
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
幾何的特徴を持つグラフクラスに対する効率のよいア

ルゴリズムに関する研究

Author(s) 齋藤, 寿樹

Citation

Issue Date 2010-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/8866

Rights

Description Supervisor:上原隆平, 情報科学研究科, 博士

Efficient Algorithms for Geometric Graph Classes

by

Toshiki SAITOH

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Associate Professor Ryuhei Uehara

School of Information Science
Japan Advanced Institute of Science and Technology

January 8, 2010

Abstract

It is said that every NP-hard problem has no efficient algorithm. However, many NP-hard
problems on general graphs can be solved efficiently if we restrict graphs to a geometric graph
class. For example, interval graphs form one of the geometric graph class. Coloring problem
which is well known NP-hard problem can be solved in linear time on interval graphs. A variety
of geometric graph classes have been proposed and studied. In this paper, we treat with some
problems for geometric graph classes. These problems are random generation, enumeration,
and graph reconstruction, mainly.

We treat with unlabeled graphs to avoid redundancy. We propose random generation and
enumeration algorithms for connected proper interval graphs. We use counting for random gen-
eration algorithms, so we first give the number of connected proper interval graphs of n vertices.
Based on the number, we present a simple algorithm that generates a connected proper interval
graph uniformly at random up to isomorphism. Next we propose an enumeration algorithm of
connected proper interval graphs. This algorithm is based on the reverse search, and it out-
puts each connected proper interval graph in O(1) time. Then we propose random generation
and enumeration algorithms for connected bipartite permutation graphs. These algorithms are
extension of the algorithms of proper interval graphs.

The graph reconstruction conjecture is a long-standing open problem in graph theory. There
are many algorithmic studies related it besides mathematical studies, such as deck checking, le-
gitimate deck, preimage construction, and preimage counting. We study these algorithmic prob-
lems limiting the graph classes to interval graphs, permutation graphs, and distance-hereditary
graphs. Since we can solve graph isomorphism problem for these graph classes in polynomial
time, deck checking for these graph classes are easily done in polynomial time. Since the num-
ber of interval graphs that can be obtained from a graph by adding a vertex and edges incident
to it can be exponentially large, developing polynomial time algorithms for legitimate deck,
preimage construction, and preimage counting on these graphs are not trivial. We present that
these problems are solvable in polynomial time on these graph classes.

i

Acknowledgments

First of all, I would like to express my sincere gratitude to my principal adviser Professor
Ryuhei Uehara of Japan Advanced Institute of Science and Technology for his academic ad-
vice and kind guidance during this work. His persistent encouragement and support were really
helpful, and his way of looking at problem, way of presenting materials, and everything were
very exciting to me. He has had a profound influence throughout my academic career. At the
most basic level, he introduced me to the exciting subject of graph algorithm, and provided key
insights and direction on the research side; problem-solving techniques, publications, collabo-
rations, and academic politics. Especially, he provided me with experience of meeting to many
advanced research topics and great researchers who work world wide and actively in the field of
theoretical computer science. He also gave me some jobs as assistant and the pay was helpful.
Again, I show my gratitude to my supervisor.

I would like to thank my adviser Professor Tetsuo Asano of Japan Advanced Institute of
Science and Technology for his helpful suggestions, encouragements. He always allowed me
to make remarks somewhat puerile or nonsense idea, and made some of them into interesting
research themes with fruitful and conscientious discussions.

I would like to express my gratitude to Professor Mineo Kaneko who kindly admitted to be
minor-research adviser, for helpful suggestions and encouragements.

I am no less grateful to the following people for their excellent comments and substan-
tial supports: Associate Professor Mitsuo Motoki of Kanazawa Technical College, Assistant
Professor Masashi Kiyomi of Japan Advanced Institute of Science and Technology, and the
enumeration algorithm seminar’s member.

Some of chapters in the thesis are based on joint papers with the following collaborators: As-
sistant Professor Katsuhisa Yamanaka of University of Electro-Communications and Mr. Yota
Otachi of Gunma University.

Finally, I deeply thank my family for their love, patience, and encouragement, and for all
that they have done for my sake; this work is dedicated to them.

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Random Generation and Enumeration Problems 1
1.2 Graph Reconstruction Problem . 2
1.3 Framework . 3

2 Preliminaries 5
2.1 Basic Graph Notations . 5
2.2 Interval Graphs . 6

2.2.1 Definition of Interval Graphs . 6
2.2.2 Compact Interval Representation . 7
2.2.3 PQ-tree andMPQ-tree . 9

2.3 Proper Interval Graphs . 10
2.3.1 Definition of Proper Interval Graphs 11
2.3.2 String Representation . 11

2.4 Permutation Graphs . 12
2.4.1 Definition of Permutation Graphs . 12
2.4.2 Modular Decomposition . 14

2.5 Bipartite Permutation Graphs . 15
2.6 Distance-Hereditary Graphs . 18
2.7 Dyck path and Motzkin path . 19
2.8 Computational Model . 20

3 Random Generation and Enumeration 22
3.1 Random Generation of Proper Interval Graphs 22
3.2 Enumeration of Proper Interval Graphs . 24
3.3 Random Generation of Bipartite Permutation Graphs 29
3.4 Enumeration of Bipartite Permutation Graphs 33

4 Reconstruction 39
4.1 Interval Graphs . 39

4.1.1 Deck Checking . 39
4.1.2 Non-interval Graph Preimage Case 40
4.1.3 Connected Preimage Case . 41
4.1.4 Disconnected Preimage Case . 45

iii

4.2 Permutation Graphs . 45
4.2.1 Deck Checking . 46
4.2.2 Non-permutation Graph Preimage Case 46
4.2.3 Non-critical Case . 46
4.2.4 Critical Case . 48

4.3 Distance-hereditary Graphs . 50
4.3.1 Deck Checking . 50
4.3.2 Non-distance-hereditary Graph Preimage Case 51
4.3.3 Distance-hereditary Preimage Case 51

5 Efficient Algorithm forMPQ-tree 53
5.1 Ordered Compact Interval Representation . 53
5.2 Find all P-nodes and Q-nodes . 55
5.3 ConstructMPQ-tree . 57

6 Concluding Remarks 60

A The canonicalMPQ-tree for an interval graph 61

References 63

Publications 67

iv

List of Figures

2.1 An interval graph and its interval representation. 7
2.2 The forbidden graphs of interval graphs. The part described k contains k vertices

(k ≥ 0). Thus (c) is a chordless cycle of more than three vertices, (d) has more
than five vertices, and (e) has more than five vertices. 7

2.3 A compact interval representation of an interval graph. 8
2.4 (a) An interval graph G. (b) A PQ-tree obtained from G with maximal cliques

Ci (i = 1, . . . , 4). (c) AMPQ-tree of G. 9
2.5 (a) A proper interval graph G. (b) A proper interval representation of G. (c) A

unit interval representation of G. 11
2.6 (a) A permutation graph. (b) its line representation. 13
2.7 (a) A line representation L. (b)LH. (c)LV . (d)LR. 13
2.8 Forbidden graphs of a comparability graph (k ≥ 0). 14
2.9 Graph and its modular decomposition . 15
2.10 Graph Hn. 16
2.11 A bipartite permutation graph with its line representation. 17
2.12 Proper interval graphs from the bipartite permutation graph in Figure 2.11(a). . 17
2.13 Distance-hereditary graph. 19
2.14 Forbidden graphs of distance-hereditary graphs. The part described k contains

k vertices (k ≥ 0). (a) hole. (b) house. (c) domino. (d) gem. 19
2.15 Dyck path . 20
2.16 Motzkin path . 20

3.1 Family tree T6 . 26
3.2 Case analysis of candidate indices. 27
3.3 An example of the bijection . 29
3.4 The root in S 4,3. 33
3.5 Examples of the parents. 34
3.6 Family tree of S 4,3. 35
3.7 Construction of a representation in S 7,4 from the jump representation in S 6,5. . . 38

4.1 Constructing graph G′ from candidate graph G for deck checking 40
4.2 Vertices corresponding to the enclosed intervals are end-vertex set. 41
4.3 Compact interval representations of G and G − s. In G − s, S \ s is end-vertex set. 43
4.4 Compact interval representations of G and G− s. In G− s, S \ s is not end-vertex

set. 43
4.5 Adding an interval [−1,−1] . 44
4.6 Strong modules M1,M2, and M3 are minimal. We add a line segment in the line

representation of G[M3]. 47

v

5.1 (a) An input interval representation. (b) The compact interval representation
corresponding to (a). (c) Data structure of ordered compact interval representa-
tion. 54

vi

List of Algorithms

1 find-all-child-strings . 26
2 find-all-strings . 27
3 find-all-child-rep . 37
4 deck-checking . 40
5 connected-interval-preimage . 44
6 non-critical-preimage . 48
7 critical-preimage . 49
8 reconstruct-distance-hereditary . 52
9 construct-MPQ-tree . 53
10 ordered-compact-interval-rep . 55
11 find-all-Q-node . 56
12 determine-parent-child-relation . 58
13 create-sections . 58

vii

Chapter 1

Introduction

It is said that every NP-hard problem has no efficient algorithm [18]. However, many NP-hard
problems on general graphs can be solved efficiently if we restrict graphs to a geometric graph
class. For example, interval graphs is one of the geometric graph class. Coloring problem
which is well known NP-hard problem can be solved in linear time on interval graphs. A
variety of geometric graph classes have been proposed and studied [9, 21, 48]. In this paper, we
treat with some problems for geometric graph classes. These problems are random generation,
enumeration, and graph reconstruction, mainly.

1.1 Random Generation and Enumeration Problems

Recently there has arisen need to process huge amounts of data in the areas of data mining,
bioinformatics, etc. In order to find and classify knowledge automatically from the data, we
assume that the data have a certain structure. We have to attain three efficiencies to deal with
the complex structures: the structure has to be represented efficiently; essentially different in-
stances have to be enumerated efficiently; and the properties of the structure have to be checked
efficiently. In the area of graph drawing, there are several papers [7, 26, 35, 41]. From the
viewpoint of graph classes, the previously studied structures are relatively primitive, and there
are many unsolved problems for more complex structures: Trees are widely investigated as
a model of such structured data [19, 29, 39, 40], and recently, distance-hereditary graphs are
studied [42].

In this paper, we investigate counting, random generation, and enumeration of graph classes
called proper interval graphs and bipartite permutation graphs. More precisely, we aim to count,
generate, and enumerate unlabeled connected proper interval graphs and bipartite permutation
graphs. From the practical point of view, “unlabeled” and “connected” are reasonable prop-
erties to avoid redundancy. On the other hand, however, they are also challenges to develop
efficient algorithms. Especially, unlabeled property requires us to avoid generating isomor-
phic graphs. In other words, we have to recognize isomorphic graphs and suppress gener-
ating/counting/enumerating them twice or more. Roughly speaking, the graph isomorphism
problem has to be solved efficiently for our target graph classes in this context. The graph iso-
morphism problem is one of well-known basic problems, and it is still hard on very restricted
graph classes [51]. There are two well known graph classes that the graph isomorphism prob-
lem can be solved in polynomial time; interval graphs [36] and permutation graphs [10]. Hence,
these graph classes are the final goal in this framework. We mention that these graph classes
have been widely investigated since they are very basic graph classes from the viewpoint of

1

graph theory. Moreover, many algorithms have been developed that run efficiently on these
graph classes (see, e.g., [9, 21, 48]) since they have useful properties. From the practical point
of view, when an efficient algorithm is developed and implemented, we have to check its relia-
bility. In the time, we have to prepare many or all graphs in the class. Hence, for such popular
graph classes, efficient random generation and enumeration are important.

Unlabeled proper interval graphs can be naturally represented by a language over an alpha-
bet Σ = {‘[’, ‘]’}. The number of strings representing proper interval graphs is strongly related
to a well known notion called Dyck path, which is a staircase walk from (0, 0) to (2n, 0) that
lies strictly below (but may touch) the diagonal x = 0. The number of Dyck paths of length n is
equal to Catalan number C(n). Thus, our results for counting and random generation of proper
interval graphs with n vertices are strongly related to C(n). The main difference is that we have
to consider isomorphism and symmetry in the case of proper interval graphs. For example, to
generate an unlabeled connected proper interval graph uniformly at random, we have to con-
sider the number of valid representations of each graph since it depends on the symmetry of
the graph. For example, to generate an unlabeled connected proper interval graph uniformly at
random, we have to consider the number of valid representations of each graph since it depends
on the symmetricity of the graph. We show in Section 3.1 that the number of connected proper
interval graphs of n + 1 vertices is 1

2(C(n) +
(

n
�n/2�
)
). Extending the result, we give an O(n) time

and a linear space algorithm that generates a connected proper interval graph with n vertices
uniformly at random.

In Section 3.3, we will show that an unlabeled connected bipartite permutation graph is
strongly related to an extension of a Motzkin path. Motzkin path is one natural extension of
the notion of Dyck path; a Dyck path can be seen as a sequence of +1 and −1, and a Motzkin
path can be seen as a sequence of +1, −1, and 0. An unlabeled connected bipartite permutation
graph related to a 2-Motzkin path that consists of +1, −1, +0, and −0. As we will see, bipartite
permutation graphs have a certain structure, which can be seen as a generalization of the struc-
ture appearing in proper interval graphs implicitly. That is, developing some new nontrivial
techniques based on the results in proper interval graphs, we advance the random generation
algorithm of proper interval graphs to bipartite permutation graphs.

Enumeration algorithms of proper interval graphs and bipartite permutation graphs are based
on the reverse search developed by Avis and Fukuda [2]. We design a good parent-child relation
among the geometric representations of these graph classes in order to perform the reverse
search efficiently. The relation allows us to perform each step of the reverse search in O(1)
time, and hence we have efficient algorithms that enumerates every unlabeled connected proper
interval graph and bipartite permutation graphs with n vertices in O(1) time and O(n) space.
(Each graph G is output in the form of the difference of edges between G and the previous one
so that the algorithm can output it in O(1) time.)

1.2 Graph Reconstruction Problem

Given a simple graph G = (V, E), we call the multi-set {G − v | v ∈ V} the deck of G where
G − v is a graph obtained from G by removing vertex v and the incident edges. The graph
reconstruction conjecture by Ulam and Kelly1 is that for any multi-set D of graphs with at
least two vertices there is at most one graph whose deck is D. We call a graph whose deck

1Determining the first person who proposed the graph reconstruction conjecture is difficult, actually. See [24]
for the detail.

2

is D a preimage of D. No counter example is known for this conjecture, and there are many
mathematical results about this conjecture. For example trees, regular graphs, and disconnected
graphs are reconstructible (i.e. the conjecture is true for these classes) [28]. Almost all graphs
are reconstructible from three well-chosen graphs in its deck [5]. Rimscha showed that many
subclasses of perfect graphs, for example interval graphs and permutation graphs, including
perfect graphs themselves are recognizable (i.e. looking at the deck of G one can decide whether
or not G belongs to perfect graphs) [45]. Rimscha also showed some of subclasses including
unit interval graphs are reconstructible. There are many good surveys about this conjecture. See
for example [6, 24].

Besides these mathematical results, there are some algorithmic results. We enumerate the
algorithmic problems that we address in this paper.

• Given a graph G and a multi-set D of graphs, check whether D is a deck of G (deck
checking).

• Given a multi-set D of graphs, determine whether there is a graph whose deck is D (legit-
imate deck).

• Given a multi-set D of graphs, construct a graph whose deck is D (preimage construction).

• Given a multi-set D of graphs, compute the number of (pairwise nonisomorphic) graphs
whose decks are D (preimage counting).

Kratsch and Hemaspaandra showed that these problems are solvable in polynomial time for
graphs of bounded degree, partial k-trees for any fixed k, and graphs of bounded genus, in
particular for planar graphs [33]. In the same paper they proved many graph isomorphism(GI)-
related complexity results. Hemaspaandra et al. extended the results [25].

In this paper, we treat with some graph classes that isomorphism problem can be solved
in polynomial time. Concretely, these graph classes are interval graphs, permutation graphs,
and distance-hereditary graphs. The graph isomorphism problem can be solved in polynomial
time on these graph classes, so developing a polynomial time algorithms for deck checking for
these graph classes is easy. However, the number of the ways of adding one vertex simply is
exponential so the number of preimage candidates of input graphs is exponential. Thus the key
is how to decrease the candidates.

In this paper, we propose polynomial time reconstruction algorithms for interval graphs,
permutation graphs, and distance-hereditary graphs.

1.3 Framework

We first prepare to propose our algorithms in Chapter 2. First, we state terminologies of graphs
in Section 2.1. Then, we define some graph classes and introduce some properties of these graph
classes. In Section 2.7, we explain a Dyck path and a Motzkin path for random generation of
proper interval graphs and bipartite permutation graphs.

We propose random generation and enumeration algorithms for proper interval graphs and
bipartite permutation graphs in Chapter 3. We show the random generation and enumeration
algorithms for proper interval graphs in Section 3.1 and 3.2, respectively, and for bipartite per-
mutation graphs in Section 3.3 and 3.4, respectively. We use counting argument for random
generation, so we count proper interval graphs in Section 3.1, and bipartite permutation graphs
in Section 3.3.

3

We present reconstruction algorithms for interval graphs, permutation graphs, and distance-
hereditary graphs in Chapter 4. In each section of Chapter 4, we first propose a deck checking
algorithm. Then we discuss that a preimage of input graphs is not the same graph class of the
input graphs. Finally, we present the reconstruction algorithms when a preimage of input graphs
is same the graph class of the input graphs.

In Chapter 5, we propose a simple constructionMPQ-tree algorithm.MPQ-trees are infor-
mative data structure for interval graphs. By usingMPQ-trees, we can solve the isomorphism
problem for interval graphs. Additionally, we use theMPQ-tree for the reconstruction algo-
rithm of interval graphs, implicitly. However, construction algorithm ofMPQ-tree in [32] has
several templates, so the implementation of the algorithm is not easy. Our algorithm is simple
and efficient.

Finally we make some remarks in Chapter 6.

4

Chapter 2

Preliminaries

2.1 Basic Graph Notations

A graph is a pair G = (V, E) of sets such that E ⊆ V 2; that is, the elements of E are 2-element
subsets of V [15]. The elements of V are the vertices (or nodes) of the graph G and the elements
of E are its edges.

Let G = (V, E) be a graph, and edge e ∈ E be e = {u, v}. Two vertices u, v are incident with
an edge e, and u is adjacent to v. The neighbor set of v is the set N(v) = {u ∈ V | {u, v} ∈ E}.
The closed neighbor set of v is the set N(v) ∪ {v}, and we denote by N[v]. Vertices u and v are
called weak twins if N(u) = N(v), and strong twins if N[u] = N[v].

The degree of a vertex v is |N(v)| denoted by deg(v). A vertex v is called a pendant if v is a
degree one vertex. A vertex of degree 0 is isolated. The sum of degrees of all vertices in graph
G is denoted by deg(G). Note that deg(G) is equal to twice the number of edges in G.

Two graphs G = (V, E) and G′ = (V ′, E′) are isomorphic if and only if there is a one-to-one
mapping φ : V → V ′ which satisfies {u, v} ∈ E if and only if {φ(u), φ(v)} ∈ E′ for every pair
of vertices u and v. When G is isomorphic to G′, we denote it by G ∼ G′. The mapping φ is
called isomorphism from G to G′. Given graphs G and G′, graph isomorphism problem (GI) is
the problem to determine whether or not G ∼ G′.

A graph G′ = (V ′, E′) is a subgraph of a graph G = (V, E) if V ′ ⊆ V and E′ ⊆ E. A subgraph
G′ = (V ′, E′) is an induced subgraph of G = (V, E) if E ′ = {{u, v} | u, v ∈ V ′ and {u, v} ∈ E}.
We say that G′ is induced by V ′ and write G[V ′] for G′. For a vertex v ∈ V , we denote by G − v
the graph obtained by removing v and its incident edges from G. Let S be a set, and s ∈ S . We
denote S \ {s} by S − s.

A graph G′ = (V ′, E′) is complement of G = (V, E) if V ′ = V and E′ = {{u, v} | u, v ∈ V, u �
v, and {u, v} � E}, and we denote complement of G by G = (V, E).

For a given graph G = (V, E), a sequence of distinct vertices v0, v1, · · · , v� is a path, denoted
by (v0, v1, · · · , v�), if {v j, v j+1} ∈ E for each 0 ≤ j ≤ � − 1. The length of a path is the number of
edges on the path. A sequence v0, v1, · · · , v�, v0 is a cycle if v0, v1, · · · , v� is a path and {v�, v0} ∈
E. The length of a cycle is the number of edges on the cycle.

A graph G = (V, E) is connected if for every pair of vertices u, v ∈ V , there is a path from u
to v. A graph G is disconnected if G is not connected. A maximal connected subgraph of G is
called a component of G.

A graph G is a tree if G is connected and G contains no cycle. We consider one vertex of a
tree as special, such a vertex is called the root of the tree. A tree with a fixed root is a rooted
tree. In a rooted tree, ancestors of v are vertices in the path from v to root. If u is ancestor of

5

v, and u and v are adjacent, we call that u is parent of v and v is child of u. A tree has a vertex
which has no child, such a vertex is called a leaf. An ordered tree is a rooted tree for which an
ordering is specified for the children of each vertex.

A graph G = (V, E) is complete if all the vertices of G are pairwise adjacent. A complete
graph on n vertices is a Kn. A subset V ′ ⊆ V is a clique in G if G[V ′] is complete. A vertex
v ∈ V is simplicial in G if N(v) is a clique in G. A subset V ′ ⊆ V is an independent set in G if
no two vertices in V ′ are adjacent.

A graph G = (V, E) is bipartite if V can be partitioned into two disjoint sets X and Y such
that for every x1, x2 ∈ X, {x1, x2} � E and for every y1, y2 ∈ Y , {y1, y2} � E. We denote a bipartite
graph by G = (X, Y, E).

