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Abstract

Recently, Arts and Giesl introduced the notion of dependency pairs, which gives e�ective

methods for proving termination of term rewriting systems (TRSs). In this thesis, we

extend the notion of dependency pairs to AC-TRSs, and introduce new methods for

e�ectively proving AC-termination. Since it is impossible to directly apply the notion of

dependency pairs to AC-TRSs, we introduce the head parts in terms and show an analogy

between the root positions in in�nite reduction sequences by TRSs and the head positions

in those by AC-TRSs. Indeed, this analogy is essential for the extension of dependency

pairs to AC-TRSs. Based on this analogy, we de�ne AC-dependency pairs.

To simplify the task of proving termination and AC-termination, several elimination

transformations such as the dummy elimination, the distribution elimination, the gen-

eral dummy elimination and the improved general dummy elimination, have been pro-

posed. In this thesis, we show that the argument �ltering method combined with the

AC-dependency pair technique is essential in all the elimination transformations above.

We present remarkable simple proofs for the soundness of these elimination transforma-

tions based on this observation. Moreover, we propose a new elimination transformation,

called the argument �ltering transformation, which is not only more powerful than all

the other elimination transformations but also especially useful to make clear an essential

relationship among them.
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Chapter 1

Introduction

Computability (Church's Thesis): The notion of computable function was essen-

tially born in the proof of G�odel's Incompleteness Theorems [24] and was formalized by

Church, Kleene, Turing and others in the 1930's. Intuitively, a computable function is a

function whose values can be calculated in some kind of automatic or e�ective way. It is

well known that there exist functions that are not computable. From the point of view

of computer science, this fact means that there exist functions that we can not program.

As rapid advances of computer technology, the study of computability greatly gains its

importance in various �elds.

In order to give a rigorously mathematical de�nition of the intuitive notion of com-

putable function, several computation models were proposed in 1936: recursive functions

by Kleene [25, 36, 37]1, �-calculus by Church [10], and Turing machine by Turing [65].

It is well-known that these computation models characterize the same class for com-

putable function2. On the basis of these evidence, most mathematicians have accepted

the claim that these characterizations give a satisfactory formalization for computable

function, though these de�nitions of computable function have no generality separated

from a particular computation model. This claim is often referred to as Church's Thesis.

(AC-)Term Rewriting Systems: Term rewriting systems (TRSs) can be regarded as

a computation model, that is, all computable functions are de�nable by term rewriting

systems. In term rewriting systems, terms are reduced by using a set of directed equations,

called rewrite rules. The most striking feature is that term rewriting systems themselves

can be regarded as functional programming languages. For example, in term rewriting

systems with the constant 0 and the successor function s, addition of natural numbers is

de�ned as follows:

R =

�
x + 0 ! x

x + s(y) ! s(x + y)

1The notion of recursive functions was proposed by G�odel in 1934 based on a suggestion by Herbrand

[25]. After that Kleene improved the notion by introducing a minimalization operator, called �-operator,

and formalized the current form in 1936 [36, 37].
2Kleene proved the equivalence between recursive functions and computable functions by �-calculus

[38], and Turing proved the equivalence between computable functions by �-calculus and by Turing

machine [66].
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By applying rules in this term rewriting system, we can evaluate the sum of 1 and 2 as

follows:

s(0) + s(s(0))!
R

s(s(0) + s(0))!
R

s(s(s(0) + 0))!
R

s(s(s(0)))

Term rewriting systems have various applications in many �elds of computer science

and mathematics, that is, to represent abstract interpreters of functional programming

languages and to model formal manipulating systems used in various applications, such as

program optimization, program veri�cation and automatic theorem proving [6, 18, 28, 39].

The e�ectiveness of term rewriting systems to theorem proving is worth mentioning.

In fact, the �eld of term rewriting got a decisive impact by the pioneering paper by

Knuth and Bendix, in which they designed completion procedures, called Knuth-Bendix

procedure, that automatically solves word problems in universal algebra [40]. For example,

on Knuth-Bendix procedure, starting with the axiom of group

8<
:

0 + x = x

(�x) + x = 0

(x + y) + z = x+ (y + z)

produces a terminating and conuence term rewriting system as follows:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

0 + x ! x

(�x) + x ! 0

(x + y) + z ! x+ (y + z)

(�x) + (x + y) ! y

x+ 0 ! x

�0 ! 0

�(�x) ! x

x+ (�x) ! 0

x + ((�x) + y) ! y

�(x + y) ! (�y) + (�x)

In a conuent term rewriting system, the answer of a given term is unique, that is, the

�nal result does not depend on computation procedures. Moreover, if every computation

procedure always terminates, the system solves the word problem for the corresponding

equational theory. Hence, using the obtained term rewriting system, we can automatically

solve the word problems for group theory.

Knuth-Bendix procedure has the limitation that can not handle a commutativity equa-

tion, say, x + y = y + x, because the term rewriting system fx + y ! y + xg induced

from the equation is essentially not terminating. To avoid this diÆculty, associative-

commutative term rewriting systems (AC-TRSs) were introduced, in which associative

and commutative equations are not represented as rewrite rules, instead we take them

into account when applying some other rewrite rules [48, 49, 60].

Proving (AC-)Termination Termination of TRSs is in general an undecidable prop-

erty. Nevertheless, it is often necessary to prove the termination for a particular system.

For example, the termination property is essentially important in Knuth-Bendix proce-

dure. To prove termination, we commonly design a reduction order by which all rules are

ordered.
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The most important study for designing a reduction order is the notion of simpli�ca-

tion order introduced by Dershowitz [15]. Based on the notion several reduction orders

are introduced. The recursive path order was introduced by Dershowitz [15, 16]. The

lexicographic path order was introduced by Kamin and L�evy [32]. The recursive decom-

position order was introduced by Jouannaud, Lescanne and Reinig [31]. An overview and

comparison of simpli�cation orders have been given by Steinbach [63, 64]. Furthermore,

several AC-compatible simpli�cation orders have been proposed based on simpli�cation

orders. The order introduced by Cherifa and Lescanne is based on polynomial interpre-

tation [9]. The order introduced by Bachmair and Plaisted based on the recursive path

order with attening [7], and it has been extended by Bachmair [8], by Delor and Puel

[14], by Kapur, Sivakumar and Zhang [34, 35], by Rubio and Nieuwenhuis [61, 62], and

so on.

On the other hand, proving termination by simpli�cation orders has a theoretical

limitation. In fact, there exist terminating TRSs that can not be essentially proved by

simpli�cation orders. In order to prove termination of such TRSs, we have two methods.

One is a transformation method that transforms a given TRS into a TRS whose termi-

nation is easier to prove than the original one. The representative transformations are

elimination transformations. The dummy elimination [20], the distribution elimination

[53, 67], the general dummy elimination [21] and the improved general dummy elimination

[57] are examples of elimination transformations. Furthermore, the dummy elimination

and the distribution elimination are extended to AC-TRSs in [22] and [58], respectively.

Another one is the dependency pair method, introduced by Arts and Giesl, that is a

method to check a dependency of function call sequences in evaluating processes of TRSs

as programs [1, 2]. Dependency pairs are useful not only proving termination but also

analyzing an in�nite reduction sequence. Furthermore, separate extensions of the depen-

dency pair to AC-TRSs were independently done by us in [43] and by March�e and Urbain

in [52].

Structure of the Thesis: The next chapter gives the preliminaries needed later on.

In Chapter 3, we review results about dependency pairs. First, we recall basic notions

and fundamental results on dependency pairs. The method of dependency pairs compares

rewrite rules and dependency pairs by a weak reduction order or by a weak reduction pair,

which play an important role on the method of dependency pair, instead of a reduction

order. In Section 3.2, we introduce the notion of weak reduction order and its application

for proving termination. We explain two methods to design weak reduction orders. One

is the argument �ltering method, which allows us to make a weak reduction order from an

arbitrary reduction order. Another one is the polynomial interpretation method. A set

of dependency pairs itself makes a TRS. However, a TRS, the set of its dependency pairs

and the union of them do not accurately agree on the termination property. In Section

3.3, we present a hierarchy for the termination property among these systems. In Section

3.4, we introduce the dependency graph, that gives a more powerful method for analyzing

an in�nite reduction sequence.

In Chapter 4, we extend the notion of dependency pairs to AC-TRSs. It is impossible

to directly apply the notion of the dependency pair to AC-TRSs. In Section 4.1, we show

this diÆculty through an example. To avoid this diÆculty we introduce the head parts

in terms and show an analogy between the root positions in in�nite reduction sequences

by TRSs and the head positions in those by AC-TRSs. Indeed, this analogy is essential
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for the extension of dependency pairs to AC-TRSs. Based on this analogy, we de�ne AC-

dependency pairs and AC-dependency chains. In Section 4.2, we introduce the argument

�ltering method, which generates a weak AC-reduction order and a weak AC-reduction

pair. The original idea of the argument �ltering method for TRSs without AC-function

symbols was �rst proposed by Arts and Giesl [5, 23]. To analyze other proving methods

for termination, the method was slightly improved by combining the subterm relation

[46]. We extend these methods to AC-TRSs. Our extension gives a design of a weak

AC-reduction order and a weak AC-reduction pair from an arbitrary AC-reduction order.

Moreover, in order to strengthen the power of the argument �ltering method, we improve

the method in two directions. One is the lexicographic argument �ltering method, in which

argument �ltering functions are lexicographically combined to compare AC-dependency

pairs. Another one is an extension over multisets. In the argument �ltering method on

AC-TRSs, any argument �ltering function must be compatible to AC-equations. We relax

this restriction using the extension over multisets. These methods are e�ective for proving

not only AC-termination but also termination of TRSs.

In Chapter 5, we study the relation between the argument �ltering method and various

elimination transformations. The key of our result is the observation that the argument

�ltering method combined with the dependency pair technique is essential in all elimina-

tion transformations. Indeed, we present remarkable simple proofs for the soundness of

these elimination transformations based on this observation, though the original proofs

presented in the literatures [20, 21, 22, 53, 57, 58, 67] developed rather di�erent methods

respectively. This observation also leads us to a new powerful elimination transformations,

called the argument �ltering transformation, which is not only more powerful than all the

other elimination transformations but also especially useful to make clear an essential

relation hidden behind these methods.
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Chapter 2

Preliminaries

In this chapter, we present the basic notions used in this thesis about orders, term rewrit-

ing systems and AC-term rewriting systems. More details can be found in Baader and

Nipkow [6], Dershowitz and Jouannaud [18], and Klop [39].

2.1 Binary Relations

First let us remark that we assume familiarity with basic mathematical no(ta)tions and

terminologies about functions, sets, pairs and so on.

2.1.1 Binary Relations and Orders

De�nition 2.1.1 A binary relation on a set A is a subset of A � A. For any binary

relation � on a set A, we write a1�a2 instead of (a1; a2) 2 �. The composition of binary

relations �1 and �2 on a set A, denoted by �1 Æ�2, is de�ned as follows:

�1 Æ�2 = f(a; a00) j 9a0: a�1a
0
^ a0�2a

00
g

For any binary relation � on a set A and for any natural number n, we de�ne �n as
follows: �

�0 = f(a; a) j a 2 Ag

�n+1 = �n Æ�

The inverse relation of a binary relation �, denoted by ��1, is de�ned by f(a0; a) j a�a0g.

A binary relation � is compatible with a set R of pairs if a�a0 for all (a; a0) 2 R.

De�nition 2.1.2 A binary relation � on a set A is said to be

� transitive if it satis�es a1�a2 ^ a2�a3 ) a1�a3 for all a1; a2; a3 2 A,

� reexive if it satis�es a�a for all a 2 A,

� irreexive if it satis�es :(a�a) for all a 2 A,

� symmetric if it satis�es a1�a2 ) a2�a1 for all a1; a2 2 A, and

� antisymmetric if it satis�es a1�a2 ^ a2�a1 ) a1 = a2 for all a1; a2 2 A.
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De�nition 2.1.3 The closure of a binary relation � with respect to a property P is the

smallest binary relation containing � and satisfying P . We write the reexive closure, the

transitive closure and the reexive-transitive closure of � as �=, �+ and ��, respectively.

Proposition 2.1.4 Let � be a binary relation on a set A. Then, �= = �0 [ �, �+ =S
1

n=1�
n and �� =

S
1

n=0�
n.

De�nition 2.1.5 A binary relation is an equivalence relation if it is a reexive, transitive

and symmetric. Let � be an equivalence relation on a set A. For any x 2 A, the set

fa 2 A j x � ag is called the equivalence class of x modulo � and is denoted by [[x]]. The
quotient set of A modulo �, denoted by A= �, is de�ned by f[[x]] j x 2 Ag.

Note that any two distinct equivalence classes on a set A are non-empty and disjoint,

and the union of all equivalence classes is equivalent to A.

De�nition 2.1.6 A binary relation on a set A is a strict order, usually denoted by >,

if it is transitive and irreexive. A binary relation on a set A is a partial order, usually

denoted by �, if it is reexive, transitive and antisymmetric. A binary relation on a set
A is a quasi-order, usually denoted by &, if it is transitive and reexive.

De�nition 2.1.7 For any quasi-order &, partial order � and strict order >, we write

their inverse relations &�1, ��1 and >�1 by ., � and <, respectively. The strict part of

a quasi-order &, written by �, is de�ned as & n .. The equivalence part of a quasi-order
&, written by �, is de�ned as & \ ..

Proposition 2.1.8 For any quasi-order &, its strict part � is a strict order and its

equivalence part � is an equivalence relation.

De�nition 2.1.9 A binary relation > on a set A is said to be

� well-founded if every non-empty subset of A has a minimal element,

� terminating or strongly normalizing if there exist no in�nite decreasing sequences of
the form a1 > a2 > a3 > � � �.

Here, a subset B � A has a minimal element if there exists b 2 B such that b > a implies
a 62 B.

It is well known that well-foundedness and termination are equivalent concepts by the

Axiom of Choice.

2.1.2 Multiset Extension

In this subsection, we consider useful extensions for strict order and quasi-order, called

the multiset extension. First we de�ne multisets.

De�nition 2.1.10 Let A be a set. A multiset on a set A is a function M from A to

natural numbers. A multiset on a set A is a �nite multiset if M(a) 6= 0 only for �nitely

many a 2 A. The set of all �nite multisets on a set A is denoted by M(A).
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De�nition 2.1.11 Let M1 and M2 be multisets on a set A. The relations 2, =, � and

� are de�ned as follows:

a 2M1
def
() 0 < M1(a)

M1 = M2
def
() M1(a) = M2(a) for all a 2 A

M1 �M2
def
() M1(a) �M2(a) for all a 2 A

M1 �M2
def
() M1 6= M2 ^M1 �M2

The operations [, \ and � on multisets are de�ned as follows:

M1 [M2
def
== (M1 [M2)(a) = M1(a) +M2(a)

M1 \M2
def
== (M1 \M2)(a) = minfM1(a);M2(a)g

M1 �M2
def
== (M1 �M2)(a) = maxfM1(a)�M2(a); 0g

Intuitively, a multiset on a set A is a set of elements of A in which elements may have

multiple occurrences. We use standard set notation like fa; a; bg as an abbreviation of

the multisets M such that M = fa 7! 2; b 7! 1; c 7! 0g on the set A = fa; b; cg. It will be

obvious from the context if we refer to a set or a multiset.

We now consider the multiset extension of given strict order on a set A, which is

a binary relation on M(A). There exist several de�nitions of the multiset extension

[6, 19, 29, 30]. Here, we give four de�nitions of the multiset extension, denoted by �, for

given strict order >. We have known that these de�nitions are equivalent [6, 30].

De�nition 2.1.12 Let > be a strict order on a set A. The multiset extension � is
de�ned as follows:

M � N
def
() 9X; Y 2M(A)

[; 6= X �M ^N = (M �X) [ Y ^ 8y 2 Y: 9x 2 X: x > y]

De�nition 2.1.13 Let > be a strict order on a set A. The multiset extension � is

de�ned as follows:

M � N
def
() M 6= N ^ 8n 2 N �M: 9m 2M �N: m > n

De�nition 2.1.14 Let > be a strict order on a set A. The multiset extension � is

de�ned as follows:

M � N
def
() M 6= N ^ [9a 2 A: N(a) >N M(a)) 9a0 2 A: a0 > a^M(a0) >N N(a0)];

where >N is usual order on natural numbers.

De�nition 2.1.15 Let > be a strict order on a set A. We de�ne the single-step relation
on M(A) as follows:

M �
1 N

def
() 9x 2M: 9Y 2M(A): N = (M � fxg) [ Y ^ 8y 2 Y: x > y

The multiset extension � is de�ned by the transitive closure of �1.
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Proposition 2.1.16 [19] > is a strict order on a set A if and only if its multiset extension

� is a strict order on M(A). Furthermore, > is well-founded if and only if � is well-

founded.

Next, we de�ne the multiset extension for quasi-orders based on that for strict orders.

Here we should prepare several notions to treat the equivalence classes.

De�nition 2.1.17 Let � be an equivalence relation on a set A. For any multiset M =

fa1; a2; : : : ; ang, we de�ne ME = f[[a1]]; [[a2]]; : : : ; [[an]]g, where [[ai]] is the equivalence class

of ai modulo �. Let M 0 and M 00 be multisets on a set A. The relations 2E, =E, �E and

�E are de�ned as follows:

a 2E M 0 def
() [[a]] 2M 0

E

M 0 =E M 00 def
() M 0

E
=M 00

E

M 0 �E M 00 def
() M 0

E
�M 00

E

M 0 �E M 00 def
() M 0

E
�M 00

E

The operations [E, \E and �E on multisets are de�ned as follows:

M 0 [E M
00 def

== M 0
E
[M 00

E

M 0 \E M
00 def

== M 0
E
\M 00

E

M 0 �E M
00 def

== M 0
E
�M 00

E

In this thesis, we treat only AC-equation �
AC

as equation. Hence, it is enough to treat

AC as the subscript E. We often omit the subscript E or AC whenever no confusion arises.

Lemma 2.1.18 Let & be a quasi-order on a set A and � be its equivalence part. We

de�ne the binary relation &E on A= � by [[a1]] &E [[a2]]
def
() a1 & a2. Then, &E is a

quasi-order on A= �.

Proof. Let [[a1]] = [[a2]]. Since a1 � a2, it follows that a1 & a2. Thus &E is reexive.

Let [[a1]] &E [[a2]] and [[a2]] &E [[a3]]. Since a1 & a2 & a3, it follows that a1 & a3. Thus,

[[a1]] &E [[a3]]. Therefore &E is transitive. �

De�nition 2.1.19 Let & be a quasi-order on a set A, � the equivalence part of &, &E

the binary relation on A= � de�ned in Lemma 2.1.18, �E the strict part of &E, and �

the multiset extension of �E for strict orders. We de�ne the multiset extension � for

quasi-orders by M 0 � M 00 def
() M 0

E
�M 00

E
_M 0

E
= M 00

E
.

Proposition 2.1.20 [21] & is a quasi-order on a set A if and only if its multiset extension

� is a quasi-order on M(A). Furthermore, the strict part � of & is well-founded if and

only if the strict part � of � is well-founded.
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2.1.3 Lexicographic Extension

In this subsection, we consider the lexicographic extension.

De�nition 2.1.21 Let > be a strict order on a set A. The lexicographic extension >lex

on lists of A is recursively de�ned as follows:

8<
:

[a1; a2; : : : ; an] >lex [] if n > 0

[a1; a2; : : : ; an] >lex [a01; a
0
2; : : : ; a

0
m] if a1 > a01

[a1; a2; : : : ; an] >lex [a01; a
0
2; : : : ; a

0
m] if a1 = a01 ^ [a2; : : : ; an] >lex [a

0
2; : : : ; a

0
m]

Unfortunately, the well-foundedness of > does not guarantee that of >lex. In fact,

for the set A = fa; bg with a > b, there exists an in�nite decreasing sequence [a] >lex

[b; a] >lex [b; b; a] >lex � � �. We can avoid this problem by restricting the max length of

lists.

Proposition 2.1.22 > is a strict order on a set A if and only if its lexicographic exten-

sion >lex is a strict order on lists of A. Furthermore, for arbitrary positive number n, >
is well-founded if and only if >lex is well-founded on lists of A, whose length are less than

or equal to n.

2.2 Term Rewriting Systems

We introduce the basic notions of term rewriting systems.

De�nition 2.2.1 A signature � is a �nite set of function symbols, where each f 2 �

is associated with natural number n, written by arity(f). A set V is an enumerable
set of variables with � \ V = ;. The set of terms, written by T (�;V), is the smallest

set containing V such that f(t1; : : : ; tn) 2 T (�;V) whenever f 2 �, arity(f) = n and
ti 2 T (�;V) for i = 1; : : : ; n. For a function symbol e with arity(e) = 0, we write e

instead of e(). Identity of terms is denoted by �. V ar(t) is the set of variables in t. The

size jtj of a term t is the number of function symbols and variables in t. A term t is linear
if every variable in t occurs only once.

