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Abstract

High performance parallel computer systems become feasible solution of computationally

intensive problems by the advent of cost-e�ective VLSI components in the past few years.

Since the probability of one or more processors to become faulty in such multiple processor

systems is quite large, it is desirable for improving the reliability of them to build some on-

line fault tolerance features into them. However, the requirements for high performance

and fault tolerance are seemingly contradictory: parallel architectures and algorithms have

been developed to achieve maximum utilization of each of processors, while fault tolerance

requires redundant computations and checking operations to ensure that the computation

results are correct. To incorporate fault tolerance into multiprocessor systems at lower

cost, several ABFT techniques have been proposed. However, most of these discussions

are target dependent and less e�ort has been made at the generalization.

The objective of this research is to construct some general model which can be used for

both analysis and synthesis of ABFT systems. Fault detectability/locatability under some

practical error occurrence/propagation models and formal design methods of checking

scheme of ABFT systems are also discussed on this general model. The essentials of

ABFT technique are to encode data at system level and to modify the target algorithm

to operate on the encoded data. To analyze and to control fault detectability/locatability

of such a system, the error occurrence/propagation model at the algorithm level plays an

important role. The model for ABFT system considered here can fully utilize a speci�ed

error occurrence/propagation model by using data dependency, and it can give us tighter

conditions for fault detectability/locatability than previous models do. In the turn for

synthesis, these properties contribute to the cost-e�ective checking scheme by reducing

redundant checking operations.

In the result, the analysis/synthesis model and some relevant discussions done in this

research will provide important bases for reliable parallel computing systems.
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List of Abbreviations

� ABFT(Algorithm-Based Fault Tolerance) is a new technique for tolerating faults

at lower cost, and has concurrent error detection and fault location capability.

� CED(Concurrent Error Detection) is on-line fault tolerant technique for detecting

faults, and has been used in fault tolerant signal processing applications.

� DC(Data-Check) graph: represents the relation of data elements and checks, and

gives an useful information about the checking schemes of fault tolerant system.

� DG(Dependence Graph) represents the data dependency between operations as-

sociated with data element, or between operation and primary input or primary

output, for a given algorithm.

� ED(Error-Data) graph: is an undirected bipartite graph, and represents the relation

of error patterns and data elements.

� EMPDC(ExtendedModi�ed Processor-Data-Check) graph is to be extended from

MPDC graph to introduce the redundancy for computing data element to be com-

pared to the sum of data elements in a check and to map the checking operation to

system processors.

� FIR(Finite ImpulseResponse) �lter is always stable and can be made to have linear

phase response which is characteristic that makes it extremely attractive in audio

and sonar applications.

� IIR(In�nite Impulse Response) �lter is more e�cient than FIR �lter in analog

equivalence and cost e�ectiveness.

� MID(Multiple-InputsDriven) model is a sophisticated error generation/propagation

model used in this research.

� MPD(Modi�ed Processor-Data) graph is to be modi�ed from PD graph to intro-

duce data dependency between computation results.

� MPDC(Modi�ed Processor-Data-Check) graph represents ABFT system which is

constructed by using the checking scheme based on MPD graph model.

� PD(Processor-Data) graph represents the relation of processors and data elements,

and gives the information about the architecture after mapping operations to a set

of processors.

� PDC(Processor-Data-Check) graph is a tripartite graph which consists of PD

graph and DC graph, and has been used by many researchers in analyzing and

designing ABFT system.
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� PE(Processing Element) is a circuit block in array architecture, or is a processor

in multiprocessor system.

� SFD(Single-Fault Detection) is the process of recognizing that a single-fault has

occurred.

� SFL(Single-Fault Location) is the process of determining where a single-fault has

occurred.

� SFL/TFD(Single-Fault Location/Two-Fault Detection) is the process of deter-

mining where a single-fault has occurred and recognizing that a two-fault has oc-

curred.

� SID(Single-Input Driven) model is a simple error generation/propagation model

used in this research.

� TFD(Two-Fault Detection) is the process of recognizing that a two-fault has oc-

curred.

� VLSI(Very Large Scale Integration) is an integrated circuit containing more than

10,000 logic gates or more than 30,000 transistors.

� WCC(Weighted Checksum Code) is a code for both detecting and correcting error

in signal processing applications.
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Chapter 1

Introduction

High performance parallel computer systems are commonly used for signal processing and

other computationally intensive problems which require high-speed data processing. A

fault in the system can have damaging consequences on the result of a computation. Also

the probability of one or more processors to become faulty in such multiple processor

systems is quite large. Therefore, it is desirable for improving the reliability of them to

build some on-line fault tolerance features into them. However, the requirements for high

performance and fault tolerance are seemingly contradictory: parallel architectures and

algorithms have been developed to achieve maximum utilization of each of processors,

while fault tolerance requires redundant computations and checking operations to ensure

that the computation results are correct. Algorithm-based fault tolerance(ABFT) is one

of techniques for solving such problems, which provides concurrent error detection and

location capability to the system [1].

To incorporate fault tolerance at lower cost without sacri�cing the performance, var-

ious ABFT techniques have been proposed, and also model-based analysis methods for

these ABFT systems have been investigated [1], [2], [3], [4], [5], [6], [7], [19], [20], [23], [25],

[26], [29], [31], [32], [34], [36]. There have been many applications of these techniques to a

variety of problems including FFT [17], [19], [20], sorting, signal processing applications

[6], [11], [12], [14], [29], such as �nite impulse response(FIR) �ltering, and matrix oper-

ations [1], [6], [14], [21], [23], [26], [34]. It has also been applied to various architectures

such as array [6], [11], [12], [14], [15], [19], [20], [23] and hypercube [21].

One of the main goals of research in ABFT is to design cost-e�ective systems which

have fault detectable(or locatable) property so that the computation complexity and

the number of checks are minimized. Designing k-fault locatable or detectable systems

involves many degrees of freedom. One could assume that the architecture is not given a

priori. In this case one could add checks to the algorithm to make it error tolerant and then

project its data dependence graph(DG) to obtain the optimal fault tolerant architecture.

Vinnakota and Jha [6] proposed two-stage approach to the synthesis of ABFT systems:

(1) a system-level code is chosen to encode the data used in the algorithm, (2) the optimal

architecture to implement the scheme is chosen by using DG. Liu and Jen [23] presented

a systematic design methodology which maps a matrix arithmetic algorithm to a fault-

tolerant array processor: input data of an algorithm are coded in weighted checksum

code(WCC) and the DG of the modi�ed algorithm is mapped to array processor. On the

other hand, one could assume that the algorithm and architecture are already given and

that the checks must be added for some desired fault tolerance.
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Many works have been done on the formal analysis and design of ABFT systems.

Banerjee and Abraham [5] proposed a graph-theoretic model to represent ABFT systems:

an ABFT system is modeled by an undirected tripartite graph which is called processor-

data-check(PDC) graph. It consists of three sets of nodes each of which corresponds to

processors, data elements or checks and edges between processor and data or data and

check. The PDC graph can be divided into two bipartite graphs: processor-data(PD)

graph and data-check(DC) graph which represent PD relationships and DC relationships,

respectively. Designing PD relationships can be said to be a synthesis for ABFT system,

while designing DC relationship can be called a design for ABFT system. Also, demon-

strating the ability of the desired fault tolerant system when both PD graph and DC graph

are given, can be said to be an analysis for ABFT system. The PDC graph model has

been used by several researchers in synthesizing, designing and analyzing ABFT systems.

Nair, Abraham and Banerjee [4] proposed a matrix-based model which was derived from

the graph-theoretic model. Banerjee and Abraham in [5] also gave a construction methods

for ABFT systems by using the graph-theoretic model. In any of these methodologies, a

systematic procedure to design DC relationships which can detect and locate a speci�ed

number of faults has attracted a lot of attention due to the important role it plays in

synthesizing, designing and analyzing ABFT systems. Sitaraman and Jha [3] showed how

to design the DC relationship for error detection and location.

However, the conventional graph-theoretic models have not addressed error occurrence

and error propagation for a given system, which result in redundant error patterns in de-

signing and analyzing ABFT systems. These redundant error patterns cause the increase

of the complexity and the number of checks in designing and analyzing ABFT systems. To

exclude such redundant error patterns, we introduce data dependent information between

computation results computed by processors. Since data dependency gives an useful in-

formation for error occurrence/propagation, we can simplify the analysis procedure and

reduce the number of checks. An analysis model based on modi�ed processor-data(MPD)

graph is proposed, and it is shown that the number of error patterns to be considered can

be reduced by utilizing data dependency between computation results.

We employ two error occurrence/propagationmodels named as single-inputdriven(SID)

model and multiple-inputs driven(MID) model for the MPD graph model. The SID model

is such a model that an erroneous input to a computation will always result in erroneous

computation result regardless of the other inputs nor the status of the processor. In this

case, once we construct a set of data elements reachable from each data element, each one

of error patterns can be generated by simple union operation to properly selected sets of

reachable data elements, and we can drastically reduce the number of error patterns to

be considered compared to the conventional PDC graph model. The MID model is more

sophisticated with taking into account of some possibilities in the practical situations: a

computation result with multiple erroneous inputs may possibly be error-free, and also a

faulty processor may possibly generate error-free computation result when some of inputs

are erroneous. As a result, the set of error patterns to be considered with MID model

becomes a superset of the one with SID model, but still a subset of the one from the con-

ventional PDC graph model. In general, the computational complexity and the number of

checks in analyzing and designing ABFT systems increase as the number of error patterns

increases. While the complexity and the number of checks tend to increase compared to

the MPD graph with the SID model in compensation for improving the accuracy of error

propagation model, the e�ectiveness of MPD graph model with MID model holds good
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compared to the conventional PDC graph model.

On the other hand, the redundant computations and checking operations are usually

a part of an ABFT system and are likely to be performed on the system processors. How-

ever, the problem of how to map checks to system processors has been little concerned

in designing ABFT system. Nair, Abraham and Banerjee [4] introduced check evaluating

nodes in their graph model and showed the way how to analyze such a system for fault

tolerance. Yajnik and Jha [7] used an extended PDC graph model for considering proces-

sors computing checks to be a part of the ABFT system. They proposed a deterministic

solution to concurrent error detection and fault location with graceful degradation, and

presented a general method for designing one-fault locating/s-fault detecting ABFT sys-

tems. However, their graph model did not show information about how to map checks to

system processors, and also they did not consider the problem of designing cost-e�ective

ABFT systems such that the number of checks and redundant computations are reduced.

We propose a novel strategy for mapping checks to system processors with minimizing

the number of checks and redundant computations so that fault tolerant capability of the

system is still maintained even after some permanent faults are detected.

Furthermore many e�orts have been made in synthesizing ABFT systems on various

VLSI array architectures [6], [11], [12], [14], [15], [19], [20], [21], [23]. The conventional

fault tolerant schemes for array architectures have been mainly concentrated on concur-

rent error detection(CED) schemes. Gupta and Bayoumi [11] proposed a novel CED

scheme termed as logarithm based on-line error detection which is based on the use of

logarithmic coding for inputs and results in a self-testing systolic cell. Vinnakota and Jha

[6] proposed a method for synthesizing single-fault detectable ABFT system from DG of

FIR �ltering by introducing an useful checking scheme. But they did not attend to the

fault location which is an important key to correcting errors or recon�guring system for

permanent faults. On the other hand, Kung [10] presented error detection and correction

based on interleaved DG. The idea is to perform the same computation twice in adjacent

PEs at two di�erent but close enough time periods and then compare the results. If they

match there is no fault. Otherwise a roll-back is necessary to correct the fault. However

some faults can not be exactly located when such faults are permanent. Also a fault in

checking operation which is to compare two results: one is primary output computed in a

processing element(PE), the other is redundant output computed in adjacent PE, was not

considered, that is, checking operations were assumed to be fault-free. Cosentino [12] pro-

posed a scheme of concurrent error correction in systolic architecture of FIR �ltering at a

cost of halving the maximum throughput rate by performing the same computation twice

in adjacent processing elements and comparing such two results. Thus the conventional

schemes have been mainly proposed in the area of concurrent error detection and correc-

tion. While less e�orts have been made in fault location which plays an important role

in the area of recon�guration of the system to bypass the faulty processor. The problem

of locating faults in systolic array system can not be solved in simple schemes. To solve

the problem, more complex fault tolerant schemes which are considered both time redun-

dancy and hardware redundancy, are required. We present a method of designing fault

tolerant FIR �lter on systolic architecture by using the scheme for synthesizing ABFT

systems based on an extended modi�ed processor-data-check(EMPDC) graph model.

Fault tolerance involves four steps: (1) detection of errors due to a fault at some

processor(or module) output, (2) correction of the errors, (3) identi�cation of the faulty

processor, and (4) recon�guration of the system to bypass the faulty processor. In this

3



thesis, we will concentrate on (1) and (3) due to playing an important role in (2) and (4).

The correction of a error can be achieved by roll back technique or the identi�cation of

the error which provides an useful information for identifying the faulty processor. The

recon�guration can be achieved by using spare processors and switch modules, or applying

graceful degradation techniques.

The rest of this thesis is organized as follows. In Chapter 2, several terms with regard

to ABFT systems are de�ned, and k-fault detectability and k-fault locatability in terms

of error patterns are discussed. Two error models to be employed in this research and

an analysis model based on MPD graph are present in Chapter 3. For each of two error

models: SID model and MID model, checking schemes and design examples for single-

fault detectable and locatable ABFT systems are represented in Chapter 4 and Chapter 5.

In Chapter 6, a novel strategy for mapping checks to system processors and fault tolerant

FIR �lter as a design example are discussed. Finally, Chapter 7 is used for conclusions.
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Chapter 2

Terminologies with regard to ABFT

systems

2.1 Fault, Error and Check

Now, we will de�ne faults, errors, and checks(checking operations) with regard to ABFT

systems. The basic de�nitions are based on [1], [4] and [5].

A fault is any condition that causes a malfunction in processor(s). An error is any

discrepancy between the expected result of an operation and the actual result of the

operation. A fault in a processor is assumed to be manifested as an error in one or more

data elements a�ected by it. In general, the problem of detecting faults is translated

into the problem of detecting errors in computation results. However, we must note that

certain types of faults may not produce any error at all. If a particular fault does not

produce any error in data elements computed by a processor, the fault is said to be

unobservable and the presence of these faults is disregarded in this research. A collection

of all faulty processors is called a fault pattern. Fault patterns consisting of k or fewer

elements(faulty processors) are called k-fault. On the other hand, a collection of all

erroneous data elements is called an error pattern.

A check is any combination of hardware and software procedures performed on the

data elements to generate an output either 1 or 0. The set of data elements checked by a

check is called its data set. A (g; h) check is de�ned on g data elements such that (1) the

check is correct(either outputs 0 or 1) if the number of erroneous data elements among

these g data elements does not exceed h, and (2) the check is invalid(may output 0 or 1)

if more than h data elements are erroneous. We assume that the capability of a check is

limited to a (g,1) check, and its behavior is as follows:

C1. A check outputs a 1 if there is exactly one data element in its data set being in

error.

C2. A check outputs a 0 if there are no errors in the data elements in its data set.

C3. A check is unpredictable if the number of erroneous elements in its data set is greater

than one.

The outputs of the checks in the system can be represented as a �nite binary sequence

which is usually called the syndrome.

5



2.2 k-Fault Detectability and Locatability

We de�ne k-fault detectability and locatability as follows.

De�nition 2.1 (k-Fault Detectability) An ABFT system is said to be k-fault de-

tectable if for every error pattern induced by k-fault, there is at least one check that

certainly outputs 1.

De�nition 2.2 (k-Fault Locatability) An ABFT system is said to be k-fault locatable

if for any pair of error patterns, one is induced by a fault pattern in k-fault and the other

is induced by any other fault pattern in k-fault, there is some check that certainly gives a

di�erent output.

Now, we introduce several notations to describe k-fault detectability and locatability

in terms of error patterns. f li is the l-th set of i processors and indicates one fault pattern

of the size i. Fi:

Fi =

C(M;i)[

l=1

ff
l
ig (2.1)

is the set of all fault patterns of their size exactly i, where C(M; i) is the number of

combinations which have i processors for a given system with M processors, that is,

C(M; i) = M !
(M�i)!i!