A vertex v is universal in graph G if v connects to every vertex in G. We denote by G̃ the
graph obtained by adding one universal vertex to the graph G.Thus, G̃ is always connected.

Given two graphs G1 and G2, we define the disjoint union G1∪̇G2 of G1 and G2 as
(V1∪̇V2, E1∪̇E2) such that (V1, E1) is isomorphic to G1, and (V2, E2) is isomorphic to G2, where
∪̇ means the disjoint union.

2.2 Interval Graphs

This section deals with interval graphs. First, we define interval graphs and their properties.
Next, we explain compact interval representation. We use compact interval representation for
reconstruction algorithm of interval graphs in Section 4.1. However, we use the MPQ-tree
instead of compact interval representation for the reconstruction algorithm, implicitly. Con-
struction algorithm of MPQ-tree in [32] has several templates, so the implementation of the
algorithm is not easy. We propose a simple algorithm that constructsMPQ-tree from a interval
representation in Chapter 5.

2.2.1 Definition of Interval Graphs

A graph (V, E) with V = {v1, v2, · · · , vn} is an interval graph if there is a set of intervals I =
{Iv1 , Iv2 , · · · , Ivn}, such that {vi, v j} ∈ E if and only if Ivi ∩ Ivj � ∅ for each i and j with 1 ≤ i, j ≤ n.
We call the set I of intervals interval representation of the graph. We show an example of a
interval graph and interval representation in Figure 2.1. For each interval I, we denote by L(I)
and R(I) the left and right endpoints of the interval, respectively (hence we have L(I) ≤ R(I)).
Without loss of generality, we can assume that every interval is closed, so we denote an interval
I = [L(I),R(I)]. For two intervals I and J, we write I ≺ J if L(I) ≤ L(J) and R(I) ≤ R(J).
Interval I and interval J overlap if L(I) < L(J) ≤ R(I) < R(J) or L(J) < L(I) ≤ R(J) < R(I).
In the Figure 2.1, Ia and Ic, and Id and Ie overlap.

We introduce famous properties for interval graphs below.

Proposition 2.1. Any induced subgraph of an interval graph is an interval graph.

Lemma 2.2 (Fulkerson and Gross [16]). An interval graph on n vertices has at most n maximal
cliques.

Theorem 2.3 (Gilmore and Hoffman [20]). Graph G is an interval graph if and only if the
maximal cliques of G can be linearly ordered such that, for every vertex x of G, the maximal
cliques containing x occur consecutively.

6

Ia

Ib Ic

Id

a Ie

b

c

d e

Figure 2.1: An interval graph and its interval representation.

k

(a) (b) (c)

k
(d)

k
(e)

Figure 2.2: The forbidden graphs of interval graphs. The part described k contains k vertices
(k ≥ 0). Thus (c) is a chordless cycle of more than three vertices, (d) has more than five vertices,
and (e) has more than five vertices.

Theorem 2.4 (Lekkerkerker and Boland [34]). Graph G is an interval graph if and only if G
has no graph described in Figure 2.2 as an induced subgraph.

2.2.2 Compact Interval Representation

In this section, we define a compact interval representation and state its basic properties.

Definition 2.5 ([52]). An interval representation I of an interval graph G = (V, E) is compact
if and only if

• coordinates of endpoints of intervals in I are finite non-negative integers (We denote by
K the largest coordinates of endpoints for convenience. We sometimes call K the length
of I),

• there exists at least one endpoint whose coordinate is k for every integer k ∈ [0,K], and

• interval multi-set Ik = {I ∈ I | k ∈ I} differs from Il = {I ∈ I | l ∈ I}, and they do not
include each other, for every distinct integers k, l ∈ [0,K].

7

0 1 2 3 4 5

Figure 2.3: A compact interval representation of an interval graph.

We show an example of a compact interval representation of an interval graph in Figure 2.3.
Note that there may still be many compact interval representations of an interval graph. How-
ever compact interval representations have some good properties.

Lemma 2.6. Let I and J be compact interval representations of an interval graph G = (V, E),
and let K1 be the length of I, and let K2 be the length of J . Then the following holds.

{{I ∈ I | 0 ∈ I}, {I ∈ I | 1 ∈ I}, . . . , {I ∈ I | K1 ∈ I}}
= {{I ∈ J | 0 ∈ I}, {I ∈ J | 1 ∈ I}, . . . , {I ∈ J | K2 ∈ I}}

Proof. We denote by Ī the set of multi-set of intervals {{I ∈ I | 0 ∈ I}, {I ∈ I | 1 ∈ I}, . . . , {I ∈
I | K1 ∈ I}}, and we denote by J̄ the set of multi-set of intervals {{I ∈ J | 0 ∈ I}, {I ∈ J | 1 ∈
I}, . . . , {I ∈ J | K2 ∈ I}}. The vertices represented by the multi-set of intervalsIi = {I ∈ I | i ∈ I}
correspond to a clique in G. Assume that Ii never appears in J̄ for some i. Since Ii represents a
clique C, there must be a set of intervals representing a clique C′ containing C in J̄ (otherwise,
clique C cannot be represented inJ). Then for the same reason, Īmust contain a set of intervals
representing a clique containing C′. This contradicts the compactness of I. �

From the proof of Lemma 2.6, the following lemmas are straightforward.

Lemma 2.7. Let I be a compact interval representation of an interval graph G = (V, E), and let
K be the length of I. Then {I ∈ I | i ∈ I} for each i ∈ {0, . . . ,K} corresponds to each maximal
clique of G.

Lemma 2.8. The length of a compact interval representation of an n-vertex interval graph is at
most n.

Lemma 2.9. All the compact interval representations of an interval graph have the same length.
Intervals in different compact interval representations corresponding to an identical vertex have
the same length.

From Lemma 2.9, lengths of intervals corresponding to a vertex that corresponds to an
interval of length zero in some compact interval representation are always (i.e. in any compact
interval representation) zero.

Lemma 2.10. Vertices corresponding to intervals of length zero in a compact interval repre-
sentation are simplicial.

8

C1 C2 C3

C4

C1={1,2,4}

C2={1,3,4}

C4={4,7}

C3={3,4,5,6}

2 5,6

71 31,3

4

φ

6

531

2 4

7

(a) (b) (c)

Figure 2.4: (a) An interval graph G. (b) A PQ-tree obtained from G with maximal cliques Ci

(i = 1, . . . , 4). (c) AMPQ-tree of G.

2.2.3 PQ-tree andMPQ-tree

The PQ-tree was introduced by Booth and Lueker [8]. We can use it for recognizing interval
graphs. A PQ-tree is a rooted tree T with two types of internal nodes, P- and Q-nodes. The
leaves of T are labeled one-to-one with the maximal cliques of the interval graph G. The frontier
of a PQ-tree T is the permutation of the maximal cliques obtained by the ordering of the leaves
of T from left to right. The definition thatPQ-tree T corresponds to an interval graph G is given
as follows [8].

Definition 2.11. A PQ-tree T corresponds to an interval graph G, if and only if, for every PQ-
tree T ′ obtained from T by applying the following rules (1) and (2) a finite number of times,
there is a consecutive arrangement of the maximal cliques on G that represents for the frontier
of T ′:

(1) Arbitrarily permute the successor nodes of a P-node, or

(2) reverse the order of the successor nodes of a Q-node.

See Figure 2.4(b); we designate a P-node by a circle and a Q-node by a wide rectangle.
Booth and Lueker developed a linear time algorithm that either constructs a PQ-tree for G, or
states that G is not an interval graph.

The PQ-tree with appropriate label defined by the maximal cliques is canonical; that is,
given interval graphs G1 and G2 are isomorphic if and only if corresponding labeled PQ-trees
T1 and T2 are isomorphic. Since we can determine if two labeled PQ-trees T1 and T2 are
isomorphic in linear time, the graph isomorphism problem of interval graphs can be solved in
linear time (see [8, 36] for further details).

The MPQ-tree model, which stands for modified PQ-tree, is developed by Korte and
Möhring to simplify the algorithm for the PQ-tree [32]. The MPQ-tree T ∗ assigns sets of
vertices (or intervals from the view of interval representation) to the nodes of a PQ-tree T rep-
resenting an interval graph G = (V, E). It is possible that no vertices is assigned to some nodes.
A P-node is assigned only one set, while a Q-node has a set for each of its children (ordered
from left to right according to the ordering of the children). For a P-node P, this set consists of
those vertices of G contained in all maximal cliques represented by the subtree of P in T , but in
no other cliques.

For a Q-node Q, the definition is more involved. Let Q1, · · · ,Qm be the set of the children
(in consecutive order) of Q, and let Ti be the subtree of T with root Qi (note that m ≥ 3). We

9

then assign a set S i, called section, to Q for each Qi. Section S i contains all vertices that are
contained in all maximal cliques of Ti and some other T j, but not in any clique belonging to
some other subtree of T that is not below Q (see Figure 2.4(c)). The key property ofMPQ-trees
is summarized as follows:

Theorem 2.12 ([32, Theorem 2.1]). Let T be a PQ-tree for an interval graph G = (V, E) and
let T ∗ be the associatedMPQ-tree. Then we have the following:
(a) T ∗ can be obtained from T in O(|V | + |E|) time and represents G in O(|V |) space.
(b) Each maximal clique of G corresponds to a path in T ∗ from the root to a leaf, where each
vertex v ∈ V is as close as possible to the root.
(c) In T ∗, each vertex v appears in either one leaf, one P-node, or consecutive sections
S i, S i+1, · · · , S i+ j for some Q-node with j > 0.

Property (b) is the essential property ofMPQ-trees. For example, the root of T ∗ contains
all vertices belonging to all maximal cliques, and the leaves contain the simplicial vertices of G.
In [32], they did not state Theorem 2.12(c) explicitly. Theorem 2.12(c) is immediately obtained
from the fact that the maximal cliques containing a fixed vertex occur consecutively in T (c.f.
Theorem 2.3 and Lemma 2.7). Korte and Möhring state the following lemma in [32] as the
essential properties of theMPQ-tree:

Lemma 2.13 ([32, Lemma 2.2]). Let N be a Q-node. Let S 1, . . . , S m (in this order) be the
sections of N, and let Vi denote the set of vertices occurring below S i in theMPQ-tree T with
1 ≤ i ≤ m. Then we have the following:

(a) S i−1 ∩ S i � ∅ for i = 2, . . . ,m.
(b) S 1 ⊆ S 2 and S m−1 ⊇ S m.
(c) V1 � ∅ and Vm � ∅.
(d) S i ∩ S i+1 \ S 1 � ∅ and S i−1 ∩ S i \ S m � ∅ for i = 2, . . . ,m − 1.

However, under this conditions, theMPQ-tree is not uniquely determined. There exist two
or more nonisomorphicMPQ-trees for an interval graph. The reason is that two consecutive
sections S i and S i+1 can be equal. In the case, we swap them and obtain the differentMPQ-
trees. We note that this fact does not imply that the results in [32] is wrong. The uniqueness
of theMPQ-tree is not required in their paper, and they did not mind it [37]. However, their
algorithms for the construction of anMPQ-tree surely produce the uniqueMPQ-tree, which
satisfies the following additional condition (see Appendix A for further details):

(e) S i−1 � S i for i = 2, . . . ,m − 1.
The condition (e) implies that we can rewrite the condition (b) as follows:

(b) S 1 ⊂ S 2 and S m−1 ⊃ S m.
Hereafter, we will use the conditions from (a) to (e) as the basic properties of anMPQ-tree.

2.3 Proper Interval Graphs

In this section, we introduce proper interval graphs which form a subclass of interval graphs.
Proper interval graphs correspond to strings, and we use string representation of a proper inter-
val graph for random generation (Section 3.1) and enumeration algorithms (Section 3.2). We
will explain string representation of proper interval graphs.

10

Ia

Ib Ic

Id

a

dc

e

b Ie

(a) (b)

Ia

Ib Ic

Id

Ie

(c)

Figure 2.5: (a) A proper interval graph G. (b) A proper interval representation of G. (c) A unit
interval representation of G.

2.3.1 Definition of Proper Interval Graphs

An interval representation is proper if no two distinct intervals I and J exist such that I properly
contains J or vice versa. That is, either I ≺ J or J ≺ I holds for every pair of intervals I and J.
An interval graph is proper if it has a proper interval representation (see Figure 2.5(a) and (b)).
If an interval graph G has an interval representation I such that every interval in I has the same
length, G is said to be a unit interval graph. Such interval representation is called a unit interval
representation (see Figure 2.5(c)). It is well known that proper interval graphs coincide with
unit interval graphs [46]. That is, given a proper interval representation, we can transform it to
a unit interval representation. A simple constructive way of the transformation can be found in
[4]. With perturbations if necessary, we can assume without loss of generality that L(I) � L(J)
(and hence R(I) � R(J)), and R(I) � L(J) for any two distinct intervals I and J in a unit interval
representation I. In a unit interval representation, we assume that the intervals are sorted by
left endpoint values.

2.3.2 String Representation

We denote an alphabet {‘[’, ‘]’} by Σ throughout the paper. We encode a unit interval repre-
sentation I of a unit interval graph G by a string s(I) in Σ∗ as follows; we sweep the interval
representation from left to right, and encode L(I) by ‘[’ and encode R(I) by ‘]’ for each I ∈ I
(e.g., s(I) = [[[][][]]] in Figure 2.5(c)). We call the encoded string a string representation of G.
We say that a string x in Σ∗ is balanced if the number of ‘[’s in x is equal to that of ‘]’s. Clearly
s(I) is a balanced string of 2n letters. Using the construction in [4], s(I) can be constructed
from a proper interval representation I in O(n) time and vice versa since the ith ‘[’ and the ith
‘]’ give the left and right endpoints of the ith interval, respectively.

We denote ‘[̄’ = ‘]’ and ‘]̄’ = ‘[’ respectively. For two strings x = x1x2 · · · xn and y =
y1y2 · · · ym in Σ∗, we say that x is smaller than y if (1) n < m, or (2) n = m and there exists an
index i ∈ {1, . . . , n} such that xi′ = yi′ for all i′ < i and xi = ‘[’ and yi = ‘]’. If x is smaller than y,
we denote x < y. We note that the balanced string x = [[· · · []] · · ·] is the smallest among those
of the same length. For a string x = x1x2 · · · xn we define the reverse x̄ of x by x̄ = x̄n x̄n−1 · · · x̄1.
A string x is symmetric if x = x̄. Here we have the following lemma:

Lemma 2.14 (See, e.g., [13, Corollary 2.5]). Let G be a connected proper interval graph, and
I and I′ be any two unit interval representations of G. Then either s(I) = s(I′) or s(I) = s(I′)
holds. That is, the unit interval representation and hence the string representation of a proper
interval graph is determined uniquely up to isomorphism.

11

Note that G is supposed to be connected in Lemma 2.14. If G is disconnected, we can obtain
several distinct string representations by arranging the connected components.

A connected proper interval graph G is said to be symmetric if its string representation is
symmetric.

It is easier for our purpose (counting, random generation, and enumeration of unlabeled
proper interval graphs) to deal with the encoded strings in Σ∗ than to use interval representations.
Given an interval representation I of a proper interval graph G, the smaller of the two string
representations s(I) and s(I) is called canonical. If s(I) is symmetric, s(I) is the canonical
string representation. Hereafter we sometimes identify a connected proper interval graph G
with its canonical string representation.

For a string x = x1x2 · · · xn ∈ Σn of length n, we define the height hx(i) (i ∈ {0, . . . , n}) as
follows;

hx(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if i = 0,
hx(i − 1) + 1 if xi = ‘[’,
hx(i − 1) − 1 if xi = ‘]’.

We say that a string x is nonnegative if mini{hx(i)} is equal to 0 (we do not have mini{hx(i)} > 0
since hx(0) = 0). The following observation is immediate:

Observation 2.15. Let x = x1x2 · · · x2n be a string in Σ2n. (1) x is a string representation of a
(not necessarily connected) proper interval graph if and only if x is balanced and nonnegative.

(2) x is a string representation of a connected proper interval graph if and only if x1 = ‘[’
and x2n = ‘]’, and the string x2 · · · x2n−1 is balanced and nonnegative.

A balanced nonnegative string of length 2n corresponds to a well-known notion called Dyck
path. We will explain Dyck path in section 2.7.

2.4 Permutation Graphs

In this section, first, we define permutation graphs and explain its basic properties. Next, we
explain modular decompositions. Modular decomposition deeply relates to permutation. For
example, using the modular decomposition, we can solve the recognition and isomorphism
problems of permutation graphs. In Section 4.2, we will propose a reconstruction algorithm for
permutation by using modular decomposition.

2.4.1 Definition of Permutation Graphs

A graph G = (V, E) with V = {v1, v2, . . . , vn} is said to be a permutation graph if and only if
there is a permutation π over V such that {vi, v j} ∈ E if and only if (i − j)(π(vi) − π(v j)) < 0.
Intuitively, each vertex vi in a permutation graph corresponds to a line �i joining two points
on two parallel lines L1 and L2. Then two vertices vi and v j are adjacent if and only if the
corresponding lines �i and � j intersect. The ordering of vertices gives the ordering of the points
on L1, and the ordering by permutation π over V gives the ordering of the points on L2. We call
the intersection model a line representation of the permutation graph. For example, Figure 2.6
is a permutation and its line representation, and a permutation π = (3, 4, 1, 6, 5, 2) of Figure 2.6.
Precisely, a line representation L of a permutation graph G = (V, E) with |V | = n consists of
two parallel lines L1 and L2, and n points are at regular intervals on L1 and L2, respectively. We

12

6

531

24

(a)

1 2 3 4 5 6

3 4 1 6 5 2

(b)

Figure 2.6: (a) A permutation graph. (b) its line representation.

(a) (b)

(d)(c)

H-flip

H-flip

V-flip V-flipRotation

Figure 2.7: (a) A line representation L. (b)LH. (c)LV . (d)LR.

suppose that these points are numbered from 1 to n on the lines from left to right. Then each
vertex vi ∈ V corresponds to a pair of points (i, π(i)), which means the point i on L1 and the
point π(i) on L2 are joined by the corresponding line �i. For two line representations L and L′,
suppose L contains (i, j) if and only if L′ contains (i, j). Then we call them isomorphic and
denote by L = L′.

LetL = (L1, L2) be a line representation of a permutation graph G = (V, E). For a connected
permutation graph G, we can construct essentially equivalent representations by flipping L.
On a horizontal flip LH (H-flip for short) of L, each line (i, j) on L is mapped to the line
(n− i+ 1, n− j+ 1). On a vertical flip LV (V-flip for short) of L, each line (i, j) on L is mapped
to the line (j, i). For a line representation L, it is not difficult to see that (LH)V = (LV)H gives
us a rotation of L. Hence we denote the line representation by LR after this operation (see
Figure 2.7).

We introduce famous properties for permutation graphs below.

Proposition 2.16. An induced subgraph of a permutation graph is a permutation graph.

Theorem 2.17 (Pnueli, Lempel, and Even [44]). Graph G is a permutation graph if and only if
G is a comparability graph and a co-comparability graph.

Lemma 2.18 (Gllai [17]). Graph G is a comparability graph if and only if G is (Ck+6, T2, X2,
X3, X30, X31, X32, X33, X34, X36, XF2k+3

1 , XFk+1
2 , XFk

3, XFk
4, XF2k+3

5 , XF2k+2
6)-free; that is, G has no

13

k

2k+3

k+1 k k 2k+3 2k+2

Figure 2.8: Forbidden graphs of a comparability graph (k ≥ 0).

graph described in Figure 2.8 as an induced subgraph.

From Theorem 2.17 and Lemma 2.18, we can obtain next theorem, immediately.

Theorem 2.19. Graph G is a permutation graph if and only if G is T2, X2, X3, X30, X31, X32, X33,
X34, X36, XF2k+3

1 , XFk+1
2 , XFk

3, XFk
4, XF2k+3

5 , XF2k+2
6)-free and co − (Ck+6, T2, X2, X3, X30, X31, X32,

X33, X34, X36, XF2k+3
1 , XFk+1

2 , XFk
3, XFk

4, XF2k+3
5 , XF2k+2

6)-free; that is, G has no graph described
in Figure 2.8 and the complements of them as an induced subgraph.

2.4.2 Modular Decomposition

Modular decomposition is a strong tool for developing fast algorithms in many areas. Here we
summarize it. For the detail see for example [9, 48].

Let G = (V, E) be a graph. The subset M ⊂ V is a module in G, if for all vertices u, v ∈ M
and w ∈ V \ M, {u,w} ∈ E if and only if {v,w} ∈ E. A module M in G is trivial if M = V ,
M = ∅, or |M| = 1. G is called a prime (with respect to modular decomposition) if G contains
only trivial modules. A module M is strong if it does not overlap any other modules in G, i.e.

M ∩ M′ = ∅, M ⊂ M′, or M′ ⊂ M

holds for any other module M′ in G. We call a module that contains at least two vertices a
multi-vertex module.

A modular decomposition tree of a graph G is a rooted tree whose each node corresponds to
each strong module of G such that for any two nodes N1 and N2 which correspond to modules
M1 and M2 respectively, N1 is an ancestor of N2 if and only if M1 contains M2. We sometimes
say that strong module M1 is the parent of strong module M2, and M2 is a child of M1, if
the node corresponding to M1 is the parent of the node corresponding to M2 in the modular
decomposition tree (see Figure 2.9).