De�nition 2.2.2 A term position is a sequence of positive integers. We denote the empty

sequence by ". The pre�x order � on term positions is de�ned by p � q i� pw = q for
some w ( 6= "). We recursively de�ne (t)p the symbol at position p in t, and tjp the subterm

of t at position p as follows:

8<
:

(x)" = x

(f(t1; : : : ; tn))" = f

(f(t1; : : : ; tn))i�p = (ti)p

8<
:

xj" = x

f(t1; : : : ; tn)j" = f(t1; : : : ; tn)

f(t1; : : : ; tn)ji�p = tijp

De�nition 2.2.3 A substitution � : V ! T (�;V) is a mapping. A substitution over
terms is de�ned as the homomorphic extension through �(f(t1; : : : ; tn)) = f(�(t1); : : : ; �(tn))

for f 2 � and t1; : : : ; tn 2 T (�;V). Two terms s and t are uni�able if there exists a sub-

stitution � such that �(s) � �(t). We write t� instead of �(t).

9



De�nition 2.2.4 A context C is a term with occurrences of a special constant �, called
a hole. C[t1; : : : ; tn] denotes the result of placing t1; : : : ; tn in the n holes of C from left to

right. In particular C[ ] denotes a context containing precisely one hole and we sometimes

write C[t]p to indicate at which position the replacement takes place.

De�nition 2.2.5 A term s is called a subterm of t if t � C[s] for some context C. A

subterm s of t is called a proper subterm if s 6� t.

De�nition 2.2.6 A binary relation � on T (�;V) is said to be

� monotonic if it satis�es s�t) C[s]�C[t] for all contexts C[ ],

� stable if it satis�es s�t) s��t� for all substitutions �.

A congruence relation is an equivalence, monotonic and stable relation.

De�nition 2.2.7 A rewrite rule is a pair of terms, written by l ! r, with l 62 V and

V ar(l) � V ar(r). A term rewriting system (TRS) is a �nite set of rules. The set of

de�ned symbols in R is DF (R) = f(l)" j l ! r 2 Rg . A reduction relation !
R

is de�ned

as follows:

s!
R

t
def
() s � C[l�] ^ t � C[r�] for some l! r 2 R; C[ ] and �

When we want to specify the position p of C[l�]p in the above reductions, we write s!
R

pt.

A step of the form s!
R

"t is called a root reduction step. We often omit the subscripts R

whenever no confusion arises.

De�nition 2.2.8 A TRS R is terminating if its reduction relation !
R

is terminating.

2.3 AC-Term Rewriting Systems

We introduce the basic notions of AC-term rewriting systems.

De�nition 2.3.1 The set �AC of AC-function symbols, which have �xed arity 2, is a
subset of �. The binary relation �

AC

is the congruence relation generated by f(f(x; y); z) =A

f(x; f(y; z)) and f(x; y) =C f(y; x) for each f 2 �AC.

De�nition 2.3.2 Two terms s and t are AC-uni�able if there exists a substitution � such

that �(s) �
AC

�(t). A set of terms T is AC-uni�able if there exists a substitution � such that

�(s) �
AC

�(t) for all s; t 2 T .

De�nition 2.3.3 An AC-term rewriting system (AC-TRS) is a TRS with AC-function

symbols �AC. An AC-reduction relation1 !
R=AC

is de�ned as follows:

s !
R=AC

t
def
() s �

AC

C[l�] ^ t � C[r�] for some l! r 2 R; C[ ] and �

We often omit the subscripts R=AC whenever no confusion arises.
1In this thesis, we introduce AC-TRSs as TRSs with AC-matching. On the other hand, in usual way,

AC-TRSs have been introduced as rewriting systems over equivalence classes of terms modulo �
AC

, that

is, t �
AC

C[r�] is used instead of t � C[r�] in the above de�nition. For studying AC-termination, these two

systems are essentially same. Refer to [52].
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De�nition 2.3.4 An AC-TRS R is AC-terminating if its AC-reduction relation !
R=AC

is

terminating.

2.4 Reduction Order and AC-Reduction Order

The termination property of TRSs is undecidable [27], even for one-rule systems [13].

Nevertheless, it is often necessary to prove the termination for a particular system. To

prove (AC-)termination, we commonly design a (AC-)reduction order by which all rules

are ordered. Firstly we introduce the notion of (AC-)reduction orders.

De�nition 2.4.1 A rewrite order > is a strict order that is monotonic and stable. A

reduction order > is a well-founded rewrite order. An AC-reduction order > is a reduction

order that is AC-compatible, i.e., s �
AC

s0 > t) s > t.

Theorem 2.4.2 A TRS R is terminating i� there exists a reduction order > that is

compatible with R. An AC-TRS R is AC-terminating i� there exists an AC-reduction

order that is compatible with R.

Proof. It suÆces to show the cases for AC-TRSs, because each TRS is a special form of

AC-TRSs, i.e., �AC = ;. Let R be an AC-TRS. From the de�nition, it is trivial that R is

AC-terminating i� the transitive closure of its AC-reduction relation
+
!

R=AC

is well-founded.

Moreover,
+
!

R=AC

is well-founded i�
+
!

R=AC

is an AC-reduction order, which obviously satis�es

l
+
!

R=AC

r for all l! r 2 R. �

In order to prove termination of TRSs, several reduction orders have been proposed. In

this section, we introduce reduction orders based on polynomial interpretations [47, 50, 51]

and simpli�cation orders [15]. We also introduce several AC-reduction orders, which are

designed based on reduction orders.

2.4.1 Polynomial Interpretation

In this subsection, we introduce methods for designing reduction orders and AC-reduction

orders based on polynomial interpretations, in which function symbols are interpreted as

polynomials over natural numbers.

De�nition 2.4.3 Let A � N . We denote a polynomial fA : An ! A for any f 2

� with arity n. We call a polynomial fA a monotone polynomial if it depends on all

its indeterminates, i.e., for all i (1 � i � n), it contains a monomial (with non-zero
coeÆcient) in which xi occurs with an exponent at least 1. For any � : V ! A, a

polynomial interpretation [[t]]� is de�ned as follows:

[[x]]� = �(x) and [[f(t1; : : : ; tn)]]� = fA([[t1]]�; : : : ; [[tn]]�)

The polynomial strict order >A is de�ned as follows:

s >A t
def
() 8�([[s]]� > [[t]]�)

A monotone polynomial strict order is a polynomial strict order in which all fA is a

monotone polynomial.
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Proposition 2.4.4 [47, 50, 51] Let A � Nnf0g. A monotone polynomial strict order is

a reduction order.

Proposition 2.4.5 [9] Let A � Nnf0g. If for any f 2 �AC we associate the polynomial

fA = f2XY + f1(X + Y ) + f0 with f2f0 = f1(f1 � 1) for some f0; f1; f2 2 A then the

monotone polynomial strict order is an AC-reduction order.

2.4.2 Simpli�cation Order

The most important study for designing reduction orders is the notion of simpli�cation

orders introduced by Dershowitz [15]. Based on the notion several reduction orders are

introduced [15, 16, 17, 31, 32, 33].

De�nition 2.4.6 A simpli�cation order > is a rewrite order on T (�;V) with the subterm

property, i.e., C[t] > t for all term t and non-empty context C (6� �). An AC-compatible

simpli�cation order > is a simpli�cation order with the AC-compatibility i.e., s �
AC

s0 >

t) s > t.

Note that simpli�cation orders require the subterm property instead of the well-

foundedness. This simpli�es the design of reduction orders, because mostly the subterm

property is easier to prove than the well-foundedness. We should mention that this sim-

pli�cation does not lose the well-foundedness.

Proposition 2.4.7 [15, 16] Any simpli�cation order is well-founded. Hence any simpli-
�cation order is a reduction order2.

The proof of this proposition is based on Kruskal's Embedding Theorem [42].

De�nition 2.4.8 A TRS R is simply terminating if there exists a simpli�cation order
compatible with R.

We de�ne the embedding TRS Emb = ff(x1; : : : ; xi; : : : ; xn) ! xi j f 2 �; 1 � i �

n = arity(f)g.

Proposition 2.4.9 [41] A TRS R is simply terminating if and only if R [ Emb is ter-

minating.

As representative simpli�cation orders, we introduce the recursive path order and the

lexicographic path order.

De�nition 2.4.10 (Recursive Path Order) Let B be a strict order on �, called prece-

dence. We de�ne s >rpo t as follows:

� t 2 V ar(s) and s 6� t, or

� s � f(s1; : : : ; sn) and t � g(t1; : : : ; tm), and

{ f B g and s >rpo tj for all j,

2In this thesis, we restrict that the signature � is �nite. In in�nite signatures case, this proposition

does not hold. Refer to [54].
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{ f = g and fs1; : : : ; sng �rpo ft1; : : : ; tmg, or

{ si �rpo t for some i.

Proposition 2.4.11 [15, 16] The recursive path order >rpo is a simpli�cation order.

De�nition 2.4.12 (Lexicographic Path Order) Let B be a strict order on �, called prece-

dence. We de�ne s >lpo t as follows:

� t 2 V ar(s) and s 6� t, or

� s � f(s1; : : : ; sn) and t � g(t1; : : : ; tm), and

{ f B g and s >lpo tj for all j,

{ f = g, [s1; : : : ; sn] >
lex
lpo [t1; : : : ; tm] and s >lpo tj for all j, or

{ si �lpo t for some i.

Proposition 2.4.13 [17, 32] The lexicographic path order >lpo is a simpli�cation order.

To extend the recursive order to an AC-reduction order, attening terms were intro-

duced. The attening term of a term t, denoted t, is the normal form of t for the rules

f(~xi; f(~yi); ~zi)! f(~xi; ~yi; ~zi) for each AC-symbol f , where x1; : : : ; xn is abbreviated to ~x.

Notice that we allow that the arity of AC-function symbols does not �x. Using attening

terms and the recursive path order >rpo, we de�ne s >
flat

rpo
t by s >rpo t

3. However, this

order >flat

rpo
is not always monotonic. Therefore, we need a suitable restriction on the

precedence, as shown by the following proposition.

Proposition 2.4.14 [7] If all AC-symbols are minimal in a precedence B, then the order

>flat

rpo
is an AC-reduction order.

Based on this work a lot of AC-reduction orders have been proposed by Bachmair [8],

by Delor and Puel [14], by Kapur, Sivakumar and Zhang [34, 35], by Rubio and Nieuwen-

huis [61], and so on. Finally, we explain the newest AC-reduction order, introduced by

Rubio, which does not require any restriction on the precedence [62].

De�nition 2.4.15 We suppose that each term is a attening term. Let > be a binary

relation on terms, B be a precedence and f be an AC-function symbol. The multiset
extension of > w.r.t. f , denoted by ��f , is de�ned as the smallest transitive relation

including =AC and satisfying the following property:

X [ fsg��fY [ ft1; : : : ; tng if

8<
:

X =AC Y; s > ti; and

if (s)" 7 f then (s)" D (ti)";

for all i 2 f1; : : : ; ng

For any s, #(s) is an expression with variables on the positive integers, de�ned as
#(f(si; : : : ; sn)) = �n

i=1#v(si), where #v(x) = x and #v(t) = 1 if t 62 V. We de�ne

#(s) >poly #(t) by �(#(s)) > �(#(t)) for all � : V ! Nnf0g, and #(s) �poly #(t) by

3Strictly speaking, the binary relation >rpo in s >rpo t is di�erent from De�nition 2.4.10: si �rpo t is

interpreted as si >rpo t or si �
AC

t.
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�(#(s)) � �(#(t)) for all � : V ! Nnf0g. The top-attening of a term s w.r.t. f is a

string of terms de�ned as follows:

tff (s) =

�
s1; : : : ; sn if s � f(s1; : : : ; sn)

s if (s)" 6= f

For any s � f(s1; : : : ; sn), we de�ne BigHead(s), NoSmallHead(s) and EmbNoBig(s)

as follows:

BigHead(s) = fsi j (si)" B fg

NoSmallHead(s) = fsi j f 7 (si)"g

EmbNoBig(s) = ff(s1; : : : ; tff (tij); : : : ; sn) j si � h(ti1; : : : ; tim); h 7 fg

We de�ne s > t as follows:

� t 2 V ar(s) and s 6� t, or

� s � f(s1; : : : ; sn) and t � g(t1; : : : ; tm), and

{ f B g and s > tj for all j,

{ f = g 62 �AC, [s1; : : : ; sn] >
lex [t1; : : : ; tm] and s > tj for all j,

{ si � t for some i,

{ f = g 2 �AC and s0 � t for some s0 2 EmbNoBig(s), or

{ f = g 2 �AC, s � t0 for all t0 2 EmbNoBig(t),

NoSmallHead(s)��fNoSmallHead(t), and either

� BigHead(s)� BigHead(t),

� #(s) >poly #(t), or

� #(s) �poly #(t) and fs1; : : : ; sng � ft1; : : : ; tmg,

where � is the union of > and �
AC

.

Proposition 2.4.16 [62] The binary relation > in De�nition 2.4.15 is an AC-compatible
simpli�cation order. Hence it is an AC-reduction order.
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Chapter 3

Dependency Pairs

Recently, Arts and Giesl proposed the notion of dependency pairs, which can o�er e�ective

methods for analyzing an in�nite reduction sequence [1, 2]. Intuitively, the dependency

pair is a method to check a dependency of function call sequences in evaluating processes

of term rewriting systems as programs. Using dependency pairs, we can easily show the

termination property of TRSs to which traditional techniques cannot be applied directly.

In Section 3.1, we introduce the notion and basic results.

The method of dependency pairs compares rewrite rules and dependency pairs by a

weak reduction order, which plays an important role on this method, instead of a reduction

order. In Section 3.2, we introduce the notion of weak reduction orders and its application

for proving termination. We introduce two methods to design weak reduction orders. One

is the argument �ltering method, which designs a weak reduction order from an arbitrary

reduction order. Another one is the polynomial interpretation methods.

A set of dependency pairs itself is regarded as a term rewriting system. However,

a term rewriting system, the set of its dependency pairs and the union of them do not

accurately agree on the termination property. In Section 3.3, we present a hierarchy for

the termination property between these systems.

In Section 3.4, we state the dependency graph, which gives a more powerful method

for analyzing an in�nite reduction sequence.

3.1 Dependency Pair and Dependency Chain

In this section, we explain dependency pairs and dependency chains.

De�nition 3.1.1 Let �# = � ] ff# j f 2 �g be a set of function symbols. We de�ne
the marking function # : T (�;V) ! T (�#;V) by #(x) = x and #(f(t1; : : : ; tn)) =

f#(t1; : : : ; tn). We write t# instead of #(t).

De�nition 3.1.2 Let R be a TRS. A pair hu#; v#i of terms is a dependency pair of R
if there exists a rule u ! C[v] 2 R for some C such that (v)" 2 DF (R). The set of

dependency pairs of R is written by DP#(R). The set of unmarked dependency pairs of

R, written by DP (R), is obtained by erasing marks of symbols in DP#(R).

Example 3.1.3 Let R = fadd(x; 0)! x; add(x; s(y))! s(add(x; y))g. Then,

DP (R) = fhadd(x; s(y)); add(x; y)ig; DP#(R) = fhadd#(x; s(y)); add#(x; y)ig:
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De�nition 3.1.4 A sequence of dependency pairs hu#

0 ; v
#

0 ihu
#

1 ; v
#

1 ihu
#

2 ; v
#

2 i � � � is a depen-

dency chain if there exists a substitution � over T (�;V) such that v#i �
�
!
R

u#

i+1� for all i.

We assume that di�erent dependency pair occurrences do not own jointly variables without

loss of generality.

Theorem 3.1.5 [1, 2] A TRS R is not terminating i� there exists an in�nite dependency

chain of R.

Proof.

(() Let hu#

0 ; v
#

0 ihu
#

1 ; v
#

1 ihu
#

2 ; v
#

2 i � � � be an in�nite dependency chain with a substitution

� such that v#i �
�
!u#

i+1� for all i. Since there exist Ci (i = 0; 1; 2; : : :) such that

ui ! Ci[vi] 2 R, there exists an in�nite reduction sequence u0� ! C0[v0]�
�
!C0[u1]�

! C0[C1[v1]]�
�
!C0[C1[u2]]� ! C0[C1[C2[v2]]]�

�
!� � �.

()) Let t be a minimal size counterexample, i.e., t is a minimal size in all non-terminating

terms. Since any proper subterm of t is terminating, there is a rule l0 ! C0[r0] 2 R

and a substitution � such that t#
�
! l#0 � and r0� is a minimal size counterexample

in all subterms of C0[r0]�. From the minimality of t, x� is terminating for all

x 2 V ar(r0) � V ar(l0). From the minimality of r0�, it follows that (r0)" 2 DF (R).

Thus, hl#0 ; r
#

0 i is a dependency pair. Applying similar procedure to r0�, we get a

rule l1 ! C1[r1] 2 R and a dependency pair hl#1 ; r
#

1 i such that r#0 �
�
! l#1 � and r1� is

a minimal size counterexample in all subterms of C1[r1]�. Applying this procedure

repeatedly, we obtain an in�nite dependency chain hl#0 ; r
#

0 ihl
#

1 ; r
#

1 ihl
#

2 ; r
#

2 i � � �. �

This theorem is the key in the dependency pair method. All results of dependency

pairs are essentially based on this theorem. In the next section, we will introduce proving

methods for termination using dependency pairs.

3.2 Proving Termination by Dependency Pairs

The method of dependency pairs compares rewrite rules and dependency pairs by a weak

reduction order or by a weak reduction pair instead of a reduction order. In this section,

we �rstly introduce the notion of weak reduction orders and its application for proving

termination. Next, we introduce the notion of weak reduction pairs, which is a generaliza-

tion of weak reduction orders. Lastly, we introduce two methods to design weak reduction

orders and weak reduction pairs. One is the argument �ltering method[5, 23, 46]. Another

one is the polynomial interpretation method [23, 43, 52].

3.2.1 Weak Reduction Order

In this subsection, we introduce the notion of weak reduction orders and methods for

proving termination using dependency pairs.

De�nition 3.2.1 A quasi-order & is a weak reduction order if & is monotonic and stable,

and its strict part � is well-founded and stable.
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The set of dependency pairs itself is a term rewriting system. Thus, the union of a

term rewriting system and its dependency pairs gives an extended term rewriting system.

Lemma 3.2.2 [5, 45] R is terminating if and only if R [DP#(R) is terminating.

Proof. (() Trivial. ()) We denote by jtj# the maximal nesting number of marked

symbols in t. We write C[[t1; : : : ; tn]] if each root symbol of ti is a marked symbol and

C (6� �) has no marked symbol. We denote (C[[t1; : : : ; tn]])
# by C#[[t1; : : : ; tn]]. Let

R0 = R [DP#(R). We prove that any t is terminating in R0 by induction on jtj#. In the

case jtj# = 0, it is trivial from termination of R. Suppose that jtj# > 0. We assume that

t is not terminating in R0.

(i) (t)" is a marked symbol.

Let t � C#

1 [[t11; : : : ; t1n1 ]]. From induction hypothesis, each t1j is terminating in

R0. Since each marked symbol occurs only at the root positions of paired terms

in DP#(R), any in�nite reduction sequence starting from t is expressed by t �

C#

1 [[t11; : : : ; t1n1 ]]
�
!
R0

C#

1 [[t
0

11; : : : ; t
0

1n1
]] !

R0

C#

2 [[t21; : : : ; t2n2 ]]
�
!
R0

C#

2 [[t
0

21; : : : ; t
0

2n2
]] !

R0

� � �

such that ft0i1; : : : ; t
0
ini
g � fti+1;1; : : : ; ti+1;ni+1g and tij

�
!
R0

t0ij for all i and j. From the

distribution of occurrences of marked symbols, we obtain an in�nite reduction se-

quence C#

1 !
R0

C#

2 !
R0

C#

3 !
R0

� � �. Since R is terminating, there are some i1; i2; : : : such

that C#

i1

�
!
R

C#

i2
���!
DP#(R)

C#

i3

�
!
R

C#

i4
���!
DP#(R)

C#

i5

�
!
R

C#

i6
���!
DP#(R)

� � �. Since rules of DP#(R)

are applied at only the root position in this in�nite reduction sequence, there are

some �Ci such that Ci1

�
!
R

Ci2 !
R

�C3[Ci3 ]
�
!
R

�C3[Ci4]!
R

�C3[ �C5[Ci5 ]]
�
!
R

�C3[ �C5[Ci6 ]]!
R

� � �.

It is a contradiction to the termination of R.

(ii) (t)" is an unmarked symbol.

Let t � C1[[t11; : : : ; t1n1]]. From jt1jj# � jtj# and (i), each t1j is terminating in R0.

Therefore, it is a contradiction as similar to (i). �

Theorem 3.2.3 [5] For any TRS R, the following two properties are equivalent.

1. R is terminating.

2. There exists a weak reduction order & such that & is compatible with R and its

strict part � is compatible with DP#(R).

Proof.

