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Abstract

This paper considers the following geometric optimization problem: Input is a matrix R =
(rij). Each entry r;; represents a radius of a disc with its center at (i,7) in the plane. We
want to choose discs in such a way that the total area covered by exactly one disc is maximized.
This problem is closely related to digital halftoning, a technique to convert a continuous-tone
image into a binary image for printing. An exact algorithm is given for the one-dimensional
version of the problem while approximation algorithms are given for the two-dimensional one.
The approximation algorithms are verified to be satisfactory in practice through experiments in
applications to digital halftoning.

1 Introduction

One of the popular geometric optimization problems is that of finding the maximum radius r, of
n equal and non-overlapping discs to be packed in a unit square. It has been widely explored with
a number of surprising results (see e.g. [2]). It is equivalent to that of scattering n points into the
unit square such that the minimum pairwise distance becomes as large as possible.

The problem to be considered in this paper is similar to the above-stated problems but different
in many ways. In our case possible locations of disc centers are restricted to predefined lattice points.
Furthermore, the radii of discs are given as a matrix. The problem is to choose discs so that the
total area covered by exactly one disc is maximized.

This problem seems to be computationally hard although no proof of its NP-hardness is known.
In this paper we first consider the one-dimensional version of the problem and give a polynomial-
time algorithm. Then, we propose some approximation algorithms with theoretical guarantee on
their performance ratios.

This problem originates from an application to digital halftoning, a technique to convert
continuous-tone images into binary images for printers. Theoretically speaking, the approximation
ratio of our proposed algorithm is not so attractive, but it works quite satisfactorily in practice,
which is verified through experiments on its applications to digital halftoning of various images.
Our goal for the application to digital halftoning is to distribute points so that the Voronoi diagram
associated with them contains no skinny Voronoi region. In this sense the problem is similar to
mesh generation, in which the interior of a given polygonal region is partitioned into simplicies to
avoid skinny simplicies. For the purpose some part may be partitioned into small regions. In our
case no polygon is given and the sizes or areas of simplices (convex polygons) are determined by
spatial frequency of an image. The idea of using Voronoi diagram for designing screen elements
is not new. In fact, it is seen in the literatures [3] and [4], in which Voronoi diagram is used to
generate non-regular arrangement of screen elements. The first and third authors [5] formulated
the problem as a disc covering problem based on spatial frequency information of an image and



presented a heuristic algorithm based on bubble-packing algorithm. It is an iterative improvement
algorithm and took much time before conversion. This paper achieves efficient implementation
while keeping the quality of the resulting Voronoi diagram and output images.

This paper is organized as follows: Section 2 describes a motivation of this study and appli-
cations to digital halftoning. Section 3 gives a formal definition of the geometric optimization
problem. Section 4 presents an effective algorithm for the same problem in the one dimension.
Sections 5 and 6 include some approximation algorithms with bounded performance ratios and
practical heuristics with some experimental results. Finally, concluding remarks and some future
plans are given in Section 7.

2 Motivation and Application

Digital halftoning is a technique to convert a continuous-tone image into a bi-level image for output
on bi-level printing devices. Conventional halftoning algorithms are classified into two categories
depending on resolution of printing devices. In a low-resolution printer such as an ink-jet printer
individual dots are rather clearly separated. On the other hand dots are too small in a high-
resolution printer such as off-set printer to make fine control over their positions. Therefore, dots
should form clusters whose sizes are determined by their corresponding intensity levels. Such a
halftoning algorithm is called a cluster-dot halftoning.

This algorithm consists in partitioning the output image plane into repetitive polygons called
screen elements, usually of the same shape such as rectangles or parallelograms. Each screen
element is then filled in by dots according to the corresponding intensity levels. Dots in a screen
element is clustered around some center point to form a rounded figure. Denoting by k the area
or the number of pixels of a screen element, only k 4 1 different intensity levels instead of 2% levels
are reproduced since the gray level in a screen element is determined only by the number of dots
in the region. So, large screen element is required to have effective tone scale. On the contrary the
size of a screen element should be small for effective resolution. This suggests a serious tradeoff
between effective resolution and effective tone scale. The algorithm to be proposed in this paper
resolves it by introducing adaptive mechanism to determine cluster sizes.