A strong multi-vertex module M in graph G whose child modules are disconnected to each
other in G[M] is a parallel module. A strong multi-vertex module M in graph G whose child

14

1 3

2

4

5

7

8

9

10

11

12

13

6

1 3

2

4

5

7

8

9

10

11

12

13

6

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

2, 3, 4, 5 7, 8 9, 10, 11, 12, 131

32 4 5 7 8

9 10

11

12 13

6

9,10 12,13

Pr

Pr

S S

Pa Pa

Figure 2.9: Graph and its modular decomposition

modules are disconnect to each other in G[M] is a series module. Let M ′ be a strong multi-
vertex module. If M′ is not a parallel module, and M′ is not a series module, then M′ is called
a prime module. A graph induced by a prime module is connected in both G and G [48].

We say a strong multi-vertex module M is minimal if every child of M is a module of one
vertex. Note that every graph of the size more than one has at least one minimal strong multi-
vertex module. We introduce a basic lemma.

Lemma 2.20 (Gallai [17]). A minimal strong multi-vertex module that is a prime module in-
duces a prime.

Lemma 2.21. A minimal strong multi-vertex module is either a clique, independent set, or
prime.

Let G = (V, E) be a prime. We say that G is critical if G − v is not a prime for any v ∈ V .
We define graph Hn. Hn is a bipartite graph (X, Y, E) such that X = {x1, . . . , xn}, Y = {y1, . . . , yn},
and {xi, y j} ∈ E if and only if i ≤ j. See Figure 2.10.

Theorem 2.22 (Schmerl and Trotter [47]). Given prime graph G = (V, E) with |V | ≥ 2, G is
critical if and only if G is isomorphic to Hn or to Hn.

Hence the number of vertices in a critical graph is always even.

2.5 Bipartite Permutation Graphs

When a permutation graph is bipartite, it is said to be a bipartite permutation graph (see Fig-
ure 2.11). Then the following lemma holds:

15

x1

x2

xi

xn-1

xn

y1

y2

yi

yn-1

yn

...

...

... ...

Figure 2.10: Graph Hn.

Lemma 2.23. Let G = (X, Y, E) be a connected bipartite permutation graph with |X| > 0 and
|Y | > 0 and L = (L1, L2) its line representation. Without loss of generality, we assume that
v1 ∈ X corresponds to (1, i) for some i with 1 ≤ i ≤ n. Then X and Y satisfy that X = {vi |
vi corresponds to (i, j) with i < j} and Y = {vi | vi corresponds to (i, j) with i > j}.
Proof. If v1 ∈ X corresponds to (1, 1), G is disconnected. Hence v1 = (1, i) with i > 1 and there
is a vertex vi′ corresponding to (i′, 1) with i′ > 1. Clearly, �1 and �i′ intersect. Hence vi′ ∈ Y , and
v1 and vi′ satisfy the condition.

To derive a contradiction, we assume that there is a v j ∈ X that corresponds to (j, j′) with
j ≥ j′ in G. Without loss of generality, every vertex corresponding to �k = (k, k′) with k < j
satisfies the condition of the lemma. Then let x j be the number of vertices in X placed before
v j on L1, and y j the number of vertices in Y placed before v j on L2, respectively. Moreover,
let y′j be the number of vertices in Y placed before v j on L1. If j = j′, we have j − x j = y′j =
y j. Hence G is disconnected, which is a contradiction. Thus assume j > j′. Then, we have
y j + x j = j′ − 1 < j− 1 = x j + y′j, equivalently, y′j > y j. Thus there exists vk ∈ Y with �k = (k, k′)
such that k < j and j′ < k′. We suppose that vk is the leftmost one among such vertices. If
N(vk) ∩ X ∩ {v1, . . . , vk−1} is empty, it is not difficult to see that G is not connected (since v j and
vk are the leftmost pair of the second connected component). Hence vk has some neighbor, say
vx, in X ∩ {v1, . . . , vk−1}. By the assumption, for � j = (j, j′), �k = (k, k′), and �x(x, x′), we have
x < k < j and j′ < k′ < x′. This implies that � j and �x intersect, which contradicts that v j and vx

are in X. With a symmetric argument for Y , the lemma follows. �

One important property is that they are unique up to isomorphism like Lemma 2.14:

Lemma 2.24. Let G = (V, E) be a connected bipartite permutation graph, and L and L′ any
two line representations of G. Then one of L = L′, L = L′H, L = L′V, and L = L′R holds.
That is, the line representation of G is unique up to isomorphism.

Proof. By Lemma 2.23, we can partition V to X and Y . Let G2[X] = (X, EX) be a graph
obtained from G by joining two vertices x, x′ ∈ X if and only if N(x) ∩ N(x′) � ∅. That is,
two vertices x and x′ are joined in G2[X] if the distance between them is 2. In other words, x
and x′ are joined by some vertex in Y . We first show that G2[X] is a connected proper interval
graph. Intuitively, from a line representation of G, we can obtain the interval representation of
G2[X] as follows (see Figure 2.12(a)): we first rearrange the vertices in Y to vertical lines at
regular intervals, and next make the vertices x in X be horizontal intervals spanning N(x). Then

16

1

2

3

4

7

10

5

6

8

9

11

12

1 2 3 4 5 6 7 8 9 10 11 12

(a) (b)

Figure 2.11: A bipartite permutation graph with its line representation.

3 5 6 8 9 11 12

1

2

4

7

10

1 2 4 7 10

3
5

6

8
9
11

12

(a) (b)

Figure 2.12: Proper interval graphs from the bipartite permutation graph in Figure 2.11(a).

17

the resultant intervals corresponding to the vertices x in X are proper, and this proper interval
representation can be transformed to the unit interval representation in a straightforward way in
[4]. The resultant graph G2[X] is also connected. Thus Lemma 2.14 implies that the resultant
unit interval representation is unique up to reversal. G2[Y] can be defined in a symmetric way
(see Figure 2.12(b)).

Now, we consider the rewind of this process. Given connected bipartite permutation graph
G = (V, E), X and Y are determined from G uniquely by Lemma 2.23. Then, by the discussion
above, two proper interval graphs G2[X] and G2[Y] are uniquely determined. By Lemma 2.14,
these unit interval graphs correspond to the unique interval representations. Thus, these unit
interval representations give the unique orderings of X and Y in a natural way, respectively.
Thus, combining these two orderings on X and Y with G = (X, Y, E), we can construct the
line representation of G uniquely as follows. First, we pick up the “leftmost” vertex x1 in X
according to the ordering of X. Then pick up the “leftmost” vertex y1 from N(x1) according to
the ordering of Y . Now all vertices in N(x1) are placed before x1 on L2 according to the ordering
of Y , and all vertices in N(y1) are placed before y1 on L1 according to the ordering of X. Next
we proceeds to x2 and y2, and so on. By a simple induction for the size of graph, we can show
that the line representation of G is uniquely determined up to isomorphism. �

Let G = (V, E) be a connected bipartite permutation graph, and L,LH,LV ,LR its four line
representations. It is easy to see that some of them can be isomorphic. We say G is H-symmetric,
V-symmetric, and R-symmetric if L = LH, L = LV , and L = LR, respectively.

Here, we map each representation L to a string s(L) in Σ∗ as follows. We first sweep
the endpoints from left to right on L1, and construct a string s1(L) by adding ‘[’ when the
endpoint is in X, and ‘]’ when the endpoint is in Y (e.g., s1(L) = [[][]][]][]] in Figure 2.11).
Next we sweep the endpoints from left to right on L2, and construct a string s2(L) by adding
‘[’ when the endpoint is in Y , and ‘]’ when the endpoint is in X (e.g., s2(L) = [][][[[[][]] in
Figure 2.11). Finally, we concatenate s2(L) after s1(L) and obtain the resultant string (e.g.,
s(L) = [[][]][]][]][][][[[[][]] in Figure 2.11).

Using the string, we define a canonical representation of G as follows. We first sup-
pose that G is neither H-symmetric, V-symmetric, nor R-symmetric. Thus all strings
s(L), s(LH), s(LV), s(LR) are distinct. Then the canonical representation is the one correspond-
ing to the smallest string. When G satisfies exactly one symmetricalness with respect to H-flip,
V-flip, or rotation, then four possible representations give two distinct strings. Then the canon-
ical representation is the one corresponding to the smaller string. If G satisfies two symmetri-
calnesses, the last symmetricalness is also satisfied. Hence, in the case, four representations are
isomorphic and this gives the unique canonical representation. By Lemma 2.24, this rule gives
us a one-to-one mapping between bipartite permutation graphs and canonical representations.

2.6 Distance-Hereditary Graphs

An undirected graph G is distance-hereditary if and only if G is connected, and for any two
distinct vertices x and y in G the length of induced paths between x and y are the same. It
is convenient to define a new graph class not to care if graphs are connected. We define an
undirected graph G is weakly distance-hereditary if and only if for any two distinct vertices x
and y in G the length of induced paths between x and y are the same.

We define a useful pruning sequence for distance-hereditary graphs. We introduce the fol-
lowing two lemmas.

18

1

2 3

4

5

6

7
8

9

10

Figure 2.13: Distance-hereditary graph.

k

(a) (b) (c) (d)

Figure 2.14: Forbidden graphs of distance-hereditary graphs. The part described k contains k
vertices (k ≥ 0). (a) hole. (b) house. (c) domino. (d) gem.

Lemma 2.25 (Bendelt and Mulder [3]). Given a graph G = (V, E), and two vertices u, v ∈ V
are twin. Then G is distance-hereditary if and only if G − u and G − v are distance-hereditary.

Lemma 2.26 (Bendelt and Mulder [3]). Graph G = (V, E) has a pendant vertex w ∈ V. Then G
is distance-hereditary if and only if G − w is distance-hereditary.

Lemmas 2.25 and 2.26 give rise to an elimination scheme characterization of distance-
hereditary graphs. A sequence v1 . . . vn is a pruning sequence if each vi either a pendant vertex
in the graph induced by {vi . . . vn}, or a twin of some vertex in the graph induced by {vi . . . vn}.
Theorem 2.27 (Bendelt and Mulder [3]). Graph G is distance-hereditary if and only if G has a
pruning sequence.

Nakano et al. proposed a DH-tree for a distance-hereditary graph [42]. We can see the tree
as a uniquely defined canonical form of distance-hereditary graphs isomorphic to each other.

Theorem 2.28 (Bendelt and Mulder [3]). Graph G is distance-hereditary if and only if G is
connected, and (hole, house, domino, gem)-free; that is, G has none of the graphs in Figure 2.14
as an induced subgraph.

2.7 Dyck path and Motzkin path

We explain a Dyck path and a Motzkin path for random generation of proper interval graphs and
bipartite permutation graphs. A path in the (x, y) plane from (0, 0) to (2n, 0) with steps (1, 1)
and (1,−1) is called a Dyck path of length 2n if it never pass below the x-axis (see Figure 2.15).
It is well known that the number of Dyck paths of length n is given by the nth Catalan number
C(n) := 1

n+1

(
2n
n

)
(see [50, Corollary 6.2.3] for further details). We will use one of the generalized

19

(0,0) (16,0)

(8,8)

Figure 2.15: Dyck path

(0,0) (8,0)

Figure 2.16: Motzkin path

notions of Catalan number; C(n, k) := k+1
n+1

(
n+1

(n−k)/2

)
, which gives us the number of subpaths of

Dyck paths from (0, 0) to (n, k). This can be obtained by a generalized Raney’s lemma about
m-Raney sequences with letting m = 2, length n, and total sum k; see [22, Equation (7.69),
p. 349] for further details.

A path in the (x, y) plane from (0, 0) to (n, 0) with steps (1, 0), (1, 1), and (1,−1) is called
a Motzkin path of length n if it never go below the x-axis (see Figure 2.16 and [50, Exercise
6.38] for further details). The number of Motzkin paths of length n is called Motzkin number
M(n); e.g.,M(1) = 1,M(2) = 2,M(3) = 4,M(4) = 9,M(5) = 21,M(6) = 51. A 2-Motzkin
path is a Motzkin path that has two kinds of step (1, 0). We distinguish them by (1,+0) and
(1,−0). Deutsch and Shapiro show that 2-Motzkin paths have correspondences to ordered trees
and others [14].

In paths above, each step consists of (1, x) for some x in {±1,±0}. Hence we will denote a
path by a sequence of such integers x in {±1,±0}.

2.8 Computational Model

Time complexity is measured by the number of arithmetic operations in the random generation
algorithms. Especially we assume that each binomial coefficient and each (generalized) Catalan
number can be computed in O(1) time. Moreover we assume that the basic arithmetic operations
of these numbers can be done in O(1) time. Actually, a binomial coefficient and a (generalized)
Catalan number require linear bits, so this assumption is clearly out of the standard RAM model.

20

We have to multiply the time complexity of calculation of these numbers to the complexities we
show to obtain the time complexity in the standard RAM model. We employ the assumption in
Section 3.1, 3.3 to simplify the discussion. It is worth remarking that the other algorithms does
not require the assumption, and all the results are valid on the standard RAM model.

21

Chapter 3

Random Generation and Enumeration

3.1 Random Generation of Proper Interval Graphs

In this section, we count the number of mutually nonisomorphic proper interval graphs. We also
propose an algorithm that efficiently generates a proper interval graph uniformly at random.

The number of proper interval graphs has been given by the recurrence equation in [23].
The closed equation of the number of proper interval graphs has been mentioned informally by
Karttunen in 2002 [27]. We here give an explicit proof so that we use some notions for random
generation.

Theorem 3.1 (Karttunen 2002). For any positive integer n, the number of connected proper
interval graphs of n + 1 vertices is 1

2(C(n) +
(

n
�n/2�
)
).

Proof. We define three sets S (n), T (n), and U(n) of strings in Σ2n of length 2n by
S (n) = {x | x is balanced, nonnegative, |x| = 2n, and x is symmetric},
T (n) = {x | x is balanced, nonnegative, |x| = 2n, and x is not symmetric}, and
U(n) = {x | x is balanced, nonnegative, and |x| = 2n}.

A balanced nonnegative string corresponds to a Dyck path, so |U(n)| = C(n).
The number of connected proper interval graphs of n + 1 vertices is equal to |T (n)| /2 +

|S (n)| = |U(n)| /2 + |S (n)| /2 = 1
2(C(n) + |S (n)|), by Observation 2.15. The number of elements

in S (n) is equal to that of nonnegative strings x′ of length n, since each symmetric string x is
obtained by the concatenation of strings x′ and x̄′.

Now the task is the evaluation of the number of nonnegative strings x of length n with
hx(n) = h. Clearly we have C(n, h) = 0 if h > n. The following equations hold for each integers
i and k with 0 ≤ i ≤ k.

(1) C(2k, 2i + 1) = 0, C(2k + 1, 2i) = 0,
(2) C(2k, 0) = C(k), C(k, k) = 1, and
(3) C(k, i) = C(k − 1, i − 1) + C(k − 1, i + 1).

It is necessary to show
∑n

i=0 C(n, i) =
(

n
�n/2�
)

to complete the proof. This equation can be obtained
from Equation (5.18) in [22]. �

Next we consider the uniform random generation of a proper interval graph of n vertices.

Theorem 3.2. For any given positive integer n, a connected proper interval graph with n ver-
tices can be generated uniformly at random in O(n) time and O(n) space. The time complexity
to convert the string representation to a graph representation is O(n+m) where m is the number
of edges of the created graph.

22

Proof. We denote by y = y1 · · · y2n the canonical string of a connected proper interval graph
G = (V, E) to be obtained. We fix y1 = ‘[’ and y2n = ‘]’ and generate x = x1 · · · x2n′ with y = [x],
where n′ = n − 1 and x is a balanced nonnegative string.

The idea is simple; just generate a balanced nonnegative string x. However each non-
symmetric graph corresponds to two balanced nonnegative strings, while each symmetric
graph corresponds to exactly one balanced nonnegative (symmetric) string. We use the equa-
tion |T (n′)| /2 + |S (n′)| = |U(n′)| /2 + |S (n′)| /2 = 1

2(C(n′) + |S (n′)|) in Theorem 3.1 in or-
der to adjust the generation probabilities. The algorithm first selects which type of string
to generate: (1) a balanced nonnegative string (that can be symmetric) with probability
|U(n′)| /(|U(n′)| + |S (n′)|) = C(n′)/(C(n′) +

(
n′
�n′/2�
)
) or (2) a balanced nonnegative symmetric

string with probability |S (n′)| /(|U(n′)| + |S (n′)|) =
(

n′
�n′/2�
)
/(C(n′) +

(
n′
�n′/2�
)
). This probabilis-

tic choice adjusts the generation probabilities between symmetric graphs and non-symmetric
graphs.

In each case, the algorithm generates each string uniformly at random using the function
C(n, h) introduced in the proof of Theorem 3.1 as follows:

Case 1: Generation of a balanced nonnegative string of length 2n′ uniformly at random. There
is a known algorithm for this purpose [1]. We simply generate sequence of ‘[’ and ‘]’ from
left to right. Assume that the algorithm has already generated a nonnegative string x1 · · · xk of
length k with k < 2n′. Next, we choose either ‘[’ or ‘]’ as xk+1. The choice between alternative
next states must be made on the basis of the proportion of terminal strings reached through the
alternatives. The number of nonnegative strings that the next letter is ‘[’ is p = C(r, hx(k) + 1),
and the number of nonnegative strings that the next letter is ‘]’ is q = C(r, hx(k) − 1), where r is
equal to 2n′ − k − 1. Choose ‘[’ as the next letter with probability p/(p + q) = (hx(k)+2)(r−hx(k)+1)

2(r+1)(hx(k)+1)

and choose ‘]’ with probability p/(p+ q) = hx(k)(r+hx(k)+3)
2(r+1)(hx(k)+1) . Then we have a balanced nonnegative

string of length 2n′ uniformly at random.

Case 2: Generation of a balanced nonnegative symmetric string of length 2n′ uniformly
at random. The desired balanced nonnegative symmetric string x can be represented as
x = x1x2 · · · xn′−1xn′ x̄n′ x̄n′−1 · · · x̄2 x̄1, where x1x2 · · · xn′ is a nonnegative string of length n′. We
thus generate a nonnegative string x′ := x1x2 · · · xn′ of length n′ uniformly at random.

Unfortunately, a similar approach to Case 1 does not work; given a positive prefix x1x2 · · · xi,
it seems to be hard to generate xi+1 · · · xn′ that ends at some hx(n′) uniformly, since the string
may pass below both of hx(i) and hx(n′).

The key idea is to generate the desired string backwardly. This step consists of two phases.
The algorithm first chooses the height hx(n′) of the last letter xn′ randomly. Then the algorithm
randomly selects the height hx(i) of the ith letter xi from hx(i + 1) for each i = n′−1, n′−2, . . . , 1.
That is, we have either hx(i) := hx(i + 1)− 1 or hx(i) := hx(i + 1)+ 1 in general, and hx(0) = 0 at
last. From the sequence of the heights, we can construct x = x1x2 · · · xn′ in O(n) time and space:
If hx(i) = hx(i + 1) − 1, we have xi = ‘[’, and if hx(i) = hx(i + 1) + 1, we have xi = ‘]’.

We first consider the first phase. By the proof of Theorem 3.1, the number of nonnegative
strings ending at height h is C(n′, h), and

∑n′
i=0 C(n′, i) =

(
n′
�n′/2�
)
. Hence, for each h with 0 ≤ h ≤

n′, the algorithm sets hx(n′) = h with probability C(n′, h)/
(

n′
�n′/2�
)
.

Next we consider the second phase. For general i with 1 ≤ i < n′, the height hx(i) is either
hx(i) = hx(i + 1) + 1 or hx(i) = hx(i + 1) − 1. The number of nonnegative strings of length i
ending at the height hx(i + 1) + 1 is p = C(i, hx(i + 1) + 1), and the number of nonnegative
strings of length i ending at the height hx(i + 1)− 1 is q = C(i, hx(i+ 1)− 1). The algorithm sets
hx(i) = hx(i + 1)+1 with probability p/(p+q) = (hx(i+1)+2)(i−hx (i+1)+1)

2(i+1)(hx (i+1)+1) and sets hx(i) = hx(i + 1)−1

23

with probability q/(p + q) = hx(i+1)(i+hx (i+1)+3)
2(i+1)(hx (i+1)+1) . The algorithm finally obtains hx(1) = 1 and

hx(0) = 0 with probability 1 after repeating this process. The string x′ = x1x2 · · · xn′−1xn′ can
be computed from the sequence of heights by traversing the sequence of the heights backwards
and hence we can obtain x = x′ x̄′.

�

Note that the only part that requires O(n) space is the generation of x′ = x1x2 · · · xn′ from
the sequence of their heights hx(n′), hx(n′ − 1), . . . , hx(1) in Case 2 in the proof of Theorem 3.2.
Therefore, if we are admitted to output the symmetric string xx̄ by just x̄, the algorithm in
Theorem 3.2 requires space of only O(n) bits.

In the RAM model, binomial coefficient
(
n
k

)
can be computed in O(k2 + k log k) time and

O(k) space with Iriyama’s algorithm[31]. Thus Catalan number and its generalization can be
computed in O(n2) time. Since we compute the generalized Catalan number n

2 times in the
first phase in Case 2, our random generation algorithm can be performed in O(n3) time. Note
that C(n) is exponentially larger than

(
n
�n/2�
)

so the probability of selecting Case 2 is close to 0.
Therefore our algorithm runs in O(n2) expected time on the RAM model.

3.2 Enumeration of Proper Interval Graphs

We here enumerate all connected proper interval graphs with n vertices. It is sufficient to enu-
merate each string representation of connected proper interval graphs, by Lemma 2.14. Let S n

be the set of balanced and canonical strings x = x1x2 · · · x2n in Σ2n such that x1 = ‘[’, x2n = ‘]’,
and the string x2 · · · x2n−1 is nonnegative. We define a tree structure, called family tree, in which
each vertex corresponds to each string in S n. We enumerate all the strings in S n by traversing
the family tree. Since S n is trivial when n = 1, 2, we assume n > 2.