(1) 2) From Lemma 3.2.2, R [DP#(R) is terminating. Thus, there exists a reduction

order > compatible with R [ DP#(R). Let � be > [ �. Then it is trivial that

� is a weak reduction order such that it is compatible with R and its strict part is

compatible with DP#(R).

(2 ) 1) We assume that R is not terminating. From Theorem 3.1.5, there is an in�-

nite dependency chain hu#

0 ; v
#

0 ihu
#

1 ; v
#

1 ihu
#

2 ; v
#

2 i � � � with a substitution � such that

v#i �
�
!
R

u#

i+1� for all i. It follows that
�
!
R

�& from the assumption, the stability,

the transitivity and the monotonicity of &. For any i, we have u#

i � � v#i � from the

assumption and the stability of �. Therefore, we get an in�nite decreasing sequence
u#

0 � � v#0 � & u#

1 � � v#1 � & u#

2 � � v#2 � � � �. It is a contradiction. �

17



3.2.2 Weak Reduction Pair

The method of dependency pairs is useful for not only proving termination but also

analyzing other proving methods for termination. In order to analyze transformation

methods called elimination transformations, we need extend the notion of weak reduction

order to that of weak reduction pair. In this subsection, we introduce the notion of weak

reduction pair. About analyzing elimination transformations, we will discuss in Chapter

5.

De�nition 3.2.4 A pair (&; >) of binary relations on terms is a weak reduction pair1 if
it satis�es the following three conditions:

� & is monotonic and stable.

� > is stable and well-founded.

� (&; >) is compatible, i.e., & Æ >�> or > Æ &�>.

In the above de�nition, we do not assume that & is a quasi-order or > is a strict

order. This simpli�es the design of a weak reduction pair. We should mention that this

simpli�cation does not lose the generality of our de�nition, because for a given weak

reduction pair (&; >) we can make a weak reduction pair (&�; >+) in which &� is a quasi-

order and >+ is a strict order. Note that > is a reduction order if and only if (>;>) is a

weak reduction pair, and (&;�) is a weak reduction pair for all weak reduction order &.

Theorem 3.2.5 [46] For any TRS R, the following properties are equivalent.

1. TRS R is terminating.

2. There exists a weak reduction pair (&; >) such that & is compatible with R and >

is compatible with DP (R).

3. There exists a weak reduction pair (&; >) such that & is compatible with R and >

is compatible with DP#(R).

Proof. For the case (1) 2), we de�ne & by
�
!
R

, and s > t by s 6� t and s
�
!
R

C[t] for some

C. Then, it is easily shown that (&; >) is a weak reduction pair satisfying the conditions.

For the case (2 ) 3), it is easily shown by identifying f# with f . For the case (3 ) 1),

as similar to the proof of Theorem 3.2.3 (2) 1). �

In general for any terminating TRS R it is still open whether there exists a weak

reduction order & such that & is compatible with R and its strict part � is compatible

with unmarked dependency pairs DP (R). The proof for (1 ) 2) in Theorem 3.2.3 is

based on Lemma 3.2.2. However, the same proof method can not work well for unmarked

dependency pairs, because the termination of R does not ensure that of R [DP (R). In

fact, for the terminating TRS R = ff(f(x)) ! f(g(x)); g(x) ! h(f(x))g, R [ DP (R)

is not terminating. The fact maintains the usefulness of marking technique. On the

other hand, the above theorem guarantees the existence of a weak reduction pair (&; >)
such that & is compatible with R and its strict part > is compatible with unmarked

dependency pairs DP (R). This fact indicates that weak reduction pairs have an extra

power as compared with weak reduction orders.
1The notion of weak reduction pairs is a generalization of the stable-strict relation �ss in [23] and the

irreexive order >lift lifted from ground terms to non-ground terms in [5].
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3.2.3 Argument Filtering Method

The argument �ltering method was �rst proposed by Arts and Giesl [5, 23]. To analyze

other proving methods for termination, the method was slightly improved by combining

the subterm relation [46]. We �rstly explain the notion of argument �ltering function.

De�nition 3.2.6 An argument �ltering function is a function � such that for any f 2

�#, �(f) is either an integer i or a list of integers [i1; : : : ; im] (m � 0), where those integers

i; i1; : : : ; im are positive and not more than arity(f). Suppose that �#

� = ff 2 �# j �(f)

is a list g . We can naturally extend � from T (�#;V) to T (�#

� ;V) as follows:8<
:

�(x) = x

�(f(t1; : : : ; tn)) = �(ti) if �(f) = i

�(f(t1; : : : ; tn)) = f(�(ti1); : : : ; �(tim)) if �(f) = [i1; : : : ; im]

We denote by �(�) the substitution de�ned as �(�)(x) = �(�(x)) for all x 2 V.

We hereafter assume that if �(f) is not de�ned explicitly then it is intended to be

[1; : : : ; arity(f)].

De�nition 3.2.7 Let > be a binary relation on terms. We de�ne s >sub t by s 6� t and

s � C[t] for some C.

Lemma 3.2.8 Let > be a well-founded and monotonic binary relation on terms. Then

the binary relation >sub is well-founded.

Proof. We assume that there exists an in�nite decreasing sequence t0 >
sub t1 >

sub t2 >
sub

� � �. Then there exist contexts Ci (i = 1; 2; : : :) such that ti � Ci+1[ti+1] for any i. From

the monotonicity, t0 � C1[t1] � C1[C2[t2]] � � �. From the well-foundedness, there is some

k such that C1[� � �Ck[tk] � � �] � C1[� � �Ck+1[tk+1] � � �] � C1[� � �Ck+2[tk+2] � � �] � � � �. Thus,

there is somem such that Cm � �. Hence, it follows that tm�1 � tm. It is a contradiction.

�

De�nition 3.2.9 Let > be a reduction order and � an argument �ltering function. We
de�ne s &� t by �(s) � �(t), and s >� t by �(s) >

sub �(t).

Note that s �� t i� �(s) > �(t), and ��=>� if > is an simpli�cation order.

Lemma 3.2.10 �(�)(�(t)) � �(t�).

Proof. We prove this lemma by induction on t. The case t � x 2 V is trivial. Suppose

that t � f(t1; : : : ; tn). If �(f) = i then

�(�)(�(f(t1; : : : ; tn))) � �(�)(�(ti)) � �(ti�) � �(f(t1�; : : : ; tn�)) � �(f(t1; : : : ; tn)�):

If �(f) = [i1; : : : ; im] then

�(�)(�(f(t1; : : : ; tn))) � �(�)(f(�(ti1); : : : ; �(tim)))

� f(�(�)(�(ti1)); : : : ; �(�)(�(tim)))

� f(�(ti1�); : : : ; �(tim�))

� �(f(t1�; : : : ; tn�))

� �(f(t1; : : : ; tn)�): �
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Lemma 3.2.11 �(C)[�(t)] � �(C[t]).

Proof. We prove this lemma by induction on C. The case C � � is trivial. Suppose that

C � f(: : : ; ti�1; C
0; ti+1; : : :). We have the following two cases:

� �(f) = j: The case i 6= j is trivial. Suppose that i = j. Then,

�(C)[�(t)] � �(f(: : : ; ti�1; C
0; ti+1; : : :))[�(t)]

� �(C 0)[�(t)]

� �(C 0[t])

� �(f(: : : ; ti�1; C
0[t]; ti+1; : : :))

� �(C[t]):

� �(f) = [i1; : : : ; im]: The case i 62 �(f) is trivial. Suppose that i 2 �(f). Then,

�(C)[�(t)] � �(f(t1; : : : ; ti�1; C
0; ti+1; : : : ; tn)[�(t)]

� f(ti1 ; : : : ; �(C
0); : : : ; tim)[�(t)]

� f(ti1 ; : : : ; �(C
0)[�(t)]; : : : ; tim)

� f(ti1 ; : : : ; �(C
0[�(t)]); : : : ; tim)

� �(f(t1; : : : ; ti�1; C
0[t]; ti+1; : : : ; tn))

� �(C[t]):
�

Theorem 3.2.12 [5, 23] Let > be a reduction order and � an argument �ltering function.

Then &� is a weak reduction order2.

Proof.

� (&� is a quasi-order): It is trivial.

� (The monotonicity of &�): From Lemma 3.2.11, s &� t) �(s) � �(t)) �(C)[�(s)]

� �(C)[�(t)] ) �(C[s]) � �(C[t]) ) C[s] &� C[t].

� (The stability of &�): From Lemma 3.2.10, s &� t ) �(s) � �(t) ) �(�)(�(s)) �

�(�)(�(t)) ) �(s�) � �(t�) ) s� &� t�.

� (The well-foundedness of ��): We assume that there exists an in�nite decreasing

sequence t0 �� t1 �� t2 �� � � �. Then, it follows that �(t0) > �(t1) > �(t2) > � � �. It

is a contradiction to the well-foundedness of >.

� (The stability of ��): From Lemma 3.2.10, s �� t ) �(s) > �(t) ) �(�)(�(s)) >

�(�)(�(t)) ) �(s�) > �(t�) ) s� �� t�. �

Theorem 3.2.13 [46] Let > be a reduction order and � an argument �ltering function.

Then (&�; >�) is a weak reduction pair.

2For designing a weak reduction order, the argument �ltering method is essentially a special form of

recursive program schema (RPS) [11].
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Proof. In the proof of Theorem 3.2.12, we have already shown the stability and the

monotonicity of &�.

� (The well-foundedness of >�): We assume that there exists an in�nite decreasing

sequence t0 >� t1 >� t2 >� � � �. Then �(t0) >
sub �(t1) >

sub �(t2) >
sub � � �. It is a

contradiction to Lemma 3.2.8.

� (The stability of >�): From Lemmas 3.2.10 and 3.2.11, s >� t ) �(s) � C[�(t)]

) �(�)(�(s)) � �(�)(C[�(t)]) ) �(s�) � C 0[�(t�)] where C 0 � �(C�). We assume

that �(s�) � �(t�). Then, �(s�) � C 0[�(s�)] � C 0[C 0[�(s�)]] � � �. Thus, C 0 � � and

C � �. Hence, it follows that �(s) � �(t). Since �(s) 6� �(t), �(s) > �(t). From

the stability of >, �(�)(�(s)) > �(�)(�(t)). From Lemma 3.2.10, �(s�) > �(t�). It

is a contradiction to �(s�) � �(t�).

� (&� Æ >��>�): Let t0 &� t1 >� t2. Then �(t1) 6� �(t2) and �(t0) � �(t1) � C[�(t2)]

for some C. It follows �(t0) � C[�(t2)]. It suÆces to show that �(t0) 6� �(t2).

Assume that �(t0) � �(t2). Then �(t2) � �(t1) � C[�(t2)]. Since �(t2) � C[�(t2)],

it follows that C � �. Moreover it follows that �(t1) � �(t2). It is a contradiction.

�

3.2.4 Polynomial Interpretation

In this subsection, using polynomial interpretations, we introduce methods to design weak

reduction orders and weak reduction pairs.

Theorem 3.2.14 [43] Let A � Nnf0g. We de�ne the polynomial quasi-order &A as
follows:

s &A t
def
() 8�([[s]]� > [[t]]�) or 8�([[s]]� = [[t]]�):

Then, the polynomial quasi-order &A is a weak reduction order.

Proof. As similar to Theorem 3.2.12 based on Proposition 2.4.4. �

The above polynomial quasi-order cannot treat the value 0, because in the case 0 2 A

the above polynomial quasi-order &A is not monotonic. For example, let aA = 2, bA = 1,

fA(X; Y ) = XY , C � f(�; x) and 0 2 A. Then, it follows that a &A b and C[a] 6&A C[b].

On the other hand, the following polynomial interpretation method can treat the value 0.

Proposition 3.2.15 [23, 52] Let A � N . We de�ne the pair (&A; >A) as follows:

s &A t
def
() 8�([[s]]� � [[t]]�); s >A t

def
() 8�([[s]]� > [[t]]�):

Then, the pair (&A; >A) is a weak reduction pair.

Note that this binary relation &A is not a weak reduction order, because its strict part

�A is not stable. For example, let aA = min(A), fA = X and �(x) = a. Then, it follows

that f(x) �A a and f(x)� � f(a) 6�A a.

These method by polynomial interpretations can easily extend to methods by arbitrary

algebraic interpretations.
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3.3 Hierarchy of Dependency Pairs

A dependency pair can be regarded as a rewrite rule, because the pair of terms satis�es the

variable condition. Hence, we can regard DP (R) and DP#(R) as term rewriting systems,

respectively. However, TRS R, DP (R), DP#(R) and the union of them do not accurately

coincide on the termination property. In fact, for the TRS R1 = ff(a) ! f(b); b ! ag,

it is trivial that R1 is not terminating while DP (R1) = ff(a) ! f(b); f(a) ! bg is

terminating. In this section, we investigate relations between TRSs, their dependency

pairs and the union of them. Moreover, we discuss the e�ectiveness of the marking

technique. As a result, we show a hierarchy of dependency pairs, which indicate a class

of TRSs in which the marking technique e�ectively works for proving termination.

Theorem 3.3.1 [45] The following inclusion relations hold:

(1) R is simply terminating if and only if R [DP (R) is simply terminating.

(2) If R [DP (R) is simply terminating then R [DP (R) is terminating.

(3) If R [DP (R) is terminating then R and DP (R) are terminating.

(4) R is terminating if and only if R [DP#(R) is terminating.

(5) If R [DP#(R) is terminating then DP#(R) is terminating.

(6) If DP (R) is terminating then DP#(R) is terminating.

Proof. The cases (2,3,5) are trivial, because all sub-TRSs of a terminating TRS are

terminating.

(1) (() Trivial. ()) We de�ne s > t by s
+

���!
R[Emb

t. Since R is simply terminating, > is

a simpli�cation order. It is easily checked that > is compatible with R [ DP (R).

Therefore, R [DP (R) is simply terminating.

(4) This case is Lemma 3.2.2.

(6) Assume that DP#(R) is not terminating and t0���!
DP#(R)

t1 ���!
DP#(R)

t2���!
DP#(R)

� � �. Let t0i

be the term obtained by erasing marking in ti. Then, it is clear that t00���!
DP (R)

t01

���!
DP (R)

t02���!
DP (R)

� � �. It is a contradiction to the termination of DP (R). �

Theorem 3.3.2 [45] There exist TRSs Ri such the following:

(1) DP (R1) is terminating but R1 is not terminating.

(2) DP#(R2) is terminating but R2 and DP (R2) are not terminating.

(3) R3 is terminating but DP (R3) is not terminating.

(4) R4 and DP (R4) are terminating but R4 [DP (R4) is not terminating.

(5) R5 [DP (R5) is terminating but R5 is not simply terminating.
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Proof. For each termination proof, we use the recursive path order > as a reduction order,

and we extend > to a weak reduction order &� by the argument �ltering method.

(1) Consider the following TRSs R1 and R0
1:

R1 =

�
f(a) ! f(b)

b ! a
R0
1 =

�
f(a) ! f(b)

f(a) ! b

Here, R0
1 corresponds to DP (R1). Let aB b. Then > is compatible with R0

1. Hence,

R0
1 is terminating. However, R1 is not terminating because of f(a)!

R1

f(b)!
R1

f(a).

(2) Consider the following TRSs R2, R
0
2 and R00

2:

R2 =

8<
:

f(f(x)) ! f(g(x))

g(x) ! h(f(x))

h(x) ! x

R0
2 =

8>><
>>:

f(f(x)) ! f(g(x))

f(f(x)) ! g(x)

g(x) ! h(f(x))

g(x) ! f(x)

R00
2 =

8>><
>>:

�f(f(x)) ! �f(g(x))
�f(f(x)) ! �g(x)

�g(x) ! �h(f(x))

�g(x) ! �f(x)

Here, R0
2 and R00

2 correspond to DP (R2) and DP#(R2), respectively. Let �(�h) = [],

f B g, f B �g B �f and �g B �h. Then &� is compatible with R00
2, and �� is compatible

with DP (R00
2). Hence, R00

2 is terminating. However, R2 and R0
2 are not terminat-

ing because of f(f(x))!
R2

f(g(x)) !
R2

f(h(f(x))) !
R2

f(f(x)) and f(f(x))!
R0

2

f(g(x))

!
R0

2

f(f(x)).

(3) Consider the following TRSs R3 and R0
3:

R3 =

�
f(f(x)) ! f(g(x))

g(x) ! h(f(x))
R0
3 =

8<
:

f(f(x)) ! f(g(x))

f(f(x)) ! g(x)

g(x) ! f(x)

Here, R0
3 corresponds toDP (R3). Let �(h) = [], fBgBh and fBg#Bf#. Then &� is

compatible with R3, and �� is compatible withDP#(R3). Hence, R3 is terminating.

However, R0
3 is not terminating because of f(f(x))!

R0

3

f(g(x)) !
R0

3

f(f(x)).

(4) Consider the following TRSs R4, R
0
4 and R00

4:

R4 =

8<
:

f(a) ! f(b)

b ! g(h(a))

h(x) ! x

R0
4 =

8<
:

f(a) ! f(b)

f(a) ! b

b ! h(a)

R00
4 =

8>>>><
>>>>:

f(a) ! f(b)

b ! g(h(a))

h(x) ! x

f(a) ! b

b ! h(a)
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Here, R0
4 and R

00
4 correspond to DP (R4) and R4[DP (R4), respectively. Let �(g) =

�(h#) = [], aB bB g and f# B b# B h#. Then &� is compatible with R4, and �� is

compatible with DP#(R4). Hence, R4 is terminating. Let �(h) = [] and aB bB h.

Then &� is compatible with R0
4, and �� is compatible with DP (R0

4). Hence, R0
4

is terminating. However, R00
4 is not terminating because of f(a)!

R00

4

f(b) !
R00

4

f(h(a))

!
R00

4

f(a).

(5) Consider the following TRSs R5 and R0
5:

R5 =
�
f(f(x)) ! f(g(f(x))) R0

5 =

�
f(f(x)) ! f(g(f(x)))

f(f(x)) ! f(x)

Here, R0
5 corresponds to R5 [ DP (R5). Let �(g) = [] and f B g. Then &� is

compatible with R0
5, and �� is compatible with DP (R0

5). Hence, R
0
5 is terminating.

However, R5 is not simply terminating because of f(f(x))!
R5

f(g(f(x))) !
Emb

f(f(x)).

�

From Theorems 3.3.1 and 3.3.2, we can demonstrate the hierarchy as follows: (Figure

3.1)

R [ Emb, R [DP (R) [ Emb

R [DP (R)

DP (R)

R, R [DP#(R)

DP
#(R)

R1

R2

R3

R4

R5

Figure 3.1: The Hierarchy of Dependency Pairs

This hierarchy makes clear the class of TRSs in which the marking technique works

e�ectively for proving termination. Since R and R [DP (R) make the di�erence class in

this hierarchy, we conclude that marking is e�ective for the class that R is terminating

but R[DP (R) is not terminating. In fact, in Theorem 3.3.2, marking is only used in the

termination proof of R3 and R4, which belong to this class.
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3.4 Dependency Graph

For proving termination by Theorem 3.2.3, all dependency pairs must be checked. In order

to removing unnecessary dependency pairs, the notion of dependency graphs introduced

by Arts and Giesl is very useful [1, 2].

De�nition 3.4.1 We de�ne a directed graph as a set of nodes and a set of arcs, each arc

leading from a node to a node. A path is a sequence of nodes in which successive nodes

are connected by arcs in the graph. A cycle is a path of length at least 1 in which no

node is repeated except that the �rst and the last nodes are the same. We regard cycles

n1; : : : ; nk and ni; : : : ; nk�1; n1; : : : ; ni as the same cycle. A non-empty set N of nodes

is a cluster if for all nodes n; n0 2 N there exist n1; n2; : : : ; nm 2 N (m � 0) such that
n; n1; n2; : : : ; nm; n

0 is a path in the graph.

Notice that the length of a path n; n1; n2; : : : ; nm; n
0 in the above de�nition about

cluster is at least 1.

De�nition 3.4.2 A dependency graph of R is a directed graph of which the nodes are

dependency pairs, and there is an arc from hu#; v#i to hu0#; v0#i if hu#; v#ihu0#; v0#i is a
dependency chain.

Theorem 3.4.3 [1, 2] Let R be a TRS. If there exists a weak reduction order & such
that

� l & r for all l ! r 2 R,

� u# & v# for all hu#; v#i on a cycle in the dependency graph of R, and

� u# � v# for at least one hu#; v#i on each cycle in the dependency graph of R,

then R is terminating.

Proof. Assume that R is not terminating. From Theorem 3.1.5, there exists an in�nite

dependency chain hu#

0 ; v
#

0 ihu
#

1 ; v
#

1 ihu
#

2 ; v
#

2 i � � � with � such that v
#

i �
�
!u#

i+1� for all i. Since

the number of dependency pairs is �nite, there exists a tail of this in�nite dependency

chain hu#

m; v
#

mihu
#

m+1; v
#

m+1ihu
#

m+2; v
#

m+2i � � � in which all occurring dependency pairs occur

in�nitely often up to variable renaming. Here, v#i � & u#

i+1� for all i. Since any hu#

i ; v
#

i i

(i � m) is on a cycle, u#

i � & v#i �. Since this tail is an in�nite length path, in�nite number

cycles occur. Hence cases like u#

i � � v#i � occur in�nitely often. It is a contradiction. �

The reader might think that this theorem can be generalized by dividing for treating

each cycle, that is, for each cycle C we allow to use di�erent weak reduction order &C .

