!  2 BPL. Thus BPL is closed under modus ponens. 2

3.3.1 Hilbert style proof system HB of BPL

Our Hilbert-style proof system HB of BPL is given as follows. This system

resembles Corsi's system F in [Cor87].

Axiom schemes:

(B1) '! ',

(B2) ('!  ) ^ ( ! �)! ('! �),
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(B3) ' ^  ! ',

(B4) ' ^  !  ,

(B5) ('!  ) ^ ('! �)! ('!  ^ �),

(B6) '! ' _  ,

(B7)  ! ' _  ,

(B8) ('! �) ^ ( ! �)! (' _  ! �),

(B9) ' ^ ( _ �)! (' ^  ) _ (' ^ �),

(B10) ?! ',

(B11) '! ( ! '),

(B12) '! ( ! ' ^  );

Inference rules:

� modus ponens.

We will use `HB to denote the derivability in HB.

The soundness theorem is easily shown by induction.

Theorem 3.8 Let C be the class of intuitionistic transitive frames. Then,

for any formula ',

`HB ' implies C j= ':

3.3.2 Some preparations

To prove the completeness theorem of HB, we need the following lemmas

and notions. A good deal of the proofs go through in the same way as in

[Cor87].

Lemma 3.9 The following hold:

(F1) : `HB ('!  ) ^ ((' ^  )! �)! ('!  ),

(F2) : `HB (' ^  )! � and `HB  imply `HB '! �,
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(F3) : `HB '!  implies `HB ( ! �)! ('! �),

(F4) : `HB '!  implies `HB (�! ')! (�!  ),

(F5) : `HB ('!  ) ^ (�! �)! (' ^ �!  ^ �),

(F6) : `HB ('!  ) ^ (�! �)! (' _ �!  _ �),

(F7) : `HB (' ^ �!  _ �) ^ (� ! �) ^ (� ! �)! (' ^ � !  _ �),

(F8) : `HB ' ^  ! � implies `HB (� ! ')! ((� ^  )! �).

De�nition 3.10 Let � be a subset of ForL and � be a non-empty subset of

ForL. � is �-consistent if there exist a �nite subset f
1; : : : ; 
ng of � and a

�nite subset f�1; : : : ; �mg of � such that

6`HB 
1 ^ : : :^ 
n ! �1 _ : : :_ �m:

Moreover, � is �-maximal if for any formula � which is not an element of

�, there exists a �nite subset f
1; : : : ; 
ng of � and a �nite subset f�1; : : : ;

�mg of � such that

`HB � ^ 
1 ^ : : :^ 
n ! �1 _ : : :_ �m:

� is �-maximal-consistent if � is both �-maximal and �-consistent.

Lemma 3.11 Suppose that �-consistent set � is given. Then, there exists

a set � such that,

1. � � �,

2. � is �-maximal-consistent set.

Proof Enumerate all the elements of ForL. De�ne (�i)i2N as follows;

�0 : = �

�i+1 =

(
�i [ f'ig if � [ f'ig is �-consistent,

�i otherwise.

Let � be
S
�i. Then, this � satis�es the above conditions. 2

Lemma 3.12 Suppose � is �-maximal-consistent. Then,



3.3. HILBERT STYLE PROOF SYSTEM OF BPL 39

1. `HB � implies � 2 �,

2. � 2 � and `HB �! � imply � 2 �,

3. (� 2 � and � 2 �) i� � ^ � 2 �,

4. (� 2 � or � 2 �) i� � _ � 2 �,

5. �! � 2 � and � ! � 2 � imply �! � 2 �,

6. � ^ � ! � 2 � and `HB � imply �! � 2 �,

7. `HB �^� ! �_
, � ! � 2 � and 
 ! � 2 � imply �^�! �_� 2 �,

8. �! � 2 � and � ^ �! � 2 � imply �! � 2 �.

Proof Use Lemma 3.9 and the de�nition of �-maximal-consistent set.

2

Lemma 3.13 Let � be �-maximal-consistent such that � ! � 62 �. Then,

f�g is �0-consistent, where �0 = f' : '! � 2 �g.

Proof Suppose otherwise. Then, `HB � ! �1 _ : : : _ �m for some subset

f�1; : : : ; �mg of �
0. By the lemma 3.9,

`HB (�1 _ : : :_ �m ! �)! (�! �): (3.2)

By the axiom scheme B8,

`HB (�1 ! �) ^ (�2 ! �)! (�1 _ �2 ! �):

Repeating this, we get

`HB (�1 ! �) ^ : : :^ (�m ! �)! (�1 _ : : :_ �m ! �): (3.3)

By the axiom scheme B2, B12, (3.2), (3.3) and MP, we get

`HB (�1 ! �) ^ : : :^ (�m ! �)! (�! �): (3.4)

By the assumptions that �! � 62 � and � is �-maximal-consistent,

`HB �1 ^ : : :^ �n ^ (�! �)! �1 _ : : :_ �t; (3.5)
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for some �1; : : : ; �n 2 � and �1; : : : ; �t 2 �. Lets write � for �1 ^ : : :^ �n and

� for �1 _ : : :_ �t. Since from `HB A! B we deduce `HB C ^A! C ^B,

by (3.4), we get:

`HB � ^ (�1 ! �) ^ : : :^ (�m ! �)! � ^ (�! �): (3.6)

And, again by B2, B12, (3.6), (3.5) and MP,

`HB � ^ (�1 ! �) ^ : : :^ (�m ! �)! �:

This contradicts our assumption that � is �-consistent. 2

Lemma 3.14 Let � be �-maximal-consistent such that �! � 62 �, and �0

be the set f' : ' ! � 2 �g. Then, there exists a �0-maximal-consistent set

� where � 2 �, � 62 � and for any � and �, � ! � 2 � and � 2 � imply

� 2 �.

Proof By Lemma 3.13, f�g is �0-consistent. By Lemma 3.11, there exist a

�0-maximal-consistent set �, with � 2 �. That � 62 �, and � ! � 2 �, and

� 2 � imply � 2 �, can be derived similarly to the proof of Lemma 3.13 .

2

3.3.3 Completeness theorem

In this section, we will prove the completeness theorem of `HB by means of

its canonical frame.

De�nition 3.15 The canonical frame cF is a triple hW;R; P i where

1. W is the class of all subsets of ForL which are �-maximal-consistent

for some non-empty subset � of ForL,

2. R is a binary relation on W such that for any �;�0,

�R�0 i� for any �; � 2 �, �! � 2 � and � 2 �0 imply � 2 �0,

3. P is the set fv(�) : � 2 ForLg where v(�) = f� 2W : � 2 �g.

The canonical model cM is the pair hcF;Vi where V is the function such that

V(�) = v(�) for any formula � 2 ForL.

Theorem 3.16 cF(= hW;R; P i) is an intuitionistic transitive frame.
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Proof We will show that R is transitive, and that P is a set of R-cones

containing ; which is closed under set-intersection \, set-union [ and �.

First, we will show that R is transitive. To prove this, it is su�cient to show

that �R�0 implies � � �0. Suppose �R�0 and ' 2 �. Then, by Lemma 3.12

and axiom scheme (B11), `HB '! (>! '). By Lemma 3.12, >! ' 2 �.

So, ' 2 �0 by the de�nition of R and the fact that > 2 �0, thus �R�0 implies

� � �0. Clearly, P is a set of R-cones since �R�0 implies � � �0. It is clear

that P contains both W and ;. To prove that P is closed under \, [ and

�, it is enough to show v(� ^ �) = v(�) \ v(�), v(� _ �) = v(�) [ v(�)

and v(� ! �) = v(�) � v(�). Obviously, v(� ^ �) = v(�) \ v(�) and

v(� _ �) = v(�) [ v(�) hold by Lemmas 3.12 and 3.12, respectively. So, it

remains to show v(� ! �) = v(�) � v(�). Suppose � 2 v(� ! �). Then,

�! � 2 �. Assume there exists �0 such that �R�0 and �0 2 v(�). Then, by

the de�nition of R and v, �0 2 v(�). And � 2 v(�) � v(�) by (2.1). The

opposite direction can be derived by Lemma 3.14. 2

Corollary 3.17 The canonical model cM satis�es

' 2 � i� (cM;�) j= ';

for any � 2W and any formula '.

Now, we will prove the completeness theorem for `HB.

Theorem 3.18 Let C be the class of intuitionistic transitive frames. Then,

for any formula ',

C j= ' implies `HB ':

Proof Suppose 6`HB '. Let � be f :`HB  g. It is trivial that � is f'g-

consistent set. By Lemma 3.11, we have a f'g-maximal-consistent set � such

that � � �. Obviously, � 2 W and ' 62 �. By Lemma 3.17, (cM;�) 6j= '.

Hence, C 6j= '. 2

3.4 Sasaki's results

After we obtained our system HB in [SO97], Sasaki in [Sas98] strengthened

our result. In this section, we will give a sketch of Sasaki's results. In [Sas98],

he proved that the consequence relation of BPL is axiomatizable with the

axioms of HB and a weak modus ponens.
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Sasaki showed that the consequence relation of BPL is not axiomatizable

by any proof system S which includesmodus ponens without any assumption,

i.e., `S ' and `S '!  imply `S  . He also proved that it is not axiomatiz-

able by any proof system S which includes modus ponens with assumptions,

i.e., � `S ' and � `S '!  imply �;� `S  .

This result contrasts especially with Theorem 3.6 . Theorem 3.6 means

that deduction theorem does not hold for any type of implication, while

Sasaki's result says that modus ponens does not work.

Consequence relation `V � is de�ned as follows ([Sas98]): Let Ax be the

set of all axiom schemes of `HB except Axiom (B12). `V � is the smallest

consequence relation which satis�es the following conditions:

1. ' 2 Ax implies � `V � ',

2. ' 2 � implies � `V � ',

3. � `V � ' and `V � '!  imply � `V �  ,

4. � `V � ' and � `V �  imply � `V � ' ^  .

This system has the same deduction power as NBPL ([Sas98]). Therefore

V
� gives our axiomatization of the consequence relation of BPL.

Proposition 3.19 � `V � ' i� � `BPL '.

In order to show that no proof systems with modus ponens with any

assumption can axiomatize BPL, Sasaki introduced an abstract consequence

relation `S;MP for a subset S of ForL and a subset MP of ForL � ForL as

follows ([Sas98]):

1. ' 2 S implies � `S;MP ';

2. ' 2 � implies � `S;MP ';

3. For any (';  ) 2MP, � `S;MP ' and � `S;MP '!  imply � `S;MP  .

We will now de�ne a derivation and the length of a derivation for this abstract

consequence relation `S;MP: A derivation of � `S;MP ' is a �nite sequence of

formulas '1; : : : ; 'n such that for any i 2 f1; : : : ; ng,

1. 'n = ',
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2. 'i 2 � [ S,

3. there exist j; k < i such that 'k = 'j ! 'i, ('j; 'i) 2MP, � `S;MP 'j

and � `S;MP 'k.

The length of a derivation '1; : : : ; 'n of � `S;MP 'n is de�ned to be n. Let

MPBPL = f(�; �) : for any �; if � `BPL � and � `BPL �! �;

then � `BPL �g

and consider the consequence relation `BPL;MPBPL
([Sas98]). We will use

`0BPL instead of `BPL;MPBPL
.

Then, the following propositions are proved as lemmas in [Sas98].

Proposition 3.20 If MP1 � MP2, S1 � S2 and � `S1;MP1 ',

then � `S2;MP2 '.

Proposition 3.21 � `0BPL ' implies � `BPL '.

Proposition 3.22 >! ? `0BPL �! �.

Proof We can show `BPL (> ! ?) ! (� ! �) by Lemma 3.9 and com-

pleteness theorem. By the de�nition of `0BPL, we have >! ? `0BPL >! ?,

and hence >! ? `0BPL �! �. 2

Proposition 3.23 If >! ?; '; � `0BPL  , then,

either >! ?; ' `
0
BPL  or >! ?; � `

0
BPL  :

Proof By induction on the length of the derivation of >! ?; '; � `0BPL  .

We will denote the length of derivation by l( ). If l( ) = 1, then either

 2 BPL or  2 f> ! ?; '; �g holds. The proposition is trivial in either

case. Suppose that it holds for any � such that � is derived from>! ?; '; �

within n steps. Let l( ) = n+1. We will show that  is derived fromMPBPL.

Suppose that > ! ?; '; � `0BPL  is derived from > ! ?; '; � `0BPL �,

>! ?; '; � `0BPL � !  and (�;  ) 2MPBPL for some  . By the hypothesis

of induction, either > ! ?; ' `0BPL � or > ! ?; � `0BPL �. By Proposition

3.22, both > ! ?; ' `0BPL � !  and > ! ?; � `0BPL � !  . Then, either

>! ?; ' `0BPL  or >! ?; � `0BPL  . 2
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Proposition 3.24 p; q `0BPL p^q does not hold for any distinct propositional

variables p; q.

Proof Suppose otherwise. Then, clearly,

>! ?; p; q `
0
BPL p ^ q:

Then, by Proposition 3.23 , we have either > ! ?; p `0BPL p ^ q or > !

?; q `0BPL p ^ q. And, by Proposition 3.21, > ! ?; p `BPL p ^ q or > !

?; q `BPL p ^ q. But, taking the frame hfag; ;i, we can easily show that

neither of >! ?; p `BPL p ^ q and >! ?; q `BPL p ^ q holds. 2

By the above lemmas, we can prove the following.