We start with some definitions. Let x = x1x2 · · · x2n be a string in Σ2n. If xixi+1 = [], i is
called a front index of x. Contrary, if xixi+1 =][, i is called a reverse index of x. For example, a
string [[[[][][]][]][][]] has 6 front indices 4, 6, 8, 11, 14, and 16, and has 5 reverse indices 5, 7,
10, 13, and 15. The string [n]n in S n is called the root and denoted by rn. Let x = x1x2 · · · x2n be
a string in Σ2n. We denote the string x1x2 · · · xi−1 x̄i x̄i+1xi+2 · · · x2n by x[i] for i = 1, 2, . . . , 2n − 1.
We define P(x) by x[j] for x ∈ Σ2n \ {rn}, where j is the minimum reverse index of x. For
example, for x =[[[[][][]][]][][]], we have P(x) =[[[[[]][]][]][][]] (the flipped pair is enclosed
by the grey box and the minimum reverse indices are underlined).

Lemma 3.3. For every x ∈ S n \ {rn}, we have P(x) ∈ S n.

Proof. For any x ∈ S n \ {rn}, it is easy to see that P(x) = x′1x′2 · · · x′2n satisfies that x′1 = ‘[’,
x′2n = ‘]’, x′2 · · · x′2n−1 is balanced and nonnegative. Thus we show that P(x) is canonical.

We first assume that x is symmetric. Then the minimum reverse index j of x satisfies j ≤ n,
since x is symmetric and is not the root. If j = n, P(x) is still symmetric and hence P(x) is
canonical. When j < n, we have x j′ = x̄′2n− j′+1 for each 1 ≤ j′ < j, x j = ‘[’, and x′2n− j+1 = ‘[’.

Hence P(x) < P(x).
Next we consider the case that x is not symmetric. There must be an index i such that

xi = x2n−i+1 = ‘[’ and xi′ = x̄2n−i′+1 for all 1 ≤ i′ < i, since x is canonical. Moreover we have
1 ≤ i < n, since x is balanced. Let � be the minimum reverse index of x. We first observe that
� � i since x� = ‘]’. We also see that � < 2n − i + 1 since xi′ = x̄2n−i′+1 for all 1 ≤ i′ < i. If
� < i − 1, using a similar argument above, we have P(x) < x < P(x). If � > i, the changes to

24

the string has no effect; we still have x′i = ‘[’ and x′2n−i+1 = ‘[’ and hence P(x) < P(x). The last
case is � = i − 1. In this case, we have xi−1xi = ‘][’, xn−i+1xn−i+2 = ‘[[’ and xi′ = x̄2n−i′+1 for all
1 ≤ i′ < i. Thus we have x′i−1x′i = ‘[]’, x′n−i+1x′n−i+2 = ‘[[’, and x′i′ = x̄′2n−i′+1 for all 1 ≤ i′ < i − 1.
This implies that P(x) < P(x). �

Next we define the family tree among strings in S n. We call P(x) the parent of x, and x is a
child of P(x) for each x ∈ S n \ {rn}. Note that x ∈ S n may have multiple or no children while
each string x ∈ S n \ {rn} has the unique parent P(x) ∈ S n. Given a string x in S n \ {rn}, we
have the unique sequence x, P(x), P(P(x)), . . . of strings in S n by repeatedly finding the parent.
We call it the parent sequence of x. For example, for x =[[[][]][]], we have P(x) =[[[[]]][]],
P(P(x))=[[[[]][]]], P(P(P(x))) =[[[[][]]]], and P(P(P(P(x)))) = r5. The next lemma ensures
that the root rn is the common ancestor of all the strings in S n.

Lemma 3.4. The parent sequence of x in S n eventually ends up with rn.

Proof. For a string x = x1x2 · · · x2n in S n, we define a potential function p(x) =
∑n

i=1 2n−ib(xi) +∑n
i=1 2i−1(1 − b(xn+i)), where b(‘[’) = 0 and b(‘]’) = 1. For any x ∈ S n, p(x) is a non-negative

integer, and p(x) = 0 if and only if x = rn.
Suppose x is not the root rn. Then x has the minimum reverse index, say j. If j = n, it

is easy to see that p(P(x)) = p(x) − 2. We suppose that j < n. Then we have p(P(x)) =
p(x) − 2n− j + 2n− j−1 = p(x) − 2n− j−1 < p(x) by the definitions of the parent and the potential
function. The case j > n is symmetric and we obtain p(P(x)) < p(x). Therefore we eventually
obtain the root rn by repeatedly finding the parent of the derived string, which completes the
proof. �

We have the family tree Tn of S n by merging all the parent sequences. Each vertex in the
family tree Tn corresponds to each string in S n, and each edge corresponds to each parent-child
relation. See Figure 3.1 for example.

Now we give an algorithm that enumerates all the strings in S n. The algorithm traverses the
family tree by reversing the procedure of finding the parent as follows. Given a string x in S n,
we enumerate all the children of x. Every child of x is in the form x[i] where i is a front index
of x. We consider the following cases to find every i such that x[i] is a child of x.

Case 1: String x is the root rn. The string x has exactly one front index n. Since P(x[n]) = x,
x[n] is a child of x. Since x[i] is not a child of x when i is not a front index, x has exactly one
child.

Case 2: String x is not the root. In this case, x has at least two front indices. Let i be any front
index, and j be the minimum reverse index. If i > j + 1 then x � P(x[i]), since i is not the
minimum reverse index of x[i]. If i ≤ j + 1, x[i] may be a child of x. Thus we call i satisfying
the minimum front index or j+ 1 a candidate index of x. For a candidate index i, if x[i] is in S n

(i.e. x[i] is canonical), i is called a flippable index and x[i] is a child of x. There must exist a
reverse index between any two front indices. Since only the indices the satisfying the minimum
front index or j + 1 can be candidate indices, x has at most two candidate indices. Thus x has
at most two children. For example, x = [[[]][]] has two candidate indices 3 and 6, one reverse
index 5, and one child x[3] = [[][][]].

Given a string x in S n, we can enumerate all the children of x by the case analysis above.
We can traverse Tn by repeating this process from the root recursively. Thus we can enumerate
all the strings in S n.

Now we have the algorithms and lemma.

25

[[[[[[]]]]]]

[[[[[][]]]]]

[[[[[]][]]]]

[[[[[]]][]]][[[[][][]]]]

[[[[]][[]]]] [[[[[]]]][]]

[[[[][]]][]]

[[[[]][]][]]

[[[[]]][][]]

[[[][]][][]]

[[[]][][][]]

[[][][][][]]

[[][[]][][]]

[[[][][]][]]

[[[]][[]][]][[][[][]][]]

[[[][[]]][]]

[[][[[]]][]]

[[[[][]][]]]

[[[[]][][]]]

[[[][][][]]] [[[[]]][[]]]

[[[][]][[]]]

[[[]][][[]]]

[[[][[]][]]]

Figure 3.1: Family tree T6

Algorithm 1: find-all-child-strings
Input: current string x = x1x2 · · · x2n

begin1

Output x.2

foreach flippable index i do3

find-all-child-strings (x[i]); /* Case 2 */4

end5

end6

Lemma 3.5. Algorithm 2 enumerates all the strings in S n.

By Lemma 3.5 we can enumerate all the strings in S n. We need two more lemmas to
generate each string in O(1) time. First we show an efficient construction of the candidate index
list.

Lemma 3.6. Given a string x in S n and its flippable indices, we can construct the candidate
indices list of each child of x in O(1) time.

Proof. Let x[i] be a child of x. Each string x in S n has at most two flippable indices (see
the proof of Lemma 3.4). Let a and b be two flippable indices of x, and let a′ and b′ be two
candidate indices of x[a] or x[b]. We assume that a < b and a′ < b′ without loss of generality.
We have the two cases below about x[i].

Case 1: A child x[a] of x. If xa+2 = ‘]’, we have two candidate indices a
′
= a− 1 and b

′
= a+ 1

(see Figure 3.2(a)). Otherwise we have one candidate index a
′
= a − 1 (see Figure 3.2(b)).

26

Algorithm 2: find-all-strings
Input: integer n

begin1

Output the root x = rn.2

find-all-child-strings (x[n]); /* Case 1 */3

end4

x = [[...[[]]] []... ...]

x[a] = [[...[] []] []... ...]

a

a’ b’

b

(a)

x = [[...[[] [] ...]

x[a] = [[...[] [[] ...]

a

a’

b

(b)

1 2n

1 2n

1 2n

1 2n

x = [[...[]]]] []]... ...]

x[b] = [[...[] []]] []... ...]

a

a’ b’

b

(c)

1 2n

1 2n

x = [[...[]]]] [] [... ...]

x[b] = [[...[] []]] [[... ...]

a

a’

b

(d)

1 2n

1 2n

Figure 3.2: Case analysis of candidate indices.

Case 2: A child x[b] of x. If xb+2 = ‘]’, we have two candidate indices a
′
= a and b

′
= b + 1

(see Figure 3.2(c)). Otherwise we have one candidate index a
′
= a (see Figure 3.2(d)).

By the above case analysis, a candidate index of a child either (1) appears in the previous or
next index of a or b, or (2) is identical to one of x’s. �

Since the number of candidate indices of x is at most two, our family tree is a binary tree.
We note that a candidate index of x can become “non-candidate”. In the case, such index does
not become a candidate index again.

Next lemma shows that there is a method of determining whether a candidate index is flip-
pable.

Lemma 3.7. One can determine whether or not a candidate index is flippable in O(1) time.

Proof. Let x = x1x2 · · · x2n be a string in S n and a be a candidate index of x. We denote
x[a] = y = y1y2 · · · y2n. A candidate index a is flippable if and only if x[a] is canonical and
y2y3 · · · y2n−1 is nonnegative.

We first check whether or not a string y2y3 · · · y2n−1 is nonnegative. We have hy(a) = hx(a)−2
and hy(i) = hx(i) for each 1 ≤ i < a and a < i ≤ 2n, since a > 1, yaya+1 = ‘][’, xaxa+1 = ‘[]’, and
xi = yi for each 1 ≤ i < a and a + 1 < i ≤ 2n. Thus y2y3 · · · y2n−1 is nonnegative if and only if
hx(a) > 2. Therefore we can check the negativity of y2y3 · · · y2n−1 in O(1) time using an array of
size n to maintain the sequence of heights of the string. Updates of the array also can be done
in O(1) time.

27

We next check whether or not a string is canonical. We call xL = x1x2 · · · xn the left string
of x, and xR = x2nx2n−1 · · · xn+1 the right string of x. Then x is canonical if and only if xL ≤ xR.
We maintain a doubly linked list L in order to check it in O(1) time. The list L maintains the
indices of different characters in xL and xR. First L is initialized by an empty since xL = xR for
x = rn. In general L is empty if and only if x is symmetric. We can check whether xL < xR by
comparing xL

L[1] and xR
L[1].

Now we have that x is canonical and nonnegative, x[a] is nonnegative, and L consists of
the different indices of xL and xR. Then we have xL

L[1] is ‘[’ and xR
L[1] is ‘]’. We introduce two

pointers associated to the candidate index a to update the list efficiently; two pointers pL
a and pR

a

that point two elements in the list L. Intuitively pL
a and pR

a give the two indices L[i] and L[i + 1]
such that a is between L[i] and L[i + 1]. When L is empty, pL

a and pR
a are also empty. Assume

that L consists of k elements L[1], L[2], . . ., L[k]. Then we have one of the following three
cases. (1) If a is between L[i] and L[i+ 1], pL

a and pR
a point L[i] and L[i+ 1], respectively. More

precisely, this case occurs either 1 ≤ a ≤ n and L[i] ≤ a < L[i + 1] for some i or n + 1 ≤ a ≤ 2n
and L[i] ≤ 2n− a+ 1 < L[i+ 1] for some i. (2) If a is less than L[1], pL

a and pR
a point L[1]. This

case occurs either a < L[1] or a > 2n − L[1]. (3) Otherwise, i.e., the case L[k] ≤ a ≤ 2n − L[k].
In this case pL

a and pR
a point L[k]. Now we assume that we update x by x[a], xaxa+1 = ‘[]’ is

replaced by xaxa+1 = ‘][’. It is straightforward and tedious that we can update the list L in O(1)
time; typically, if L[pL

a] < a and a+1 < L[pR
a], the algorithm inserts two new elements between

pL
a and pR

a in L. When pL
a points a, the algorithm remove it from L. The other cases are similar,

and hence omitted.
The flippable index a is updated by a − 1 or a + 1 by Lemma 3.6. Hence the update of pL

a

and pR
a can be done in O(1) time, which completes the proof. �

Lemmas 3.6 and 3.7 show that we can maintain the list of flippable indices of each string in
O(1) time, during the traversal of the family tree. Thus we have the following lemma.

Lemma 3.8. Algorithm 2 uses O(n) space and runs in O(|S n|) time.

By lemma 3.8, Algorithm 2 generates each string in S n in O(1) time “on average”. However
it may have to return from the deep recursive calls without outputting any string after generating
a string corresponding to the leaf of a large subtree in the family tree. This takes much time.
Therefore each string may not be generated in O(1) time in the worst case.

This delay can be canceled by outputting the strings in the “prepostorder” manner in which
strings are outputted in the preorder (and postorder) manner at the vertices of odd (and even,
respectively) depth of the family tree. See [43] for further details of this method; in [43] the
method was not explicitly named, and the name “prepostorder” was given by Knuth [29]. Now
we have the main theorem in this section.

Theorem 3.9. After outputting the root in O(n) time, the algorithm enumerates every string in
S n in O(1) time.

Let G and G[i] be two proper interval graphs corresponding to a string x and its child x[i],
respectively. We note that G[i] can be obtained from G by removing the one edge which rep-
resents an intersection between (1) the interval with the right endpoint corresponding to xi+1

and (2) one with the left endpoint corresponding to xi. Moreover, the root string represents a
complete graph. Therefore Algorithm 2 can be modified to deal with the graphs themselves
without loss of efficiency. Note that it is not true that every constant delay enumeration algo-
rithm for parentheses applies to that for proper interval graphs since the sizes of differences may
not equal among string representations and graph representations.

28

+1 -1 +0 -0

+1 +1 -1 -1 +1 -1 -1 +1+1 -1

Figure 3.3: An example of the bijection

Theorem 3.10. After outputting the n-vertex complete graph in O(n2) time, the algorithm enu-
merates every connected proper interval graph of n vertices in O(1) time.

3.3 Random Generation of Bipartite Permutation Graphs

Let P(n) be the set of permutations corresponding to connected bipartite permutation graphs
of n vertices, and Bn the set of distinct (up to isomorphism) connected bipartite permutation
graphs of n vertices. We denote the line representation of a permutation π by Lπ = (L1, L2),
and the graph of π by Gπ = (X, Y, E). Without loss of generality, we assume that X contains the
vertex corresponding to (1, π(1)) in Lπ for π(1) > 1. Now, we construct a 2-Motzkin path as
follows. For each i with 1 ≤ i ≤ n, we see the endpoints at i on L1 and L2. Let pi and qi be
the endpoints on L1 and L2, and we say that pi is in X (and Y) if pi is the endpoint of a vertex
corresponding to (i, π(i)) in X (and Y , respectively). If Gπ is not connected, in each connected
component, we assume that the vertex corresponding to the leftmost point on L1 belongs to X.
Then the value zi is defined as follows;

zi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

+1 if pi is in X and qi is in Y ,

−1 if pi is in Y and qi is in X,

+0 if pi and qi are in X,

−0 if pi and qi are in Y .

That is, two values +0 and −0 are distinguished (for counting) but have the same value. From
the sequence z1, . . . , zn, we can consider a path Zπ = (z1, . . . , zn). Note that π = π′ if and only if
Zπ = Zπ′ . For the path Zπ, we define its height at point i by

∑i
j=1 z j. To simplify, we define that

the height at point 0 is 0. We show that Zπ is a 2-Motzkin path that has positive height at point
i, 1 < i < n, if and only if π ∈ P(n). To this end, we need a property of connected permutation
graphs.

Lemma 3.11 ([30, Lemma 3.2]). Let π be a permutation on {1, . . . , n}. Then Gπ is disconnected
if and only if there exists k < n such that {π(1), π(2), . . . , π(k)} = {1, 2, . . . , k}.

Then we have the following lemma.

29

Lemma 3.12. A sequence Z = (z1, . . . , zn) on the alphabet {+1,−1,+0,−0} is constructed from
π ∈ P(n) in the above way if and only if Z is a 2-Motzkin path such that Z has height 0 at point
0 and n, and positive height at point i with 0 < i < n.

Proof. (=⇒) Clearly, z1 = +1 and zn = −1 since Gπ = (X, Y, E) is connected, and X and Y
are nonempty. It is easy to see that the number of +1 is equal to the one of −1 in Z. Thus∑n

i=1 zi = 0. If Z has height 0 at some point k with 0 < k < n, we have that π(i) ∈ {1, . . . , k} for
1 ≤ i ≤ k. From Lemma 3.11, we have that Gπ is disconnected, which is a contradiction.
(⇐=) We can construct a line representation L = (L1, L2) from Z as follows:

1. At point i (1 ≤ i ≤ n) on L1, put x if zi ∈ {+1,+0}, otherwise put y;

2. At point i (1 ≤ i ≤ n) on L2, put x if zi ∈ {−1,+0}, otherwise put y;

3. Draw a line segment from the ith x on L1 to the ith x on L2 for each i;

4. Draw a line segment from the ith y on L1 to the ith y on L2 for each i.

Then, we have a permutation π of L. Thus, it suffices to show that π ∈ P(n), that is, Gπ is
connected and bipartite. Clearly, two lines in L intersect only if one of them is a line from x
to x and another line is from y to y. So, Gπ is bipartite. If Gπ is disconnected then there exists
an index k < n such that π(i) ∈ {1, . . . , k} for 1 ≤ i ≤ k (Lemma 3.11). Obviously, this implies∑k

i=1 zi = 0, which contradicts the assumption. �

From the above characterization, we can count the number of elements in P(n). Deutsch and
Shapiro [14] have shown the following bijection between 2-Motzkin paths of length n and Dyck
paths of length 2(n+1): In a 2-Motzkin path, we replace +1 by (+1,+1), −1 by (−1,−1), +0 by
(+1,−1), and −0 by (−1,+1); Then add +1 before the obtained sequence, and add −1 after the
sequence. Figure 3.3 shows an example. Note that a 2-Motzkin path has height k at point i if
and only if the corresponding Dyck path has height 2k+ 1 at point 2i+ 1. The following lemma
follows from the bijection.

Lemma 3.13 ([14]). The number of 2-Motzkin paths of length n is C(n + 1).

Corollary 3.14. |P(n)| = C(n − 1).

Proof. Let π ∈ P(n). Since π bijectively corresponds to Zπ, it suffices to count the number
of Zπ. Lemma 3.12 and its proof imply that Zπ bijectively corresponds to a 2-Motzkin path
of length n − 2 (as the first and the last step in Zπ is removed). The corollary follows from
Lemma 3.13. �

We can show that the bijection is also a bijection for restricted paths. For z ∈
{+1,−1,+0,−0}, we define −z naturally. That is, −z = ±b if and only if z = ∓b for b ∈ {0, 1}.
A Dyck path D = (d1, . . . , d2n) is symmetric if zi = −zn−i+1 for 1 ≤ i ≤ n. The number of sym-
metric Dyck paths is

(
n
�n/2�
)

from the proof of Theorem 3.1. A 2-Motzkin path Z = (z1, . . . , zn) is
semi-symmetric if zi = −zn−i+1 for 1 ≤ i ≤ n, and Z is symmetric if zi = −zn−i+1 for zi ∈ {+1,−1}
and zi = zn−i+1 for zi ∈ {+0,−0}. Note that a 2-Motzkin path can be semi-symmetric only if its
length is even. Obviously, the bijection is also a bijection between symmetric 2-Motzkin paths
of length n and symmetric Dyck paths of length 2(n + 1). Furthermore, if n is even, there is a
bijection between semi-symmetric 2-Motzkin paths of length n and symmetric Dyck paths of
length 2(n+1), since a semi-symmetric 2-Motzkin path can be bijectively transformed to a sym-
metric 2-Motzkin path by flipping the signs of 0s in the right half. From the above observation
and Theorem 3.1, we have the following corollary.

30

Corollary 3.15. The number of symmetric 2-Motzkin paths of length n is
(

n+1
�(n+1)/2�

)
. If n is even,

the number of semi-symmetric 2-Motzkin paths of length n is also
(

n+1
�(n+1)/2�

)
.

Any given π ∈ P(n), Lemma 2.24 implies that there exist at most four line representations
Lπ, LH

π , LV
π , and LR

π for a graph Gπ. We define four subsets of P(n) as follows: (1) PH(n) =
{π ∈ P(n) | Lπ is H-symmetric}, (2) PV(n) = {π ∈ P(n) | Lπ is V-symmetric}, (3) PR(n) = {π ∈
P(n) | Lπ is R-symmetric}, and (4) PF(n) = PH(n) ∩ PR(n) ∩ PV(n).

Proposition 3.16. (1) If n is odd, PH(n) and PV(n) are empty. (2) PF(n) = PH(n) ∩ PV(n) =
PV(n) ∩ PR(n) = PR(n) ∩ PH(n).

Proof. (1) Both H-flip and V-flip exchange X and Y , which are determined uniquely by Lemma
2.23. Thus PH(n) and PV(n) can be nonempty only if |X| = |Y |. Therefore, they are empty if
|X| + |Y | is odd.

(2) Let π ∈ PH(n)∩ PV (n). Then Lπ = LH
π = LV

π . Since LR
π =
(
LH
π

)V
for any π, we have that

LR
π =
(
LH
π

)V
= LV

π = Lπ. Hence π ∈ PR(n). The remaining two cases are similar. �

Lemma 3.17. |Bn| = 1
4

(
|P(n)| + ∣∣∣PH(n)

∣∣∣ +
∣∣∣PV(n)

∣∣∣ +
∣∣∣PR(n)

∣∣∣
)
.