. And F
k:

F
k =

k[
i=1

Fi (2.2)

is the set of all k-fault patterns.

On the other hand, e
lj
i is a subset of data elements and indicates one error pattern

induced by f li . e
l
i:

e
l
i = fe

l1
i ; e

l2
i ; � � � ; e

ljl
i g (2.3)

is the set of all error patterns induced by a fault pattern f
l
i . Ei and E

k:

Ei =

C(M;i)[

l=1

e
l
i (2.4)

E
k =

k[
i=1

Ei (2.5)

are the sets of error patterns induced by fault patterns in Fi and those in F
k, respectively.

Now, we describe fault detectable and locatable system with regard to ABFT systems.

To simplify the notations, let fi be a fault pattern in F
k and let eiu(2 E

k) be the u-th error

pattern induced by a fault pattern fi. To describe fault detectability and locatability, �rst

we introduce an undirected bipartite graph GED(VED; EED) which describes the relation

between error patterns and data elements. The set of vertices VED(= E
k
[ Vd) denotes

the set of error patterns (Ek) and the set of data elements (Vd), and the set of edges

6



eiu
dn c

E D C

error patterns data elements checks

ED graph G ED

Figure 2.1: Checks for k-fault detectable ABFT system.

EED denotes the relation between error patterns and data elements : if a data element

dn is contained in an error pattern eiu induced by a fault pattern fi, then there exists an

undirected edge(eiu; dn).

In the following, let C = fc1; c2; � � � ; cq; � � � ; cQg be a set of checks, where the check cq
is a subset of data elements.

Lemma 2.1 An ABFT system is k-fault detectable if and only if for each error pattern

eiu, 1 � i � jF
k
j, there is at least one check c 2 C such that jc \ eiuj = 1.

Proof: (1) su�cient condition: If jcq\eiuj=1, then the check cq certainly outputs 1 for an

error pattern eiu because exactly one data element in cq is in error. Hence, there is at least

one check which certainly outputs 1 for each error pattern induced by fi, 1 � i � jF
k
j.

(2) necessary condition: The proof is by contradiction. Suppose that, for a certain error

pattern eiu,
8
cq, [jcq \ eiuj = 0 or jcq \ eiuj � 2]. If jcq \ eiuj=0, then cq certainly outputs 0

for the error pattern eiu. If jcq \ eiuj � 2, then the check cq is unpredictable because the

check cq is (g; 1) check. Hence, there is no check that can certainly output 1 for eiu. This

is a contradiction. 2

Now, we will discuss k-fault locatable system. Analyzing ABFT system for its fault

locatability is a much harder problem when compared to the problem of analyzing the

fault detectability. This is the reason that, in the case of fault locatability, we have to

determine not only whether a fault pattern is detectable but also whether the fault pattern

is distinguishable from other fault patterns.

Lemma 2.2 If an ABFT system is k-fault locatable, then for any pair of error patterns

eiu and ejv, i 6= j, 1 � i � jF
k
j, 1 � j � jF

k
j, eiu � ejv 6= ;, where � denotes the

symmetric di�erence.

Proof: The proof is by contradiction. Suppose that for i 6= j, the symmetric di�erence of

the error patterns eiu and ejv is empty. When fi and fj induce eiu and ejv, respectively,

the syndrome for fi and the one for fj are the same because eiu = ejv. Hence, there is no

way that the checks can distinguish fi and fj for i 6= j. This is a contradiction. 2

7
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Figure 2.2: Checks for k-fault locatable ABFT system.

Theorem 2.1 An ABFT system is k-fault locatable if and only if for each pair of error

patterns eiu and ejv, i 6= j, 1 � i � jF
k
j, 1 � j � jF

k
j, there is at least one check-pair

c 2 C and c
0
2 C such that

(1) jc \ (eiu � ejv)j = 1 and jc \ (eiu \ ejv)j = 0

(2) jc0 \ ejvj = 1 if jc \ (eiu � ejv)j = 1

(3) jc0 \ eiuj = 1 if jc \ (ejv � eiu)j = 1.

Proof: (1) su�cient condition: From the de�nition of k-fault locatability, the syndromes

for two error patterns eiu and ejv which are induced by two-distinct fault patterns fi and

fj, respectively, have to be di�erent. Let dij be a data element contained in both eiu�ejv
and c so that jc \ (eiu � ejv)j=1 and jc \ (eiu \ ejv)j=0. If dij is in ejv, then jc

0
\ eiuj = 1

and the partial syndrome cc
0 is 01 and 11(or 1X) for fi and fj, respectively, where X

denotes that the check is unpredictable. Similarly, if dij is in eiu, then jc
0
\ ejvj=1 and

the partial syndrome cc0 is 11(or 1X) and 01 for fi and fj, respectively. Therefore, fi
and fj are detected and distinguished by the check-pair c and c0. (2) necessary condition:

The proof is by contradiction. Suppose that, for a certain pair of error patterns eiu and

ejv, (a)
8
cq, [jcq \ (eiu � ejv)j 6= 1], (b) 9

cq, [jcq \ (eiu � ejv)j = 1, jcq \ (eiu \ ejv)j = 0]

and 8
c
0

q, [jc
0

q \ eiuj 6= 1(or jc0q \ ejvj 6= 1)]. For the case of (a), there is no check that

can give a di�erent output because cq has the same output for eiu and ejv, or that can

certainly output 1 because cq is either 0 or unpredictable for eiu(or ejv). Also, for the case

of (b), there is no check that can certainly output 1 for eiu(or ejv) because c
0

q is either 0

or unpredictable for eiu(or ejv). This is a contradiction. 2

Corollary 2.1 If an ABFT system is k-fault locatable due to Theorem 2.1, then it is also

2k-fault detectable.

Proof: It is clear that if an ABFT system is k-fault locatable, then it is also k-fault

detectable because from the proof of Theorem 2.1, the check-pair c and c
0 can detect

eiu and ejv. The error patterns induced by 2k-fault are obtained by taking all available

pairwise unions of elements in E
k and elements in Ek. Hence we will prove whether the

8
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Figure 2.3: An example of conventional PDC graph model.

checks detect the error pattern eiu [ ejv, 1 � i � jF
k
j, 1 � j � jF

k
j. Since exactly one

data element in eiu [ ejv in E
2k is in data set of the check c, the error pattern eiu[ejv can

be detected by c from Lemma 2.1. Therefore, the checks which consist of these check-pairs

can detect 2k-fault. 2

2.3 Conventional PDC Graph Model

In the graph-theoretic model proposed earlier in [5], an ABFT system system is rep-

resented by an undirected tripartite graph called the PDC graph whose vertex set is

P [D [ C and its edge set is PD [DC, where P , D and C are sets of processors, data

and checks, respectively, and PD and DC are sets of edges between P and D and between

D and C, respectively. An edge (u; v) 2 PD implies that processor u a�ects the value of

data element v in the computation: if processor u fails, v could have an error. An edge

(v; w) 2 DC implies that data element v is checked by a check w.

A simple example for the PDC graph model is illustrated in Fig. 2.3. The processor

p1 a�ects the data element d1 in the computation: d1 is erroneous if p1 fails. Similarly,

p2 a�ects d1 and d2: d1 or/and d2 are erroneous if p2 fails, and also p3 a�ects d3: d3 is

erroneous if p3 fails. The error pattern induced by a faulty processor is given as one of

all available unions for data elements which are a�ected by the processor. According to

notations de�ned in Section 2.2, the set of fault patterns F 1 for single-fault(k = 1) is given

as ffp1g; fp2g; fp3gg(= ff
1
1 ; f

2
1 ; f

3
1 g = F1). And the set of error patterns E1 induced by

fault patterns in F
1 is given as ffd1g; fd2g; fd1; d2g; fd3gg(= fe

11
1 (= e

21
1 ); e

22
1 ; e

23
1 ; e

31
1 g =

e
1
1[e

2
1[e

3
1 = E1). Note that the error pattern e

11
1 induced by the fault pattern fp1g is the

same to one(e112 ) of error patterns induced by the fault pattern fp2g. Since it is against

the fault locatability of Lemma 2.2, there is no way that the fault patterns fp1g and fp2g

can be distinguished by some checks.

Suppose that we want to design DC relations(Fig. 2.3(b)) for detecting single-fault

from the PD relations(Fig. 2.3(a)). One possible solution is the use of two checks c1 =

9



fd1; d3g and c2 = fd2g: the check c1 detects all error patterns including either d1 or

d3, similarly c2 detects all error patterns including d2. Finally, the PDC graph for this

con�guration is shown in Fig. 2.3(c).

The importance of the graph-theoretic model is that the fault detection and location

properties of the computation can be derived directly as a property of the graph. Hence

the PDC graph model has been used by several researchers in analyzing and designing

ABFT systems in practice. On the other hand, the PDC graph can be divided into two

bipartite graphs: PD graph and DC graph which represent PD relationships and DC

relationships, respectively. Designing PD relationships can be said to be a synthesis for

ABFT system, while designing DC relationship can be called a design for ABFT system.

Also, demonstrating the ability of the desired fault tolerant system when both PD graph

and DC graph are given, can be said to be an analysis for ABFT system. In the PDC graph

model, when a processor is faulty, the error pattern induced by the faulty processor is

given as one of all available unions for data elements which are produced by the processor.

However, if we introduce the appropriate error models which re
ect the characteristics of

error propagation between computation results, the number of error patterns induced by

the faulty processor can be reduced.

10



Chapter 3

MPD Graph Model

3.1 Motivations

The �rst attempt analyzing ABFT systems was made by Banerjee and Abraham [2] who

proposed a graph-theoretic model. Also, the matrix-based model presented in [4] simpli-

�ed the analysis procedure by introducing the new necessary and su�cient conditions for

the fault detectability and locatability of ABFT systems. These models use a PD graph

to represent a given multiprocessor system. The PD graph provides information about

which processors a�ect data elements, but it does not provide any information about

how processors a�ect data elements. Specially, the PD graph excludes the dependent

information between data elements. However the data dependency provides an important

information about how the error for a computation result of a processor propagates to

computation results of other processors. In general, error patterns consist of all available

unions of sets of data elements reachable from each data element computed by a faulty

processor. In the PD graph, each data element reachable from data element computed by

a faulty processor becomes an error pattern, but it is not in practical applications which

have some dependencies between computation results. Therefore, there may exist some

redundant error patterns in analyzing and designing ABFT systems.

Such redundant error patterns may be a cause of an increase in the complexity and

the number of checks in analyzing and designing ABFT systems, respectively. This situ-

ation motivates the investigation of more e�cient model so that the analysis procedure is

simpli�ed and the number of checks is reduced. To achieve such objectives, we introduce

data dependent information between computation results computed by processors. Since

data dependency gives an useful information for error occurrence/propagation, we can

simplify the analysis procedure and reduce the number of checks by using data dependent

information in analyzing and designing ABFT systems.

The rest of this chapter is organized as follows. In Section 3.2, we will discuss two

error models to be employed in this research. An analysis model based on MPD graph is

presented in Section 3.3, and its e�ectiveness in analyzing and designing ABFT systems

is described in Section 3.4. And a method to construct error patterns for each of SID

model and MID model is shown in Section 3.5. Finally, Section 3.6 is used for conclusion.

11



3.2 Error Occurrence/Propagation Models

In most cases, a hardware fault will be identi�ed by the observation of data error. Dif-

fering from the o�-line tests for verifying chip/system functionality and performance, it

is not possible, in the case of on-line test, to apply speci�c test vectors with regarding

controllability and observability of a target error, and in turn for them, we should in-

troduce appropriate model for error occurrence and error propagation. Considering the

linear algebra based computations such as matrix operations and signal processing as our

typical applications of ABFT systems, we employ the following two models.

Single Input-Driven(SID) Model An erroneous input to a computation will always

result in erroneous computation result regardless of the other inputs nor the status of the

processor. That is,

E1-1. If the number of erroneous inputs used for a computation is more than zero, then the

computation result is erroneous regardless of the status of the processor computing

the result.

E1-2. If the number of erroneous inputs used for a computation is zero, then the compu-

tation result depends on the status of the processor computing the result as follows:

E1-2a. If the processor is normal(fault-free), then the result is correct.

E1-2b. If the processor is faulty, then the result is either erroneous or correct.

In this case, once we construct a set of data elements reachable from each data ele-

ment, each one of error patterns can be generated by simple union operation to properly

selected sets of reachable data elements, and we can drastically reduce the number of

error patterns to be considered compared to the conventional PDC graph model.

Multiple Inputs-Driven(MID) Model This model is more sophisticated with tak-

ing into account of some possibilities in the practical situations: a computation result

with multiple erroneous inputs may possibly be error-free, and also a faulty processor

may possibly generate error-free computation result when some of inputs are erroneous.

That is,

E2-1. If a processor is faulty, then each of its computation results is either erroneous or

correct regardless of inputs used for its computation.

E2-2. If a processor is normal(fault-free), then each of its computation results depends

on the number of erroneous inputs used for its computation as follows:

E2-2a. If the number of erroneous inputs is zero, then the result is correct.

E2-2b. If the number of erroneous inputs is one, then the result is erroneous.

E2-2c. If the number of erroneous inputs is more than one, then the result is unde-

termined.

As a result, the set of error patterns to be considered with MID model becomes a

superset of the one with SID model, but still a subset of the one from the conventional

PD graph model because the error patterns in PD graph model consist of all available

unions of data elements neighboring a faulty processor. In general, the computational

complexity and the number of checks in analyzing and designing ABFT systems increase

12



as the number of error patterns increases. While the complexity and the number of

checks tend to increase compared to the MPD graph with SID model in compensation

for improving the accuracy of error propagation model, the e�ectiveness of MPD graph

model with MID model holds good compared to the conventional PDC graph model.

3.3 MPD Graph

An algorithm which can be represented by a DG GD(VD,ED), is considered, where VD
denotes the set of vertices each of which represents an operation associated with data

element(the result of the operation), primary input or primary output, and ED denotes

the set of directed edges each of which represents the data dependency from source to

destination vertices. An example of DG is illustrated in Fig. 3.1(a). The marked nodes

in left side are primary inputs, and the marked nodes in right side are primary outputs.

Also, the unmarked nodes in middle side represent operations.

In a practical implementation, nodes in DG are mapped onto a set of processors,

and each data element is classi�ed into either internal or external data element, where

the former is used only within a processor while the latter is used for computations in

other processors or a primary output. In Fig. 3.1(a), the nodes in each dashed circle

on operation nodes are mapped onto a processor. Here the operation nodes o1, o2, o3
and o7 are mapped to the processor p1. Similarly o4 and o5 are mapped to p2, and o6 is

mapped to p3. Throughout this research, we assume that only external data elements can

be checked by checks, and a given algorithm is executed on M processors and generates

N external data elements.

We introduce a directed graph G(V;E) called MPD graph which is de�ned as follows.

V is the set of M processor nodes and N external data nodes. E is the set of processor-

data relation edges and data dependency edges. The processor-data relation edge (pm; dn)

is in E if the processor pm produces the external data element dn. On the other hand,

the data dependency edge (di; dj) is in E if the external data element di is sent to the

processor which generates dj and is used for computing dj. An example of a MPD graph

is shown in Fig. 3.1(b). Note that MPD graph allows multiple edges, and (di; dj) is

multiplied if the internal dependency graph peculiar to the processor which generates dj
has multiple paths from entry node(s) of di to the operation node associated with dj(Fig.

3.1(c)(d)).

In this research, a MPD graph is assumed to be acyclic, that is, we will limit our

typical algorithms to linear algebra based computations without feedback loops which

include matrix operations and FIR type signal processing.