Proposition 3.25 There exists no pair (S, MP) such that for each � and

each �,

� `BPL � i� � `S;MP �:

Proof Suppose that for a pair (S, MP), � `BPL � i� � `S;MP � for any

formula � and �. If S 6� BPL, then there exists a formula  2 S\(L�BPL).

So, we have `S;MP  but 6`BPL  . This is a contradiction. If MP 6� MPBPL,

then there exists a pair (�;  ) 2 MP \ (L2 � MPBPL). This proves that

there exists a set � of formulas such that � `BPL �, � `BPL � !  and

� 6`BPL  . Thus �; �; � !  6`BPL  . On the other hand, (�;  ) 2 MP

implies �; �; � !  `S;MP  . This is a contradiction. Therefore, S � BPL

and MP � MPBPL. By Proposition 3.20, � `0BPL  if � `S;MP  . From

Proposition 3.24, we have p; q 6`S;MP p ^ q. But p; q `BPL p ^ q. This is a

contradiction. 2

3.5 Notes

We has discussed both Hilbert-style calculus HB of BPL and natural de-

duction systemNBPL of BPL. Then, it will be natural to ask the following

question: How about a Gentzen style proof system for BPL? A Gentzen type

proof system of BPL is introduced �rst by M. Ardeshir and W. Ruitenburg

([AR95]). The cut-elimination theorem proved by M. Ardeshir ([Ard95]).

His system GBPC without any structual rule is essentailly identical to the

following system GBPL with structual rules.

Let �, � and � be a (possibly, empty) �nite sequences of L-formulas. We

call the following forms sequents (of BPL);
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� �) ',

� �).

Gentzen style sequent calculus GBPL of BPL is as follows:

Initial sequents:

i1. ') ',

i2. ?).

Logical rules:

';�) �

' ^  ;�) �
(^-left1)

;

 ;�) �

' ^  ;�) �
(^-left2)

;

�) ' �)  

�) ' ^  
(^-right)

;

';�) �  ;�) �

' _  ;�) �
(_-left)

;

�) '

�) ' _  
(_-right1)

;

�)  

�) ' _  
(_-right2)

;

';�)  

�) '!  
(! -right)

;

�) '!  �)  ! �

�) '! �
(Tr)

;

' ^  ;�) � ' ^ �;�) �

' ^ ( _ �);�) �
(D-left)

;

�) ' _  �) ' _ �

�) ' _ ( ^ �)
(D-right)

;

�) '!  �) '! �

�) '! ( ^ �)
(F^)

;

�) '!  �) �!  

�) (' _ �)!  
(F_)

:

Structual rules:

�) �

';�) �
(weakening-left)

;

�)

�) '
(weakening-right)

;

'; ';�) �

';�) �
(contraction)

;

�; ';  ;�) �

�;  ; ';�) �
(exchange)

;

�) ' ';�) �

�;�) �
(cut)

:

In [Ard95], it is shown that the cut rule is admissible in GBPL.
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Chapter 4

Frames and algebraic structures

In the previous chapter, we studied the syntactical side of BPL. In this

chapter, we will discuss its semantics. Firstly, we will present an algebraic

semantics of BPL. The class of BPL-algebras was introduced by M. Ardeshir

and W. Ruitenburg ([AR95]). A BPL-algebra is a bounded distributive

lattice which satis�es distributive law for meet, join and which has the !

operator. The ! operator satis�es some condition which is weaker than the

conditions for the relative pseudo-complement for Heyting algebra. We will

show that a BPL-algebra becomes a Heyting algebra if one simple inequality

is added. In Section 4.2, we will discuss duality between algebras and frames.

Dual structures for semantics of BPL will be introduced as same as for

Int. In Section 4.3, a generated subframe of intuitionistic transitive frame is

introduced. This is a substructure of frames, and its de�nition is the same

as Int. In the last section, we will discuss relationships between semantic

structures and their substructures via homomorphisms and p-morphisms.

4.1 Algebraic structures

Here, we will adopt the de�nition of algebraic semantics for BPL by M.

Ardeshir and W. Ruitenburg ([AR95]). In [AR95], algberaic semantics for

BPL is introduced as follows:

De�nition 4.1 A(= hA;^;_;!; 0; 1i) is called a BPL-algebra if

� h^;_;!; 0; 1i is a type,

� hA;^;_; 0; 1i is a bounded distributive lattice,

47
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� the operation ! satis�es that for any a; b; c 2 A,

a! (b ^ c) = (a! b) ^ (a! c);

(b _ c)! a = (b! a) ^ (c! a);

(a! b) ^ (b! c) � (a! c);

a! a = 1 and a � 1! a;

where a � b means a = a ^ b (equivalently b = a _ b).

Subalgebras, homomorphisms, embeddings and isomorphisms are de�ned

similarly to those of Heyting algebra. For BPL-algebras, results similar to

Proposition 2.6 and 2.7 also hold. And the completeness theorem for BPL

is proved by constructing the Lindenbaum algebra for (see [AR95]).

Proposition 4.2 The logic BPL is complete with respect to the class of all

BPL-algebras.

The following properties are often useful.

Lemma 4.3 Suppose A is BPL-algebra. For any a; b; c 2 A,

1) a � b implies b! c � a! c;

2) a � b implies c! a � c! b:

Proof Suppose a � b. This is equal to a _ b = b. Then,

b! c = (a _ b)! c

= (a! c) ^ (b! c):

This means b! c � a! c. The other point is similar. 2

An example of applying the above lemma is the following:

Theorem 4.4 Let A be a BPL-algebra. A is a Heyting algbera, if A satis�es

the inequality a � 1! a for any element a of A.

Proof It is enough to show that ! is the relatively pseudo-complement.

We will show that a = 1! a holds for any a. Since a � 1! a holds always

by the de�nition. Let a and b be elements of A. Suppose x � (a! b) for an

element x. Then, a^x � a^(a! b). And, a^(a! b) = (1! a)^(a! b) �

1! b = b. Thus, a^x � b holds. Conversely, suppose a^x � b. By Lemma

4.3, a! (a^ x) � a! b. Then, a! (a^ x) = (a! a)^ (a! x) = a! x.

Again by Lemma 4.3, a � 1 implies x = 1 ! x � a! x. Then, x � a! b

holds. 2
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As a BPL-algebra is a distributive lattice, it makes sense to speak of its

prime �lters. The following results are well-known for distributive lattices.

Proposition 4.5 Let A be a distributive lattice, r0 a �lter and � an ideal

of A. If r0 \ � = ; then there is a prime �lter r such that r0 � r and

r\� = ;.

Corollary 4.6 If � is an ideal and a 2 A�� there is a prime �lter r such

that a 2 r and r\� = ;.

Corollary 4.7 If a; b 2 A are such that a 6� b there is a prime �lter r such

that a 2 r and b 62 r.

Suppose A is a BPL-algebra and WA is the set of all prime �lters on A. We

de�ne a relation R on WA , as follows;

rRr
0 i� 8a; b 2 A(a! b 2 r ^ a 2 r

0
) b 2 r

0): (4.1)

The next lemma asserts the existence of prime �lters satisfying a condition

that will prove useful later on.

Lemma 4.8 Suppose A = hA;^;_;!; 0; 1i is a BPL-algebra, r a prime

�lter in A and let C and D be subsets of A such that

8c1; : : : ; cn 2 C 8d1; : : : ; dm 2 D c1 ^ : : :^ cn ! d1 _ : : :_ dm 62 r: (4.2)

Then these exists a prime �lter r0 in A such that C � r0, r0 \D = ; and

rRr0.

Proof By Zorn's lemma, there is a maximal set r0 which contains C and

satis�es (4.2). We show that r0 is the required prime �lter. First, it is easily

checked that r0 is a �lter such that for any a; b, b 2 r0 whenever a 2 r0 and

a ! b 2 r. Since a ! a = 1 2 r for every a 2 A, we have r0 \ D = ;.

So it remains to show that r0 is prime, i.e., b1 _ b2 2 r
0 implies b1 2 r

0 or

b2 2 r
0. Suppose b1; b2 62 r

0. Then there are a 2 r0 and d1; : : : ; dn 2 D such

that for i = 1; 2,

a ^ bi ! d1 _ : : :_ dn 2 r:

Hence

(a ^ b1) _ (a ^ b2)! d1 _ : : :_ dn 2 r

and so, by distributivity,

a ^ (b1 _ b2)! d1 _ : : :_ dn 2 r;

which means that b1 _ b2 62 r
0. This contradicts our assumption. 2
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4.2 Duality theorem

For the case of intuitionistic logic, it is known that a relation called \duality"

holds between Heyting algebras and quasi-ordered frames. Here, we will show

that this relation also holds between transitive frames and BPL-algebras.

The whole terminology for duals, including de�nitions, is the same for BPL-

algebras and transitive frames as for Heyting algebras and quasi-ordered

frames (see, Chapter 2). Firstly, it is proved that the dual of a transitive

frame (and aBPL-algebra) becomes aBPL-algebra (and a transitive frame).

Then, we will prove that the duality theorem for transitive frames (andBPL-

algebras) holds.

Theorem 4.9 For any intuitionistic transitive frame F, F+ is a BPL-algebra.

Proof Suppose F is hW;R; P i. We will show that F+ = hP;\;[;�; ;;W i

is a BPL-algebra. It is obvious that hP;\;[; ;;W i is a bounded distributive

lattice with respect to the set-theoretic operations. We need to prove that

this structure satis�es the conditions for BPL-algebras. For any X; Y; Z 2 P ,

x 2 X � (Y \ Z) , 8y 2W (xRy ^ y 2 X ) y 2 Y \ Z);

, 8y 2W (xRy ^ y 2 X ) y 2 Y )

^8y 2W (xRy ^ y 2 X ) y 2 Z);

, x 2 (X � Y ) \ (X � Z);

x 2 (Y [ Z) � X , 8y 2W (xRy ^ y 2 (Y [ Z)) y 2 X);

, 8y 2W (xRy ^ y 2 Y ) y 2 X)

^8y 2W (xRy ^ y 2 Z ) y 2 X);

, x 2 (Y � X) \ (Z � X);

It is easy to see that for any x 2W , x 2 X � X. Thus, W = X � X.

Next, we will show that X � (W � X). Since X is an R-cone, x 2 X

and xRy imply y 2 X. Thus, if x 2 X, and if xRy and y 2 W then y 2 X

for all y.

Lastly, we will show that

x 2 (X � Y ) \ (Y � Z)) x 2 (X � Z):

Let x 2 (X � Y ) \ (Y � Z). Suppose xRy and y 2 X. y 2 Y since

x 2 (X � Y ). Then, xRy and y 2 Y yield y 2 Z, since x 2 (Y � Z). Thus,

x 2 X � Z. 2
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Clearly, the following result holds:

Theorem 4.10 For any formula ', F j= ', F
+ j= '.

Next, we prove that the dual of any BPL-algebra is an intuitionistic transi-

tive frame.

Theorem 4.11 For any BPL-algebra A, A+ is an intuitionistic transitive

frame.

Proof Suppose that A is hA;^;_;!; 0; 1i. We will show that A+ = hWA ; RA;

PAi is an intuitionistic transitive frame. To prove RA is transitive, it is suf-

�cient to show that rRAr
0 implies r � r0. Let rRAr

0. Suppose a 2 r.

By Lemma 4.3, for any b 2 A, b � 1, a � (1 ! a) � (b ! a). Thus,

b ! a 2 r. Fix the b above as an element of r0. Then by the de�nition of

RA , a 2 r0. Thus, rRAr
0 yields r � r0. Finally the properties of a set

PA(= fp(a) : a 2 Ag) remain, that is, PA is a set of RA-cones, and is closed

under the set operations \, [ and �. That any element p(a) of PA is an

RA-cone, is straightforward, since rRAr
0 implies r � r0, and r 2 p(a) is

equivalent to a 2 r. Thus, it remains to show that PA is closed under \,

[ and �. As for \ and [, this is straightforward by the de�nition of prime

�lter:

r 2 p(a ^ b) , a ^ b 2 r;

, a 2 r and b 2 r;

, r 2 p(a) and r 2 p(b);

, r 2 p(a) \ p(b);

r 2 p(a _ b) , a _ b 2 r;

, a 2 r or b 2 r;

, r 2 p(a) or r 2 p(b);

, r 2 p(a) [ p(b):

For � the proof is as follows: Suppose r 2 p(a ! b). By the de�nition of

p, a ! b 2 r. The condition that r 2 p(a) � p(b) is equivalent to the

condition that rRAr
0 and r0 2 p(a) imply r0 2 p(b) for any prime �lter

r0. Now, suppose that a prime �lter r0 satis�es rRAr
0 and r0 2 p(a). By

the de�nition of RA and the fact that a! b 2 r, we obtain that r0 2 p(b)
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follows from r0 2 p(a). Thus, p(a ! b) � p(a) � p(b). The opposite

direction is derived immediately from Lemma 4.8 by putting C = fag and

D = fbg. 2

Now, we will prove our two duality theorems.

Theorem 4.12 (duality) For any BPL-algebra A, A ' (A+)
+.

Proof Let A = hA;^;_;!; 0; 1i. Then, (A+)
+ is hPA ;\;[;�; ;;WAi. De-

�ne a function h from A to PA by h(a) = p(a) for any a 2 A. Clearly, h is a

surjective homomorphism of A in (A+)
+ by the de�nition of p. It remains to

show that p is one-to-one. Suppose that a 6= b. Then, either a 6� b or b 6� a

holds. By Proposition 4.7, p(a) 6= p(b). 2

As we saw in Section 2.2, isomorphism of frames does not hold similary

to the case of algebras. For frames, we need the descriptivity condition again

(see De�nition 2.12).