Unfortunately this generalization is not sound. For example, consider the following TRS:

R = ff(c; x; c)! f(a; b; x); f(a; b; x)! f(c; d; x); f(x; d; d)! f(a; b; x)g

Then, its dependency graph is Figure 3.2. In this graph, there are two cycles, that is, (1)

does not construct a cycle. For each cycle (2) and (3), it is easy to design a weak reduction

order by argument �ltering method based on the recursive path order. However, R is not

terminating because f(a; b; c) ! f(c; d; c) ! f(a; b; d) ! f(c; d; d) ! f(a; b; c). To lead

this conjecture to be sound, we need the notion of clusters. In fact, the cluster (1) is

essential for existence of in�nite dependency chains in the above examples. Note that

similar problem is also caused even if we change the de�nition of cycles such repeating no

arcs instead of nodes.
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hf#(c; x; c); f#(a; b; x)i hf#(a; b; x); f#(c; d; x)i hf#(x; d; d); f#(a; b; x)i

(1)

(2)

(3)

Figure 3.2: Dependency Graph

Theorem 3.4.4 [4] Let R be a TRS. If for each cluster N in the dependency graph there

exists a weak reduction order &N such that

� l &N r for all l! r 2 R,
� u# &N v# for all hu#; v#i in N , and
� u# �N v# for at least one hu#; v#i in N ,

then R is terminating.

Proof. Assume that R is not terminating. From Theorem 3.1.5, there exists an in�nite

dependency chain hu#

0 ; v
#

0 ihu
#

1 ; v
#

1 ihu
#

2 ; v
#

2 i � � �. Since the number of dependency pairs is

�nite, there exist dependency pairs occuring in�nitely often, up to variable renaming. Let

N = fhu#

k1
; v#k1i; : : : ; hu

#

kn
; v#knig be the set of all dependency pairs that occur in�nitely

often in this dependency chain. From the construction of N , N is a cluster. Moreover,

there exists a number m such that hu#

m; v
#

mihu
#

m+1; v
#

m+1i � � � is constructed from depen-

dency pairs in N , and any dependency pair in N occurs in�nitely often in the chain. From

the assumption, there exists a decreasing sequence v#m� &N u#

m+1� &N v#m+1� &N u#

m+2�

&N � � �, in which cases like u#

i � �N v#i � occur in�nitely often. It leads to a contradiction.

�

Unfortunately, dependency graphs in general are not computable, because it is unde-

cidable whether there is some substitution � such that v#�
�
! u0#� for two dependency

pairs hu#; v#i and hu0#; v0#i. To generate approximated dependency graphs, Arts and

Giesl introduced the following algorithm.

De�nition 3.4.5 Let R be a TRS, t a term and z1; z2; : : : an in�nite sequence of fresh
variables. The function CAP and REN from terms to terms are inductively de�ned as

follows:

CAP (x) = x

CAP (f(t1; : : : ; tn)) =

�
z if f 2 DF (R)

f(CAP (t1); : : : ; CAP (tn)) if f 62 DF (R)

REN(x) = z
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REN(f(t1; : : : ; tn)) = f(REN(t1); : : : ; REN(tn))

where z represents the next fresh variable in the list of free variables.

De�nition 3.4.6 Let R be a TRS. The approximated dependency graph of R is a directed

graph of which the nodes are dependency pairs, and there is an arc from hu#; v#i to

hu0#; v0#i if REN(CAP (v#)) and u0# are uni�able.

Proposition 3.4.7 [1, 2] Let R be a TRS. The approximated dependency graph of R is

a subgraph of the dependency graph of R.

Arts and Giesl proposed a more powerful approximation algorithm using narrowing

technique [1, 3].
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Chapter 4

AC-Dependency Pairs

In this chapter, we extend the notion of dependency pairs to AC-TRSs. It is impossible

to directly apply the notion of dependency pairs to AC-TRSs. We show this diÆculty

through an example. To avoid this diÆculty we introduce the notion of head parts in

terms and show an analogy between the root positions in in�nite reduction sequences

by TRSs and the head positions in those by AC-TRSs. Indeed, this analogy is essential

for the extension of dependency pairs to AC-TRSs. Based on this analogy, we de�ne

AC-dependency pairs and AC-dependency chains.

The method of AC-dependency pairs compares rewrite rules and AC-dependency pairs

by a weak AC-reduction order or by a weak AC-reduction pair, which play an important

role on this method, instead of AC-reduction orders. We introduce the notion of weak

AC-reduction orders and weak AC-reduction pairs. We show their application for proving

AC-termination. Before introducing AC-dependency pairs, we have studied no designing

method for weak AC-reduction orders and weak AC-reduction pairs. Hence we introduce

the argument �ltering method and the polynomial interpretation method. The original

idea of the argument �ltering method for TRSs without AC-function symbols was �rst

proposed by Arts and Giesl [5, 23]. To analyze other proving methods for termination,

this method was slightly improved by combining the subterm relation [46]. We extend

these methods to AC-TRSs. Our extension designs a weak AC-reduction order and a

weak AC-reduction pair from an arbitrary AC-reduction order. Moreover, in order to

strengthen the power of the argument �ltering method, we improve the method in two

directions. One is the lexicographic argument �ltering method, which lexicographically

combines argument �ltering functions to compare AC-dependency pairs. Another one is

an extension over multisets modulo AC.

Lastly, we introduce the notion of AC-dependency graphs. Since dependency graphs

in general are not computable, some algorithms for generating approximated dependency

graphs in TRSs were introduced [1, 2]. We also propose another algorithm for generating

an approximated AC-dependency graph, using the techniques of 
-reduction and 
V -

reduction, which are introduced to analyze decidable call-by-need computations in TRSs

[28, 55, 59]. Of course, our algorithm can also apply to TRSs, because TRSs are AC-TRSs

without AC-symbols.
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4.1 AC-Dependency Pair and AC-Dependency Chain

This section presents the notions of AC-dependency pairs and AC-dependency chains

for AC-TRSs. In order to simplify the discussion, we �rst treat AC-dependency pairs

without marked symbols, though the following discussion can be easily extended to AC-

dependency pairs with marked symbols.

4.1.1 Unmarked AC-Dependency Pairs and Chains

The notion of dependency pairs cannot be directly applied to AC-TRSs. Consider the AC-

TRS R = ff(x; x) ! f(0; 1)g with �AC = ffg. Here, DP#(R) = fhf#(x; x); f#(0; 1)ig.

The AC-TRS R is not AC-terminating, because

f(f(0; 0); 1)!
R

f(f(0; 1); 1)�
AC

f(0; f(1; 1))!
R

f(0; f(0; 1))�
AC

f(f(0; 0); 1):

However, there is no in�nite dependency chain, i.e., f#(0; 1)� 6
�
!

R=AC

f#(x; x)� for all �. Thus

the equivalency between the existence of in�nite dependency chains and non-termination

(Theorem 3.1.5) does not hold for AC-TRSs. Theorem 3.1.5 is proved from the fact

that any in�nite reduction sequence from a minimal size counterexample must include

a reduction at the root position. However, this property does not hold for AC-TRSs.

In fact, the in�nite AC-reduction sequence in the above example does not include such

the reduction though f(f(0; 0); 1) is a minimal size counterexample in R. To avoid this

diÆculty, we introduce the notion of head positions, which behaves like the root position

in a minimal size counterexample in TRSs.

De�nition 4.1.1

Ohd(t) =

�
fp j 8q � p; (t)q = (t)"g if (t)" 2 �AC

f"g if (t)" 62 �AC

Tbd(t) =

�
ftjp j (t)p 6= (t)"; 8q � p [(t)q = (t)"]g if (t)" 2 �AC

ftji j 1 � i � arity((t)")g if (t)" 62 �AC

De�nition 4.1.2

s
hd
! t

def
() s �

AC

s0!
R

p t for some s0 and p 2 Ohd(s
0)

s
bd
! t

def
() s �

AC

s0!
R

p t for some s0 and p 62 Ohd(s
0)

sDhd t
def
() s �

AC

C[t]p for some C[ ]p and p 2 Ohd(C[t]p)

For example, let t � f(f(0; 1); g(f(2; 3))) and �AC = ffg. Then Ohd(t) = f"; 1g,

Tbd(t) = f0; 1; g(f(2; 3))g and f(f(0; 1); g(f(2; 3)))Dhd f(0; 1).

De�nition 4.1.3 Let R be an AC-TRS. The set DPAC(R) of unmarked AC-dependency

pairs in R is de�ned by

DPAC(R) = DP (R) [ fhf(l; z); f(r; z)i j l! r 2 R; (l)" = f 2 �ACg

where z is a esh variable. We call hf(l; z); f(r; z)i by unmarked extended dependency

pair.
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Example 4.1.4 Let �AC = faddg and

R =

�
add(x; 0) ! x

add(x; s(y)) ! s(add(x; y))

Here, DF (R) = faddg. There is one unmarked dependency pairs

hadd(x; s(y)); add(x; y)i

and two unmarked extended dependency pairs

hadd(add(x; 0); z); add(x; z)i; hadd(add(x; s(y)); z); add(s(add(x; y)); z)i:

De�nition 4.1.5 A sequence of unmarked AC-dependency pairs hu0; v0ihu1; v1ihu2; v2i � � �

is an unmarked AC-dependency chain if there exists a substitution � such that vi�
bd
!

�Dhd

ui+1� for all i. We assume that di�erent unmarked AC-dependency pair occurrences do

not own jointly variables without loss of generality.

Lemma 4.1.6 Let s � C[s1; : : : ; sn]
bd
! t such that each s0 2 Tbd(s) is a subterm of some

si. Then there are t1; : : : ; tn such that C[t1; : : : ; tn] �
AC

t, each t0 2 Tbd(C[t1; : : : ; tn]) is a

subterm of some ti, and there is some k such that sk !
R=AC

tk and sj � tj for all j 6= k.

Proof. It is obvious from the de�nitions of
bd
! and �

AC

. �

Lemma 4.1.7 Let t be an arbitrary term such that any term in Tbd(t) is AC-terminating.

Then there is no in�nite
bd
! sequence starting from t.

Proof. Assume that there exists an in�nite
bd
! sequence t � t0

bd
! t1

bd
!� � �. Suppose that

t0 � C[t01; : : : ; t0n] where all body terms of t0 are presented by t01; : : : ; t0n. Applying

Lemma 4.1.6 repeatedly, for any i there are ti1; : : : ; tin such that ti �
AC

C[ti1; : : : ; tin], each

term of Tbd(ti) is a subterm of some tij, and there is a ki such that si�1;ki !
R=AC

tiki and

si�1;j � tij for all j 6= ki. Thus, there is a t0j that is not AC-terminating. It is a

contradiction to AC-termination of t0j 2 Tbd(t). �

This lemma means that \any in�nite AC-reduction sequence from a minimal size coun-

terexample must include a reduction at the head position". This property corresponds to

the property \any in�nite reduction sequence from a minimal size counterexample must

include a reduction at the root position" in TRSs. Indeed, this analogy is essential in our

extension of dependency pairs to AC-TRSs.

Lemma 4.1.8 If each ti is AC-terminating and g(t1; : : : ; tn) is not AC-terminating, then

g 2 DF (R).

Proof. From Lemma 4.1.7, there exists a head reduction
hd
! in any in�nite AC-reduction

sequence starting from g(t1; : : : ; tn). Therefore, g is a de�ned symbol. �
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Lemma 4.1.9 Let t be a term such that t is not AC-terminating and each element of

Tbd(t) is AC-terminating. Then there exist t0 and s such that t
bd
!

�Dhd t
0 hd
!
R

s, each proper

subterm of t0 is AC-terminating, and s is not AC-terminating.

Proof. Let Ti = ft0 j t
bd
!

iDhd t
0 hd
!
R

s and s is not AC-terminating, for some sg, where
bd
!

i

denotes a
bd
! reduction of i steps. Since t is not AC-terminating and each element of Tbd(t)

is AC-terminating, there is an n such that Tn 6= ; and Tj = ; for all j > n by Lemma

4.1.7. Let t0 be a minimal size element in Tn. We assume that t0 has a proper subterm t00

which is not AC-terminating. Since each element of Tbd(t) is AC-terminating, so is each

element of Tbd(t
0). Thus, each element of Tbd(t

00) is AC-terminating and t0 Bhd t
00. From

Lemma 4.1.7, there is an in�nite AC-reduction sequence such that t00
bd
!

kDhd t̂
hd
!
R

ŝ !
R=AC

� � �

for some t̂ and ŝ. Thus, t̂ 2 Tn+k. From the maximality of n, Tn+k = Tn. Thus, t
00 Dhd t̂.

From the de�nition of Dhd, we have jt
0j > jt00j � jt̂j. It is a contradiction to the minimality

of t0. �

Theorem 4.1.10 [43] An AC-TRS R is not AC-terminating i� there is an in�nite un-
marked AC-dependency chain of R.

Proof.

(() Let hu0; v0ihu1; v1ihu2; v2i � � � be an in�nite unmarked AC-dependency chain with

a substitution � such that vi�
bd
!

� Dhd ui+1� for all i. Thus, there exist Ci and C 0
i

such that vi�
�
!

R=AC

�
AC

C 0

i+1[ui+1�]!
R

Ci+1[vi+1�] for all i. Therefore, there is an in�nite

AC-reduction sequence v0�
+
!

R=AC

C1[v1�]
+
!

R=AC

C1[C2[v2�]]
+
!

R=AC

� � �.

()) Let t0 be a minimal size counterexample, i.e., each proper subterm of t0 is AC-

terminating and t0 is not AC-terminating. From Lemma 4.1.9, we have t0
bd
!

� Dhd

C[l�]
hd
!
R

C[r�] for some C, l ! r and � such that each proper subterm of C[l�] is

AC-terminating and C[r�] is not AC-terminating. We show that there exists a term

t1 and an unmarked AC-dependency pair hu0; v0i such that t0
bd
!

�Dhdu0�0, v0�0 �
AC

t1,

t1 is not AC-terminating and each proper subterm of t1 is AC-terminating. We have

two following cases:

(a) C � �.
Let t1 be a minimal size counterexample in r�. Since each proper subterm

of l� is AC-terminating, x� is AC-terminating for all x 2 V ar(r) � V ar(l).

Thus, t1 � v0� for some non-variable subterm v0 of r. Therefore, there is an

unmarked dependency pair hu0; v0i and substitution �0 such that u0�0 � l� and

v0�0 � t1 from the minimality of t1 and Lemma 4.1.8.

(b) C 6� �.
Since each proper subterm of C[l�] is AC-terminating, so is each proper subterm

of C[r�]. From the de�nition of head parts, (l)" = f 2 �AC . Thus, there is an

unmarked extended dependency pair hu0; v0i such that u0 � f(l; z), v0 � f(r; z)

and f(l; z)�0 �
AC

C[l�] !
R

C[r�] �
AC

f(r; z)�0. We obtain t1 � C[r�].
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Repeating this procedure to t0; t1; t2; : : :, we get AC-dependency pairs hui; vii (i =

0; 1; 2; : : :) such that vi�i �
AC

ti+1
bd
!

� Dhd ui+1�i+1 for each i, which makes an in�nite

unmarked AC-dependency chain hu0; v0ihu1; v1ihu2; v2i � � �. �

4.1.2 AC-Dependency Pairs and Chains

On the dependency pair method in TRSs, the notion of marked symbols is very useful

for proving termination. In this subsection, we discuss the marking for AC-dependency

pairs. The root position of a term in TRSs is corresponding to the head positions of a

term in AC-TRSs in the behavior of a minimal size counterexample of in�nite reduction

sequences. Thus, we de�ne a term t# for AC-TRSs, which is the result of marking with

# all the head positions instead of the root position of t.

De�nition 4.1.118<
:

x# � x

(f(t1; t2))
# � f#(t#f1 ; t#f2 ) if f 2 �AC

(f(t1; : : : ; tn))
# � f#(t1; : : : ; tn) if f 62 �AC8<

:
x#f � x

(f(t1; : : : ; tn))
#f � f#(t#f1 ; : : : ; t#fn )

(g(t1; : : : ; tm))
#f � g(t1; : : : ; tm) if f 6= g

We regard f# as an AC-function symbol for all f 2 �AC, i.e., �
#

AC
= �AC [ ff

# j f 2

�ACg.

For example, suppose that t � f(f(0; 1); g(f(2; 3))) and �AC = ffg. Then �#

AC
=

ff; f#g and t# � f#(f#(0; 1); g(f(2; 3))).

De�nition 4.1.12 Let R be an AC-TRS. A pair hu#; v#i is an AC-dependency pair of
R if hu; vi is an unmarked AC-dependency pair of R. We denote by DP#

AC(R) all AC-

dependency pairs of R.

Unlike the marking for TRSs, the marking for AC-TRSs is not compatible with
bd
!,

i.e., it does not hold that s
bd
! t ) s# ! t#. For example, consider R = fg(x) !

f(x; x); h(x)! xg with �AC = ffg. Then we have the follows:

s � f(g(0); h(f(1; 1)))
bd
! f(f(0; 0); h(f(1; 1)))

bd
! f(f(0; 0); f(1; 1)) � t;

s# � f#(g(0); h(f(1; 1)))
bd
! f#(f(0; 0); h(f(1; 1)))

bd
! f#(f(0; 0); f(1; 1)) 6� t#:

To avoid this problem we introduce the AC-TRS R# de�ned as follows:

R# = ff#(f(x; y); z)! f#(f#(x; y); z) j f 2 �ACg:

We denote by t ## the normal form of t in !
R#=AC

. We write s
#
! t if s !

R=AC

t0 ^ t0 ##� t for

some t0. Note that
#
! is compatible for the above example:

s# � f#(g(0); h(f(1; 1)))
#
! f#(f#(0; 0); h(f(1; 1)))

#
! f#(f#(0; 0); f#(1; 1))

� t#:

Indeed we can show the compatibility of
#
! for non-variable terms.
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Lemma 4.1.13 The following properties hold for any terms s; t 2 T (�;V)nV.

(i) s
bd
! t () s#

#
! t#.

(ii) sDhd t () s# Dhd t
#.

Proof. Trivial. �

De�nition 4.1.14 A sequence of AC-dependency pairs hu#

0 ; v
#

0 ihu
#

1 ; v
#

1 ihu
#

2 ; v
#

2 i � � � is an

AC-dependency chain if there is some substitution � over T (�;V) such that (vi�)
# #
!

�Dhd

(ui+1�)
# for all i. We assume that di�erent AC-dependency pair occurrences do not own

jointly variables without loss of generality.

Theorem 4.1.15 [43] An AC-TRS R is not AC-terminating i� there exists an in�nite

AC-dependency chain of R.

Proof. From Lemma 4.1.13, it follows that vi�
bd
!

� Dhd ui+1� i� (vi�)
# #
!

� Dhd (ui+1�)
#,

for any vi; ui+1 2 T (�;V)nV and � over T (�;V). Thus, there is some in�nite unmarked

AC-dependency chain i� there is some in�nite AC-dependency chain. From Theorem

4.1.10, our proof is completed. �

4.1.3 Another AC-dependency Pair

March�e and Urbain recently proposed another idea of AC-dependency pairs in the frame-

work of attening terms [52], which was done independently of our work. In this subsec-

tion, we introduce their AC-dependency pairs. In order to compare our AC-dependency

pairs and their ones in the same framework, the latter method is expressed with minor

modi�cation. Firstly, we de�ne the AC-extended AC-TRS RAC of R as follows:

RAC = R [ ff(l; z)! f(r; z) j l! r 2 R; (l)" = f 2 �ACg

where z is a fresh variable.

Consider the AC-TRS R = fadd(x; 0)! x; add(x; s(y))! s(add(x; y))g with �AC =

faddg. Then

RAC = R [

�
add(add(x; 0); z) ! add(x; z)

add(add(x; s(y)); z) ! add(s(add(x; y)); z)

DP#(RAC) =

8>><
>>:

hadd#(x; s(y)); add#(x; y)i

hadd#(add#(x; 0); z); add#(x; z)i

hadd#(add#(x; s(y)); z); add#(s(add(x; y)); z)i

hadd#(add#(x; s(y)); z); add#(x; y)i

DP#

AC
(R) =

8<
:
hadd#(x; s(y)); add#(x; y)i

hadd#(add#(x; 0); z); add#(x; z)i

hadd#(add#(x; s(y)); z); add#(s(add(x; y)); z)i

The set of AC-dependency pairs introduced by us in [43] corresponds to DP#

AC
(R) and

another one introduced by March�e and Urbain in [52] corresponds to DP#(RAC).
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Proposition 4.1.16 [52] An AC-TRS R is not AC-terminating i� there exists hu#

0 ; v
#

0 i

hu#

1 ; v
#

1 ihu
#

2 ; v
#

2 i � � � such that hu#

i ; v
#

i i 2 DP#(RAC) and (vi�)
# #
!