In most of the conventional cluster-dot halftoning algorithms the output image plane is parti-
tioned into screen elements in a fixed manner independent of given input images. A key idea of
our algorithm is to partition the output plane into screen elements of various sizes to reflect spatial
frequency distribution of an input image. This adaptive method is a solution to balance effective
resolution and effective tone scale in the following sense. The two indices are both important,
but one is more important than the other depending on spatial frequency distribution of an input
image. That is, resolution is more important in a high-frequency part to have a sharp contour,
so that the sizes of screen elements should be kept small. On the other hand, tone scale is more
meaningful in a low-frequency part with intensity levels changing smoothly, and so larger sizes of
screen elements are preferred. All these requirements suggest the following geometric optimization
problem. Given a continuous-tone image A and a scaling factor to define the size of an output
image, we first compute spatial frequency distribution by applying Laplacian or Sobel differential
operator. Then, each grid in the output image plane is associated with a disc of radius reflecting
the Laplacian value at the corresponding point. Now, we have a number of discs of various radii.
Then, the problem is to choose a set of discs to cover the output plane in an optimal way. The
optimality criterion should reflect how large area is covered by exactly one disc from the set, which
implies minimization of the area of unoccupied region and intersection among chosen discs to make
the resulting screen elements rounded figures.



3 Problem Formulation

This section gives a formal definition of the problem. Input is an M x N matrix R = (rj;), 0 <
i < M,0 <j < N of positive real numbers. Each matrix entry r;; specifies a radius of a disc to be
placed at the corresponding position (,7) in the plane. A matrix B of the same size is a binary
matrix to be calculated. Each binary value b;; is 1 when a disc of radius r;; is placed at position
(i,7) in the plane and 0 otherwise. Given two matrices R and B, the area covered by exactly one
accepted disc, which is denoted by ¢g(R, B), is our objective function to be maximized. In other
words, given a matrix R, we want to find a binary matrix B that maximizes the objective function
g(R, B).

We could also consider the problem by replacing discs by squares. Then, each 7;; represents a
side length of a square to be placed at (i,7). This problem is similar to that of packing n equal
discs of largest possible radius in a unit square and to that of covering a unit square by n equal
discs of smallest possible radius. In fact, if all the input values 7;; are equal, it becomes a discrete
decision problem of the above problems in such a sense that disc center locations are restricted to
grid points. The computational hardness of the problem is well recognized in the literature, but it
is still open whether this problem is NP-hard or not.

4 An Efficient Algorithm for 1-D Version of the Problem

4.1 Graph-based approach

Let us first consider the one-dimensional version of the problem. We will show that an optimal
solution is found in polynomial time in this case. We give an algorithm by reducing the problem
to a longest path finding problem on a directed acyclic graph, which runs in O(n?) time and
space. Later on, the space complexity will be improved. The idea of the algorithm is utilized in an
approximation algorithm for the two-dimensional problem.

Let R = {ry,r2,...,m,} be a set of n positive real numbers. For each r;, we define an interval
I; = [si,t;] where s; = i —r; and t; = i+, referred to as the left and right endpoints of the interval
I;. Let T = {I1,15,...,1,} be a set of all such intervals. For a subset Z' of Z we define its gain

9(Z") by
g(Z") = the total length of intervals covered exactly once by intervals in Z'. (1)

Given a set Z of n intervals, our objective is to find a subset Z* of 7 maximizing the gain, the total
length covered exactly once.

—+

1 2 3 4 5 6 7 8 9 10 11 12

Figure 1: An example of the problem: ry =1.5,r0 =2.5,r3 =1.5,r4 =3.1,r5 = 2.0, = 1.8,r7; =
0.7, rg = ]_.6,7"9 - 3.0,’/’10 == 2.0,7"11 == 2.0,7"12 = 1.0.