Theorem 4.13 (duality) An intuitionistic transitive frame F = hW;R; P i

is isomorphic to (F+)+ i� F is descriptive.

Proof Suppose F is descriptive. De�ne the map h fromW to 22
W

by h(x) =

fX 2 P : x 2 Xg for any x 2 W . It is trivial that h(x) is a prime �lter.

Thus, h from W to WF+ . We will show that h is an isomorphism from F to

(F+)+.

� h is an injection.

Suppose h(x) = h(y). By the de�nition of h, x 2 X , y 2 X for any

X 2 P . By Condition 1 of De�nition 2.12, x = y.

� h is a surjection.

We will show that for any prime �lter r, there exists an element x of

W such that h(x) = r. Let � = fW � Z : Z 2 P and Z 62 rg. For

any X1; : : : ; Xn 2 r and Y1; : : : ; Ym 2 �,

(X1 \ : : :\Xn) \ (Y1 \ : : :\ Ym)

= (X1 \ : : :\Xn) \ (W � (Z1 [ : : :[ Zm))

= (X1 \ : : :\Xn)� (Z1 [ : : :[ Zm):
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If (X1\ : : :\Xn)\ (Y1\ : : :\Ym) = ;, then X1 \ : : :\Xn � Z1 : : :Zm.

Sincer is a prime �lter, Zi 2 r for some i. But this is a contradiction.

Thus, (X1 \ : : : \ Xn) \ (Y1 \ : : : \ Ym) 6= ;. That is,
T
(r [ �) has

the �nite intersection property. By Condition 3 of De�nition 2.12,T
(r[�) 6= ;. That is,

9x 2W (8X 2 r(x 2 X)) ^ (8Y 2 �(x 2 Y )): (4.3)

If there exists an elementX of P such that X 2 h(x) and X 62 r, both

x 2 X and x 2W �X hold by (4.3). But this is a contradiction again.

Thus, h(x) � r. The converse direction follows easily by (4.3).

� h(x)RF+h(y)) xRy;

This can be shown in the following way, applying Condition 2 of De�-

nition 2.12:

h(x)RF+h(y) , 8X; Y 2 P [(X � Y ) 2 h(x) ^X 2 h(y)

) Y 2 h(y)]

, 8X; Y 2 P [x 2 (X � Y ) ^ y 2 X ) y 2 Y ]

, xRy:

� xRz ) 9r 2WF+ [h(x)RF+r^r = h(z)];

Since h is a bijective mapping, there exists r such that h(z) = r. It

remains to show that xRz ) h(x)RF+h(y), but we have already done

it above.

� X 2 P ) h(X) 2 PF+ ;

Follows by the equalities below:

h(X) = fh(x) : x 2 Xg = fh(x) 2WF+ : X 2 h(x)g = p(X):

Next, suppose that F is isomorphic to its bidual (F+)+. Then,

1. x = y i� 8X 2 P (x 2 X , y 2 X).

The 'only if' part is trivial. The 'if' part is as follows. Without loss

of generality, we can concentrate on the bidual (F+)+ of F, by the

assumption. Suppose that, for p(X) 2 PF+ , we have r 2 p(X) ,

r0 2 p(X). By the de�nition of p, X 2 r , X 2 r0 for all X 2 P ,

and then, r = r0.
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2. xRy i� 8X; Y 2 P (x 2 X � Y ^ y 2 X ) y 2 Y ).

Suppose xRy, x 2 X � Y and y 2 X. Then, by the de�nition of �,

y 2 Y . For the other direction, we concentrate on the bidual of F. For

any p(X);p(Y ) 2 PF+ , suppose r 2 p(X � Y ) ^ r0 2 p(X) ) r0 2

p(Y ). By the de�nition of p, X � Y 2 r ^X 2 r0 ) Y 2 r0 for all

X; Y 2 P . Then, rRF+r
0.

3. hW;P i is compact.

Let X � P , Y � fW � X : X 2 Pg, and let X [ Y have the �nite

intersection property, i.e., for any �nite subsets X 0 of X and Y 0 of Y,T
(X 0 [ Y 0) 6= ;. In F+, we take the �lter r0 and the ideal �, which

are generated by X and fW � Y : Y 2 Yg, respectively, namely:

r0 = fZ : 9X 2 X (X � Z)g;

� = fZ : 9Y 2 Y(Z � W � Y )g:

Suppose r0 \ � 6= ;. Then, for some �nite subsets X 0 of X and Y 0

of Y,we have X � W � Y , where X =
T
X 0 and Y =

T
Y 0. It follows

that X \ Y = ;, but this contradicts the �nite intersection property.

So, r0 \� = ;. By Proposition 4.5, there exists a prime �lter r such

that r0 � r and r \� = ;. As there exists an isomorphism h from

F to (F+)+, we can assume that our prime �lter r has h(x) = r, for

some x 2W . We can take h to be the isomorphism which is de�ned in

the 'if' part of Proposition 4.5, that is r = fX 2 P : x 2 Xg. Then,

x 2 X for any X 2 r0 and x 62 Y for any Y 2 �. Thus, x 2 X and

x 2 Y for all X 2 X , Y 2 Y, and so
T
(X \ Y) 6= ;.

2

4.3 Generated subframes

Generated subframes can be de�ned also for intuitionistic transitive frames.

Then, the following holds.

Theorem 4.14 Any generated subframe of a given intuitionistic transitive

frames is an intuitionistic transitive frame.



4.4. HOMOMORPHISMS AND ISOMORPHISMS 55

Proof Suppose G = hV; S; T i is a generated subframe of hW;R; P i. It is

enough to show that T (= fX \V : X 2 Pg) is closed under the operation �.

Let X; Y be elements of P . Suppose a 2 (X � Y )\V . That is, a 2 (X � Y )

and a 2 V . Then, for any b, aRb and b 2 X imply b 2 Y . So, for any b, aSb

and b 2 X \ V imply b 2 Y \ V , i.e., a 2 (X \ V ) � (Y \ V ). The opposite

direction is shown as follows: Suppose a 2 (X \ V ) � (Y \ V ). That is, for

any b, aSb and b 2 (X \ V ) imply b 2 (Y \ V ). Clearly a is an element of V

because aSb holds. Then, an element b which enjoys aRb is an element of V

since V is an R-cone. That is, for any b, aRb and b 2 X imply both aSb and

b 2 (X \ V ). So, by the hypothesis, a 2 (X \ V ) � (Y \ V ), b 2 (Y \ V ),

inparticular, b 2 Y . Thus, a 2 X � Y and so a 2 (X � Y ) \ V . Using this

fact, we can easily derive that T is closed under �. 2

The proof of the next lemma is the same as tha of Proposition 2.4:

Lemma 4.15 Let G be a generated subframe of F. Then, for any L-formula

', F j= ' implies G j= '.

4.4 Homomorphisms and isomorphisms

Many properties of semantics of Int hold also for BPL. For instance, as

shown in Proposition 2.4 and Lemma 4.15, validity of formulas is inherited

from a given original frame to its generated subframes. It is also easily shown

that results analogous Proposition 2.3, 2.6 and 2.7 hold for semantics ofBPL.

And, the followings hold as well.

Theorem 4.16 (i) If G = hV; S;Qi is a generated subframe of F = hW;R; P i

then the map f : P ! Q de�ned by f(X) = X \ V for X 2 P , is a

homomorphism from F
+ onto G+.

(ii) If f is a homomorphism from a BPL-algebra A onto a BPL-algebra

B then f+ : WB ! WA de�ned by f+(r) = f
�1(r) for a prime �lter r of

B, is an isomorphism from B+ onto a generated subframe of A+.

(iii) If h is a reduction of F = hW;R; P i to G = hV; S;Qi then h+ : P ! Q

de�ned by h+(X) = h
�1(X) for X 2 Q, is an embedding of G+ into F+.

(iv) If B(= hB;^;_;!; 0; 1i) is a subalgebra of a BPL-algebra A(= hA;^;

_;!; 0; 1i) then the map h :WA !WB de�ned by h(r) = r\B for a prime

�lter r in A, is a reduction of A+ to B+.
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Proof We show only (ii), other points can be proved analogously. Let A

and B be hA;^;_;!; 0; 1i and hB;^;_;!; 0; 1i, respectively. It is trivial

that f+ is well-de�ned, an injection and that f+(r) is a prime �lter in A, for

every r 2 WB . It is also straightforward to see that for every r;r0 2 WB ,

we have rRBr
0 i� f+(r)RAf+(r

0). It is not di�cult to show that for every

b 2 B, there exists a 2 A such that f(a) = b and f+(p(b)) = p(a)\ f+(WB).

Then, to prove this proposition, it is enough to show that f+(WB) is RA-cone.

Suppose that for everyr;r0 2WA , we have rRAr
0 and r 2 f+(WB). Then

the condition (4.2) of Lemma 4.8 holds for C = r0 and D = A � r0. So

there exists a prime �lter rB such that r0 = f+(rB). Then r
0 2 f+(WB).

2



Chapter 5

Extensions of BPL

In this chapter, extensions of BPL are introduced, and relations between

the extensions of BPL and modal logics are discussed. In 1970's, Blok

and Esakia proved that there is a lattice isormorphism from ExtInt onto

NExtGrz ([Blo76], [Esa79a, Esa79b]). This result is known as the Blok-

Esakia theorem. As we mentioned in Chapter 2, the modal operator 2 of

Grz denotes the provability of ZF set-theory, while the modal operator of

GL denotes the formal provability of Peano arithmetic. In 1981, Visser

proved that FPL which is an extension of BPL is embedded into GL by

using G�odel translation T ([Vis81]). Then, the following question naturally

occurs: is there a lattice isomorphism from extensions of FPL onto NExtGL

like Blok-Esakia Theorem? Moreover, what relations hold between BPL and

K4? To answer this question, we need to get an appropriate de�nition of ex-

tensions of BPL. However, to de�ne extensions of BPL, we do not adopt the

similar way intermediate logics. We will try to explain the reason by inves-

tigating two kinds of expressive power on non-modal propositional language

and modal propositional language, semantically. This result of expressive

powers will be proved in the �rst section of this chapter. We will follow the

de�nition of extensions of BPL by Visser in [Vis81], and therefore extensions

are obtained from BPL by adding not only axioms but also inference rules.

In Section 5.2, some interesting extensions of BPL are introduced. In

the remaing sections, consequence relations are discussed and Kripke com-

pleteness of these consequence relations are proved. In Section 5.5, we will

show that there are no lattice isomorphisms from the class of extensions of

FPL into NExtGL.

57
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5.1 Expressive power of L and ML

We want to know a relation between the propositional language L and the

modal propositional language ML by a translation. Here, two kinds of ex-

pressive power of L and ML will be discussed. Di�erences of expressive

power between distinct languages are interesting to investigate itself. First

two expressive powers on quasi-ordered frames are studied. It is shown that

there are no di�fernces of expressive power between L andML. Next, we will

discuss them on transitive frames. We will show that the expressive power of

L weaker than that of ML in this case. As a consequence, we can see that

the set of L-formulas which is validated only by the class of quasi-ordered

frames cannot be obtained by adding formulas as axioms to BPL.

5.1.1 Local expressive power on quasi-ordered frame

Let F = hW;Ri be a quasi-ordered Kripke frame. Our �rst question is the

following: Suppose that a valuation function V from Prop to 2W is given for

both ForL and ForML. For this valuation V, each formula ' in L (and in

ML) with n propositional variables can be regarded as a function on UpW

(and 2W ). The local expressive power of a given language will be measured

by the set of all function on UpW or 2W which are de�ned by some formulas

in that language. Now, we will introduce this precisely. Let a quasi-ordered

Kripke frame F = hW;Ri and a L-formula ' be given. We also suppose

that all propositional variables of ' occurs in p1; : : : ; pn, and denote it as

'(p1; : : : ; pn). For given frame F and '(p1; : : : ; pn), an operator 'F from

(UpW )n to UpW is de�ned as follows: for any valuation V,

'F(V(p1); : : : ;V(pn)) = V('):

In the same way, for a quasi-ordered Kripke frame F = hW;Ri and a ML-

formula ', we can de�ne an operator '�
F
from (2W )n to 2W for any valuation

V,

'
�
F
(V(p1); : : : ;V(pn)) = V('):

Now, we want to compare the local expressive power of L with that of ML.

But, 'F is a function on UpW while '�
F
is a function on 2W . For our puropose,

we will introduce '
4
F from (UpW )n to UpW as follows:

'
4
F =

(
'
�
F if '�F(X1; : : : ; Xn) 2 UpW for any X1; : : : ; Xn 2 UpW

?�
F

otherwise.
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Then, the next result guarantees that local expressive power of L and ML

on quasi-ordere frame is same.

Theorem 5.1 Let F be a quasi-ordered Kripke frame. Then,

f'F : ' 2 Lg = f'
4
F : ' 2MLg:

Proof To prove f'F : ' 2 Lg � f'
4
F : ' 2 MLg, it is enough to show

'F = (T')4F by structural induction on ' where T is the G�odel translation.