�
�
AC

(ui+1�)
# for all i.

We assume that di�erent dependency pair occurrences do not own jointly variables without

loss of generality.

Note that our AC-dependency pairs do not require pairs hf(l; z); rjpi such that (l)" =

f 2 �AC and (r)p 2 DF (R), which is essential in their framework. Hence, we have smaller

AC-dependency pairs in number for a given AC-TRS than they have. This fact is very

useful when the AC-dependency pair method is eÆciently applied to automatic theorem

proving. On the other hand, their method is slightly powerful in theoretical than our one,

because their AC-dependency chains do not require the head subterm relation Dhd. In

next section, we will discuss the e�ects.

4.2 Proving AC-Termination by AC-Dependency

Pairs

On the AC-dependency pair method, weak AC-reduction orders and weak AC-reduction

pairs play an important role. In this section, using AC-dependency pairs, we introduce

new and powerful methods for e�ectively proving AC-termination.

4.2.1 Weak AC-Reduction Order

In this subsection, we introduce the notion of weak AC-reduction order.

De�nition 4.2.1 A weak reduction order & is a weak AC-reduction order if & is AC-
compatible, i.e., s �

AC

t ) s & t. A weak AC-reduction order & has the AC-deletion

property if f(f(x; y); z) & f(x; y) for all AC-symbols f .

De�nition 4.2.2 A quasi-order & satis�es the AC-marked condition if & satis�es the
following two conditions:

(i) f#(f(x; y); z) & f#(f#(x; y); z) for all f 2 �AC,

(ii) f#(f#(x; y); z) & f#(f(x; y); z) for all f 2 �AC.

Theorem 4.2.3 [43] Let R be an AC-TRS. If there exists a weak AC-reduction order &
with the AC-deletion property and the AC-marked condition such that

(i) l & r for all l ! r 2 R,

(ii) u# � v# for all hu#; v#i 2 DP#

AC(R),

then R is AC-terminating.

Proof. We assume that R is not AC-terminating. From Theorem 4.1.15, there is some

in�nite AC-dependency chain hu#

0 ; v
#

0 ihu
#

1 ; v
#

1 ihu
#

2 ; v
#

2 i � � � with a substitution � such that

(vi�)
# #
!

� Dhd (ui+1�)
# for all i. It follows that

#
!

�
� & from the assumption (i), the

AC-compatibility, the transitivity, the stability, the monotonicity and the AC-marked

condition (i). It follows that Dhd � & from the AC-compatibility, the AC-deletion and

the stability. It follows that (ui�)
# & u#

i � from the stability, the monotonicity, and the
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AC-marked condition (ii). It follows that u#

i � � v#i � from the assumption (ii) and the

stability of �. It follows that v#i � & (vi�)
# from the stability, the monotonicity and the

AC-marked condition (i). Therefore, we get an in�nite decreasing sequence (u0�)
# & u#

0 �

� v#0 � & (v0�)
# & (u1�)

# & u#

1 � � v#1 � & (v1�)
# � � �. It is a contradiction. �

For another AC-dependency pair DP (RAC) by March�e and Urbain, we obtain the

theorem corresponds to the above one.

Proposition 4.2.4 [52] Let R be an AC-TRS. If there exists a weak AC-reduction order
& with the AC-marked condition1 such that

(i) l & r for all l! r 2 R,

(ii) u# � v# for all hu#; v#i 2 DP#(RAC),

then R is AC-terminating.

Though our AC-dependency pairs DP#

AC
(R) is smaller than theirs DP#(RAC), their

method is slightly powerful than our one in theoretical. In fact, suppose that our method

prove AC-termination of an AC-TRS R by weak AC-reduction order & with the AC-

deletion property and Theorem 4.2.3, i.e., � is compatible with DP#

AC
(R). Then � is also

compatible with DP#(RAC). Therefore, their method also prove the AC-termination.

Conversely, our approach does not always work well whenever their method prove AC-

termination, because we additionally require the AC-deletion property. However, this

requirement is not strong in practice, because the AC-deletion property automatically

holds for any AC-reduction orders that we have known. So with AC-deletion property,

both methods are equally powerful.

4.2.2 Weak AC-Reduction Pair

In order to analyze the transformation methods for proving termination, we slightly ex-

tended the notion of weak reduction order to that of weak reduction pair [46]. In this

subsection, we extend the notion to AC-TRSs.

De�nition 4.2.5 A weak reduction pair (&; >) is a weak AC-reduction pair if & is AC-

compatible (s �
AC

t ) s & t). A weak AC-reduction pair (&; >) has the AC-deletion prop-

erty if for all f 2 �AC, f(f(x; y); z) & f(x; y) or f(f(x; y); z) > f(x; y). A weak AC-

reduction pair (&; >) satis�es the AC-marked condition if for all f 2 �AC, f
#(f(x; y); z) &

f#(f#(x; y); z) and f#(f#(x; y); z) & f#(f(x; y); z).

Note that (&;�) is a weak AC-reduction pair for all weak AC-reduction order &.

Theorem 4.2.6 For any AC-TRS R, the following properties are equivalent.

1. AC-TRS R is AC-terminating.

2. There exists a weak AC-reduction pair (&; >) with the AC-deletion property such

that & is compatible with R and > is compatible with DPAC(R).

1This AC-marked condition is slightly modi�ed, because their original de�nition can not handle col-

lapsing rules, i.e., the rules whose right hand sides are variables.
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3. There exists a weak AC-reduction pair (&; >) such that & is compatible with R and

> is compatible with DP (RAC).

4. There exists a weak AC-reduction pair (&; >) with the AC-marked condition and

the AC-deletion property such that & is compatible with R and > is compatible

with DP#

AC
(R).

5. There exists a weak AC-reduction pair (&; >) with the AC-marked condition such

that & is compatible with R and > is compatible with DP#(RAC).

Proof. For the cases (1) 2) and (1) 3), we de�ne & by ( !
R=AC

[ �
AC

)�, and s > t by s 6�
AC

t

and s & C[t] for some C. Then it is easily shown that (&; >) is a weak AC-reduction

pair satisfying the conditions. For the cases (2 ) 4) and (3 ) 5), it is easily shown by

identifying f# with f . For the case (4) 1), as similar to the proof of Theorem 4.2.3. For

the case (5) 1), as similar to the proof of Proposition 4.2.4. �

For a given AC-terminating AC-TRS R, it is still open whether there exists a weak

AC-reduction order & such that & is compatible with R and its strict part � is compatible

with unmarked AC-dependency pairs DPAC(R). On the other hand, the above theorem

guarantees the existence of such weak AC-reduction pair. This fact indicates that weak

AC-reduction pairs have an extra power as compared with weak AC-reduction orders.

4.2.3 Argument Filtering Method

In this subsection, to design weak AC-reduction orders and weak AC-reduction pairs, we

extend the argument �ltering method to AC-TRSs.

De�nition 4.2.7 An argument �ltering function � satis�es the AC-condition if for all

f 2 �#

AC
, �(f) is either [] or [1; 2].

The above restriction is essential in AC-TRSs, because it guarantees that the image

of associative and commutative axiom for f 2 �AC are either f = f or themselves. For

example, for a commutative axiom f(x; y) =C f(y; x) of f 2 �AC , �(f(x; y) =C f(y; x))

produces the following equations:

f(x; y) =C f(y; x)
�

=)

8>><
>>:

f =C f if �(f) = []

x =C y if �(f) = 1

f(x) =C f(y) if �(f) = [1]

f(x; y) =C f(y; x) if �(f) = [1; 2]

Based on this observation we de�ne AC-function symbols after argument �ltering by

�#

AC;�
= ff 2 �#

AC
j �(f) = [1; 2]g . We also write by �

AC

the AC-equation generated by

�#

AC;�
. Then it follows that s �

AC

t implies �(s) �
AC

�(t).

De�nition 4.2.8 We de�ne the AC-extension &AC of a strict order > by &AC= (>

[ �
AC

)�. We de�ne s &sub

AC
t by s &AC C[t] for some C, and �sub

AC
by its strict part.

Note that if > be an AC-reduction order then the strict part �AC of its AC-extension

&AC is also AC-reduction order.
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Lemma 4.2.9 If a strict order > is AC-compatible then &AC= >= Æ �
AC

.

Proof. It is trivial. �

Lemma 4.2.10 Let > be an AC-reduction order. Then �sub

AC
is well-founded.

Proof. We assume that there exists an in�nite decreasing sequence t0 �sub

AC
t1 �sub

AC
t2 �sub

AC

� � �. Then there exist Ci (i = 1; 2; : : :) such that ti &AC Ci+1[ti+1]. Here, &AC has

the monotonicity, because > and �
AC

have the monotonicity. Thus, t0 &AC C1[t1] &AC

C1[C2[t2]] � � �. From the well-foundedness of > and Lemma 4.2.9, there is some k such that

C1[� � �Ck[tk] � � �] �
AC

C1[� � �Ck+1[tk+1] � � �] �
AC

C1[� � �Ck+2[tk+2] � � �] �
AC

� � �. Since �
AC

preserves

the size of terms, there is some m such that Cm � �. Hence, it follows that tm�1 �
AC

tm.

It is a contradiction to tm�1 �sub

AC
tm. �

De�nition 4.2.11 Let > be a strict order and � an argument �ltering function. We
de�ne s &� t by �(s) &AC �(t), and s >� t by �(s) �sub

AC
�(t).

Lemma 4.2.12 Let > be an AC-reduction order. Then the following properties hold:

� s &� t () �(s) >= Æ �
AC

�(t),

� s �� t () �(s) > Æ �
AC

�(t),

� s &� t ^ t &� s () �(s) �
AC

�(t),

� s >� t () 9C: �(s) > Æ �
AC

C[�(t)] or 9C 6� �: �(s) �
AC

C[�(t)].

Proof. It suÆces to show implications from left to right. The �rst property is a direct

consequence of Lemma 4.2.9, and the second property is a direct consequence of the �rst

property.

Let s &� t^ t &� s. From Lemma 4.2.9, �(s) >= Æ �
AC

�(t) >=
Æ �
AC

�(s). If �(s) 6�
AC

�(t)

then �(s) > Æ �
AC

�(s). It is a contradiction to the well-foundedness of >. Hence the third

property holds.

Let s >� t. Then �(s) &AC C[�(t)]. From Lemma 4.2.9, �(s) >= Æ �
AC

C[�(t)]. Hence,

�(s) �
AC

C[�(t)] or �(s) > Æ �
AC

C[�(t)]. In the former case, if C � � then �(s) �
AC

�(t). It is

a contradiction to �(s) �sub

AC
�(t). Hence C 6� �. Therefore the fourth property holds. �

Theorem 4.2.13 If > is an AC-reduction order and � is an argument �ltering function

with the AC-condition then &� is a weak AC-reduction order2. Furthermore, if > has the
AC-deletion property then so is &�.

Proof.

2For designing a weak AC-reduction order, the argument �ltering method is essentially a special form

of recursive program schema (RPS). Indeed, March�e and Urbain proved a similar result in a general

framework of AC-RPS [52].
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� (&� is an AC-compatible quasi-order): It is a direct consequence of the �rst property

of Lemma 4.2.12.

� (The monotonicity of &�): From Lemma 3.2.11, s &� t ) �(s) &AC �(t) )

�(C)[�(s)] &AC �(C)[�(t)] ) �(C[s]) &AC �(C[t]) ) C[s] &� C[t].

� (The stability of &�): From Lemma 3.2.10, s &� t ) �(s) &AC �(t) ) �(�)(�(s))

&AC �(�)(�(t)) ) �(s�) &AC �(t�) ) s� &� t�.

� (The well-foundedness of ��): We assume that there exists an in�nite decreasing

sequence t0 �� t1 �� t2 �� � � �. Then �(t0) > Æ �
AC

�(t1) > Æ �
AC

�(t2) > Æ �
AC

� � �. It is

a contradiction.

� (The stability of ��): From Lemma 3.2.10, s �� t) �(s) > Æ �
AC

�(t) ) �(�)(�(s))

> Æ �
AC

�(�)(�(t)) ) �(s�) > Æ �
AC

�(t�) ) s� �� t�.

� (The AC-deletion property): Let f 2 �AC. If �(f) = [] then �(f(f(x; y); z)) �

f � �(f(x; y)). Hence, it follows that f(f(x; y); z) &� f(x; y). If �(f) = [1; 2]

then �(f(f(x; y); z)) � f(f(x; y); z) > f(x; y) � �(f(x; y)). Hence, it follows that

f(f(x; y); z) &� f(x; y). �

Theorem 4.2.14 If > is an AC-reduction order and � is an argument �ltering function

with the AC-condition then (&�; >�) is a weak AC-reduction pair with the AC-deletion
property.

Proof. In the proof of Theorem 4.2.13, we have already shown the AC-compatibility, the

stability and the monotonicity of &�.

� (The stability of >�): Thanks to Lemmas 4.2.12 and 3.2.10, if �(s) �
AC

C[�(t)] then

�(s�) �
AC

C 0[�(t�)] is trivial, where C 0 � �(�)(C). Suppose that �(s) > Æ �
AC

C[�(t)].

s >� t ) �(s) > Æ �
AC

C[�(t)]

) �(�)(�(s)) > Æ �
AC

�(�)(C[�(t)])

) �(�)(�(s)) > Æ �
AC

C 0[�(�)(�(t))] where C 0
� �(�)(C)

) �(s�) > Æ �
AC

C 0[�(t�)]

) s� >� t�

� (The well-foundedness of >�): Assuming that the existence of an in�nite decreasing

sequence t0 >� t1 >� t2 >� � � �, it follows that �(t0) �sub

AC
�(t1) �sub

AC
�(t2) �sub

AC
� � �.

It is a contradiction to Lemma 4.2.10.

� (&� Æ >��>�): Let t0 &� t1 >� t2. From Lemma 4.2.12, either �(t0) >= Æ �
AC

�(t1) > Æ �
AC

C[�(t2)] or �(t0) >= Æ �
AC

�(t1) �
AC

C[�(t2)] ^ C 6� � holds. In the

former case, �(t0) > Æ �
AC

C[�(t2)] from the AC-compatibility and the transitivity of

>. Thus, it follows that t0 >� t2 by Lemma 4.2.12. In the latter case, �(t0) >
=

Æ �
AC

C[�(t2)] and C 6� �. Thus, it follows that t0 >� t2 by Lemma 4.2.12.
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� (The AC-deletion property): Suppose that f 2 �#

AC
. If �(f) = [] then �(f(f(x; y); z))

� f � �(f(x; y)). Hence, it follows that f(f(x; y); z) &� f(x; y). If �(f) = [1; 2]

then �(f(f(x; y); z)) � f(f(x; y); z) � C[�(f(x; y))] for C � f(�; z). Hence, it

follows that f(f(x; y); z) >� f(x; y). �

Note that a weak AC-reduction pair (&�; >�) automatically has the AC-deletion prop-

erty. Based on ���>�, we get the following theorem.

Theorem 4.2.15 Let R be an AC-TRS. If there exists an AC-reduction order > and

argument �ltering function � with the AC-condition such that

� f# is identi�ed to f or �(f#) = [] for any AC-symbol f ,

� l & r for all l! r 2 R, and

� u# �� v
# for all hu#; v#i 2 DP#

AC(R),

then R is AC-terminating.

Proof. From Theorem 4.2.14, (&�; >�) is a weak AC-reduction pair with AC-deletion

property. Since f# is identi�ed to f or �(f#) = [] for any AC-symbols f , (&�; >�)

trivially satis�es the AC-marked condition. Since it is trivial that ���>�, u
# >� v

# for

all hu#; v#i 2 DP#

AC(R). Therefore R is AC-terminating by Theorem 4.2.6. �

In order to show the usefulness of the argument �ltering method, we prove the AC-

termination of AC-TRSs to which traditional techniques cannot be applied.

Example 4.2.16 As an AC-reduction order >, we use the order >flat

rpo
(see Proposition

2.4.14). Each AC-termination of R2; R3; R4 is proved by Theorem 4.2.15.

� Consider the following AC-TRS R1 with �#

AC
= fgg.

R1 =
�
f(f(x)) ! f(g(f(x); f(x)))

DP#

AC
(R1) =

�
hf#(f(x)); f#(x)i

hf#(f(x)); f#(g(f(x); f(x)))i

Let �(g) = [] and f B g. Then l &� r for all l ! r 2 R1, and u# >� v# for all
hu#; v#i 2 DP#

AC
(R1). Therefore R1 is AC-terminating.

� Consider the following AC-TRS R2 with �#

AC
= fhg.

R2 =

�
f(f(x)) ! f(g(x))

g(x) ! h(f(x); f(x))
DP#

AC
(R2) =

8<
:
hf#(f(x)); f#(g(x))i

hf#(f(x)); g#(x)i

hg#(x); f#(x)i

Let �(h) = [], f B g B h and f B g# B f#. Then l &� r for all l ! r 2 R2, and

u# >� v
# for all hu#; v#i 2 DP#

AC
(R2). Therefore R2 is AC-terminating.

� Consider the following AC-TRS R3 with �#

AC
= fg; h; h#g.

R3 =

8<
:

f(a) ! f(b)

b ! g(h(a; a); a)

h(x; x) ! x

DP#

AC
(R3) =

8>><
>>:

hf#(a); f#(b)i

hf#(a); b#i

hb#; h#(a; a)i

hh#(h#(x; x); z); h#(x; z)i

Let �(g) = [], b#B aB bB g and f#B b#B h#. Then l &� r for all l! r 2 R3, and

u# >� v
# for all hu#; v#i 2 DP#

AC
(R3). Therefore R3 is AC-terminating.
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� Consider the following AC-TRS R4 with �#

AC
= ff; f#; hg.

R4 =

�
f(a; x) ! f(b; x)

b ! h(a; a)
DP#

AC
(R4) =

8<
:
hf#(a; x); f#(b; x)i

hf#(a; x); b#i

hf#(f#(a; x); z); f#(f#(b; x); z)i

Let �(h) = [], aB bB h and aB b#. Then l &� r for all l! r 2 R4, and u# >� v
#

for all hu#; v#i 2 DP#

AC
(R4). Therefore R4 is AC-terminating.

4.2.4 Lexicographic Argument Filtering Method

By combining several argument �ltering functions, we can strengthen the power of the

argument �ltering method. In this subsection, we propose the lexicographic argument

�ltering method, which lexicographically combines argument �ltering functions to com-

pare AC-dependency pairs. The method presented here o�ers useful means to prove

AC-termination of complicated AC-TRSs on which a single argument �ltering function

does not work.

In this subsection, we suppose that f# is identi�ed to f or �(f#) = [] for any AC-

symbol f . This restriction guarantees the AC-marked condition of &� and �((t�)#) �

�(t#�) if t is not a variable. The same restriction was supposed in Theorem 4.2.15, because

Theorem 4.2.6 requests the AC-marked condition.

Theorem 4.2.17 Let R be an AC-TRS, > an AC-reduction order and � an argument �l-
tering function with the AC-condition. Suppose that &� is compatible with R and &� [ >�

is compatible with DP#

AC
(R). Then, R is not AC-terminating if and only if there exists

an in�nite AC-dependency chain hu#

0 ; v
#

0 ihu
#

0 ; v
#

0 ihu
#

0 ; v
#

0 i � � � with substitution � such that
f�(u#

0 ); �(v
#

0 ); �(u
#

1 ); �(v
#

1 ); : : :g is AC-uni�able by �(�).

Proof. (() It is trivial from Theorem 4.1.15. ()) From Theorem 4.1.15, there exist

hu#

i ; v
#

i i 2 DP#

AC
(R) (i = 0; 1; 2; : : :) and a substitution � such that (vi�)

# #
!

�Dhd (ui+1�)
#

for all i. From the assumption and the AC-marked condition, (ui�)
# &� (vi�)

# or

(ui�)
# >� (vi�)

# for all i. From the assumption, the transitivity, the AC-deletion prop-

erty and the stability, (vi�)
# &� (ui+1�)

# or (vi�)
# >� (ui+1�)

# for all i. From the

well-foundedness and Lemma 4.2.12, there is some number k such that all �((ui�)
#) and

�((vi�)
#) are AC-equivalent for all i � k. The assumption f = f# or �(f#) = [] for any

AC-symbol f yields AC-equivalence among �(u#

i �) and �(v
#

i �) for all i � k. From Lemma

3.2.10, all �(u#

i )�(�) and �(v#i )�(�) (i � k) are AC-equivalent. Therefore, f�(u#

k ); �(v
#

k );

�(u#

k+1); �(v
#

k+1); : : :g is AC-uni�able by �(�). �

The following theorem gives a suÆcient condition under which the lexicographic ar-

gument �ltering method works well. In order to simplify the discussion, we treat only

two argument �ltering functions, though the following discussion can be easily extended

to �nitely many argument �ltering functions.
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Theorem 4.2.18 Let R be an AC-TRS. If there exist AC-reduction orders >1 and >2

and argument �ltering functions �1 and �2 with the AC-condition such that

� l >1

��1
r and l >2

��2
r for all l! r 2 R,

� u# >1

��1
v# or u# >1

�1
v# for all hu#; v#i 2 DP#

AC
(R), and

� u# >2

�2
v# for all hu#; v#i 2 DP#

AC
(R) such that

�1(u
#) and �1(v

#) are AC-uni�able,

then R is AC-terminating.

