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Abstract. - A new approach is presented for the reconstruction of phase synchronization phe-
nomena from measurement data of two coupled chaotic oscillators. The oscillators are assumed
to be non-phase coherent, making the synchronization analysis extremely difficult. To deal with
such non-phase-coherent systems, a CPR index has been recently developed based on the idea of
recurrence plot. The present study combines a nonlinear modeling technique with the CPR index
to recover the synchronization diagram of non-phase-coherent oscillators. Lyapunov exponents
are also utilized to locate the onset point of synchronization. This allows the prediction of the
regime of phase synchronization as well as non-synchronization in a broad parameter space of
coupling strength without further experiments. The efficiency of this technique is demonstrated
with simulated data from two coupled Rössler oscillators as well as with experimental data from
electrochemical oscillators.

Introduction. – Synchronization is a fundamental
phenomenon of coupled nonlinear oscillators, which are
common in nature and engineering. Based on the type of
the element, the studies of synchronization can be clas-
sified mainly into coupled limit cycle oscillators and cou-
pled chaotic oscillators. For limit cycle oscillators, there
exists a standard methodology to analyze the coupled sys-
tem. The famous example is the phase reduction theory
of weakly coupled limit cycles [1]. Theoretical and experi-
mental investigations have been also made on the coupled
chaotic oscillators. Up to date, four basic types of synchro-
nization have been found, namely, complete synchroniza-
tion [4, 5], generalized synchronization [6, 7], phase syn-
chronization [8], and lag synchronization [9]. Phase syn-
chronization (PS) has found many applications including
laboratory experiments as well as natural systems [2, 3].
For wider applications to real-world problems, the next
important step is to analyze the PS phenomena from time
series data observed from experimental or natural systems.
So far, several techniques have been developed to detect
PS in the underlying coupled nonlinear systems from bi-
variate or multivariate data [2, 10–12]. Although such
techniques have been shown to be quite efficient even for

noisy and non-stationary data, the problem of modeling
the synchronization phenomena from data remains open.
By using such models, it is of special interest to infer a
synchronization diagram, which yields the regimes of PS,
non-PS, and borderlines between them, which are depen-
dent upon the system parameters such as the coupling
strength and the parameter mismatch. By recovering such
a synchronization diagram from a few sets of experimental
data, a deeper insight into the underlying coupled systems
can be gained. This problem formulation is quite practi-
cal in situations, under which an extensive synchronization
experimentation is not possible or very expensive and only
limited data sets can be recorded. Parkinson tremor [11]
and Epileptic seizure [13] are the good examples, since
conditions or the strong synchrony induced within neu-
ronal elements should be predicted a priori to prevent the
diseases. Another interesting example is the structural
engineering problem, well known as the crowd synchrony
of the London Millennium Bridge [14]. On the opening
day of the bridge, unexpected swaying motion has been
induced by the collective motion of the massive crowds
walking on the bridge. Prior detection of such coherent
motion is desired for the stable bridge design.
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To retrieve the synchronization regime, the construction
of a nonlinear model, which is parameterized by a forcing
condition such as the coupling strength, from the recorded
data is required. In a recent study, we have introduced a
basic approach for constructing such a parameterized fam-
ily of models based on nonlinear prediction technique [15].
This approach has the important practical advantage that
no prior knowledge of the parameterized family of the un-
derlying dynamics is necessary. Our technique has been
successfully applied to prototypical PS models and to ex-
perimental data from a paced plasma discharge tube [15]
and from a chaotic CO2 laser [16]. It is important, how-
ever, to note that these studies have dealt only with phase-
coherent chaotic systems, whose phase can be easily com-
puted due to the existence of a unique rotation center of
the dynamics. This cannot be always expected for real-
world systems, which typically give rise to more compli-
cated dynamics often associated with non-phase-coherent
property. Hence the aim of the present Letter is to develop
a novel technique to recover the synchronization diagrams
of non-phase-coherent systems.

