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Abstract

High performance parallel computer systems become feasible solution of computationally
intensive problems by the advent of cost-effective VLSI components in the past few years.
Since the probability of one or more processors to become faulty in such multiple processor
systems is quite large, it is desirable for improving the reliability of them to build some on-
line fault tolerance features into them. However, the requirements for high performance
and fault tolerance are seemingly contradictory: parallel architectures and algorithms have
been developed to achieve maximum utilization of each of processors, while fault tolerance
requires redundant computations and checking operations to ensure that the computation
results are correct. To incorporate fault tolerance into multiprocessor systems at lower
cost, several ABFT techniques have been proposed. However, most of these discussions
are target dependent and less effort has been made at the generalization.

The objective of this research is to construct some general model which can be used for
both analysis and synthesis of ABFT systems. Fault detectability /locatability under some
practical error occurrence/propagation models and formal design methods of checking
scheme of ABFT systems are also discussed on this general model. The essentials of
ABFT technique are to encode data at system level and to modify the target algorithm
to operate on the encoded data. To analyze and to control fault detectability /locatability
of such a system, the error occurrence/propagation model at the algorithm level plays an
important role. The model for ABFT system considered here can fully utilize a specified
error occurrence/propagation model by using data dependency, and it can give us tighter
conditions for fault detectability/locatability than previous models do. In the turn for
synthesis, these properties contribute to the cost-effective checking scheme by reducing
redundant checking operations.

In the result, the analysis/synthesis model and some relevant discussions done in this
research will provide important bases for reliable parallel computing systems.
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List of Abbreviations

e ABFT(Algorithm-Based Fault Tolerance) is a new technique for tolerating faults
at lower cost, and has concurrent error detection and fault location capability.

e CED(Concurrent Error Detection) is on-line fault tolerant technique for detecting
faults, and has been used in fault tolerant signal processing applications.

¢ DC(Data-Check) graph: represents the relation of data elements and checks, and
gives an useful information about the checking schemes of fault tolerant system.

e DG(Dependence Graph) represents the data dependency between operations as-
sociated with data element, or between operation and primary input or primary
output, for a given algorithm.

¢ ED(Error-Data) graph: is an undirected bipartite graph, and represents the relation
of error patterns and data elements.

e EMPDC(Extended Modified Processor-Data-Check) graph is to be extended from
MPDC graph to introduce the redundancy for computing data element to be com-
pared to the sum of data elements in a check and to map the checking operation to
system processors.

e FIR(Finite Impulse Response) filter is always stable and can be made to have linear
phase response which is characteristic that makes it extremely attractive in audio
and sonar applications.

o IIR(Infinite Impulse Response) filter is more efficient than FIR filter in analog
equivalence and cost effectiveness.

e MID(Multiple-Inputs Driven) model is a sophisticated error generation/propagation
model used in this research.

e MPD(Modified Processor-Data) graph is to be modified from PD graph to intro-
duce data dependency between computation results.

¢ MPDC(Modified Processor-Data-Check) graph represents ABFT system which is
constructed by using the checking scheme based on MPD graph model.

e PD(Processor-Data) graph represents the relation of processors and data elements,
and gives the information about the architecture after mapping operations to a set
of processors.

¢ PDC(Processor-Data-Check) graph is a tripartite graph which consists of PD
graph and DC graph, and has been used by many researchers in analyzing and
designing ABFT system.

vi



PE(Processing Element) is a circuit block in array architecture, or is a processor
in multiprocessor system.

SFD(Single-Fault Detection) is the process of recognizing that a single-fault has
occurred.

SFL(Single-Fault Location) is the process of determining where a single-fault has
occurred.

SFL/TFD(Single-Fault Location/Two-Fault Detection) is the process of deter-
mining where a single-fault has occurred and recognizing that a two-fault has oc-
curred.

SID(Single-Input Driven) model is a simple error generation/propagation model
used in this research.

TFD(Two-Fault Detection) is the process of recognizing that a two-fault has oc-
curred.

VLSI(Very Large Scale Integration) is an integrated circuit containing more than
10,000 logic gates or more than 30,000 transistors.

WCC(Weighted Checksum Code) is a code for both detecting and correcting error
in signal processing applications.

Vil



Chapter 1

Introduction

High performance parallel computer systems are commonly used for signal processing and
other computationally intensive problems which require high-speed data processing. A
fault in the system can have damaging consequences on the result of a computation. Also
the probability of one or more processors to become faulty in such multiple processor
systems is quite large. Therefore, it is desirable for improving the reliability of them to
build some on-line fault tolerance features into them. However, the requirements for high
performance and fault tolerance are seemingly contradictory: parallel architectures and
algorithms have been developed to achieve maximum utilization of each of processors,
while fault tolerance requires redundant computations and checking operations to ensure
that the computation results are correct. Algorithm-based fault tolerance(ABFT) is one
of techniques for solving such problems, which provides concurrent error detection and
location capability to the system [1].

To incorporate fault tolerance at lower cost without sacrificing the performance, var-
ious ABFT techniques have been proposed, and also model-based analysis methods for
these ABFT systems have been investigated [1], [2], [3], [4], [5], [6], [7], [19], [20], [23], [25],
[26], [29], [31], [32], [34], [36]. There have been many applications of these techniques to a
variety of problems including FFT [17], [19], [20], sorting, signal processing applications
[6], [11], [12], [14], [29], such as finite impulse response(FIR) filtering, and matrix oper-
ations [1], [6], [14], [21], [23], [26], [34]. It has also been applied to various architectures
such as array [6], [11], [12], [14], [15], [19], [20], [23] and hypercube [21].

One of the main goals of research in ABFT is to design cost-effective systems which
have fault detectable(or locatable) property so that the computation complexity and
the number of checks are minimized. Designing k-fault locatable or detectable systems
involves many degrees of freedom. One could assume that the architecture is not given a
priori. In this case one could add checks to the algorithm to make it error tolerant and then
project its data dependence graph(DG) to obtain the optimal fault tolerant architecture.
Vinnakota and Jha [6] proposed two-stage approach to the synthesis of ABFT systems:
(1) a system-level code is chosen to encode the data used in the algorithm, (2) the optimal
architecture to implement the scheme is chosen by using DG. Liu and Jen [23] presented
a systematic design methodology which maps a matrix arithmetic algorithm to a fault-
tolerant array processor: input data of an algorithm are coded in weighted checksum
code(WCC) and the DG of the modified algorithm is mapped to array processor. On the
other hand, one could assume that the algorithm and architecture are already given and
that the checks must be added for some desired fault tolerance.



Many works have been done on the formal analysis and design of ABFT systems.
Banerjee and Abraham [5] proposed a graph-theoretic model to represent ABFT systems:
an ABFT system is modeled by an undirected tripartite graph which is called processor-
data-check(PDC) graph. It consists of three sets of nodes each of which corresponds to
processors, data elements or checks and edges between processor and data or data and
check. The PDC graph can be divided into two bipartite graphs: processor-data(PD)
graph and data-check(DC) graph which represent PD relationships and DC relationships,
respectively. Designing PD relationships can be said to be a synthesis for ABFT system,
while designing DC relationship can be called a design for ABFT system. Also, demon-
strating the ability of the desired fault tolerant system when both PD graph and DC graph
are given, can be said to be an analysis for ABFT system. The PDC graph model has
been used by several researchers in synthesizing, designing and analyzing ABFT systems.
Nair, Abraham and Banerjee [4] proposed a matrix-based model which was derived from
the graph-theoretic model. Banerjee and Abraham in [5] also gave a construction methods
for ABFT systems by using the graph-theoretic model. In any of these methodologies, a
systematic procedure to design DC relationships which can detect and locate a specified
number of faults has attracted a lot of attention due to the important role it plays in
synthesizing, designing and analyzing ABFT systems. Sitaraman and Jha [3] showed how
to design the DC relationship for error detection and location.

However, the conventional graph-theoretic models have not addressed error occurrence
and error propagation for a given system, which result in redundant error patterns in de-
signing and analyzing ABFT systems. These redundant error patterns cause the increase
of the complexity and the number of checks in designing and analyzing ABFT systems. To
exclude such redundant error patterns, we introduce data dependent information between
computation results computed by processors. Since data dependency gives an useful in-
formation for error occurrence/propagation, we can simplify the analysis procedure and
reduce the number of checks. An analysis model based on modified processor-data(MPD)
graph is proposed, and it is shown that the number of error patterns to be considered can
be reduced by utilizing data dependency between computation results.

We employ two error occurrence/propagation models named as single-input driven(SID)
model and multiple-inputs driven(MID) model for the MPD graph model. The SID model
is such a model that an erroneous input to a computation will always result in erroneous
computation result regardless of the other inputs nor the status of the processor. In this
case, once we construct a set of data elements reachable from each data element, each one
of error patterns can be generated by simple union operation to properly selected sets of
reachable data elements, and we can drastically reduce the number of error patterns to
be considered compared to the conventional PDC graph model. The MID model is more
sophisticated with taking into account of some possibilities in the practical situations: a
computation result with multiple erroneous inputs may possibly be error-free, and also a
faulty processor may possibly generate error-free computation result when some of inputs
are erroneous. As a result, the set of error patterns to be considered with MID model
becomes a superset of the one with SID model, but still a subset of the one from the con-
ventional PDC graph model. In general, the computational complexity and the number of
checks in analyzing and designing ABFT systems increase as the number of error patterns
increases. While the complexity and the number of checks tend to increase compared to
the MPD graph with the SID model in compensation for improving the accuracy of error
propagation model, the effectiveness of MPD graph model with MID model holds good



compared to the conventional PDC graph model.

On the other hand, the redundant computations and checking operations are usually
a part of an ABFT system and are likely to be performed on the system processors. How-
ever, the problem of how to map checks to system processors has been little concerned
in designing ABFT system. Nair, Abraham and Banerjee [4] introduced check evaluating
nodes in their graph model and showed the way how to analyze such a system for fault
tolerance. Yajnik and Jha [7] used an extended PDC graph model for considering proces-
sors computing checks to be a part of the ABFT system. They proposed a deterministic
solution to concurrent error detection and fault location with graceful degradation, and
presented a general method for designing one-fault locating/s-fault detecting ABFT sys-
tems. However, their graph model did not show information about how to map checks to
system processors, and also they did not consider the problem of designing cost-effective
ABFT systems such that the number of checks and redundant computations are reduced.
We propose a novel strategy for mapping checks to system processors with minimizing
the number of checks and redundant computations so that fault tolerant capability of the
system is still maintained even after some permanent faults are detected.

Furthermore many efforts have been made in synthesizing ABFT systems on various
VLSI array architectures [6], [11], [12], [14], [15], [19], [20], [21], [23]. The conventional
fault tolerant schemes for array architectures have been mainly concentrated on concur-
rent error detection(CED) schemes. Gupta and Bayoumi [11] proposed a novel CED
scheme termed as logarithm based on-line error detection which is based on the use of
logarithmic coding for inputs and results in a self-testing systolic cell. Vinnakota and Jha
[6] proposed a method for synthesizing single-fault detectable ABFT system from DG of
FIR filtering by introducing an useful checking scheme. But they did not attend to the
fault location which is an important key to correcting errors or reconfiguring system for
permanent faults. On the other hand, Kung [10] presented error detection and correction
based on interleaved DG. The idea is to perform the same computation twice in adjacent
PEs at two different but close enough time periods and then compare the results. If they
match there is no fault. Otherwise a roll-back is necessary to correct the fault. However
some faults can not be exactly located when such faults are permanent. Also a fault in
checking operation which is to compare two results: one is primary output computed in a
processing element(PE), the other is redundant output computed in adjacent PE, was not
considered, that is, checking operations were assumed to be fault-free. Cosentino [12] pro-
posed a scheme of concurrent error correction in systolic architecture of FIR filtering at a
cost of halving the maximum throughput rate by performing the same computation twice
in adjacent processing elements and comparing such two results. Thus the conventional
schemes have been mainly proposed in the area of concurrent error detection and correc-
tion. While less efforts have been made in fault location which plays an important role
in the area of reconfiguration of the system to bypass the faulty processor. The problem
of locating faults in systolic array system can not be solved in simple schemes. To solve
the problem, more complex fault tolerant schemes which are considered both time redun-
dancy and hardware redundancy, are required. We present a method of designing fault
tolerant FIR filter on systolic architecture by using the scheme for synthesizing ABFT
systems based on an extended modified processor-data-check(EMPDC) graph model.

Fault tolerance involves four steps: (1) detection of errors due to a fault at some
processor(or module) output, (2) correction of the errors, (3) identification of the faulty
processor, and (4) reconfiguration of the system to bypass the faulty processor. In this



thesis, we will concentrate on (1) and (3) due to playing an important role in (2) and (4).
The correction of a error can be achieved by roll back technique or the identification of
the error which provides an useful information for identifying the faulty processor. The
reconfiguration can be achieved by using spare processors and switch modules, or applying
graceful degradation techniques.

The rest of this thesis is organized as follows. In Chapter 2, several terms with regard
to ABFT systems are defined, and k-fault detectability and k-fault locatability in terms
of error patterns are discussed. Two error models to be employed in this research and
an analysis model based on MPD graph are present in Chapter 3. For each of two error
models: SID model and MID model, checking schemes and design examples for single-
fault detectable and locatable ABFT systems are represented in Chapter 4 and Chapter 5.
In Chapter 6, a novel strategy for mapping checks to system processors and fault tolerant
FIR filter as a design example are discussed. Finally, Chapter 7 is used for conclusions.



Chapter 2

Terminologies with regard to ABFT
systems

2.1 Fault, Error and Check

Now, we will define faults, errors, and checks(checking operations) with regard to ABFT
systems. The basic definitions are based on [1], [4] and [5].

A fault is any condition that causes a malfunction in processor(s). An error is any
discrepancy between the expected result of an operation and the actual result of the
operation. A fault in a processor is assumed to be manifested as an error in one or more
data elements affected by it. In general, the problem of detecting faults is translated
into the problem of detecting errors in computation results. However, we must note that
certain types of faults may not produce any error at all. If a particular fault does not
produce any error in data elements computed by a processor, the fault is said to be
unobservable and the presence of these faults is disregarded in this research. A collection
of all faulty processors is called a fault pattern. Fault patterns consisting of k or fewer
elements(faulty processors) are called k-fault. On the other hand, a collection of all
erroneous data elements is called an error pattern.

A check is any combination of hardware and software procedures performed on the
data elements to generate an output either 1 or 0. The set of data elements checked by a
check is called its data set. A (g,h) check is defined on g data elements such that (1) the
check is correct(either outputs 0 or 1) if the number of erroneous data elements among
these g data elements does not exceed h, and (2) the check is invalid(may output 0 or 1)
if more than h data elements are erroneous. We assume that the capability of a check is
limited to a (g,1) check, and its behavior is as follows:

Cl. A check outputs a 1 if there is exactly one data element in its data set being in
error.

C2. A check outputs a 0 if there are no errors in the data elements in its data set.

C3. A check is unpredictable if the number of erroneous elements in its data set is greater
than one.

The outputs of the checks in the system can be represented as a finite binary sequence
which is usually called the syndrome.



2.2 k-Fault Detectability and Locatability

We define k-fault detectability and locatability as follows.

Definition 2.1 (k-Fault Detectability) An ABFT system is said to be k-fault de-
tectable if for every error pattern induced by k-fault, there is at least one check that
certainly outputs 1.