Proof. We assume that R is not AC-terminating. From Theorem 4.2.17, there exist

hu#

i ; v
#

i i 2 DP#

AC
(R) (i = 0; 1; 2; : : :) and a substitution �, such that 8i: (vi�)

# #
!

� Dhd

(ui+1�)
# and f�1(u

#

0 ); �1(v
#

0 ); �1(u
#

1 ); �1(v
#

1 ); : : :g is AC-uni�able. From l >2

��2
r for all

l! r 2 R and the AC-deletion property of ( >2

��2
; >2

�2
), it follows that (vi�)

# >2

��2
(ui+1�)

#

or (vi�)
# >2

�2
(ui+1�)

# for any i. From u# >2

�2
v# for all hu#; v#i 2 DP#

AC
(R) such that

�1(u
#) and �1(v

#) are AC-uni�able, it follows that (ui�)
# >2

�2
(vi�)

# for any i. It is a

contradiction to the well-foundedness of >2

�2
. �

In order to show the usefulness of the lexicographic argument �ltering method, we

prove the AC-termination of an AC-TRS to which not only traditional techniques but

also single argument �ltering function cannot be applied.

Example 4.2.19 As an AC-reduction order >, we use the order >flat

rpo
(see Proposition

2.4.14). Consider the following AC-TRS R5 with �#

AC
= fg; g#g.

R5 =

8<
:

f(x; 0) ! s(0)

f(s(x); s(y)) ! s(f(x; y))

g(0; x) ! g(f(x; x); x)

DP#

AC
(R5) =

8>><
>>:

hf#(s(x); s(y)); f#(x; y)i

hg#(0; x); g#(f(x; x); x)i

hg#(0; x); f#(x; x)i

hg#(g#(0; x); z); g#(g#(f(x; x); x); z)i

Let �1(s) = �1(f) = �1(f
#) = [] and 0B1 f = f# B1 s. Then, l >1

��1
r for all l ! r 2 R5,

and u# >1

��1
v# or u# >1

�1
v# for all hu#; v#i 2 DP#

AC
(R5). Let �2(g

#) = �2(g) = [] and

f B2 s. Then l >2

��2
r for all l ! r 2 R5 and f#(s(x); s(y)) >2

�2
f#(x; y), which is an only

AC-uni�able AC-dependency pair after argument �ltering by �1. From Theorem 4.2.18,

R5 is AC-terminating.

It should be mentioned that the lexicographic argument �ltering method proposed

here can be similarly applied to proving not only AC-termination but also termination of

TRSs. Note that traditional proof techniques by simpli�cation orders cannot be directly

applied to TRS R5.
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Corollary 4.2.20 Let R be an AC-TRS. If for any i = 1; 2; : : : ; n there exist AC-

reduction orders >i and argument �ltering functions �i with the AC-condition such that

� l >i

��i
r for all i and l! r 2 R,

� u# >i

��i
v# _ u# >i

�i
v# for all hu#; v#i 2 DP#

AC
(R) such that

�j(u
#) and �j(v

#) are AC-uni�able for any j < i, and

� u# >n

�n
v# for all hu#; v#i 2 DP#

AC
(R) such that

�j(u
#) and �j(v

#) are AC-uni�able for all j < n,

then R is AC-terminating.

4.2.5 AC-Multisets Extension

An argument �ltering function � cannot preserve the AC-equivalent without the AC-

condition, i.e., it does not hold that s �
AC

t ) �(s) �
AC

�(t). Hence, we can not treat

an argument �ltering function � if �(f) = 1 or �(f) = 2 for some f 2 �AC, because

�(f(x; y)) = �(f(y; x)) makes x = y or y = x for the axiom of commutative law f(x; y) =C

f(y; x). This problem can be avoided by de�ning �̂(f(x; y)) = fx; yg. In this subsection,

in order to treat such �, we introduce the extension �̂ of argument �ltering function �

over multisets modulo AC by permitting �(f) = 0 as an exception for any f 2 �#.

For any AC-reduction order, the equivalence parts of both &AC and &sub

AC
are trivially

equal to �
AC

. Hence it is enough to treat only �
AC

as equation in this subsection. To simplify

the discussions, we call multiset extension for quasi-orders, whose equivalence part are

equal to �
AC

, by AC-multiset extension, and we omit the subscript AC in the relations (2AC,

=AC, �AC and �AC) and in the operations ([AC, \AC and �AC) over multisets.

De�nition 4.2.21 We de�ne the argument �ltering function �̂ from terms to multisets
as follows:8>><

>>:

�̂(x) = fxg

�̂(f(~ti)) = �̂(tj) if �(f) = j (6= 0)

�̂(f(~ti)) = [i�̂(ti) if �(f) = 0

�̂(f(~ti)) = ff( ~t0ij ) j t
0
ij
2 �̂(tij ) (j = 1; : : : ; m)g if �(f) = [i1; : : : ; im]

We also de�ne the substitution �̂(�) from terms to multisets as follows:

�̂(�)(x) = �̂(�(x))

�̂(�)(f(~ti)) = ff(~t0i) j t
0

i 2 �̂(�)(ti)g

We extend �̂(�) over multisets as follows:

�̂(�)(T ) = ft j t0 2 T; t 2 �̂(�)(t0)g

For example, let �(f) = 0 and �(x) = f(a; b). Then it follows that �̂(f(a; b)) = fa; bg

and �̂(�)(g(x; x)) = �̂(g(f(a; b); f(a; b))) = fg(a; a); g(a; b); g(b; a); g(b; b)g.

De�nition 4.2.22 Let > be an AC-reduction order. We de�ne � AC by the AC-multiset

extension of &AC, �
sub

AC
by the AC-multiset extension of &sub

AC
, and �sub

AC
by the strict part

of � sub

AC
.
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De�nition 4.2.23 We de�ne s &mul
� t by �̂(s)� AC�̂(t), and s >

mul
� t by �̂(s)�sub

AC
�̂(t).

Lemma 4.2.24 s �
AC

t) �̂(s) = �̂(t)

Proof. We prove the claim by induction on s. The case s � x 2 V is trivial, because

t � x � s by s �
AC

t. Suppose that s � f(s1; : : : ; sn). Because of s �
AC

t, the root symbol

of t is f . Thus we denote t � f(t1; : : : ; tn). If si �
AC

ti for all i then �̂(si) = �̂(ti) for all i

by induction hypothesis. Hence it follows that �̂(s) = �̂(t). On the other hand, since the

equivalence relation = over multisets modulo �
AC

is an equivalence relation, it suÆces to

show the cases f 2 �AC and either s � f(s1; s2) ^ t � f(s2; s1) or s � f(f(s11; s12); s2)

^t � f(s11; f(s12; s2)). We have the following three cases.

� �(f) = 0:

�̂(f(s1; s2)) = �̂(s1) [ �̂(s2) = �̂(f(s2; s1))

�̂(f(f(s11; s12); s2)) = �̂(f(s11; s12)) [ �̂(s2)

= �̂(s11) [ �̂(s12) [ �̂(s2)

= �̂(s11) [ �̂(f(s12; s2))

= �̂(f(s11; f(s12; s2)))

� �(f) = []:

�̂(f(s1; s2)) = ffg = �̂(f(s2; s1))

�̂(f(f(s11; s12); s2)) = ffg = �̂(f(s11; f(s12; s2)))

� �(f) = [1; 2]:

�̂(f(s1; s2)) = ff(ŝ1; ŝ2) j ŝi 2 �̂(si)g = ff(ŝ2; ŝ1) j ŝi 2 �̂(si)g = �̂(f(s2; s1))

�̂(f(f(s11; s12); s2)) = ff(ŝ3; ŝ2) j ŝ3 2 �̂(f(s11; s12)); ŝ2 2 �̂(s2)g

= ff(f(ŝ11; ŝ12); ŝ2) j ŝ11 2 �̂(s11); ŝ12 2 �̂(s12); ŝ2 2 �̂(s2)g

= ff(ŝ11; f(ŝ12; ŝ2)) j ŝ11 2 �̂(s11); ŝ12 2 �̂(s12); ŝ2 2 �̂(s2)g

= ff(ŝ11; ŝ4) j ŝ11 2 �̂(s11); ŝ4 2 �̂(f(s12; s2))g

= �̂(f(s11; f(s12; s2)))
�

Lemma 4.2.25 �̂(�)(�̂(t)) = �̂(t�)

Proof. We prove the claim by induction on t. In the case t � x 2 V, �̂(�)(�̂(x))

= �̂(�)(fxg) = �̂(x�). Suppose that t � f(t1; : : : ; tn). We have the following three cases.

� �(f) = j ( 6= 0):

�̂(�)(�̂(f(t1; : : : ; tn))) = �̂(�)(�̂(tj))

= �̂(tj�)

= �̂(f(t1�; : : : ; tj�; : : : ; tn�))

= �̂(f(t1; : : : ; tj; : : : ; tn)�)
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� �(f) = 0:

�̂(�)(�̂(f(t1; : : : ; tn))) = �̂(�)(�̂(t1) [ � � � [ �̂(tn))

= �̂(�)(�̂(t1)) [ � � � [ �̂(�)(�̂(tn))

= �̂(t1�) [ � � � [ �̂(tn�)

= �̂(f(t1�; : : : ; tn�))

= �̂(f(t1; : : : ; tn)�)

� �(f) = [i1; : : : ; im]:

�̂(�)(�̂(f(~ti))) = �̂(�)(ff( ~t0ij ) j t
0

ij
2 �̂(tij )g)

= ft00 j t0 2 ff( ~t0ij) j t
0

ij
2 �̂(tij )g; t

00
2 �̂(�)(t0)g

= ft00 j t0ij 2 �̂(tij ); t
00
2 ff( ~t00ij ) j t

00

ij
2 �̂(�)(t0ij )gg

= ff( ~t00ij ) j t
0

ij
2 �̂(tij ); t

00

ij
2 �̂(�)(t0ij )g

= ff( ~t00ij ) j t
00

ij
2 ft000ij j t

0

ij
2 �̂(tij); t

000

ij
2 �̂(�)(t0ij)gg

= ff( ~t00ij ) j t
00

ij
2 �̂(�)(�̂(tij ))g

= ff( ~t00ij ) j t
00

ij
2 �̂(tij�)g

= �̂(f(t1�; : : : ; tn�))

= �̂(f(t1; : : : ; tn)�)
�

Theorem 4.2.26 If > is an AC-reduction order and � is an argument �ltering function
with the AC-condition then (&mul

� ; >mul
� ) satis�es the conditions of the weak AC-reduction

pair except for the stability.

Proof.

� (The AC-compatibility of &mul
� ):

Let s �
AC

t. From Lemma 4.2.24, �̂(s) = �̂(t). Hence it follows that s &mul
� t.

� (The monotonicity of &mul
� ):

Let s &mul
� t. We prove the claim by induction on C. It suÆces to show the case C �

f(: : : ; ti�1;�; ti+1; : : :). In the case �(f) = j (6= 0), if j 6= i then �̂(C[s])� AC�̂(C[t])

is trivial, otherwise �̂(C[s]) = �̂(s) � AC�̂(t) = �̂(C[t]). In the case �(f) = 0,

�̂(C[s]) =
S

i6=j �̂(ti) [ �̂(s) � AC

S
i6=j �̂(ti) [ �̂(t) = �̂(C[t]). In the case �(f) =

[i1; : : : ; im], if i 62 �(f) then it is trivial. Suppose that i 2 [i1; : : : ; im] = �(f).

For any f(t̂i1; : : : ; t̂; : : : ; t̂im) 2 �̂(C[t]) � �̂(C[s]), it follows that t̂ 2 �̂(t) � �̂(s).

Thus, there is some ŝ 2 �̂(s) � �̂(t) such that ŝ �AC t̂. From the monotonicity

of �AC, f(t̂i1 ; : : : ; ŝ; : : : ; t̂im) &AC f(t̂i1 ; : : : ; t̂; : : : ; t̂im). Moreover, it follows that

f(t̂i1; : : : ; ŝ; : : : ; t̂im) 2 �̂(C[s])� �̂(C[t]). Therefore, �̂(C[s]) � AC�̂(C[t]).

� (The well-foundedness of >mul
� ):

From Lemma 4.2.10, �sub

AC
is well-founded. Hence, �sub

AC
is well-founded by Proposi-

tion 2.1.20. Therefore, >mul
� is well-founded.
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� (&mul
� Æ >mul

� �>mul
� ):

Let �̂(t0) � AC�̂(t1)�
sub

AC
�̂(t2). In the case �̂(t0) = �̂(t1) it is trivial that �̂(t0)�

sub

AC

�̂(t2). Suppose that �̂(t0) 6= �̂(t1). From �AC��sub

AC
, it follows that �̂(t0)�

sub

AC
�̂(t1).

Since �sub

AC
is transitive by Proposition 2.1.20, it follows that �̂(t0)�

sub

AC
�̂(t2). �

Unfortunately, both &mul
� and >mul

� are not stable. For example, let s � h(x), t �

g(x; x), �(f) = 0 and � = fx := f(y; z)g. Using the order >flat
rpo with precedence hB g as

an AC-reduction order, we trivially obtain s >mul
� t. However, since �̂(s�) = fh(y); h(z)g

and �̂(t�) = fg(y; y); g(y; z); g(z; y); g(z; z)g, it follows that s� 6>mul
� t�. Hence, we need a

suitable restriction to assure the stability of &mul
� and >mul

� .

On the other hand, in general, for any t, t̂ 2 �̂(t) and �, we have

�̂(�)(t̂) � ft̂�1; : : : ; t̂�ng

for �1; : : : ; �n such that 8x 2 V ar(t):x�i 2 �̂(x�) and 8x 62 V ar(t):x�i � x. Moreover, if t

is linear then the equivalence holds, i.e.,

�̂(�)(t̂) = ft̂�1; : : : ; t̂�ng:

In the previous example, letting ŝ � h(x) 2 �̂(s) and t̂ � g(x; x) 2 �̂(t), it follows that

�̂(�)(ŝ) = fŝ�1; ŝ�2g and �̂(�)(t̂) � ft̂�1; t̂�2g

where �1 = fx := yg and �2 = fx := zg. Using this fact we prove the following lemma.

Lemma 4.2.27 Let s and t be terms. If any t̂ 2 �̂(t) � �̂(s) is linear then s &mul
� t )

s� &mul
� t� and s >mul

� t) s� >mul
� t�.

Proof. (&mul
� ): It suÆces to show that �̂(�)(ŝ)� AC [i �̂(�)(t̂i) for any ŝ 2 �̂(s)� �̂(t) and

t̂i 2 �̂(t)� �̂(s) (1 � i � n) such that ŝ �AC t̂i. We suppose f�1; : : : ; �mg constructed by

each substitution �i satisfying 8x 2 V ar(s):x�i 2 �̂(x�) and 8x 62 V ar(s):x�i � x. Then

the following inclusion holds:

�̂(�)(ŝ) � fŝ�j j 1 � j � mg:

We suppose f�i1; : : : ; �
i
mi
g constructed by each substitution �ij satisfying 8x 2 V ar(ti):x�

i
j 2

�̂(x�) and 8x 62 V ar(ti):x�i � x. From the linearity of t̂i the following equation holds:

�̂(�)(t̂i) = ft̂i�
i
j j 1 � j � mig:

Since ŝ �AC t̂i, it follows that V ar(ŝ) � V ar(t̂i). Thus, f�i1; : : : ; �
i
mi
g � f�1; : : : ; �mg.

Hence, the following inclusion holds:

[i�̂(�)(t̂i) � ft̂i�j j 1 � i � n; 1 � j � mg:

From the stability of �AC, it follows that ŝ�j �AC t̂i�j for any j. Therefore, it follows that

�̂(�)(ŝ) � ACfŝ�j j 1 � j � mg � AC ft̂i�j j 1 � i � n; 1 � j � mg � AC [i �̂(�)(t̂i).

(>mul
� ): It suÆces to show that �̂(�)(ŝ) �sub

AC
[i�̂(�)(t̂i) for any ŝ 2 �̂(s) � �̂(t),

t̂i 2 �̂(t)� �̂(s) such that ŝ �sub

AC
t̂i. Thanks to the stability of �sub

AC
, as similar to the proof

for &mul
� , it follows that �̂(�)(ŝ) �sub

AC
[i�̂(�)(t̂i). �
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Lemma 4.2.28 Dhd �&
mul
� [ >mul

� .

Proof. Let sDhd t. From the de�nition, s �
AC

C[t]p and p 2 Ohd(C[t]) for some C. In the

case C � �, �̂(s) = �̂(t) by Lemma 4.2.24. Thus s &mul
� t. Suppose that C 6� �. Since

p 2 Ohd(C[t]), there is some term t0 and AC-symbol f such that s �
AC

C[t] �
AC

f(t0; t) and

f = (t)" = (C)". From Lemma 4.2.24, �̂(s) = �̂(f(t0; t)). If �(f) = [] then �̂(f(t0; t)) =

ffg = �̂(t). Hence, it follows that f(t0; t) &mul
� t. If �(f) = [1; 2] then �̂(s) = �̂(f(t0; t))

= ff(v0; v) j v0 2 �̂(t0); v 2 �̂(t)g �sub

AC
fv j v 2 �̂(t)g = �̂(t). Hence, it follows that

s >mul
� t. If �(f) = 0 then �̂(s) = �̂(f(t0; t)) � �̂(t0) [ �̂(t) � AC�̂(t). Hence, it follows

that s &mul
� t. �

Theorem 4.2.29 Let R be an AC-TRS. If there exists an AC-reduction order > and an

argument �ltering function � with the AC-condition such that

� f# is identi�ed to f or �(f#) = [] for all AC-symbols f ,

� r̂ 2 �̂(r)� �̂(l) is linear for all l! r 2 R,

� l &mul
� r for all l! r 2 R, and

� u# >mul
� v# for all hu#; v#i 2 DP#

AC
(R),

then R is AC-terminating.

Proof. As similar to the proof of Theorem 4.2.15, using Theorem 4.2.26, Lemmas 4.2.27

and 4.2.28. �

Note that as similar to the proof of Theorem 4.2.26, it can be proved that for any

given AC-reduction order >, &mul
� is a weak AC-reduction order except for the stability.

Under the condition of Lemma 4.2.27, the strict part �mul
� of &mul

� is stable.

In order to show the usefulness of AC-multiset extension, we prove the AC-termination

of an AC-TRS to which not only traditional techniques but also single argument �ltering

function and lexicographic argument �ltering method cannot be applied.

Example 4.2.30 As an AC-reduction order >, we use the order >flat

rpo
(see Proposition

2.4.14). Consider the following AC-TRS R6 with �#

AC
= ffg.

R6 =

8>><
>>:

g(0; f(x; x)) ! x

g(x; s(y)) ! g(f(x; y); 0)

g(s(x); y) ! g(f(x; y); 0)

g(f(x; y); 0) ! f(g(x; 0); g(y; 0))

DP#

AC
(R6) =

8>><
>>:

hg#(x; s(y)); g#(f(x; y); 0)i

hg#(s(x); y); g#(f(x; y); 0)i

hg#(f(x; y); 0); g#(x; 0)i

hg#(f(x; y); 0); g#(y; 0)i

Let �(f) = 0 and s B 0. Then l &mul
� r for all l ! r 2 R6, and u# >mul

� v# for all
hu#; v#i 2 DP#

AC
(R6). From Theorem 4.2.29, R6 is AC-terminating.
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4.2.6 Polynomial Interpretation

Theorem 4.2.31 [43] Let A � Nnf0g. We de�ne the polynomial quasi-order &A as

follows:

s &A t
def
() 8�([[s]]� > [[t]]�) or 8�([[s]]� = [[t]]�)

If all AC-function symbols satisfy the condition of Proposition 2.4.5 then the polynomial

quasi-order &A is a weak AC-reduction order.

Proof. As similar to Proposition 2.4.5, we can prove that &A is AC-compatible. From

Theorem 3.2.14, &A is a weak AC-reduction order. �

Proposition 4.2.32 [52] Let A � N . We de�ne the pair (&A; >A) as follows:

s &A t
def
() 8�([[s]]� � [[t]]�); s >A t

def
() 8�([[s]]� > [[t]]�)

If all AC-function symbols satisfy the condition of Proposition 2.4.5 then the pair (&A

; >A) is a weak AC-reduction pair.

4.3 AC-Dependency Graph

The notion of dependency graphs introduced by Arts and Giesl is very useful to prove

termination of TRSs [1, 2]. In this section, we extend the notion to AC-TRSs.