An example is shown in Fig. 1 with 12 intervals. Of course, there are 2'? different choices of
intervals. When we choose three intervals Iy = [so, 2], Is = [s,ts], and I1g = [s10,t10], shown in



bold lines in Fig. 2, the interval [sg = 4.2, ¢y = 4.5] is doubly covered , and [tg = 7.8, s19 = 8.0] and
[t10 = 12,t19 = 13] are empty. The remaining part is covered exactly once. Thus, the gain of this
subset is given by 2re 4+ 2rg + 2r10 — 0.3 %2 =5+3.6 +4 — 0.6 = 12.

Figure 2: An example of a subset Z' of intervals where bold lines indicate those intervals in the
subset.

The following is a key observation to an efficient algorithm for the problem.

Lemma 1 For any set I of intervals there is an optimal subset T of T such that no point is
covered by three intervals from I*.

Proof Suppose a point x is contained in three intervals, I,,I, and I,, € Z*. If one of them is
properly included in another, then we can safely remove the shorter interval without decreasing the
total gain. So, assume no inclusion relationship among the three intervals. Then, all the interval
endpoints are distinct, and hence one of the intervals must be contained in the union of the other
two intervals since at most two intervals can contribute to the left and right endpoints of the union.
This implies that we can remove the interval contained in the union from 7* without decreasing
the total gain since the union of those intervals is preserved. O

A set 7 of intervals is called an at most doubly overlapping interval set if no three of them
have non-empty intersection, or any point is covered by at most two intervals in Z. The lemma 1
guarantees that restriction to at most doubly overlapping interval sets does not lose all of optimal
solutions. An at most doubly overlapping interval set can be expressed as a sequence of intervals
(Ig(l), IU(Q), e ,Ig(k)) such that

Se(1) < 5¢(2) <0 <K So(k)
Ia(i) ﬂIU(j) = [Z) if |l —]| > 2,

that is, one interval I,(;) possibly overlaps the next interval I,(;,1) and the previous I,(;_y), but
no others.

Lemma 2 When an at most doubly overlapping interval set T is given as a sequence of intervals

(Us(ys Lo(2), - - - > Lo(k)), then the gain of T is given by

k k—1
9(T) = 1L =2 Hogi) N Ipgisn)), (2)
i=1 i=1
where |I,| is the length of interval Iy, i-e., |1y = toy — Sy, and [Iyg) N Iyq)| is that of
the intersection of the two consecutive intervals.

Proof The total length of the union of all intervals is given by Zle Loy | — Ef;ll [ Lo(iy NV g (igy -
Since the intersection of consecutive intervals should be excluded from the singly-covered region,
we have to reduce its length Ei:ll oy NV i1y - O

4



Now we can reduce our problem to that of finding a maximum-weight path in a directed acyclic
graph defined as follows: Given a set Z = {Iy, I5,...,I,} of intervals, an interval traversing graph
G = (V, E, W) has vertices corresponding to those intervals and two special vertices s and t. Edge
set is defined as follows.

(1) (I;,1;) € E, I;,1; € T if and only if (i) i < j, (ii) j > ¢;, (iii) i < s;, and (iii) there is no Ij such
that 1 < k < j andIiﬂIk:IkﬂIj:@.
(2) (s,1;) € E, I; € T if and only if there is no I; such that j < and I; N I; = (), and
(3) (Li,t) € E, I; € T if and only if there is no I; such that j > and I; N I; = 0.
Edge weights are defined as follows.
(4) w(Ii,Ij) = |Iz| — 2|Ii N Ij| for each (Ii,Ij) ekl
(5) w(s,I;) =0, and
(6) w(I;,t) = |I;].

An example of an interval traversing graph is given in Fig. 3. A longest s — ¢ path s —
I, - Iy — Iy — t, which corresponds to a set of {I; = [0.5,1.5], 1> = [1.3,2.7], 1, = [2.8,5.2]}.
The singly covered intervals are [0.5,1.3],[1.5,2.7],[2.8,5.2]. The total length of the intervals is
0.8 + 1.2 + 2.4 = 4.4, which equals the length of the path 0 + 0.6 + 1.4 + 2.4 = 4.4.

Figure 3: An example of an interval traversing graph.

Lemma 3 Let ryax be the mazimum among {ri,ro,...,mn}. Then, outgoing degree of a vertex
in an interval traversing graph G associated with a set of intervals defined by {ri,re,...,rn} is at
most 3[rmax | + 1.