Definition 2.2 (k-Fault Locatability) An ABFT system is said to be k-fault locatable
if for any pair of error patterns, one is induced by a fault pattern in k-fault and the other
15 induced by any other fault pattern in k-fault, there is some check that certainly gives a
different output.

Now, we introduce several notations to describe k-fault detectability and locatability
in terms of error patterns. f! is the [-th set of i processors and indicates one fault pattern
of the size 7. Fj:

C(M,i

)
F=U £} (2.1)

=1

is the set of all fault patterns of their size exactly ¢, where C(M,i) is the number of
combinations which have ¢ processors for a given system with M processors, that is,

C(M,1) = it And F*:

= U F; (2.2)

is the set of all k-fault patterns.
On the other hand, e? is a subset of data elements and indicates one error pattern
induced by f}. e

ei = {eil) 6527 e 76?1 (23)

is the set of all error patterns induced by a fault pattern f!. E; and E*:

C (M)
=1
k
EF=JE (2.5)
=1

are the sets of error patterns induced by fault patterns in F; and those in F'*, respectively.

Now, we describe fault detectable and locatable system with regard to ABFT systems.
To simplify the notations, let f; be a fault pattern in F'* and let e;, (€ E*) be the u-th error
pattern induced by a fault pattern f;. To describe fault detectability and locatability, first
we introduce an undirected bipartite graph Ggp(Vep, Egp) which describes the relation
between error patterns and data elements. The set of vertices Vgp(= E*U Vy) denotes
the set of error patterns (E*) and the set of data elements (V;), and the set of edges

6



error patterns  data elements checks

L
ED graph Ggp

Figure 2.1: Checks for k-fault detectable ABFT system.

Egp denotes the relation between error patterns and data elements : if a data element
d, is contained in an error pattern e;, induced by a fault pattern f;, then there exists an
undirected edge(e;,, d,,).

In the following, let C' = {c1,¢ca,- -, ¢4, -+, co} be a set of checks, where the check ¢,
is a subset of data elements.

Lemma 2.1 An ABFT system is k-fault detectable if and only if for each error pattern
e, 1 <1 < |F¥|, there is at least one check ¢ € C such that |c M ey| = 1.

Proof: (1) sufficient condition: If |c;Ne;,|=1, then the check ¢, certainly outputs 1 for an
error pattern e;, because exactly one data element in ¢, is in error. Hence, there is at least
one check which certainly outputs 1 for each error pattern induced by f;, 1 <1 < |F¥|.
(2) necessary condition: The proof is by contradiction. Suppose that, for a certain error
pattern €y, "¢z, [|cgNew| = 0 or [eg Nes| > 2] If |, N ei|=0, then ¢, certainly outputs 0
for the error pattern e;,. If |c, N e;,| > 2, then the check ¢, is unpredictable because the
check ¢, is (g,1) check. Hence, there is no check that can certainly output 1 for e;,. This
is a contradiction. O

Now, we will discuss k-fault locatable system. Analyzing ABFT system for its fault
locatability is a much harder problem when compared to the problem of analyzing the
fault detectability. This is the reason that, in the case of fault locatability, we have to
determine not only whether a fault pattern is detectable but also whether the fault pattern
is distinguishable from other fault patterns.

Lemma 2.2 If an ABF'T system is k-fault locatable, then for any pair of error patterns
€ and €,, 1 £ §, 1 < i < |F*, 1 < j < |F*, e @ ej, # 0, where & denotes the
symmetric difference.

Proof: The proof is by contradiction. Suppose that for ¢ # j, the symmetric difference of
the error patterns e;, and ej, is empty. When f; and f; induce e;, and e;,, respectively,
the syndrome for f; and the one for f; are the same because e;, = ¢;,. Hence, there is no
way that the checks can distinguish f; and f; for ¢ # j. This is a contradiction. a

7
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Figure 2.2: Checks for k-fault locatable ABFT system.

Theorem 2.1 An ABFT system s k-fault locatable if and only if for each pair of error
patterns ey, and €;,, 1 # j, 1 <1 < |F*, 1 < j < |F¥|, there is at least one check-pair
ce C and ¢ € C such that

(1) |eN(ew P ejn)| =1 and |cN (e Nejy)| =0
(2) |dNejp| =1 tfleN (e —ejp)| =1
(3) |d Newl =1 1if |cN (e —€w)| =1.

Proof: (1) sufficient condition: From the definition of k-fault locatability, the syndromes
for two error patterns e;, and e;, which are induced by two-distinct fault patterns f; and
fj, respectively, have to be different. Let d,; be a data element contained in both e;, @ €,
and c so that |cN (e, @ €j,)|=1 and |c N (e, Nejy)|=0. If d;; is in e, then | Ne;yl =1
and the partial syndrome cc’ is 01 and 11(or 1X) for f; and f;, respectively, where X
denotes that the check is unpredictable. Similarly, if d;; is in e, then |¢' N e;,|=1 and
the partial syndrome cc’ is 11(or 1X) and 01 for f; and f;, respectively. Therefore, f;
and f; are detected and distinguished by the check-pair ¢ and ¢. (2) necessary condition:
The proof is by contradiction. Suppose that, for a certain pair of error patterns e;, and
ivs (2) ey lleq N (e @ 50)] # 11, (b) 3y g N (ein @ €i0)] = 1, leg N (i N ejo)| = 0]
and ¢, [|c N ew| # 1(or |c, Neju| # 1)]. For the case of (a), there is no check that
can give a different output because ¢, has the same output for e, and e;,, or that can
certainly output 1 because ¢, is either 0 or unpredictable for e;,(or e;,). Also, for the case
of (b), there is no check that can certainly output 1 for e;(or e;,) because ¢ is either 0
or unpredictable for e;,(or e;,). This is a contradiction. O

Corollary 2.1 If an ABFT system is k-fault locatable due to Theorem 2.1, then it is also
2k-fault detectable.

Proof: It is clear that if an ABFT system is k-fault locatable, then it is also k-fault
detectable because from the proof of Theorem 2.1, the check-pair ¢ and ¢’ can detect
ey and ej,. The error patterns induced by 2k-fault are obtained by taking all available
pairwise unions of elements in £*¥ and elements in E). Hence we will prove whether the

8
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Figure 2.3: An example of conventional PDC graph model.

checks detect the error pattern e;,, Uej,, 1 <@ < [F¥[, 1 < j < |F*|. Since exactly one
data element in e;, U €j, in E?F is in data set of the check ¢, the error pattern e;, U €y can
be detected by ¢ from Lemma 2.1. Therefore, the checks which consist of these check-pairs
can detect 2k-fault. O

2.3 Conventional PDC Graph Model

In the graph-theoretic model proposed earlier in [5], an ABFT system system is rep-
resented by an undirected tripartite graph called the PDC graph whose vertex set is
PUDUC and its edge set is PD U DC, where P, D and C' are sets of processors, data
and checks, respectively, and PD and DC' are sets of edges between P and D and between
D and C, respectively. An edge (u,v) € PD implies that processor u affects the value of
data element v in the computation: if processor u fails, v could have an error. An edge
(v,w) € DC implies that data element v is checked by a check w.

A simple example for the PDC graph model is illustrated in Fig. 2.3. The processor
py affects the data element d; in the computation: d; is erroneous if p; fails. Similarly,
po affects dy and dy: dy or/and dy are erroneous if p, fails, and also p3 affects d3: d3 is
erroneous if ps fails. The error pattern induced by a faulty processor is given as one of
all available unions for data elements which are affected by the processor. According to
notations defined in Section 2.2, the set of fault patterns F'! for single-fault(k = 1) is given
as {{p1}, {p2},{p3}}(= {f], /i, /i} = F1). And the set of error patterns E1 induced by
fault patterns in F'! is given as {{d;},{d2},{d1,ds},{ds}}(= {ei'(= €3!),e3?, 2% e3'} =
efUe?Ue} = Fy). Note that the error pattern ej! induced by the fault pattern {p;} is the
same to one(ej') of error patterns induced by the fault pattern {p,}. Since it is against
the fault locatability of Lemma 2.2, there is no way that the fault patterns {p;} and {p-}
can be distinguished by some checks.

Suppose that we want to design DC relations(Fig. 2.3(b)) for detecting single-fault
from the PD relations(Fig. 2.3(a)). One possible solution is the use of two checks ¢; =



{di,ds} and ¢ = {ds}: the check ¢; detects all error patterns including either d; or
ds, similarly ¢, detects all error patterns including d,. Finally, the PDC graph for this
configuration is shown in Fig. 2.3(c).

The importance of the graph-theoretic model is that the fault detection and location
properties of the computation can be derived directly as a property of the graph. Hence
the PDC graph model has been used by several researchers in analyzing and designing
ABFT systems in practice. On the other hand, the PDC graph can be divided into two
bipartite graphs: PD graph and DC graph which represent PD relationships and DC
relationships, respectively. Designing PD relationships can be said to be a synthesis for
ABFT system, while designing DC relationship can be called a design for ABFT system.
Also, demonstrating the ability of the desired fault tolerant system when both PD graph
and DC graph are given, can be said to be an analysis for ABFT system. In the PDC graph
model, when a processor is faulty, the error pattern induced by the faulty processor is
given as one of all available unions for data elements which are produced by the processor.
However, if we introduce the appropriate error models which reflect the characteristics of
error propagation between computation results, the number of error patterns induced by
the faulty processor can be reduced.

10



Chapter 3

MPD Graph Model

3.1 Motivations

The first attempt analyzing ABFT systems was made by Banerjee and Abraham [2] who
proposed a graph-theoretic model. Also, the matrix-based model presented in [4] simpli-
fied the analysis procedure by introducing the new necessary and sufficient conditions for
the fault detectability and locatability of ABFT systems. These models use a PD graph
to represent a given multiprocessor system. The PD graph provides information about
which processors affect data elements, but it does not provide any information about
how processors affect data elements. Specially, the PD graph excludes the dependent
information between data elements. However the data dependency provides an important
information about how the error for a computation result of a processor propagates to
computation results of other processors. In general, error patterns consist of all available
unions of sets of data elements reachable from each data element computed by a faulty
processor. In the PD graph, each data element reachable from data element computed by
a faulty processor becomes an error pattern, but it is not in practical applications which
have some dependencies between computation results. Therefore, there may exist some
redundant error patterns in analyzing and designing ABFT systems.

Such redundant error patterns may be a cause of an increase in the complexity and
the number of checks in analyzing and designing ABFT systems, respectively. This situ-
ation motivates the investigation of more efficient model so that the analysis procedure is
simplified and the number of checks is reduced. To achieve such objectives, we introduce
data dependent information between computation results computed by processors. Since
data dependency gives an useful information for error occurrence/propagation, we can
simplify the analysis procedure and reduce the number of checks by using data dependent
information in analyzing and designing ABFT systems.

The rest of this chapter is organized as follows. In Section 3.2, we will discuss two
error models to be employed in this research. An analysis model based on MPD graph is
presented in Section 3.3, and its effectiveness in analyzing and designing ABFT systems
is described in Section 3.4. And a method to construct error patterns for each of SID
model and MID model is shown in Section 3.5. Finally, Section 3.6 is used for conclusion.
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3.2 Error Occurrence/Propagation Models

In most cases, a hardware fault will be identified by the observation of data error. Dif-
fering from the off-line tests for verifying chip/system functionality and performance, it
is not possible, in the case of on-line test, to apply specific test vectors with regarding
controllability and observability of a target error, and in turn for them, we should in-
troduce appropriate model for error occurrence and error propagation. Considering the
linear algebra based computations such as matrix operations and signal processing as our
typical applications of ABFT systems, we employ the following two models.

Single Input-Driven(SID) Model An erroneous input to a computation will always
result in erroneous computation result regardless of the other inputs nor the status of the
processor. That is,

E1-1. If the number of erroneous inputs used for a computation is more than zero, then the
computation result is erroneous regardless of the status of the processor computing
the result.

E1-2. If the number of erroneous inputs used for a computation is zero, then the compu-
tation result depends on the status of the processor computing the result as follows:

£1-2a. If the processor is normal(fault-free), then the result is correct.

E1-2b. If the processor is faulty, then the result is either erroneous or correct.

In this case, once we construct a set of data elements reachable from each data ele-
ment, each one of error patterns can be generated by simple union operation to properly
selected sets of reachable data elements, and we can drastically reduce the number of
error patterns to be considered compared to the conventional PDC graph model.

Multiple Inputs-Driven(MID) Model This model is more sophisticated with tak-
ing into account of some possibilities in the practical situations: a computation result
with multiple erroneous inputs may possibly be error-free, and also a faulty processor
may possibly generate error-free computation result when some of inputs are erroneous.

That is,

E2-1. If a processor is faulty, then each of its computation results is either erroneous or
correct regardless of inputs used for its computation.

£2-2. If a processor is normal(fault-free), then each of its computation results depends
on the number of erroneous inputs used for its computation as follows:

E£2-2a. If the number of erroneous inputs is zero, then the result is correct.
E£2-2b. If the number of erroneous inputs is one, then the result is erroneous.

E2-2c. If the number of erroneous inputs is more than one, then the result is unde-
termined.

As a result, the set of error patterns to be considered with MID model becomes a
superset of the one with SID model, but still a subset of the one from the conventional
PD graph model because the error patterns in PD graph model consist of all available
unions of data elements neighboring a faulty processor. In general, the computational
complexity and the number of checks in analyzing and designing ABFT systems increase
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as the number of error patterns increases. While the complexity and the number of
checks tend to increase compared to the MPD graph with SID model in compensation
for improving the accuracy of error propagation model, the effectiveness of MPD graph
model with MID model holds good compared to the conventional PDC graph model.

3.3 MPD Graph

An algorithm which can be represented by a DG Gp(Vp,Ep), is considered, where Vp
denotes the set of vertices each of which represents an operation associated with data
element(the result of the operation), primary input or primary output, and Ep denotes
the set of directed edges each of which represents the data dependency from source to
destination vertices. An example of DG is illustrated in Fig. 3.1(a). The marked nodes
in left side are primary inputs, and the marked nodes in right side are primary outputs.
Also, the unmarked nodes in middle side represent operations.

In a practical implementation, nodes in DG are mapped onto a set of processors,
and each data element is classified into either internal or external data element, where
the former is used only within a processor while the latter is used for computations in
other processors or a primary output. In Fig. 3.1(a), the nodes in each dashed circle
on operation nodes are mapped onto a processor. Here the operation nodes oy, 03, 03
and o7 are mapped to the processor p;. Similarly o4 and o5 are mapped to p,, and og is
mapped to p3. Throughout this research, we assume that only external data elements can
be checked by checks, and a given algorithm is executed on M processors and generates
N external data elements.

We introduce a directed graph G(V, E) called MPD graph which is defined as follows.
V' is the set of M processor nodes and N external data nodes. F is the set of processor-
data relation edges and data dependency edges. The processor-data relation edge (p,,, d,,)
is in F if the processor p,, produces the external data element d,. On the other hand,
the data dependency edge (d;,d;) is in F if the external data element d; is sent to the
processor which generates d; and is used for computing d;. An example of a MPD graph
is shown in Fig. 3.1(b). Note that MPD graph allows multiple edges, and (d;,d,) is
multiplied if the internal dependency graph peculiar to the processor which generates d;
has multiple paths from entry node(s) of d; to the operation node associated with d;(Fig.
3.1(c)(d)).