Proof. From Lemma 2.24 and Proposition 3.16, each connected bipartite permutation graph
corresponds to four, two, and one permutations if it has no, one, and three symmetricalness,
respectively. According to the number of corresponding permutations, we can partition Bn into
three sets B4

n, B2
n, and B1

n. Each element of Bi
n corresponds to exactly i permutations in P(n):

For G ∈ B1
n, there exists π ∈ PF(n) such that G � Gπ; For G ∈ B2

n, there exist two permutations
π1 and π2 in (PH(n) ∪ PV (n) ∪ PR(n)) \ PF(n) such that G � Gπ1 � Gπ2 ; For G ∈ B4

n, there
exist four permutations πi, 1 ≤ i ≤ 4, in P(n) \

(
PH(n) ∪ PV (n) ∪ PR(n)

)
such that G � Gπi for

1 ≤ i ≤ 4. Combining the inclusion-exclusion principle with Proposition 3.16 implies that
∣∣∣PH(n) ∪ PV(n) ∪ PR(n)

∣∣∣ =
∣∣∣PH(n)

∣∣∣ +
∣∣∣PV(n)

∣∣∣ +
∣∣∣PR(n)

∣∣∣ − 2
∣∣∣PF(n)

∣∣∣ .

So, we have that

|Bn| =
∣∣∣B1

n

∣∣∣ +
∣∣∣B2

n

∣∣∣ +
∣∣∣B4

n

∣∣∣

=
∣∣∣PF(n)

∣∣∣ + 1
2

(∣∣∣PH(n)
∣∣∣ +
∣∣∣PV(n)

∣∣∣ +
∣∣∣PR(n)

∣∣∣ − 3
∣∣∣PF(n)

∣∣∣
)

+
1
4

(
|P(n)| − ∣∣∣PH(n)

∣∣∣ − ∣∣∣PV (n)
∣∣∣ − ∣∣∣PR(n)

∣∣∣ + 2
∣∣∣PF(n)

∣∣∣
)

=
1
4

(
|P(n)| + ∣∣∣PH(n)

∣∣∣ +
∣∣∣PV(n)

∣∣∣ +
∣∣∣PR(n)

∣∣∣
)
,

as required. �

Lemma 3.17 implies that it suffices to count the elements of P(n), PH(n), PV(n), and PR(n)
to show the size of Bn. For the random generation,

∣∣∣PF(n)
∣∣∣ is also necessary.

Lemma 3.18.
∣∣∣PV(n)

∣∣∣ = C(n/2 − 1) for even n.

Proof. Let n = 2m and π ∈ PV(2m). We claim that Zπ = (z1, . . . , z2m) contains neither +0 nor
−0. If zi = +0 for some i, 1 ≤ i ≤ 2m, Lπ contains the lines (i, j) and (k, i) for some j and k,
k < i < j. However, since Lπ is V-symmetric, Lπ contains (j, i) as well. This implies that j = k,
a contradiction. The proof of zi � −0 is almost the same. Thus Zπ bijectively corresponds to a
Dyck path of length 2(m − 1), as required. �

31

Lemma 3.19.
∣∣∣PR(n)

∣∣∣ =
(

n−1
�(n−1)/2�

)
.

Proof. From Corollary 3.15, it suffices to show that π ∈ PR(n) if and only if the 2-Motzkin path
Zπ is symmetric and has positive height at point i with 1 < i < n.
(=⇒) Suppose zi = +1. Then the lines (i, j) and (k, i), i < j and i < k, are in Lπ. Since
π ∈ PR(n), we have that (n − j + 1, n− i+ 1) and (n − i+ 1, n− k + 1) are also in Lπ. Therefore,
zn−i+1 = −1 since i < j and i < k. The case zi = −1 is similar.

Next, suppose zi = +0. Then the lines (i, j) and (k, i), k < i < j, are in Lπ. Since π ∈ PR(n),
we have that (n− j+ 1, n− i+ 1) and (n− i+ 1, n− k + 1) are also in Lπ. Therefore, zn−i+1 = +0
since k < i < j. The case zi = −0 is similar.
(⇐=) Clearly, π ∈ P(n). Let (i, j) ∈ Lπ. We show that (n − j + 1, n − i + 1) is also in Lπ.
Without loss of generality, we assume that i < j, namely (i, j) ∈ X. Let i and j be the kth
endpoints of lines in X, on L1 and L2, respectively. For 1 ≤ � < i, the number of indices � such
that z� ∈ {+1,+0} is k − 1. Since Zπ is symmetric, for n − i + 1 < � ≤ n the number of indices �
such that z� ∈ {−1,+0} is also k−1. This implies that the point n− i+1 on L2 is the (|X|−k+1)th
endpoint of a line in X. Similarly, we can show that the point n− j+1 on L1 is the (|X| − k+1)th
endpoint of a line in X. Therefore, (n − j + 1, n − i + 1) ∈ Lπ. �

Lemma 3.20.
∣∣∣PH(n)

∣∣∣ =
(

n−1
�(n−1)/2�

)
for even n.

Proof. The idea of proof is almost the same as the one of Lemma 3.19.
Let n = 2m. From Corollary 3.15, it suffices to show that π ∈ PH(2m) if and only if the

2-Motzkin path Zπ is semi-symmetric and has positive height at point i with 1 < i < 2m.
(=⇒) Let (i, j), (k, i) ∈ Lπ. Since π ∈ PH(2m), we have that (2m − i + 1, 2m − j + 1) and
(2m − k + 1, 2m − i + 1) are also in Lπ. It is easy to see that (i, j) is positive if and only if
(2m− i+ 1, 2m− j+ 1) is negative. In the same way, we can see that (k, i) is positive if and only
if (2m − k + 1, 2m − i + 1) is negative. Thus, zi = −z2m−i+1.
(⇐=) Clearly, π ∈ P(2m). Let (i, j) ∈ Lπ. We show that (2m − i + 1, 2m − j + 1) is also in
Lπ. Without loss of generality, we assume that i < j, namely (i, j) ∈ X. Let i and j be the kth
endpoints of lines in X, on L1 and L2, respectively. For 1 ≤ � < i, the number of indices � such
that z� ∈ {+1,+0} is k − 1. Since Zπ is semi-symmetric, for 2m − i + 1 < � ≤ 2m the number of
indices � such that z� ∈ {−1,−0} is also k − 1. This implies that the point 2m − i + 1 on L1 is the
(|X| − k + 1)th endpoint of a line in Y . Similarly, we can show that the point 2m − j + 1 on L2 is
the (|X| − k + 1)th endpoint of a line in Y . Therefore, (2m − i + 1, 2m − j + 1) ∈ Lπ. �

Lemma 3.21.
∣∣∣PF(n)

∣∣∣ =
(

(n−2)/2
�(n−2)/4�

)
for even n.

Proof. Let n = 2m. From Theorem 3.1, it suffices to show that π ∈ PF(2m) if and only if the
2-Motzkin path Zπ is a symmetric Dyck path and has positive height at point i with 1 < i < 2m.
This is implied by the proofs of Lemmas 3.18 and 3.20. �

Lemmas 3.17, 3.18, 3.19, and 3.20, and Proposition 3.16 together show the number of
elements of Bn. We use a well-known relation 2

(
2m−1
m−1

)
=
(

2m
m

)
for the even case.

Theorem 3.22. For n ≥ 2, the number of connected bipartite permutation graphs of n vertices
is given by

|Bn| =
⎧⎪⎪⎨⎪⎪⎩

1
4

(
C(n − 1) + C(n/2 − 1) +

(
n

n/2

))
if n is even,

1
4

(
C(n − 1) +

(
n−1

(n−1)/2

))
if n is odd.

32

L1

L2

Figure 3.4: The root in S 4,3.

Theorem 3.23. For any given positive integer n, a connected bipartite permutation graph with
n vertices can be generated uniformly at random in O(n) time and O(n) space.

Proof. Basically, using the same idea as random generation of a proper interval graph with
Lemma 3.13, the algorithm generates a 2-Motzkin path uniformly at random, and outputs the
corresponding graph. However, this straightforward algorithm does not generate a connected bi-
partite permutation graph uniformly at random since it does not consider symmetricalness of the
graph. That is, comparing to an asymmetric graph, the chances of graphs with one symmetrical-
ness and three symmetricalness are only a half and a quarter, respectively. Hence the algorithm
adapts the probability as follows. From the lemma 3.17, the algorithm first chooses one of four
sets P(n), PH(n), PV(n),and PR(n) with probabilities |P(n)| / |Bn|,

∣∣∣PH(n)
∣∣∣ / |Bn|,

∣∣∣PV(n)
∣∣∣ / |Bn|,

and
∣∣∣PR(n)

∣∣∣ / |Bn|, respectively. Next, in each case, the algorithm generates each element uni-
formly at random.
Case 1: Generation of an element of P(n) uniformly at random. The algorithm simply picks up
an element by generation a 2-Motzkin path same as Case 1 of Theorem 3.2.
Case 2: Generation of an element of PH(n) uniformly at random. The algorithm generates
a semi-symmetric 2-Motzkin path. The algorithm first constructs the left half of the semi-
symmetric 2-Motzkin path by using Case 2 of Theorem 3.2. Then the right half can be con-
structed from the left half since the resultant 2-Motzkin path has to be semi-symmetric.
Case 3: Generation of an element of PV(n) uniformly at random. The algorithm generates a
2-Motzkin path that consists of only +1 and −1, or consequently a Dyck path. Hence we can
use the same algorithm of Theorem 3.2 Case 1.
Case 4: Generation of an element of PR(n) uniformly at random. This case is similar to Case 2.
The algorithm first generates a nonnegative 2-Motzkin path of half length, and extends it to be
symmetric. �

3.4 Enumeration of Bipartite Permutation Graphs

In this section we give an efficient algorithm to enumerate all bipartite permutation graphs of n
vertices. Our algorithm can enumerate such graphs in O(1) time for each.

Our approach is to repeatedly enumerate all bipartite permutation graphs of the specified
number of vertices. If we can enumerate all bipartite permutation graphs with p = |X| and
q = |Y |, such graphs of n vertices can be enumerated by repeating the method for each pair of
(p, q) = (�n2�, � n2�), (�n2� + 1, � n2� − 1), . . . , (n − 1, 1). By the above observation and Lemma 2.24,
it is sufficient to enumerate all canonical representations of bipartite permutation graphs with
p = |X| and q = |Y |.

We first define the family tree among the set of canonical representations of bipartite per-
mutation graphs. Then we give an algorithm to traverse the family tree efficiently.

33

L1

L2

L1

L2

(a)

(b)

i j
L1

L2

l k

L1

L2

Figure 3.5: Examples of the parents.

We need some definitions. Let S p,q be the set of canonical representations of bipartite per-
mutation graphs of p vertices in X and q vertices in Y . Since a graph corresponding to a rep-
resentation in S p,q also corresponds to a representation in S q,p, we assume p ≥ q without loss
of generality. The root, denoted by Rp,q, in S p,q is the smallest representation in S p,q, that is,
s(Rp,q) = [[· · · []] · · ·][[· · · []] · · ·]. See Figure 3.4 for an example. As we will see, the root
corresponds to the root vertex in a tree structure among S p,q.

Let L = (L1, L2) be a representation in S p,q \ {Rp,q}. Let s(L) = x1x2 · · · x2n. We denote
s1(L) = x1x2 · · · xn and s2(L) = xn+1xn+2 · · · x2n. Thus, let s1(Rp,q) = [[· · · []] · · ·], that consists
of p ‘[’s and q ‘]’s. Now we define “the parent” P(L) of the representation L in S p,q as follows.
We have two cases.

Case 1: s1(L) � s1(Rp,q). Let i be the index of s1(L) such that xi = ‘]’ and xi′ = ‘[’ for all i′ < i,
and j be the index of s1(L) such that x j = ‘[’ and xj′ = ‘]’ for all i ≤ j′ < j. Then j is called the
swappable point of L. P(L) is the representation obtained from L by swapping two endpoints
at j − 1 and j on L1. See Figure 3.5(a).

Case 2: s1(L) = s1(Rp,q). In this case we define P(L) by swapping two endpoints on L2. Let k
be the index of s2(L) such that xk = ‘[’ and xk′ = ‘]’ for all k < k′, and l be the index of s2(L)
such that xl = ‘]’ and xl′ = ‘[’ for all l < l′ ≤ k. Then l is called the swappable point of L.
P(L) is the representation obtained from L by swapping two endpoints at l and l+ 1 on L2. See
Figure 3.5(b).

In both cases P(L) is called the parent of L andL is called a child of P(L). We can observe
that s(P(L)) is smaller than s(L). The parent P(L) of L in S p,q \ {Rp,q} is always defined, since
there exists the swappable point of L. The next lemma shows we finally obtain the root in S p,q

by repeatedly finding the parent.

Lemma 3.24. Let L be a representation in S p,q \ {Rp,q}. The sequence obtained by repeatedly
finding the parent ends up with the root Rp,q.

Proof. For a representation L with s(L) = x1x2 · · · x2n, we define a potential function f (L) =
Σ2n

i=122n−ig(xi), where g(‘[’) = 0 and g(‘]’) = 1. f (L) is a mapping from L into non-negative
integer. We can observe that f (Rp,q) is the smallest among values of representations in S p,q.

34

Figure 3.6: Family tree of S 4,3.

Let j be the swappable point of L. In Case 1, we have f (P(L)) = f (L) − 22n−(j−1) + 22n− j =

f (L) − 22n− j < f (L) by the definition of the parent and the potential function. Similarly, in
Case 2, we have f (P(L)) = f (L)− 22n−(j+n) + 22n−(j+n+1) = f (L)− 22n−(j+n)−1 < f (L). Therefore
f (P(L)) < f (L) holds. Since the parent of L is always defined for L in S p,q \ {Rp,q}, we
eventually obtain Rp,q by repeatedly finding the parent of the derived representation, which
completes the proof. �

By merging all these sequences we can have the family tree of S p,q, denoted by Tp,q. The
root vertex of Tp,q corresponds to Rp,q, the vertices of Tp,q correspond to representations in S p,q

and each edge corresponds to a relation between a representation in S p,q \ {Rp,q} and its parent.
See Figure 3.6 for an example.

Now we give an algorithm that enumerates all representations in S p,q. The algorithm tra-
verses a family tree and enumerates canonical representations corresponding to the vertices of
the family tree. To traverse a family tree, we design finding all children of a given canonical
representation.

We need some definitions. L1[i] is the line representation obtained fromL by swapping two
endpoints at i and i + 1 on L1, and similarly L2[i] is the line representation obtained from L by
swapping two endpoints at i − 1 and i on L2. If L = P(L1[i]) (and L = P(L2[i])), we say i is
a nominated point on L1 (and L2, respectively). L1[i] (and L2[i]) is a child of L only if i is a
nominated point on L1 (and L2) and L1[i] (and L2[i], respectively) is connected and canonical.

For a string s(L) = x1x2 · · · x2n, we define the connectivity value c(i) for i = 0, 1, . . . , 2n as
follows:

c(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if i = 0, n
c(i − 1) + 1 if (xi = ‘[’ and i < n) or (xi = ‘]’ and i > n)
c(i − 1) − 1 if (xi = ‘]’ and i < n) or (xi = ‘[’ and i > n)

Intuitively, c(i) for i < n is the number of ‘[’s minus the number of ‘]’s in x1x2 · · · xi, and c(i)
for i > n is the number of ‘]’s minus the number of ‘[’s in xn+1xn+2 · · · xi. We note that if

35

c(i) = c(n + i) holds, then the bipartite permutation graph corresponding to L is disconnected.
A bipartite permutation graph is connected if and only if we have c(i) � c(n + i) for each
i = 1, 2, . . . , n − 1. We say L is connected if c(i) � c(n + i) for each i = 1, 2, . . . , n − 1.

A naive way to generate all children is as follows. We construct L1[i] for each i =
1, 2, . . . , n − 1, then check whether or not (1) i is a nominated point on L1, (2) L1[i] is con-
nected and (3) L1[i] is canonical. If all conditions are satisfied, L1[i] is a child. Similarly, we
check whether or not L2[i] is a child for each i = 2, 3, . . . , n. This method takes much running
time to generate all children.

To improve the running time, we first show that the list of nominated points can be main-
tained efficiently and next propose an efficient method to check whether or not a canonical
representation is connected and canonical.

Lemma 3.25. Let L = (L1, L2) be a representation in S p,q. There exist at most 3 nominated
points on L1 and L2.

Proof. Let s(L) = x1x2 · · · x2n. We consider the following two cases.

Case 1: s1(L) � s1(Rp,q). Let i be the index of s1(L) such that xi = ‘]’ and xi′ = ‘[’ for all i′ < i.
Then i−1 is a nominated point on L1. Let j be the index of s1(L) such that x j = ‘[’ and xj′ = ‘]’
for all i ≤ j′ < j. If x j+1 = ‘]’ holds, then j is a nominated point. Other points on L1 are not
nominated points and there is no nominated point on L2.

Case 2: s1(L) = s1(Rp,q). Clearly we have one nominated point p on L1, where p is equal to
the number of ‘[’s in x1x2 · · · xn. Now we consider nominated points on L2. Let k be the index
of s2(L) such that xk = ‘[’ and xk′ = ‘]’ for all k < k′. Then k + 1 is a nominated point on L2.
Let l be the index of s2(L) such that xl = ‘]’ and xl′ = ‘[’ for all l < l′ ≤ k. If xl−1 = ‘[’ holds,
then l is a nominated point on L2. Other points on L2 are not nominated. �

Lemma 3.26. Given L and its nominated points, we can construct the list of nominated points
of each child in O(1) time.

Proof. We first consider the nominated points on L1. Let n1, n2 (n1 < n2) be two nominated
points on L1. We consider each case of L1[n1] and L1[n2].

Case 1: L1[n1]. If xn1+2 = ‘[’ then n2 = n1 + 2 holds or L has only one nominated point n1. In
this case L1[n1] has one nominated point n1 − 1 on L1. Otherwise, xn1+2 = ‘]’, L1[n1] has two
nominated points n1 − 1 and n1 + 1 on L1. L1[n1] has no nominated point on L2.

Case 2: L1[n2]. If xn2+2 = ‘[’, then L1[n2] has one nominated point n1. Otherwise, xn2+2 = ‘]’,
L1[n2] has two nominated points n1 and n2 + 1.

Therefore each nominated point of L1[n1] and L2[n2] (1) appears in the previous or next
point of n1 or n2, (2) disappears from the list, or (3) is identical to one of L’s.

The case on L2 is symmetric and hence omitted. �

Now we have the algorithm in Algorithm 3, that generates all children of a given represen-
tation L. For each nominated point i on L1 (and L2), it first checks whether L1[i] (and L2[i])
is connected and canonical, and then recursively calls it for L1[i] (and L2[i], respectively) if it
satisfies the conditions. Starting at the root in S p,q, by calling the algorithm recursively, we can
traverse the family tree Tp,q and generate all representations in S p,q.

By Lemma 3.26, steps 3 and 6 can be done in O(1) time in each recursive call. The remaining
task is checking whether or not L is connected and canonical efficiently.

36

Algorithm 3: find-all-child-rep
Input: line representation L
begin1

Output L;2

foreach nominated point i on L1 do3

if L1[i] is connected and canonical then find-all-child-rep(L1[i]).4

end5

foreach nominated point i on L2 do6

if L2[i] is connected and canonical then find-all-child-rep(L2[i]).7

end8

end9

We first consider the check of connectivity of a representation. By symmetry we only con-
sider L1[i] without loss of generality. Assume L is connected. Then L1[i] is connected only if
c(i) � c(n + i) and c(i + 1) � c(n + i + 1). We can check such conditions in O(1) time using an
array of size 2n to maintain the sequences of connectivity values of L1[i]. Update of the array
also can be done in O(1) time. Therefore, the connectivity ofL1[i] can be checked in O(1) time.

Next we check whether or not L is canonical. When p � q, s(L) is canonical if s(L) is the
smallest string among s(LV), s(LH) and s(LR). If p = q, we need more discussions. Let L be a
representation in S p,q and G be the bipartite permutation graph corresponding to L. Then there
exists a line representation L′ obtained from L by swapping lines corresponding to vertices in
X and ones in Y . Similarly, we denote by LV ′ , LH′ , LR′ the representations obtained from LV ,
LH, LR by swapping lines corresponding to vertices in X and ones in Y , respectively. Then L
is canonical if and only if s(L) is the smallest string among s(LV), s(LH), s(LR), s(L′), s(LV ′),
s(LH′) and s(LR′).

If we can check whether given two strings s(L) and s(I) for any I ∈ {LH,LV ,LR,
L′,LV ′,LH′ ,LR′} satisfy s(L) < s(I), then we can check whether s(L) is canonical by ap-
plying the method for each pair of s(L) and other strings.

Lemma 3.27. One can determine whether or not L = (L1, L2) is canonical in O(1) time.

Proof. Let s(L) = x1x2 · · · x2n and s(I) = y1y2 · · · y2n for any I ∈ {LH,LV ,LR,
L′,LV ′,LH′ ,LR′}. We maintain a doubly linked list L in order to check s(L) < s(I) in O(1)
time. The list L maintains the indices of different characters in s(L) and s(I). L is empty if and
only if s(L) = s(I). We can check whether s(L) < s(I) by comparing xL[1] and yL[1], where
L[i] is the ith element in L.

The update of L is as follows. Let n1, n2 be the nominated points on L1 of L. We maintain
i such that L[i] ≤ n1 < L[i + 1] and j such that L[j] ≤ n2 < L[j + 1]. It is easy to see we can
update L using i and j in O(1) time. Since nominated point n1 (and n2) is updated by n1 or n1−1
(and n1 + 1 or n2 + 1, respectively) by Lemma 3.25, i and j can be updated in O(1) time. The
case on L2 is similar and hence omitted. �

Therefore steps 4 and 7 in Algorithm 3 can be computed in O(1) time.