Proof Let I; be any vertex. We know that (1;,1;) € E if (1)j < s; or (2) j > t; +3[rmax|. In case
(1), j <ior|L;N1;| > 1/2min{|;|,|;]}. In case (2), even if the interval I;,j = [ty]| + 3[rmax] is
longest, i.e., 7j = rmax, there is a large gap between the right endpoint ¢; of I; and the left endpoint
s; is to include an interval since their gap is longer than 2ry,.y. There are at most 3[rmyayx | integers
between ¢; and the center point j = [;] + 3[rmax|. Only those intervals defined for such integers
plus the special vertex ¢ can be the destinations of edges outgoing from the vertex I;. Thus, the
lemma follows. O

The largest value rp,x can be assumed to be at most n since otherwise the problem becomes
trivial. If rmax = O(n) then the number of edges is O(n?). In many practical cases rmax is a
constant independent of n and then we have only linear number of edges.

Let Z' be a subset of the whole interval set Z. 7' is redundant if there is an interval I; € Z\Z'
such that I; does not intersect any interval in Z'. Obviously, if Z' is redundant then Z’ is not
optimal since we can increase its gain by inserting an interval intersecting no interval in Z'. 7' is
also redundant if it contains two intervals I; and I; such that |I; N I;| > 1/2min{|I;|,|I;|}. The
condition (1) in the definition of the interval traversing graph guarantees that an edge (I;,I;) is
defined only if it is not redundant. When ¢ < j, |I; N I;| > 1/2min{|];|,|I;|} if and only if j > ¢;
and 7 < s, that is, j > i +r; and i < j — ;.



Lemma 4 Let T be a given set of intervals and G be its associated interval traversing graph.
Then, there is one-to-one correspondence between directed paths from s to t in G and at most
doubly overlapping non-redundant interval sets. Furthermore, the sum of edge weights of such a
path coincides with the gain of the corresponding set of intervals.

Proof Let P = (s,1y,,Iu,,... 1y, t) be any directed path from s to ¢t in G. Then, u; < uy <
-+ < uy since u; > t,, | > u;—y for i = 2,3,...,k. The set of intervals {Iy,, Iy,,..., Ly} is an
at most doubly overlapping interval set. If three intervals have common intersection, one of their
center points must be in the union of the other two intervals and thus it must be in one of the other
intervals, which cannot happen by the definition of the graph. The interval set is not redundant
again by the definition.

The proof for the other direction is similar. Lastly we can observe that the sum of edge weights
of P and the gain of the corresponding interval set are both given by

k k-1
Z|Iul| - 2Z|Iui qui—1|'

O
Theorem 5 Given a set of n intervals associated with n real numbers ri,rs,...,7y, an optimal
subset can be found in time O(nrymax) as a mazimum-weight path in the corresponding interval

traversing graph, where rmax s the largest among ri,ro, ..., 7.

Proof Thelemma 4 guarantees that a maximum-weight path in the graph gives an optimal subset.
Since the graph is a directed acyclic graph, such a path can be found in time linear in the number
of edges, that is, in time O(nryax) by Lemma 3. O

The graph is built by checking at most 3[rmax | + 1 vertices at each vertex to define its outgoing
edges, which is done in O(nryax) time and space.

One disadvantage of the above-described approach is high space complexity. The number of
edges is O(n?). Fortunately, we can reduce the space complexity while keeping the running time.
An idea for the efficiency is dynamic programming combined with plane sweep paradigm.

4.2 Plane sweep approach

Plane sweep is a powerful technique in computational geometry to convert two-dimensional problem
to a sequence of one-dimensional problems. In our case we regard intervals as horizontal line
segments and sweep the plane from left to right while keeping a set of horizontal line segments
(intervals) intersecting a vertical sweep line and an optimal set of intervals to the left of the sweep
line that maximizes the total length of singly-covered intervals. To simplify the notations, we
assume that all the endpoints are different and rename the intervals so that T = (t1,t2,...,t,) is
the increasing order of right endpoints of n given intervals, that is,

t1 <ty <o <ty

At each right endpoint ¢; we want to maintain an optimal set S; of intervals that maximizes the
total length of singly-covered intervals using the interval I;. Let g; be the gain (the total length

of singly-covered intervals) of S;, and let g; be the maximum among ¢1,¢2,...,¢;- Then, our goal
here is to compute the value g,.
Initially, we have g1 = g1 = t; — s1. Then, the sweep line proceeds to to,%3,...,%, in order.