Although it is in general not straightforward to ex-
tract phase for non-phase-coherent systems, there exist
some methods to detect PS without directly computing
the phases. One approach is to utilize the Lyapunov ex-
ponents, one of which turns from zero to negative value
at the onset of PS [2, 17]. As another index for detecting
the PS, we focus on a synchronization index (CPR), which
has been newly developed based on recurrence probabili-
ties of recurrence plot [18]. The use of the CPR index is
promising, since the computational procedure is relatively
simple and it has been shown to be applicable quite well to
non-phase-coherent systems even with noisy and instation-
ary data. By combining the nonlinear modeling technique
with the CPR index, we show that the synchronization
diagrams of the coupled non-phase-coherent chaos can be
well reconstructed.

Problem and Method. – Consider two diffusively
coupled nonlinear oscillators

ẋ1,2 = f1,2(x1,2) + c (x2,1 − x1,2), (1)

where f1,2 and x1,2 represent dynamics and state vector
of the first or second oscillator, respectively. The coupling
matrix c is composed of ci,j = C (i = j = 1); 0 (otherwise),
whose strength is controlled by the constant parameter C.
Without the coupling (C = 0), each oscillator f1,2 is as-
sumed to give rise to non-phase-coherent chaotic dynam-
ics. Suppose that from the two oscillators, bivariate time
series {ξ1(t), ξ2(t)} are obtained using the first component
of the state vector, i.e. ξi = Ixi (I = [1, 0, · · ·, 0]). For sim-
plicity, we restrict our problem to the situation that the
dynamical variable involved in the coupling C(x2,1−x1,2)
is observed as the time series, since this fits to many prac-
tical experiments. More general case of observing an arbi-
trary dynamical variable has been studied in [15], to which
our framework can be extended. The sampling interval is

denoted as Δt. Depending upon the coupling strength,
the coupled oscillators can generate a PS as well as a non-
PS regime. The bivariate time series are measured under a
few conditions associated with different coupling strengths
Ci (i = 1, · · ·, M). Our task is to infer a synchronization
diagram, which classifies the parameter space of the cou-
pling strength into regimes of PS and non-PS, only from
such a few measurement data. Our primary assumptions
are: (i) the underlying dynamical equations (1) are un-
known but the system is known to be diffusively coupled,
(ii) the dynamical variables involved in the diffusive cou-
pling are measured as the time series, and (iii) the coupling
constants Ci associated with the measurements are known
and they are taken from a non-synchronous regime.

Now we describe our modeling technique. First, we em-
bed the bivariate time series {ξ1(t), ξ2(t)} into delay co-
ordinates X1(t) = {ξ1(t), ξ1(t − τ), . . ., ξ1(t − (d − 1)τ)},
X2(t) = {ξ2(t), ξ2(t − τ), . . ., ξ2(t − (d − 1)τ)} (d: em-
bedding dimension, τ : time lag) and suppose according
to the embedding theorem [19] that the original coupled
oscillators of Eq. (1) are transformed into the following
dynamics

Ẋ1,2(t) = F1,2(X1,2(t), C (X2,1(t) − X1,2(t))). (2)

Note that this transformation cannot be assumed if the
condition (ii) does not hold. The main point of our mod-
eling is to construct a set of nonlinear functions F̃1,2, that
approximate Eq. (2). If the original dynamics (1) is well
embedded in the delay coordinate space and the embed-
ded dynamics is precisely modeled, the synchronization
structure of the original dynamics can be predicted by an-
alyzing the model F̃1,2.

For the construction of the nonlinear models, there exist
various functional systems that approximate the nonlinear
dynamics, such as polynomial functions [20], radial ba-
sis functions [21], artificial neural networks [23], and local
linear models [22]. The local models are not suitable for
the modeling of global dynamics such as bifurcations due
to their inherent local property. Global functional mod-
els are preferred here. As one of the most typical global
models, this study exploits the neural network. It should
be noted here that the other global models can be also
utilized for the present study and our purpose is not to
develop an application specific to neural networks. Our
modeling procedure consists of the following main steps.

(P1) The embedding dimension d and the time lag τ are
chosen. To determine the time lag, the first zero-crossing
point of the autocorrelation function, which is commonly
used for the nonlinear data analysis [24], is exploited. The
embedding dimension can be determined by conventional
dimensional analysis [24].