In this research, a MPD graph is assumed to be acyclic, that is, we will limit our
typical algorithms to linear algebra based computations without feedback loops which
include matrix operations and FIR type signal processing.

Unlike the conventional PD graph model, the error pattern on MPD graph model is
obtained by the full utilization of data dependency. For both SID model and MID model,
when a processor p, is faulty, at least one of data elements which are adjacent to p,, is
erroneous(from £1-2b, £2-1 and disregarding unobservable fault). Data elements which
are reachable from p,, through such erroneous data element(s) are either erroneous or
error-free(£2-2b, £2-2¢). Especially, data elements which are reachable from p,, along
only one path containing erroneous data element adjacent to p,, are always erroneous(€1-
1, £2-2b). For example, when the processor p; of Fig. 3.1(b) is faulty, the error pattern
on SID model is one of {dy, dy, ds}, {d2,ds}, {ds}, {d1,ds, ds, ds, ds} and {ds, d3, ds}, while
the error pattern on MID model is one of {dy,dy,ds}, {da,d3}, {ds}, {d1, ds, d3, d4, d5s},
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Figure 3.1: MPD graph for a DG.

{ds, ds,ds}, {dy1,ds} and {dy, da, ds, ds}. Note that the last two error patterns {d;, d,} and
{dy,ds,d3,ds} are newly added in MID model because ds is error-free if the error term
produced in computing d; is cancelled in computing ds when the computations for d; and
ds are simultaneously faulty.

3.4 Effectiveness

To show the effectiveness of MPD model, we will consider the following algorithm as an
example. Data element d; is computed by operation o; for ¢« = 1,2,---, M. And data
element d; is used as an input for computing the data element d;,; forv =1,2,--- M —1
and dj; is not used as inputs for computing any other data elements. We assume that
operations are mapped into processors in one-to-one fashion so that data element d; is
computed by processor p;. The conventional PD graph and the proposed MPD graph for
this situation are illustrated in Fig. 3.2.

Assume that we want to construct a set of checks such that the designated system is
single-fault detectable. For the case of the conventional PD graph, M checks are needed
to detect single-fault because a fault in p; may affect all of data elements to be erroneous,
so all available error patterns induced by faulty processor p; are all of the available com-
binations of data elements d,d>,---,dy. However, for the case of the proposed MPD
graph which introduces data dependent information, we can detect single-fault to just
one check for dj; because error pattern induced by faulty processor p; always includes
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Figure 3.2: PD graph and MPD graph to be considered as an example.

the data element dj;. Also there does not exist any check to locate single-fault in the
conventional PD graph because the faulty processor p; and another faulty processors can
not be identified by the syndrome. But single-fault in MPD graph can be located by
M checks: one check for each data element d;. Thus, there always exist checks to locate
single-fault in the proposed MPD graph. In most cases that there exist data dependen-
cies between data elements computed by processors, the designated ABFT system in the
proposed MPD graph can be implemented with fewer checks than the conventional PD
graph.

3.5 Construction of Error Patterns

In the following, we will describe a method for constructing error patterns from MPD
graph for SID model and MID model. For a given MPD graph G(V, E) with M processor
nodes and N external data nodes, Adj(p,) and D(p,,) denote the set of data elements
adjacent to the processor p,, and the one reachable from the processor p,,, respectively.
Let Dy = {Dm1, Dm2, s Dmjadipm) ), m = 1,2,---, M, be a subset family of D(py,).
Note that D(p,,) is equivalent to the largest error pattern induced by single-fault pattern
{pm}. Dmi denotes the set of all data elements which are reachable from the [-th adjacent
data element of the processor p,,. |Adj(py)| is the number of adjacent data elements of

Pm-

3.5.1 SID Model

First we construct F; from D,,, 1 < m < M. A method for constructing F; is described
in Algorithm 3.1, where & denotes pairwise unions of all elements in two sets. On the
other hand, F,, E3,---, Ey can be obtained from FE;, recursively. That is, F; consists of
all of available pairwise unions of all elements in F; and those in E;_;.

Algorithm 3.1

FIND(E,)
input : MPD graph (V, )
construct Dy, 1 <m < M, 1 <1 < |Adj(pwm)|
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E1 — 0
for1<m<M
{
Elm — @
count — |Adj(pm)|
while(count # 0)
{
Elm — Dm W Elm
count < count — 1
}

El — E1 U Elm

}

3.5.2 MID Model

Let L,,; be a set of such data elements that the number of edges on the longest path(s)
from the processor p,, to these elements in D(p,,) is i. Let dm1dm2 * ** dm|D(pn)| bE @
sequence of the elements in D(p,,) according to the order of L,,;. That is, elements in
L, are the first, which are followed by elements in L,,>, and so on.

We will consider to construct error patterns recursively. Let E,,; = {ej1, €52, -, €1, -,
ejL].} be the set of error patterns which consist of dpi,dma, -, dmj. Let In41) be the
set of input data elements for computing dp,(;j1+1). Then the set of error patterns ;11
can be obtained by the procedure shown in Algorithm 3.2, which is recursively repeated
until o, pp,.) is generated.

Algorithm 3.2
FIND(Ep11))

input : Enj, L1y, D(pm)
Bty < 0

for each ej; in Ep;

{
1f dmj+1) € Adj(pm)

Emjt1) — Em(iyy ULt U {dm(i4n)}}
Emjt1) = Em(iy1) U {e;1}

else
if [Lmgi+1) Nej| > 1
En(jt1) < Em(41) U {eit U{dmisn}}
if [ Im@+y) N el > 2, Engiy1) — Emgin U {en}
}

else Eny1) — Em+1) U {ejl}

}
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4

(b) Construction of error pattern E m(j+1) .

Figure 3.3: Behavior of error patterns for MID model.

As a result, En p(p,,) is the set of all error patterns induced by the fault pattern
{pm}. When we construct error patterns for multiple fault, a similar procedure can be
applied. That is, to generate error patterns for a fault pattern {pm,, Pmy, -, Pm, }, nodes
DmyyPmgs* s Pm, i MPD graph are merged together, and D(pum, )U D(pm,) U+ U D(pm, )
is considered instead of D(p,,). From the nature of the above error pattern construction
procedure, generated error patterns for {p,,, Pmy,, - - ,pmk} contain error patterns for any
subset fault pattern of {p,,,Dm,, **,Pm, }- Then, to generate error patterns induced by
k-fault, it is enough to apply the above procedure to all fault patterns each of which
contains exactly k faulty processors.

Finally, the set of error patterns to be considered with MID model becomes a superset
of the one with the SID model, but still a subset of the one from the conventional PDC
graph models. In general, the computational complexity and the number of checks in
analyzing and designing ABFT systems increase as the number of error patterns increases.
While the complexity and the number of checks tend to increase compared to the MPD
graph with SID model in compensation for improving the accuracy of error propagation
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model, the effectiveness of MPD graph model with MID model holds good compared to
the conventional PDC graph models.

3.6 Conclusion

In this chapter, we have introduced two error occurrence/propagation models: SID model
and MID model, and MPD graph model for analyzing and designing ABFT systems on
these error occurrence/propagation models. The proposed analysis model fully utilizes
data dependent information in generating error patterns, and it can suppress redundant
error patterns. Also, we discussed a method for constructing error patterns for each of two
error occurrence/propagation models. As a result, the error patterns induced by k-fault
can be recursively constructed. However, to generate error patterns is a costly task, and
also the number of error patterns is still too large to maintain for analysis and design
of ABFT systems. Therefore, we will discuss single-fault detectability and locatability
in analyzing and designing ABFT systems on MPD graph without constructing error
patterns.
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Chapter 4

Checking Scheme for SID Model

4.1 Introduction

Many works have been done in designing and analyzing of ABFT systems. Banerjee and
Abraham [5] proposed a graph-theoretic model to represent ABFT systems. They also
presented construction methods for ABFT systems by using the graph-theoretic model.
The model was used by several researchers on the design and analysis of ABFT systems.
Nair, Abraham and Banerjee [4] proposed a matrix-based model which was derived from
the graph-theoretic model.

In this chapter, we will discuss a checking scheme based on MPD graph model proposed
in Chapter 3. The checking scheme to be considered is discussed on a simple error occur-
rence/propagation model: SID model. The checking scheme for single-fault detectability
and locatability is defined on MPD graph so that checks can be directly obtained from
the MPD graph without constructing error patterns. A basic algorithm for constructing
checks in designing single-fault locatable/two-fault detectable(SFL/TFD) ABFT systems
is provided, and a design example for SFL/TFD ABFT system is described to demonstrate
the basic algorithm.

The rest of this chapter is organized as follows. A checking scheme for single-fault
detectability and locatability under SID error model, is discussed in Section 4.2. In
Section 4.3, a basic algorithm for constructing checks for SFL/TFD ABFT system and a
design example are shown. Section 4.4 is used for conclusion.

4.2 Single-Fault Detection and Location

In Chapter 2, k-fault detectability and locatability are discussed in terms of error patterns.
However, in general, to generate error patterns is a costly task, and also the number of
error patterns is still too large to maintain for analysis and design of ABFT systems. In
this section, we describe single-fault detectability and locatability on MPD graph.

Theorem 4.1 An ABF'T system is single-fault detectable if for each D; which is the subset
family of D(p;), 1 < i < M, there is a set of checks C; = {co,c1,--+,¢s5,-+,¢5,} C C
such that C; is recursively(until D} is empty) defined as follows.

(1) D = D,
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Figure 4.1: Construction of checks for single-fault detection.

(2)

Cg N U Diw =1
Diw€D;

(3) D;*t=D; = U {Dw}

|CsﬂDiw‘:1

Proof: Note that all of the available unions of elements in D; become all error patterns for
the single-fault pattern {p;}. The check ¢y detects the largest error pattern D(p;) and some
other error patterns which are all of the available unions of D;,,’s such that |coN Dy, | = 1.
The check ¢, detects error patterns which are all of the available unions of D,,,’s such that

|cs N Dyy| = 1. Together with the definition of D™, D, — D:*! = U [ U {Diw}]

a=1 |CaﬂD,’w|:1
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and {cg,c1, -+, ¢} can detect error patterns which are all of the available unions of

elements in D, — Df“. Since ¢,y is selected so that |c, N U D, || = 1, then
DiweDS !

|D; — D{?| > |D; — D' + 1, and hence D; — D' becomes to contain all elements in

D; after appropriate iterations. O

Theorem 4.2 An ABFT system s single-fault locatable if for each pair of D; and D;:
the subset families of D(p;) and D(p;), respectively, © # j, 1 <1 < M, 1 < j < M,
there is a set of checks Cy; = Cy U ( R ,CH CC, where C, = {co,c1,+,Cpy -+, Ccr} and
Cr = {ChosCris s Cryy v+, Crp, } such that they are recursively(until either D} or D7 is
empty) defined as follows.

(1) DY = D;, D¢ = D;

D;n€DT D;.€D] D;€DT D;.€D
70 __ T b
DJ' - DJ
D;.eD7b
— 7(b P
(3) if |e, N ( U Dm) =1, then | DI = pre ) {D,.)
‘D“"ED |C;bﬁDjz|:l
D=0 - U {Di}
|CTﬂDiw|:1
7‘+1 _ T
L D7 = D; |
_ DZO _ Df -
C;‘b ﬂ U Diw — 1
Dy, €D??
4) ifjen | U Dj||=1 then | DIV =pr*— ) {Dw}
D]'ZED; el s N Dsn|=1
Drtt = pr
Di"'=D; - U (D}
L lernD;z|=1 |

Proof: From Theorem 4.1,

( U Dm)| = 1, then ¢, detects error patterns

DiweD]

which are all of the available unions of D;,’s such that |¢, N Dy,|=1 and C! detects all

error patterns in U D;., while ¢, outputs O for every error pattern in U D;..
DjzeD; D]'ZED;-

Accordingly, the partial syndrome c,cqc), -+ ¢,z is different for any one of error pat-

terns which are all of the available unions of D;,’s such that |c, N D;,|=1 and any one
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Figure 4.2: Construction(1) of checks for single-fault location.

of error patterns in U D;,. Now the remained pairs of error patterns to be distin-
D,‘ZED;

guished are all element pairs of D] — | ) {Diw} = D]™' and D} = Dj*'. The case

lerNDjqy|=1

¢ N U Dj. [|=1 is the same but D] and D] are updated differently. Totally, the
D;.€DT

set of checks C}; can distinguish fault patterns {p;} and {p;}. Therefore, if there is a set

of checks Cj; for ¢ # j, 1 <¢ < M, 1 < j < M, then the ABFT system is single-fault

locatable. a

Corollary 4.1 If an ABFT system s single-fault locatable due to Theorem 4.2, then it
15 also two-fault detectable.
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_

Figure 4.3: Construction(2) of checks for single-fault location.

Proof: Let U,, be one of all available unions of elements in D; and let U, be one of all
available unions of elements in D;. Then U;;j(= U, U Ujy) is one of the error patterns
induced by the fault pattern {p;,p;}. From Theorem 4.2, since exactly one data element
in U;; is in the data set of ¢,, U;; can be detected by c,. Since every error pattern for the
fault pattern {p;,p;} has the form U, U Uj,, the single-fault locatable ABFT system by
Theorem 4.2 is also two-fault detectable system. O

4.3 Checks for SFL/TFD

4.3.1 A Basic Algorithm SFL-TFD I

Now, we introduce an algorithm to construct checks for single-fault locating and two-fault
detecting ABFT system. Let ¢ and ¢’ be a check-pair satisfying Theorem 4.2: ¢ and ¢’ are
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in C, and C), respectively. The algorithm SFL-TFD I shown in Algorithm 4.1 finds a set
of checks C' and a set of data elements ptr(c) which have to be checked by check ¢ € C,
and it always returns C' and ptr(c) if there exists a set of checks given by Theorem 4.2.

According to the algorithm SFL-TFD I, for a pair of Q; and @), there are four cases
for constructing a check ¢ satisfying Theorem 4.2:

(1) Case-I: exactly one data element of ptr(c) for ¢ € C such that |cN (Q;U Qy)|=1is
in Qr® Q.

(2) Case-II: exactly one data element of ptr(c) for ¢ € C such that [cN(Q; U Q)| > 2
isin Q; & @y, and any data element of ptr(c) is not in Q; N Q.

(3) Case-III: any data element of ptr(c) for ¢ € C such that |cN(Q; $ Q)| > 1 is not
in QrU Q.

(4) Case-IV: for any check ¢ € C, any data element of ¢ is not in Q; ® @, at least two
data elements of ptr(c) are in Q@ U @, or at least one data element of ptr(c) is in

RrNQy.
Similarly, for @, there are four cases for constructing a check ¢’ satisfying Theorem 4.2:

(1) Case-Al(Case-B1): exactly one data element of ptr(c’) for the ¢ € C such that
| NQ|=1isin Q.

(2) Case-A2(Case-B2): exactly one data element of ptr(c’) for the ¢ € C such that
|dN@|>2isin Q.

(3) Case-A3(Case-B3): any data element of ptr(c’) for the ¢ € C such that [ NQ| > 1
is not in Q).

(4) Case-A4(Case-B4): for any check ¢ € C, any data element of ¢ is not in @Q, or at
least two data elements of ptr(c') are in Q.