So, we will show the opposite direction f'
4
F : ' 2MLg � f'F : ' 2 Lg. Let

'
4
F be an element of f�4F : � 2 MLg. We have to show that there exists a

L-formula  such that '
4
F =  F. Suppose '

�
F
(X1; : : : ; Xn) 62 UpW holds for

some X1; : : : ; Xn 2 UpW . Then '4F is ?�
F
. The operator ?�

F
is same to the

operator ?F. That is,  is ?(2 L) for this case. Let us consider the other

case. Namely, for any X1; : : : ; Xn 2 UpW , '�F(X1; : : : ; Xn) 2 UpW holds. In

this case, it is easy to show that '4F = (2')4F holds for any ML-formula '.

By Lemma 2.29, we can easily �nd a formula  in FormML which is in the

form1 Vm
i=1(:pi _ qi). Then, by Lemma 2.30, there exists a ML-formula  

such that '4F =  F. 2

5.1.2 Global expressive power on quasi-ordered frame

The local expressive power discussed in the previous section is concerned with

a �xed frame. In this section, we will discuss the more global expressivity,

that is, an axiomatizablity for a given class of frames.

Suppose that Cqo is the class of all quasi-ordered Kripke frames. A class

C of quasi-ordered frames is said to be L-(ML-)axiomatic if there exists a

set � of L-(ML-)formulas such that for every frame F of Cqo,

F j= � i� F 2 C:

This axiomatizability for a given class of frames on L (ML) is called the

global expressive power on L (ML). Since truth value of any L-formula

is same at any point in one cluster, it is su�ces to consider frame classes

modulo clusters when axiomatic powers of modal and intuitionistic frames

1When applying Lemma 2.29 to this proof, it is easy to understand that index i is added

not only to propositional variables p and q, but also to disjunction. That is, Lemma 2.29

states that any ('F)
4 can be expressed in an operator whoseML-formula is a conjunctive

normal form.
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are compared. A class C of quasi-ordered frames is skelton-closed if for any

frame F of C, C contains the all quasi-ordered frames whose skelton frames

are isomorphic to the skelton of F.

To prove that global expressive powers of L and of ML are same on a

skelton-closed class of quasi-ordered Kripke frames, we need the results by

A.Chagrov and M. Zakharyachev ([Zak92] and [CZ97]). Here, we will cite

their results without proofs. Let F be a �nite Kripke frame, and a0; : : : ; an
all its distinct elements, with a0 being a root. Suppose D is a (possibily

empty) set of antichains in F. Then, the following ML-formula �(F;D;?) is

associated with F and D:

�(F;D;?) = (
^

aiRaj

'ij ^

n̂

i=0

'i ^
^
�2D

'� ^ '?)! p0;

where

'ij = 2
+(2pj ! pi);

'i = 2
+((

^
:aiRak

2pk ^

n̂

j=0;i6=0

pj ! pi)! pi);

'� = 2
+(

^
ai2W��"

2pi ^

n̂

i=0

pi !
_
aj2�

2pj);

'? = 2
+(

n̂

i=0

2
+
pi !?):

Meanwhile, with intuitionistic F and D, the following L-formula �(F;D;?) is

associated:

�(F;D;?) = (
^

aiRaj

 ij ^
^
�2D

 � ^  ?)! p0;

where,

 ij = (
^

:ajRak

pk ! pj)! pi;

 � =
^

ai2W��"

(
^

:aiRak

pk ! pi)!
_
aj2�

pj ;

 ? =
n̂

i=0

(
^

:aiRak

pk ! pi)!?:
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Between the above two canonical formulas � and �, the following lemma is

proved in [CZ97].

Lemma 5.2 Suppose F is a �nite rooted intuitionistic quasi-ordered Kripke

frame, D a set of antichains in F and G a modal quasi-ordered Kripke frame.

Then

G j= �(F;D;?) i� �G j= �(F;D;?):

Proof See Lemma 9.59 in [CZ97]. 2

Using the above facts on canonical formulas, the following result, which states

global expressive powers of L and ML are same, is deduced:

Theorem 5.3 A skelton-closed class C of quasi-orderd Kripke frames is L-

axiomatic if and only if it is ML-axiomatic.

Proof Suppose C is L-axiomatic. Then, there exists a set � of L-formulas

such that C j= �. That is, for any F 2 C and any L-formula ' 2 �, F j= '.

By the proof of Theorem 5.1, for any F 2 C and for any ' 2 �, 'F is identical

to (T')
4
F , and this identity does not depend on a selection of frames in C.

Thus, C is ML-axiomatizable by the set fT' : ' 2 �g. Conversely, suppose

C is ML-axiomatic. Then, by [Zak92], it can be axiomatizable by a set

of modal canonical formulas f�(Fi;Di;?) : i 2 Ig built on quasi-ordered

frames. By the criterion for canonical formulas, F j= �(�Fi;Di;?) implies

F j= �(Fi;Di;?), and F 6j= �(�Fi;Di;?) implies G 6j= �(Fi;Di;?), for some

quasi-ordered Kripke frame G with �G ' �F. Since C is skelton closed, it

follows that it is axiomatizable by the set f�(�Fi;Di;?) : i 2 Ig. By Lemma

5.2, C is axiomatizable by the set f�(�Fi;Di;?) : i 2 Ig. 2

5.1.3 Expressive powers on transitive frame

In the previous two sections, it is showed that both local and global expressive

power of L andML on quasi-ordered Kripke frame are the same. These two

notions of expressive powers can be extened to a class of transitive frames by

rewriting the term \quasi-ordred" by \transitive" in the de�nition. However,

we will show that both cases, the expressive power of L is weaker than that

of ML on transitive frame.

Theorem 5.4 Let F be a transitive Kripke frame. Then,

f'F : ' 2 Lg � f'
4
F : ' 2MLg:
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Proof Let T
0 be a function from ForL to ForML which pre�xes 2 to

every subformula of L-formula ' of the form  ! �. Then, it is not

hard to show that 'F = (T0')
4
F by induction on the construction of an

L-formula '. On the other hand, there are no L-formulas ' such that

'F = (2+:p)
4
F for some transitive frame F. For instance, suppose F be

hfa; bg; ;i. Clearly, (2+:p1)
4
F (fag; X2; : : : ; Xn) = fbg. However, for any

L-formula '(p1; : : : ; pn), 'F(fag; X2; : : : ; Xn) 6= fbg holds, since the intu-

itionistic transitive Kripke frame F always validiates a formula of the form

 ! �. 2

The result for global expressive power on transitive frame deduces an im-

portant fact. By Proposition 2.2, the class of intuitionistic quasi-ordered

frame is L-axiomatic (in terms of quasi-ordered frame) by all theorems of

Int. However, the following holds:

Theorem 5.5 Let Cqo be the class of all quasi-ordered frames. Then, Cqo is

ML-axiomatic but not L-axiomatic.

Proof Clearly, Cqo is skelton-closed. It is well-known result that F 2 Cqo

holds if and only if F j= 2p! p holds. Thus, Cqo is ML-axiomatic.

The frame hfag; ;i, which is a single irre
exive point, is not quasi-ordered

frame. We will prove that ' 2 Int implies hfag; ;i j= ' by induction on

the construction of '. To show this, we will consider the contrapositive

proposition, namely:

hfag; ;i 6j= ' implies ' 62 Int:

If ' is a propositional variable p, hfag; ;i 6j= p implies p 62 Int is trivial. Let

' be the form � ^ �. Suppose hfag; ;i 6j= � ^ �. Clearly, hfag; ;i 6j= � or

hfag; ;i 6j= �. By I.H., � 62 Int or � 62 Int. On the other hand � ^ � 2 Int

implies �; � 2 Int. This is a contradiction. Thus � ^ � 62 Int. Let ' be

of the form � _ �. Suppose hfag; ;i 6j= � _ �. Then, hfag; ;i 6j= � and

hfag; ;i 6j= �. By I.H., we have � 62 Int and � 62 Int. Since Int has the

disjunction property, it follows that � _ � 62 Int. Let ' be of the form

� ! �. But, for any formula which has the form � ! �, hfag; ;i j= � ! �

holds. Thus, this is trivial.

Let Cqo be the class of quasi-ordered frames. Suppose that Cqo is L-

axiomatic, namely, there exists a set � of formulas such that F j= � if and

only if F 2 Cqo, for any quasi-ordered frame F, and � � Int holds since Cqo
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includes any partially ordered frame. Then hfag; ;i j= � holds. Cqo must

include hfag; ;i since we suppose Cqo is L-axiomatic. This is a contradiction.

2

The above argument goes through not only for the class of quasi-ordered

frames but also for the class of partially ordered frames (and for the class

of single re
exive point frames). Namely, we cannot discuss those classes

by a (even if, in�nite) set of formulas. Those results comes from the fact

that intuitionistic implication does not tell a present point of a transitive

frame since R does not need to be re
exive. In particular, by the fact that

the global expressive power of L on transitive frame is properly weaker than

that ofML, we deduced that the class of quasi-ordered frames is not de�ned

by adding an axioms to BPL.

5.2 Extensions of BPL

Now let us think of extensions of BPL. The �rst problem we encouter with

is what kinds of extensions are worth considering. Of course, as in the case

of intermediate logics, we can de�ne a formula-extension L of BPL as a set

L of formulas L that contains BPL and is closed under substituions and

`BPL (in the sense that  2 L whenever � � L and � `BPL  ). Int as well

as classical logics are certainly formula-extensions of BPL. However, as we

obsereved above, the class Cqo of quasi-ordered frames is not L-axiomatic. In

other words, there is no formula-extension of BPL whose frames are precisely

all the quasi-ordered frames. Many other natural classes of frames, e.g.,

frames with the diagonal accesibilty relations, are not de�nable by means of

formula-extensions.

A possible solution to this problem is to consider extensions not of the set

of theorems in BPL but of the consequence reltaion `BPL. The most general

class of extensions of BPL consists of arbitrary �nitary (i.e., if � ` ' then

� ` ' for some �nite � � �) structural (i.e., closed under substituition)

consequence relations containing `BPL. In fact, Visser de�ned extensions

of BPL by �nitary structural consequence relations which are de�ned by

adding inference rules � to natural deduction systemNBPL ([Vis81]). Here,

we will express extension of this type as `BPL +� where `BPL denotes a

consequence relation of Visser's natural deduction system of BPL and � is a

set of inference rules, respectively. In [Vis81], Visser treated three extensions

of BPL | Int, FPL and BPLL.
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Intuitionistic propositional logic Int is given as follows:

`Int=`BPL +
p p! q

q
(! E)

:

As we mentioned in Section 3.2, it is easy to show that ^ I-f rule, _ E-f rule

and Tr rule are derived from ! E rule. We have already shown that many

di�erences between Int and BPL.

Formal propositional logic (FPL) is �rst introduced by Visser in [Vis81].

In his paper, his �rst goal is to �nd FPL which is embeddable into modal

logic GL by G�odel translation T. FPL is de�ned as follows:

`FPL=`BPL +
(>! p)! p

>! p
(L�ob)

:

It notes that `FPL +! E is inconsistent. In other words, `FPL and `Int has

no common extension, so that even classical propositional logic `Cl is not

an extension of FPL. We have another de�nition of FPL. It is easy to show

that `FPL is identical to `BPL +((>! p)! p)! (> ! p). Thus, FPL is

a formula-extension of BPL.

Proposition 5.6 (Theorem 5.4 in [Vis81]) For any L-formula ' and any

set � of L-formulas, � `FPL ' if and only if T� `GL T', where T� is the

set fT' : ' 2 �g.

The following completeness holds:

Proposition 5.7 (Theorem 2.2 in [Vis81]) Let C be the class of all ir-

r
exive Kripke frames without in�nite ascending chains. Then, for any '

and �, � `FPL ' if and only if � j=C '.

Basic propositional logic for intuitionistic linear frame (BPLL) is also

introduced in [Vis81] as follows:

`BPLL=`BPL +(p! q) _ ((p! q)! p):

Intuitionistic transitive frame F(= hW;R; P i) is called linear if xRy or yRx

for any di�erent elements x and y ofW . For any intuitionistic linear transitive

frame F = hW;R; P i, it is not necessary to require that this linear relation

R is strict linear relation, since R is transitive. Visser showed that BPLL is

complete with respect to the class of all intuitionistic linear transitive frames.
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Proposition 5.8 (Theorem 4.10 in [Vis81]) Let C be the class of all in-

tuitionistic linear transitive frames. Then, for any ' and �, � `BPLL ' if

and only if � j=C '.

For the case of Int, the linearlity of frames is expressed by the formula

(p ! q) _ (q ! p). Moreover, in Int, `Int +(p ! q) _ (q ! p) is identical

to `Int +(p! q)_ ((p! q)! p). On the other hand, in BPL, the formula

(p! q)_ (q! p) expresses, that a frame has an inverse tree-structure (i.e.,

xRz1 and xRz2 deduce z1 = z2, z1Rz2 or z2Rz1 for elements x; z1; z2 in a given

frame). Also, while `BPL +(p! q) _ ((p! q)! p) is Kripke-complete but

`BPL +(p! q) _ (q ! p) is Kripke incomplete, as we will show later.

5.3 Semantic consequence

Any extension of BPL is de�ned as a consequence relation. Thus, we have

to de�ne a class of semantic structures by a consequence relation.

Any subset ` of 2ForL�ForL can be regarded as an abstract consequence

relation. A consequence relation ` is called BPL-consequence relation if it

is �nitary and identical to j=F characterized by a class F of intuitionistic

transtive frames. The class fF :`�j=Fg of intuitionistic transitive frames for

a given ` is denoted by Fr `. As shown in the previous section, it is trivial

that all of `Int, `FPL and `BPLL are BPL-consequence relations. Similarly,

the class fA :`�j=Ag of BPL-algebras for a given ` is denoted by Alg `.