(P2) Each nonlinear function F̃i : Rd×Rd→Rd (i =
1, 2) is realized by a 3-layer feed-forward neural network
[23], having 2d-units in the input layer, d-units in the out-
put layer, and h-units in the middle layer. Each neural
network has 4dh parameters, denoted as ω, which are op-
timized to fit into the data as follows. First, the cost
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function is defined as

E(ω) =
∑M

i=1

∑d

j=1

∑
t

∑S

s=1
|Xj(t + sΔt, Ci)

−X̃j(t + sΔt, Ci)|2, (3)

where X̃j is the trajectory in the interval [t, t+SΔt], gen-
erated from the model equations

˙̃X1,2(t) = F̃1,2(X̃1,2(t), C (X̃2,1(t) − X̃1,2(t))) (4)

started from the initial condition X̃1,2(t) = X1,2(t). The
maximal integration time is set as S = 5. To minimized
the cost function, the quasi-Newton method based upon
the Broyden-Fletcher-Goldfarb-Shanno formula with Lu-
enberger’s self-scaling [25] is utilized. To computed first
derivatives of the cost function, variational equations of
the model equations (4) are numerically integrated.

(P3) By repeating the procedure (P2), Q sets of dif-
ferent nonlinear models F̃(i)

1,2 (i = 1, · · ·, Q) are obtained,
which have the same neural network architecture but dif-
ferent parameter values ω optimized with random initial
conditions. Then, the ensemble average is taken as

F̄1,2 =
1
Q

∑Q

i=1
F̃(i)

1,2. (5)

It has been shown that the ensemble technique provides
much more reliable modeling of nonlinear dynamics com-
pared to the case of utilizing only a single model, whose re-
sults are rather sensitive to the optimized parameters [26].

(P4) CPR index is computed [18]. By free-running
the model equations ˙̃X1,2(t) = F̄1,2(X̃1,2(t), C (X̃2,1(t) −
X̃1,2(t))), a pair of trajectories {X̃1,2(t)}N

t=1 can be gen-
erated. Then, the generalized autocorrelation function
is obtained for each trajectory as Pi(τ) =

∑N−τ
t=1 Θ(ε −

|X̃i(t)− X̃i(t+ τ)|)/(N − τ), where ε is a threshold and Θ
is the Heaviside function. The threshold ε is determined in
such a way that the recurrence rate is kept constant, i.e.,∑N

t=1

∑N
s=1Θ(ε − |X̃(t) − X̃(s)|)/N2 = 15 %. The CPR

index can be computed as the cross correlation between
P1(τ) and P2(τ) as CPR =< P̄1(τ)P̄2(τ) > /(σ1σ2),
where P̄1,2 means that the mean value is subtracted and
σ1,2 are the standard deviations of P1,2(τ). If the sys-
tem is in synchronization, the generalized autocorrelation
functions of the two trajectories get strongly correlated,
resulting in a high CPR≈1. Otherwise a low CPR is ex-
pected.

By changing the coupling strength C, we may finally
draw the synchronization diagram, showing the depen-
dence of the CPR index on the coupling strength C.

Applications. – First, we applied our method to
simulated data from two coupled Rössler oscillators [17]:
ẋ1,2 = −α1,2y1,2 − z1,2, ẏ1,2 = α1,2x1,2 + ay1,2 + C(y2,1 −
y1,2), ż1,2 = 0.1 + z1,2(x1,2 − 8.5). The parameter mis-
match was set as α1,2 = 1±0.02. In the case of a = 0.16,
each Rössler oscillator gives rise to phase-coherent chaotic

dynamics. Under two conditions with different coupling
strength C = 0 and C = 0.025, which are in a non-PS
regime, the bivariate data {y1(t), y2(t)} were measured.
As reported in [15, 27], data from a PS regime should not
be used for the modeling, since they provide only a limited
dynamical information constrained in the synchronization
manifold. For each condition, 800 data points were col-
lected with the sampling interval of Δt = 0.2. To exam-
ine the effect of observational noise, Gaussian noise was
added to the bivariate data. The noise level was varied
as 5, 10, 15, and 20 %. Following the modeling procedure
(P1), the embedding dimension and the time lag were set
as (d, τ) = (3, 0.8) Note that the embedding dimension
was not a crucial modeling parameter, since essentially
the same results have been obtained with d = 4. For
the construction of the neural networks in procedure (P2),
number of the units in the middle layer was set as h = 8.