On the other hand, the first “while” loop is executed until either (); or Q); is empty
set. In the next iteration, if ¢ in ), then Q7 is only updated. And if ¢ in @), then Q) is
only updated. Also, the second or third “whzile” loop is executed until () is empty set.

Algorithm 4.1

SFL-TFD I
input : MPD graph (V, E)
construct Dmp, 1 <1 < |Adj(pm)|, 1 <m < M
C—90
forl<i<j<M
{
Tr < D; and T « D;
Ty 1Tyl

Qr — |J Diw and Q; — |J Dy,

while(bjl# 0 or Qs #0) N
{
(1) find ¢ € C such that |cN (Q;UQ,)| =1 and |ptr(c) N (Qr D Q)| =1
if succeed(Case-I), goto (A)

(2) find ¢ € C such that |cN(QrUQy)| > 2, |ptr(c)N(Qr® Qs)| =1
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and |ptr(c) N (Q;NQ,)| =0
if succeed(Case-II), ¢ — ¢ — ((Q; U Q) — ptr(c)) and goto (A)
(3) find ¢ € C such that |cN(Qr P Q)| > 1 and |ptr(c)N(Qr UQs)| =0
if succeed(Case-IIT), select one element d,, € (cN Q1 B Qy),
¢ e —((QrUQy) — da}), pir(c) — pir(e) U {dy)} and goto (A)
(4) (1),(2) and (3) fail(Case-1V), select one element d,, € (Q; & Q),
c—D— ((QI U QJ) - {dn})7 C—Cu {C} and pt’f‘(C) - {dn}

(A)if(len Qs =1)

{
Q — QJ and T «— T]
while(Q # 0)
{
(A1) find ¢ € C such that [ N Q| =1 and |ptr(d)NQ| =1
if succeed(Case-Al), goto (A0)
(A2) find ¢ € C such that | N Q| > 2 and |ptr(d)NQ| =1
if succeed(Case-A2), ¢ — ¢ — (Q — ptr(c)) and goto (A0)
(A3) find ¢ € C such that | N Q| > 1 and |ptr(d)NQ| =0
if succeed(Case-A3), select one element d,, € (¢' N Q),
d—d—(Q—{d,}), ptr() «— ptr() U {d,} and goto (A0)
(A4) (A1),(A2) and (A3) fail(Case-A4), sellect one element d, € Q,
d—D—(Q—{d.}), C— CU{d} and ptr(c) « {d.}
(AT —T- |J {Dn.}andQ— |J Dj.
l[e'nDj,|=1 D;.eT
t
Tr < T7 — U {Diw} and Q « U Diyy
[eNDijy|=1 Diy €Ty
}
(B) else
{
Q — QI and T+ TI
while(Q # 0)
{
(B1) find ¢ € C such that | N Q| =1 and |ptr(d)NQ| =1
if succeed(Case-B1), goto (BO)
(B2) find ¢ € C such that | N Q| > 2 and |ptr(d)NQ| =1
if succeed(Case-B2), ¢ «— ¢ — (@ — ptr(c')) and goto (BO)
(B3) find ¢’ € C such that | N Q| > 1 and |ptr(d)NQ| =0
if succeed(Case-B3), select one element d,, € (¢ N Q),
d—d—(Q—{d.}), ptr(c) < ptr(d) U {d,} and goto (BO)
(B4) (B1),(B2) and (B3) fail(Case-B4), sellect one element d, € Q
d—D—(Q—{d.}), C— CU{} and ptr(c) — {d.}
(BO) T—T— U {Dzw} and Q — U D,’w
/Dy | =1 Diw€T
}
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T, — T, — U {Dj.} and Q; — U Dj.

|CﬂD]'z|:1 DjZGTJ

}
}

return C and {ptr(c)|c € C}

As we can see it, the algorithm SFL-TED I contains some indeterminacies in the selec-
tions of ¢(Case-IIL,IIT), ¢'(Case-A1,A2,A3 or Case-B1,B2,B3), and d,(Case-IV, Case-A4
or Case-B4) among their plural candidates. Certain strategies for fixing these indetermi-
nacies to minimize the number of checks are remained as a future problem.

Now, we will discuss the computational complexity of SFL-TFD I. We assume that
union for two sets can be computed in O(1) and the computations in “while” loop can
be computed in O(N). The analysis for complexity of SFL-TFD I is as follows.

1. “construct” all D,,’s: O(N?)

(M—-1)
2

2. “for” loop: at most & iterations

3. computation of Q; or Q,;: O(N)

4. each “while” loop: at most N iterations

5. computations in “while” loop: O(N)

6. computations of T', @, Tr(Ty) or Q(Qs): O(N)

Totally, the computation time T, of SFL-TFD I is O(M?N?).

4.3.2 A Design Example

We will consider a MPD graph illustrated in Fig. 4.4(a). From this MPD graph, D; =
{{di1, di2, da1, da2, da1 }, {di2}}, D2 = {{di2, do1, doo, ds1 }, {da2, da1 }}, D3 = {{da1}, {da2},
{d33, d4]_7 d5]_7 d52}}, D4 = {{d41}} and D5 = {{d41,d51}, {d52}} ACCOI'diIlg to SFL-TFD
I, we can construct checks for each pair of D; and D;, 1 < ¢ < j < 5. There are
various solutions which depend on the method for choosing d, for Case-IV(Case-A4 or
Case-B4) and finding c(or ¢’) in each “find” state within “while” loops. An example for
constructing checks by SFL-TFD I is described as follows.

1. Dyand D;, 2 <5 <5
c1 = {du}
¢z = {di1, a1, ds2}
3 = {dn,@, dm,@, d32,@}
Cq4 = {d11,d21,@, d32,@}
Cs = {d11,d21, dzz,@, d32}
Ce = {dn, di2, da1, dg2, d31, d3a, d33,@, d51,d52}
C7 = {dn, di2, da1, do2, d31, d3a, d33, da, d51,@}
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2. Dyand Dj, 3 <j <5:
Cq4 = {dn,@,@}
Cg = {d117@}

3. Dz and Dj, 4 < j < 5: no updated

4. Dy and Dj, 5 < j <5:
Cr = {d117 d127 d217 d227 d317 d327 d337 @}
g = {dlla d127 d217 d227 d317 d327 d337 %7 d52}

Where, the underlined data elements of each check ¢;, 1 < ¢ < 8, denote that such data
elements are in ptr(c,). The result of SFL-TFD I by the above execution is illustrated
in Fig. 4.4(b)(Result I). The thick line between data elements and checks denotes that
the data element is in ptr(c) for a check ¢ € C. On the other hand, if d, is chosen with
the maximum cardinality for Dy, = {Dyuld, € Dy, 1 < m < M,1 <1 < |D,,|}, then
the number of checks can be reduced in some cases. From the MPD graph of Fig. 4.4(a),
|Dd11| =1, |Dd12| =2, |Dd21| =2, |Dd22| =3, |Dd31| =4, |Dd32| =1, |Dd33| =1, |Dd41| =3,
|Da,| = 2, |Das,| = 2. A method using | D, | for constructing checks is represented in the
following procedure.

1. Dyand D;, 2< 5 <5
€ = {@7 @}
c2 = {du1, ds1 }
cs = {diz}
ca = {dy1, d12, do1, dog, ds1, dsz, dss, day, ds1, dsa }

2. Dyand Dj, 3 <5 <5
Cq4 = {d11; di2, dzu@» d33, da1, dsn@}
Cs = {dn; d127 dzl,@, d32,d337 d417 d517 d52}

3. Dzand Dj,4< 5 <5
Cs = {dllydlzydzl,@,@}
Cg = {d117d127 d21,d22,d31,@}
Cr = {dn, d12, d21, d22, d31, d32,@}

4. Dy and Dj, 5 < j < 5: no updated

The result of SFL-TFD I using | Dy, | is illustrated in Fig. 4.4(c)(Result II). Unfortunately,
the number of checks for Result II can be reduced by merging checks. There are several
merging candidates: (1) ¢; and cg(or ¢7), (2) ¢z and cg(or ¢7), and so on. The result
merging ¢g into cs is illustrated in Fig. 4.4(d)(Result III).

For Result I, IT and III, the syndrome for each error pattern induced by single-fault
patterns {p1}, {p2}, {ps}, {p+}, and {ps} is described in Fig. 4.5. Where X denotes that
the check is unpredictable due to (g,1) check(C3). Since the syndrome is different for any
pair of fault patterns and at least one bit of the syndrome is 1 for any error pattern,
the ABFT system is single-fault locatable and detectable. This ABFT system is also
two-fault detectable from Corollary 4.1.
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11
p, O dip
dog
Py dp
d3q
Ps d3p
d33
Py da1
Ps dsq
ds

(& A MPD graph G(V,E) .

(c) Result Il for SFL-TFD agorithm. (d) Resuilt [l merging cg and c3 on Result 11

Figure 4.4: Examples for SFL/TFD ABFT system: SID.
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fault patterns error patterns syndrone | syndrome |1 | syndrome |11
€1626364%5%6°7% | ©192°3%4%5%°7 | ©16263¢4%5%
(dyd1p dypdyn dgg} 11x11000] 111201200] 111010

{p}
(g} oo100000| co10000| 001000
(015 dpq: dppdaq} o1x11000| 0110100]| 011010

{py)
(d)o A3} oo111000| 0100100| 010010
[ d31} 0ooo1000| 0100000| 010000
[ d35} 01000000l coo1010]| 001100
( d33dyq: dg055) 00110111 1001111 100111
{prg} (39, dgob 01001000l 0101010] 011100
(390 A3 dgq05q. Ao 0o111111) 1101101) 110111
(d30: A3 dgqd5q. Ao 01110111) 100x111] 101x11
(dy1.dgodandyiidegdet | 01111111 120x111] 111x11
{ pyt (dyq} 00000100] 1000000 100000
(d,qp dgq} 00000101] 1000100| 100010
{ps} (d5} 00000010 00o01000] 000100
(g9 A5 A5} 00000111| 1001100] 100110

Figure 4.5: Syndromes for Result I, Result II and Result III: SID.

4.3.3 Comparison with Conventional PDC Graph Model

Consider MPD graph of Fig. 4.4(a) and assume that each external data element is primary
output for a given algorithm. The corresponding conventional PD graph can be obtained
by connecting each data element which is affected by a processor to the processor as shown
in Fig. 4.6(a). In conventional PD graph, the set of error patterns induced by a faulty
processor consists of all available combinations of data elements which are connected to
the processor. Hence, there may be some redundant error patterns which do not appear in
real applications. For example, the set of error patterns for the single-fault pattern {ps}
is {{da1},{ds1}, {ds2}, {da1,ds1}, {da1, ds2}, {ds1, ds2}, {da1, ds51, ds2}} in the conventional
PD graph and the one is {{d41, ds1}, {ds2}, {da1, d51, ds2} } in the MPD graph model under
SID error model. There are four redundant error patterns {du1}, {ds1}, {da1,ds2}, and
{ds1,ds2}. On the other hand, the error pattern {ds;} is also induced by the single-fault
patterns {ps} and {ps} in the conventional PD graph. Hence, there is no check which is

distinguishable between {ps} and {ps}/{ps}.

Suppose that we want to construct a set of checks such that the designated system
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PO dio

b1
Py O dro

d31
P3 O d3p

d33
Py O da1
Ps O dsy

3
(c) A SFD ABFT system for Fig.4.3(a): SID.

Figure 4.6: The comparisons in designing single-fault detectable ABFT system: SID.

is single-fault detectable. For the case of the conventional PD graph(Fig. 4.6(a)), at
least siz checks are required to detect single-fault(Fig. 4.6(b)). However, for the case
of the MPD graph(Fig. 4.4(a)), we can detect single-fault by three checks(Fig. 4.6(c)).
In fact, the set of error patterns obtained from the MPD graph model is a subset of the
one obtained from the conventional PD graph model, and in most cases that there exist
data dependencies between primary outputs after mapping DG for a given algorithm to
processors, the designated ABFT system based on MPD graph model under SID error
model can be implemented with fewer checks than the conventional PDC graph model.
On the other hand, there are various solutions depending on the mapping DG for a
given algorithm to a set of processors. The problem how to map DG to processors is
out of concern, and we assume that the mapping is given a priori. Also, there is no
general way that can examine about how the number of checks affects the efficiency of
ABFT system because its cost strongly depends on the complexity of an implementation
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of checks. However, in general, there is a possibility that for (g,1) check using checksum
technique, which can be simply implemented, the desired ABFT system can be efficiently
implemented by reducing the number of checks. The problem of how the number of checks
affects the efficiency of the desired ABF'T system is remained as a future work.

4.4 Conclusion

In this chapter, we proposed a checking scheme based on MPD graph model for single-fault
detectability and locatability in analyzing and designing ABFT systems on a simple error
occurrence/propagation model: SID Model. The checking scheme was defined on MPD
graph so that checks can be directly obtained from the MPD graph without construct-
ing error patterns. Also we gave a basic algorithm SFL-TFD I for constructing checks
of SFL/TFD ABFT system, and demonstrated a design example for SFL/TFD ABFT
system based on the basic algorithm. The algorithm contains some indeterminacies in the
selections of ¢, ¢, and d,, among their plural candidates. Certain strategies for fixing these
indeterminacies to minimize the number of checks are remained as a future problem. As
a result, the desired ABFT system based on MPD graph under the SID error model was
implemented with fewer checks compared to the conventional PDC graph model.
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Chapter 5

Checking Scheme for MID Model

5.1 Introduction

An analysis model based on MPD graph under SID error model was discussed in Chap-
ter 4, and it showed that the number of error patterns to be considered can be reduced
by utilizing data dependency between computation results. However, the error occur-
rence/propagation model: SID model employed in Chapter 4 is so simple that an erro-
neous input to a computation will always result in erroneous computation result regard-
less of the other inputs nor the status of the processor. But, in the practical situations,
a computation result with multiple erroneous inputs may possibly be error-free, and also
a faulty processor may possibly generate error-free computation result when some of in-
puts are erroneous. Therefore, we take into account of these possibilities and introduce a
sophisticated error occurrence/propagation model: MID model.

In this chapter, we will discuss a checking scheme based on MPD graph model for
single-fault detectability and locatability with a sophisticated error occurrence/propagation
model: MID model, and the checking scheme is defined on MPD graph so that checks
can be directly obtained from the MPD graph without constructing error patterns. A
basic algorithm for constructing checks in designing single-fault locatable/two-fault de-
tectable(SFL/TFD) ABFT systems is provided, and a design example for SFL/TFD
ABFT system is described to demonstrate the basic algorithm.

The rest of this chapter is organized as follows. A checking scheme for single-fault
detectability and locatability under MID error model, is discussed in Section 5.2. In
Section 5.3, a basic algorithm for constructing checks for SFL/TFD ABFT system and a
design example are shown. Section 5.4 is used for conclusion.