Before showing relations between those above consequence relations and

classes of semantic structures, we will introduce another notion of varieties of

algebras. In universal algebra, this is one of most important notions. Let �

be a set of equations of formulas. Here, any equation of formulas is identical

to a term of algebra. A variety Var� of algebras for � is the class of algebras,

in which equation of � is valid.

Now we will show that the following properties hold on semantic conse-

quence relations.

Theorem 5.9 (i) A class of BPL-algebras is of the form Alg ` for a BPL-

consequence ` i� it is a subvariety of the variety of all BPL-algebras.

(ii) Let F be a subclass of the class C of all intuitionistic trantsitive frames.

Then, F is of the form Fr ` for a BPL-consequence ` i� it is closed under

generated subframes, reductions, disjoint unions, and moreover both F and

its complement (C�F) are closed under the formation of biduals.
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Proof (i) Let A and ` be a class of BPL-algebras and BPL-consequence

relation, respectively. Suppose A = Alg `. Then, we de�ne � � ' to be the

set of all equations of the form
V
�0 � ' with a �nite subset �0 of �. Moreover,

de�ne a set X of equations as the union of � � ' such that � ` ' holds.

Any inequality  � � is short for the equation  ^� =  . Since ` is �nitary

consequence relation, if � ` ' holds, there exists a �nite set �0 such that

�0 ` ' holds. We will show that Alg `= VarX where X = f� � ' : � ` 'g.

The following is easily shown since ` is a BPL-consequence:

A 2 Alg ` , `�j=A

, 8�8'(� ` ') � j=A ')

, 8�8'(� � ' 2 X ) � j=A '):

Therefore, Alg `= VarX holds. Conversely, suppose that A = VarX for

some set X of equations. We will show that A = Alg j=A. Assume A 2 A.

Then, by the de�nition of j=A, j=A�j=A holds. Thus, A 2 Alg j=A holds for

each A 2 A, so A � Alg j=A holds. Now, suppose A is a proper subset of

Algj=A. Then, assume that there exists a BPL-algebra A such that A 62 A

and A 2 Alg j=A. Then, by A 62 A, there exist formulas ' and  such that

' =  2 X and A 6j= ' =  . It is easily shown that � = � 2 X implies

� j=A � and � j=A � for any formulas � and �. Since A 2 Alg j=A, both

' j=A  and  j=A ' must hold, but this is a contradiction.

(ii) Let F and ` be a class of intuitionistic transitive frames and a BPL-

consequence relation, respectively. Suppose F = Fr `. Then, F 2 F holds

if and only if `�j=F holds. The closure conditions are proved easily. For

instance, by Theorem 4.10, both F and its complement are closed under the

formation of biduals. The proof that F is closed under reduction goes as

follows: Let F be an element of F which is reducible to G by a reduction

f . Assume � 6j=G ' for some � and '. That is, there exists a valuation U

such that (N; x) j= � and (N; x) 6j= ' where N = hG; Ui. Then, by taking a

valuation V on F where V(p) = f
�1(U(p)), (M; x) j= � and (N; x) 6j= ' hold

where M = hF;Vi. Therefore, � 6j=F ' holds. Thus, j=F�j=G. Remaining

conditions are proved similary. Next, we will show the converse direction.

Clearly, j=F is a BPL-consequence, which is �nitary and is charaterized

by the class F itself. So it remains to show that F = Fr j=F . By Proof

(i), F+ = Alg j=F+ is trivial where F+ = fA : F 2 F ; F+ ' Ag. Also

Alg j=F= Alg j=F+ holds by Theorem 4.10 . Then, for any frame F,

F 2 Fr j=F , 8�8'(� j=F) � j=F ')



5.4. KRIPKE COMPLETENESS 67

, 8�8'(� j=F+ ') � j=F+ ')

, F
+
2 Alg j=F+

, F
+
2 F

+

, F 2 F :

Thus, F = Fr j=F holds. 2

Using these classes of semantic structures, we will investigate extensions of

BPL. For instance, suppose that `L is a consistent BPL-consequence and

that AL is a Lindenbaum algebra for L. Hence, it is proved by standard

method that `L=j=AL
. That is, any consistent BPL-consequence relation is

complete. Also the following holds:

Theorem 5.10 Let ` be a BPL-consequence relation. Suppose that D(Fr `)

is the class of all descriptive frames of Fr `. Then, j=Fr`=j=D(Fr`)=j=Alg` :

5.4 Kripke completeness

In this thesis, frame semantics using general frames is adopted instead of

standard frame semantics using Kripke frames. Therefore, whether a given

logic (here, a consequence relation) is complete with respect to a class of

Kripke frames or not will be an interesting problem. A BPL-consequence

relation ` is Kripke-complete with respect to a class C of Kripke frames if for

any �nite set � of formulas and formula ', � ` ' holds if and only if � j=F '

holds for every Kripke frame F in C. If this condition holds for any set �, it

is called strongly Kripke-complete.

In this section, it is proved �rstly that Int and BPLL are strongly Kripke

complete. Then, it is shown that FPL is Kripke complete but not strongly

Kripke complete.

One notion which is important in discussions of the Kripke completeness

is d-persistent. For any intuitionistic transitive frame F(= hW;R; P i), under-

lying Kripke frame K(hW;R; P i) of F means the Kripke frame hW;Ri. A set

� of formulas is d-persistent if for any BPL-algebra A,

A j= � implies K(A+) j= �:

Then, it is easy to show that the following:
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Lemma 5.11 Let C be the class of intuitionistic transitive frames which val-

idate all formulas of a given d-persistent set. Then, any BPL-consequence

relation j=C is strongly Kripke complete.

Proof Let � be a d-persistent set and C be a class of all intuitionistice

transitive frames which validiate all formulas of �. Suppose that K(C) is

the set fK(F) : F 2 Cg, and G is the class of all algebras which validiate

all formulas of �. By Theorem 5.10, j=C=j=G hold. We will show that

j=C=j=K(C). In general, j=K(C)�j=C holds. Suppose (�; ') 62 j=C. Then, in

G, there exists a BPL-algebra A such that � 6j=A '. In other words, A j= �

and � 6j=A ' hold. Since � is d-persistent, K(A+) j= � and � 6j=K(A+) ' hold.

Then, (�; ') 62 K(C) holds. 2

Using the above lemma, the next theorem is deduced.

Theorem 5.12 `Int is strongly Kripke complete.

Proof It is su�cient to show that the set I of all theorems of Int is d-

persistent, however, it is trivial. Because, if a BPL-algebra A validates I

then A is a Heyting algebra and K(A+) is an intuitionistic quasi-ordered

Kripke frame. 2

For BPLL, the strong Kripke-completeness is proved as follows:

Theorem 5.13 `BPLL is strongly Kripke complete.

Proof Suppose � 6`BPLL '. Then, there exists an intuitionistic linear tran-

sitive frame F = hW;R; P i, a model M = hF;Vi and x0 2 W such that

(M; x0) j= � and (M; x0) 6j= '. In F, it is easily found that the maxi-

mum element element y0 of W such that x0 2 y0" and y0" 2 P . Put

V = fx 2 W : x" 2 Pg, S = R \ (V � V ), Q = fX \ V : X 2 Pg

and U(p) = V(p) \ V . It is easily shown that U is well-de�ned, Q = UpQ,

and G = hV; S;Qi is an intuitionistic linear transitive Kripke frame. Put

N = hG; Ui, and then we can show that (N; y0) j= � and (N; y0) 6j= ' hold.

That is, � 6j=G '. So, `BPLL is strongly Kripke complete. 2

As for FPL, the �nitary condition of the BPL-consequence derives that

`FPL is not strongly Kripke complete.

Theorem 5.14 `FPL is not strongly Kripke complete.
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Figure 5.1: frame G

Proof Suppose d gives the greatest number d(F) of elements of ascending

chain for an given frame F, if it exists. For any natural number n and any

frame F, c(F; n) is short for the following condition:

8x1; : : : ; xn 2 F(
n�1̂

i=1

xiRxi+1 ! :9y 2 F(yRx1_(
n�1_
i=1

xiRy^yRxi+1)_xnRy)):

It is easy to check that d(F) � n if and only if c(F; n) holds. For any n, put bdn
inductively as follows2 : bd1 = p1 _ (p1 ! ?), bdn+1 = pn+1 _ (pn+1 ! bdn).

For any frame F, F validaites bdn holds if and only if d(F) � n holds. Put

the set � of fomrulas as fbdn : 1 � n < !g. For any frame F 2 Fr `FPL,

there exists a valuation V and possible world x of F such that (M; x) j= bdn

where M = hF;Vi. This fact deduces that � 6`FPL ?. Clearly, for any model

M which is based on a frame in Fr `FPL and any possible worlds x of M,

M 6j= �, since M does not have an in�nite ascending chain. That is, for all

Kripke frame F 2 Fr `FPL, � j=F ?. 2

It is well-known that any intermediate logics characterized by a �nite frame

is Kripke complete. However, there exists an extension of BPL which is not

Kripke complete although it is characterized by �nite frame.

Lemma 5.15 (i) The consequence relation j=G is not Kripke complete where

G is depicted in Figure 5.1.

(ii) `BPL +('!  ) _ ( ! ') is not Kripke complete.

Proof Let '1 and '2 be (p ! q) _ ((p ! q)! p) and (p ! q) _ (q ! p),

respectively. In general, any Kripke frame validates '1 (or '2) if and only if

it is a linear frame. However, the general frame G refutes '1 but validates

'2. 2

2This formula bd comes from Proposition 2.38 in [CZ97].
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The above lemma states that the axiom (p! q) _ (q ! p) which represents

linear frames in intermediate logics gives a Kripke incomplete logic. Thus,

Lemma 5.15 forms a striking contrast to Theorem 5.13 about the linearlity

axiom. By Lemma 5.15, we have also the following:

Theorem 5.16 There exists an Kripke incomplete extension of BPL which

is characterized by a �nite frame.

5.5 Between FPL and GL

In this section, we will prove the theorem which resembles the Blok-Esakia

theorem does not hold for intuitionistic transitive frames.

From Blok-Esakia Theorem, it is natural to conjecture that there exists

an isomorphism between Ext `BPL and NExtL for some L 2 NExtK4. A

natural candidate for L would be the logic GL determined by all transi-

tive frames without proper clusters and in�nite strictly ascending chains.

While for BPL, FPL is the extension of BPL determined by the class of

all intuitionistic irr
exive transitive frames without ini�nite strictly ascend-

ing chains. Thus, we will check a correspondence between Ext `FPL and

NExtGL. Here, we will describe a rough sketch of the proof.

Any consequence relation can be considered as a set of pairs of a set of

formulas and a formula. Let C be the class of allBPL-consequence relations.

Then,

Theorem 5.17 The structure hC;�i forms a complete lattice with respect

to the set-inclusion �.

Proof We will show that both C has the least element and any non-

empty subset X of C has the least upper bound. Let F be the class of

all intuitionistic transitive frames. It is trivial that C includes the conse-

quence relation j=F and j=F is the least element of C. Suppose X is a

nonempty subset of C. Clearly,
S
X is the least upper bounds of X, whereS

X = f(�; ') : 9 `2 C((�; ') 2`)g. 2

When we talk about Ext `FPL, we notice not only the class of all intu-

itionistic irrfelxive transitive frames witout in�nite strictly ascending chains

but also its subclass. The following is easily showed:
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Lemma 5.18 Let F be the class of all intuitionistic irre
exive rooted de-

scriptive frames without in�nte strictly ascending chains. Then, `FPL=j=F

holds.

In this section, we denote the class refered in the above lemma by F . Then,

it is obivous that all extensions of BPL-consequce relation including `FPL
is characterized by subclasses of F . Next, we will introduce \-irreducible

consequence relation as follows: Any BPL-consequence relation ` is called

\-irreducible if, for any class C ofBPL-consequence relations, `= \C implies

`2 C where \C = \f ` : `2 Cg. Then,

Lemma 5.19 Let ` be a BPL-consequences including `FPL. Then, ` is

\-irreducible if and only if `=j=F holds for some F 2 F .

Proof We can prove by a straightforward but rather tedious proof. The

detail is, for example, in [Rau79]. 2

While, it is easy to show that any normal extension of GL is characterized

by a Kripke frame. Using these results, the following theorem is proved.

Theorem 5.20 The lattice of all BPL-consequence relations containing `FPL
is not isomorphic to the lattice NExtGL.

Proof The codimension of an element c in a lattice D is the length of a

longest chain from c of the top element of D. Any frame F depicted in Figure

5.2 is an element of F , and j=F is \-irreducible by Lemma 5.19 . Each row

from the top of Figure 5.2 denote codimensions 2, 3 and 4, respectively. Let

F and G be a frame of codimension n and m, respectively. If n < m, F+ is a

subalgebra of G+, thus j=G�j=F holds. For NExtGL, the corresponding �gure

is Figure 5.3 . Then, NExtGL contains only 5 \-irreducible consequence

relations of codimension 4, while Ext `FPL has 6. Thus, the lattices under

consideration are not isomorphic. 2
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Figure 5.2: A part of BPL-consequence including `FPL
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Figure 5.3: A part of NExtGL represented by Kripke frames.
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Chapter 6

Adding a new implication to

the logic BPL

The cause of peculiarities for extensions of BPL will come from the fact that

intuitionistic implication \!" expresses the truth of formulas at successors

of the present possible world with respect to a relation R in a frame. Any

relation R in a frame for intermediate logics is quasi-order (and therefore is

re
exive), so the \present" possible world is also a successor of the present

world with respect to R. However, relations in frames for extensions of BPL

may not talk about the truth value of formulas at the present possible world,

since we assume that it is transitive.