De�nition 4.3.1 An AC-dependency graph of R is a directed graph of which the nodes
are AC-dependency pairs, and there is an arc from hu#; v#i to hu0#; v0#i if hu#; v#ihu0#; v0#i

is an AC-dependency chain.

Theorem 4.3.2 [43] Let R be an AC-TRS. If there exists a weak AC-reduction order &
such that

� l & r for all l ! r 2 R,

� u# & v# for all hu#; v#i on a cycle in the AC-dependency graph of R, and

� u# � v# for at least one hu#; v#i on each cycle

in the AC-dependency graph of R,

then R is AC-terminating.

Proof. As similar to the proof of Theorem 3.4.3. �

In general, AC-dependency graphs are not computable, because it is undecidable

whether there is some substitution � such that (v�)#
#
!

�Dhd (u
0�)# for two AC-dependency

pairs hu#; v#i and hu0#; v0#i. Since dependency graphs are also not computable in TRSs,

algorithms for generating approximated dependency graphs was introduced. We also pro-

pose another algorithm for generating an approximated AC-dependency graph, using the

techniques of 
-reduction and 
V -reduction, which are introduced to analyze decidable

call-by-need computations in TRSs [28, 55, 59].

De�nition 4.3.3 Let 
 be a special constant symbol. A term t is an 
-term if t 2

T (� [ f
g; ;). The pre�x order �



over 
-terms is de�ned as follows:
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� t�




 for all t,

� f(s1; : : : ; sn)�



f(t1; : : : ; tn) if si�



ti (1 � i � n).

We denote by t
 the 
-term obtained from t by replacing all variables in t by 
.

Notice that t
�



t�
 for any term t and for any substitution �.

In this section, T (�;V) and T (�[ f
g; ;) are abbreviated to T and T
, respectively.

De�nition 4.3.4 Two 
-terms t1 and t2 are compatible, written by t1 " t2, if there is

some 
-term s such that s�



t1 and s�



t2. A body AC-
-reduction relation over 
-terms,

written by
bd
!



, is de�ned as follows:

s
bd
!



t
def
() s �

AC

C[s0]p ^ s0 " l
 ^ s0 6� 
 ^ t � C[
]p ^ p 62 Ohd(C[s
0]p)

for some l! r 2 R; s0; C[ ]p:

Lemma 4.3.5 The body AC-
-reduction
bd
!



is terminating.

Proof. It is trivial. �

NF
(t) denotes the set of all normal forms of t with respect to
bd
!



. Note that the

previous lemma guarantees the computability of NF
(t).

De�nition 4.3.6 A body AC-
V -reduction from an 
-term s to an 
-term t, denoted by

s
bd
!

V

t, is de�ned as follows:

s
bd
!

V

t
def
() s �

AC

C[s0]p ^ s0 " l
 ^ s0 6� 
 ^ t � C[r
]p ^ p 62 Ohd(C[s
0]p)

for some l! r 2 R; C[ ]p; s
0:

bd
!

V

n denotes a
bd
!

V

reduction of n steps.

Lemma 4.3.7 For any s; t 2 T
, if s
bd
!

V

�t then t0�



t for some t0 2 NF
(s).

Proof. It is trivial. �

Lemma 4.3.8 The following properties hold for any s; t 2 T and s0 2 T
 such that

s0�



s
.

(a) s �
AC

t ) 9t0 2 T
: s
0 �
AC

t0�



t


(b) s
bd
!

�t ) 9t0 2 T
: s
0 bd!

V

�t0�



t
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Proof. It is routine. �

The predicate isConnect(v; u0) is de�ned as isConnect(v; u0) () 9�: v�
bd
!

�Dhd u
0�.

Note that two AC-dependency pairs hu; vi and hu0; v0i is connectable if isConnect(v; u0)

holds. For a given approximation level n (n � 0), the above two lemmas o�er a decidable

approximation isConnectn(v; u
0) of isConnect(v; u0) as follows:

� (v)" 62 �AC .

isConnectn(v; u
0) =

�
True if Connectn(v; u

0) 6= ;

False if Connectn(v; u
0) = ;

Connectn(v; u
0) = ft j t �

AC

t0 2 Reachn(v
); t " u
0


g

Reachn(t) = ft0 j t
bd
!

V

mt0; m < ng [ ft0 j t
bd
!

V

nt00; t0 2 NF
(t
00)g

� (v)" 2 �AC .

isConnectn(v; u
0) =

�
True if (v)" = (u0)"
False if (v)" 6= (u0)"

Note that the predicate isConnectn is decidable for every approximation level n.

De�nition 4.3.9 The n-approximated AC-dependency graph of R is a directed graph of
which the nodes are AC-dependency pairs, and there is an arc from hu#; v#i to hu0#; v0#i
if isConnectn(v; u

0) holds.

Lemma 4.3.10 Let R be an arbitrary AC-TRS and n an arbitrary approximation level.
An AC-dependency graph of R is a subgraph of the n-approximated AC-dependency graph

of R.

Proof. For each arc (hu#; v#i; hu0#; v0#i) of an AC-dependency graph, it is enough to

show isConnectn(v; u
0) = True. If (v)" 2 �AC then it is trivial. Let (v)" 62 �AC and

v�
bd
!

�t �
AC

u0� for some t and �. From Lemma 4.3.8(b), v

bd
!

V

mt0 for some m and t0 2 T


such that t0�



t
. We distinguish the following two cases:

� m < n:

By the assumption, t0 2 Reachn(v
). From Lemma 4.3.8(a), t0 �
AC

u00 for some u00 2

T
 such that u00�



u0�
. Thus, u
00 " u0
. Therefore, isConnectn(v; u

0) = True.

� n � m:

Let v

bd
!

V

nt00
bd
!

V

�t0. From Lemma 4.3.7, t000�



t0 for some t000 2 NF
(t
00). Thus,

t000 2 Reachn(v
). From Lemma 4.3.8(a), t000 �
AC

u00 for some u00 2 T
 such that

u00�



u0�
. Thus, u
00 " u0
. Therefore, isConnectn(v; u

0) = True. �
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Theorem 4.3.11 [43] Let R be an AC-TRS and n an approximation level. If there exists

a weak AC-reduction order & such that

� l & r for all l ! r 2 R,

� u & v for all hu#; v#i on a cycle

in the n-approximated AC-dependency graph, and

� u# � v# for at least one hu#; v#i on each cycle

in the n-approximated AC-dependency graph,

then R is AC-terminating.

Proof. It is a direct consequence of Theorem 4.3.2 and Lemma 4.3.10. �

Finally, in order to show the usefulness of the approximated AC-dependency graph, we

prove the AC-termination of AC-TRS to which traditional techniques cannot be applied.

Example 4.3.12 Let �AC = fNg and R be the following AC-TRS:

8>><
>>:

max(L(x)) ! x

max(N(L(0); L(y))) ! y

max(N(L(s(x)); L(s(y)))) ! s(max(N(L(x); L(y))))

max(N(L(x); N(y; z))) ! max(N(L(x); L(max(N(y; z)))))

The data structure N(L(0); N(L(0); L(s(0)))) for binary tree naturally represents the mul-
tiset f0; 0; s(0)g by interpreting N as an AC-function symbol. The normal form of term
max(t) corresponds with maximal number in non-empty multiset t. For this AC-TRS R,

the 1-approximated AC-dependency graph is displayed as follows (Figure 4.1):

<max (N(L(x),N(y,z))), max (N(L(x),L(max(N(y,z)))))># #

<max (N(L(x),N(y,z))), max (N(y,z))># #

<max (N(L(s(x)),L(s(y)))), max (N(L(x),L(y)))># #

Figure 4.1: AC-dependency graph

Let A = Nnf0g. We associate the polynomial 0A = 1, sA = X + 1, LA = X,

NA = X +Y and maxA = max#A = X. From Theorem 4.2.31, this interpretation o�ers a
weak AC-reduction order &. Moreover, it satis�es the AC-marked condition. It is trivial

that l & r for all l ! r 2 R, and for all hu#; v#i on each cycle in the 1-approximated

AC-dependency graph (Figure 4.1), we have u# > v# as follows:

max#(N(L(s(x)); L(s(y)))) > max#(N(L(x); L(y)))

max#(N(L(x); N(y; z))) > max#(N(y; z))

Therefore, R is AC-terminating by theorem 4.3.11.
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This example displays the usefulness of approximated AC-dependency graphs, because

it is diÆcult to give a weak AC-reduction order directly whose strict part is compatible to

the AC-dependency pair hmax#(N(L(x); N(y; z))); max#(N(L(x); L(max(N(y; z)))))i.

Even for TRS R, it is diÆcult to give a weak reduction order directly whose strict part is

compatible to the pair.
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Chapter 5

Argument Filtering Transformation

Elimination transformations have a lively studied in the 1990's. Elimination transfor-

mations try to transform a given TRS into a TRS whose termination is easier to prove

than the original one. The dummy elimination [20], the distribution elimination [53, 67],

the general dummy elimination [21] and the improved general dummy elimination [57]

are examples of elimination transformations. Moreover, the dummy elimination and the

distribution elimination extend to AC-TRSs in [22] and [58], respectively.

In this chapter, we �rst study the relation between various elimination transformations

and the argument �ltering method based on AC-dependency pairs. The key of our result

is the observation that the argument �ltering method combining with the AC-dependency

pair technique is essential in all elimination transformations. Indeed, we present remark-

able simple proofs for the soundness of all elimination transformations based on this

observation, though the original proofs treated as rather di�erent methods respectively.

This observation also leads us to a new powerful elimination transformations, called the

argument �ltering transformation, which is not only more powerful than all the other

elimination transformations but also especially useful to make clear the essential relation

hidden behind these methods.

5.1 Soundness Condition for Transformation

In this section, using AC-dependency pairs and the argument �ltering method, we show

a theorem, which makes a general and essential property clear for transformations of

AC-TRSs to be sound with respect to AC-termination.

De�nition 5.1.1 We de�ne the including relation v as follows:

R1 v R2
def
() 8l ! r 2 R1:9C: l! C[r] 2 R2

Theorem 5.1.2 Let R be an AC-TRS, R0 an AC-terminating AC-TRS and � an argu-

ment �ltering function with the AC-condition. If �(R) � R0 and �(DP (R)) v R0 then R

is AC-terminating.

Proof. Assume that R is not AC-terminating. We de�ne > as
+
!

R0=AC

. The AC-termination

of R0 ensure that > is an AC-reduction order. From the assumption, &� is compatible with

R, >� is compatible with DP (R), and &� [ >� is compatible with DPAC(R)nDP (R).

52



Thanks to Theorem 4.2.17, there exists an AC-symbol f with �(f) = [] and an in�nite

unmarked AC-dependency chain

hf(l0; z0); f(r0; z0)ihf(l1; z1); f(r1; z1)ihf(l2; z2); f(r2; z2)i � � �

such that f(ri�; zi�)
�
!
bd

Dhdf(li+1�; zi+1�) (i = 0; 1; 2; : : :) for some AC-terminating sub-

stitution �. If ri�
�
!

R=AC

t with (t)" = f , then it is a contradiction with f � �(li) !
R0=AC

�(ri)
�
!

R0=AC

�(t) � f and AC-termination of R0. Thus, ri� can not be reduced to a term

with the root symbol f .

For any t, we de�ne Bf(t) as follows:

Bf (t) =

�
ftg if (t)" 6= f

ft1; : : : ; tng if t � f(t1; : : : ; tn)

where t is the attening term of t, and ti are attening terms of ti.

Suppose that f(ri; zi)�
�
! f(ti; t

0

i) Dhdf(li+1; zi+1)� ! f(ri+1; zi+1)� such that ri�
�
! ti

and zi�
�
! t0i. Then the following properties hold:

(1) jBf(ri�)j = jBf(ti)j = 1

(2) Bf (f(ti; t
0
i)) � Bf(f(li+1; zi+1)�)

(3) jBf(f(li; zi)�)j > jBf (f(ri; zi)�)j

Properties (1) and (2) are trivial. Property (3) follows from jBf(li�)j � 2 and (1).

Let ni = jBf(t
0
i)j � jBf(zi�)j. Then, it is obvious that ni � 0 and jBf (f(ri; zi)�)j+ ni

> jBf(f(ri+1; zi+1)�)j. Since z0� is AC-terminating, �fjBf(t)j j z0�
�
! tg is �nite. Because

�1
i=0ni < �fjBf(t)j j z0�

�
! tg, �1

i=0ni is also �nite. Hence, there exists a integer k such

that ni = 0 for all i � k. Therefore it follows that jBf(f(rk; zk)�)j > jBf(f(rk+1; zk+1)�)j

> jBf(f(rk+2; zk+2)�)j > � � �. It is a contradiction. �

Taking R as a given AC-TRS and R0 as a transformed AC-TRS in an elimination

transformation, the above simple theorem can uniformly explain why elimination trans-

formations work well. This fact is very interesting because in the original literatures the

soundness of these elimination transformations were proved by rather di�erent methods.

In the following sections, we will explain how Theorem 5.1.2 simpli�es the requirement

conditions in elimination transformations into acceptable one.

Note that in the above theorem we use dependency pairs DP (R) instead of AC-

dependency pairs DPAC(R). Though the fact rises the diÆculty of the proof, it is very

e�ective when we analyze elimination transformations.

Theorem 5.1.3 Let R be an AC-TRS, R0 a simply AC-terminating AC-TRS and � an

argument �ltering function with the AC-condition. If �(R [ DP (R)) v R0 then R is

AC-terminating.

Proof. As similar to Theorem 5.1.2 by de�ning > as
+

���!
R0

[Emb=AC

. �
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5.2 Argument Filtering Transformation

In this section, we design a new elimination transformation, called the argument �ltering

transformation. This transformation is designed based on Theorem 5.1.2, which is the

essence for elimination transformations.

De�nition 5.2.1 [46](Argument Filtering Transformation) Let � be an argument �lter-

ing function. The argument �ltering transformation (AFT�) is de�ned as follows:

�

8<
:

dec�(x) = ;

dec�(f(t1; : : : ; tn)) =
S

i6=�(f)ftig [
Sn

i=1 dec�(ti) if �(f) = i

dec�(f(t1; : : : ; tn)) =
S

i62�(f)ftig [
Sn

i=1 dec�(ti) otherwise

� pick�(T ) = ft 2 T j �(t) includes some de�ned symbols of Rg

where �(f) =

�
[i] if �(f) = i

�(f) otherwise

� AFT�(R) = �(R) [ f�(l)! �(r0) j l! r 2 R; r0 2 pick�(dec�(r))g

Example 5.2.2 Let

R = ff(x; f(x; x))! f(e(e0(0; 1; 2); 3); e00(f(4; 5); 6)); 4! 1; 5! 1g:

Here, DF (R) = ff; 4; 5g. Let r � f(e(e0(0; 1; 2); 3); e00(f(4; 5); 6)), �(e) = [], �(e0) = [1; 3]

and �(e00) = 2. Then, we obtain AFT�(R) as follows (Figure 5.1):

�(r) = f(e; 6)

dec�(r) = fe0(0; 1; 2); 1; 3; f(4; 5)g

pick�(dec�(r)) = ff(4; 5)g

�(R) = ff(x; f(x; x))! f(e; 6); 4! 1; 5! 1g

AFT�(R) = �(R) [ ff(x; f(x; x))! f(4; 5)g

The termination of AFT�(R) is easily proved by the recursive path order. Thus, R is
terminating, if the argument �ltering transformation is sound. The soundness is showed
in this section.

Since the argument �ltering transformation is designed based on Theorem 5.1.2, we

must keep information of dependency pairs, i.e., �(DP (R)) v AFT�(R). For this moti-

vation, � is useful. In fact, using �, we can easily check whether a given term is necessary

to hold �(DP (R)) v AFT�(R).

Lemma 5.2.3 Let C be a context and t a term. Then, there exists a context D such that

D[�(t)] 2 �(dec�(C[t])) or D[�(t)] � �(C[t]).

Proof. We prove the claim by induction on the structure of C. In the case C � �, it
is trivial. Suppose that C � f(t1; : : : ; ti�1; C

0; ti+1; : : : ; tn). From induction hypothesis,

there exists a context D0 such that D0[�(t)] 2 �(dec�(C
0[t])) or D0[�(t)] � �(C 0[t]). In the

former case, it follows that D0[�(t)] 2 �(dec�(C
0[t])) � �(dec�(C[t])). In the latter case,

if i = �(f) or i 2 �(f) then trivial. Otherwise, D0[�(t)] � �(C 0[t]) 2 �(dec�(C[t])) from

the de�nition of dec�. �
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Figure 5.1: Argument Filtering Transformation

Theorem 5.2.4 If AFT�(R) is AC-terminating and � satis�es the AC-condition then R

is AC-terminating.

Proof. From the de�nition, �(R) � AFT�(R). Let hu; vi 2 DP (R). From the de�nition

of DP , there exists a rule u ! C[v] 2 R. From Lemma 5.2.3, there exists a context D

such that D[�(v)] 2 �(dec�(C[v])) or D[�(v)] � �(C[v]). In the former case, from the

de�nition ofDP and �, (�(v))" is a de�ned symbol. Thus, D[�(v)] 2 �(pick�(dec�(C[v]))).

Therefore, it follows that �(u)! D[�(v)] 2 AFT�(R). In the latter case, it follows that

�(u)! D[�(v)] 2 �(R) � AFT�(R). From Theorem 5.1.2, R is AC-terminating. �

The two corollaries follow from the above theorem.

Corollary 5.2.5 If AFT�(R) is terminating and �(f) = [] for any AC-symbols f then R

is AC-terminating.

Corollary 5.2.6 [46] If AFT�(R) is terminating then R is terminating.

From the proof of the above theorem, it is obvious that the second argument f�(l)!

�(r0) j l ! r 2 R; r0 2 pick�(dec�(r))g of the de�nition of the argument �ltering trans-

formation AFT� is used only to keep information of dependency pairs. Thus, introducing

redundancy context does not destroy the soundness of argument �ltering transformation.

Therefore, we can de�ne another argument �ltering transformation AFT
~Ci
� (R) as

AFT
~Ci
� (R) = �(R) [ fl1 ! C1[r1]; : : : ; ln ! Cn[rn]g

where fl1 ! r1; : : : ; ln ! rng = f�(l) ! �(r0) j l ! r 2 R; r0 2 pick�(dec�(r))g and ~Ci

denotes the list of contexts C1; C2; : : : ; Cn.
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Corollary 5.2.7

1. If AFT
~Ci
� (R) is AC-terminating and � satis�es the AC-condition then R is AC-

terminating.

2. If AFT
~Ci
� (R) is terminating and �(f) = [] for any AC-symbols f then R is AC-

terminating.

3. [46] If AFT
~Ci
� (R) is terminating then R is terminating.

5.3 Comparison with Other Eliminations

In this section, we compare other elimination transformations with the argument �ltering

transformation. As a result, we conclude that the argument �ltering transformation is a

generalization of these elimination transformations.

5.3.1 Dummy Elimination

De�nition 5.3.1 [20](Dummy Elimination) Let e be a function symbol, called an elimi-
nated symbol. The dummy elimination (DEe) is de�ned as follows:

�

8<
:

cape(x) = x

cape(e(t1; : : : ; tn)) = �

cape(f(t1; : : : ; tn)) = f(cape(t1); : : : ; cape(tn)) if f 6= e

�

8<
:

dece(x) = ;

dece(e(t1; : : : ; tn)) =
Sn

i=1(fcape(ti)g [ dece(ti))

dece(f(t1; : : : ; tn)) =
Sn

i=1 dece(ti) if f 6= e

� DEe(R) = fcape(l)! r0 j l ! r 2 R; r0 2 fcape(r)g [ dece(r)g

Example 5.3.2 Let t � f(e(0; g(1; e(2; 3))); 4). Then, cape(t) = f(�; 4) and dece(t) =

f0; 2; 3; g(1; �)g (Figure 5.2).

Proposition 5.3.3 [20] If DEe(R) is terminating then R is terminating.

Proposition 5.3.4 [22] If DEe(R) is terminating and e is only AC-symbol (i.e., �AC =

feg) then R is AC-terminating.

For �(e) = [], we can treat the constant �(e(� � �)) as �.

Lemma 5.3.5 For �(e) = [], AFT�(R) � DEe(R).

56



f

e

2

e

3

g

1

0

4

t = (t) =

dec (t) = { }

cape

e

f

4

0, 2, 3,

g

1

Figure 5.2: Dummy Elimination

Proof. It suÆces to show that �(dec�(t)) = dece(t) by induction on t. In the case

t 2 V, it is trivial. Suppose that t � f(t1; : : : ; tn). In the case f 6= e, it follows that

�(dec�(f(t1; : : : ; tn))) =
Sn

i=1 �(dec�(ti)) =
Sn

i=1 dece(ti) = dece(f(t1; : : : ; tn)). In the

case f = e, it follows that �(dec�(e(t1; : : : ; tn))) =
Sn

i=1 (f�(ti)g [ �(dec�(ti))) =
Sn

i=1

(fcape(ti)g [ dece(ti)) = dece(e(t1; : : : ; tn)). �

This lemma means that the argument �ltering transformation is a proper extension of

the dummy elimination. The corollary follows from the above lemma.