5.2 Single-Fault Detection and Location

Now, each node of data elements in MPD graph is named as d,,; so that ms stands for
1-th adjacent data element of a processor p,,. Following this notation, let D,,; be a set
of data elements which are reachable from d,,;, and we call d,,; as a source data of D,,;.
D, is used for representing {Din1, Din2, - -, Dinjadj(p.)| }» Where Adj(p,,) denotes the set
of data elements adjacent to the processor p,,. Furthermore, let T, be the subset of D s,
each element of which has two or more paths from d,,;.
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Theorem 5.1 An ABF'T system with a set of checks C' s smgle-fault detectable if for each
m, 1 < m < M, there is a sequence of checks cica- -+ Cq* " Cladj(pn) and a permutation
W, = (L1, Loy, 1gy 5 Ladj(pn)|) of integers from 1 up to |Adj(pm)| such that |c; N
(Dmi, = Tmr,)| = 1 and |Cq (U‘zAZ{ﬁm ' Doty UTmz,)] = 0, 1 < g < |Adj(pm)]-

Proof: Note that any error pattern induced by the fault pattern {pm} contains at least
one of dp1,dm2,** , A adj(p,)- Now, we let cg N (D, — Tz ,) be {dq} and also let d(®
be the source data of Dy,;,. When p,, is faulty, there must be the first erroneous source
data in the sequence of dMd® ... dA4@Em)) and let it be d*). Since dV),d?, ... dk-1D
are all error-free, the error pattern contains only elements in U‘liij(pm)‘ D,1,. On the other

hand, since ¢ N (U;Aijﬁm)‘ Dy U fmfk) = (), the output of ¢, is not affected by the status

of any element in U'lA}ic] ﬁ’") | Dy, nor any element in T,,;,. Together with the fact that

|ck N (D, — Trr, )| = 1, the check ¢; certainly outputs 1. 0

Theorem 5.2 An ABFT system with a set of checks C' is single-fault locatable if for
each pair of 1 and 7,1 # 7, 1 <1 < M, 1 < 5 < M, there is a sequence of all el-
ements mn D; U D;, DYDY .. Di‘i) '-D(‘Ad](p’)H‘Ad](p’)'), where xx represents the sub-

script of each element in D; U D; , and a sequence of |Adj(p;)| + |Adj(p,)| checks,

) ~*($))| — 1 and |Cqm(U\Adj(pi)lJrlAdj(P;‘)l fo*)

C1C2  ++ Cq*  * ClAdj(py)|+Adi(p;)|» SUCh that |cqﬂ(D>(fk I=q+1

UTW)| =0, 1 < q < |Adj(p:)] + | Adj(p;)].

Proof: Let ¢, N (DY — T2 be {d,} and also let d'? be the source data of D!¥. Note
again that any error pattern induced by the fault pattern {p;}({p;}) contains at least
one of source data of D;.’s, 1 < r < |Adj(p;)|(D;’s, 1 < r < |Adj(p;)|). When either
p; or p; is faulty, we can find the first such erroneous source data in the sequence of
dDq? ... di‘fdj(p")H'Adj(pj)D, and let it be d). Similar to the proof of Theorem 1, the check

cx certainly outputs 1 whether d\¥) is in Adj(pl) or in Adj(p;). Moreover, ¢1,¢a,- -, Cp—1
|Adj(p:)|+]Adj(p;) D

(Ul g+1 )

)|+ Adj(p;)

are all 0 because ¢, N 0,1 < q<k—1and error pattern contains

| D(l) Since the source data of D;,’s and those of D;,’s are
located at different positions in the sequence of dPd? .. d&‘fdj(pi)|+|Ad](pj)‘), the location
of the first 1 in the syndrome cics - - ¢|44j(p;)|+|adj(p;)| 1 different for any pair of error

patterns, one is induced by the fault pattern {p;} and the other is induced by {p,}. O

. Adi(p:
only elements in U| (s

Corollary 5.1 If an ABFT system with a set of checks C is single-fault locatable due to
Theorem 5.2, then it 1s also two-fault detectable.

Proof: With respect to the fault pattern {p;,p,}, every data element adjacent to either
p; or p; possibly becomes erroneous. Note that all error patterns induced by the fault
pattern {p;,p;} contains all error patterns induced by the fault pattern {p;} and those
induced by {p;}. If we modify the MPD graph so that the processor nodes p; and p; are
merged into a single node p,, the above situation is identical to the single-fault of the
processor p,. In this model, D, = D; U D; = {D.1, Dsa,- -+, Dsg, - -, Du(Adj(p:)| +14di(0;)]) }-
From Theorem 5.2, since there is a sequence of checks cica - ¢q - €| adj(p;)|+|adj(p;) and a
permutation IT, = (1,2,---,¢q,---, |Adj(p;)| + |Adj(p;)|) such that |c, N (D — Tiy)| = 1
and |c, N (U!,A‘;Tf G D. UT.,)| =0, it satisfies Theorem 1 and so can detect fault
patterns {p;}, {p;} and {pi,p;}, 1 #j, 1 <i< M, 1<j< M. O
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In the next section, we will discuss the construction of checks for single-fault location /two-
fault detection based on Theorem 5.2.

5.3 Checks for SFL/TFD
5.3.1 A Basic Algorithm SFL-TFD II

It is interesting to note that, for any acyclic MPD graph, we can always construct a set
of trivial checks C'r such that each check in C'r contains only one data element and every
data element is contained in one check; that is, Cr = {{di1}, {di2}, - -, {darjadjpm) } }-

Lemma 5.1 For any acyclic MPD graph, the ABF'T system with its set of trivial checks
Cr s single-fault locatable.

Proof: Since the MPD graph is acyclic, data elements in MPD graph can be topologically
sorted. For any two processors, we can extract their adjacent data elements from this
sorting result with preserving their order. As a result, the corresponding sequence of
trivial checks satisfies the condition given in Theorem 5.2. a

Now, we introduce an algorithm to construct checks for SFL/TFD ABFT system. Let
¢ be a check satisfying Theorem 5.2. Algorithm 5.1 finds a set of checks €' and a set of
data elements ptr(c) which have to be checked by check ¢ € C, and it always returns C'
and ptr(c) if there exits a set of checks given by Theorem 5.2.

According to the algorithm SFL-TFD II, for a pair of D; and D;, 1 <i < j < M, the
elements in D; U D, are topologically sorted into DW ... pO) ... pUAd(p:)[+|4di(5))) 50 that

D(l) _ (ULiﬂi]iIim)‘+|AdJ(Py)‘D(k)) is not empty. And then for Q(: ULidlj(Pi)|+|Adj(Pj)‘D(k))7 1<
I < |Adj(pi)| + |Adj(p;)|, there are four cases to construct a check ¢ satisfying Theorem

9.2:
(1) Case-I: exactly one data element of ptr(c) for ¢ € C such |cNQ| = 1isin DY —T0,
(2) Case-Il: exactly one data element of ptr(c) for ¢ € C such that [cN Q| > 2 is in

DWW — T and any data element of ptr(c) is not in Q — (D —TW),

(3) Case-III: any data element of ptr(c) for ¢ € C such that |cn(D® —T®)| > 1 is not
in Q.

(4) Case-IV: for any check ¢ € C, any data element of ¢ is not in @, at least two data
elements of ptr(c) are in DY — T or at least one data element of ptr(c) is in

Q- (DV — T(l)).

Algorithm 5.1

SFL-TFD II

input : MPD graph (V, F)

construct Dpy, 1 <1 <|Adj(pm)|, 1 <m <M
construct Ty, 1 <1< |Adj(pm)], 1 <m < M
C—0

forl<i<j<M

{

sort Div, -, Dy agitonhs Dit -+ Di{aditpyy) into DWDE ... DIAGE+Ad ()
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|Adj(ps)|+| Adj(p;5)]
so that |[DW — U D® ] >1
k=I+1

for 1 =1 to |Adj(p:)| + |Adj(p;)|

A1 Ads(,)
Q — U D)
k=l
(1) find ¢ € C such that |cN Q| =1 and |ptr(c) N (DY —TV)| =1
if succeed(Case-I), goto next iteration
(2) find ¢ € C such that |cN Q| > 2, |ptr(c) N (DO —TW)| =1
and [ptr(c) N (Q — (DO — FO)[ =0
if succeed(Case-II), ¢ — ¢ — (Q — ptr(c)) and goto next iteration
(3) find ¢ € C such that |cn (DY — T(l))| > 1 and |ptr(c)N Q| =0
if succeed(Case-1II), select one element d,, € (¢ N (DW — TV))
c—c—(Q—{d,}), ptr(c) < ptr(c) U {d,} and goto next iteration
(4) (1),(2) and (3) fail(Case-IV), select one element d,, € (D — T®),
c— D —(Q—{d,}), ptr(c) «— {d,} and C «— C U {c}
}

}

return C and {ptr(c)|c € C}

As a design issue, the number of checks should be reduced. The algorithm SFL-TFD
IT shown in Algorithm 5.1 is a basic algorithm to construct more general set of checks
rather than the set of trivial checks for SFL/TFD ABFT systems. Algorithm SFL-TFD
IT finally returns the set of checks C' and another set of checks {ptr(c)|c € C}, where
¢ € C'is a maximal check(which may include unnecessary data elements) and ptr(c) C C
is a minimal check(none of whose elements can be excluded). As we can see it, SFL-TFD
IT contains some indeterminacies in the sorting of D,.’s and the selections of ¢(Case-I, 11,
IIT) and d,(Case-IIL,IV) among their plural candidates. Certain strategies for fixing these
indeterminacies toward check minimization are remained as a future problem.

Now, we will evaluate the computational complexity 7, of SFL-TFD II. The compu-
tation time of SFL-TFD II is analyzed as follows.

1) “construct” all D’s: O(N?)
2) “construct” all Tp’s: O(N?)
3) the first “for” loop: % iterations

4) “sort”(topological sort) operation: O(N?)
)

)

)
6) computations in the second “for” loop: O(N?)

(
(
(
(
(5) the second “for” loop: at most N iterations
(

Totally, T. = O(M?*N?3).

5.3.2 A Design Example

We will consider a MPD graph shown in Fig. 5.1(a). The set of trivial checks for this
system is given as follows,
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¢ = {dn}

Cy = {dm}
C3 = {d13}
Cq = {d21}
Cs — {d31}
Ce — {d32}
Cr = {d41}
Cg — {d42}
Cg — {d43}
C10 = {d51}

Figure 5.1(b) illustrates the resultant ABFT system(ABFT system I), where a thick line
between data element and a check denotes that data element at its one end is contained
in a check at the other end.

In the following, we will show a SFL/TFD ABFT system(ABFT system II) obtained
by using Algorithm SFL-TFD II.

From the MPD graph in Flg 51(&), Dl = {{d117 d32},{dlz},{d137d127d217d31}},
Dy = {{d21,ds1}}, D3 = {{da1},{dsa}}, Da = {{da1, d32,d51}, {da2, da3, dor, dz1 },{daz}},
Ds = {{ds1}} and Ti3 = {ds1}. As we have pointed out it in the previous section,
Algorithm SFL-TFD II contains some indeterminacies. We introduce a simple heuristic
in the selection of d,, from ¢ N (D® —TW) or (D® — T®), That is, for each candidate
dys, we count the number of D,,;’s(1 < m < M, 1 < i < |Adj(p,,)|) which contain d,.,
and d,, which gives the maximum count is selected as d,, in Case-III and Case-IV. This
heuristic is due to the expectation that a check containing d,, which is included in many
D,,;’s may possibly be re-used for distinguishing various pairs of fault patterns. The final
result of SFL-TFD II using d,, selection heuristic is shown in the following,

1. Dyand D;, 2 <35 <5:
c1 = {diz}
Co = {d137@, d41,d42}
C3 = {dl?n@}
ca = {di1, d1a, di3, do1, da1, das }
cs = {du1, di3, do1, da1, das, dys, dsy }
Ce = {d13;d217 d31,d42,@}

2. Dyand Dj, 3 <5 <5
Cq4 = {d11,@7 dl&@}
Cs = {@7 d137@, d41,d42,@7 d51}
Cg = {d13,d427@}

3. Dz and Dj, 4 < j < 5: no updated

4. Dy and Dj, 5 < j <5:
Ca = {dlz’n@; d42}
Cs = {@7 d137@7 d417d42,@}
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Py dp
43
P 1
d3
P3 d3p
dgq
P4 dsp
ds3
P ds1
(@ A MPD graph G(V E). (b) The resultant ABFT system | with the set

of trivial checks.

(c) Theresultant ABFT system Il by SFL-TFD II.

Figure 5.1: Examples for SFL/TFD ABFT system: MID.
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syndrome | syndrome |l

fault patterns error patterns C1CCo 10| S L
{d)3, 053 1000010000 [010010

{d3 0100000000 [000100

{d)p 013ty 3 0111100000 [101110

{dyp i3 chy 0111000000 100110

{dy3, 0y 03 1100010000 010110

P {dj3dathathydydd | 1111110000 [1111X0
{d)3, 2 03 0y, a3 1111010000 [1101XO0

{0130y 3 0011100000 /101010

{d33 0011000000 [100010

{d)3, 013ty g, o 1011110000 [1110XO0

{013,015 Chy, dad 1011010000 |[1100X0

(P} [{dyd5 0001100000 [001010
{dg3 0000100000 [001000

{r} iy 0000010000 [010000
{d33, 033 0000110000 [011000

{dgp dyp Csg} 0000011001 [010001

{dyy A3y Oy A3 0001100110 [0011X1

{ds3 0000000010 [000010

{p}  |{dyp05050 0y dypdygdsg | 00012122111 011111
{dga dgy dy3 S 0000011011 |010011

{dyy dap Ay 0001100100 |001100

{dyy 03y O3y dyp 0y | 0001111101 f011111

TS T j 0000000001 [000001

Figure 5.2: Syndromes for ABFT system I and II: MID.

In the above list, data elements with underlines in each check ¢, are the elements in
ptr(c,). The resultant ABFT system is illustrated in Fig. 5.1(c), where {ptr(c,)|1 < ¢ <
6} is used as a complete set of checks.

The syndrome for each error pattern induced by single-fault patterns {p;}, {p2}, {ps},
{ps}, and {ps} in ABFT system I and II of Fig. 5.1 is shown in syndrome I and syndrome
I1, respectively, of Fig. 5.2. In this figure, “X” denotes that the check is unpredictable due
to (g,1) check(C3). Since the syndrome is different for any pair of fault patterns and at
least one bit of the syndrome is 1 for any error pattern, both ABFT systems are certainly
single-fault locatable and detectable. This ABFT system is also two-fault detectable from
Corollary 5.1.

5.3.3 Comparison with Conventional PDC Graph Model

Consider MPD graph of Fig. 5.1(a). The corresponding conventional PD graph can be
obtained by connecting each data element which is affected by a processor to the processor
as shown in Fig. 5.3(a). In conventional PD graph, the set of error patterns induced by a
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11
PO dio
di3
P, O daq
d3q
P3O d3p
dyq
Py O dyp
dy3
Ps O dsq
(a) The conventiona PD graph. (b) A SFD ABFT system for (a).
dig

P5 @
(c) A SFD ABFT system for Fig.5.1(a): SID. (d) A SFD ABFT system for Fig.5.1(a): MID.