Fig. 1 (a) shows the synchronization diagram recon-
structed by the ensemble model F̄1,2, averaged over 5 non-
linear models. No noise was added to the data sets. Over-
all structure of the reconstructed diagram is in a very good
agreement with the one drawn by simulating the original
coupled Rössler equations (solid line with circles). As in-
dicated by the arrow at C≈0.037, the sudden drop of the
CPR-index corresponds to the onset point of PS. The non-
linear model locates almost the same onset point as the
original system. This demonstrates the strong capability
of recovering the synchronization diagram in the case of
modeling the noise-free data.

Figs. 1 (b) and (c) show the Lyapunov exponents (λ1,
λ2, λ3, λ4) computed for the original system (sold lines)
and the nonlinear model (dotted lines) by using the stan-
dard numerical technique [28]. A clear onset point of PS is
discernible also in these figures. Namely, the first and sec-
ond exponents (λ1, λ2) remain to be positive in this range
of coupling (except for the periodic window observed in the
nonlinear model at C≈0.067), implying that both of the
coupled oscillators are chaotic in the amplitude. Whereas
the third Lyapunov exponent (λ3) stays on the zero line,
the fourth Lyapunov exponent (λ4) turns from zero to neg-
ative at C≈0.037, which is a clear transition to PS. The
Lyapunov spectrum analysis is therefore consistent with
the CPR index, which also locates the onset point of PS
at C≈0.037.

Fig. 1 (d) shows the case of applying the nonlinear mod-
eling in the presence of 5, 10, 15, and 20 % noise. Up
to the noise level of 15 %, the model predicts the onset
point roughly at around the correct one. Only under the
very strong level of 20 % noise, the model becomes rather
inaccurate, resulting in the prediction of the onset point
smaller than the correct one. This implies that the present
approach is quite robust against a moderate amount of
observational noise, which is important for the real data
analysis.

Next, we examined the case of a = 0.2925 that gen-
erates a funnel-type chaotic attractor. Due to the non-
phase-coherent property, it is nontrivial to detect PS in
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Fig. 1: Phase-coherent Rössler chaos. (a): CPR index drawn by varying the coupling strength in the range of C∈[0, 0.08] for the
original two coupled Rössler oscillators (sold line with filled circles) and for the nonlinear model obtained from noise-free data
(dotted line with triangles). (b), (c): First, second, third, and fourth Lyapunov exponents computed for the original Rössler
oscillators (sold lines) and the nonlinear model obtained from noise-free data (dotted lines). (d): The CPR curves for nonlinear
models obtained from noisy data (5 % noise: solid line with circles; 10 % noise: dotted line with triangles; 15 % noise: solid
line with asterisks; 15 % noise: dotted line with squartes). The arrows of (a), (c), and (d) indicate the onset point of PS at
C = 0.037.

this case. Advantage of utilizing the CPR index is that
it can be applied also to the non-phase-coherent systems.
In the same manner as the phase-coherent case, the bi-
variate data were collected under the coupling strength
of C = 0 and C = 0.02, both of which are in a non-PS
regime. Fig. 2 (a) shows the synchronization diagram re-
constructed by the ensemble model F̄1,2, averaged over
5 nonlinear models, under a noise-free condition (dotted
line) and the one drawn from the original equations (solid
line). Due to the non-phase-coherency, the original dia-
gram exhibits a relatively noisy curve. However, a clear
onset of PS is recognized at C≈0.18. The diagram recon-
structed by the nonlinear model reproduced the qualita-
tive structure of the original diagram very precisely with a
correct prediction of the PS onset point. In Fig. 2 (b), the
second and third Lyapunov exponents (λ2, λ3) are com-
puted for the original system (sold lines) and the nonlin-
ear model (dotted lines). As studied in detail in [17], the
coupled Rössler oscillators in this funnel regime gives rise
to generalized synchronization and PS almost simultane-
ously. Namely, at C≈0.18, the third Lyapunov exponent
turns from zero to negative, indicating the onset of PS.
Almost at the same place, the second Lyapunov exponent

turns from positive to zero, which indicates the onset of
generalized synchronization. Almost the same transition
can be observed also in the nonlinear model. This implies
the strong modeling capability of predicting both general-
ized synchronization and PS by the present approach.