Unlike the conventional PD graph model, the error pattern on MPD graph model is

obtained by the full utilization of data dependency. For both SID model and MID model,

when a processor pm is faulty, at least one of data elements which are adjacent to pm is

erroneous(from E1-2b, E2-1 and disregarding unobservable fault). Data elements which

are reachable from pm through such erroneous data element(s) are either erroneous or

error-free(E2-2b, E2-2c). Especially, data elements which are reachable from pm along

only one path containing erroneous data element adjacent to pm are always erroneous(E1-

1, E2-2b). For example, when the processor p1 of Fig. 3.1(b) is faulty, the error pattern

on SID model is one of fd1; d4; d5g, fd2; d3g, fd5g, fd1; d2; d3; d4; d5g and fd2; d3; d5g, while

the error pattern on MID model is one of fd1; d4; d5g, fd2; d3g, fd5g, fd1; d2; d3; d4; d5g,
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Figure 3.1: MPD graph for a DG.

fd2; d3; d5g, fd1; d4g and fd1; d2; d3; d4g. Note that the last two error patterns fd1; d4g and

fd1; d2; d3; d4g are newly added in MID model because d5 is error-free if the error term

produced in computing d1 is cancelled in computing d5 when the computations for d1 and

d5 are simultaneously faulty.

3.4 E�ectiveness

To show the e�ectiveness of MPD model, we will consider the following algorithm as an

example. Data element di is computed by operation oi for i = 1; 2; � � � ;M . And data

element di is used as an input for computing the data element di+1 for i = 1; 2; � � � ;M � 1

and dM is not used as inputs for computing any other data elements. We assume that

operations are mapped into processors in one-to-one fashion so that data element di is

computed by processor pi. The conventional PD graph and the proposed MPD graph for

this situation are illustrated in Fig. 3.2.

Assume that we want to construct a set of checks such that the designated system is

single-fault detectable. For the case of the conventional PD graph, M checks are needed

to detect single-fault because a fault in p1 may a�ect all of data elements to be erroneous,

so all available error patterns induced by faulty processor p1 are all of the available com-

binations of data elements d1; d2; � � � ; dM . However, for the case of the proposed MPD

graph which introduces data dependent information, we can detect single-fault to just

one check for dM because error pattern induced by faulty processor pi always includes
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Figure 3.2: PD graph and MPD graph to be considered as an example.

the data element dM . Also there does not exist any check to locate single-fault in the

conventional PD graph because the faulty processor p1 and another faulty processors can

not be identi�ed by the syndrome. But single-fault in MPD graph can be located by

M checks: one check for each data element di. Thus, there always exist checks to locate

single-fault in the proposed MPD graph. In most cases that there exist data dependen-

cies between data elements computed by processors, the designated ABFT system in the

proposed MPD graph can be implemented with fewer checks than the conventional PD

graph.

3.5 Construction of Error Patterns

In the following, we will describe a method for constructing error patterns from MPD

graph for SID model and MID model. For a given MPD graph G(V;E) with M processor

nodes and N external data nodes, Adj(pm) and D(pm) denote the set of data elements

adjacent to the processor pm and the one reachable from the processor pm, respectively.

Let Dm = fDm1; Dm2; � � � ; DmjAdj(pm)jg, m = 1; 2; � � � ;M , be a subset family of D(pm).

Note that D(pm) is equivalent to the largest error pattern induced by single-fault pattern

fpmg. Dml denotes the set of all data elements which are reachable from the l-th adjacent

data element of the processor pm. jAdj(pm)j is the number of adjacent data elements of

pm.

3.5.1 SID Model

First we construct E1 from Dm, 1 � m � M . A method for constructing E1 is described

in Algorithm 3.1, where ] denotes pairwise unions of all elements in two sets. On the

other hand, E2; E3; � � � ; Ek can be obtained from E1, recursively. That is, Ei consists of

all of available pairwise unions of all elements in E1 and those in Ei�1.

Algorithm 3.1

FIND(E1)

input : MPD graph (V; E)

construct Dml, 1 � m � M , 1 � l � jAdj(pm)j
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E1  ;

for 1 � m �M

f

E1m  ;

count jAdj(pm)j

while(count 6= 0)

f

E1m  Dm ] E1m

count count� 1

g

E1  E1 [E1m

g

3.5.2 MID Model

Let Lmi be a set of such data elements that the number of edges on the longest path(s)

from the processor pm to these elements in D(pm) is i. Let dm1dm2 � � � dmjD(pm)j be a

sequence of the elements in D(pm) according to the order of Lmi. That is, elements in

Lm1 are the �rst, which are followed by elements in Lm2, and so on.

We will consider to construct error patterns recursively. LetEmj = fej1; ej2; � � � ; ejl; � � �,

ejLjg be the set of error patterns which consist of dm1; dm2; � � � ; dmj. Let Im(j+1) be the

set of input data elements for computing dm(j+1). Then the set of error patterns Em(j+1)

can be obtained by the procedure shown in Algorithm 3.2, which is recursively repeated

until EmjD(pm)j is generated.

Algorithm 3.2

FIND(Em(j+1))

input : Emj; Im(j+1); D(pm)

Em(j+1)  ;

for each ejl in Emj

f

if dm(j+1) 2 Adj(pm)

f

Em(j+1)  Em(j+1) [ fejl [ fdm(j+1)gg

Em(j+1)  Em(j+1) [ fejlg

g

else

f

if jIm(j+1) \ ejlj � 1

f

Em(j+1)  Em(j+1) [ fejl [ fdm(j+1)gg

if jIm(j+1) \ ejlj � 2, Em(j+1)  Em(j+1) [ fejlg

g

else Em(j+1)  Em(j+1) [ fejlg

g

g
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Figure 3.3: Behavior of error patterns for MID model.

As a result, EmjD(pm)j is the set of all error patterns induced by the fault pattern

fpmg. When we construct error patterns for multiple fault, a similar procedure can be

applied. That is, to generate error patterns for a fault pattern fpm1
; pm2

; � � � ; pmk
g, nodes

pm1
; pm2

; � � � ; pmk
in MPD graph are merged together, and D(pm1

)[D(pm2
)[� � �[D(pmk

)

is considered instead of D(pm). From the nature of the above error pattern construction

procedure, generated error patterns for fpm1
; pm2

; � � � ; pmk
g contain error patterns for any

subset fault pattern of fpm1
; pm2

; � � � ; pmk
g. Then, to generate error patterns induced by

k-fault, it is enough to apply the above procedure to all fault patterns each of which

contains exactly k faulty processors.

Finally, the set of error patterns to be considered with MID model becomes a superset

of the one with the SID model, but still a subset of the one from the conventional PDC

graph models. In general, the computational complexity and the number of checks in

analyzing and designing ABFT systems increase as the number of error patterns increases.

While the complexity and the number of checks tend to increase compared to the MPD

graph with SID model in compensation for improving the accuracy of error propagation
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model, the e�ectiveness of MPD graph model with MID model holds good compared to

the conventional PDC graph models.

3.6 Conclusion

In this chapter, we have introduced two error occurrence/propagation models: SID model

and MID model, and MPD graph model for analyzing and designing ABFT systems on

these error occurrence/propagation models. The proposed analysis model fully utilizes

data dependent information in generating error patterns, and it can suppress redundant

error patterns. Also, we discussed a method for constructing error patterns for each of two

error occurrence/propagation models. As a result, the error patterns induced by k-fault

can be recursively constructed. However, to generate error patterns is a costly task, and

also the number of error patterns is still too large to maintain for analysis and design

of ABFT systems. Therefore, we will discuss single-fault detectability and locatability

in analyzing and designing ABFT systems on MPD graph without constructing error

patterns.
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Chapter 4

Checking Scheme for SID Model

4.1 Introduction

Many works have been done in designing and analyzing of ABFT systems. Banerjee and

Abraham [5] proposed a graph-theoretic model to represent ABFT systems. They also

presented construction methods for ABFT systems by using the graph-theoretic model.

The model was used by several researchers on the design and analysis of ABFT systems.

Nair, Abraham and Banerjee [4] proposed a matrix-based model which was derived from

the graph-theoretic model.

In this chapter, we will discuss a checking scheme based on MPD graph model proposed

in Chapter 3. The checking scheme to be considered is discussed on a simple error occur-

rence/propagation model: SID model. The checking scheme for single-fault detectability

and locatability is de�ned on MPD graph so that checks can be directly obtained from

the MPD graph without constructing error patterns. A basic algorithm for constructing

checks in designing single-fault locatable/two-fault detectable(SFL/TFD) ABFT systems

is provided, and a design example for SFL/TFD ABFT system is described to demonstrate

the basic algorithm.

The rest of this chapter is organized as follows. A checking scheme for single-fault

detectability and locatability under SID error model, is discussed in Section 4.2. In

Section 4.3, a basic algorithm for constructing checks for SFL/TFD ABFT system and a

design example are shown. Section 4.4 is used for conclusion.

4.2 Single-Fault Detection and Location

In Chapter 2, k-fault detectability and locatability are discussed in terms of error patterns.

However, in general, to generate error patterns is a costly task, and also the number of

error patterns is still too large to maintain for analysis and design of ABFT systems. In

this section, we describe single-fault detectability and locatability on MPD graph.

Theorem 4.1 An ABFT system is single-fault detectable if for eachDi which is the subset

family of D(pi), 1 � i � M , there is a set of checks Ci = fc0; c1; � � � ; cs; � � � ; cSig � C

such that Ci is recursively(until D
s
i is empty) de�ned as follows.

(1) D
0
i = Di
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Figure 4.1: Construction of checks for single-fault detection.

(2)

������
cs \

0
@ [
Diw2D

s
i

Diw

1
A
������
= 1

(3) D
s+1
i = D

s
i �

[

jcs\Diwj=1

fDiwg

Proof: Note that all of the available unions of elements inDi become all error patterns for

the single-fault pattern fpig. The check c0 detects the largest error patternD(pi) and some

other error patterns which are all of the available unions of Diw's such that jc0\Diwj = 1.

The check cs detects error patterns which are all of the available unions of Diw's such that

jcs \Diwj = 1. Together with the de�nition of Ds+1
i , Di �D

s+1
i =

s[
�=1

2
4 [

jc�\Diwj=1

fDiwg

3
5
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and fc0; c1; � � � ; csg can detect error patterns which are all of the available unions of

elements in Di � D
s+1
i . Since cs+1 is selected so that

�������
cs \

0
B@

[

Diw2D
s+1
i

Diw

1
CA

�������
= 1, then

jDi �D
s+2
i j � jDi �D

s+1
i j+ 1, and hence Di �D

s+1
i becomes to contain all elements in

Di after appropriate iterations. 2

Theorem 4.2 An ABFT system is single-fault locatable if for each pair of Di and Dj:

the subset families of D(pi) and D(pj), respectively, i 6= j, 1 � i � M , 1 � j � M ,

there is a set of checks Cij = Cr [ (
SR
r=0C

0

r) � C, where Cr = fc0; c1; � � � ; cr; � � � ; cRg and

C
0

r = fc0r0; c
0

r1; � � � ; c
0

rb; � � � ; c
0

rBr
g such that they are recursively(until either D

r
i or D

r
j is

empty) de�ned as follows.

(1) D
0
i = Di, D

0
j = Dj

(2)

�������
cr \

0
B@

[
Diw2D

r
i

Diw �
[

Djz2D
r
j

Djz

1
CA

�������
= 1,

�������
cr \

0
B@

[
Diw2D

r
i

Diw \
[

Djz2D
r
j

Djz

1
CA

�������
= 0

(3) if

������
cr \

0
@ [

Diw2D
r
i

Diw

1
A
������
= 1, then

2
6666666666666664

D
r0
j = D

r
j�������

c
0

rb \

0
B@

[

Djz2D
rb
j

Djz

1
CA

�������
= 1

D

r(b+1)
j = D

rb
j �

[

jc0
rb
\Djz j=1

fDjzg

D
r+1
i = D

r
i �

[

jcr\Diwj=1

fDiwg

D
r+1
j = D

r
j

3
7777777777777775

(4) if

�������
cr \

0
B@

[
Djz2D

r
j

Djz

1
CA

�������
= 1, then

2
6666666666666664

D
r0
i = D

r
i�������

c
0

rb \

0
B@

[

Diw2D
rb
i

Diw

1
CA

�������
= 1

D

r(b+1)
i = D

rb
i �

[

jc0
rb
\Diwj=1

fDiwg

D
r+1
i = D

r
i

D
r+1
j = D

r
j �

[

jcr\Djz j=1

fDjzg

3
7777777777777775

Proof: From Theorem 4.1, if

������
cr \

0
@ [

Diw2D
r
i

Diw

1
A
������
= 1, then cr detects error patterns

which are all of the available unions of Diw's such that jcr \ Diwj=1 and C
0

r detects all

error patterns in
[

Djz2D
r
j

Djz, while cr outputs 0 for every error pattern in
[

Djz2D
r
j

Djz.

Accordingly, the partial syndrome crc
0

r0c
0

r1 � � � c
0

rBr
is di�erent for any one of error pat-

terns which are all of the available unions of Diw's such that jcr \ Diwj=1 and any one
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Figure 4.2: Construction(1) of checks for single-fault location.

of error patterns in
[

Djz2D
r
j

Djz. Now the remained pairs of error patterns to be distin-

guished are all element pairs of Dr
i �

[

jcr\Diwj=1

fDiwg = D
r+1
i and D

r
j = D

r+1
j . The case

�������
cr \

0
B@

[

Djz2D
r
j

Djz

1
CA

�������
=1 is the same but Dr

i and D
r
j are updated di�erently. Totally, the

set of checks Cij can distinguish fault patterns fpig and fpjg. Therefore, if there is a set

of checks Cij for i 6= j, 1 � i � M , 1 � j � M , then the ABFT system is single-fault

locatable. 2

Corollary 4.1 If an ABFT system is single-fault locatable due to Theorem 4.2, then it

is also two-fault detectable.
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Figure 4.3: Construction(2) of checks for single-fault location.

Proof: Let Uix be one of all available unions of elements in Di and let Ujy be one of all

available unions of elements in Dj. Then Uij(= Uix [ Ujy) is one of the error patterns

induced by the fault pattern fpi; pjg. From Theorem 4.2, since exactly one data element

in Uij is in the data set of cr, Uij can be detected by cr. Since every error pattern for the

fault pattern fpi; pjg has the form Uix [ Ujy, the single-fault locatable ABFT system by

Theorem 4.2 is also two-fault detectable system. 2

4.3 Checks for SFL/TFD

4.3.1 A Basic Algorithm SFL-TFD I

Now, we introduce an algorithm to construct checks for single-fault locating and two-fault

detecting ABFT system. Let c and c0 be a check-pair satisfying Theorem 4.2: c and c0 are
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in Cr and C
0

r, respectively. The algorithm SFL-TFD I shown in Algorithm 4.1 �nds a set

of checks C and a set of data elements ptr(c) which have to be checked by check c 2 C,

and it always returns C and ptr(c) if there exists a set of checks given by Theorem 4.2.

According to the algorithm SFL-TFD I, for a pair of QI and QJ , there are four cases

for constructing a check c satisfying Theorem 4.2:

(1) Case-I: exactly one data element of ptr(c) for c 2 C such that jc \ (QI [QJ)j=1 is

in QI �QJ .

(2) Case-II: exactly one data element of ptr(c) for c 2 C such that jc \ (QI [QJ)j � 2

is in QI �QJ , and any data element of ptr(c) is not in QI \QJ .

(3) Case-III: any data element of ptr(c) for c 2 C such that jc \ (QI �QJ)j � 1 is not

in QI [QJ .

(4) Case-IV: for any check c 2 C, any data element of c is not in QI �QJ , at least two

data elements of ptr(c) are in QI [ QJ , or at least one data element of ptr(c) is in

QI \QJ .

Similarly, for Q, there are four cases for constructing a check c0 satisfying Theorem 4.2:

(1) Case-A1(Case-B1): exactly one data element of ptr(c0) for the c
0
2 C such that

jc
0
\Qj=1 is in Q.

(2) Case-A2(Case-B2): exactly one data element of ptr(c0) for the c
0
2 C such that

jc
0
\Qj � 2 is in Q.

(3) Case-A3(Case-B3): any data element of ptr(c0) for the c0 2 C such that jc0 \Qj � 1

is not in Q.

(4) Case-A4(Case-B4): for any check c
0
2 C, any data element of c0 is not in Q, or at

least two data elements of ptr(c0) are in Q.