Figure 5.3: The comparisons in designing single-fault detectable ABFT system: MID.

faulty processor consists of all available combinations of data elements which are connected
to the processor. Hence, there may be some redundant error patterns which do not appear
in real applications. For example, the set of error patterns for the single-fault pattern
{p2} is {{da1},{ds1},{d21,ds1}} in the conventional PD graph of Fig. 5.3(a) and the
one is {{d21,ds }} in MPD graph of Fig. 5.1(a) under MID error model. There are two
redundant error patterns {ds;} and {ds;}. On the other hand, the error pattern {ds;} is
also induced by the single-fault patterns {p:}, {ps} and {p,} in the conventional PD graph.
Hence, there is no check which is distinguishable between {py} and {p1}/{ps}/{ps}-
Suppose that we want to construct a set of checks such that the designated system is
single-fault detectable. For the case of the conventional PD graph(Fig. 5.3(a)), at least
seven checks are required to detect single-fault(Fig. 5.3(b)). However, for the case of the
MPD graph(Fig. 5.1(a)), we can detect single-fault to three checks and four checks under
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SID error model(Fig. 5.3(c)) and MID error model(Fig. 5.3(d)), respectively. In fact, the
set of error patterns to be considered under the MID model is a superset of the one under
the SID model, but still a subset of the one under the conventional PD graph model, and
in most cases that there exist data dependencies between primary outputs after mapping
DG for a given algorithm to processors, the designated ABFT system based on MPD
graph model under both SID error model and MID error model can be implemented
with fewer checks than the conventional PDC graph model. Of course, the decrease of
the number of checks does not always guarantee higher efficiency of the desired ABFT
system. To design a well optimized ABFT system, we need to design checks with regarding
hardware /software implementation of each check. However, for the case of a simple (g, 1)
check such as checksum technique, we can presume such tendency that fewer number of
checks and smaller g of each check contribute to lower overhead. The examination of
how the number of checks affects the efficiency of the desired ABFT system in a practical
situation is remained as a future work.

5.4 Conclusion

In this chapter, we proposed a checking scheme for single-fault detectability and locatabil-
ity on a sophisticated error occurrence/propagation model: MID model. Also, we gave a
basic algorithm SFL-TFD II for constructing checks, and demonstrated a design example
for SFL/TFD ABFT system based on the algorithm. The algorithm contains some inde-
terminacies in the sorting of D,,’s and the selections of ¢ and d,. Certain strategies for
fixing these indeterminacies to minimize the number of checks are remained as a future
problem. As a result, while the complexity and the number of checks tend to increase
compared to SID error model in compensation for improving the accuracy of error prop-
agation model, the effectiveness of the MPD graph model under the MID error model
holds good compared to the conventional PD graph model.

40



Chapter 6

A Strategy for Mapping Checks to
System Processors

6.1 Introduction

Most earlier work in the design of ABFT systems assumes that the operations for check-
ing are performed by processors which are either fault-free or have some self-checking
property. However, the checking operations are usually a part of an ABFT system and
are likely to be performed on the system processors. When the checking operations on
the system processors fail, such checks become unreliable. Therefore, the accuracy of
the computations is dependent on the reliability of the processors performing checking
operations as well. Banerjee and Abraham [4] introduced check evaluating nodes in their
graph model and showed how to analyze such a system for fault tolerance. Also, Yajnik
and Jha [7] used an extended graph-theoretic ABFT model to consider the processors for
computing checks to be a part of the ABFT system and allowed faults in these processors.

The conventional fault tolerant schemes for VLSI array architectures have been mainly
concentrated on CED schemes, and some efforts have been made for concurrent error
correction [6], [10], [11], [12]. However, fault location scheme has not received much
attention. To solve the problem of locating faults on VLSI array architectures, more
complex schemes considering with both time redundancy and hardware redundancy, are
required.

In this chapter, the ABFT system is extended by introducing some redundancies to be
compared to the sum of data elements in checks and mapping such checks to the system
processors such a way that the system still maintains the designated fault tolerance. And
we present a checking scheme for synthesizing single-fault locatable FIR filter based on
the extended modified processor-data-check(EMPDC) graph model. As a result, a fault
tolerant FIR filter is implemented on systolic array.

The rest of this chapter is organized as follows. In Section 6.2, the single-fault de-
tectability and locatability of ABFT system based on EMPDC graph model is represented.
A method for designing single-fault locatable FIR filter is discussed in Section 6.3. Finally,
Section 6.4 is used for conclusion.
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dq

P

do
P

b1
P3

d31
P4

diq

(a) A gvien MPD graph.

dq

(b) A MPDC graph for (a). (c) An EMPDC graph for (a).

Figure 6.1: An example for EMPDC graph.

6.2 EMPDC Graph Model

In an EMPDC graph model to be considered, all the processor nodes, all the data nodes,
and all the check nodes form the set P, D, and C, respectively. The EMPDC graph has

five types of nodes.

1. Primary processor nodes which perform nominal computations or checking op-
erations.

2. Primary data nodes which are results of the nominal computations.
3. Check nodes which represent checks.

4. Redundant data nodes which represent data elements to be compared to the
results of the nominal computations.

5. Redundant processor nodes which perform redundant computations to produce
redundant data elements and/or perform checking operations.

In general, the processors for computing checks can be of either the primary processor
node type or the redundant processor node type. In EMPDC graph, there is a directed
edge from the processor p; € P to the data element d; € D if p; produces d;. Similarly,
there is a directed edge from p; to the check ¢;, € C' if ¢, is implemented on p;. Also, there
is an edge from d; to ¢ if d; is checked by c.

For a given MPD graph(Fig. 6.1(a)), a modified processor-data-check(MPDC) graph
for SFL/TFD under the checking scheme proposed in Chapter 4 is shown in Fig. 6.1(b).
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And an EMPDC graph(Fig. 6.1(c)) is constructed by introducing redundant data ele-
ments and mapping checks on either the primary processors or the redundant processors.
According to the EMPDC graph, processors py, ps, p3, ps perform nominal computations
to produce primary data elements dyy, dyo, da1, d31, d41, Wwhereas processors ps, ps, 7, Ps, P9
perform redundant computations to produce redundant data elements dsy, dg1, d71, dg1, doy
to be compared to the sum of primary data elements in each check. In this example, dg;
is the redundant data element to be compared to dy; in checking operation of c3, dg; is to
be compared to dy; in checking operation of ¢y, and so on. Also, checks ¢y, ¢, c3, ¢4, c5 are
mapped to processors ps, ps, Pe, P, P4, respectively, and such checks guarantee that the
ABFT system is totally single-fault locatable.

Throughout this chapter, we use SID model as error occurrence/propagation model.
Also, we assume that the faults in only the checking operations to be computed in the
processors p; and p; are not necessary to be distinguished to other faults because the
results for original computations are correct, but such faults have to be detected.

In the following, Rch(d,,) denotes the set of data elements reachable from the data
element d,,;. W,,. is one of all available unions of elements in D,,. d, denotes the
redundant data element to be compared to the sum of primary data elements in a check
¢z And ¢, denotes a variable regarded as adjacent element of a processor computing
the checking operations for ¢,. Also, M’ denotes the number of processors(both primary
processors and redundant processors), M' > M.

Lemma 6.1 An extended ABFT system s single-fault detectable if for any W;, which is
one of unions of elements in D;, 1 <1 < M, there is a check c, such that

. |ee N (Reh(d,) — {d.})| =0
- Hde,C} VA (p)| <1, 1 <m < M’

B~ W N =

Proof: Note that W;, is one of all error patterns which can be occurred when a processor
p; fails. Thus, all available unions of elements in D; become all error patterns induced by
the faulty processor p;. By Condition 1, the check c, certainly outputs “1” for the z-th one
of error patterns induced by the fault pattern {p;}. Similarly, by Condition 2, ¢, certainly
outputs “1” when d, is erroneous. By Condition 3 and Condition 4, the reliability of
checking operation for ¢, is guaranteed for the error pattern W;, when the processor p;
fails and for the error patterns including d, when the processor p,, fails, respectively. O

Lemma 6.2 An extended ABF'T system is single-fault locatable if for any pair of W, and
W,y which are one of unions of elements in D; and Dj, 1 # 7,1 <i1 < M,1<j< M,
respectively, there is a set of checks {c,, ¢y, cy, Cy} such that

1. c,:
la. |c; N (Wie @ Wyy)| = 1
1b. e, N (Wi, NWyy)| =0
le. |ee N (Reh(d,) — {d.})| =0
ld. {d., &} N (Adj(p;) U Adj(p;))| =0
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1f. {dsy &} N Adj(pm)| <1, 1 <m < M’
]-fl ivaT : {CT|CT # Cz}) |CT N RCh(dz)| # 1
L2 if e, {erler # corler 0 Reh(d,)] = 1}, [{7} N Adj(p)| = 1 or
le, N (Reh(d,) N Reh(Adj(pm )| > 1, m' #m, 1 <m/ < M’
2. for|c, " Wi| =1

2a. ¢y :
2al. |c, N Wj,| =1
2a2. |ey N (Reh(dy) — {dy})| =0
2a3. [{dy, &} N Adj(p;)| =0
2a4. |{dy, ¢} N Adj(pm)| <1, 1 <m <M’
2a4-1. if e, : {co|e, # ¢y}, |er N Reh(dy)| # 1
2a4-2. if Ve, : {c,|er # ¢y, |er N Reh(dy)| = 1}, [{&} N Adj(pm)| = 1 or
ler N (Rch(dy) N Reh(Adj(pmr)))| > 1, m' #m, 1 <m' < M’
2b. ¢, :
2b1. [cy, N (Wi, @ Reh(d,))| =1
202. |, N (Wi N Reh(d,))| =0
203. |cy N (Rch(d,) — {d.})| =0
204. |{dy, ¢, } N (Adj(p;) U Adj(p,) U Adj(p.,))| =0
205. {du, .} N Adj(pm)| <1, 1 <m < M
205-1. if e, : {co|er # cu}, |er N Reh(dy)| # 1
205-2. if Ve, s {coler # cu, ler N Reh(dy)| = 1}, [{E.} N Adj(pm)| = 1 or
le; N (Reh(dy) N Reh(Adj(pm)))| > 1, m' #m, 1 <m/ < M’
2c. ¢, :
2cl. |c, N (W, @ Reh(dy))| =1
2¢2. |e, N (W, N Reh(dy))| =0
2¢3. |c, N (Reh(d,) — {d,})| =0
2et. |{dy ) N (Adj(p;) U Adi(py) U Ads(pe,))] = 0
2¢5. {dy, &} N Adj(pm)| <1, 1 <m < M’
2¢5-1 if Ve, : {er|er # o}, |er N Reh(d,)| # 1
2¢5-2 if Ve, s {eole, # ¢y, |er N Reh(d,)| = 1}, [{é.} N Adj(pm)| =1 or
le; N (Reh(dy) N Reh(Adj(pm)))| > 1, m' #m, 1 <m' < M’
3. for|c, NWj| =1

3a. ¢y :
3al. e, N Wi | =1
3a2. |e, N (Reh(d,) — {d,})| =0
3a3. [{dy, &y} N Adj(pi)| =0
3a4. |{d,, ¢} N Adj(pm)| < 1,1 <m <M’

3a4-1. if Ve, {c e # ¢y}, |er N Reh(dy)| # 1
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3a4-1. if Ve, : {c,|er # ¢y, |er N Reh(dy)| = 1}, [{&} N Adj(pm)| = 1 or
le. N (Reh(dy) N Reh(Adj(pm: )| > 1, m' #m, 1 <m/ < M
3b. ¢, :
3b1. |y N (Wjy, & Reh(dy))| =
3b2. |, N (W), N Reh(d,))| =
3. ey 0 (Reh(dy) — {du})] =
3b4. [{du, e} N (Adj(p;) U AdJ(Pw) U Adj(pe,))| = 0
365. |{dy, ) N Adj(pm)| < 1,1 <m < M’
3b5-1. if Ve, : {crle, # cu}, |er N Reh(dy)| # 1
305-2. if Ve, s {coler # cu, ler N Reh(dy)| = 1}, [{E} N Adj(pm)| = 1 or
le, N (Reh(dy) N Reh(Adj(pm)))| > 1, m' #m, 1 <m/ < M’
3c. ¢,
3cl. |ey N (Wip @ Reh(dy))|
3c2. |e, N (Wi N Reh(dy))| =
3e3. |e, N (Reh(dy,) — {d,})] —O
3c4. |{dy, &} N (Adj(p;) U Adj(py) U Adj(pc,))| =0
3ch. |{dy, &} NAdj(pr)| <1, 1 <m < M
3ch-1. if Ve, s {erle, # ¢}, | N Reh(d,)| # 1
3651, if ey < {erley # cur ey 1 Reh(dy)] = 1}, {6} N Adi(p)] = 1 or
|, N (Reh(dy,) N Reh(Adj(pmi)))| > 1, m' #m, 1 <m/ < M’

>

4. for any pair s(one of & and u) and s'(one of y and v),
|{dsads’783753’} N (Ad](pm) U Ad](pm’)” < 3; m' # m, 1 <m< MI; 1 < m/ < M

Proof: Note that the unions W,, and Wj, are one of error patterns induced by fault
patterns {p;} and {p,}, respectively. We assume that the faults in only the checking
operations to be computed in the processors p; and p; are not necessary to be distinguished
to other faults because the results for original computations are correct. By Condition
1, the check c, detects one error pattern W;,(W,,), and also distinguishes between Wj,
and W, because c, certainly outputs “1” for exactly one of such two error patterns.
Furthermore, the reliability for the checking operation of ¢, is guaranteed by Condition
1 and Condition 4. By Condition 2a(Condition 3a) and Condition 4, ¢, detects the
other error pattern W, (W,,), and the reliability for the checking operation is guaranteed.
Also, by Condition 2b(Condition 3b) and Condition 4, ¢, distinguishes between W, and
Rch(d,), and the the reliability for the checking operation is guaranteed. Similarly, by
Condition 2¢(Condition 3¢) and Condition 4, ¢, distinguishes between W, and Rch(d,),
and the the reliability for the checking operation is guaranteed. O

As an example, let us consider the EMPDC graph illustrated in Fig. 6.1(c). For p;
and po, Dy = {{d11}, {d12,do1,d31}}, D2 = {{da1}}. If four checks ¢,, ¢,, ¢, and ¢,, which
satisfy Lemma 6.2, are defined as follows,

1. D11 = {dll} and D21 = {dzl}i
€z = €3, dy = ds1, P = Ps, and p., = ps
Cy = C2, d’y = dg1, Py = Ds, and Pe, = Ps
Cy = C4, dy = dg1, Py = pg, and p., = pg
Cy = ¢5, dy = do1, Py = P9, and p., = ps
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2. D12 = {d12,d21,d31} and D21 = {dgl}l
¢z = ¢1, dy = d71, po = p7, and p., = ps
Cy = C2, dy = dg1, Py = De, and Pey, = Ps
Cy = 5, dy = do1, Pu = P9, and p., = py
Cy = ¢, dy = do1, Py = P9, and p., = ps

as a result, any pair of error patterns, one is induced by p; and the other is induced by
P2, can be distinguished by each other, and each of error patterns induced by p; andp, is
detected. Since there are such four checks c,, ¢,, ¢, and ¢, for any pair of fault patterns,
the ABFT system is single-fault locatable.

In the next section, we will discuss a method for constructing checks for single-fault
locatable ABFT systems based on Lemma 6.2 by using the EMPDC graph model.

6.3 A Basic Algorithm MAP-EMPDC

Now, we introduce a basic algorithm to construct checks and redundant data elements for
single-fault locating ABFT system, and to map such checks and redundant data elements
to the system processors. Let ¢, ¢y, ¢, and ¢, be checks satisfying Lemma 6.2. Algorithm
6.1 finds a set of checks C' and a set of data elements ptr(c;) which have to be checked
by ¢; € C. And the algorithm selects(or adds) a processor p; computing redundant
data element d,; to be compared to the sum of the primary data elements in ¢, € C' and
a processor p; computing the checking operation ¢, for ¢, € C. Finally, the algorithm
always return P'(D P), D'(D D), C and ptr(c,) if there exists a set of checks given by
Lemma 6.2. The outline of the algorithm for a pair of ); and @ is illustrated in Fig.
6.2.