To removing di�erences of behaviors of the implication between transitive

frames and quasi-ordered frames, it is natural to add a new implication \,!"

which talks about not only successors of R but also the present possible world.

We will denote this new biarrow language L2. In this chapter, we will show

that transitive frames for L2 recover many properties of the intuitionistic

logic which are lost in extensions of BPL.

It is easily seen that this language L2 corresponds to some special intu-

itionistic modal languageML,!. This fact will be clari�ed in the �rst section.

The consequence relation `BiPL for a logic BiPL on the class of transitive

frames for L2 is also introduced.

In the next section, a Hilbert-style system for BiPL in L2 is introduced,

and then the Blok-Esakia theorem for transitive frames is proved.

In the last section, it is shown that the both local and global expressive

powers between L2 and ML are recovered by introducing the implication

\,!".

75
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6.1 The logic BiPL

In this section, non-modal propositional logic with two kinds of implication

in the biarrow language L2 is introduced. The language L2 is obtained from

L by adding a new implication \,!". The set of formulas on L2 is denoted

by ForL2, and any element of ForL2 is called a L2-formula.

Suppose that an intuitionistic transitive frame F = hW;R; P i is given.

For any X; Y 2 P , an operator � on P is de�ned as follows:

X � Y = fx : 8y((x = y) _ xRy) ^ y 2 X ) y 2 Y g:

A BiPL-frame F = hW;R; P i is de�ned as follows:

(i) F is an intuitionistic transitive frame,

(ii) P is closed under �.

A valuation function of a BiPL-frame F = hW;R; P i is a function from

Prop to P . For a given valuation V, the interpretation of L2-formulas in

M = hF;Vi is de�ned as before except \,!" are same to BPL. As for \,!",

for any x 2W and any L2-formulas ' and  ,

(M; x) j= ' ,!  i� 8y 2W ((x = y) or xRy) and (M; y) j= '

imply (M; y) j=  ; (6.1)

From the above de�nition, it is easy to understand that \,!" inBiPL-frames

works as the intuitionistic implication \!" in quasi-ordered frames.

The formulas of the biarrow language L2 can be translated into formulas

of some propositional modal language by interpretations in BiPL-frames.

It is easily shown as follows: Let ML,! be the modal language with \,!"

instead of \!". Formulas of ML,! called ML,!-formulas, are de�ned in

the usual way. The set of all ML,!-formulas is denoted by ForML,!. For

any model M based on a BiPL-frame and any x 2W

(M; x) j= '!  i� (M; x) j= 2(' ,!  ):

It is easily shown that the converse direction holds also. That is,

(M; x) j= 2' i� (M; x) j= >! ';

where > = ? ! ?. By the above fact, we can translate some properties

described on L2 into properties on ML,!.
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The logic BiPL is de�ned as the set of L2-formulas that are valid in all

BiPL-frames. Let us de�ne the consequence relation `BiPL by taking, for

any model M based on BiPL-frames and any element x,

� `BiPL ' if and only if 8M8x((M; x) j= �) (M; x) j= '):

In other words, if C be the class of all BiPL-frames, `BiPL=j=C, in terms of

semantic consequence relation treated in the previous chapter. The deduction

theorem holds for BiPL, which makes a contrast with the case of BPL. This

can be proved by translating it into modal logics in ML,!.

Theorem 6.1 (deduction theorem) For any set � of L2 formulas, any

L2-formulas ' and  , �; ' `BiPL  holds if and only if � `BiPL ' ,!  

holds.

6.2 The calculus for BiPL

In the previous section, the consequece relation `BiPL is de�ned in terms of

frame semantics. In this section, a formal system for BiPL is introduced.

As we saw, L2 corresponds to ML,!. In any BiPL-frame, \,!" be-

haves like the implication \!" in a quasi-ordered frame. Thus, \,!" in

BiPL-frames can be seen as the intuitionistic implication in a quasi-ordered

frames, and ML,! is regarded as a modal propositional language with this

intuitionistic implication. Thus, BiPL will be formalized as an intuitionistic

modal logic.

A formal system U of BiPL is introduced as an extension of the intu-

itionistic modal logic IntK. So, we will give a precise de�ntion of IntK �rst

and show some of its properties. Next, we will show that `U is complete

with respect to the class of all BiPL-frames.

6.2.1 Intuitionistic modal logic IntK

We will follows [WZ97a] for the de�nition of IntK. In Section 6.1, we showed

that ,! works as an implication of Int. Thus, we use \,!" instead of \!" in

our de�nition of IntK. Axioms of IntK includes all axioms of Int. (Of

course, every \!" must be replaced by \,!". Thus, for instance, (A1)

becomes \' ,! ( ,! ')".) Formally, IntK is a formal system in the

language ML,! as follows:

Axiom schemes:
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(Int) all axiom schemes of Int,

(dist) 2(' ,!  ) ,! (2' ,! 2 ).

Inference rules:

� MP: fromML,!-formulas ' and ' ,!  , infer ',

� RN: fromML,!-formula ', infer 2'.

Any subset of ML,!-formulas which contains all the axioms of IntK and

which is closed under MP and RN is called an intuitionistic modal logic (an

IntM-logic, for short). For a subset � of ML,!-formulas and an IntM-logic

L, the smallest IntM-logic containing both � and L is denoted by L � �.

They are called normal extensions of L. The class of all consistent normal

extensions of L is denoted by NExtL.

An IntM-frame is a structure hW;R,!; R; P i, where W is a non-empty

set, R,! a partial order and R a binary relation on W such that

R,! �R = R �R,! = R:

Moreover, P is a set of R,!-cones which contains ; and is closed under set-

intersection, set-union, � and 2. Here, operations � and 2 are de�ned

by

X � Y = fx 2W : 8y 2W (xR,!y and y 2 X imply y 2 Y )g;

2X = fx 2W : 8y 2W (xRy implies y 2 X)g:

The following equivalence is easily showed:

R,! �R �R,! = R if and only if R,! �R = R �R,! = R: (6.2)

A valuation function V on an IntM-frame F = hW;R,!; R; P i is any function

from Prop to P , and the pair M = hF;Vi of an IntM-frame F and a valuation

V on F is called an IntM-model. A satisfaction relation j= determined by

M = hF;Vi is de�ned as follows:

(M; x) 6j= ?;

(M; x) j= p i� x 2 V(p);

(M; x) j= ' ^  i� (M; x) j= ' and (M; x) j=  ;

(M; x) j= ' _  i� (M; x) j= ' or (M; x) j=  ;

(M; x) j= ' ,!  i� 8y 2W (xR,!y and (M; y) j= ' imply (M; y) j=  );

(M; x) j= 2' i� 8y(xRy implies (M; y) j= '):
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In the usual way, we extend the domain of a valuation V to ForML,!, and

this extended valuation holds the correspondence like V(' ,!  ) = V(') �

V( ), V(2') = 2V(') and etc. It is clear that for an IntM-modelM = hF;Vi

(M; x) j= ' if and only if x 2 V('):

The validity of ML,!-formulas is de�ned in the usual way.

The following soundness theorem for IntK with respect to the class of all

IntM-frames holds.

Proposition 6.2 Let C be the class of all IntM-frames. Then C j= IntK.

An IntM-algebra is a structure A = hA;^;_; ,!;2; 0; 1i such that hA;^;_;

,!; 0; 1i is a Heyting algebra and 2 satis�es both 21 = 1 and 2(a ,! b) ,!

(2a ,! 2b) = 1 for every a; b 2 A.

Similarly to de�nitions in Chapter 4, the dual structure F+ (and A+) is

de�ned for each IntM-frame F = hW;R,!; R; P i (and each IntM-algebra A =

hA;^;_; ,!;2; 0; 1i). The dual F+ of F is the structure hP;\;[;�;2; ;;W i.

It is easy to show that F+ is an IntM-algebra. On the other hand, the dual A+
of A is the structure hWA ; R

,!
A ; R

2

A ; PAi, where WA is the set of prime �lters

and for any prime �lters r;r0 2WA , R
,!
A
, R2

A
and PA are de�ned as follows:

rR
,!
A
r
0 i� r � r

0
;

rR
2

A
r
0 i� 8a 2 A(2a 2 r) a 2 r

0);

PA = fp(a) : a 2 Ag;

where p(a) = fr : a 2 rg:

Clearly, A+ is an IntM-frame. By the similar argument to that of Chapter

4, we can show that A is isomorphic to its bidual (A+)
+ for every IntM-

algebra A. An IntM-frame F = hW;R,!; R; P i is descriptive if hW;R,!; P i is

an intuitionistic descriptive partially ordered frame and moreover,

xRy if and only if 8X 2 P (x 2 2X ) y 2 X)

holds. Then,

Proposition 6.3 (Proposition 1 of [WZ97a]) For every IntM-frame F,

F is isomorphic to its bidual (F+)+ if and only if F is descriptive.
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6.2.2 The calculus for BiPL

In this section, a Hilbert-style system for BiPL on L2 is introduced. This

system denoted by U. At the end of this section, it will be proved that `U
is strongly charaterized by the class of BiPL-frames.

The Hilbert style system U of BiPL consists of the following axiom

schemes and inference rules:

Axiom schemes:

(Int) all axiom schemes of Int,

(dist) 2(' ,!  ) ,! (2' ,! 2 ),

(rn) ' ,! 2',

(U) 2' ,! ( _ ( ,! '));

Inference rules:

� MP.

Some remarks will be necessary here on the above formalization of U. The

formal system U looks as if it were formalized in ML,!. But, those ex-

pressions including 2 should be regareded as abbreviations of expressions in

L2. This is the reason why that U contains the axiom scheme (rn), but not

the inference rule (RN). It is easy to show that the inference rule (RN) is

derivable rule in U. Thus the consequence relation of U is de�ned similary

to `Int.

Removing (rn) fromU and adding both (RN) and axiom scheme (4) toU,

we obtain corresponding system as a normal extension of IntK4. Here, we

call obtained systemUIntK4. In fact, it is easily proved that the consequence

relation of U and the consequence relation of UIntK4 are same.

By the above fact that U and UIntK4 are the same system, we will prove

the strong completeness of `U with respect to the class of BiPL-frames via

a class of IntM-frames, as follows: Let C be a class of IntM-frames which

satis�es some simple conditions. By these conditions, it is easy to show that

C is transformed into the class of BiPL-frames. We will prove that any

IntM-frame F which validates all theorems of U is an element of C. The

other direction is not explained in detail.
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Theorem 6.4 For any subset � of ML,! and any ML,!-formula ',

� `U ' if and only if � `BiPL ':

Proof Let C be the class of IntM-frames F = hW;R,!; R; P i satisfying the

following conditions;
i) R � R,!,

ii) R is transitive,

iii) F is descriptive,

iv) R
r = R,! where Rr is the re
exive closure of R.

Let C0 and G be the class of all BiPL-frames and the class of all descrip-

tive BiPL-frames, respectively. It is easy to show that the class C can be

translated into G, and j=G=j=C0 .

Put the calculus U� which is the caluclus deleting the axiom scheme

(U) from U. Let C� be the class of all IntM-frames satisfying Condition (i)

and (ii). First, we will show that F 2 C
� if and only ifF j= U�. Suppose

F = hW;R,!; R; P i and F 6j= U�. By using the induction on the length of

derivation, we will show that F 62 C
�. By our assumption F 6j= U�, there

exists a theorem ' of U� such that F 6j= '. It is easily showed that F j=  for

any theorem  of Int, so ' is not a theorem of Int. As for MP, it is proved

in usual way. Thus, the remains to check axiom schemes (dist) and (rn). We

will show this by diagram. In the following diagrams, R,!, R and possible

world is depicted by thick arrow , thin arrow and �.

� ' is (dist) : 2(A ,! B) ,! (2A ,! 2B)

The following diagram is essential.

*

(

(

*

*

*A, A B, B B

A B

(A B) A B)

(A B) A B)

d

c

b

a
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Suppose ' is false at a. By the de�nition of ,!, there exists a R,!-

successor b of a, where 2(A ,! B) is true but 2A ,! 2B is false.

Since 2A ,! 2B is false at b, there exists a R,!-successor c of b, where

2A is true but 2B is false. At c, 2A is true but 2B is not false. So

there exists a R-successor d of c, where B is false. Since R,! is a partial

order on W , re
exivity with respect to R,! holds at all possible worlds

of W . Especially, d R,! d holds. By (6.2), b R,! c, c R d and d R,! d

deduce b R d. Thus, A ,! B is true at d, since 2(A ,! B) is true at b.

Then B is true at d. This is contradiction.

� ' is (rn) : A ,! 2A

The argument is similar to the above case. This time, this is derived

from the following diagram.

*

*

*

A A

AA

AA

It is easy to show the converse direction.

Now, we will prove that F j= (U) holds if and only if F 2 C. In the

following, we suppose that a given IntM-frame F satis�es Condition (i) and

(ii). Condition (iii) does not have any essential role in the proof which is

F 2 C implies F j= (U).

We will show that F satis�es (iv) implies F j= (U). Suppose that F 6j=

2A ,! (B _ (B ,! A)). The following diagram is essential.

*

*

*

(

( )

)( )

, ,

B A

A A A

A

B B B B

A B Ba

b

c
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The above diagram denotes that there exist possible worlds a, b and c such

that a R,! b and b R,! c hold. Assume Rr = R,!. This assumption deduces

that b R c or b = c holds. If b R c then A is true at c since 2A is true at b.