On the other hand, the �rst \while" loop is executed until either QI or QJ is empty

set. In the next iteration, if c in QI , then QI is only updated. And if c in QJ , then QJ is

only updated. Also, the second or third \while" loop is executed until Q is empty set.

Algorithm 4.1

SFL-TFD I

input : MPD graph (V; E)

construct Dml, 1 � l � jAdj(pm)j, 1 � m � M

C  ;

for 1 � i < j � M

f

TI  Di and TJ  Dj

QI  

jTI j[
w=1

Diw and QJ  

jTJ j[
z=1

Djz

while(QI 6= ; or QJ 6= ;)

f

(1) find c 2 C such that jc \ (QI [QJ)j = 1 and jptr(c) \ (QI �QJ)j = 1

if succeed(Case-I), goto (A)

(2) find c 2 C such that jc \ (QI [QJ)j � 2, jptr(c) \ (QI �QJ)j = 1
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and jptr(c) \ (QI \QJ)j = 0

if succeed(Case-II), c c� ((QI [QJ)� ptr(c)) and goto (A)

(3) find c 2 C such that jc \ (QI �QJ)j � 1 and jptr(c) \ (QI [QJ)j = 0

if succeed(Case-III), select one element dn 2 (c \QI �QJ),

c c� ((QI [QJ)� fdng), ptr(c) ptr(c) [ fdng and goto (A)

(4) (1),(2) and (3) fail(Case-IV), select one element dn 2 (QI �QJ),

c D � ((QI [QJ)� fdng), C  C [ fcg and ptr(c) fdng

(A) if(jc \QI j = 1)

f

Q QJ and T  TJ

while(Q 6= ;)

f

(A1) find c0 2 C such that jc0 \Qj = 1 and jptr(c0) \Qj = 1

if succeed(Case-A1), goto (A0)

(A2) find c0 2 C such that jc0 \Qj � 2 and jptr(c0) \Qj = 1

if succeed(Case-A2), c0  c
0
� (Q� ptr(c0)) and goto (A0)

(A3) find c0 2 C such that jc0 \Qj � 1 and jptr(c0) \Qj = 0

if succeed(Case-A3), select one element dn 2 (c0 \Q),

c
0
 c

0
� (Q� fdng), ptr(c

0) ptr(c0) [ fdng and goto (A0)

(A4) (A1),(A2) and (A3) fail(Case-A4), sellect one element dn 2 Q,

c
0
 D � (Q� fdng), C  C [ fc

0
g and ptr(c0) fdng

(A0) T  T �
[

jc0\Djz j=1

fDjzg and Q 
[

Djz2T

Djz

g

TI  TI �
[

jc\Diw j=1

fDiwg and QI  
[

Diw2TI

Diw

g

(B) else

f

Q QI and T  TI

while(Q 6= ;)

f

(B1) find c0 2 C such that jc0 \Qj = 1 and jptr(c0) \Qj = 1

if succeed(Case-B1), goto (B0)

(B2) find c0 2 C such that jc0 \Qj � 2 and jptr(c0) \Qj = 1

if succeed(Case-B2), c0  c
0
� (Q� ptr(c0)) and goto (B0)

(B3) find c0 2 C such that jc0 \Qj � 1 and jptr(c0) \Qj = 0

if succeed(Case-B3), select one element dn 2 (c0 \Q),

c
0
 c

0
� (Q� fdng), ptr(c

0) ptr(c0) [ fdng and goto (B0)

(B4) (B1),(B2) and (B3) fail(Case-B4), sellect one element dn 2 Q

c
0
 D � (Q� fdng), C  C [ fc

0
g and ptr(c0) fdng

(B0) T  T �
[

jc0\Diwj=1

fDiwg and Q 
[

Diw2T

Diw

g
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TJ  TJ �
[

jc\Djz j=1

fDjzg and QJ  
[

Djz2TJ

Djz

g

g

g

return C and fptr(c)jc 2 Cg

As we can see it, the algorithm SFL-TED I contains some indeterminacies in the selec-

tions of c(Case-I,II,III), c0(Case-A1,A2,A3 or Case-B1,B2,B3), and dn(Case-IV, Case-A4

or Case-B4) among their plural candidates. Certain strategies for �xing these indetermi-

nacies to minimize the number of checks are remained as a future problem.

Now, we will discuss the computational complexity of SFL-TFD I. We assume that

union for two sets can be computed in O(1) and the computations in \while" loop can

be computed in O(N). The analysis for complexity of SFL-TFD I is as follows.

1. \construct" all Dml's: O(N
3)

2. \for" loop: at most
M(M�1)

2
iterations

3. computation of QI or QJ : O(N)

4. each \while" loop: at most N iterations

5. computations in \while" loop: O(N)

6. computations of T , Q, TI(TJ) or QI(QJ): O(N)

Totally, the computation time Tc of SFL-TFD I is O(M2
N

3).

4.3.2 A Design Example

We will consider a MPD graph illustrated in Fig. 4.4(a). From this MPD graph, D1 =

ffd11; d12; d21; d22; d31g; fd12gg, D2 = ffd12; d21; d22; d31g; fd22; d31gg, D3 = ffd31g; fd32g;

fd33; d41; d51; d52gg, D4 = ffd41gg and D5 = ffd41; d51g; fd52gg. According to SFL-TFD

I, we can construct checks for each pair of Di and Dj, 1 � i < j � 5. There are

various solutions which depend on the method for choosing dn for Case-IV(Case-A4 or

Case-B4) and �nding c(or c0) in each \find" state within \while" loops. An example for

constructing checks by SFL-TFD I is described as follows.

1. D1 and Dj, 2 � j � 5:

c1 = fd11g

c2 = fd11; d21; d32g

c3 = fd11; d12; d21; d22; d32; d33g

c4 = fd11; d21; d22; d32; d33g

c5 = fd11; d21; d22; d31; d32g

c6 = fd11; d12; d21; d22; d31; d32; d33; d41; d51; d52g

c7 = fd11; d12; d21; d22; d31; d32; d33; d41; d51; d52g
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2. D2 and Dj, 3 � j � 5:

c4 = fd11; d22; d33g

c6 = fd11; d41g

3. D3 and Dj, 4 � j � 5: no updated

4. D4 and Dj, 5 � j � 5:

c7 = fd11; d12; d21; d22; d31; d32; d33; d52g

c8 = fd11; d12; d21; d22; d31; d32; d33; d51; d52g

Where, the underlined data elements of each check cq, 1 � q � 8, denote that such data

elements are in ptr(cq). The result of SFL-TFD I by the above execution is illustrated

in Fig. 4.4(b)(Result I). The thick line between data elements and checks denotes that

the data element is in ptr(c) for a check c 2 C. On the other hand, if dn is chosen with

the maximum cardinality for Ddn = fDmljdn 2 Dml; 1 � m � M; 1 � l � jDmjg, then

the number of checks can be reduced in some cases. From the MPD graph of Fig. 4.4(a),

jDd11j = 1, jDd12j = 2, jDd21j = 2, jDd22j = 3, jDd31 j = 4, jDd32j = 1, jDd33j = 1, jDd41j = 3,

jDd51j = 2, jDd52j = 2. A method using jDdnj for constructing checks is represented in the

following procedure.

1. D1 and Dj, 2 � j � 5:

c1 = fd11; d41g

c2 = fd11; d31g

c3 = fd12g

c4 = fd11; d12; d21; d22; d31; d32; d33; d41; d51; d52g

2. D2 and Dj, 3 � j � 5:

c4 = fd11; d12; d21; d32; d33; d41; d51; d52g

c5 = fd11; d12; d21; d22; d32; d33; d41; d51; d52g

3. D3 and Dj, 4 � j � 5:

c5 = fd11; d12; d21; d22; d51g

c6 = fd11; d12; d21; d22; d31; d32g

c7 = fd11; d12; d21; d22; d31; d32; d33g

4. D4 and Dj, 5 � j � 5: no updated

The result of SFL-TFD I using jDdnj is illustrated in Fig. 4.4(c)(Result II). Unfortunately,

the number of checks for Result II can be reduced by merging checks. There are several

merging candidates: (1) c1 and c6(or c7), (2) c3 and c6(or c7), and so on. The result

merging c6 into c3 is illustrated in Fig. 4.4(d)(Result III).

For Result I, II and III, the syndrome for each error pattern induced by single-fault

patterns fp1g, fp2g, fp3g, fp4g, and fp5g is described in Fig. 4.5. Where X denotes that

the check is unpredictable due to (g,1) check(C3). Since the syndrome is di�erent for any

pair of fault patterns and at least one bit of the syndrome is 1 for any error pattern,

the ABFT system is single-fault locatable and detectable. This ABFT system is also

two-fault detectable from Corollary 4.1.
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(a) A MPD graph G(V,E)
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(b) Result I for SFL-TFD algorithm.

(c) Result II for SFL-TFD algorithm.

.

(d) Result III merging c6 c3 on Result II.and

Figure 4.4: Examples for SFL/TFD ABFT system: SID.
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syndrome III

1 1 X 1 1 0 0 0

0 0 1 0 0 0 0 0

0 X 1 1 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 1 1 0 1 1 1

0 1 0 0 1 0 0 0

0 0 1 1 1 1 1 1

0 1 1 1 0 1 1 1

0 1 1 1 1 1 1 1

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0
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1

1

Figure 4.5: Syndromes for Result I, Result II and Result III: SID.

4.3.3 Comparison with Conventional PDC Graph Model

Consider MPD graph of Fig. 4.4(a) and assume that each external data element is primary

output for a given algorithm. The corresponding conventional PD graph can be obtained

by connecting each data element which is a�ected by a processor to the processor as shown

in Fig. 4.6(a). In conventional PD graph, the set of error patterns induced by a faulty

processor consists of all available combinations of data elements which are connected to

the processor. Hence, there may be some redundant error patterns which do not appear in

real applications. For example, the set of error patterns for the single-fault pattern fp5g

is ffd41g; fd51g; fd52g; fd41; d51g; fd41; d52g; fd51; d52g; fd41; d51; d52gg in the conventional

PD graph and the one is ffd41; d51g; fd52g; fd41; d51; d52gg in the MPD graph model under

SID error model. There are four redundant error patterns fd41g, fd51g, fd41; d52g, and

fd51; d52g. On the other hand, the error pattern fd41g is also induced by the single-fault

patterns fp3g and fp4g in the conventional PD graph. Hence, there is no check which is

distinguishable between fp5g and fp3g=fp4g.

Suppose that we want to construct a set of checks such that the designated system
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(a) The conventional PD graph. (b) A SFD ABFT system for (a).

(c) A SFD ABFT system for Fig.4.3(a): SID.

Figure 4.6: The comparisons in designing single-fault detectable ABFT system: SID.

is single-fault detectable. For the case of the conventional PD graph(Fig. 4.6(a)), at

least six checks are required to detect single-fault(Fig. 4.6(b)). However, for the case

of the MPD graph(Fig. 4.4(a)), we can detect single-fault by three checks(Fig. 4.6(c)).

In fact, the set of error patterns obtained from the MPD graph model is a subset of the

one obtained from the conventional PD graph model, and in most cases that there exist

data dependencies between primary outputs after mapping DG for a given algorithm to

processors, the designated ABFT system based on MPD graph model under SID error

model can be implemented with fewer checks than the conventional PDC graph model.

On the other hand, there are various solutions depending on the mapping DG for a

given algorithm to a set of processors. The problem how to map DG to processors is

out of concern, and we assume that the mapping is given a priori. Also, there is no

general way that can examine about how the number of checks a�ects the e�ciency of

ABFT system because its cost strongly depends on the complexity of an implementation
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of checks. However, in general, there is a possibility that for (g,1) check using checksum

technique, which can be simply implemented, the desired ABFT system can be e�ciently

implemented by reducing the number of checks. The problem of how the number of checks

a�ects the e�ciency of the desired ABFT system is remained as a future work.

4.4 Conclusion

In this chapter, we proposed a checking scheme based on MPD graph model for single-fault

detectability and locatability in analyzing and designing ABFT systems on a simple error

occurrence/propagation model: SID Model. The checking scheme was de�ned on MPD

graph so that checks can be directly obtained from the MPD graph without construct-

ing error patterns. Also we gave a basic algorithm SFL-TFD I for constructing checks

of SFL/TFD ABFT system, and demonstrated a design example for SFL/TFD ABFT

system based on the basic algorithm. The algorithm contains some indeterminacies in the

selections of c, c0, and dn among their plural candidates. Certain strategies for �xing these

indeterminacies to minimize the number of checks are remained as a future problem. As

a result, the desired ABFT system based on MPD graph under the SID error model was

implemented with fewer checks compared to the conventional PDC graph model.
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Chapter 5

Checking Scheme for MID Model

5.1 Introduction

An analysis model based on MPD graph under SID error model was discussed in Chap-

ter 4, and it showed that the number of error patterns to be considered can be reduced

by utilizing data dependency between computation results. However, the error occur-

rence/propagation model: SID model employed in Chapter 4 is so simple that an erro-

neous input to a computation will always result in erroneous computation result regard-

less of the other inputs nor the status of the processor. But, in the practical situations,

a computation result with multiple erroneous inputs may possibly be error-free, and also

a faulty processor may possibly generate error-free computation result when some of in-

puts are erroneous. Therefore, we take into account of these possibilities and introduce a

sophisticated error occurrence/propagation model: MID model.

In this chapter, we will discuss a checking scheme based on MPD graph model for

single-fault detectability and locatability with a sophisticated error occurrence/propagation

model: MID model, and the checking scheme is de�ned on MPD graph so that checks

can be directly obtained from the MPD graph without constructing error patterns. A

basic algorithm for constructing checks in designing single-fault locatable/two-fault de-

tectable(SFL/TFD) ABFT systems is provided, and a design example for SFL/TFD

ABFT system is described to demonstrate the basic algorithm.

The rest of this chapter is organized as follows. A checking scheme for single-fault

detectability and locatability under MID error model, is discussed in Section 5.2. In

Section 5.3, a basic algorithm for constructing checks for SFL/TFD ABFT system and a

design example are shown. Section 5.4 is used for conclusion.

5.2 Single-Fault Detection and Location

Now, each node of data elements in MPD graph is named as dmi so that mi stands for

i-th adjacent data element of a processor pm. Following this notation, let Dmi be a set

of data elements which are reachable from dmi, and we call dmi as a source data of Dmi.

Dm is used for representing fDm1; Dm2; � � � ; DmjAdj(pm)jg, where Adj(pm) denotes the set

of data elements adjacent to the processor pm. Furthermore, let ~
Tmi be the subset of Dmi,

each element of which has two or more paths from dmi.
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Theorem 5.1 An ABFT system with a set of checks C is single-fault detectable if for each

m, 1 � m � M , there is a sequence of checks c1c2 � � � cq � � � cjAdj(pm)j and a permutation

�m = (I1; I2; � � � ; Iq; � � � ; IjAdj(pm)j) of integers from 1 up to jAdj(pm)j such that jcq \

(DmIq �
~
TmIq)j = 1 and jcq \ (

SjAdj(pm)j
l=q+1 DmIl [

~
TmIq)j = 0, 1 � q � jAdj(pm)j.

Proof: Note that any error pattern induced by the fault pattern fpmg contains at least

one of dm1; dm2; � � � ; dmjAdj(pm)j. Now, we let cq \ (DmIq �
~
TmIq) be f

~
dqg and also let d(q)

be the source data of DmIq . When pm is faulty, there must be the �rst erroneous source

data in the sequence of d(1)d(2) � � � d(jAdj(pm)j), and let it be d(k). Since d(1); d(2); � � � ; d(k�1)

are all error-free, the error pattern contains only elements in
SjAdj(pm)j
l=k DmIl . On the other

hand, since ck \ (
SjAdj(pm)j
l=k+1 DmIl [

~
TmIk) = ;, the output of ck is not a�ected by the status

of any element in
SjAdj(pm)j
l=k+1 DmIl nor any element in ~

TmIk . Together with the fact that

jck \ (DmIk �
~
TmIk)j = 1, the check ck certainly outputs 1. 2

Theorem 5.2 An ABFT system with a set of checks C is single-fault locatable if for

each pair of i and j, i 6= j, 1 � i � M , 1 � j � M , there is a sequence of all el-

ements in Di [ Dj, D
(1)
�� D

(2)
�� � � �D

(q)
�� � � �D

(jAdj(pi)j+jAdj(pj)j)
�� , where �� represents the sub-

script of each element in Di [ Dj , and a sequence of jAdj(pi)j + jAdj(pj)j checks,

c1c2 � � � cq � � � cjAdj(pi)j+jAdj(pj)j, such that jcq\(D
(q)
�� �

~
T

(q)
�� )j = 1 and jcq\(

SjAdj(pi)j+jAdj(pj)j
l=q+1 D

(l)
��

[ ~T
(q)
�� )j = 0, 1 � q � jAdj(pi)j+ jAdj(pj)j.

