
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
リフレクションを利用したCORBAアプリケーション開発

環境に関する研究

Author(s) 藤枝, 和宏

Citation

Issue Date 2000-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/897

Rights

Description Supervisor:落水 浩一郎, 情報科学研究科, 博士



CORBA Application Development Environment
Using Reflection

Kazuhiro Fujieda
School of Information Science,

Japan Advanced Institute of Science and Technology

March, 2000

Abstract

CORBA is the standard of the Object Request Broker (ORB), the middle-ware to realize
distributed object environment. CORBA is independent of platforms (operating systems and
hardware architectures) and programming languages. There are several implementations of
CORBA on various platforms from embedded hardwares to mainframes. Distributed objects
and their clients in CORBA can be implemented with various programming languages including
non-object-oriented languages. CORBA ORB ensures clients and distributed objects to work
together regardless of their platforms and their implementation languages.

On developing CORBA applications, developers must describe the specifications of dis-
tributed objects by the Interface Description Language (IDL), and generate program codes
called stubs or skeletons with the IDL compiler, and then incorporate them into the applica-
tions. This development procedure leads large development effort, and often causes interface
mismatches between servers and clients when they are developed on different platforms. This
paper presents solutions of these problems with the use of the Interface Repository and pro-
gramming languages supporting the reflection.

The Interface Repository is the server in the meaning of CORBA providing storage of spec-
ifications described by IDL. Developers can share it for sharing the specifications on various
development platforms for the sake of platform independency of CORBA. The development
environment with the Interface Repository can prevent interface mismatches on cross-platform
development. The environment consists of the Interface Repository improved to record the
modification time of its contents, the editing tool for it, and the tool managing the consistency
between stubs/skeletons and the specifications stored in it. This environment doesn’t depend
on a specific programming language or a specific platform, so developers can use it on various
style of application development combining programming languages and platforms.

If developers use the programming languages supporting the reflection to develop applica-
tions, the dynamic stubs/skeletons generator using the descriptive power of the reflection can
simplify the development procedure. It automatically generates and incorporates stubs/skeletons
necessary for the applications at runtime. The specifications necessary to generate them can be

∗Copyright c© 2000 by Kazuhiro Fujieda



retrieved from the Interface Repository. The descriptive power of the reflection is categorized
into the linguistic reflection and the behavioral reflection. The former allows a program to in-
spect and modify itself. It realizes the runtime generation of stubs/skeletons. The latter allows
a program to inspect and modify the behavior of the runtime environment of itself. It is use-
ful to detect the stubs/skeletons necessary for applications and to incorporate them into their
programs.

The runtime generator using the linguistic reflection and the Interface Repository can gen-
erate only necessary portions of stubs/skeletons apart from the syntax of IDL or the syntax of
the target programming language. Moreover the linguistic reflection allows to partially modify
incorporated stubs/skeletons when the corresponding specifications are modified.

By means of the behavioral reflection, the generator can detect and incorporate stubs/ skele-
tons necessary for applications without any extra programming effort or development proce-
dure. There are two kinds of hints for detecting them: the runtime behavior of the applications
and the runtime behavior of the execution engine of them.

The object references obtained by clients is useful as the former hint. The runtime library
of CORBA linked with the clients can detect the necessary stubs by applying the standard
operation for obtaining the interface specification to an object reference. It can invoke the
generator with the obtained specification, and incorporate the generated stubs into the client
program by manipulating the runtime name space through the behavioral reflection.

An undefined name detected by the execution engine of applications is useful as the latter
hint. The generator can modify the behavior of the execution engine when the program refers
an undefined name through the behavioral reflection so that the resulting value of the name be-
comes the generated stub or skeleton corresponding to it. With the use of the undefined method,
the generator can generates the special stub methods for using APIs such as the CORBA Mes-
saging only when they are necessitated by applications.

This paper presents implementation of this approach with the Python and the Java which
support the reflection and have implementations of CORBA. The Python provides the descrip-
tive power of the reflection enough to implement all of the approach. The runtime generator
implemented with the Python can use object references obtained by clients and the behavior
of the Python interpreter in referring undefined module and method names to detect necessary
stubs/skeletons. The Java provides only narrow power of the reflection, so the generator can
generates stubs/skeletons only class by class, and can’t modify generated classes. The gener-
ator implemented with the Java can use the behavior of the Java virtual machine in referring
undefined classes to detect necessary stubs/skeletons.

Either implementation can automatically generate and incorporate stubs/skeletons necessary
for applications, so the development procedure becomes much simpler. These languages are
often used to implement only the client side of applications. When the server side are im-
plemented by other languages, the development environment using the Interface Repository
mentioned above can prevent interface mismatches. Especially in the prototyping phase of
application development, the specifications of distributed objects are often modified, so the
environment and the runtime generator can considerably eliminate development effort.