Figs. 2 (b) and (c) show the results of the nonlinear
modeling in the presence of 5, 10, 15, and 20 % noise. As
the noise level is increased, we see that the model pre-
diction based on the CPR index gets inaccurate, locating
the onset point of PS at smaller couping values. This can
be confirmed also in Figs. 2 (e) and (f), where the turning
points of the second and third Lyapunov exponents, which
indicate the onset of generalized synchronization and PS,
are found at relatively smaller values. This implies that
the inaccurate prediction of the PS is not due to the CPR
measure but to the modeling error. Despite this modeling
difficulty, the prediction error of the onset point was less
than 16 % for the noise level of 5 and 10 %. Taking into
account the moderate amount of 10 % noise as well as the
difficulty of detecting PS in non-phase-coherent systems,
we consider that the present approach is robust enough to
be applied to the real-world systems.

Let us finally apply our technique to experimental data.
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Fig. 2: Non-phase-coherent Rössler chaos. (a), (b), (c): CPR index drawn by varying the coupling strength in the range of
C∈[0, 0.25] for the original two coupled Rössler oscillators (sold line of (a)) and for the nonlinear models obtained from noise-free
data (dotted line of (a)), data with 5 % and 10 % noise (solid and dotted lines of (b)), and data with 15 % and 20 % noise
(solid and dotted lines of (c)). (d), (e), (f): Second and third Lyapunov exponents computed for the original Rössler oscillators
(sold lines of (d)) and for the nonlinear models obtained from noise-free data (dotted lines of (d)), data with 5 % and 10 %
noise (solid and dotted lines of (e)), and data with 15 % and 20 % noise (solid and dotted lines of (f)). The arrows indicate the
onset point of PS at C≈0.18.

We use an electrochemical oscillator system, in which the
interaction between two non-phase-coherent chaotic oscil-
lators has been well designed [29]. The experiments were
carried out in a standard three-compartment electrochem-
ical cell consisting of two iron working electrodes (1-mm
diameter each with 2-mm spacing), a Hg/Hg2SO4/K2SO4

reference, and a Pt counter electrode. The applied poten-
tial (V) of both electrodes were connected to the poten-
tiat through two individual parallel resistors (Rind) and
through one series collective resistor (Rcoll) which fur-
nishes a global coupling of strength K = Rind / Rtot,
where Rtot = Rcoll + Rind / 2 is kept constant. For
K = 0, the external resistance furnishes no additional
coupling; for K = 1, the maximal external coupling is
achieved. This global coupling can be translated into the
diffusive coupling as C = K/(1 + K).

From the current of each electrode, three sets of bi-
variate time series {ξ1(t), ξ2(t)} were measured (sampling
frequency: 2 kHz; data points: 2400) under the cou-
pling strength of K = 0, 0.2, 0.4, which are all in a non-
synchronized regime. Following the modeling procedure,
the embedding dimension and the time lag were set as
(d, τ) = (4, 35[ms]). For construction of the neural net-
work, the number of the units in the middle layer was set
as h = 12. The ensemble model was then constructed
from Q = 50 nonlinear models. Fig. 3 compares the syn-
chronization diagram of the nonlinear model (dotted line)
with that of the experimental data (solid line). The model
provides a highly precise prediction on the onset point of
the PS at C = 0.6, which agrees with the preceding stud-
ies [18, 29]. Although the nonlinear model becomes un-
stable (divergent solution) at C = 0.65, the qualitative
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structure of the original synchronization diagram is well
reproduce until that point. This demonstrates the strong
potential of the present method to real experimental data.

 0

 0.5

 1

 0  0.2  0.4  0.6

C
P

R

Coupling Strength

Experiment
Nonlinear Model

Fig. 3: Synchronization diagram of the two coupled electro-
chemical oscillators (solid line) and the model prediction (dot-
ted line). The location of the data used for the modeling is
indicated by the three circles.

Summary. – To summarize, a new approach has been
presented for the reconstruction of PS from measurement
data of coupled non-phase-coherent chaotic oscillators.
For simulated data from two coupled Rössler oscillators
in a funnel-type chaotic regime, the synchronization di-
agram has been recovered only from few data sets. The
method was robust up to 10 % observational noise. The re-
sults with experimental data from electrochemical oscilla-
tors demonstrated its practical applicability to real-world
data. Our future study will focus on the application of
this methodology to biological data.
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