At the i-th event point ¢;, there are two cases to consider depending on which set S; should be
combined with the current interval I; to form an optimal set S;. The set S is associated with the
interval I;,7 < i, and t; is the rightmost endpoint in S;. The two cases are (1) t; < s; and (2)
s; < tj <tj.



In the first case, the whole interval I; contributes to the gain. So, the gain achieved is given by

gj +ti — s;.

In the second case, the contribution of I; to the gain depends on the location of the second
rightmost right endpoint ¢ in S;. If #; > s; then the three intervals I;, I;, and I share the
point s;. Therefore, by Lemma 1 we can exclude the possibility to include these three intervals
simultaneously. So, it suffices to consider the case where t;, < ¢;. The gain achieved by incorporating
I; to S; is calculated as follows. The interval [¢;,;] is singly-covered. The one [max(s;, sj,%x), t;]
used to be singly-covered, but it is now doubly covered due to the new interval I;. Here, if s; > s;
then I; is a subinterval of I;, that is, I; C I;. Therefore, any set including both of them cannot
be optimal. Also, if ¢, > s; then either the three intervals have non-empty intersection or I; is
included in [;. Accordingly, the gain in this case is given by

gj +ti—1; — (t]’ — 5) =gj — 2t; +t; + s;.

Summarizing the above argument, we can compute the gain g; by

gi =max { max(g;+1; —s),
J 7

S,r<nt?}<(m (gj —2tj +t; + i)}
The terms ¢; — s; and t; + s; above are independent of j. So, what we need is to find
(1) j < i such that ¢; < s; and g; is largest, and
(2) j < i such that s; < t; < t; and g; — 2t; is largest.

(1) is easy because such g; is given as g5, where ;, is the right endpoint just to the left of s;, that
is, ty < 8; < tg41. To find an index such that g; —2¢; is largest under the condition that s; < t; < t;,
we maintain a set of points defined by (¢, g; —2t;),7 = 1,2,...,i — 1 in such a data structure that
we can find a highest point in the vertical region between s; and ¢;. One of such a data structure is
a variation of a segment tree. The root node is defined by [1,n] and its left and right subtrees are
recursively defined for [1,[n/2]] and [[n/2] + 1,n]. Leaves are [1,1],[2,2],...,[n,n]. Initially, all
the nodes have keys —oo. Whenever we compute a gain g¢;, we follow the path from the leaf [j, j]
to the root [1,n] while updating their key values if g; — 2¢; is larger than their keys.

At the i-th endpoint #; we want to find an index j such that g; — 2¢; is largest among those j
such that s; < t; < ;. Such a largest value is given as the largest key in the nodes associated with
an interval [k, — 1], where ¢ is the endpoint to the right of s;, that is, t;_1 < s; < tx. Obviously,
we can update the date structure and answer the query in O(logn) time. Thus, the total running
time is O(nlogn). The space required by the data structure is O(n).

Now the algorithm is obvious.

[Plane Sweep Algorithml]
(1) Sort the right endpoint in the increasing order:
Rename intervals so that the resulting sorted order is given as t; < t9 < ... < ty,.
(2) g1 = g1 = t1 — s1, and insert (¢1,g1 — 2t1) into the data structure T
(3) for i =2 to n do
(3.1)  Find an index j in T such that g; — 2¢; is largest among those satisfying s; < t;.
(3.2) gi = max{g;_1 +t; — 8i,95 — 2t; +t; + si}.
(3.3) g = max{gi—1, 9}, and insert (¢;,g; — 2t;) into T'.
Theorem 6 The plane sweep algorithm finds an optimal solution in O(nlogn) time and O(n)
space.



