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The task of updating information is a significant task in the context
that many applications require documents to be updated quite often. In

legal domain, it is an important task because of the massive number of
legal updates and the cross-reference problem. Our research copes with a

special case of the information update task, the information insertion task
which aims to determine the most appropriate location to insert a piece of
new information into an existing document.

In [6], the information insertion task was formulated as a hierarchical
ranking problem. Each document is represented as a hierarchy of sections,

paragraphs. Then, the insertion is operated over that hierarchical tree. To
determine the best paragraph in the document to add a new sentence, all

paragraphs of the document are ranked by a ranking function computed
for each insertion sentence/paragraph pair and then, the paragraph with

the highest score will be chosen. The ranking function for each insertion
sentence/paragraph pair is computed based on a weight vector learned
from training data. The training procedure was implemented in an online

learning framework with the Perceptron algorithm [13, 8].
We investigated ranking models for the information insertion task on two

datasets: Wikipedia insertion dataset obtained from [6] and Legal dataset
built by ourselves. The Legal dataset was built from the United States

Code which is a compilation and codification of general and permanent
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federal law of the United States. The experiment results show that when
the deep semantics analysis for texts is not performed, the ranking models

with the supervised approach outperform the unsupervised methods for
the information insertion task.

In Natural Language Processing, semantic relations between words can
be exploited when measuring semantic text similarity of two text segments.
In our research, we proposed a method of measuring topical overlap be-

tween two text segments, which incorporates word clusters [5, 21, 24], and
used these similarity measures as additional semantic features in the learn-

ing model. In our method, first, word clusters are derived from unlabeled
data. Then, extracted word clusters are used as intermediate representa-

tions of words to exploit the semantic similarity and semantic relatedness
between words which are different in surface forms but semantically re-

lated. The semantic text similarity scores are computed with various kinds
of similarity functions. Our results show that combining cluster-based fea-
tures with baseline features can boost the performance of the information

insertion task on two datasets. In the best setting, we obtained 40.4% ac-
curacy of choosing paragraphs on Wikipedia dataset and 52.3% accuracy

of choosing section on Legal dataset.
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