Lemma 3.28. Our algorithm uses O(n) space and runs in O(
∣∣∣S p,q

∣∣∣) time.

By Lemma 3.28, our algorithm generates each representation in O(1) time “on average”.
Algorithm 3 may return from the deep recursive calls without outputting any representation

37

L1

L2

L1

L2

Figure 3.7: Construction of a representation in S 7,4 from the jump representation in S 6,5.

after generating a representation corresponding to the leaf of a large subtree in the family tree.
This takes much running time. Therefore each representation cannot be generated in O(1) time
in worst case. This delay can be canceled by outputting the representations in the “prepostorder”
in which representation are outputted in the preorder (and postorder) at the vertices of odd (and
even, respectively) depth of a family tree. In such manner delay process can be bounded by at
most 3 edge traversals of a family tree.

Lemma 3.29. After outputting the root in O(n) time, our algorithm enumerates every represen-
tation in S p,q in O(1) time in worst case.

Now we consider to enumerate all canonical representations corresponding to bipartite per-
mutation graphs of n vertices. By applying Lemma 3.29 for each (p, q) = (� n

2�, � n2�), (�n2� +
1, � n2� − 1), . . . , (n − 1, 1) in this order, we can enumerate all such representations. Every rep-
resentation which is not the root is generated in O(1) time. However, the root in S p,q is not
constructed from the last outputted representation in S p−1,q+1 in O(1) time.

This delay can be canceled as follows. LetL = (L1, L2) be a representation in S p,q. ThenL is
jump representation if s1(L) = s1(Rp,q) and s2(L) = []] · · ·][[· · · []. See Figure 3.7. When jump
representation in S p,q is generated, we construct a representationK in S p+1,q−1 by swapping the
three lines (p, n), (n − 1, n − 2), (n, n − 1) to (p, n − 1), (n − 1, n), (n, n − 2), respectively. See
Figure 3.7. We note that the line (n − 1, n − 2) is switched to a line corresponding to a vertex
in X, and K can be generated from L in O(1) time. Then we enumerate all representations in
S p+1,q−1 by traversing Tp+1,q−1 as follows. AfterK is generated, the descendants ofK in Tp+1,q−1

are enumerated by Algorithm 3, and we construct P(K). Then we traverse the descendants
of P(K) except the subtree rooted at K and construct P(P(K)). We repeat this process until
the root is generated. We note that P(K) can be generated in O(1) time by maintaining the
swappable point and its data structures can be updated in O(1) time. Therefore we have the
following theorem.

Theorem 3.30. After outputting the root in S � n
2 �,� n

2 �, one can enumerate every canonical repre-
sentation of a bipartite permutation graph of n vertices in O(1) time.

We note that (1) swapping two endpoints of a canonical representation corresponds to
adding or removing one edge in the corresponding graph and (2) a graph can be constructed
from the graph corresponding to a jump representation by a constant number of operations to
add and remove edges. We have the following theorem.

Theorem 3.31. The algorithm enumerates every connected bipartite permutation graph of n
vertices in O(1) time.

38

Chapter 4

Reconstruction

4.1 Interval Graphs

In this section, we propose reconstruction algorithms for interval graphs. First, we present
a deck checking algorithm for interval graphs. Our reconstruction algorithm enumerates the
preimage candidates, and checks whether each candidate is really a preimage of the input deck.
Thus the deck checking algorithm is one of the basic part of reconstruction algorithm.

Our algorithm outputs preimages that are interval graphs. However it is possible that a
non-interval graph has a deck that consists of interval graphs, though it is exceptional. Since
considering this case all the time in the reconstruction algorithm makes it complex, we attempt
to get done with this special case.

Next, we present reconstruction algorithms for interval graph preimage. Our algorithms
have two cases that connected preimage case and disconnected preimage case. First, we pro-
pose the algorithm for connected case by using the compact interval representation. Then we
consider the disconnected preimage case. If we use the connected case algorithm in the discon-
nected case directly, we have to consider many cases. Our algorithm for the disconnected case
transforms the input graphs to the multi-set of connected preimage, then we use the connected
case algorithm.

4.1.1 Deck Checking

First of this subsection, we introduce a famous theorem below.

Theorem 4.1 (Lueker and Booth [36]). Given two interval graphs G1 and G2, we can determine
whether they are isomorphic in O(n + m) time, where n is the number of vertices of G1 and G2,
and m is the number of edges of G1 and G2.

We next show following lemma for deck checking algorithm.

Lemma 4.2. Given an interval graph G which can be connected or disconnected, the graph G̃
obtained by adding one universal vertex to the graph G is always a connected interval graph.

Proof. It is obvious that G̃ is connected. Consider a compact interval representation I of G.
Let K be the length of I. Then I ∪ {[0,K]} is an interval representation of G̃. Therefore G̃ is a
connected interval graph. �

We have the following theorem and Algorithm 4.

39

G1

...
G2 Gn

G1

...

G2

...

Gn

......

G’

Figure 4.1: Constructing graph G′ from candidate graph G for deck checking

Theorem 4.3. There is an O(n(n + m)) time algorithm of deck checking for n-vertex m-edge
graph and its deck (or a deck candidate) that consists of interval graphs.

Proof. Let G = (V, E) be a graph, where V is {1, 2, . . . , n}, and |E| is equal to m. Let Gi (i ∈ V) be
a graph obtained by removing vertex i from G. Suppose that G1,G2, . . . ,Gn are interval graphs.
It is clear that {G′1,G′2, . . . ,G′n} is a deck of G if and only if the multi-set {G̃1, G̃2, . . . , G̃n} is
equal to the multi-set {G̃′1, G̃′2, . . . , G̃′n}. Hence we can determine whether or not the given multi-
set D = {G′1,G′2, . . . ,G′n} is a deck of the input graph G by checking whether or not G′ =
G̃1∪̇G̃2∪̇ . . . ∪̇G̃n is isomorphic to G̃′1∪̇G̃′2∪̇ . . . ∪̇G̃′n. Since the disjoint union of two interval
graphs is an interval graph, we can use well-known linear time isomorphism algorithm [36]
for this checking. We describe the algorithm in Algorithm 4. Since the number of vertices of
G̃1∪̇ . . . ∪̇G̃n is O(n2), and since the number of edges of G̃1∪̇ . . . ∪̇G̃n is O(mn + n2), the time
complexity of this algorithm is O(n(n + m)). �

Algorithm 4: deck-checking
Input: graph G = (V, E), multi-set D = {G′1,G′2, . . . ,G′n}
begin1

Let G′ be an empty graph.2

foreach vertex v ∈ V do G′ = G′∪̇(G̃ − v);3

if G′ is isomorphic to G̃′1∪̇G̃′2∪̇ · · · ∪̇G̃′n then return True.4

else return False.5

end6

4.1.2 Non-interval Graph Preimage Case

Note that we can easily prove that all the members in a deck of an interval graph are interval
graphs from Theorem 2.4.

40

0 1 2 3 4 5

Figure 4.2: Vertices corresponding to the enclosed intervals are end-vertex set.

Theorem 4.4. If n interval graphs G1,G2, . . . ,Gn have a preimage G that is not an interval
graph, we can reconstruct G from G1,G2, . . .Gn in O(n2) time.

Proof. Assume that G1,G2, . . . ,Gn are the deck of G, and G is not an interval graph. Then G
must be one of the graphs described in Figure 2.2, since any graph that is obtained by removing a
vertex from G is an interval graph (containing none in Figure 2.2). It is clear that G1,G2, . . . ,Gn

have the same number of vertices, n− 1, and the number of vertices in G is n. Since the number
of graphs of size n in Figure 2.2 is O(1), we can check if one of them is a preimage of the input
graphs in polynomial time with deck checking algorithm. The time complexity is O(n(n + m))
from Theorem 4.3, where m is the number of edges of a preimage. Since the numbers of edges
in (a), (b), (c), (d), and (e) are O(n), the time complexity is definitely O(n2). �

Therefore we concentrate on an algorithm that tries to reconstruct an interval graph whose
deck is the set of the input graphs in the remaining subsections.

4.1.3 Connected Preimage Case

First we define end-vertex set. The end-vertex set is intuitively a set of vertices whose corre-
sponding intervals are at the left end in at least one interval representation. Our algorithm adds
a vertex adjacent to all the vertices in an end-vertex set of an interval graph in the input deck.
This enables us to avoid exponential times’ constructions of preimage candidates.

Definition 4.5. For an interval graph G = (V, E), we call a vertex subset S ⊂ V an end-vertex
set if and only if in some compact interval representation of G all the coordinates of the left
endpoints of intervals corresponding to vertices in S are 0, and S is maximal among such
vertex subsets with respect to the interval representation.

See Figure 4.2 for example. It is clear from the definition of compact interval representations
that an end-vertex set contains at least one simplicial vertex.

We show some lemmas about end-vertex sets. We can estimate that the number of essentially
different preimage candidates is O(n2) by these lemmas.

Lemma 4.6. Let S be an end-vertex set of an interval graph G = (V, E). If two vertices v and w
in S have the same degree, then N[v] is equal to N[w].

Proof. Since v and w is in S , on some compact representation of G, the interval corresponding
to v is Iv = [0, kv], and the interval corresponding to w is Iw = [0, kw] for some kv and kw. Assume
that kv is not equal to kw. We can assume that kv is greater than kw without loss of generality.

41

Then N[w] � N[v] holds due to the definition of a compact representation. This contradicts the
fact that v and w have the same degree (see Figure 4.2 for the better understanding). �

Lemma 4.7. A connected interval graph has at most O(n) end-vertex sets.

Proof. An end-vertex set of an interval graph G is in the form {I ∈ I | 0 ∈ I} for some interval
representation I of G. Thus, from Lemmas 2.6 and 2.8, there are at most O(n) end-vertex sets
for G. �

Now we refer the well-known lemma about the degree sequence.

Lemma 4.8 (Kelly’s Lemma [28]). We can compute the degree sequence of a preimage of the
input n graphs in O(n) time, if we know the number of edges in each input graph.

Proof. Let G1,G2, . . . ,Gn be the input graphs. Assume that graph G has a deck {G1,G2, . . . ,Gn}.
Then there are vertices v1, v2, . . . , vn such that Gi is obtained by removing vi from G for each i
in {1, 2, . . . , n}. Thus

deg(Gi) = deg(G) − 2 deg(vi)

holds for each i ∈ {1, 2, . . . , n}. Hence we have

deg(G) =

∑n
i=1 deg(Gi)

n − 2
.

Therefore we can easily calculate the degree sequence of G, i.e., (deg(G)−deg(G1))/2, (deg(G)−
deg(G2))/2, . . . , (deg(G) − deg(Gn))/2.

We can calculate deg(Gi) in constant time, provided we know the number mi of edges in Gi,
for deg(Gi) is equal to 2mi. Thus the time complexity to calculate deg(G) is O(n), and the total
time complexity to obtain the degree sequence of G is also O(n).

�

Now we present an algorithm for reconstructing a connected interval graph. Suppose that
an n-vertex connected interval graph G has a deck of interval graphs {G1,G2, . . . ,Gn}. Let I
be a compact interval representation of G. There must be an index i ∈ {1, . . . , n} such that Gi

is obtained by removing a simplicial vertex s in the end-vertex set S corresponding to I. We
show that we can reconstruct G from Gi. Moreover we can check whether or not G j is Gi for
every j ∈ {1, ..., n}. Therefore we can reconstruct G by checking if G j is the desired Gi for every
j ∈ {1, . . . , n}.

There are two cases about the number of simplicial vertices in S .

(i) S has only one simplicial vertex s.

(ii) S has at least two simplicial vertices.

In the case (ii), S \ {s} = NG(s) is still an end-vertex set of Gi (see Figure 4.3). In the case (i),
S \ {s} is contained by vertices corresponding to {I ∈ I | 1 ∈ I} which is an end-vertex set of
Gi (see Figure 4.4). In both the cases, we thus have to add a simplicial vertex to an end-vertex
set of Gi in order to reconstruct G. We denote the end-vertex set of Gi by S̃ (S \ {s} ⊂ S̃ holds).
Since there are O(n) end-vertex sets of Gi by Lemma 4.7, checking if each end-vertex set S ′ in
Gi is S̃ takes O(n) times iterations. Checking whether an end-vertex set S ′ is S̃ is simple. Since
if S ′ is S̃ , we can reconstruct G, we simply try to reconstruct G. If we can reconstruct G, S ′ is
S̃ , and we of course obtain G. Otherwise, S ′ is not S̃ .

42

0 1 2 3 4 5 0 1 2 3 4 5

s

S S\s

(a) (b)

Figure 4.3: Compact interval representations of G and G − s. In G − s, S \ s is end-vertex set.

0 1 2 3 4 5 0 1 2 3 4 5

s

S S\s

(a) (b)

Figure 4.4: Compact interval representations of G and G − s. In G − s, S \ s is not end-vertex
set.

Now we explain how to reconstruct G from S ′ that is a candidate of S̃ . Let I′ be an interval
representation of Gi whose corresponding end-vertex set is S ′. Note that I′ is easily obtained
in O(n + m) time by using the data structure calledMPQ-tree [32]. Since S \ {s} ⊂ S̃ holds,
S \ {s} ⊂ S ′ holds, if S ′ is S̃ . Hence we can obtain an interval representation of G by extending
intervals corresponding to vertices in S \ {s} ⊂ S ′ to the left by one and adding an interval
[−1,−1]. If we know S \ {s}, we can obtain G, since G has the interval representation obtained
from Ĩ by extending intervals corresponding to vertices in S \ {s} to the left by one and adding
an interval [−1,−1] (see Figure 4.5). In order to specify S \ {s} in the polynomial time, we show
the following lemma.

Lemma 4.9. Let G be an interval graph. Let S be an end-vertex set of G, and let I be an
compact interval representation of G whose corresponding end-vertex set is S . Let S 1 and S 2

be subsets of S such that the degree sequence of vertices in S 1 and the degree sequence of
vertices in S 2 are the same. Let G1 be a graph whose interval representation is obtained by I
extending interval corresponding to S 1 to the left by one and adding an interval [−1,−1], and let
G2 be a graph whose interval representation is obtained by I extending interval corresponding
to S 2 to the left by one and adding an interval [−1,−1]. Then G1 is isomorphic to G2.

Proof. The neighbor sets of S 1 and S 2 are the same due to Lemma 4.6. Hence G1 and G2 are

43

0 1 2 3 4-10 1 2 3 4

S

-1

Figure 4.5: Adding an interval [−1,−1]

isomorphic. �

Since we know the degree sequence of Gi, and we can know the degree sequence of G by
Lemma 4.8, we can know the degree sequence of S \ {s}. We denote the degree sequence by
(d1, d2, . . . , dl). Now we can specify S \ {s} ⊂ S ′; S \ {s} is the subset of S ′ such that whose
degree sequence in Gi is (d1 − 1, d2 − 1, . . . , dl − 1). Note that there may be exponentially many
subsets of S ′ whose degree sequences in Gi are (d1 − 1, d2 − 1, . . . , dl − 1). However Lemma 4.9
guarantees that any of such subsets can be S \ {s}, i.e. all the graphs reconstructed under the
assumption that some subset of S ′ whose degree sequence is (d1−1, d2−1, . . . , dl−1) are S \{s}
are isomorphic to each other. Therefore we can specify S \ {s} in S ′. To be more precise, if we
can find such S \ {s}, S ′ is the desired S̃ , and we can thus reconstruct G. The whole algorithm
is described in Algorithm 5.

Algorithm 5: connected-interval-preimage
Input: multi-set D = {G1,G2, · · · ,Gn}
begin1

foreach Gi ∈ D do2

foreach end-vertex set S ′ of Gi do3

Let I′ be an interval representation of Gi whose corresponding end-vertex set4

is S ′.
Compute the degree sequence (d1, · · · , dl) of S \ {s};5

Let S ∗ be a subset of S ′ whose degree sequence in Gi is (d1 − 1, · · · , dl − 1).6

if there does not exist such S ∗ then go to the next iteration;7

Let G∗ be an interval graph whose interval representation is obtained from I′8

by extending interval corresponding to vertices in S ∗ to the left by one and
adding an interval [−1,−1].
if deck-checking(G∗,D)=True then Output G∗.9

end10

end11

if output no graph then return No.12

end13

Now we consider the time complexity of this algorithm. For each Gi, construction of an
MPQ-tree of Gi in O(n + m) time helps us to list each S ′ and I′ in O(n) time. Computing

44

the degree sequence (d1, d2, . . . , dl) takes O(n) time from Lemma 4.8. Since obtaining S ∗ needs
sorting of the degree sequence, it requires O(n log n) time. It is clear that reconstructing an
interval graph from its interval representation takes O(n + m) time, if the endpoints of intervals
are sorted. deck checking algorithm costs O(n(n + m)). Therefore the total time complexity of
this algorithm is O(n((n+m)+n(n+m+n log n+n(n+m)))) = O(n3(n+m)). Note that we have
to check every output preimage is not isomorphic to each other for preimage counting. Since
the number of output preimage may be O(n2), we need O(n4(n + m)) time for this checking. If
the graph reconstruction conjecture is true, the time complexity of this checking can be omitted.

Theorem 4.10. There is a polynomial time algorithm that lists up connected interval graphs
that are preimages of the input n interval graphs. The time complexity for outputting one con-
nected interval graph is O(n3(n + m)), and that for outputting all is O(n4(n + m)).

4.1.4 Disconnected Preimage Case

Consider the case that the input graphs G1,G2, . . . ,Gn have a disconnected preimage G. Then
from the argument in the Theorem 4.4, G must be an interval graph. Further it is proven that the
graph reconstruction conjecture is true in this case [28] (note that this fact does not imply that the
reconstruction can be done in polynomial time). Lemma 4.2 and the fact that {G1,G2, . . . ,Gn}
is a deck of G if and only if {G̃1, G̃2, . . . , G̃n} ∪ {G} is a deck of G̃ simplify our algorithm in this
case.

Since we can know the degree sequence of G by Lemma 4.8, we can know the degree se-
quence of G̃ by Lemma 4.8. Thus we can obtain G̃ by the algorithm described in the previous
subsection. Note that we do not know G, thus in fact we cannot use the algorithm itself. How-
ever in the algorithm we can omit the case that Gi in the algorithm is G, since every interval
graph has at least two end-vertex set and so does G̃. Further we can omit checking if G is in the
deck of G̃. If the new algorithm (omitting checking if G is in the deck of G̃) returns some G̃, we
can construct G from it. Then now we can check if G is a preimage of G1, . . . ,Gn. Therefore
we have the theorem below.

Theorem 4.11. There is a polynomial time algorithm that outputs a disconnected interval graph
that is the preimage of the input n interval graphs, if there exists. The time complexity of the
algorithm is O(n3(n + m)).

Therefore we have the following theorem from Theorems 4.4, 4.10, and 4.11.

Theorem 4.12. There are O(n3(n + m)) time algorithms for legitimate deck and preimage con-
struction, and there is an O(n4(n + m)) time algorithm for preimage counting, where n is the
number of vertices of preimage and m is the number of edges of preimage.

4.2 Permutation Graphs

In this section, we propose a reconstruction algorithm for permutation graphs. The framework
of this section is the same as previous section. First, we present a deck checking algorithm for
permutation graphs. Since an O(n2) time isomorphism algorithm for permutation graphs [49]
is known, developing a polynomial time deck checking algorithm for permutation graphs is not
very difficult. Next, we consider the non-permutation preimage case to simplify our algorithms.
Finally, we present the algorithms for permutation graph preimage. Our algorithms have two

45

parts. One is for a preimage G that has a minimal strong multi-vertex module M such that G[M]
is not critical, and the other part is for otherwise. In both the parts, we construct polynomially
many candidates of a preimage, and use deck checking algorithm to check whether each candi-
date is a preimage. Since we of course do not know the properties of a preimage when we are
given a input deck, we execute both these two parts for the input deck.

4.2.1 Deck Checking

First of this subsection, we introduce a famous theorem below.

Theorem 4.13 (Spinrad and Valdes[49]). Given two permutation graphs G1 and G2, we can
determine whether they are isomorphic in O(n2) time, where n is the number of vertices of G1

and G2.

Thus developing a polynomial time algorithm for deck checking for permutation graphs is
easy.

We present a deck checking algorithm. This algorithm is the same as Algorithm 4. Given
a multi-set D that consists of permutation graphs, and given a preimage candidate G = (V, E)
whose deck consists of permutation graphs, we first prepare the deck D̂ of G in O(n(n + m))
time, where n is the number of vertices of G and m is the number of edges of G. We then add
a universal vertex to every graph in D and D̂ in order to make each graph connected. Note
that for any permutation graph G, G̃ is also a permutation graph. Since the disjoint union of
permutation graphs is clearly a permutation graph, we can check if D and D̂ are isomorphic in
O((n(n+1))2)=O(n4) time by applying the isomorphism algorithm for permutation graphs to the
disjoint union of graphs in D and the disjoint union of graphs in D̂. Now we obtain the theorem
below.

Theorem 4.14. There is an O(n4) time deck checking algorithm for a deck that consists of
permutation graphs, and a preimage candidate G = (V, E) whose deck consists of n permutation
graphs.

4.2.2 Non-permutation Graph Preimage Case

Let D = {G1,G2, · · · ,Gn} be a deck consisting of n graphs G1,G2, . . . ,Gn. It is clear that
G1,G2, . . . ,Gn have the same number of vertices n − 1, and that the number of vertices in a
preimage G is n. Since the number of the forbidden graphs of the size n is O(1), we can check if
one of them is a preimage of the input graphs in the polynomial time with deck checking algo-
rithm. The time complexity is O(n4), since the time complexity of the deck checking algorithm
is O(n4).