5 2-Dimensional Problem: Problem Formulation and Approxima-
tion Algorithm

In this section we consider the original problem in the two dimensions. Let R = (r;;) be a matrix
of positive real numbers. For each (7, j) we define a disc Cj; of radius r;; with its center at a lattice
point (7,7). For a subset S’ of the set S of all such discs we define its gain ¢g(S’) by

g(8') = the total area of regions covered exactly once by discs in &' (3)

Given a set S of discs, the problem is to find a subset S’ of § maximizing the gain. This problem
seems to be NP-hard although no proof is obtained.

Unfortunately, there is no such nice property stated in Lemma 1, that is, restriction to at most
doubly overlapping disc sets may lose all of optimal solutions in this case. A simple example is
shown in Fig. 4, in which three discs have intersection but an optimal solution contains all of them
if there is no other disc. Our approximation algorithm has the performance ratio 5.83 and runs in
O(nlogn) time where n = M N is the total number of discs.

To describe the algorithm we prepare some terminologies. C,, denotes a disc with its center at
point u. r(C,) denotes the radius of a disc C,,. By R,(C,,) we denote a disc obtained by contracting
C. by a factor of p,0 < p < 1, and therefore r(R,(C;;)) = pr(Cy). The contracted disc R,(C,) is
called the core of the disc. We say that a disc C, violates another disc C, if C, intersects the core
of Cy and C, safely intersects C, otherwise. Fig. 5 shows two safely intersecting discs and their

cores are painted dark.

Figure 4: Three discs with non-empty intersection

Figure 5: Safely intersecting discs with cores painted.

We start with the following simple approximation algorithm.
[Algorithm 1]
- Sort all the discs in the decreasing order of their radii.
- for each disc C), in the order do
if Cy, does not intersect any previously accepted disc
then accept C,, else reject C,.
- Output all the accepted discs.

Lemma 7 Algorithm 1 finds a 9-approximate solution.



Proof Let 84\/\/Vz§ be a solution (set of discs) obtained by Algorithm 1. We want to compare

the singly-covered area by Sqpproe With that by an optimal solution Sp,;. When we denote them by
|SCA(Sapprox)| and |SCA(Sypt)|, respectively, what we want to prove is the following:

[SCA(Sapprox)|

>
|SCA(Sopt)| N

1
3 o
Let Cy be any given disc which has not been accepted by Algorithm1. Then, there must be some
disc which has been accepted before examining C,, and intersects C',. Since discs are examined in
the decreasing order of their radii, we have r(C,) > r(C,). Thus, if we enlarge the accepted disc
C, by a factor of 3, then the rejected disc C), is completely contained in the enlarged disc E5(C)).
It implies that if we blow up every accepted disc then the union of all those enlarged discs covers

the union of all given discs. More precisely, we have

[SCA(Sapproz)| o [SCA(Sapproz)|  [SCA(Sapproz)|

ISCAWSop)l  — |Ucyes,,. Cul — [Ucg,es Cul
SCA(Supproa)]  _ 2uCueSuppron |Gl DoucSuppren €0l
B | Ucuesapprow E3(Cu)| | Ucuesapprow E3(Cu)| B | ZCuESapprom |E3(Cu)|
> L
=9

|

The performance ratio can be improved to 5.83. The idea is to allow some overlap among
accepted discs.

[Algorithm 2]
- Sort all the discs in the decreasing order of their radii.
- for each disc C), in the order do{
if Cy, is not violated by any previously accepted disc (that is, if the core of C), does not intersect
any such disc)
then accept C,, else reject C,.
- Output all the accepted discs.

Lemma 8 Algorithm 2 finds a 5.83-approzimate solution.

Proof Let C, be any disc rejected in the algorithm. Then, there must be a disc C), such that
(1) Cy has been accepted before examining C,,, which implies r(C,) > r(C,), and
(2) C, violates C, that is, C, intersects the core of C,.

We enlarge each accepted disc C), by a factor of 2+ p while keeping its center. The resulting disc
coincides with the region swept around the core boundary by a copy of the disc C,. The enlarged
disc has radius (24 p)r(C,). It implies that if we enlarge every accepted disc by a factor of (2 + p)
then each rejected disc is contained in some such enlarged disc.