If b = c then B is true and false. Both cases derive contradiction.

To show the converse, we need both conditions iii and iv to show that

F j= (U) implies F 2 C. Suppose F j= 2p ,! (q_(p ,! q)), F = hW;R,!; R; P i

is descriptive and Rr 6= R,!. Since F satis�es Condition (i), Rr � R,! and

R 6= R,! hold. The latter implies that there exist possible worlds x and y

such that xR,!y holds but xR
r
y does not hold. For these elements x and y,

the followings hold since F is descriptive: Since xRr
y does not hold, x 6= y

holds, and moreover, there exists such an element Y 2 P that either x 2 Y

and y 62 Y hold, or, x 62 Y and y 2 Y hold in the bidual structure of F. That

is, there exists an element X 2 P such that x 2 2X and y 2 X, since xRy

does not hold. Put a valuation V taking V(p) = X and V(q) = Y . Then,

both

1) x 2 V(2p) and y 62 V(p), and

2) x 62 V(q) and y 2 V(q),

hold. Under this valuation V, (hF;Vi; x) 6j= 2p ,! (q _ (q ,! p)) holds. This

is a contradiction. In deed, `BiPL is introduced by j=C for C is the class of all

BiPL-frames. That is, F j= (U) if and only F satis�es (iii) and (iv). 2

Theorem 6.5 Every logic in NExtBiPL is characterized by a class of de-

scriptive BiPL-frames.

Theorem 6.6 Any class of BiPL-frames determines a logic in NExtBiPL.

6.3 Embedding

In this section, a relation between BiPL and K4 is discussed. F. Wolter

and M. Zakharyaschev investigate an embedding of IntM-logics into classical

bimodal logics (CBiM-logics, for short) in [WZ97b]. Modal logic K4 can be

seen a CBiM-logic by putting '^2' as 2I' for new modal operator 2I . Our

BiPL is identical to a IntM-logic as we saw in the previous section. Thus,

we will �rst explain results in [WZ97b] as they are related to our present

research, and then, they are applied to our case. As an application, we can

get the Blok-Esakia theorem on the class of transitive frames. Thus, our goal

in this section is to give an isomorphism between NExtBiPL and NExtGrz0

where (grz) = 2(2('! 2')! ')! ' and Grz0 = K4+ (grz).
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6.3.1 Embedding into classical bimodal logics

In [WZ97b], a propositional language with many kinds of modal operators is

discussed. Such a propositional language is called multi-modal propositional

language. In particular, propositional language with two kinds of modal op-

erator is called bimodal propositional language. Here, we will take a bimodal

propositional language ML2 with modal operators 2I and 2. The set of

ML2-formulas is de�ned in usaual way, which is denoted by ForML2. Any

logic L on ML2 is called a bimodal logic.

Let L1 and L2 be arbitrary monomodal logics in the propositional modal

language with 2I and with 2, respectively. We de�ne the fusion L1 
 L2

of L1 and L2 to be the smallest bimodal logics containing both L1 and L2.

Similarly to the other modal logics, for a subset � of ML2-formulas and a

CBiM-logic L, a normal extension L�� of L means the smallest CBiM-logic

containing both � and L.

In [WZ97b],ML2 is interpreted using frame-like structures. Let a set W

of possible worlds and quasi-order RI on W be given. Suppose that 
I and


 are unary operators on 2W . In particular, 
I is de�ned as follows:


IX = fx 2W : 8y 2W (xRIy ) y 2 X)g:

A quasi-CBiM-frame is structure hW;RI ;
; P i where P contains ; and is

closed under set-union, set-intersection, set-di�erence,
I and
. The valid-

ity of ML2-formulas on quasi-CBiM-frames is determined by its dual struc-

ture. Here, the dual F+ of quasi-CBiM-frame F = hW;RI ;
; P i is an bimodal

algebra hP;\;�;W;
I;
i. Any valuation V on F+ is de�ned as follows:

V(?) = ;, V(' ^  ) = V(') \V( ), V(' _  ) = V(') [ V( ),

V(:') = W � V('), V(2I') =
IV('), V(2') =
V(').
The validity of ML2-formulas on quasi-CBiM-frame is de�ned by the valid-

ity on its dual F+, that is, F j= ' if F+ j= ' (in other words, V(') = W holds

for any valuation V). It is obivous that any quasi-CBiM-frame F validiates

all S4-axioms with the modal operator 2I , since RI is quasi-order on W .

Let Mix be a formula of the form2I22I'$ 2' for any formula '. For a

given quasi-CBiM-frame F which validiates Mix, a special quasi-CBiM-frame

�F is de�ned as follows: Suppose quasi-CBiM-frame F = hW;RI ;
; P i is

given. Then, the followings are de�ned:

� [x] : For any possible world x, the cluster of x with respect to RI is

denoted by [x]. That is, [x] = fy 2W : xRIy and yRIxg.
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� [X] : For any subset X of W , a set of clusters [X] is de�ned by

[X] = f[x] : y 2 [x] for some y 2 Xg.

In paticular, [W ] is the set of all clusters of W .

� [RI ] : A relation [RI ] on [W ] inherits RI , that is, for any x; y 2W ,

[x][RI][y] if xRIy.

Clearly, [RI ] is well-de�ned.

� [P ] : [P ] is de�ned as follows: [P ] = f[X] :
S
[X] 2 Pg.

� [
] : An operator [
] on [P ] is de�ned using 
 as follows:

[
][X] = f[x] : x 2 
(
S
[X])g.

� [
I] : An operator [
I] on [P ] is de�ned using [RI ] as follows:

[
I][X] = f[x] : for any [y]; [x][RI][y] implies [y] 2 [X]g

� �[P ] : For any [P ], the set �[P ] is de�ned as follows:

�[P ] = f[
I][X] : [X] 2 [P ]g.

The skelton [F] of F is the structure h[W ]; [RI]; [
]; [P ]i, and �F is the struc-

ture h[W ]; [RI]; [
]; �[P ]i. In [WZ97b] it is showed how to construct an

IntM-frame from �F, uniquely, and vice versa.

Now, it is ready for discussing an embedding fromForML,! into ForML2.

Let T00 be the function from ForML,! into ForML2 which pre�xes 2I to all

subformulas and replaces ,! with !, that is,

T
00(?) = 2I?, T

00(p) = 2Ip for every p 2 Prop,

T
00(2') = 2I2T

00('), T
00(' ^  ) = 2I(T

00(') ^ T
00( )),

T
00(' _  ) = 2I(T

00(') _ T
00( )), T

00(' ,!  ) = 2I(T
00(')! T

00( )).

Let �M be the set f' 2 ForML,! : T00(') 2Mg for a given bimodal logic

M , and, �(IntK� �) be (Grz 
K) �Mix� T
00(�) for a given IntK � �,

where T00(�) = fT00(') : ' 2 �g. The following results are shown in [WZ97b].

Proposition 6.7 (Proposition 21 of [WZ97b]) If a quasi-CBiM-logicM

is characterized by a class C of quasi-CBiM-frames, then �M is characterized

by the class �C = f�F : F 2 Cg.

Then the following three propositions denotes relationships between IntM-

logic and CBiM-logic.
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IntK S4 K IntK S4 K

IntK

Grz K( ) Mix T"( )

S4 K( ) T"( )

Table 6.1: Propositions 6.8, 6.9 and 6.10

Proposition 6.8 (Theorem 30 of [WZ97b]) The map � is a lattice ho-

momorphism from NExt(S4 
 K) onto NExtIntK (preserving the �nite

model property and decidability).

Proposition 6.9 (Theorem 22 of [WZ97b]) Every logic IntK�� is em-

bedded by T
00 into any logic M in the interval

(S4
K)� T
00(�) �M � (Grz
K)�Mix� T

00(�):

By Proposition 6.9, we have the following: for any bimodal logic M which

satis�es (S4
K)� T
00(�) �M � (Grz
K)�Mix� T

00(�),

`IntK�� ' i� `M T
00(');

that is,

�M = IntK� �:

Proposition 6.10 (Corollary 28 of [WZ97b]) The map � is a lattice iso-

morphism from NExtIntK onto NExt(Grz
K)�Mix.

By Proposition 6.9 and 6.10, for any normal extension L of IntK,

� � �(L) = L:

These relationships in the above propositions are showed in Table 6.1.
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IntK S4 K

BiPL

Grz’

Figure 6.1: Theorem 6.11

6.3.2 Blok-Esakia Theorem for the transitive frames

By Propositions 6.7, 6.8 and 6.10, we will show in this section that Blok-

Esakia theorem for transitive frames version holds. The Blok-Esakia theorem

can be proved by frame semantics (see [CZ97]). However, by Theorem 5.20, it

is proved that there are too many intuitionistic transitive frames, for which

the Blok-Esakia type theorem does not hold on the class of intuitionistic

transitive frames. So, in this section, we will pay our attention only to

transitive frames whose P is closed under �. Using the restriction on frames,

we can show that an extension of Blok-Esakia Theorem on the transitive

frames.

Let 2 be the modal operator of K4. For any ML-formula ', assume

that 2I' is an abbreviation of 2' ^ '. Clearly, this new modal operator

2I has the properties of S4. That is, K4 which has two modal operators

2 and 2I can be regarded as a normal extension of S4 
 K4. Thus, any

monomodal normal extension of K4 is a CBiM-logic also. The modal logic

Grz0 is de�ned as K4 � (grz), where (grz) is 2(2(' ! 2') ! ') ! '.

It is known that Grz0 is determined by the class CGrz0 of C of �nite Kripke

transitive frames without proper clusters.

Theorem 6.11 The map � is an isomorphism from NExtBiPL onto

NExtGrz0.

Proof In this proof, any normal extension of K4 is regarded as a bimodal
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logic by taking 2I' = '^2'. By Proposition 6.7 and BiPL is characterized

by the class of all BiPL-frames, �K4 = BiPL holds. By Proposition 6.8

and the fact that K4 has the �nite model property, BiPL has also the

�nite model property. Hence, BiPL is characterized by CGrz0 , and moreover,

�Grz0 = BiPL holds. It is trivial that Mix 2 K4 and Grz0 is a normal

extension of Grz
K4. That is, when we put BiPL = IntK4� � for some

set �, then as we saw by Proposition 6.9, BiPL is embedded by T
00 into any

logic M in the interval

(S4
K4)� T
00(�) �M � (Grz
K4)� T

00(�):

The above embedding holds on every normal extensions of BiPL. Applying

Proposition 6.10, the lattice isomorphism � is obtained. 2

6.4 Expressive powers

It is proved that the deduction theorem holds for `BiPL in the end of Section

6.1, and that the Blok-Esakia theorem holds for the class of transitive frames

in the last of previous section. In this section, like the case of partially

ordered frames, it is proved that the expressive powers for transitive frames

are recovered in this language.

6.4.1 Local expressive power

Firstly, the local expressive power is discussed. In the previous section, we

mentioned that L2 andML,! can be translated into each other on anyBiPL-

frames F. That is, f'F : ' 2 L2g = f'F : ' 2ML,!g holds. However, since

the local expressive power was discussed in Kripke frames, we must check

the above euqation goes through on Kripke BiPL-frames, that is, as follows:

Theorem 6.12 Let F be a transitive Kripke frame. Then,

f'F : ' 2ML,!g = f'
4
F : ' 2MLg:

Proof Similar to the proof of Theorem 5.1 using T
00. 2
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6.4.2 Global expressive power

To prove that the global expressive power between L2 and ML is the same,

we will use the terminology of [Zak92] and [CZ97].

Let F = hW;Ri be a �nite rooted transitive Kripke frame without proper

clusters, W be fa0; : : : ; ang, a0 be the root of F, and D be a set of antichains

in F. The following formula 
(F;D;?) is associated with F and D:


(F;D;?) = (
(n;n)^

(i;j)=(0;0)


ij ^
^
�2D


� ^ 
?) ,! p0;

where


ij =

8>>><
>>>:
2p0 if :a0Ra0;

2pi ,! pi if aiRai;

(^�j ,! pj) ,! pi if aiRaj and ai 6= aj;

> otherwise;


� =
^

aj2W��"

(^�j ,! pj) ,!
_
ai2�

pi if � 2 D;


? =
n̂

j=0

(^�j ,! pj) ,!?;

�j =

(
fpk : pk 62 aj"g if ajRaj;

f2pj ; pk : pk 62 aj"g if :ajRaj;

X" = X [X ";

X # = fy 2W : 9x 2 X yRxg;

X# = X [X # :

Suppose a Kripke frame G = hV; Si is given. Then, a partial map f from

V onto W is called a subreduction of G to F, if, for all x; y 2 domf ,

(R1) xSy implies f(x)Rf(y),

(R2) f(x)Raj implies f(y) = aj for some y 2 x".

A subreduction f is co�nal if domf"� domf#.

For a set D of antichain in F and a subreduction f of G to F, the following

conidtion is de�ned and called it closed domain condition:

(CDC) :9x 2 domf" �domf 9� 2 Df(x") = �".

Between co�nal subreduction f of G to F and canonical formula 
(F;D;?),

the following relationship holds:
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Theorem 6.13 For any intuitionistic transitive Kripke frame G = hV; Si,

G 6j= 
(F;D;?) holds if and only if there is a con�nial subreduction of G to F

satisfying (CDC).