For a pair of (); and @, the algorithm MAP-EMPDC consists of four construction
steps: (1) c,(XMAP), (2) c,(UMAP), (3) ¢,(YMAP), (4) ¢,(VMAP). The subroutine
XMAP finds ¢, € C given by Condition 1 of Lemma 6.2 by using the subroutine CON-
STRUCT. If ¢, satisfying the condition is not in C, ¢, is newly added by the subroutine
ADD. And then the processor p; computing the redundant data element d, and the pro-
cessor p; computing the checking operation ¢, for ¢, are properly selected or newly added
by the subroutine ADDP. Similarly, the subroutines YMAP, UMAP and VMAP return
¢s, ds, pr and p; which satisfy the conditions 2a(or 3a), 2b(or 3b), 2¢(or 3c) and 4 of
Lemma 6.2. If the redundant data element d,(d,) and the checking operation ¢,(¢,) in
the subroutine UMAP(VMAP) are computed in the same processor, then to guarantee
the reliability of ¢,(c,), cu(c,) has to be examined whether ¢, # ¢,(c,) given by the con-
dition 2b5(2¢5)(or 2b5(2¢5)) exists or not. It is executed by the subroutine RMAP. The
subroutine RMAP returns ¢,, d,, p, and p,s, and is repeated until both p, and p, are not
in P to limit the hardware resource to at most three times. If [{ps,p,} N P| = 0, the
checking operation ¢, for ¢, is mapped such that |{¢,} N (Adj(ps) N Adj(p,))| = 0.

On the other hand, the “while” loop in main routine MAP-EMPDC is executed until
either Q; or () is empty set. In the next iteration, if ¢, in Q;, then Q; is only updated.
And if ¢, in @, then Q) is only updated. Also, the “while” loop in the subroutine QMAP
is executed until () is empty set.

Algorithm 6.1
MAP-EMPDC
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Figure 6.2: Flow diagram for a pair of ¢); and @ in Algorithm 6.1.

input : MPD graph G(V, E)
M — M, P «— P,D «— D,and C «—
forl<i<j< M
{
TI<—D1‘ and TJHD]'

|77 [Ts]

QI<_ U Di'u) and QJ<_ UD]Z
1

while(O1 0 & Qs £ 0)
{
XMAP(CiE? Qb QJ)
if(Je. N Q1] = 1), QMAP(Qr)
if(le. N Q4| = 1), QMAP(Qy)
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¥
ki
return P', D', C' and {ptr(c)|c € C}

Q{MAP(Q*)
Qu = ﬂ D*w

|¢zN Dy |=1
UMAP(Cu7 Qu) RCh(dw))
T — 1% and Q) «— Qs
while(Q # 0)
{
YMAP(c,, Q,0)
Qv — n Diz
|eyNDxz|=1
VMAP(Cm Q'ln RCh(dy))
T—7- U {De}and@— U D

|eyNDxz|=1 Ds.cT
T* — T* - U {D*w} and Q* — U D*w
|CzﬁD*w|:1 Dy €T
return
1
XMAP(C:M Qb QJ)
{

find ¢, € C such that [{d,, &} N (Adj(p;) U Adj(p;))| =0, [c. N (Qr U Q)| =1,
Iptr(c,) N (Qr ® Q)| =1 and |c, N (Reh(d,) — {d.})| =0
iof fail, find ¢, € C such that |{d,, .} N (Adj(p;) U Adj(p;))| = 0 and
ez N (Reh(de) — {de})] =0
if succeed, CONSTRUCT (¢, Qr, @)
if fail, ADD(c,, dsy Qr, @)
select pg, d, € Adj(pi,) such that |{d,} N (Adj(p;) U Adj(p;))| =0
if {px} N P'| =0, ADDP(py)
Adj(pr) — Adj(pr) U {d. }
select py, ¢, € Adj(p;) such that [{¢,} N (Adj(p;) U Adj(p;))| =0
if {p} N P'| =0, ADDP(p;)
Adj(pi) — Adj(pr) U {c}
return

}

YMAP(¢,,Q,0)
{
find ¢, € C such that |{d,,¢,} N Adj(ps)| =0,
Hdm, dy, Cq, Ey} N (Adj(pm) U Adj(pm’))| <3,
|{du7 dy, Cu, 5@/} N (Adj(pm) U Adj(pm’))| <3,
m#m, 1<m<M,1<m <M,
|CynQ| =1, |pt7’(cy)ﬂQ| = land |Cyﬂ(RCh(dy) - {dy})| =0
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if fail, find ¢, € C such that |{d,, ¢, } N Adj(pz)| =0, |¢, N (Rch(d,) — {dy})| =0
|{dz7 dy7 Eza Ey} N (Adj(pm) U Ad](pm’))| < 3 and
[{du, dy, Eu, &y} N (Adj(pm) U Adj(pm))| < 3,
m#Zm,1<m<M,1<m' <M
if succeed, CONSTRUCT(¢y, Q,0)
if fail, ADD(cy, dy, Q, 0)
select p, d, € Adj(py) such that |{d,} N Adj(pz)] =0
if [{pe} N P'| = 0, ADDP(py)
Adj(px) < Adj(pr) U {dy}
select py, &, € Adj(p;) such that |{¢,} N Adj(pz)| = 0 and
[{y} N (Adj(pm) U Adj(pm))| = 0 if
{da, dy, &} 0 (Adj(pm) U Adj(pm))| =3 0
{du, dy, &} N (Adj(pm) U Adj(pmi))| = 3,
m#m,1<m<M,1<m' <M
if {m} N P'| =0, ADDP(p;)
Adj(p1) — Adj(p) U {¢,}

T

return

}

UMAP(cy, Qu, Reh(d,))

{
T = Qu

§F({dan &2} 1 Adj(p)] = 2,1 < m < M
find ¢, € C such that |{d,, &} N (Ad](p*) Ad](pm) U Adj(p.,))| =0,
lc, N (T U Reh(d,))| =1, |ptr(c,) N (T & Reh(d,))| =1, and
o0 1 (Reh(dy) — {du})] = 0
if fail, find ¢, € C such that |{d,,¢,} N (Adj(p.) U Adj(p.) U Adj(p..))| = 0 and
2 1 (Reh(dy) ~ {dy})] = 0
if succeed, CONSTRUCT(¢,, T, Rch(d,))
if fail, ADD(c,, dy, T, Rch(d,))
select pg, d,, € Adj(py) such that
[{du} N (Adj(ps) U Adj(p,) U Adj(p,))| = 0
if {pe} N P'| =0, ADDP(py)
Adj(pr) — Adj(pr) U {du}
select py, ¢, € Adj(p;) such that
[{¢.} N (Adj(p.) U Adj(p.) U Adj(pc, )| = 0
if {m} N P'| =0, ADDP(p,)
Adj(pi) — Adj(pi) U {c.}
i£(|{{du, &} N Adj(pn)| = 2,1 < m < M), RMAP(d,, ¢y, du, )
return

}

VMAP(C’U) Qv) RCh(d?}))

{
T — Q,

if({de, e} N Adj(pm)| =2,1 <m < M), T — 0
find ¢, € C such that [{d,, ¢, } N (Adj(ps) U Adj(p,) U Adj(p.,))| =0,
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{dz, du, &, &} N (Adj(pm) U Adj(pm))| < 3
[{du, dv, Cu, &} N (Adj(prm) U Adj(pr))| < 3
m#Zm , 1<mIM,1<m <M,
lc, N (T'U Reh(dy))| =1, |ptr(c,) N (T @ Reh(dy))| =1
and |c, N (Reh(d,) — {d,})| =0
if fail, find ¢, € C such that |{d,, ¢, } N (Adj(ps) U Adj(p,) U Adj(p.,))| =0,
|{dm7 dy, Cay Ev} N (Ad](pm) U Ad](pM’))| <3,
[{durdor s 20} 1 (Adi(p) U Adj(pr))| < 3, m £ 1,
1<m< M, 1<m' <M, and |c, N(Rch(d,) — {d, })|
if succeed, CONSTRUCT(c,, T, Rch(d,))
if fail, ADD(c,,d,, T, Rch(d,))
select py, d, € Adj(px) such that
[{d} N (Adj(ps) U Adj(p,) U Adj(ps,))| = 0
if {px} N P'| =0, ADDP(py)
Adj(pr) — Adj(pr) U {dy}
select py, ¢, € Adj(p;) such that
[{&} N (Adj(ps) U Adj(p,) U Adj(pc, ))
and |{¢,} N (Adj(pm) U Adj(pm:))| =0
if [{de, dv, &} N (Adj(pm) U Adj(p))|
[{du, dv, Cu} N (Adj(prm) U Adj (P )
m#m , 1<m< M, 1<m' <M
if {m} N P'| =0, ADDP(p;)
Adj(pi) — Adj(pr) U {&}
if({{dy, &} O Adj(pm)| = 2,1 < m < M'), RMAP(d,, ¢y, dy, )
return

}

RMAP(d,, c,,ds, ;)
{
find ¢, € C such that for ¢, # cs, |¢. N Reh(ds)| = 1, |ptr(c,) N Reh(ds)| = 1,
le, N (Reh(ds) N Reh(Adj(pr)))| =0, k# s, 1 <k < M,
and [{d,, ¢} N Adj(p,)| =0
if fail, select one d, € ((Rch(ds) N Adj(ps)) — Rch(Adj(pr))), k #s, 1 <k < M’
select d,’s
D, Utd)
¢, — D — ((Reh(ds) — {d,}) — Rch(d,)) U D,
ptr(c,) — {d,} U D,
for each d,: |{d,}nD'|=0, D' — D'"U{d,}
C —CuU{c}
select p,, d, € Adj(p,) such that |{d,} N Adj(ps)| =0
if |{p,} N P'| = 0, ADDP(p,)
Adj(p,) — Adj(p,) U {d.}
select p,, ¢ € Adj(p.) such that |{¢,} N Adj(ps)| = 0 or
{&}n Adj(ps) N Adj(p.)| = 0if {ps,p.} N P| =0

if {p»} N P'| =0, ADDP(p,)
Adj(p,,r) — Adj('p,,/) U {57,}
if({d,, ¢} N Adj(pm)| = 2,1 <m < M'), RMAP(d;, ¢4, d,, ¢,)
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will consider a MPD graph illustrated in Fig. 6.1(a).

return

}

CONSTRUCT(c,, 11, T5)
{
find ¢, € C" such that |c, N (Ty U Ty)| > 2, |ptr(cs) N (Ty & Ts)| = 1 and
Iptr(cs) N (T3 NT2)| =0
if succeed, ¢; «— ¢s — ((T1 UTy) — ptr(c,)) and return “succeed”
find ¢, € C' such that |c; N (11 @ T2)| > 1 and [ptr(c,) N (T1UT,)| =0
if succeed, select d,, € (¢, NTy & Ty)
s — € — (T, UT,) — {da})
pir(cs) — pir(c,) U {d.)
return “succeed”
return “fail”

}

ADD(CS,dS,Tl,Tz)
{

select one d,, € (T} ®Tz)
add d,
cs — D —(((Ty UTy) —{d,}) — Reh(dy)) U {d,}
ptr(c,) «— {d,,d,}
D' — D'U{d,)
C — CU{cs}

return

}

ADDP(pm)

{
P'— P'U{py}
M — M +1
m— M +1
Adj(pm) — 0

}

As a design example of single-fault locatable ABFT system for Algorithm 6.1, we

From this MPD graph, D; =

{{du1},{d12,d21,ds1}}, D2 = {{do1}}, D3 = {{d31}} and Dy = {{d31,ds1}}. According

to the algorithm MAP-EMPDC, we can construct checks for each pair of D; and Dj,
1 <% < 7 < 4. There are various solutions which depend on the method for choosing

d,(ADD), p; and p(XMAP, YMAP, UMAP, VMAP and RMAP), and finding ¢,, ¢, c,,

¢, and ¢, in each “find” state within the subroutines XMAP, YMAP, UMAP, VMAP and
RMAP, respectively. The procedure for constructing checks by Algorithm 6.1 is described

as follows.

1. Dyand D, 2 <35 <4
€1 = {@a @} Ps
C2 = {@a @}3 Ps

o1



3 = {@: d127%}: Ds
Cy = {@, d12,d21,@,@}¢ P9
Cs = {d127@7 @7 d417@}: P4

2. Dy and Dj, 3 < j < 4: no updated
3. Dz and Dj, 4 < j < 4: no updated

Where, the underlined data elements of each check ¢;, 1 < ¢ <5, denote that such data
elements are in ptr(c,). The result for the above execution is illustrated in Fig. 6.1(c).
The line between data elements and checks denotes that the data element is in ptr(c) for
a check c € C.

In the next section, we will describe a checking scheme for single-fault locatable FIR
filter based on the EMPDC graph model.

6.4 Design of Fault Tolerant FIR Filter

High-speed FIR filtering has been attracted by many researchers in spite of less efficient
than infinite impulse response(IIR) filtering in analog equivalence and cost effectiveness
because it is always stable and can always be made to have linear phase response which is
characteristic that makes it extremely attractive in audio, image and sonar applications.
Since the probability of one or more PEs to become faulty in VLSI architectures such as
systolic array is quite large, it is desirable to build some on-line fault tolerance features
at lower cost into them.

6.4.1 FIR Filter

Let z(n) and y(n) be input and output, respectively. FIR filtering with filter coefficients
h;y, 0 <12 < N —1, is defined as,

N-1

y(n) = D a(n— i)k

1=0

(6.1)

An important feature of FIR filtering is the iterative computation with respect to inputs
z(n), n > 0, to produce outputs y(n), n > 0. Now, the k-th block computation y(l),
0 <1 < B —1, with block length B, will be considered.

N-1

1=0

(6.2)

Where, y(l) = y(kB + 1) and z(l — ¢) = (kB + 1 — ). The form of matriz-vector
multiplication for eq. (6.2) with B = N is shown in eq. (6.3).
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(a) Dependence Graph for FIR filtering.
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(b) A systolic FIR filter.

Figure 6.3: Original FIR filter.

The DG for FIR filtering and a particular implementation on systolic array are illus-
trated in Fig. 6.3(a) and (b) with B = N, respectively. Each node in DG consists of one
addition and one multiplication, and each PE consists of one adder, one multiplier, and
three registers.

6.4.2 Fault Tolerant FIR Filter

In the following, we consider the only computational fault of each PE. We assume that
the only updated ones of data elements which leave the processor may become erroneous.
On the other hand, faults on communication links or registers are assumed to be treated
by other techniques such as error detecting/correcting codes. Therefore, the only output
string y will be considered in constructing MPD graph. The MPD graph for the FIR
filter is illustrated in Fig. 6.4(a), where y; denotes the i-th output of the k-th block.
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We now consider two basic checking schemes based on the EMPDC graph model for
locating single-fault in a particular architecture of FIR filter(Fig 6.3(b)).