Proof: Let cq \ (D
(q)
�� �

~
T

(q)
�� ) be f ~dqg and also let d

(q)
�� be the source data of D

(q)
�� . Note

again that any error pattern induced by the fault pattern fpig(fpjg) contains at least

one of source data of Dir's, 1 � r � jAdj(pi)j(Djr's, 1 � r � jAdj(pj)j). When either

pi or pj is faulty, we can �nd the �rst such erroneous source data in the sequence of

d

(1)
�� d

(2)
�� � � � d

(jAdj(pi)j+jAdj(pj)j)
�� , and let it be d

(k)
�� . Similar to the proof of Theorem 1, the check

ck certainly outputs 1 whether d
(k)
�� is in Adj(pi) or in Adj(pj). Moreover, c1; c2; � � � ; ck�1

are all 0 because cq\ (
SjAdj(pi)j+jAdj(pj)j
l=q+1 D

(l)
�� ) = ;, 1 � q � k � 1 and error pattern contains

only elements in
SjAdj(pi)j+jAdj(pj)j
l=k D

(l)
�� . Since the source data ofDi�'s and those of Dj�'s are

located at di�erent positions in the sequence of d
(1)
�� d

(2)
�� � � � d

(jAdj(pi)j+jAdj(pj)j)
�� , the location

of the �rst 1 in the syndrome c1c2 � � � cjAdj(pi)j+jAdj(pj)j is di�erent for any pair of error

patterns, one is induced by the fault pattern fpig and the other is induced by fpjg. 2

Corollary 5.1 If an ABFT system with a set of checks C is single-fault locatable due to

Theorem 5.2, then it is also two-fault detectable.

Proof: With respect to the fault pattern fpi; pjg, every data element adjacent to either

pi or pj possibly becomes erroneous. Note that all error patterns induced by the fault

pattern fpi; pjg contains all error patterns induced by the fault pattern fpig and those

induced by fpjg. If we modify the MPD graph so that the processor nodes pi and pj are

merged into a single node p�, the above situation is identical to the single-fault of the

processor p�. In this model, D� = Di [Dj = fD�1; D�2; � � � ; D�q; � � � ; D�(jAdj(pi)j+jAdj(pj)j)g.

From Theorem 5.2, since there is a sequence of checks c1c2 � � � cq � � � cjAdj(pi)j+jAdj(pj)j and a

permutation �� = (1; 2; � � � ; q; � � � ; jAdj(pi)j + jAdj(pj)j) such that jcq \ (D�q �
~
T�q)j = 1

and jcq \ (
SjAdj(pi)j+jAdj(pj)j
l=q+1 D�l [

~
T�q)j = 0, it satis�es Theorem 1 and so can detect fault

patterns fpig, fpjg and fpi; pjg, i 6= j, 1 � i � M , 1 � j � M . 2
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In the next section, we will discuss the construction of checks for single-fault location/two-

fault detection based on Theorem 5.2.

5.3 Checks for SFL/TFD

5.3.1 A Basic Algorithm SFL-TFD II

It is interesting to note that, for any acyclic MPD graph, we can always construct a set

of trivial checks CT such that each check in CT contains only one data element and every

data element is contained in one check; that is, CT = ffd11g; fd12g; � � � ; fdM jAdj(pm)jgg.

Lemma 5.1 For any acyclic MPD graph, the ABFT system with its set of trivial checks

CT is single-fault locatable.

Proof: Since the MPD graph is acyclic, data elements in MPD graph can be topologically

sorted. For any two processors, we can extract their adjacent data elements from this

sorting result with preserving their order. As a result, the corresponding sequence of

trivial checks satis�es the condition given in Theorem 5.2. 2

Now, we introduce an algorithm to construct checks for SFL/TFD ABFT system. Let

c be a check satisfying Theorem 5.2. Algorithm 5.1 �nds a set of checks C and a set of

data elements ptr(c) which have to be checked by check c 2 C, and it always returns C

and ptr(c) if there exits a set of checks given by Theorem 5.2.

According to the algorithm SFL-TFD II, for a pair of Di and Dj , 1 � i < j �M , the

elements in Di[Dj are topologically sorted into D(1)
� � �D

(l)
� � �D

(jAdj(pi)j+jAdj(pj)j) so that

D
(l)
� ([

jAdj(pi)j+jAdj(pj)j
k=l+1 D

(k)) is not empty. And then for Q(= [
jAdj(pi)j+jAdj(pj)j
k=l D

(k)), 1 �

l � jAdj(pi)j+ jAdj(pj)j, there are four cases to construct a check c satisfying Theorem

5.2:

(1) Case-I: exactly one data element of ptr(c) for c 2 C such jc\Qj = 1 is in D(l)
� ~
T

(l).

(2) Case-II: exactly one data element of ptr(c) for c 2 C such that jc \ Qj � 2 is in

D
(l)
� ~
T

(l), and any data element of ptr(c) is not in Q� (D(l)
� ~
T
(l)).

(3) Case-III: any data element of ptr(c) for c 2 C such that jc\ (D(l)
� ~
T

(l))j � 1 is not

in Q.

(4) Case-IV: for any check c 2 C, any data element of c is not in Q, at least two data

elements of ptr(c) are in D
(l)
� ~
T
(l), or at least one data element of ptr(c) is in

Q� (D(l)
� ~
T

(l)).

Algorithm 5.1

SFL-TFD II

input : MPD graph (V; E)

construct Dml, 1 � l � jAdj(pm)j, 1 � m � M

construct
~
Tml, 1 � l � jAdj(pm)j, 1 � m � M

C  ;

for 1 � i < j � M

f

sort Di1; � � � ; DijAdj(pi)j; Dj1; � � � ; DjjAdj(pj)j into D
(1)
D

(2)
� � �D

(jAdj(pi)j+jAdj(pj)j)
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so that

������
D

(l)
�

0
@
jAdj(pi)j+jAdj(pj)j[

k=l+1

D
(k)

1
A
������
� 1

for l = 1 to jAdj(pi)j+ jAdj(pj)j

f

Q 

jAdj(pi)j+jAdj(pj)j[

k=l

D
(k)

(1) find c 2 C such that jc \Qj = 1 and jptr(c) \ (D(l)
� ~
T
(l))j = 1

if succeed(Case-I), goto next iteration

(2) find c 2 C such that jc \Qj � 2, jptr(c) \ (D(l)
� ~
T
(l))j = 1

and jptr(c) \ (Q� (D(l)
� ~
T
(l)))j = 0

if succeed(Case-II), c c� (Q� ptr(c)) and goto next iteration

(3) find c 2 C such that jc \ (D(l)
� ~
T
(l))j � 1 and jptr(c) \Qj = 0

if succeed(Case-III), select one element dn 2 (c \ (D(l)
� ~
T
(l)))

c c� (Q� fdng), ptr(c) ptr(c) [ fdng and goto next iteration

(4) (1),(2) and (3) fail(Case-IV), select one element dn 2 (D(l)
� ~
T
(l)),

c D � (Q� fdng), ptr(c) fdng and C  C [ fcg

g

g

return C and fptr(c)jc 2 Cg

As a design issue, the number of checks should be reduced. The algorithm SFL-TFD

II shown in Algorithm 5.1 is a basic algorithm to construct more general set of checks

rather than the set of trivial checks for SFL/TFD ABFT systems. Algorithm SFL-TFD

II �nally returns the set of checks C and another set of checks fptr(c)jc 2 Cg, where

c 2 C is a maximal check(which may include unnecessary data elements) and ptr(c) � C

is a minimal check(none of whose elements can be excluded). As we can see it, SFL-TFD

II contains some indeterminacies in the sorting of D��'s and the selections of c(Case-I, II,

III) and dn(Case-III,IV) among their plural candidates. Certain strategies for �xing these

indeterminacies toward check minimization are remained as a future problem.

Now, we will evaluate the computational complexity Tc of SFL-TFD II. The compu-

tation time of SFL-TFD II is analyzed as follows.

(1) \construct" all Dml's: O(N
3)

(2) \construct" all ~Tml's: O(N
3)

(3) the �rst \for" loop: M(M�1)
2

iterations

(4) \sort"(topological sort) operation: O(N 2)

(5) the second \for" loop: at most N iterations

(6) computations in the second \for" loop: O(N2)

Totally, Tc = O(M2
N

3).

5.3.2 A Design Example

We will consider a MPD graph shown in Fig. 5.1(a). The set of trivial checks for this

system is given as follows,
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c1 = fd11g

c2 = fd12g

c3 = fd13g

c4 = fd21g

c5 = fd31g

c6 = fd32g

c7 = fd41g

c8 = fd42g

c9 = fd43g

c10 = fd51g

Figure 5.1(b) illustrates the resultant ABFT system(ABFT system I), where a thick line

between data element and a check denotes that data element at its one end is contained

in a check at the other end.

In the following, we will show a SFL/TFD ABFT system(ABFT system II) obtained

by using Algorithm SFL-TFD II.

From the MPD graph in Fig. 5.1(a), D1 = ffd11; d32g; fd12g; fd13; d12; d21; d31gg,

D2 = ffd21; d31gg, D3 = ffd31g; fd32gg, D4 = ffd41; d32; d51g; fd42; d43; d21; d31g; fd43gg,

D5 = ffd51gg and ~
T13 = fd31g. As we have pointed out it in the previous section,

Algorithm SFL-TFD II contains some indeterminacies. We introduce a simple heuristic

in the selection of dn from c \ (D(l)
� ~
T
(l)) or (D(l)

� ~
T
(l)). That is, for each candidate

d��, we count the number of Dmi's(1 � m � M , 1 � i � jAdj(pm)j) which contain d��,

and d�� which gives the maximum count is selected as dn in Case-III and Case-IV. This

heuristic is due to the expectation that a check containing d�� which is included in many

Dmi's may possibly be re-used for distinguishing various pairs of fault patterns. The �nal

result of SFL-TFD II using dn selection heuristic is shown in the following,

1. D1 and Dj, 2 � j � 5:

c1 = fd13g

c2 = fd13; d32; d41; d42g

c3 = fd13; d31g

c4 = fd11; d12; d13; d21; d41; d42g

c5 = fd11; d13; d21; d41; d42; d43; d51g

c6 = fd13; d21; d31; d42; d51g

2. D2 and Dj, 3 � j � 5:

c4 = fd11; d12; d13; d42g

c5 = fd11; d13; d21; d41; d42; d43; d51g

c6 = fd13; d42; d51g

3. D3 and Dj, 4 � j � 5: no updated

4. D4 and Dj, 5 � j � 5:

c2 = fd13; d32; d42g

c5 = fd11; d13; d21; d41; d42; d43g
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Figure 5.1: Examples for SFL/TFD ABFT system: MID.
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fault patterns error patterns syndrome
c1c 3c 4c

{ p1 }

{ p2 }

{ p3 }

2 c5c6

{d }

{d11, d }

{d21, d31}

{d31}

{d32}

, d32}{d31

{ p4 }

{ p5 }

32

{ d12 , d ,d 21 d31}

{d12}

{d12, d 21, d }
13,

13
, d12, d3211

{d11, d12, d13, d21, d32}

{d13, d21, d31}

{d11, d13, d21, d32}

{d13, d21}

{d11, d13, d21, d31, d32}

{d11, d12, d13, d21, d31, d32}

{d51}

{d21, d31, d42, d43}

{d43}

{d21, d31, d32, d41, d42, d43, d51}

{d32, d41, d43, d51}

{d21, d31, d42}

{d21, d31, d32, d41, d42, d51}

{d32, d41, d51}

syndrome
c1c 3c 4c2 c5c6c7c8

11 0 0 0 0 0 1 0 0 1 00

0 0 0 1 0 0

1 0 1 1 1 0

1 0 0 1 1 0

0 1 0 1 1 0

1 1 1 1 X0

1 1 0 1 X0

1 0 1 0 1 0

1 0 0 0 1 0

1 1 1 0 X0

1 1 0 0 X0

0 0 1 0 1 0

0 0 1 0 00

0 1 0 0 0 0

0 1 1 0 0 0

0 1 0 0 0 1

0 0 1 1 X1

0 0 0 0 1 0

0 1 1 1 1 1

0 1 0 0 1 1

0 0 1 1 0 0

0 1 1 1 1 1

0 0 0 0 0 1

I II
c9c10

0 0 0

0 1 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0

1 1 0 0 0 1 0 0 0 0

1 1 1 1 1 1 0 0 0 0

1 1 1 1 0 1 0 0 0 0

0 0 1 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

1 0 1 1 1 1 0 0 0 0

1 0 1 11 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 1 0 0 1

0 0 0 1 1 0 0 1 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 1 1 1 1 1 1 1

0 0 0 0 0 1 1 0 1 1

0 0 0 1 1 0 0 1 0 0
0 0 0 1 1 1 1 1 0 1

0 0 0 0 0 0 0 0 0 1

Figure 5.2: Syndromes for ABFT system I and II: MID.

In the above list, data elements with underlines in each check cq are the elements in

ptr(cq). The resultant ABFT system is illustrated in Fig. 5.1(c), where fptr(cq)j1 � q �

6g is used as a complete set of checks.

The syndrome for each error pattern induced by single-fault patterns fp1g, fp2g, fp3g,

fp4g, and fp5g in ABFT system I and II of Fig. 5.1 is shown in syndrome I and syndrome

II, respectively, of Fig. 5.2. In this �gure, \X" denotes that the check is unpredictable due

to (g; 1) check(C3). Since the syndrome is di�erent for any pair of fault patterns and at

least one bit of the syndrome is 1 for any error pattern, both ABFT systems are certainly

single-fault locatable and detectable. This ABFT system is also two-fault detectable from

Corollary 5.1.

5.3.3 Comparison with Conventional PDC Graph Model

Consider MPD graph of Fig. 5.1(a). The corresponding conventional PD graph can be

obtained by connecting each data element which is a�ected by a processor to the processor

as shown in Fig. 5.3(a). In conventional PD graph, the set of error patterns induced by a
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(a) The conventional PD graph. (b) A SFD ABFT system for (a).

(c) A SFD ABFT system for Fig.5.1(a): SID. (d) A SFD ABFT system for Fig.5.1(a): MID.

Figure 5.3: The comparisons in designing single-fault detectable ABFT system: MID.

faulty processor consists of all available combinations of data elements which are connected

to the processor. Hence, there may be some redundant error patterns which do not appear

in real applications. For example, the set of error patterns for the single-fault pattern

fp2g is ffd21g; fd31g; fd21; d31gg in the conventional PD graph of Fig. 5.3(a) and the

one is ffd21; d31gg in MPD graph of Fig. 5.1(a) under MID error model. There are two

redundant error patterns fd21g and fd31g. On the other hand, the error pattern fd31g is

also induced by the single-fault patterns fp1g, fp3g and fp4g in the conventional PD graph.

Hence, there is no check which is distinguishable between fp2g and fp1g/fp3g/fp4g.