Theorem 4.15. If n permutation graphs G1,G2, . . . ,Gn have a preimage G that is not a permu-
tation graph, we can reconstruct G from G1,G2, . . . ,Gn in O(n4) time.

4.2.3 Non-critical Case

First we consider the case that a preimage G = (V, E) has a minimal strong multi-vertex module
M such that |M| ≥ 3, and G[M] is not critical. If M is a prime module, since G[M] is a prime due
to Lemma 2.20, G[M] has a vertex v such that G[M]−v is a prime, and hence M−v is a minimal
strong multi-vertex module of G[M] − v. If M is not a prime module, due to the definition of

46

M3

M1

M2

G[M3]

1

3

2 5 4

1 2 3 4 5

2 5 3 1 4

Figure 4.6: Strong modules M1,M2, and M3 are minimal. We add a line segment in the line
representation of G[M3].

modular decomposition, G[M] is a complete graph, or G[M] consists of independent set. And
thus G[M] also has a vertex v such that M − v is a minimal strong multi-vertex module of
G[M] − v.

We search for a preimage by adding a vertex v to every minimal strong multi-vertex module
M′ of every graph in the deck to check if M′ is the desired M − v. For every candidate, we use
the deck checking algorithm to check if it is a preimage.

If we can specify NG(v), we can construct a candidate of G. We can easily specify NG(v)\M′,
since M′ ∪ {v} should be a module in G, i.e. every vertex in M ′ and v should seem the same
from the vertices in V \ M′. Thus the remaining task is specification of N(v) ∩ M′.

Due to the definition of a modular decomposition, M ′ is one of a clique, an independent
set, and a module that induces a prime. It is not difficult to construct the candidate of G if M ′

is a clique, or M′ consists of independent set, since we know the degree sequence of G from
Lemma 4.8, that is, we know the degree deg(v) of v in G. To be concrete, we have to connect v
to deg(v) − |N(v) \ M′| vertices in M′.

Next we consider the case that G[M′] is a prime. A permutation graph that is a prime with
respect to modular decomposition has a unique representation [9, 38]. Thus there are only
O(|M′|2) ways of connection of v and vertices in M′. Note that the number of permutation
diagrams obtained by adding a line segment to a permutation diagram is clearly O(|M ′|2), since
there are O(|M′|) choices for the end-point on L1, and there are O(|M′|) choices for the end-
point on L2 (see Figure 4.6). Therefore by checking each of O(|M′|2) candidates whether it is
a preimage with the deck checking algorithm, we have a polynomial time algorithm. We show
in Algorithm 6 the whole algorithm for the case that a preimage has a module that does not
induce a critical graph.

We now mention the time complexity of the algorithm in Algorithm 6. There are n graphs
in the deck. Each graph G in the deck has O(n) minimal strong multi-vertex modules. Note

47

Algorithm 6: non-critical-preimage
Input: multi-set D = {G1,G2, · · · ,Gn}
begin1

foreach graph Gi ∈ D do2

foreach minimal strong multi-vertex module M ′ of Gi do3

Prepare an isolated vertex v.4

Connect v to vertices in V \ M′ suitably.5

if M′ is a clique, or M′ are independent set then6

Connect v to deg(v) − |N(v) \ M′| vertices in M′.7

deck-checking(Gi + v,D).8

else9

Create a unique permutation diagram of G[M′].10

foreach way of adding v do deck-checking(Gi + v,D);11

end12

end13

end14

end15

that the total number of the size of minimal strong multi-vertex modules in G is O(n), and there
are O(|M′|) candidates for each minimal strong multi-vertex modules M ′, so we generate O(n2)
candidates. We can compute these modules in O(n+m) time [12]. The time complexity of deck
checking is O(n4). We can compute a permutation diagram of a permutation graph in O(n + m)
time. Therefore the time complexity of the algorithm is O(n · (n · (n + m) + n2 · n4)) = O(n7).
Hence we have the theorem below.

Theorem 4.16. If a preimage G = (V, E) that is a permutation graph has a minimal strong
multi-vertex module M such that |M| ≥ 3, and G[M] is not critical, we can reconstruct G in
O(n7) time.

4.2.4 Critical Case

Lastly we consider the case that for every minimal strong multi-vertex module M of a preimage
G = (V, E), G[M] is critical, or every minimal strong multi-vertex module has the size two.

Assume that all the minimal strong multi-vertex modules of G have the size two. Since a
module of the size two makes twins, the reconstruction of G is easy in this case. Any graph
G′ in the deck is obtained by removing a vertex that is one of twins from G. Thus G can be
reconstructed by copying a vertex in G′. We make weak and strong twins of each vertex of every
graph in the deck, and check whether the obtained graph is a preimage by the deck checking
algorithm. Thus, this algorithm runs in polynomial time.

Now we consider the case that some of minimal strong multi-vertex modules in G have the
size more than two. Let M be a minimal strong multi-vertex module of G whose size is more
than two. Then since G[M] is a critical graph, G[M] is isomorphic to H |M| or H|M|. x1 and x2 are
almost twins in both the H |M| and H|M| (see Figure 2.10). In fact NH|M|(x1) and NH|M|(x2) differ only
in y1, and NH|M|[x1] and NH|M|[x2] also differ only in y1. We denote by v1 and v2 the vertices in M

corresponding to x1 and x2 such that
∣∣∣NG[M](v1)

∣∣∣ =
∣∣∣NG[M](v2)

∣∣∣+1, or
∣∣∣NG[M][v1]

∣∣∣ =
∣∣∣NG[M][v2]

∣∣∣+1

48

holds. Since M is a module of G, NG(v1) contains exactly one vertex in addition to the vertices
in NG(v2), or NG[v1] contains exactly one vertex in addition to the vertices in NG[v2].

Now we consider G − v2. G − v2 must be in the deck. Thus we check for every graph G′ in
the deck if it is G − v2. If G′ is G − v2, we can reconstruct G from G′ by copying a vertex in G′

and removing an edge. We show the algorithm in Algorithm 7.

Algorithm 7: critical-preimage
Input: multi-set D = {G1,G2, · · · ,Gn}
begin1

foreach graph Gi ∈ D do2

foreach vertex v of Gi do3

Make weak twin v′ of vertex v.4

deck-checking(Gi + v′,D).5

foreach edge e of N(v′) do6

Remove e.7

deck-checking(Gi + v′,D).8

Add e.9

end10

Remove v′.11

Make strong twin v′ of vertex v.12

deck-checking(Gi + v′,D).13

foreach edge e of N(v′) do14

Remove e.15

deck-checking(Gi + v′,D).16

Add e.17

end18

Remove v′.19

end20

end21

end22

We mention the time complexity. There are O(n) graphs in the deck. The number of vertices
in each graph is O(n). We have to remove O(n) edges in each iteration. The time complexity
of deck checking is O(n4). Thus the total time complexity of the algorithm is O(n · n · n · n4) =
O(n7). Thus we have the theorem below.

Theorem 4.17. If every minimal strong multi-vertex module of a graph G induces a critical
graph, or if every minimal strong multi-vertex module of a graph G has the size two, we can
reconstruct G in O(n7) time.

Combining Theorem 4.15, 4.16 and 4.17, we have the following theorem.

Theorem 4.18. There is an O(n7) time preimage construction algorithm for a deck D consisting
of n permutation graphs.

Since we can use preimage construction algorithms for legitimate deck and preimage count-
ing, we also have the legitimate deck and preimage counting algorithms running in the same
time complexity for permutation graphs.

49

4.3 Distance-hereditary Graphs

In this section, we propose a reconstruction algorithm for distance-hereditary graphs. The
framework of this section is the same as previous section. First, we present a deck checking al-
gorithm for the basic part of reconstruction algorithm. Next, we consider that a preimage is not
a non-distance-hereditary graph. Finally, we propose a reconstruction algorithm for distance-
hereditary graphs by using pruning sequence.

4.3.1 Deck Checking

We have to be more careful in the case of distance-hereditary graphs, since a distance-hereditary
graph must be connected, and adding a universal vertex breaks (weakly) distance-hereditariness.
First we show the isomorphism algorithm for weakly distance-hereditary graphs.

Lemma 4.19. For two weakly distance-hereditary graphs G1 and G2, we can check if G1 and
G2 are isomorphic in O(n + m) time, where n is the number of vertices in G1 (and of course in
G2), and m is the number of edges in G1.

Proof. The O(m) isomorphism algorithm in [42] does not explicitly use the property that
distance-hereditary graphs are connected. It makes two DH-trees corresponding to the two
input distance-hereditary graphs, and compare them. Each node of a DH-tree corresponds to an
operation of adding twins or adding pendants, and the root corresponds to K2. We only have to
replace the root K2 by K1. Since adding k− 1 weak twins to K1 results in k isolated vertices, we
can generate any disconnected weakly distance-hereditary graphs from K1. It is straightforward
to modify the algorithm in [42] to handle such a case without affecting the time complexity. �

Moreover the following lemma is useful for the deck checking algorithm.

Lemma 4.20. Given two sets of weakly distance-hereditary graphs S 1 = {G1, . . . ,Gk} and
S 2 = {G′1, . . . ,G′k}, we can determine if S 1 is equal to S 2 in O(k(n + m)) time, where n is the
maximum number of vertices in G1, . . . ,Gk and G′1, . . . ,G

′
k, and m is the maximum number of

edges in G1, . . . ,Gk and G′1, . . . ,G
′
k.

Proof. We extend the DH-tree for a weakly distance-hereditary graph described above to the
DH-tree for a set S of weakly distance-hereditary graphs. The root corresponds to an empty
graph, and the DH-trees of all the elements in S are the children of the root. Then we can use
the similar algorithm to that in [42]. �

Now we describe deck checking algorithm for distance-hereditary graphs. Given a deck
D that consists of weakly distance-hereditary graphs at least two of which are connected, and
given a distance-hereditary preimage candidate G = (V, E), we prepare the deck D̂ of G in
O(|V | · |E|) time. We can check if D and D̂ are equivalent in O(|V | · |E|) time by Lemma 4.20.
We thus obtain the theorem below.

Theorem 4.21. There is O(|V | · |E|) time deck checking algorithm for a deck that consists of
weakly distance-hereditary graphs at least two of which are connected, and for a preimage
candidate G = (V, E) which is a distance-hereditary graph.

50

4.3.2 Non-distance-hereditary Graph Preimage Case

A distance-hereditary graph G is connected, and has no cycle of length more than five, no
house, no domino, and no gem as an induced subgraph from Theorem 2.28. This means that
the forbidden graphs of weakly distance-hereditary graphs are cycles of length more than five, a
house, a domino, and a gem. If a connected graph G is not distance-hereditary (it turns out that
G has some forbidden graph as an induced subgraph), and if G has a deck consisting of weakly
distance-hereditary graphs, and at least two of them are connected, then G must be the one of
a cycle of length more than five, a house, a domino, or a gem, since otherwise some graphs in
the deck have the forbidden induced subgraphs. We can check if the input deck is a deck of a
house, of a domino, or of a gem in constant time, since the size of these graphs are constant.
We can check if the input deck is a deck of a cycle in O(n2) time, since the deck of a cycle of
length n consists of n paths of length n − 2. Thus we have the theorem below.

Theorem 4.22. If n weakly distance-hereditary graphs G1,G2, . . . ,Gn including at least two
connected graphs have a non-distance-hereditary preimage G, we can reconstruct G from
G1,G2, . . . ,Gn in O(n2) time.

4.3.3 Distance-hereditary Preimage Case

A distance-hereditary graph has twins or a pendant from Theorem 2.27. It is easy to develop
a polynomial time preimage construction algorithm for the deck of a graph that has twins or a
pendant. If a preimage has twins, we can reconstruct it by copying every vertex in the deck and
checking if the resulting graph is a preimage by deck checking algorithm. If a preimage has a
pendant, we can reconstruct it by adding a degree one vertex to every vertex in the deck and
checking if it is a preimage by deck checking algorithm. Thus we have the theorem below.

Theorem 4.23. Given a deck D = {G1, . . . ,Gn} consisting of weakly distance-hereditary graphs
at least two of which are connected, we can list up every distance-hereditary graph whose deck
is D, if any, in O(n3m) time, where n is the number of graphs in D, and m is the number of edges
in a preimage.

Proof. Copying every vertex in every graph in D requires O(nm) time. Adding a pendant to
each vertex in every graph in D requires O(n2) time. Each deck checking costs O(nm) time.
The maximum number of deck checking executions is O(n2). Hence we need O(nm + n2 + nm ·
n2)=O(n3m) time. �

Since we can use preimage construction algorithms for legitimate deck and preimage count-
ing, we also have the legitimate deck and preimage counting algorithms running in the same
time complexity for distance-hereditary graphs.

51

Algorithm 8: reconstruct-distance-hereditary
Input: multi-set D = {G1,G2, · · · ,Gn}
begin1

foreach graph Gi ∈ D do2

foreach vertex v ∈ Gi do3

Adding a pendant vertex v′ that adjacent to v.4

deck-checking(Gi + v′,D).5

Remove v′.6

end7

foreach vertex v ∈ Gi do8

Adding a weak twin vertex v′ of v.9

deck-checking(Gi + v′,D).10

Adding an edge {v′, v}.11

deck-checking(Gi + v′,D).12

Remove v′.13

end14

end15

end16

52

Chapter 5

Efficient Algorithm forMPQ-tree

MPQ-trees are informative data structure for interval graphs. By using MPQ-trees, we can
solve the isomorphism problem for interval graphs. Additionally, we use theMPQ-tree for the
reconstruction algorithm, implicitly. However, the construction algorithm ofMPQ-tree in [32]
has several templates, so the implementation of the algorithm is not easy.

We propose a simple constructingMPQ-tree algorithm in this chapter. We show the outline
of our algorithm in Algorithm 9. In this algorithm, we give an interval representation of an
interval graph as an input.

Algorithm 9: construct-MPQ-tree
Input: interval representation I
begin1

Sort endpoints of I.2

Convert I to a “ordered” compact interval representation I′.3

Partition intervals into sets such that each set corresponds to a (P- or Q-) node in the4

MPQ-tree.
Determine the parent-child relations of the nodes, and create sections of Q-nodes.5

end6

5.1 Ordered Compact Interval Representation

In this section, we present algorithms to transform a given interval representation I into a
ordered compact interval representation I′.

First, we sort the interval representation I. Figure 5.1(a) is an example of input interval
representation. After step 2 of Algorithm 9, we have an interval representation in the form of
a linked list of endpoints; e.g., (A, B,C,D, a, c, E, F, d,G, f , b, e, g), where the upper and lower
case letters stand for the left and right endpoints, respectively. The algorithm uses an array of
lists storing endpoints of intervals to represent a compact interval representation; Figure 5.1(c)
shows the data structure of the compact interval representation drawn in Figure 5.1(b). We can
convert a sorted interval representation to a compact interval representation in O(n) time [52].

We here introduce an ordering of intervals that makes our algorithm simple.

Definition 5.1. We say that a compact interval representation is ordered if the representation
satisfies the following conditions:

53

A

B

C

D

E

F

G

0 1 2 3 4 5 6

a

b

e

c f

d g

A

B

C

D

E

F

G

0 1 2 3

a

b

e

c f

d g

0 1 2

B

D

A

C

c

a

E

F

d

G

g

f

e

b

(a) (b) (c)

Figure 5.1: (a) An input interval representation. (b) The compact interval representation corre-
sponding to (a). (c) Data structure of ordered compact interval representation.

1. Left endpoints L(i) precede right endpoints R(j) with L(i) = R(j).

2. A left endpoint of an interval i precedes any left endpoints of intervals j with L(i) = L(j)
and R(i) > R(j).

3. A right endpoint of an interval i precedes any right endpoints of intervals j with R(i) =
R(j) and L(i) < L(j).

4. For a pair i and j with R(i) = R(j) and L(i) = L(j), the right endpoint of i precedes the
right endpoint of j if and only if the left endpoint of j precedes the left endpoint of i.

We next show the following theorem and Algorithm 10 which constructs the ordered com-
pact interval representation from the compact interval representation.

Theorem 5.2. For any given compact interval representation (in a form of an array of lists
storing endpoints of intervals), we can compute the ordered compact interval representation (in
the same form) in O(n) time and O(n) space.

Proof. First, we sweep the endpoints in a given compact interval representation one by one. For
each interval I, we assign the label i that the left endpoint of I appears to the ith left endpoint in
the ordered compact interval representation. In this process, we only use an array that store the
number of unlabeled left endpoint for each coordinate.

Next, we append the left endpoint in order of the small label. Then, we append the right
endpoint in order of the large label. Therefore, this algorithm converts the compact interval
representation to the ordered compact interval representation.

Using an array that maintains the correspondence of left and right endpoints, we can write
the index in O(1) time. Thus, the ordered compact interval representation can be computed in
O(n) time and space. �

54

Algorithm 10: ordered-compact-interval-rep
Input: compact interval representation I
begin1

foreach endpoint e ∈ I do2

if endpoint e is left then3

Increment the number of left endpoint in the coordinate of e.4

else5

Determine the label of the interval I which has the right endpoint e from the6

coordinate of left endpoint of I.
Update the array of assigned label.7

end8

end9

for i = 1 to n do Append left endpoint which has label i.10

for i = n downto 1 do Append right endpoint which has label i.11

end12

5.2 Find all P-nodes and Q-nodes

We explain how to find all Q-nodes in this section. We can find P-nodes easily after finding all
Q-nodes.

We first give the following lemma.

Lemma 5.3. Let T be anMPQ-tree corresponding to an interval graph G, and I be a com-
pact interval representation of G. If two intervals i and j in I overlap, two vertices vi and v j

corresponding to i and j appear in the same Q-node.

Proof. We assume that vi and v j appear in different nodes Ni and Nj in T , respectively. Because
i and j overlap, vi adjacent to v j. From the definition of MPQ-tree, Ni is an ancestor of Nj

or Nj is an ancestor of Ni. Without loss of generality, we assume that Ni is an ancestor of
Nj. Then, the maximal cliques Ci containing vi contains the maximal cliques C j containing v j,
or the intersection of Ci and C j is empty. However, i and j overlap in the compact interval
representation by Lemma 2.7, so Ci � C j and Ci ∩ C j � φ. It contradicts the assumption,
so vi and v j appear in the same node N in T . And by the same reason, it is clear that N is a
Q-node. �

We can obtain next lemma from Theorem 2.12 and Lemma 5.3, immediately.

Lemma 5.4. Let T be anMPQ-tree corresponding to an interval graph G. Each Q-node q on
T consists of intervals I′ on any interval representation I of G, where I ′ satisfies the following
properties.

1. I ∈ I′ overlaps with some other interval in I′, or

2. I ∈ I′ is union of the other intervals in I′.
We show Algorithm 11. This algorithm finds intervals overlapping with some other in-

terval. The algorithm maintains Q-node candidates in a stack and updates Q-nodes candidates

55

Algorithm 11: find-all-Q-node
Input: ordered compact interval representation I
begin1

initialize stack S and state;2

foreach endpoint e ∈ I (e is an endpoint of interval i) do3

if e is left then4

Push i to S .5

else if the top of S is interval i and state[i] = 0 then6

Pop the left endpoint from S .7

else8

if state[i]=0 then9

Make a new Q-node q of intervals on S from interval i to the top.10

else11

Merge intervals in the Q-node to which i belongs and intervals on S from12

interval i to the top into a new Q-node q.
end13

Set states of intervals in q whose state is 0 to 1.14

Set state[i] to 2.15

if every state of interval in q in 2 then16

Remove endpoints of intervals in q from S .17

end18

end19

end20

end21

56

efficiently by using an array state. For each interval i, the array state stores as follows:

state[i] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 right endpoint of i is not processed, and i belongs to no Q-node.

1 right endpoint of i is not processed, and i belongs to a certain Q-node.

2 right endpoint of i is processed.

On step 3, endpoints are searched according to the ordering under the conditions 1 to 4 in
Definition 5.1. This can be done by simply sweeping the data structure of the ordered compact
interval representation. If the endpoint e is left, the algorithm pushes interval i which has
endpoint e in the stack S (see steps 4 and 5). If e is right, we compare i and the top of the
stack S . At this time, if i is not equal to the top of S , intervals on S from interval i to the top
belong to the same Q-node from Definition 5.1 and Lemma 5.4. Since Q-nodes whose intervals
have been processed will be removed on steps 16 and 17, a Q-node obtained by this algorithm
exactly contains intervals that must be in the node.

We here show the complexity. A naive implementation of this algorithm does not achieve
O(n) time. We introduce a good data structure to run the algorithm in O(n) time. We maintain
each Q-node candidate as a pair of two indices in the stack. The lemma below guarantees the
validness of the method.

Lemma 5.5. Vertices in a Q-node candidate are consecutive on stack.

Therefore, the algorithm can maintain a set of Q-node candidates by top and bottom of the
set on stack. Thus, two sets of Q-node candidates are merged in O(1) time.

Lemma 5.6. The total computational cost of merging Q-nodes in the algorithm is O(n).

Proof. At first, the number of sets of Q-node candidates is at most n. One merger, which takes
O(1) time, decreases the number of sets by one. The total number of mergers is thus at most n.
Therefore, it takes O(n) time in total to merge the Q-node candidate sets. �

We obtain the following lemma from the Lemmas 5.5 and 5.6.

Theorem 5.7. Our algorithm partitions intervals into sets such that each set corresponds to a
(P or Q)-node in theMPQ-tree, and runs in O(n) time.

5.3 ConstructMPQ-tree

We construct an MPQ-tree from the ordered interval representation I and each node of the
MPQ-tree. Concretely, we first determine the parent-child relations of the nodes. We next
create sections of Q-nodes.