Corollary 5.3.6 If DEe(R) is AC-terminating, simply AC-terminating, terminating or

simply terminating then so is AFT�(R) with �(e) = [], respectively.

The following corollary is a directly consequence of the above corollary.

Corollary 5.3.7 If DEe(R) is AC-terminating then R is AC-terminating.

Note that this corollary includes Propositions 5.3.3 and 5.3.4 as special cases, i.e.,

�AC = ; and �AC = feg, respectively.

5.3.2 Distribution Elimination

De�nition 5.3.8 [67](Distribution Elimination) A rule l ! r is a distribution rule for
e if l � C[e(x1; : : : ; xn)] and r � e(C[x1]; : : : ; C[xn]) for some non-empty context C in

which e does not occur and pairwise di�erent variables x1; : : : ; xn. Let e be an eliminated
symbol. The distribution elimination (DISe) is de�ned as follows:

� Ee(t) =

8<
:
ftg if t 2 VSn

i=1Ee(ti) if t � e(t1; : : : ; tn)

ff(s1; : : : ; sn) j si 2 Ee(ti)g if t � f(t1; : : : ; tn) with f 6= e
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� DISe(R) = fl! r0 j l! r 2 R is not a distribution rule for e, r0 2 Ee(r)g

Example 5.3.9 Let t � f(e(0; g(1; e(2; 3))); 4).

Then, Ee(t) = ff(0; 4); f(g(1; 2); 4); f(g(1; 3); 4)g (Figure 5.3).
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Figure 5.3: Distribution Elimination

Unfortunately, the distribution elimination is not sound with respect to AC-termination,

i.e., AC-termination of DISe(R) does not ensure AC-termination of R. With respect to

termination it is also not sound. Thus, the distribution elimination requires suitable

restrictions to ensure the soundness.

Proposition 5.3.10 Suppose that each rule l! r 2 R is a distribution rule or a rule in

which the eliminated symbol e does not occur in l.

(a) [67] If DISe(R) is terminating and right-linear then R is terminating.

(b) [53] If DISe(R) is terminating and there exist no distribution rule in R then R is

terminating.

(c) [58] If DISe(R) is terminating, right-linear and e is only AC-symbol (i.e. �AC = feg)
then R is AC-terminating.

Lemma 5.3.11 Let �(e) = i such that 1 � i � arity(e). Under the condition of Propo-

sition 5.3.10 (b), �(R) � DISe(R) and AFT�(R) v DISe(R).

Proof. �(R) � DISe(R) is trivial. From the de�nition of AFT�, for any l! r 2 AFT�(R)

there exists a rule l0 ! C 0[r0] 2 R with l � �(l0) and r � �(r0). Thus, it suÆces to show

that for any t and C 0, there exists a context C such that C[�(t)] 2 Ee(C
0[t]). It is easily

proved by induction on C 0. �
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Theorem 5.3.12 Suppose that �(e) = 1, e 62 �AC and the condition of Proposition

5.3.10 (b). If DISe(R) is AC-terminating or terminating then so is AFT
~Ci
� (R) for some

~Ci, respectively. If DISe(R) is simply AC-terminating or simply terminating then so is

AFT�(R), respectively.

Proof. From Lemma 5.3.11, it is trivial. �

The following corollary is a directly consequence of the above theorem.

Corollary 5.3.13 If DISe(R) is AC-terminating, e 62 �AC and there exist no distribution
rule in R then R is AC-terminating.

Note that this corollary includes Proposition 5.3.10 as a special case, i.e., �AC = ;.

It is not so easy to treat the cases of conditions (a) and (c) in Proposition 5.3.10,

because the distribution elimination eliminate distribution rules themselves. In order to

treat such cases, we use the AC-multiset extension of the argument �ltering method.

Theorem 5.3.14 Suppose that each rule l ! r 2 R is a distribution rule or a rule in

which the eliminated symbol e does not occur in l. If DISe(R) is AC-terminating and
right-linear then R is AC-terminating.

Proof. Let RD be the AC-TRS constructed by all distribution rule in R, and R0 = RnRD.

Let > be
+

���!
DISe(R)=AC

. Since DISe(R) is AC-terminating, > is an AC-reduction order. We

denote DP0 dependency pairs constructed from R0, DP ex
0 extended dependency pairs

constructed from R0, DPD dependency pairs constructed from RD, and DP ex
D extended

dependency pairs constructed from RD.

� arity(e) = 1: We choose �(e) = 1.

It is trivial that �(R0) = DISe(R) and �(l) � �(r) for all l ! r 2 RD. Thus, if

R is not AC-terminating then there exists an in�nite reduction t1!
RD

t2!
RD

t3!
RD

� � �.

However, RD is trivially AC-terminating. It is a contradiction.

� arity(e) > 1: We choose �(e) = 0.

First, we investigate non distribution rules. It is obvious that �̂(l) = flg and

l ! r0 2 DISe(R) for any l ! r 2 R0 and r0 2 �̂(r). Thus, l &mul
� r and l >mul

� r

for any rule l ! r 2 R0. It follows that s!
R0

t implies s &mul
� t, because &mul

� is

monotonic and stable by the right-linearity of DISe(R). Moreover, it follows that

u� >mul
� v� for all � and hu; vi 2 DP ex

0 .

On the other hand, it is obvious that for any hu; vi 2 DP0 and v
0 2 �̂(v), �̂(u) = fug

and u! C[v0] 2 DISe(R) for some C. Thus, u >mul
� v for any hu; vi 2 DP0. Since

DISe(R) is right-linear, it follows that u� >
mul
� v� for all � and hu; vi 2 DP0.

Next, we focus on the distribution rules. For any distribution ruleC[e(x1; : : : ; xn)]!

e(C[x1]; : : : ; C[xn]) 2 RD, it follows that �̂(C[e(x1; : : : ; xn)]) = fC[x1]; : : : ; C[xn]g

=�̂(e(C[x1]; : : : ; C[xn])). Thus, s
�
!
RD

t implies s &mul
� t. Moreover, f(l; z)� &mul

�

f(r; z)� for any hf(l; z); f(r; z)i 2 DP ex
D and �. The dependency pair in DPD can
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be denoted by hC[e(x1; : : : ; xn)]; vi such that C 0[v] � C[xi] for some i and C 0. Since

�̂(C[e(x1; : : : ; xn)]) = fC[x1]; : : : ; C[xn]g �AC fC[xi]g = fC 0[v]g, it follows that

C[e(x1; : : : ; xn)]� >
mul
� v� for any �.

Finally, we prove this theorem based on the above properties. Assume that R is

not AC-terminating. From Theorem 4.1.10, there exists an in�nite unmarked AC-

dependency chain hu0; v0ihu1; v1i � � � and � such that vi�
�
!

R=AC

ti Dhd ui+1� for some

ti (i = 1; 2; : : :). We have already proved that vi� &
mul
� ti, ui� &

mul
� vi� for all

hui; vii 2 DP ex
D , and ui� >mul

� vi� for all hui; vii 2 DPAC(R)nDP ex
D . From Lemma

4.2.28 and �mul
� �>mul

� , it follows that ti �
AC

ui+1� or ti >
mul
� ui+1�. Hence there

exists a number m such that hui; vii 2 DP ex
D for all i � m. Moreover, there exists

an in�nite AC-reduction sequence f(l0; z0)� !
RD

f(r0; z0)�
�
!
RD

f(l1; z1)!
RD

f(r1; z1)� � � �

for some li ! ri 2 RD (i = 0; 1; : : :). However, RD is trivially AC-terminating. It is

a contradiction. �

Note that this theorem includes Proposition 5.3.10 (a) and (c) as special cases, i.e.,

�AC = ; and �AC = feg, respectively.

5.3.3 General Dummy Elimination

For any e 2 �, an e-status � satisfy �(e) = (;; 0) or (I; i) with i 2 I.

De�nition 5.3.15 [21](General Dummy Elimination) Let e be an eliminated symbol and

�(e) = (I; i). The general dummy elimination (GDEe) is de�ned as follows:

� capi(t) =

8>><
>>:

t if t 2 V

f(capi(t1); : : : ; capi(tn)) if t � f(t1; : : : ; tn) ^ f 6= e

capi(ti) if t � e(t1; : : : ; tn) ^ i 6= 0

� if t � e(t1; : : : ; tn) ^ i = 0

� Ei(t) =

8<
:
ftg if t 2 V

ff(s1; : : : ; sn) j sj 2 Ei(tj)g if t � f(t1; : : : ; tn) ^ f 6= e

E(ti) if t � e(t1; : : : ; tn)

� E(t) =

8<
:
ftg if t 2 V

fcap0(t)g if I = ;S
j2I Ej(t) if I 6= ;

� dec(t) =

8<
:
; if t 2 VSn

j=1 dec(tj) if t � f(t1; : : : ; tn) ^ f 6= eSn
j=1 dec(tj) [

S
j 62I E(tj) if t � e(t1; : : : ; tn)

� GDEe(R) = fcapi(l)! r0 j l! r 2 R; r0 2 E(r) [ dec(r)g
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Figure 5.4: General Dummy Elimination

Example 5.3.16 Let t � f(0; e(f(1; e(2; 3; 4)); 5; 6)) and �(e) = (f1; 3g; 1).

Then, E(t) = ff(0; 6); f(0; f(1; 2)); f(0; f(1; 4))g and dec(t) = f5; 3g (Figure 5.4).

Proposition 5.3.17 [21] If GDEe(R) is terminating then R is terminating.

Lemma 5.3.18 Let �(e) = (I; i). In the case �(e) = (;; 0), we de�ne �(e) = []. In the

case e 62 �AC and �(e) = (I; i) with i 2 I, we de�ne �(e) = i. Then �(R) � GDEe(R)

and AFT�(R) v GDEe(R).

Proof. �(R) � GDEe(R) is trivial. In the case �(e) = (;; 0), it is trivial that DEe(R) =

GDEe(R). Thus, AFT�(R) � GDEe(R). In the case e 62 �AC and �(e) = (I; i) with

i 2 I, as similar to Lemma 5.3.11 by replacing Ee(r) with dec(r) [ E(r). �

Theorem 5.3.19 Suppose that e 62 �AC or �(e) = (;; 0). If GDEe(R) is AC-terminating

or terminating then so is AFT
~Ci
� (R), respectively. If GDEe(R) is simply AC-terminating

or simply terminating then so is AFT�(R), respectively.

Proof. From Lemma 5.3.18, it is trivial. �

Theorem 5.3.20 Suppose that GDEe(R) is AC-terminating.

1. If e 62 �AC or �(e) = (;; 0) then R is AC-terminating.

2. If GDEe(R) is right-linear then R is AC-terminating.
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Proof. (1) A directly consequence of Theorem 5.3.19. (2) Suppose that e 2 �AC and

�(e) = (I; i) with i 2 I. We choose �(e) = 0. Thanks to capi(l) 2 �̂(l), as similar to

Theorem 5.3.14. �

Note that this theorem (1) includes Proposition 5.3.17 as a special case, i.e., �AC = ;.

We give the following example that the argument �ltering transformation can be ap-

plied to, but the general dummy elimination can not be.

Example 5.3.21 Consider the AC-TRS

R =

8<
:

g(a) ! g(b)

b ! f(a; a)

f(a; a) ! g(d)

with �AC = ffg. Let �(f) = []. Then,

AFT�(R) =

8<
:

g(a) ! g(b)

b ! f

f ! g(d)

The termination of AFT�(R) is easily proved by the recursive path order with the prece-

dence aBbBfBgBd. From Corollary 5.2.5, R is AC-terminating. We easily observe that
the dummy elimination, the distribution elimination and the general dummy elimination

can not be applied. Indeed, the following systems are clearly not terminating.

�(f) GDEf(R)

(;; 0)

g(a) ! g(b)

b ! �

b ! a

� ! g(d)

(f1g; 1)

g(a) ! g(b)

b ! a

a ! g(d)

Note that the AC-termination of R is not easily proved since R is not simply AC-terminating.

5.3.4 Improved General Dummy Elimination

De�nition 5.3.22 [57](Improved General Dummy Elimination) The functions capi, E

and dec are the same as that of the general dummy elimination. In the case e 2 DF (R),
we take IGDEe(R) = GDEe(R). Otherwise,

� E 0(t) = fs 2 E(t) j s includes some de�ned symbols of Rg

� dec0(t) = fs 2 dec(t) j s includes some de�ned symbols of Rg

� IGDEe(R) = fcapi(l)! r0 j l! r 2 R; r0 2 fcapi(r)g [ E 0(r) [ dec0(r)g

62



Proposition 5.3.23 [57] If IGDEe(R) is terminating then R is terminating.

Lemma 5.3.24 Let �(e) = (I; i). In the case �(e) = (;; 0), we de�ne �(e) = []. In the

case e 62 �AC and �(e) = (I; i) with i 2 I, we de�ne �(e) = i. Then �(R) � IGDEe(R)

and AFT�(R) v IGDEe(R).

Proof. As similar to Lemma 5.3.18. �

Theorem 5.3.25 Suppose that e 62 �AC or �(e) = (;; 0). If IGDEe(R) is AC-terminating

or terminating then so is AFT
~Ci
� (R), respectively. If IGDEe(R) is simply AC-terminating

or simply terminating then so is AFT�(R), respectively.

Proof. From Lemma 5.3.24, it is trivial. �

Theorem 5.3.26 Suppose that IGDEe(R) is AC-terminating.

1. If e 62 �AC or �(e) = (;; 0) then R is AC-terminating.

2. If IGDEe(R) is right-linear then R is AC-terminating.

Proof. As similar to Theorem 5.3.20. �

Note that this theorem (1) includes Proposition 5.3.23 as a special case, i.e., �AC = ;.

At the end, we give an example that the argument �ltering transformation can be

applied to, but other elimination transformations discussed here can not be.

Example 5.3.27 Consider the AC-TRS

R =

8>><
>>:

f(f(x)) ! f(g(f(x); x))

f(f(x)) ! f(h(f(x); f(x)))

g(x; y) ! y

h(x; x) ! g(x; 0)

with �AC = fhg. Let �(g) = [2] and �(h) = []. Then,

AFT�(R) =

8>>>><
>>>>:

f(f(x)) ! f(g(x))

f(f(x)) ! f(x)

f(f(x)) ! f(h)

g(y) ! y

h ! g(0)

The termination of AFT�(R) is easily proved by the recursive path order with the prece-
dence f B hB g B 0. From Corollary 5.2.5, R is AC-terminating.

We observe that the improved general dummy elimination can not be applied. In
fact, we can see that IGDEf(R), IGDEg(R) and IGDEh(R) are not terminating for

all status � . The dummy elimination, the distribution elimination and the general dummy

elimination cannot be applied, too. Note that the AC-termination of R is not easily proved
since R is not simply AC-terminating.
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5.4 Comparison with Argument Filtering Method

In the previous section, we uni�ed all elimination transformations by the argument �lter-

ing transformation, which is designed based on AC-dependency pairs and the argument

�ltering method. The reader might have the question which is more useful, the argu-

ment �ltering method or the argument �ltering transformation. Here, we say that the

argument �ltering method succeeds to prove AC-termination when Theorem 4.2.15 is

applicable with a suitable AC-compatible simpli�cation order, and we say that the ar-

gument �ltering transformation succeeds to prove AC-termination when we prove the

AC-termination of AFT�(R) by a suitable AC-compatible simpli�cation order and The-

orem 5.2.4 is applicable.

Suppose that �(f) = [] for some de�ned AC-symbol f . Then the argument �ltering

method always fails, because an extended dependency pair hf(l; z)#; f(r; z)#i for f pro-

duces hf#; f#i by �, which can not be ordered by the strict part of any weak AC-reduction

order. Notice that �(f) = [] requires �(f#) = [] in Theorem 4.2.15. Hence the argument

�ltering transformation is more useful than the argument �ltering method in such cases.

Indeed, Examples 5.3.21 and 5.3.27 are such examples.

On the other hand, in the case �(f) = [1; 2] for all de�ned AC-symbols, if the ar-

gument �ltering transformation succeed to prove the AC-termination of AC-TRS R by

a simpli�cation order then the argument �ltering method also succeed to prove the AC-

termination by the same simpli�cation order, because �(R)[�(DP (R)) v AFT�(R). The

reader might have the question what kind of AC-TRSs the argument �ltering method has

an extra power. The following theorem is an answer.

Theorem 5.4.1 Suppose that �(R) [ �(DP (R)) v R0 and �(f) = [1; 2] for all f 2

�AC\DF (R). If R[DP (R) is not AC-terminating then R0 is not simply AC-terminating.

Proof. Assume that R0 is simply AC-terminating. We de�ne > as
+

���!
R0

[Emb=AC

. The AC-

termination of R0 ensures that > is an AC-compatible simpli�cation order. It is trivial

that �(RD)[�(DP (RD)) v R0 where RD = R[DP (R). Thus, l &� r for all l! r 2 RD

and u �� v for all hu; vi 2 DP (RD). For any extended unmarked dependency pair

hf(l; z); f(r; z)i, it follows that �(f(l; z)) � f(�(l); z) > f(�(r); z) � �(f(r; z)). By

regarding that f# is identi�ed to f , RD is AC-terminating by Theorem 4.2.15. It is a

contradiction. �

In the case �(f) = [1; 2] for all de�ned AC-symbols, this theorem means that if

R[DP (R) is not AC-terminating then AFT�(R) is not simply AC-terminating, because

�(R)[ �(DP (R)) v AFT�(R). Hence the argument �ltering transformation with simpli-

�cation orders always fails to prove the AC-termination of R.

Finally, we give two examples such that R is AC-terminating but R [DP (R) is not

AC-terminating. The AC-termination of these examples was proved by the argument

�ltering method in Example 4.2.16. Hence the argument �ltering method is more useful

than the argument �ltering transformation for such AC-TRSs.

Example 5.4.2 The following AC-TRSs R2 and R3 are displayed in Example 4.2.16. In

both systems, �AC = fhg.
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� R2 is AC-terminating, but DP (R2) and R2 [DP (R2) are not AC-terminating.

R2 =

�
f(f(x)) ! f(g(x))

g(x) ! h(f(x); f(x))
DP (R2) =

8<
:

f(f(x)) ! f(g(x))

f(f(x)) ! g(x)

g(x) ! f(x)

� R3, DP (R3) and DPAC(R3) are AC-terminating, but R3 [ DP (R3) is not AC-

terminating.

R3 =

8<
:

f(a) ! f(b)

b ! g(h(a; a); a)

h(x; x) ! x

DP (R3) =

8<
:

f(a) ! f(b)

f(a) ! b

b ! h(a; a)
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Chapter 6

Conclusion

In this thesis, we have discussed the termination and the AC-termination property of

term rewriting systems. We summarize the main results in this thesis.

First, we extend the notion of dependency pairs to AC-TRSs. It is impossible to

directly apply the notion of dependency pairs to AC-TRSs. To avoid this diÆculty,

we introduce the head parts in terms and show an analogy between the root positions

in in�nite reduction sequences by TRSs and the head positions in those by AC-TRSs.

Indeed, this analogy is essential for extensions of dependency pairs to AC-TRSs. Based

on this analogy, we de�ne AC-dependency pairs and AC-dependency chains.

Second, we extend argument �ltering methods to AC-TRSs. Our extension gives a

design of a weak AC-reduction order and a weak AC-reduction pair from an arbitrary

AC-reduction order. Moreover, in order to strengthen the power of the argument �ltering

method, we improve the method in two directions. One is the lexicographic argument

�ltering method, in which argument �ltering functions are lexicographically combined

to compare AC-dependency pairs. Another one is an extension over multisets. In the

argument �ltering method on AC-TRSs, any argument �ltering function must be com-

patible to AC-equations. We relax this restriction using the AC-multiset extension. These

methods are e�ective for proving not only AC-termination but also termination of TRSs.

Next, we propose a powerful algorithm for generating an approximated AC-dependency

graph, using the techniques of 
-reduction and 
V -reduction, which are introduced to

analyze decidable call-by-need computations in TRSs. Of course, our algorithm can also

apply to TRSs, because TRSs are AC-TRSs without AC-symbols.

On the other hand, the AC-dependency pair method is useful for not only proving AC-

termination but also analyzing other proving methods for AC-termination. We show that

the argument �ltering method combined with the dependency pair technique can clearly

explain in a uniform framework why various elimination transformations work well.

Based on this observation, a new powerful elimination method, called the argument

�ltering transformation, is proposed. Since the transformation is carefully designed by

removing all unnecessary rewrite rules generated by other elimination methods, it is the

most powerful among all elimination methods.

Finally, we make the relation clear among various elimination methods through com-

paring them with corresponding restricted argument �ltering transformation. For ex-

ample, the dummy elimination method can be seen as a restricted argument �ltering

transformation in which each argument �ltering always removes all arguments, and the

distribution elimination method restricts each argument �ltering into collapsing one.
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