JAIST Repository

https://dspace.jaist.ac.jp/

Title JAvVADOUOOOOOODOOOoOoDoooooo

Author(s) oooooog, 0000

Citation

Issue Date 2010-03

Type Thesis or Dissertation

Text version aut hor

URL http://hdl.handle.net/ 10119/ 8953
Rights

Description Supervisor: gooooa, oooooopm, 00

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Extracting collaboration classes from Java source code

Nguyen Van Tuan (0810021)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 9, 2010

Keywords: Collaboration Classes(CC), Design Pattern, Metapattern,
UML, Java, Class Diagram.

1 Background and Purpose

When developing an information system, there is an enormous amount
of software models and programs. And the dependency relationships be-
tween them are very complicated. Therefore, tools to help automate the
change process are very useful in, reducing the effort required to change
and improving reliability of information system. Moreover, automatically
detecting collaboration classes that correspond to the elements of the de-
sign model plays an important part in this tool.

The purpose of this research is to identify collaboration classes which are
Java classes implementing a use case and extract them.

2 Related work

In 2006, Kim had defined collaboration classes is Java classes that use a
metapattern and classified 6 types of metapattern of Pree to 3 types of
coordinative structure and had developed an algorithm to extract them
from Java source code. His purpose is to develop an algorithm that can
extract 23 types of GoF design patterns, but he could not extract all of
them. His algorithm can extract only 17 types of them. In 6 types of

Copyright © 2010 by Nguyen Van Tuan



design pattern that his algorithm cannot extract, 3 types can be described
by metapattern and the others are not.

3 Research approach

To extract collaboration classes, we improve on previous research, and use
it to extract Java classes that implement a use case. In order to solve this
problem, there are two issues.

1. Adding some methods to extract Java classes which use design pattern
and cannot be explained by the metapattern. Specifically, besides
using metapattern we use structural features and behavior features of
design patterns to develop an algorithm to extract Java classes using
design pattern.

2. Extracting Java classes that corresponding to classes in class diagram
of use case.

For issue 1, when implementing a class diagram, developers usually use
design pattern to implement. Therefore, extracting classes that applied
design patterns plays an important part in extracting collaboration classes.
And because of metapatterns that defined by Pree can explain almost
of design patterns, we investigate design patterns that Extract algorithm
developed by Kim cannot extract and improve it to be more effective (can
extract all cases which can be explained by metapattern). Moreover, by
summarizing structural features and behavior features of design patterns
that cannot be explained by metapattern we develope an algorithm to
extract classes that are applied design pattern and cannot be explained by
metapattern.

For issue 2, by applying algorithm talked in issue 1 we can extract classes
that applied design pattern from Java source code. And using construc-
tional feature of design pattern in extracted classes, we extract Java classes
that correspond to individually classes in class diagrams of use cases. After
that, we apply subgraph isomorphism algorithm to find correspondences
between classes in class diagrams and extracted Java classes. However in
some cases, because developers do not use design pattern to develop system,



using only constructional features of design pattern in extracted classes is
not enough to get exact results. Therefore, we propose a rule for tracking
source codes that are not be applied design pattern when implemented.

4 Experiment

To check effective of extracted classes that were applied design pattern
from Java source code, we checked it with 41 design patterns that appear
on Pattern in Java book of Mark Grand and used source codes that were
included this book ’ s CD. As a result of test, this algorithm can extract
classes that applied 39 design patterns in the book.

Besides, we checked the effective of our approach by using two minor
systems. It is ATM system and elevator controller system. And it exactly
extracted over 92.5% classes that included in use cases.

5 Conclusions and Future work

This research improved algorithm proposed by Kim and added some struc-
tural features and behavior features of design pattern’s source code to ex-
tract more design patterns than Kim proposed. Based on exist algorithm,
we develop an algorithm to extract classes that included in use cases by
using constructional features of extracted class and applying subgraph iso-
morphism algorithm proposed by J R Ullman.

In the future, we will consider the failing; apply method to other design
patterns and other programming languages.