We define node interval for each node onMPQ-tree. Let P be a P-node on theMPQ-tree
T , and let Ip be a multi-set of intervals that belong to P. For any two intervals i, j ∈ I p, two
vertices corresponding to i and j are contained in all maximal cliques represented by the subtree
of P in T , but in no other cliques, so i and j correspond to the same interval from Lemma 2.7.
We call some interval i ∈ IP P-node P interval.

Let Q be a Q-node on theMPQ-tree T , and let IQ be a multi-set of intervals that belong to
Q. We define Q-node Q interval as i =

⋃
j∈IQ

j.
We have the following lemma.

57

Lemma 5.8. For any two node intervals i and j, i do not overlap j, i.e.

i ∩ j = ∅, i ⊂ j, or j ⊂ i.

Proof. Let i be a node interval of node Ni, and j be a node interval of Nj. If two node intervals
i and j overlap, there are intervals i′ ∈ Ni and j′ ∈ Nj that overlap. From Lemma 5.3, i′ and j′

must belong to the same Q-node. �

Algorithm 12: determine-parent-child-relation
Input: ordered compact interval representation I, P-nodes and Q-nodes

begin1

foreach endpoint e ∈ I (e is endpoint of interval i) do2

Let N be a node on theMPQ-tree which contains i.3

if e is left and N is unprocessed then4

Set N to the child of the top node of the stack S .5

Push N to the stack S .6

end7

if e is right and intervals in N are processed then Pop S (remove N from S).8

end9

end10

By Lemma 5.8 and definition of MPQ-tree, node N is an ancestor of N ′ if and only if
node interval of N contains node interval of N ′. Therefore, we can design Algorithm 12 that
determines parent-child relation of theMPQ-tree. This algorithm maintains only stack, so the
algorithm runs in O(n) time.

Theorem 5.9. Algorithm 12 determines parent-child relations on theMPQ-tree correspond-
ing to interval representation I, and runs in O(n) time.

Algorithm 13: create-sections
Input: ordered compact interval representation I, P-nodes and Q-nodes

begin1

foreach Q-node Q do2

foreach child node N of Q do3

Create section S N .4

Assign intervals that right endpoints are unprocessed when N is made.5

if S N is equal to the left section of S N then6

Merge S N and the left section of S N .7

end8

end9

end10

end11

Next, we design Algorithm 13 for creating sections of each Q-node Q. The algorithm
creates sections for each child of Q, and assigns intervals to the sections. However, if we only

58

process avobe, section S i is equal to other section S j, so the algorithm leaves one section S i and
removes other sections which is equal to S i.

We show the time complexity. The number of nodes on MPQ-tree is O(n). We process
nodes in order of determining the parent-child relation from Algorithm 12, because we can
remember the endpoints which are assigned section S N . If S N has left endpoint or the left of S N

has right endpoint, we must not merge S N into the left of S N . Otherwise we merge S N into the
left of S N , so we can perform steps 4 to 7 in O(1) time. Therefore, Algorithm 13 runs in O(n)
time.

Theorem 5.10. Algorithm 13 creates sections for each Q-node on theMPQ-tree correspond-
ing to interval representation I, and runs in O(n) time.

Therefore we have the following theorem from Theorems 5.2, 5.7, 5.9, and 5.10.

Theorem 5.11. If the input is given in the interval representation with the endpoints sorted by
the coordinates, we can obtain anMPQ-tree corresponding to an interval graphs in O(n) time.

59

Chapter 6

Concluding Remarks

We proposed efficient random generation and enumeration algorithms for proper interval graphs
and bipartite permutation graphs. We investigated unlabeled connected graphs. To deal with
unlabeled graphs, it is important to determine whether or not two unlabeled graphs are iso-
morphic. In this sense, counting/random generation/enumeration on a graph class seems to be
intractable if the isomorphism problem for the class is as hard as that for general graphs (see
[51] for further details of this topic). It is known that the graph isomorphism problem can be
solved in polynomial time for interval graphs and permutation graphs. Hence the future work
would be the extensions of our algorithms to general unlabeled interval graphs and permutation
graphs.

We presented polynomial time reconstruction algorithms for interval graphs, permutation
graphs, and distance-hereditary graphs. These results do not help directly the proofs of the
graph reconstruction conjecture on these graph classes. The conjecture on these graph classes
still remains to be open.

Kratsch and Hemaspaandra showed that preimage construction on graph class C is GI-hard
if the graph isomorphism is GI-hard on C [33]. Remaining famous graph classes that we can
find in [9] on which graph isomorphism are not GI-hard contain circular-arc graphs and circle
graphs (of course there are other non-GI-hard classes such as threshold graphs. However we
mention here higher classes in the hierarchy of the inclusion relation). preimage construction on
circular-arc graphs may be a challenging problem. Ma and Spinrad showed that a circle graph
G has a unique representation if G is a prime with respect to split decomposition [38]. Split
decomposition is a generalization of modular decomposition. Therefore it may be possible that
preimage construction on circle graphs is solvable in polynomial time in a similar way described
in this paper. Circle graphs contain permutation graphs and distance-hereditary graphs.

60

Appendix A

The canonicalMPQ-tree for an interval
graph

In [32], Korte and Möhring proposed two algorithms that construct an MPQ-tree for given
interval graph G = (V, E) in O(n + m) time, where n = |V | and m = |E|.

The first one constructs a PQ-tree T of G and labels it. The constructed MPQ-tree is
essentially the same as the labeled PQ-tree which is used by Colbourn and Booth in [11] to
solve the graph isomorphism problem for interval graphs, and hence it is canonical.

The second one incrementally constructs anMPQ-tree from G with the vertex set ordered
by LexBFS. The authors do not mind if the constructedMPQ-tree by the second algorithm is
unique or not in the paper.

In this section, we show that the second MPQ-tree T is isomorphic to the first one. In
other words, theMPQ-tree T constructed by the second algorithm is also canonical. Korte and
Möhring show and use the following conditions, which are insufficient to the uniqueness [32,
Lemma 2.2]: Let N be a Q-node. Let S 1, . . . , S m (in this order) be the sections of N, and let Vi

denote the set of vertices occurring below S i in T with 1 ≤ i ≤ m. Then we have the following
conditions:

(a) S i−1 ∩ S i � ∅ for i = 2, . . . ,m.
(b) S 1 ⊆ S 2 and S m−1 ⊇ S m.
(c) V1 � ∅ and Vm � ∅.
(d) S i ∩ S i+1 \ S 1 � ∅ and S i−1 ∩ S i \ S m � ∅ for i = 2, . . . ,m − 1.

The conditions and their definition of anMPQ-tree allow that S i = S i+1 for some i with 1 ≤ i ≤
m− 1. In the case, theMPQ-tree can have redundancy and we can obtain differentMPQ-trees
by swapping the sections S i and S i+1 with associated subtrees induced by Vi and Vi+1. Thus
MPQ-tree is not uniquely determined up to isomorphism for an interval graph. On the other
hand, theMPQ-tree constructed by the first algorithm is unique. Hence, to make the second
MPQ-tree unique, it is sufficient to reduce the redundancy. Precisely, it is sufficient to add the
following condition:

(e) S i−1 � S i for i = 2, . . . ,m − 1.
As a result, by the condition (e), we can replace the condition (b) by the following one:

(b’) S 1 ⊂ S 2 and S m−1 ⊃ S m.
We here show the main theorem in this section:

Theorem. The second algorithm proposed by Korte and Möhring in [32] produces theMPQ-
tree that satisfies the conditions (b’) and (e). Thus, the second algorithm surely produces the
canonicalMPQ-tree for an interval graph.

61

Proof. The second algorithm in [32] incrementally modifies the currentMPQ-tree T for each
vertex v1, v2, . . . , vn, which is ordered by LexBFS. We prove the correctness by the induction of
n. At the first step, T consists of a P-node containing v1, and hence T has no redundancy for
the sections. Now we assume that T does not have the redundancy before adding a vertex vi,
and show that the addition of vi does not generate the redundancy.

Then there is a path P in T such that all nodes that have to be modified by the addition of
vi are on P (Lemma 4.1 in [32]). Moreover, P is a subpath of a path from a leaf to the root of
T . Let P be the path (u1, u2, ..., uk) such that the algorithm starts the modification from u1 and
ends at uk. (In the notation in [32], u1 = N∗ and uk = N∗.) We check each modification does not
produce the redundancy step by step, based on the case analysis in [32]. We have two cases.
Case (a): k = 1. The algorithm uses templates either (L1), (P1), the upper one in (Q1), or (Q2).
Templates (L1) and (P1) do not generate Q-node, and we have done. In the upper one in (Q1),
the algorithm generates new sections B1, ..., Bm. Those sections were A∪B1, A∪B2, . . . , A∪Bm,
and the common set A is removed. By the inductive hypothesis with the property (e), we have
A ∪ Bi � A ∪ Bi+1 and hence Bi � Bi+1. Hence we still have the property (e). In the case (Q2),
we have two cases. In any case, for the leftmost two consecutive sections, we have A ⊂ S 1 and
A ⊂ (A ∪ B) by the inductive hypothesis. Hence we have no redundancy.
Case (b): k > 1. In the case, we have three subcases for u1, uk, and u j with 1 < j < k. We
remind that they are processed from u1, u j for each j = 2, 3, . . . , k − 1, and uk.
Case (b-1): For u1. Templates either (L2), (P2), the lower one in (Q1), or (Q2) is applied to
deal with the node u1. In templates (L2) and (P2), a redundant Q-node is generated. More
precisely, we have the following invariance:

(∗) The leftmost two consecutive sections contains the same set A in the Q-node.

In template (Q1), two Q-nodes are generated. The lower one does not have the redundancy
with the same reason in the case (a), and the upper one has the same redundancy with the
invariance (∗). In template (Q2), it does not have the redundancy if B � ∅, but it has the
redundancy with the invariance (∗) when B = ∅.
Case (b-2): For uj with 1 < j < k. In the case, one of templates (P3) and (Q3) is applied. By the
invariance of the case (b-1), only possible redundant sections are S 0 and S 1 in the figure. Hence,
if B � ∅, the modification avoids the redundancy. On the other hand, when B = ∅, we still have
the same redundancy with the invariance (∗). This is repeated for each j = 2, 3, . . . , k−1. Hence
the leftmost two consecutive sections may have the redundancy.
Case (b-3): For uk. In the case, template (Q3) is applied. The node uk, which is denoted by
N∗ in [32], always contains the vertices not in N(vi), where vi is the vertex added to T . Hence
we have B � ∅. Before applying the template (Q3), we may have the redundancy S 0 = S 1.
However, after applying, the sections are modified to A ∪ S 0, A ∪ B ∪ S 1. Hence, by B � ∅, we
always have A ∪ S 0 ⊂ A ∪ B ∪ S 1 at this last step.

Summarizing up, the algorithm in [32] constructs the canonicalMPQ-tree, which has no
redundancy. Hence it is isomorphic to theMPQ-tree constructed by the first algorithm. �

62

Bibliography

[1] D. B. Arnold and M. R. Sleep. Uniform Random Generation of Balanced Parenthesis
Strings. ACM Transaction Programming Languages and Systems, 2(1):122–128, 1980.

[2] D. Avis and K. Fukuda. Reverse Search for Enumeration. Discrete Applied Mathematics,
65:21–46, 1996.

[3] H. J. Bandelt, and H. M. Mulder. Distance-hereditary graphs. Journal of Combinatorial
Theory, Series B, 41:182–208, 1986.

[4] K. P. Bogart and D. B. West. A short proof that ‘proper=unit’. Discrete Mathematics,
201:21–23, 1999.

[5] B. Bollobás. Almost every graph has reconstruction number three. Journal of Graph
Theory, 14:1–4, 1990.

[6] J. A. Bondy. A graph reconstructor’s manual. Surveys in Combinatorics, London Math-
ematical Society Lecture Note Series, 166:221–252, 1991.

[7] N. Bonichon. A bijection between realizers of maximal plane graphs and pairs of non-
crossing Dyck paths. Discrete Mathematics, 298:104–114, 2005.

[8] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences,
13:335–379, 1976.

[9] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. SIAM, 1999.

[10] C. J. Colbourn. On Testing Isomorphism of Permutation Graphs. Networks, 11:13–21,
1981.

[11] C. J. Colbourn and K. S. Booth. Linear time automorphism algorithms for trees, interval
graphs, and planar graphs. SIAM Journal on Computing, 10:203-225,1981.

[12] E. Dahlhaus, J. Gustedt, and R. M. McConnell. Efficient and practical algorithms for
sequential modular decomposition. Journal of Algorithms, 41:360–387, 2001.

[13] X. Deng, P. Hell, and J. Huang. Linear-time Representation Algorithms for Proper
Circular-arc Graphs and Proper Interval Graphs. SIAM Journal on Computing,
25(2):390–403, 1996.

[14] E. Deutsch and L. W. Shapiro. A bijection between ordered trees and 2-Motzkin paths
and its many consequences. Discrete Mathematics, 256(3):655–670, 2002.

63

[15] R. Diestel. Graph Theory. Springer, 3rd edition, 2006.

[16] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific Journal
of Mathematics, 15:835–855, 1965.

[17] T. Gallai. Transitiv orientierbare graphen. Acta Mathematica Hungarica, 18:25–66,
1967.

[18] M. R. Garay and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1979.

[19] R. Geary, N. Rahman, R. Raman, and V. Raman. A Simple Optimal Representation for
Balanced Parentheses. In Symposium on Combinatorial Pattern Matching (CPM 2004),
pages 159–172. Lecture Notes in Computer Science Vol. 3109, Springer-Verlag, 2004.

[20] P. C. Gilmore and A. J. Hoffman. A characterization of comparability graphs and of
interval graphs. Canadian Journal of Mathematics, 16:539-548, 1964.

[21] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete
Mathematics 57. Elsevier, 2nd edition, 2004.

[22] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley
Publishing Company, 1989.

[23] P. Hanlon. Counting interval graphs. Transactions of the American Mathematical Society,
272(2):383–426, 1982.

[24] F. Harary. A survey of the reconstruction conjecture. Graphs and Combinatorics, Lecture
Notes in Mathematics, Vol. 406, 18–28, 1974.

[25] E. Hemaspaandra, L. Hemaspaandra, S. Radziszowski, and R. Tripathi. Complexity
results in graph reconstruction. Discrete Applied Mathematics, 152:103–118, 2007.

[26] Y. Kaneko and S.-i. Nakano. Random Generation of Plane Graphs and Its Application.
IEICE Transactions on Fundamentals, J85-A(9):976–983, 2002.

[27] A. Karttunen. Personal communication. 2008.

[28] P. J. Kelly. A congruence theorem for trees. Pacific Journal of Mathematics, 7:961–968,
1957.

[29] D. E. Knuth. Generating All Trees, volume 4 of The Art of Computer Programming.
Addison-Wesley, fascicle 4 edition, 2005.

[30] Y. Koh and S. Ree. Connected permutation graphs. Discrete Mathematics,
307(21):2628–2635, 2007.

[31] Y. Komaki, and M. Arisawa. Nano Piko Kyoushitsu (in Japanese). Kyouritsu shuppan,
1990.

[32] N. Korte and R. H. Möhring. An Incremental Linear-Time Algorithm for Recognizing
Interval Graphs. SIAM Journal on Computing, 18(1):68–81, 1989.

64

[33] D. Kratsch and L. A. Hemaspaandra. On the complexity of graph reconstruction, Math-
ematical Systems Theory, 27:257–273, 1994.

[34] C. G. Lekkerkerker and J. C. Boland. Representation of a finite graph by a set of intervals
on the real line. Fundamenta Mathematicae, 51:45–64, 1962.

[35] Z. Li and S.-i. Nakano. Efficient generation of plane triangulations without repetitions. In
International Colloquium Automata, Languages and Programming (ICALP 2001), pages
433–443. Lecture Notes in Computer Science Vol. 2076, Springer-Verlag, 2001.

[36] G. S. Lueker and K. S. Booth. A Linear Time Algorithm for Deciding Interval Graph
Isomorphism. Journal of the ACM, 26(2):183–195, 1979.

[37] R. H. Möhring. Personal communication. 2003.

[38] T. H. Ma, and J. P. Spinrad. An O(n2) algorithm for undirected split decomposition.
Journal on Algorithms, 16:145–160, 1994.

[39] J. I. Munro and V. Raman. Succinct Representation of Balanced Parentheses and Static
Trees. SIAM Journal on Computing, 31:762–776, 2001.

[40] S.-i. Nakano. Efficient Generation of Plane Trees. Information Processing Letters,
84(3):167–172, 2002.

[41] S.-i. Nakano. Enumerating Floorplans with n Rooms. IEICE Transactions on Funda-
mentals, E85-A(7):1746–1750, 2002.

[42] S.-i. Nakano, R. Uehara, and T. Uno. A New Approach to Graph Recognition and Ap-
plications to Distance Hereditary Graphs. Journal of Computer Science and Technology,
24(3):517–533, 2009.

[43] S.-i. Nakano and T. Uno. Constant time generation of trees with specified diameter. In
International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2004),
pages 33–45. Lecture Notes in Computer Science Vol. 3353, Springer-Verlag, 2004.

[44] A. Pnueli, S. Even, and A. Lempel. Transitive orientation of graphs and Identification of
Permutation Graphs. Canadian Journal of Mathematics, 23:160-175, 1971.

[45] M. von Rimscha. Reconstructibility and perfect graphs. Discrete Mathematics, 47:283–
291, 1983.

[46] F. S. Roberts. Indifference graphs. In F. Harary, editor, Proof Techniques in Graph
Theory, pages 139–146. Academic Press, 1969.

[47] J. H. Schmerl, and W. T. Trotter. Critically indecomposable partially ordered sets, graphs,
tournaments and other binary relational structures. Discrete Mathematics, 113:191–205,
1993.

[48] J. P. Spinrad. Efficient Graph Representations. American Mathematical Society, 2003.

65

[49] J. P. Spinrad, and J. Valdes. Recognition and isomorphism of two-dimensional partial
orders. In International Colloquium Automata, Languages and Programming (ICALP
1983), pages 433–443. Lecture Notes in Computer Science Vol. 154,Springer-Verlag,
1983.

[50] R. P. Stanley. Enumerative Combinatorics, volume 2. Cambridge, 1999.

[51] R. Uehara, S. Toda, and T. Nagoya. Graph Isomorphism Completeness for Chordal Bi-
partite Graphs and Strongly Chordal Graphs. Discrete Applied Mathematics, 145(3):479–
482, 2004.

[52] R. Uehara and Y. Uno: On computing longest paths in small graph classes. International
Journal of Foundation of Computer Science, 18:911–930, 2007.

66

Publications

[1] 斎藤寿樹,清見礼,上原隆平. 区間表現からMPQ-treeを構築するアルゴリズム. 計
算機科学の理論とその応用（冬の LAシンポジウム）, pp.16:1-16:10, 2007.

[2] Toshiki Saitoh, Masashi Kiyomi, and Ryuhei Uehara. Simple Efficient Algorithm for
MPQ-tree of an Interval Graph. IEICE Technical Report, COMP2007-24, pp.49-54,
2007.

[3] Toshiki Saitoh, Masashi Kiyomi, and Ryuhei Uehara. Simple Efficient Algorithm for
MPQ-tree of an Interval Graph. KOREA-JAPAN Joint Workshop on Algorithms and
Computation (WAAC 2007), pp.121-126, 2007.

[4] 斎藤寿樹,山中克久,清見礼,上原隆平. Proper Interval Graphsのランダム生成と列
挙. 夏の LAシンポジウム, pp.22:1-22:8, 2008.

[5] Masashi Kiyomi, Toshiki Saitoh, and Ryuhei Uehara. Reconstruction of Connected Inter-
val Graphs. Acceleration and Visualization of Computation for Enumeration Problems,
pp.128-134, 2008.

[6] Toshiki Saitoh, Katsuhisa Yamanaka, Masashi Kiyomi, and Ryuhei Uehara. Random
Generation and Enumeration of Proper Interval Graphs. The 3rd Annual Workshop on
Algorithms and Computation (WALCOM 2009), Lecture Notes in Computer Science Vol.
5431, pp.177-189, 2009.

[7] Masashi Kiyomi, Toshiki Saitoh, and Ryuhei Uehara. Reconstruction of Interval Graphs.
The 15th International Computing and Combinatorics Conference (COCOON 2009),
Lecture Notes in Computer Science Vol. 5609, pp.106-115, 2009

[8] 斎藤寿樹,大舘陽太,山中克久,上原隆平. Bipartite Permutation Graphのランダム
生成と列挙. 夏の LAシンポジウム, 2009.

[9] Toshiki Saitoh, Yota Otachi, Katsuhisa Yamanaka, and Ryuhei Uehara. Random Gen-
eration and Enumeration of Bipartite Permutation Graphs. IEICE Technical Report,
COMP2009-30, pp.35-42, 2009.

[10] Masashi Kiyomi, Toshiki Saitoh, and Ryuhei Uehara. Reconstruction Algorithms for
Permutation Graphs and Distance-Hereditary Graphs. IPSJ SIG Technical Report, 2009-
AL-126, pp.5:1-5:8, 2009.

[11] Toshiki Saitoh, Yota Otachi, Katsuhisa Yamanaka, and Ryuhei Uehara. Random Gener-
ation and Enumeration of Bipartite Permutation Graphs. The 20th International Sympo-
sium on Algorithms and Computation (ISAAC 2009), Lecture Notes in Computer Science
Vol.5868, pp.1104-1113, 2009.

67

[12] Masashi Kiyomi, Toshiki Saitoh, and Ryuhei Uehara. Reconstruction Algorithm for Per-
mutation Graphs. The 4th Annual Workshop on Algorithms and Computation (WALCOM
2010), Lecture Notes in Computer Science Vol. 5942, pp.125-135, 2010.

68