Theorem 6.1 For a given system which is Adj(p;) = {y;} and Reh(y;) = {y:}, 0 <@ <
N — 1, an extended ABFT system is single-fault locatable if for each pair of data elements
y; and y;, 0 <1i < j < N — 1, there is a set of checks {c;, cj, c;} such that

1. la. ¢ ={y;, v}
1b. ¢; = {yj,y}}
le. ¢ = {yny]:y;}}

2. 2a. {&, &} N (Adj(p:) U Adj(p;))| < 1
2b. [{&, &} N (Adj(p;) U Adj(p}))| < 1

3. 3a. [{&, &} n (Adj(p:) U Adj(p;) U Adj(p,))| =
3b. [{¢;, &} N (Adj(p;) U Adj(p;) U Adj(pe))| =

where vy, is a redundant data element to be compared to the primary output y, or the sum
of the primary outputs in c,, and is computed on a redundant processor p,.

Proof: It is straightforward from Lemma 6.2. There is a set of checks {c,, ¢, cu, ¢, } such
a way that ¢, = ¢;, ¢, = ¢;, and ¢, = ¢, = ¢, for any pair of W;, = {y;} and W;, = {y;},
0<i<jy<N-1 a

Theorem 6.2 For a given system which is Adj(p;) = {y:} and Reh(y;) = {yi}, 0 <i <
N — 1, if an extended ABFT system is constructed as follows,
1. la. Adj(p;) = {vyi,cs5,a:}, 0<i <N -1
1b. Adj(py) = {csn}
dj(

le. Adj(pny1) = {cse)

Q

2. 2a. Reh(yi) = {vi,a;}, 0 <1< N—-1
2b. Rch(cs;) = {csiya:}, 0 <1< N -1
2¢. Reh(a;) ={a;},0<i< N -1
2d. Rch(csy) = {csy}

ch(

2e. Reh(esy) = {esi}

3. 3a. ¢, ={a;, 841}, 0<i<N-1
3b. cy = {csy,cse}
3c. eyp1 = {907917 T 7yN—17C5t}

4b. Ey.1 € Adj(po)

then the system is single-fault locatable.
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(a) MPD graph of FIR filter
with B=N.

(b) An extended MPDC graph using (c) An extended MPDC graph using
Theorem 6.1 with N=3. Theorem 6.2 with N=3.

Figure 6.4: Two basic EMPDC graphs for the original FIR filter.

Proof: It is straightforward from Lemma 6.2. Note that a; is always erroneous when p; is
faulty. Hence, a; is included in all of the available error patterns induced by p,. Therefore,
we will show whether for each pair of W;, = {a;} and W;, = {a;},0<i<j<N-1 a
set of checks which satisfy Lemma 6.2 exists or not. There is a set of checks {c,, ¢y, ¢4, ¢ }
such a way that ¢, = ¢;, ¢y = ¢;, cy = ¢j41, and ¢, = ¢;11. Also, it is clear that for any
pair of processors which are not considered in the above situations, there is a set of checks
which are given by Lemma 6.2. Therefore, the extended ABFT system is single-fault
locatable. a

For the case of N = 3 in the MPD graph(Fig. 6.4(a)), examples of an EMPDC graph
using Theorem 1 and Theorem 2 are illustrated in Fig. 6.4(b) and (c), respectively. The
redundant data elements in Fig. 6.4(b) are computed in several redundant processors,
while such redundant data elements in Fig. 6.4(c) are well distributed to the primary
processors. Therefore, the basic checking scheme of single-fault locatable FIR filter to
be designed is based on Theorem 6.2. It may be very difficult to design MPD graph
including redundant data elements without degrading the performance of the system nor
increasing the number of processing components or processors. Hence, we will concentrate
on minimizing the degradation of performance and the number of processing components
or processors by mapping redundant data elements and checking operations to the system
Processors.
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Figure 6.5: An EMPDC graph with N = 3.
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To efficiently compute the redundant data elements on systolic array, first we introduce
updated data elements cs; such a way that cs; = y;_1 + ¢s;_1 computed on p;, 0 <7 < N.
And then a; = y; + ¢s; computed on p;, 0 < ¢ < N — 1, is introduced to meet the
scheme in Theorem 6.2. Unfortunately, a number of updated data elements s;(1), 0 <1 <
N — 1, to compute cs;, are computed on p;, 0 < 2 < N — 1. Therefore, all of available
error patterns due to these data elements have to be additionally considered to design
single-fault locatable FIR filter. To detect and locate such data elements, we introduce
b, = El]\;l si(1) computed on p;, 0 < ¢ < N — 1, d; computed on py;2 to compare to
b;, 0 <1 < N —1, and d; computed on py,; to compare to dy ;. Furthermore, N + 1
checks ¢ = {b;,d;}, 0 <i < N —1, and cyi2 = {dy_1,d;} are newly introduced. Finally,
the MPD graph which is included all of these redundant computations is shown in Fig.
6.5(a).

According to the MPD graph, each of redundant data elements has the properties as
follows.

a; = CS;41 (64)
N-1
s o= D Ui (6.6)
1=0
cs; = CSy
d = dy1 8
Where,
a; = €8+ Yi,
N-1
bi = ZSZ(Z),
=0

di = dia+ (T N110) + B N2+ 2),

csy = thl(x(fNH) + @ N2+ o) +
hy_o(®(—njo) + T(—ngs)y + -+ 1)+ +
ho(zo 4+ o1+ -+ 4+ xyx_1),

dy = (@Cn4y) + T N2+ T0) +
(T Njo) F T npz)y + o F )+ +
(To+ o1+ +zy_1),

si(l) = @y + @iy 0+ Ta-m)

From these properties, we can construct a set of checks as follows.
¢t a; = csip1? onpiyg, 0 <e <N —1

chiby =d;? on piys, 0<i < N—2

)

N

CN: €Sy = ¢S37 on pg

(1)

(2)

(3) cy_q: by_1 =dy_17 on po

(4)

(5) ent1t Yo+ Y1+ +ynv1=cs7 on pyyo
(6)

CN+2: dy—1 = dy? on p;
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Figure 6.6: Single-fault locatable FIR filter implemented on systolic array.
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There are totally 2N + 3 checks for locating single-fault.
Now, we will examine whether this checking scheme satisfies Lemma 6.2 or not. In
the following, s; denotes the set which consists of s;({), 0 <1 < N — 1.

Correctness of checking scheme For each pair of unions W;, and W;,, W;, is one
of all available unions of elements in D(p;), W, is one of all available unions of elements
in D(p;),0<i<j<N-—1,

S1. if |s;NW;,| > 1 and |s;NW,,| > 1, then ¢, = iy ¢y =Cyand ¢, = ¢, = cyya,

S2. if |s;NWy,| > 1, |{a;} N Wj,| = 1, and |s;N Wj,| = 0, then ¢, = ¢,

i1 Cy = G

Y 7o
Cy = CN 42, and Cy = Cj41,

S3. if [{a;}NWi,| =1, |s;nW;,| =0, and |s;NW;,| > 1, then ¢, = ¢;, ¢y = ¢j, ¢y = Ciy1,

() Yy ]
and ¢, = cy42,

S4. if |{az} N Ww| = 1, |Sszm| == 0, |{a]} N W]y| = 1, and |s]ﬁW]y| == 0, then Ce = Cj,

J
Cy = Cjy Cy = Cjy1, and ¢, = ¢yq,
S5 if [{b} Wi | = 1, [(s:U{a;: }) NWi| = 0, [{b;} NW, | = 1, and |(s;U{a; })NWj,| = 0,

) Al — —
then ¢, = ¢, ¢, = Cjy Cu = Cy = CN 2

Thus, for any pair of error patterns, one is induced by p; and the other is induced by
pj, 0 <@ < j < N —1, there are always four checks c,, ¢, ¢,, and ¢, which satisfy
the conditions of Lemma 6.2. And it is clear that for any pair of processors which are
not considered in the above situations, there are always such four checks. Therefore, the
extended ABFT system based on the proposed checking scheme is single-fault locatable.
The EMPDC graph based on this checking scheme is shown in Fig. 6.5(b).

Finally, DG including all of the redundant computations is illustrated in Fig. 6.6(a),
where a; is not shown because it is computed once after y; and cs; are computed on p;,
0 <1 < N — 1. The FIR filter obtained by projecting the DG in j-direction is illustrated
in Fig. 6.6(b). As a result, the original FIR filter(Fig. 6.3(b)) consists of N adders and
N multipliers, while the fault tolerant FIR filter consists(Fig. 6.6(b)) of 5N + 5 adders,
2N + 2 multipliers, 2N + 3 comparators, and additional N registers due to the circular
buffer for storing input data .

6.4.3 System Evaluation

Now, we discuss some properties for error detection and correction of the proposed fault
tolerant FIR filter.

Error Detection

Several efforts have been made for CED schemes in the area of signal processing applica-
tions. Gupta and Bayoumi [11] proposed a novel CED scheme termed as logarithm based
on-line error detection which is based on the use of logarithmic coding for inputs and
results in a self-testing systolic cell. And Vinnakota and Jha [6] proposed a method for
synthesizing single-fault detectable ABFT system from DG of FIR filtering by introducing
an useful checking scheme. In general, these schemes assume that the monitoring circuit
to compare two results is fault-free or has self checking properties. And the schemes
require almost twice in silicon area or in time.

99



MUX Vi

o=

0T

)

_ _J

CN+2

v

Figure 6.7: The circuit for correcting the erroneous output ;.

On the other hand, the proposed fault tolerant FIR filter does not assume that the
checking operation to compare two results is fault-free, and it can be achieved systolic
array implementation without causing any loss in throughput rate. Also, this scheme
can detect two-fault except for the faults included at least one checking operation, of
course, all of single-fault can be detected. Unfortunately, since our main target is to
locate single-fault, the scheme requires nearly three times in hardware resources.

Error Correction

Kung [10] presented error detection and correction based on interleaved DG. The idea is
to perform the same computation twice in adjacent PEs at two different but close enough
time periods and then compare the results. If they match there is no fault. Otherwise
a roll-back is necessary to correct the fault. However, a fault in checking operation
which is to compare two results: one is premary output computed in a PE, the other
is redundant output computed in adjacent PE, was not considered, that is, checking
operations were assumed to be fault-free. Cosentino [12] proposed a scheme of concurrent
error detection and correction in systolic architecture of FIR filtering at a cost of halving
the maximum throughput rate by performing the same computation twice in adjacent
PEs and comparing such two results.

On the other hand, for the output y;, 0 < ¢ < N — 1, of FIR filtering with order
N, the proposed fault tolerant FIR filter can concurrently correct the error induced by
any single-fault, without retrying the computations. For any error pattern including the
output y;, 0 <7 < N — 1, which is induced by the faulty processor p;, the checks ¢; and
cn+1 always output 1, or the checks ¢}, ¢}, -, cy_; always output 1 and the check cy o
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always outputs 0. According to the properties of the checking scheme,

cs; = Yi—1+ ¢S,

CSit1 = Y; + ¢S;.

Assuming single-fault(p; is faulty), ¢s;1; and a; ; equivalent to cs; are error-free, which
are computed on p;y; and p,; 1, respectively. Therefore, the corrected output ¢,, can be
obtained as follows.

Cyy = CSip1 — Qi1 (6.9)

The circuit for correcting the erroneous output y; is shown in Fig. 6.7. The correcting
circuit is assumed to fault-free. Where, ; = y; if sel = 0, and §; = ¢, if sel = 1. Also,
MUX denotes a multiplexer.

Fault Location

The conventional schemes has been concentrated on concurrent error detection and cor-
rection in the area of signal processing applications. There is little approach in systemati-
cally synthesizing single-fault locatable FIR filter which is implemented on systolic array.
However, the fault location plays an important role in correcting errors or reconfiguring
the system to bypass the faulty processor when a fault is permanent. To achieve this
objective, we proposed a scheme based on the EMPDC graph model so that single-fault
locatable FIR filter is systematically synthesized on systolic array.

6.5 Conclusion

In this chapter, we present a method in designing single-fault locatable FIR filter based
on EMPDC graph model. The ABFT system which has been introduced in previous
chapters for designing more efficient fault tolerant systems was extended by introducing
some redundancies to be compared to the sum of data elements in checks and mapping
such checks to the system processors such a way that the system still maintains the
desired fault tolerance. As an application of our theory to a practical problem, a fault
tolerant FIR filter was implemented on systolic array. As a result, while the fault tolerant
FIR filter required nearly three times in hardware resources, it achieved CED capability
without causing any loss in throughput rate and assuming that checking operations are
fault-free. Furthermore, for any primary output of FIR filtering, the fault tolerant FIR
filter could be applied to on-line error correction without retrying the computation by
introducing the correcting circuit being fault-free or being of the self-checking property.
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Chapter 7

Conclusions

In this thesis, we present the analysis and synthesis of ABFT systems based on MPD
graph model, and proposed checking schemes for single-fault detection and location on
the simple error model(SID model) and the sophisticated error model(MID model). Also,
we present two basic algorithms SFL-TFD I and SFL-TFD II for constructing checks
of SFL/TFD ABFT systems for SID model and MID model, respectively. As a result,
the set of error patterns to be considered with MID model becomes a superset of the
one with SID model, but still a subset of the one from the conventional PDC graph
models. In general, the computational complexity and the number of checks in analyzing
and designing ABFT systems increase as the number of error patterns increases. In this
sense, SID model based analysis is preferable among three analysis models. However, it
assumes that erroneous inputs yield always erroneous output, and error masking by plural
erroneous inputs or by faulty computation using an erroneous input is not treated. In
contrast with SID model based analysis, MID model based analysis can treat such error
masking phenomenon. While the complexity and the number of checks tend to increase
compared to the MPD graph with SID model in compensation for improving the accuracy
of error propagation model, the effectiveness of MPD graph model with MID model holds
good compared to the conventional PDC graph models.

Our approach will be applied to linear algebra based computation algorithms without
feedback loops, and both the number of error patterns to be considered and the number
of checks are reduced compared with the ones for conventional PDC graph models. Fur-
thermore, there exist some ABFT systems which are single-fault locatable from our MPD
graph model but not from the conventional PDC graph models, because our MPD graph
with the appropriate error propagation model can exclude redundant error patterns which
are included for considerations in the analysis by the conventional PDC graph models.
Analysis and checking schemes for cyclic MPD graph for applying our method to com-
putation algorithms with feedback loops, algorithms for designing minimum number of
checks for a given MPD graph and the design of mapping from a set of operations to a
set of processors with regarding checking scheme are remained as future problems.

In this thesis, we also extended the MPD graph model based ABFT system by in-
troducing some redundancies to be compared to the sum of data elements in checks and
mapping these checks to the system processors such a way that the system still main-
tains the designated fault tolerance. The proposed EMPDC graph model includes the
relationships between checks and processors for computing checks, and plays important
role in designing cost-effective ABFT systems in the sense that the number of checks and
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redundant computations are reduced by considering data dependency between primary
data elements and redundant data elements. Also we proposed a method in designing
single-fault locatable FIR filter based on EMPDC graph model under SID error model,
and a fault tolerant FIR filter was implemented on systolic array. The scheme will be
used as a basis of systematic synthesis for locating faults in signal processing applications.

Throughout this research, we focused our attention on two important features in an-
alyzing and designing cost-effective ABFT systems, i.e., (1) detection of errors due to a
fault at some processor output, and (2) location of the faulty processor, by introducing
a specified error occurrence/propagation model using data dependency between compu-
tation results. The results obtained in this thesis will provide important bases for highly
reliable parallel computing systems.
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