Suppose that we want to construct a set of checks such that the designated system is

single-fault detectable. For the case of the conventional PD graph(Fig. 5.3(a)), at least

seven checks are required to detect single-fault(Fig. 5.3(b)). However, for the case of the

MPD graph(Fig. 5.1(a)), we can detect single-fault to three checks and four checks under
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SID error model(Fig. 5.3(c)) and MID error model(Fig. 5.3(d)), respectively. In fact, the

set of error patterns to be considered under the MID model is a superset of the one under

the SID model, but still a subset of the one under the conventional PD graph model, and

in most cases that there exist data dependencies between primary outputs after mapping

DG for a given algorithm to processors, the designated ABFT system based on MPD

graph model under both SID error model and MID error model can be implemented

with fewer checks than the conventional PDC graph model. Of course, the decrease of

the number of checks does not always guarantee higher e�ciency of the desired ABFT

system. To design a well optimized ABFT system, we need to design checks with regarding

hardware/software implementation of each check. However, for the case of a simple (g; 1)

check such as checksum technique, we can presume such tendency that fewer number of

checks and smaller g of each check contribute to lower overhead. The examination of

how the number of checks a�ects the e�ciency of the desired ABFT system in a practical

situation is remained as a future work.

5.4 Conclusion

In this chapter, we proposed a checking scheme for single-fault detectability and locatabil-

ity on a sophisticated error occurrence/propagation model: MID model. Also, we gave a

basic algorithm SFL-TFD II for constructing checks, and demonstrated a design example

for SFL/TFD ABFT system based on the algorithm. The algorithm contains some inde-

terminacies in the sorting of D��'s and the selections of c and dn. Certain strategies for

�xing these indeterminacies to minimize the number of checks are remained as a future

problem. As a result, while the complexity and the number of checks tend to increase

compared to SID error model in compensation for improving the accuracy of error prop-

agation model, the e�ectiveness of the MPD graph model under the MID error model

holds good compared to the conventional PD graph model.
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Chapter 6

A Strategy for Mapping Checks to

System Processors

6.1 Introduction

Most earlier work in the design of ABFT systems assumes that the operations for check-

ing are performed by processors which are either fault-free or have some self-checking

property. However, the checking operations are usually a part of an ABFT system and

are likely to be performed on the system processors. When the checking operations on

the system processors fail, such checks become unreliable. Therefore, the accuracy of

the computations is dependent on the reliability of the processors performing checking

operations as well. Banerjee and Abraham [4] introduced check evaluating nodes in their

graph model and showed how to analyze such a system for fault tolerance. Also, Yajnik

and Jha [7] used an extended graph-theoretic ABFT model to consider the processors for

computing checks to be a part of the ABFT system and allowed faults in these processors.

The conventional fault tolerant schemes for VLSI array architectures have been mainly

concentrated on CED schemes, and some e�orts have been made for concurrent error

correction [6], [10], [11], [12]. However, fault location scheme has not received much

attention. To solve the problem of locating faults on VLSI array architectures, more

complex schemes considering with both time redundancy and hardware redundancy, are

required.

In this chapter, the ABFT system is extended by introducing some redundancies to be

compared to the sum of data elements in checks and mapping such checks to the system

processors such a way that the system still maintains the designated fault tolerance. And

we present a checking scheme for synthesizing single-fault locatable FIR �lter based on

the extended modi�ed processor-data-check(EMPDC) graph model. As a result, a fault

tolerant FIR �lter is implemented on systolic array.

The rest of this chapter is organized as follows. In Section 6.2, the single-fault de-

tectability and locatability of ABFT system based on EMPDC graph model is represented.

A method for designing single-fault locatable FIR �lter is discussed in Section 6.3. Finally,

Section 6.4 is used for conclusion.
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Figure 6.1: An example for EMPDC graph.

6.2 EMPDC Graph Model

In an EMPDC graph model to be considered, all the processor nodes, all the data nodes,

and all the check nodes form the set P , D, and C, respectively. The EMPDC graph has

�ve types of nodes.

1. Primary processor nodes which perform nominal computations or checking op-

erations.

2. Primary data nodes which are results of the nominal computations.

3. Check nodes which represent checks.

4. Redundant data nodes which represent data elements to be compared to the

results of the nominal computations.

5. Redundant processor nodes which perform redundant computations to produce

redundant data elements and/or perform checking operations.

In general, the processors for computing checks can be of either the primary processor

node type or the redundant processor node type. In EMPDC graph, there is a directed

edge from the processor pi 2 P to the data element dj 2 D if pi produces dj. Similarly,

there is a directed edge from pi to the check ck 2 C if ck is implemented on pi. Also, there

is an edge from dj to ck if dj is checked by ck.

For a given MPD graph(Fig. 6.1(a)), a modi�ed processor-data-check(MPDC) graph

for SFL/TFD under the checking scheme proposed in Chapter 4 is shown in Fig. 6.1(b).
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And an EMPDC graph(Fig. 6.1(c)) is constructed by introducing redundant data ele-

ments and mapping checks on either the primary processors or the redundant processors.

According to the EMPDC graph, processors p1; p2; p3; p4 perform nominal computations

to produce primary data elements d11; d12; d21; d31; d41, whereas processors p5; p6; p7; p8; p9
perform redundant computations to produce redundant data elements d51; d61; d71; d81; d91
to be compared to the sum of primary data elements in each check. In this example, d51
is the redundant data element to be compared to d11 in checking operation of c3, d61 is to

be compared to d21 in checking operation of c2, and so on. Also, checks c1; c2; c3; c4; c5 are

mapped to processors p5; p8; p6; p9; p4, respectively, and such checks guarantee that the

ABFT system is totally single-fault locatable.

Throughout this chapter, we use SID model as error occurrence/propagation model.

Also, we assume that the faults in only the checking operations to be computed in the

processors pi and pj are not necessary to be distinguished to other faults because the

results for original computations are correct, but such faults have to be detected.

In the following, Rch(dml) denotes the set of data elements reachable from the data

element dml. Wmx is one of all available unions of elements in Dm. dx denotes the

redundant data element to be compared to the sum of primary data elements in a check

cx. And ~cx denotes a variable regarded as adjacent element of a processor computing

the checking operations for cx. Also, M
0 denotes the number of processors(both primary

processors and redundant processors), M 0
� M .

Lemma 6.1 An extended ABFT system is single-fault detectable if for any Wix which is

one of unions of elements in Di, 1 � i �M , there is a check cx such that

1. jcx \Wixj = 1

2. jcx \ (Rch(dx)� fdxg)j = 0

3. jfdx; ~cxg \ Adj(pi)j = 0

4. jfdx; ~cxg \ Adj(pm)j � 1, 1 � m �M
0

Proof: Note that Wix is one of all error patterns which can be occurred when a processor

pi fails. Thus, all available unions of elements in Di become all error patterns induced by

the faulty processor pi. By Condition 1, the check cx certainly outputs \1" for the x-th one

of error patterns induced by the fault pattern fpig. Similarly, by Condition 2, cx certainly

outputs \1" when dx is erroneous. By Condition 3 and Condition 4, the reliability of

checking operation for cx is guaranteed for the error pattern Wix when the processor pi
fails and for the error patterns including dx when the processor pm fails, respectively. 2

Lemma 6.2 An extended ABFT system is single-fault locatable if for any pair of Wix and

Wjy which are one of unions of elements in Di and Dj, i 6= j, 1 � i � M , 1 � j � M ,

respectively, there is a set of checks fcx; cy; cu; cvg such that

1. cx :

1a. jcx \ (Wix �Wjy)j = 1

1b. jcx \ (Wix \Wjy)j = 0

1c. jcx \ (Rch(dx)� fdxg)j = 0

1d. jfdx; ~cxg \ (Adj(pi) [ Adj(pj))j = 0
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1f . jfdx; ~cxg \ Adj(pm)j � 1, 1 � m � M
0

1f1. if
8
cr : fcrjcr 6= cxg, jcr \ Rch(dx)j 6= 1

1f2. if
8
cr : fcrjcr 6= cx; jcr \ Rch(dx)j = 1g, jf~crg \ Adj(pm)j = 1 or

jcr \ (Rch(dx) \Rch(Adj(pm0)))j � 1, m0
6= m, 1 � m

0
� M

0

2. for jcx \Wixj = 1

2a. cy :

2a1. jcy \Wjyj = 1

2a2. jcy \ (Rch(dy)� fdyg)j = 0

2a3. jfdy; ~cyg \ Adj(pj)j = 0

2a4. jfdy; ~cyg \ Adj(pm)j � 1, 1 � m �M
0

2a4-1. if
8
cr : fcrjcr 6= cyg, jcr \ Rch(dy)j 6= 1

2a4-2. if
8
cr : fcrjcr 6= cy; jcr \ Rch(dy)j = 1g, jf~crg \ Adj(pm)j = 1 or

jcr \ (Rch(dy) \Rch(Adj(pm0)))j � 1, m0
6= m, 1 � m

0
� M

0

2b. cu :

2b1. jcu \ (Wix � Rch(dx))j = 1

2b2. jcu \ (Wix \ Rch(dx))j = 0

2b3. jcu \ (Rch(du)� fdug)j = 0

2b4. jfdu; ~cug \ (Adj(pi) [Adj(px) [ Adj(pcx))j = 0

2b5. jfdu; ~cug \Adj(pm)j � 1, 1 � m �M
0

2b5-1. if
8
cr : fcrjcr 6= cug, jcr \Rch(du)j 6= 1

2b5-2. if
8
cr : fcrjcr 6= cu; jcr \ Rch(du)j = 1g, jf~crg \ Adj(pm)j = 1 or

jcr \ (Rch(du) \ Rch(Adj(pm0)))j � 1, m0
6= m, 1 � m

0
�M

0

2c. cv :

2c1. jcv \ (Wjy � Rch(dy))j = 1

2c2. jcv \ (Wjy \ Rch(dy))j = 0

2c3. jcv \ (Rch(dv)� fdvg)j = 0

2c4. jfdv; ~cvg \ (Adj(pj) [Adj(py) [ Adj(pcy))j = 0

2c5. jfdv; ~cvg \ Adj(pm)j � 1, 1 � m � M
0

2c5-1 if
8
cr : fcrjcr 6= cvg, jcr \ Rch(dv)j 6= 1

2c5-2 if
8
cr : fcrjcr 6= cv; jcr \Rch(dv)j = 1g, jf~crg \ Adj(pm)j = 1 or

jcr \ (Rch(dv) \ Rch(Adj(pm0)))j � 1, m0
6= m, 1 � m

0
�M

0

3. for jcx \Wjyj = 1

3a. cy :

3a1. jcy \Wixj = 1

3a2. jcy \ (Rch(dy)� fdyg)j = 0

3a3. jfdy; ~cyg \ Adj(pi)j = 0

3a4. jfdy; ~cyg \ Adj(pm)j � 1, 1 � m �M
0

3a4-1. if
8
cr : fcrjcr 6= cyg, jcr \ Rch(dy)j 6= 1
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3a4-1. if
8
cr : fcrjcr 6= cy; jcr \ Rch(dy)j = 1g, jf~crg \ Adj(pm)j = 1 or

jcr \ (Rch(dy) \Rch(Adj(pm0)))j � 1, m0
6= m, 1 � m

0
� M

0

3b. cu :

3b1. jcu \ (Wjy � Rch(dx))j = 1

3b2. jcu \ (Wjy \ Rch(dx))j = 0

3b3. jcu \ (Rch(du)� fdug)j = 0

3b4. jfdu; ~cug \ (Adj(pj) [ Adj(px) [ Adj(pcx))j = 0

3b5. jfdu; ~cug \Adj(pm)j � 1, 1 � m �M
0

3b5-1. if
8
cr : fcrjcr 6= cug, jcr \Rch(du)j 6= 1

3b5-2. if
8
cr : fcrjcr 6= cu; jcr \ Rch(du)j = 1g, jf~crg \ Adj(pm)j = 1 or

jcr \ (Rch(du) \ Rch(Adj(pm0)))j � 1, m0
6= m, 1 � m

0
�M

0

3c. cv :

3c1. jcv \ (Wix � Rch(dy))j = 1

3c2. jcv \ (Wix \ Rch(dy))j = 0

3c3. jcv \ (Rch(dv)� fdvg)j = 0

3c4. jfdv; ~cvg \ (Adj(pi) [ Adj(py) [Adj(pcy))j = 0

3c5. jfdv; ~cvg \ Adj(pm)j � 1, 1 � m � M
0

3c5-1. if
8
cr : fcrjcr 6= cvg, jcr \ Rch(dv)j 6= 1

3c5-1. if
8
cr : fcrjcr 6= cv; jcr \Rch(dv)j = 1g, jf~crg \ Adj(pm)j = 1 or

jcr \ (Rch(dv) \ Rch(Adj(pm0)))j � 1, m0
6= m, 1 � m

0
�M

0

4. for any pair s(one of x and u) and s0(one of y and v),

jfds; ds0 ; ~cs; ~cs0g \ (Adj(pm) [ Adj(pm0))j � 3, m0
6= m, 1 � m � M

0
, 1 � m

0
� M

0

Proof: Note that the unions Wix and Wjy are one of error patterns induced by fault

patterns fpig and fpjg, respectively. We assume that the faults in only the checking

operations to be computed in the processors pi and pj are not necessary to be distinguished

to other faults because the results for original computations are correct. By Condition

1, the check cx detects one error pattern Wix(Wjy), and also distinguishes between Wix

and Wjy because cx certainly outputs \1" for exactly one of such two error patterns.

Furthermore, the reliability for the checking operation of cx is guaranteed by Condition

1 and Condition 4. By Condition 2a(Condition 3a) and Condition 4, cy detects the

other error patternWjy(Wix), and the reliability for the checking operation is guaranteed.

Also, by Condition 2b(Condition 3b) and Condition 4, cu distinguishes between Wix and

Rch(dx), and the the reliability for the checking operation is guaranteed. Similarly, by

Condition 2c(Condition 3c) and Condition 4, cv distinguishes between Wiy and Rch(dy),

and the the reliability for the checking operation is guaranteed. 2

As an example, let us consider the EMPDC graph illustrated in Fig. 6.1(c). For p1
and p2, D1 = ffd11g; fd12; d21; d31gg, D2 = ffd21gg. If four checks cx, cy, cu and cv, which

satisfy Lemma 6.2, are de�ned as follows,

1. D11 = fd11g and D21 = fd21g:

cx = c3, dx = d51, px = p5, and pcx = p6

cy = c2, dy = d61, py = p6, and pcy = p8

cu = c4, du = d81, pu = p8, and pcu = p9

cv = c5, dv = d91, pv = p9, and pcv = p4
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2. D12 = fd12; d21; d31g and D21 = fd21g:

cx = c1, dx = d71, px = p7, and pcx = p5

cy = c2, dy = d61, py = p6, and pcy = p8

cu = c5, du = d91, pu = p9, and pcu = p4

cv = c5, dv = d91, pv = p9, and pcv = p4

as a result, any pair of error patterns, one is induced by p1 and the other is induced by

p2, can be distinguished by each other, and each of error patterns induced by p1 andp2 is

detected. Since there are such four checks cx, cy, cu and cv, for any pair of fault patterns,

the ABFT system is single-fault locatable.

In the next section, we will discuss a method for constructing checks for single-fault

locatable ABFT systems based on Lemma 6.2 by using the EMPDC graph model.

6.3 A Basic Algorithm MAP-EMPDC

Now, we introduce a basic algorithm to construct checks and redundant data elements for

single-fault locating ABFT system, and to map such checks and redundant data elements

to the system processors. Let cx; cy; cu and cv be checks satisfying Lemma 6.2. Algorithm

6.1 �nds a set of checks C and a set of data elements ptr(cs) which have to be checked

by cs 2 C. And the algorithm selects(or adds) a processor pk computing redundant

data element ds to be compared to the sum of the primary data elements in cs 2 C and

a processor pl computing the checking operation ~cs for cs 2 C. Finally, the algorithm

always return P
0(� P ), D0(� D), C and ptr(cs) if there exists a set of checks given by

Lemma 6.2. The outline of the algorithm for a pair of QI and QJ is illustrated in Fig.

6.2.