The proof proceeds in a similar but slightly different way. A difference is that accepted discs
may not be disjoint, but it is important to note that their cores are disjoint. We have

|SCA(Sapproz)| > CuSappron |Cu MSCA(Sapproa)|
|SCA(SOpt)| N | Ucuesappmw E2+p(0u)|
Zcuesappmw [Vor(Cy) N SCA(Sapprox)|
B ZCueSappmm [Vor(Cy) N E2+p(CU)|

A key idea for our analysis is to partition the union (Js . Suppros E>4,(C,) into disjoint regions
each associated with a disc accepted by Algorithm 1 to evaluate how much area is covered exactly




once by those discs. For this purpose we take an additively weighted Voronoi diagram of the
accepted disc, weighting each accepted disc C), by its radius. Then we truncate each Voronoi cell
Vor(C,) associated with C,, by its blown-up copy F2,(C,). Notice that each Voronoi cell Voor(Cy)
is star-shaped. We partition Vor(C,) by extending rays from the center of C,, through Voronoi
vertices in the cells and through intersections between the disc boundary and Voronoi edges. See
Fig. 6 for illustration. The cell Vor(C,) is partitioned into angular sectors. We want to evaluate
how much area is covered by the disc O, itself or its core in each such angular sector.

There are two cases to consider. Look from the center of C, in some direction. The boundary
of Vor(C,) in that direction is either outside or inside the disc Cy. In fact, if two discs are disjoint
then the Voronoi edge between them if any lies between those discs. If two discs intersect each
other, then the Voronoi edge between them must lie completely inside their intersection and thus
it does not intersect the cores of the two discs since they safely intersect each other.

Figure 6: Partition of an additively weighted Voronoi cell associated with a disc C,, by rays from
the center of the disc.

If it is outside C,,, then we know that it is not too far outside (at most a factor 2 + p of the
disc radius), and the disc cannot be overlapped by any other disc in this direction. So we have
the ratio 1/(2 + p)? in an angular sector in that direction. On the other hand, if it is inside C,,
the part of the disc C), is overlapped by another disc, but at least we know that the core of C), is
not overlapped by another disc. So in that angular sector between two intersection between the
Voronoi edge and the disc boundary we have a ratio at least p?.

We choose the p value so that min{ﬁ, p?} is maximized, that is, we choose p = v/2 — 1 =

0.41421356. .. so that p? = ﬁ, that is, (p — (V2= 1) (p+ (1 +V2)(p+1)2=0,0< p < 1 is

satisfied. Then, the ratio of the singly-covered area to the total area of the union of those blown-up
discs is at least ( 1+\l/§)2 = 5.813.“. More precisely, we have

|SCA(SapprorL‘)| > ZCueSappmm |Cu N SCA(S&?WO:L‘”
[SCA(So)] = (U esupon B2o(Cu)l
D CueSappron |V OT(Cu) N SCA(Sappros)|

T CuSuppron |V O (Cu) NV By p(Cu)|
1 L > 1
24 p)2° ~ 5.83.

Y

min{p?, (
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6 Heuristic Algorithms and Experimental Results

Now we propose heuristic algorithms. Although the algorithms have no theoretically guaranteed
performance ratios, experimental results verify their effectiveness by their reasonable outputs. We
have two heuristic algorithms. One is quite simple but very fast. The other takes some time but it
produces better outputs because it is a natural extension of a polynomial-time exact algorithm for
the one-dimensional version of the problem.

6.1 Heuristic Algorithm 1

Consider an M x N rectangular regions associated with an M x N matrix R = (r;;). The first
heuristic algorithm is a simple greedy algorithm. We first fix a contraction factor p appropriately.
Then, we scan the matrix elements in a raster order. At each lattice point we accept the disc at the
point if its core does not intersect the core of any previously accepted disc and reject it otherwise.
Note that we use contracted discs by the factor p for the intersection test. If we can assume that
the number of accepted disc centers in an influence region is bounded by some constant, then the
algorithm runs in linear time. An influence region for a point (7, j) is a rectangular region with two
corners at (i — p(73j + max), J — P(7ij + Tmax)) and (2,7 + p(74j + "max)), where rmayx is the maximum
value of r,, € R. We can maintain a set of center points of accepted discs using some appropriate
data structure such as a range tree. Because of the nature of the algorithm the first disc at the
lower left corner is always accepted, which may be a bad choice for future selection.