Proof ()) Suppose G refutes 
(F;D;?) under some valuation U. Let N be

the model hG; Ui and � the premise of 
(F;D;?). De�ne a partial map from

V to W by taking, for x 2 V ,

f(x) =

(
ai if (N; x) 6j= pi; (N; x) j= �i; (N; x) j= �

unde�ned otherwise:

We will show that this map is a co�nal subreduction of G to F satisfying

(CDC).

[f is a partial function] Let f(x) = ai, f(x) = aj and ai 6= aj. Since F does

not include proper clusters, ai 6= aj deduces either :aiRaj or :ajRai. For

the former case, pj 2 �i holds, and in the later pi 2 �j . Both cases follows

contradiction.

[f satis�es (R1)] Let xSy, f(x) = ai and f(y) = aj. (N; x) 6j= pi and

(N; y) 6j= pj holds because f(x) = ai and f(y) = aj, respectively. Since the

valuation U is upward closed and xSy, (N; x) 6j= pj . (N; x) j= �i derives

pj 62 �i, namely,

aj 2 ai" , aiRaj _ ai = aj:

If ai = aj and :aiRaj, then (N; x) j= �j and 2pj 2 �j . That is, (N; x) j= 2pj ,

i.e., (N; y) j= pj . This is contradiction.

[f satis�es (R2)] Suppose f(x) = ai and aiRaj. f(x) = ai implies (N; x) 6j= pi.

If ai 6= aj, then (N; x) j= �ij = (^�j ,! pj) ,! pi. Since (N; x) 6j= pi, (N; x) 6j=

^�j ,! pj , namely, there exists the element y of x" where (N; y) j= ^�j and

(N; y) 6j= pj . Then, f(y) = aj, and xSy. If ai = aj, then (N; x) j= 2pi ,! pi.

(N; x) 6j= 2pi since (N; x) 6j= pi. It follows that 9y 2 x " (N; y) 6j= pi. Then,

f(y) = aj, and xSy.

[f is surjective] Since by the de�nition, f(x) = a0 whenever (N; x) 6j= 
(F;D;?),

the map f is a surjection by combining the proof of (R2).

[f is co�nal] Suppose f(x) = a0. Since (N; x) 6j= 
(F;D;?) and (N; x) 6j= p0,

(N; x) j= �. It follows that x j= 
?. That is, (N; x) 6j=
Vn
j=0(^�j ,! pj)

and, for every y 2 x ", (N; y) 6j=
Vn
j=0(^�j ,! pj). We consider the case

of (N; x) 6j=
Vn
j=0(^�j ,! pj), because the rest case is proved by the similar

argument. Assume there exists the element y of successor of x and y is not

in domf . Since U is an intuitionistic valuation, (N; y) j= �0 and (N; y) j= �,
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and (N; y) j= p0. By (N; y) j= �, y satis�es 
?. That is, there exists the

successor z of y such that (N; z) 6j= pk, (N; z) j= � and (N; z) j= �k. Namely,

z 2 domf .

[f satis�es (CDC)] Suppose not. Then, there exists the element x1 which is

in domf " but not in domf , and f(x1") = �" for some � 2 D. We can easily

deduce that (N; x1) 6j= 
� and xSx1 for some x where f(x) = a0. Since the

valuation of N is intuitionistic and (N; x) j= 
�, we have (N; x1) j= 
�. But

this is contradiction.

(() Let f be a co�nal subreduction of G to F satisfying (CDC). De�ne a

valuation in G by taking

x 2 U(pi) i� x 62 f
�1(ai)#:

Clearly, this valuation is upward closed. Then, we can easily verify that

under this valuation x 6j= 
(F;D;?) for every x 2 f�1(a0). 2

In [Zak92], it is also proved that the similar relation between co�nal subre-

duction f and canonical formula �(F;D;?) holds, which is refered in Section

5.1.2:

Proposition 6.14 (Theorem 1 (i) of [Zak92]) For any transitive Kripke

frame G, G 6j= �(F;D;?) holds if and only if there is a co�nal subreduction

of G to F satisfying (CDC).

Proof This can be proved similarly to Theorem 6.13 .

()) A map f : V !W is de�ned as follows:

f(x) =

(
ai if (N; x) j= ' but (N; x) 6j= pi;

undefined otherwise,

where ' is the premiss of �(F;D;?).

(() A valuation U on G is de�ned by x 2 U(pi) if x 62 f
�1(ai) holds for any

pi 2 Prop. 2

By Theorem 6.13 and Proposition 6.14, the following results holds.

Corollary 6.15 For every Kripke transitive frame G, every �nite rooted

frame F without proper clusters and every set D of antichains in F,

G j= �(F;D;?) if and only if G j= 
(F;D;?):
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Now, it is ready to prove that L2 has the same global expressive power to

ML. As like Proposition 5.3, the following holds.

Theorem 6.16 A skeleton-closed class C of transitive frames isML,!-axiomatic

if and only if it is ML-axiomatic.



Chapter 7

Concluding remarks

In this thesis, we have discussed di�erent properties between propositional

languages on quasi-oredered frame semantics and that on transitive frame

semantics, and showed the way that removes these di�erent points. In the

present chapter, we will make a survey of results in this thesis, and then

discuss related researches of BPL and our further works. As we saw in the

preceding chapters, there are several proof systems of BPL. However, di�er-

ent de�nition of semantic consequence relation on Kripke frame is adopted in

other researches, although the general frame semantics was introduced here.

These logics are investigated by many proof systems. We give these proof

systems as a table. In the last section, further works are described.

7.1 Conclusions of this thesis

Our �rst question which was raised in Chapter 1 is what di�erences occur

between propositional logics for transitive frame semantics and that for quasi-

oredered frame semantics, and the second is what method we showed select

to dissolve these di�erences. Our basic non-modal propositional logic with

transitive frame semantics is basic propositional logic (BPL).

On this system, we discussed that many properties of semantic structures

(for instance, duality theorem, homomorphisms, p-morphisms and etc) as

same as quasi-ordered case. We introuduced a Hilbert style calculus of BPL.

Also we obtained, the following results which came from the lack of the

re
exivity of frames:

� Modus ponens with assmuption (!-E rule) does not hold in general on

93
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BPL;

� The (local) expressive power of non-modal propositional language is

weaker than that of modal propositional language;

� The class of quasi-ordered frames cannot be axiomatizable by a set of

non-modal propositional formulas. That is, global expressive power of

non-modal propositional language is weaker than that of modal propo-

sitional language.

By the above last two results, it becomes necessary to de�ne each extension

of BPL as a consequence relation. Then we showed that the Blok-Esakia

type theorem does not hold on transitive frame semantics.

The answer to the second question is to introduce a new implication ,!

to non-modal propositional language. This new implication is able to express

the truth value not only at each successor of the present point but also at

the present point. The Hilbert style calculus is also introduced on this new

biarrow language, and we showed that this system has same properties of

non-modal propositional language on quasi-ordered frame semantics.

7.2 Classi�cation of proof systems

On research of BPL, it is an interesting problem to ask that what provability

is expressed by a given system of extension on BPL. Visser investigated

properties of provability in terms of the formalism via FPL and BPLL

([Vis81]). In [Vis81], Visser introduced FPLCl as a classical fragment of FPL

by `FPL +(p! q)_ ((p! q)! p). Ruitenburg and Ardeshir are interested

in a constructive mathematics that adopts Ruitenburg's interpretation which

is more strict than BHK interpretation. They studiedBPL and its extensions

as basis for the constructive mathematics ([AR95]). The standard BHK

interpretation and Ruitenburg's are same for logical connectives ^, _ and ?.

However, a di�erence comes out in the interpretation of implication. In the

standard BHK interpretation,

a proof of '!  is a construction that converts proofs of ' into

proofs of  .

On the other hand, Ruitenburg interprets
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BPL BPLL, FPL FPLCl BQL, BQL=

nd [Vis81] [Vis81] [Vis81]

Hs [SO97], [Sas98], [SWZ98] [SWZ98]

sc [AR95], [Ard95] [AR95] [AR95] [Ard95], [AR96]

Table 7.1: Researches related to BPL in terms of syntax

a proof of '!  is a construction that uses the assumption ' to

produce a proof of  .

To give a formal meaning of logical connectives in mathematics, predicate

logic is necessary. Since subject of Ruitenburg and Ardeshir's research is

mathematics, it seems natural that Ruitenburg and Ardeshir's research ad-

vances to a predicate calculus (BQL) of BPL. They call BPL and BQL

basic logics. Their researches of BQL are, for instance, introduced in [Ard95]

and [AR96]. Meanwhile, we showed in this thesis that removing re
exitivity

from quasi-ordered frame with the intuitionistic valuation implies that 1) the

modus ponens with assumptions and the modus ponens without assumptions

are completely di�erent, and that 2) expressive powers among the non-modal

propositional language and the modal propositional language are not same.

Our main results are deduced in terms of semantics, however these results

will be interesting when we consider their syntactical meaning of these re-

sults. For instance, Theorem 5.20 which asserts Blok-Esakia type theorem

does not hold. We think this theorem denotes that the provability of Peano

arithmetic which is di�erent from the provability of ZF-set theory cannot

be interpreted into an intuitionistic propositional language in some sense. A

relationship between our result and interpretations is following: any axiom

in ZF-set theory is used without any proofs, however it is important that

the consistency of any proposition in provability theory is guaranteed or de-

clared. That is, it denotes that any axiom in provability theory is treated as

assumption in terms of formalism.

In Table 7.1, we classi�ed papers into logic and type of system. In the

above table, nd, Hs and sc denote natural deduction, Hilbert style and se-

quent calculus, respectively. Sequent calculus (Gentzen style proof system)

GBPL of BPL have beed already discussed in Chapter 3. The logic BQL=

isBQL with eqality as special predicate symbol. As for FPLCl, the following

completeness holds:



96 CHAPTER 7. CONCLUDING REMARKS

Proposition 7.1 (4.10 in [Vis81]) Let � be a �nte set of L-formulas, ' an

arbitrary formula and C the class of �nite, irre
exive, linear frames. Then,

� `
FPL

Cl ' i� � j=C ':

It is an interesting problem what systems will be introduced at blanks in the

table.

7.3 Semantic consequence relations in other

researches

Visser, Ardeshir and Ruitenburg adopt not only general frame semantics

but also Kripke frame semantics. There exists a di�erent point that Visser

introduced it for formulas, on the other hand Ardershir and Ruitenburg in-

troduced it for sequents. Firstly, we will explain what semantics they adopt,

and then explain a di�erence between their semantics and ours.

We will discuss Kripke frame semantics. Let F be a transitive Kripke

frame and V a valuation in F. For any model M based on F with V and

any formula, a satis�able relation j= is de�ned similarly to that from (2.2) to

(2.6). The consequence relation for a class of frames is introduced in Chapter

5, on the other hand, Visser, Ruitenburg and Ardeshir semantics consequence

can be introduced as follows: for a given modelM, any set � of formulas and

any formula ',

� j=M ' i� (M; x) j= � implies (M; x) j= ' for any possible world x of M:

In Chapter 3, we said that Visser proved the completeness theorem of BPL,

however he did not mention the completeness result in the form of Proposition

3.5 . He treated more syntactical way. Let R be a rule in the following form:

'1 : : :'n

 :

Suppose `R is a consequence relation adding R to NBPL. A Kripke model

M is said R-closed if f'1; : : : ; 'ng j=M  holds. We denote � j=R ' if � j=M '

for any R-closed Kripke model M. Visser showed the following completeness

theorem:

Proposition 7.2 (1.10 in [Vis81]) � `R ' if and only if � j=R '.
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Visser mentioned that the class of models which satis�es the above propo-

sition becomes the class of all transitive Kripke models when any R is not

added to NBPL. That is, Proposition 3.5 holds.

It is a problem how to treat the arrow \)" of sequents semantically. Let

� ) � be a sequent of formulas, and � a set of sequents. A satis�able

relation is de�ned as follows by Ruitenburg and Ardeshir:

(M; x) j= �) � ,

8><
>:

(M; x) j= � implies (M; y) j= � and

(M; y) j= � implies (M; y) j= �

for any successor y of x,

M j= �) � , (M; x) j= �) � for all x of M;

M j= � , M j= �) � for any sequent �) � of �,

� j= �) � , M j= � implies M j= �) �

for any Kripke model M.

By the above de�nition, it is clear that the arrow \)" of sequent behaves as

like our new implication \,!" of BiPL discussed in Chapter 6.

There exists a di�erence between our consequence relation and conse-

quence relation on their sequent calculus. Let C be the class of transitive

frames. In our de�nition, � j=C 'means that (M; x) 6j= � holds or (M; x) j= '

holds for any modelM and any x. However, � j=) ' denotes that (M; x) j= �

for any M and x, implies (M; x) j= ' for any M and x.

7.4 Further works

We think that the following studies in BPL will be worth while to consider:

� Study about relation between GBPC and BiPL:

As we mention in the previous section, interpretations of the sequent

arrow \)" and our new implication \,!" are same. Our BiPL was

introduced by adding some axioms to Int, so we think that considering

about these arrows denotes another relation between Int and BPL.

� Study about properties of algebraic semantics for BPL:

Many properties which hold on a class of logics (for instance, disu-

junction property on a class of logics, interpolation property on a class

of logics and etc) can be studied in terms of semantics. As we saw in
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Chapter 4, our general frame semantics is quite powerful since it is easy

to translate a given frame into a BPL-algebra. On the other hand, al-

gebraic semantics has not been studied enough. Thus, it is important

to investigate algebraic semantics in detail.
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