For a pair of QI and QJ , the algorithm MAP-EMPDC consists of four construction

steps: (1) cx(XMAP), (2) cu(UMAP), (3) cy(YMAP), (4) cv(VMAP). The subroutine

XMAP �nds cx 2 C given by Condition 1 of Lemma 6.2 by using the subroutine CON-

STRUCT. If cx satisfying the condition is not in C, cx is newly added by the subroutine

ADD. And then the processor pk computing the redundant data element dx and the pro-

cessor pl computing the checking operation ~cx for cx are properly selected or newly added

by the subroutine ADDP. Similarly, the subroutines YMAP, UMAP and VMAP return

cs, ds, pk and pl which satisfy the conditions 2a(or 3a), 2b(or 3b), 2c(or 3c) and 4 of

Lemma 6.2. If the redundant data element du(dv) and the checking operation ~cu(~cv) in

the subroutine UMAP(VMAP) are computed in the same processor, then to guarantee

the reliability of cu(cv), cu(cv) has to be examined whether cr 6= cu(cv) given by the con-

dition 2b5(2c5)(or 2b5(2c5)) exists or not. It is executed by the subroutine RMAP. The

subroutine RMAP returns cr, dr, pr and pr0 , and is repeated until both ps and pr are not

in P to limit the hardware resource to at most three times. If jfps; prg \ P j = 0, the

checking operation ~cr for cr is mapped such that jf~crg \ (Adj(ps) \ Adj(pr))j = 0.

On the other hand, the \while" loop in main routine MAP-EMPDC is executed until

either QI or QJ is empty set. In the next iteration, if cx in QI , then QI is only updated.

And if cx in QJ , then QJ is only updated. Also, the \while" loop in the subroutine QMAP

is executed until Q is empty set.

Algorithm 6.1

MAP-EMPDC
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Construct

T I ,TJ ,Q I ,QJ

YES
NO

XMAP: construct c x

|cx QI | = 1 ?

YES
NO

QMAP(Q  )QMAP(Q  )I JConstruct Qu

UMAP: construct c u

Construct  T, Q

Q=    ?
YES

NO

YMAP: construct c y

Construct  Q v

VMAP: construct c v

Update  T  , QI I

Update  T, Q

END

QI= QJ = ?or

Figure 6.2: Flow diagram for a pair of QI and QJ in Algorithm 6.1.

input : MPD graph G(V; E)

M
0
 M , P 0

 P , D0
 D, and C  ;

for 1 � i < j � M

f

TI  Di and TJ  Dj

QI  

jTI j[
w=1

Diw and QJ  

jTJ j[
z=1

Djz

while(QI 6= ; & QJ 6= ;)

f

XMAP(cx; QI ; QJ)

if(jcx \QI j = 1), QMAP(QI)

if(jcx \QJ j = 1), QMAP(QJ)
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g

g

return P
0, D0, C and fptr(c)jc 2 Cg

QMAP(Q�)

f

Qu  
\

jcx\D�wj=1

D�w

UMAP(cu; Qu; Rch(dx))

T  T�� and Q Q��

while(Q 6= ;)

f

YMAP(cy; Q; ;)

Qv  
\

jcy\D��z j=1

D��z

VMAP(cv; Qv; Rch(dy))

T  T �
[

jcy\D��z j=1

fD��zg and Q 
[

D��z2T

D��z

g

T�  T� �
[

jcx\D�w j=1

fD�wg and Q�  
[

D�w2T�

D�w

return

g

XMAP(cx; QI ; QJ)

f

find cx 2 C such that jfdx; ~cxg \ (Adj(pi) [ Adj(pj))j = 0, jcx \ (QI [QJ)j = 1,

jptr(cx) \ (QI �QJ)j = 1 and jcx \ (Rch(dx)� fdxg)j = 0

if fail, find cx 2 C such that jfdx; ~cxg \ (Adj(pi) [ Adj(pj))j = 0 and

jcx \ (Rch(dx)� fdxg)j = 0

if succeed, CONSTRUCT(cx; QI ; QJ)

if fail, ADD(cx; dx; QI ; QJ)

select pk, dx 2 Adj(pk) such that jfdxg \ (Adj(pi) [ Adj(pj))j = 0

if jfpkg \ P
0
j = 0, ADDP(pk)

Adj(pk) Adj(pk) [ fdxg

select pl, ~cx 2 Adj(pl) such that jf~cxg \ (Adj(pi) [ Adj(pj))j = 0

if jfplg \ P
0
j = 0, ADDP(pl)

Adj(pl) Adj(pl) [ f~cxg

return

g

YMAP(cy; Q; ;)

f

find cy 2 C such that jfdy; ~cyg \ Adj(p��)j = 0,

jfdx; dy; ~cx; ~cyg \ (Adj(pm) [ Adj(pm0))j � 3,

jfdu; dy; ~cu; ~cyg \ (Adj(pm) [ Adj(pm0))j � 3,

m 6= m
0, 1 � m �M

0, 1 � m
0
� M

0,

jcy\Qj = 1, jptr(cy)\Qj = 1 and jcy\ (Rch(dy)� fdyg)j = 0
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if fail, find cy 2 C such that jfdy; ~cyg \ Adj(p��)j = 0, jcy \ (Rch(dy)� fdyg)j = 0

jfdx; dy; ~cx; ~cyg \ (Adj(pm) [ Adj(pm0))j � 3 and

jfdu; dy; ~cu; ~cyg \ (Adj(pm) [ Adj(pm0))j � 3,

m 6= m
0, 1 � m �M

0, 1 � m
0
�M

0

if succeed, CONSTRUCT(cy; Q; ;)

if fail, ADD(cy; dy; Q; ;)

select pk, dy 2 Adj(pk) such that jfdyg \ Adj(p��)j = 0

if jfpkg \ P
0
j = 0, ADDP(pk)

Adj(pk) Adj(pk) [ fdyg

select pl, ~cy 2 Adj(pl) such that jf~cyg \ Adj(p��)j = 0 and

jf~cyg \ (Adj(pm) [Adj(pm0))j = 0 if

jfdx; dy; ~cxg\ (Adj(pm) [ Adj(pm0))j = 3 or

jfdu; dy; ~cug \ (Adj(pm) [ Adj(pm0))j = 3,

m 6= m
0, 1 � m �M

0, 1 � m
0
� M

0

if jfplg \ P
0
j = 0, ADDP(pl)

Adj(pl) Adj(pl) [ f~cyg

return

g

UMAP(cu; Qu; Rch(dx))

f

T  Qu

if(jfdx; ~cxg \ Adj(pm)j = 2; 1 � m �M
0), T  ;

find cu 2 C such that jfdu; ~cug \ (Adj(p�) [ Adj(px) [ Adj(pcx))j = 0,

jcu \ (T [Rch(dx))j = 1, jptr(cu) \ (T � Rch(dx))j = 1, and

jcu \ (Rch(du)� fdug)j = 0

if fail, find cu 2 C such that jfdu; ~cug \ (Adj(p�) [ Adj(px) [ Adj(pcx))j = 0 and

jcu \ (Rch(du)� fdug)j = 0

if succeed, CONSTRUCT(cu; T; Rch(dx))

if fail, ADD(cu; du; T; Rch(dx))

select pk, du 2 Adj(pk) such that

jfdug \ (Adj(p�) [ Adj(px) [ Adj(pcx))j = 0

if jfpkg \ P
0
j = 0, ADDP(pk)

Adj(pk) Adj(pk) [ fdug

select pl, ~cu 2 Adj(pl) such that

jf~cug\(Adj(p�) [ Adj(px) [ Adj(pcx))j = 0

if jfplg \ P
0
j = 0, ADDP(pl)

Adj(pl) Adj(pl) [ f~cug

if(jfdu; ~cug \Adj(pm)j = 2; 1 � m � M
0), RMAP(dr; cr; du; cu)

return

g

VMAP(cv; Qv; Rch(dy))

f

T  Qv

if(jfdx; ~cxg \ Adj(pm)j = 2; 1 � m �M
0), T  ;

find cv 2 C such that jfdv; ~cvg \ (Adj(p��) [Adj(py) [ Adj(pcy))j = 0,
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jfdx; dv; ~cx; ~cvg \ (Adj(pm) [ Adj(pm0))j � 3,

jfdu; dv; ~cu; ~cvg \ (Adj(pm) [Adj(pm0))j � 3,

m 6= m
0, 1 � m �M

0, 1 � m
0
� M

0,

jcv \ (T [ Rch(dy))j = 1, jptr(cv) \ (T � Rch(dy))j = 1

and jcv \ (Rch(dv)� fdvg)j = 0

if fail, find cv 2 C such that jfdv; ~cvg \ (Adj(p��) [ Adj(py) [ Adj(pcy))j = 0,

jfdx; dv; ~cx; ~cvg \ (Adj(pm) [Adj(pm0))j � 3,

jfdu; dv; ~cu; ~cvg \ (Adj(pm) [ Adj(pm0))j � 3, m 6= m
0,

1 � m �M
0, 1 � m

0
�M

0, and jcv \ (Rch(dv)� fdvg)j = 0

if succeed, CONSTRUCT(cv; T; Rch(dy))

if fail, ADD(cv; dv; T; Rch(dy))

select pk, dv 2 Adj(pk) such that

jfdvg \ (Adj(p��) [ Adj(py) [ Adj(pcy))j = 0

if jfpkg \ P
0
j = 0, ADDP(pk)

Adj(pk) Adj(pk) [ fdvg

select pl, ~cv 2 Adj(pl) such that

jf~cvg \ (Adj(p��) [ Adj(py) [ Adj(pcy))j = 0

and jf~cvg \ (Adj(pm) [ Adj(pm0))j = 0

if jfdx; dv; ~cxg \ (Adj(pm) [ Adj(pm0))j = 3 or

jfdu; dv; ~cug \ (Adj(pm) [ Adj(pm0))j = 3,

m 6= m
0, 1 � m �M

0, 1 � m
0
� M

0

if jfplg \ P
0
j = 0, ADDP(pl)

Adj(pl) Adj(pl) [ f~cvg

if(jfdv; ~cvg \ Adj(pm)j = 2; 1 � m �M
0), RMAP(dr; cr; dv; cv)

return

g

RMAP(dr; cr; ds; cs)

f

find cr 2 C such that for cr 6= cs, jcr \ Rch(ds)j = 1, jptr(cr) \ Rch(ds)j = 1,

jcr \ (Rch(ds) \Rch(Adj(pk)))j = 0, k 6= s, 1 � k �M
0,

and jfdr; ~crg \ Adj(ps)j = 0

if fail, select one dn 2 ((Rch(ds) \Adj(ps))� Rch(Adj(pk))), k 6= s, 1 � k � M
0

select dr's

Dr  
[
fdrg

cr  D � ((Rch(ds)� fdng)� Rch(dr)) [Dr

ptr(cr) fdng [Dr

for each dr: jfdrg \D
0
j = 0, D0

 D
0
[ fdrg

C  C [ fcrg

select pr, dr 2 Adj(pr) such that jfdrg \ Adj(ps)j = 0

if jfprg \ P
0
j = 0, ADDP(pr)

Adj(pr) Adj(pr) [ fdrg

select pr0, ~cr 2 Adj(pr0) such that jf~crg \ Adj(ps)j = 0 or

jf~crg\Adj(ps) \ Adj(pr)j = 0 if jfps; prg\P j = 0

if jfpr0g \ P
0
j = 0, ADDP(pr0)

Adj(pr0) Adj(pr0) [ f~crg

if(jfdr; ~crg \ Adj(pm)j = 2; 1 � m �M
0), RMAP(dt; ct; dr; cr)
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return

g

CONSTRUCT(cs; T1; T2)

f

find cs 2 C
0 such that jcs \ (T1 [ T2)j � 2, jptr(cs) \ (T1 � T2)j = 1 and

jptr(cs) \ (T1 \ T2)j = 0

if succeed, cs  cs � ((T1 [ T2)� ptr(cs)) and return \succeed"

find cs 2 C
0 such that jcs \ (T1 � T2)j � 1 and jptr(cs) \ (T1 [ T2)j = 0

if succeed, select dn 2 (cs \ T1 � T2)

cs  cs � ((T1 [ T2)� fdng)

ptr(cs) ptr(cs) [ fdng

return \succeed"

return \fail"

g

ADD(cs; ds; T1; T2)

f

select one dn 2 (T1 � T2)

add ds

cs  D � (((T1 [ T2)� fdng)� Rch(ds)) [ fdsg

ptr(cs) fdn; dsg

D
0
 D

0
[ fdsg

C  C [ fcsg

return

g

ADDP(pm)

f

P
0
 P

0
[ fpM 0+1g

M
0
 M

0 + 1

m M
0 + 1

Adj(pm) ;

g

As a design example of single-fault locatable ABFT system for Algorithm 6.1, we

will consider a MPD graph illustrated in Fig. 6.1(a). From this MPD graph, D1 =

ffd11g; fd12; d21; d31gg, D2 = ffd21gg, D3 = ffd31gg and D4 = ffd31; d41gg. According

to the algorithm MAP-EMPDC, we can construct checks for each pair of Di and Dj ,

1 � i < j � 4. There are various solutions which depend on the method for choosing

dn(ADD), pk and pl(XMAP, YMAP, UMAP, VMAP and RMAP), and �nding cx, cy, cu,

cv and cr in each \find" state within the subroutines XMAP, YMAP, UMAP, VMAP and

RMAP, respectively. The procedure for constructing checks by Algorithm 6.1 is described

as follows.

1. D1 and Dj, 2 � j � 4:

c1 = fd31; d71g: p5
c2 = fd21; d61g: p8
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c3 = fd11; d12; d51g: p6
c4 = fd11; d12; d21; d41; d81g: p9
c5 = fd12; d21; d31; d41; d91g: p4

2. D2 and Dj, 3 � j � 4: no updated

3. D3 and Dj, 4 � j � 4: no updated

Where, the underlined data elements of each check cq, 1 � q � 5, denote that such data

elements are in ptr(cq). The result for the above execution is illustrated in Fig. 6.1(c).

The line between data elements and checks denotes that the data element is in ptr(c) for

a check c 2 C.

In the next section, we will describe a checking scheme for single-fault locatable FIR

�lter based on the EMPDC graph model.

6.4 Design of Fault Tolerant FIR Filter

High-speed FIR �ltering has been attracted by many researchers in spite of less e�cient

than in�nite impulse response(IIR) �ltering in analog equivalence and cost e�ectiveness

because it is always stable and can always be made to have linear phase response which is

characteristic that makes it extremely attractive in audio, image and sonar applications.

Since the probability of one or more PEs to become faulty in VLSI architectures such as

systolic array is quite large, it is desirable to build some on-line fault tolerance features

at lower cost into them.

6.4.1 FIR Filter

Let x(n) and y(n) be input and output, respectively. FIR �ltering with �lter coe�cients

hi, 0 � i � N � 1, is de�ned as,

y(n) =
N�1X
i=0

x(n� i)hi (6.1)

An important feature of FIR �ltering is the iterative computation with respect to inputs

x(n), n � 0, to produce outputs y(n), n � 0. Now, the k-th block computation yk(l),

0 � l � B � 1, with block length B, will be considered.

yk(l) =
N�1X
i=0

xk(l � i)hi (6.2)

Where, yk(l) = y(kB + l) and xk(l � i) = x(kB + l � i). The form of matrix-vector

multiplication for eq: (6.2) with B = N is shown in eq: (6.3).

2
66666664

yk(0)

yk(1)

yk(2)
...

yk(N � 1)

3
77777775
=

2
66666664

hN�1 hN�2 � � � h0 0 � � � 0

0 hN�1 � � � h1 h0 � � � 0

0 0 � � � h2 h1 � � � 0
...

...
...

...
...

...
...

0 0 � � � hN�1 hN�2 � � � h0

3
77777775

2
66666666664

xk(�N + 1)

xk(�N + 2)
...

xk(0)
...

xk(N � 1)

3
77777777775

(6.3)
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(b) A systolic FIR filter.

Figure 6.3: Original FIR �lter.

The DG for FIR �ltering and a particular implementation on systolic array are illus-

trated in Fig. 6.3(a) and (b) with B = N , respectively. Each node in DG consists of one

addition and one multiplication, and each PE consists of one adder, one multiplier, and

three registers.

6.4.2 Fault Tolerant FIR Filter

In the following, we consider the only computational fault of each PE. We assume that

the only updated ones of data elements which leave the processor may become erroneous.