We have implemented the Heuristic Algorithm 1 using LEDA 4.1. We applied it to sample
images of sizes 106 x 85 and 256 x 320 each to be enlarged into those of 424 x 340 and 1024 x 1280,
respectively. Fig. 7 is the one of the smaller size. The running time is 0.06 seconds for the
smaller image and 0.718 seconds for the larger one on a personal computer, DELL Precision 350
with Pentium 4. Fig. 8 illustrates an arrangement of contracted discs and its associated Voronoi
diagram for the set of those center points, which are outputs for the smaller image. At each output
pixel we computed a differential value using so-called Sobel operator and normalized the value
roughly between 3 and 8. So, r;; ranges from 3 to 8, which implies that the largest screen element
contains 16 x 16 pixels while the smallest one does 6 x 6.

IS0 400

Figure 7: An input image for experiments.
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Figure 8: An arrangement of discs accepted by Heuristic Algorithm 1 (above) and Voronoi diagram
associated with a set of center points of the discs.

6.2 Heuristic Algorithm 2

The second heuristic is based on Algorithm 2 in the previous section, which examines discs in the
decreasing order of their sizes and accepts discs if their core parts do not intersect the core part
of any previously accepted disc. It took more time than Heuristic Algorithm 1 for all of our input
images and the output quality was also worse. For example, it ran in 0.109 and 1.031 seconds for
small and large input images, respectively and the gains achieved were 151474 and 1358940 for
small and large images. The gains achieved by Heuristic 1 were 174022 and 1582940, respectively.
Heuristic 1 achieved better results for all the test images than Heuristic 2.

Fig. 9 shows an arrangement of contracted discs that are accepted by Heuristic Algorithm 2
and its associated Voronoi diagram.

6.3 Heuristic Algorithm 3

The third heuristic is based on the idea of disc traversing graph. In this heuristic we applied the
idea for the first few rows. That is, After computing the smallest radius dy,;, of discs we examine
all the discs with their centers in the first |dmin/2| rows. With this restriction at most doubly
overlapping disc sets lead to an optimal set of discs in this restricted region. Finding such an
optimal solution for the first several rows is followed by the same raster scan used in Heuristic 1.
Unfortunately, this heuristic could not give better solutions than Heuristic 1 in most of the cases.

Fig. 10 shows an arrangement of contracted discs that are accepted by Heuristic Algorithm 3
and its associated Voronoi diagram.

6.4 Iterative Improvement

Set of discs obtained by heuristic algorithms can be improved by applying a standard iterative
improvement strategy based on flipping of discs. That is, for each accepted disc we check whether
more area can be covered by replacing it with neighboring discs. The running time of this iterative
improvement depends on the number of flipping operations. Typical time for the improvement was
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Figure 9: An arrangement of discs accepted by Heuristic Algorithm 2 (above) and Voronoi diagram
associated with a set of center points of the discs.
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Figure 10: An arrangement of discs accepted by Heuristic Algorithm 3 (above) and Voronoi diagram
associated with a set of center points of the discs.
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0.469 and 4.39 seconds for small and large images, respectively. Improvement over the area was
roughly 1% in most cases.

6.5 Halftoning based on resulting Voronoi diagram

Center points of accepted discs specify center points of screen elements for digital halftoning.
Each Voronoi region in an associated Voronoi diagram is filled in according to the gray level at
corresponding place.

A part of an output image is shown in Fig. 11. The whole output image is given in Fig. 12
although it is largely contracted.
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Figure 11: A part of an output image by Heuristic Algorithm 1 followed by iterative improvement.

7 Concluding Remarks

We have considered a geometric optimization problem to choose discs among n given discs to
maximize the singly-covered area in conjunction with applications to adaptive digital halftoning.
It finds a hard problem from a theoretical point of view, but a heuristic algorithm proposed in this
paper works well for our practical applications.
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Figure 12: The whole output image.
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