On the other hand, faults on communication links or registers are assumed to be treated

by other techniques such as error detecting/correcting codes. Therefore, the only output

string y will be considered in constructing MPD graph. The MPD graph for the FIR

�lter is illustrated in Fig. 6.4(a), where yi denotes the i-th output of the k-th block.
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We now consider two basic checking schemes based on the EMPDC graph model for

locating single-fault in a particular architecture of FIR �lter(Fig 6.3(b)).

Theorem 6.1 For a given system which is Adj(pi) = fyig and Rch(yi) = fyig, 0 � i �

N � 1, an extended ABFT system is single-fault locatable if for each pair of data elements

yi and yj, 0 � i < j � N � 1, there is a set of checks fci; cj; ctg such that

1. 1a. ci = fyi; y
0

ig

1b. cj = fyj ; y
0

jg

1c. ct = fyi; yj ; y
0

tg

2. 2a. jf~ci; ~cjg \ (Adj(pi) [ Adj(pj))j � 1

2b. jf~ci; ~cjg \ (Adj(p
0

i) [ Adj(p
0

j))j � 1

3. 3a. jf~ci; ~ctg \ (Adj(pi) [Adj(p
0

i) [ Adj(pt))j = 0

3b. jf~cj ; ~ctg \ (Adj(pj) [ Adj(p
0

j) [ Adj(pt))j = 0

where y
0

�
is a redundant data element to be compared to the primary output y� or the sum

of the primary outputs in c�, and is computed on a redundant processor p
0

�
.

Proof: It is straightforward from Lemma 6.2. There is a set of checks fcx; cy; cu; cvg such

a way that cx = ci, cy = cj , and cu = cv = ct, for any pair of Wix = fyig and Wjy = fyjg,

0 � i < j � N � 1. 2

Theorem 6.2 For a given system which is Adj(pi) = fyig and Rch(yi) = fyig, 0 � i �

N � 1, if an extended ABFT system is constructed as follows,

1. 1a. Adj(pi) = fyi; csi; aig, 0 � i � N � 1

1b. Adj(pN) = fcsNg

1c. Adj(pN+1) = fcstg

2. 2a. Rch(yi) = fyi; aig, 0 � i � N � 1

2b. Rch(csi) = fcsi; aig, 0 � i � N � 1

2c. Rch(ai) = faig, 0 � i � N � 1

2d. Rch(csN ) = fcsNg

2e. Rch(cst) = fcstg

3. 3a. ci = fai; csi+1g, 0 � i � N � 1

3b. cN = fcsN ; cstg

3c. cN+1 = fy0; y1; � � � ; yN�1; cstg

4. 4a. ~ci 2 Adj(pi+1), 0 � i � N

4b. ~cN+1 2 Adj(p0)

then the system is single-fault locatable.
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(b) An extended MPDC graph using
      Theorem 6.1 with N=3.

(c) An extended MPDC graph using
      Theorem 6.2 with N=3.

(a) MPD graph of FIR filter
      with B=N.

Figure 6.4: Two basic EMPDC graphs for the original FIR �lter.

Proof: It is straightforward from Lemma 6.2. Note that ai is always erroneous when pi is

faulty. Hence, ai is included in all of the available error patterns induced by pi. Therefore,

we will show whether for each pair of Wix = faig and Wjy = fajg, 0 � i < j � N � 1, a

set of checks which satisfy Lemma 6.2 exists or not. There is a set of checks fcx; cy; cu; cvg

such a way that cx = cj, cy = ci, cu = cj+1, and cv = ci+1. Also, it is clear that for any

pair of processors which are not considered in the above situations, there is a set of checks

which are given by Lemma 6.2. Therefore, the extended ABFT system is single-fault

locatable. 2

For the case of N = 3 in the MPD graph(Fig. 6.4(a)), examples of an EMPDC graph

using Theorem 1 and Theorem 2 are illustrated in Fig. 6.4(b) and (c), respectively. The

redundant data elements in Fig. 6.4(b) are computed in several redundant processors,

while such redundant data elements in Fig. 6.4(c) are well distributed to the primary

processors. Therefore, the basic checking scheme of single-fault locatable FIR �lter to

be designed is based on Theorem 6.2. It may be very di�cult to design MPD graph

including redundant data elements without degrading the performance of the system nor

increasing the number of processing components or processors. Hence, we will concentrate

on minimizing the degradation of performance and the number of processing components

or processors by mapping redundant data elements and checking operations to the system

processors.
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To e�ciently compute the redundant data elements on systolic array, �rst we introduce

updated data elements csi such a way that csi = yi�1+ csi�1 computed on pi, 0 � i � N .

And then ai = yi + csi computed on pi, 0 � i � N � 1, is introduced to meet the

scheme in Theorem 6.2. Unfortunately, a number of updated data elements si(l), 0 � l �

N � 1, to compute csi, are computed on pi, 0 � i � N � 1. Therefore, all of available

error patterns due to these data elements have to be additionally considered to design

single-fault locatable FIR �lter. To detect and locate such data elements, we introduce

bi =
PN�1

l=0 si(l) computed on pi, 0 � i � N � 1, di computed on pN+2 to compare to

bi, 0 � i � N � 1, and dt computed on pN+1 to compare to dN�1. Furthermore, N + 1

checks c0i = fbi; dig, 0 � i � N � 1, and cN+2 = fdN�1; dtg are newly introduced. Finally,

the MPD graph which is included all of these redundant computations is shown in Fig.

6.5(a).

According to the MPD graph, each of redundant data elements has the properties as

follows.

ai = csi+1 (6.4)

bi = di (6.5)

cst =
N�1X
i=0

yi (6.6)

cst = csN (6.7)

dt = dN�1 (6.8)

Where,

ai = csi + yi;

bi =
N�1X

l=0

si(l);

di = di�1 + (x(�N+1+i) + x(�N+2+i) + � � �+ xi);

cst = hN�1(x(�N+1) + x(�N+2) + � � �+ x0) +

hN�2(x(�N+2) + x(�N+3) + � � �+ x1) + � � �+

h0(x0 + x1 + � � �+ xN�1);

dt = (x(�N+1) + x(�N+2) + � � �+ x0) +

(x(�N+2) + x(�N+3) + � � �+ x1) + � � �+

(x0 + x1 + � � �+ xN�1);

si(l) = x(�l) + x(�l+1) + � � �+ x(i�l�1):

From these properties, we can construct a set of checks as follows.

(1) ci: ai = csi+1? on pi+1, 0 � i � N � 1

(2) c
0

i: bi = di? on pi+2, 0 � i � N � 2

(3) c
0

N�1: bN�1 = dN�1? on p0

(4) cN : csN = cst? on p0

(5) cN+1: y0 + y1 + � � �+ yN�1 = cst? on pN+2

(6) cN+2: dN�1 = dt? on p1
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Figure 6.6: Single-fault locatable FIR �lter implemented on systolic array.
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There are totally 2N + 3 checks for locating single-fault.

Now, we will examine whether this checking scheme satis�es Lemma 6.2 or not. In

the following, si denotes the set which consists of si(l), 0 � l � N � 1.

Correctness of checking scheme For each pair of unions Wix and Wjy, Wix is one

of all available unions of elements in D(pi), Wjy is one of all available unions of elements

in D(pj), 0 � i < j � N � 1,

S1. if jsi\Wixj � 1 and jsj\Wjyj � 1, then cx = c
0

j�1, cy = c
0

j, and cu = cv = cN+2,

S2. if jsi\Wixj � 1, jfajg \ Wjyj = 1, and jsj\ Wjyj = 0, then cx = c
0

j�1, cy = cj ,

cu = cN+2, and cv = cj+1,

S3. if jfaig\Wixj = 1, jsi\Wixj = 0, and jsj\Wjyj � 1, then cx = ci, cy = cj, cu = ci+1,

and cv = cN+2,

S4. if jfaig \Wixj = 1, jsi\Wixj = 0, jfajg \Wjyj = 1, and jsj\Wjyj = 0, then cx = cj ,

cy = ci, cu = cj+1, and cv = ci+1,

S5. if jfbig\Wixj = 1, j(si[faig)\Wixj = 0, jfbjg\Wjyj = 1, and j(sj[fajg)\Wjyj = 0,

then cx = c
0

i, cy = c
0

j, cu = cv = cN+2.

Thus, for any pair of error patterns, one is induced by pi and the other is induced by

pj, 0 � i < j � N � 1, there are always four checks cx, cy, cu, and cv which satisfy

the conditions of Lemma 6.2. And it is clear that for any pair of processors which are

not considered in the above situations, there are always such four checks. Therefore, the

extended ABFT system based on the proposed checking scheme is single-fault locatable.

The EMPDC graph based on this checking scheme is shown in Fig. 6.5(b).

Finally, DG including all of the redundant computations is illustrated in Fig. 6.6(a),

where ai is not shown because it is computed once after yi and csi are computed on pi,

0 � i � N � 1. The FIR �lter obtained by projecting the DG in j-direction is illustrated

in Fig. 6.6(b). As a result, the original FIR �lter(Fig. 6.3(b)) consists of N adders and

N multipliers, while the fault tolerant FIR �lter consists(Fig. 6.6(b)) of 5N + 5 adders,

2N + 2 multipliers, 2N + 3 comparators, and additional N registers due to the circular

bu�er for storing input data x.

6.4.3 System Evaluation

Now, we discuss some properties for error detection and correction of the proposed fault

tolerant FIR �lter.

Error Detection

Several e�orts have been made for CED schemes in the area of signal processing applica-

tions. Gupta and Bayoumi [11] proposed a novel CED scheme termed as logarithm based

on-line error detection which is based on the use of logarithmic coding for inputs and

results in a self-testing systolic cell. And Vinnakota and Jha [6] proposed a method for

synthesizing single-fault detectable ABFT system from DG of FIR �ltering by introducing

an useful checking scheme. In general, these schemes assume that the monitoring circuit

to compare two results is fault-free or has self checking properties. And the schemes

require almost twice in silicon area or in time.
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ŷiMUX

sel

Figure 6.7: The circuit for correcting the erroneous output yi.

On the other hand, the proposed fault tolerant FIR �lter does not assume that the

checking operation to compare two results is fault-free, and it can be achieved systolic

array implementation without causing any loss in throughput rate. Also, this scheme

can detect two-fault except for the faults included at least one checking operation, of

course, all of single-fault can be detected. Unfortunately, since our main target is to

locate single-fault, the scheme requires nearly three times in hardware resources.

Error Correction

Kung [10] presented error detection and correction based on interleaved DG. The idea is

to perform the same computation twice in adjacent PEs at two di�erent but close enough

time periods and then compare the results. If they match there is no fault. Otherwise

a roll-back is necessary to correct the fault. However, a fault in checking operation

which is to compare two results: one is primary output computed in a PE, the other

is redundant output computed in adjacent PE, was not considered, that is, checking

operations were assumed to be fault-free. Cosentino [12] proposed a scheme of concurrent

error detection and correction in systolic architecture of FIR �ltering at a cost of halving

the maximum throughput rate by performing the same computation twice in adjacent

PEs and comparing such two results.

On the other hand, for the output yi, 0 � i � N � 1, of FIR �ltering with order

N , the proposed fault tolerant FIR �lter can concurrently correct the error induced by

any single-fault, without retrying the computations. For any error pattern including the

output yi, 0 � i � N � 1, which is induced by the faulty processor pi, the checks ci and

cN+1 always output 1, or the checks c
0

i; c
0

i+1; � � � ; c
0

N�1 always output 1 and the check cN+2
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always outputs 0. According to the properties of the checking scheme,

csi = yi�1 + csi�1;

csi+1 = yi + csi:

Assuming single-fault(pi is faulty), csi+1 and ai�1 equivalent to csi are error-free, which

are computed on pi+1 and pi�1, respectively. Therefore, the corrected output cyi can be

obtained as follows.

cyi = csi+1 � ai�1 (6.9)

The circuit for correcting the erroneous output yi is shown in Fig. 6.7. The correcting

circuit is assumed to fault-free. Where, ŷi = yi if sel = 0, and ŷi = cyi if sel = 1. Also,

MUX denotes a multiplexer.

Fault Location

The conventional schemes has been concentrated on concurrent error detection and cor-

rection in the area of signal processing applications. There is little approach in systemati-

cally synthesizing single-fault locatable FIR �lter which is implemented on systolic array.

However, the fault location plays an important role in correcting errors or recon�guring

the system to bypass the faulty processor when a fault is permanent. To achieve this

objective, we proposed a scheme based on the EMPDC graph model so that single-fault

locatable FIR �lter is systematically synthesized on systolic array.

6.5 Conclusion

In this chapter, we present a method in designing single-fault locatable FIR �lter based

on EMPDC graph model. The ABFT system which has been introduced in previous

chapters for designing more e�cient fault tolerant systems was extended by introducing

some redundancies to be compared to the sum of data elements in checks and mapping

such checks to the system processors such a way that the system still maintains the

desired fault tolerance. As an application of our theory to a practical problem, a fault

tolerant FIR �lter was implemented on systolic array. As a result, while the fault tolerant

FIR �lter required nearly three times in hardware resources, it achieved CED capability

without causing any loss in throughput rate and assuming that checking operations are

fault-free. Furthermore, for any primary output of FIR �ltering, the fault tolerant FIR

�lter could be applied to on-line error correction without retrying the computation by

introducing the correcting circuit being fault-free or being of the self-checking property.
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Chapter 7

Conclusions

In this thesis, we present the analysis and synthesis of ABFT systems based on MPD

graph model, and proposed checking schemes for single-fault detection and location on

the simple error model(SID model) and the sophisticated error model(MID model). Also,

we present two basic algorithms SFL-TFD I and SFL-TFD II for constructing checks

of SFL/TFD ABFT systems for SID model and MID model, respectively. As a result,

the set of error patterns to be considered with MID model becomes a superset of the

one with SID model, but still a subset of the one from the conventional PDC graph

models. In general, the computational complexity and the number of checks in analyzing

and designing ABFT systems increase as the number of error patterns increases. In this

sense, SID model based analysis is preferable among three analysis models. However, it

assumes that erroneous inputs yield always erroneous output, and error masking by plural

erroneous inputs or by faulty computation using an erroneous input is not treated. In

contrast with SID model based analysis, MID model based analysis can treat such error

masking phenomenon. While the complexity and the number of checks tend to increase

compared to the MPD graph with SID model in compensation for improving the accuracy

of error propagation model, the e�ectiveness of MPD graph model with MID model holds

good compared to the conventional PDC graph models.

Our approach will be applied to linear algebra based computation algorithms without

feedback loops, and both the number of error patterns to be considered and the number

of checks are reduced compared with the ones for conventional PDC graph models. Fur-

thermore, there exist some ABFT systems which are single-fault locatable from our MPD

graph model but not from the conventional PDC graph models, because our MPD graph

with the appropriate error propagation model can exclude redundant error patterns which

are included for considerations in the analysis by the conventional PDC graph models.

Analysis and checking schemes for cyclic MPD graph for applying our method to com-

putation algorithms with feedback loops, algorithms for designing minimum number of

checks for a given MPD graph and the design of mapping from a set of operations to a

set of processors with regarding checking scheme are remained as future problems.

In this thesis, we also extended the MPD graph model based ABFT system by in-

troducing some redundancies to be compared to the sum of data elements in checks and

mapping these checks to the system processors such a way that the system still main-

tains the designated fault tolerance. The proposed EMPDC graph model includes the

relationships between checks and processors for computing checks, and plays important

role in designing cost-e�ective ABFT systems in the sense that the number of checks and
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redundant computations are reduced by considering data dependency between primary

data elements and redundant data elements. Also we proposed a method in designing

single-fault locatable FIR �lter based on EMPDC graph model under SID error model,

and a fault tolerant FIR �lter was implemented on systolic array. The scheme will be

used as a basis of systematic synthesis for locating faults in signal processing applications.

Throughout this research, we focused our attention on two important features in an-

alyzing and designing cost-e�ective ABFT systems, i:e:, (1) detection of errors due to a

fault at some processor output, and (2) location of the faulty processor, by introducing

a speci�ed error occurrence/propagation model using data dependency between compu-

tation results. The results obtained in this thesis will provide important bases for highly

reliable parallel computing systems.
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