
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Software Agents and Quality of Service Issues in

Distributed Systems

Author(s) Mamadou, Tadiou Kone

Citation

Issue Date 2000-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/901

Rights

Description Supervisor:Takuo Watanabe, 情報科学研究科, 博士

Software Agents and Quality of

Service Issues in Distributed

Systems

Mamadou Tadiou Kon�e

School of Information Science

Japan Advanced Institute of Science and Technology

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY,
HOKURIKU 1 9 9 0

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy.

March 2000

c Copyright March 2000, Mamadou Tadiou kon�e

i

Dedication

To my dear mother Yay�e.

To my brother Ibrahim who �rst taught me how to read and write.

To my sister Ramatou, brother S�ekou, and niece Aminata who have always

been on my side.

ii

Abstract

The idea of a static or mobile software entity called agent that performs

tasks on behalf of its owner in a distributed environment or the Internet is

now well established. However, as the agent technology evolved, several inter-

pretations and applications brought some confusion in its current landscape.

Mobile agents, multi-agent systems, intelligent agents, information agents are

some concepts that has sprung in the expanding agent research and develop-

ment. In this dissertation, we use mobile agents and multi-agent systems to

investigate in several steps their application to Quality of Service (QoS). Our

contribution articulates around four steps:

� First, we propose an architecture for building an e�cient link between

a user and resource providers in a distributed multimedia environment. This

architecture implements the mobile agent paradigm together with the concept

of \logical disc interface" by cleary separating QoS negotiation and resource

management. Here mobile agents take care of the QoS negotiation process and

a virtual host manages (allocation and de-allocation) needed resources.

� Second, we present an agent-based QoS adaptation scheme. In this ap-

proach, we introduce the concepts of macro-adaptation as all the coarsed

grained adjustments and micro-adaptation as the set of �ne-grained correc-

tive actions on resources. Here, our idea is to structure in an integrated fashion

an adaptation strategy spanning all components of a distributed system.

� Third, elements of a multi-agent system need to rely on one another, enlist

the support of peers through a meaningful agent communication language

(ACL) in order to solve complex tasks. ACL is a new �eld that aims to fos-

ter communication, cooperation, negotiation, and improve interoperability in

multi-agent systems. To this end, we examine the state of the art in agent

communication languages design and suggest some principles for building a

generalized ACL framework. Then, we evaluate some emerging ACL models,

present some current issues and perspectives.

� Last, we propose a framework for service discovery and network QoS ne-

gotiation over large scale networks by applying the multi-agent system and

agent communication language concepts. In our approach, a user and ser-

vice agents engage in a structured communication through the mediation of

a QoS broker agent and a facilitator agent. The facilitator agent acquires

information from service agents and acts as a single point of contact to supply

this information to the user via the QoS broker. To illustrate our approach,

we implemented a prototype multi-agent system that discovers resources and

negotiate network QoS.

Keywords: Mobile Agents, Multi-agent Systems, ACL, Quality of Service.

iii

Acknowledgments

First, I express my sincere gratitude to Associate Professor Hajime Ishi-

hara who invited me and together with Professor Takuya Katayama made my

stay possible in the �rst place. I especially thank Associate Professor Tatsuo

Nakajima for his assistance, helpful comments, guidance, and encouragements

during my Ph.D. program. I am also grateful to Professor Futatsugi Kokichi,

Associate Professors Takuo Watanabe, and Ichiro Sato of Ochanomizu Univer-

sity for their help. Due credits should go to members of Nakajima laboratory

at the Japan Advanced Institute of Science and Technology in 1998 for the

supporting atmosphere they created during my short stay.

I would also like to thank all the members of the Japan Advanced Institute of

Science and Technology who directly or indirectly brought their contribution

to this thesis.

I owe a great deal to the whole JAIST administration and specially to the

student section and research cooperation division for the kind and constant as-

sistance they provided. Without them, I would certainly have run into much

trouble. I also thank all the hard working people at the JAIST restaurant,

store, and library for their kind words and help that eased somewhat the bur-

den of isolation and loneliness in this remote area.

Although far away in Côte d'Ivoire, West Africa, the spirit, love and

prayers of my family were important ingredients to my success. Whithout the

presence of God the Almighty and the support of my family, I certainly would

have given up long ago.

Contents

Dedication i

Abstract ii

Acknowledgments iii

1 Introduction 2

1.1 Research context : 2

1.2 Research scope and contribution : : : : : : : : : : : : : : : : : : 3

1.3 Dissertation outline : 3

2 Agents Terminology, Principles, and Concepts 5

2.1 Software agents : 5

2.1.1 Mobile agents : 5

2.1.2 Multi-agent Systems (MAS) : : : : : : : : : : : : : : : : 8

2.2 Summary : 11

3 The State of the Art in Agent Communication Languages 12

3.1 Generalized ACL Framework : 13

3.1.1 ACL design principles : : : : : : : : : : : : : : : : : : : 13

3.1.2 ACL speci�cations : 14

3.2 Existing ACL Models : 16

3.2.1 The KQML Communication Model : : : : : : : : : : : : 16

3.2.2 The ARCOL Communication Model : : : : : : : : : : : 19

3.2.3 The FIPA Standard ACL : : : : : : : : : : : : : : : : : 22

3.2.4 The Agent Oriented Programming (AOP) Model : : : : 24

3.2.5 The SRI OAA Communication Model : : : : : : : : : : : 25

3.2.6 The Mobile Agent Communication (MAC) model : : : : 27

3.2.7 The \Social Agency" Communication Model : : : : : : : 28

3.2.8 Other Communication Models : : : : : : : : : : : : : : : 31

3.3 Models Comparison and Current Issues : : : : : : : : : : : : : : 31

3.3.1 ACL models comparison : : : : : : : : : : : : : : : : : : 31

iv

v

3.3.2 Issues and perspectives : : : : : : : : : : : : : : : : : : : 33

3.4 Summary : 35

4 Quality of Service (QoS) 36

4.1 QoS concepts and management : : : : : : : : : : : : : : : : : : 36

4.2 Example of QoS architectures : : : : : : : : : : : : : : : : : : : 38

4.3 Summary : 39

5 Mobile Agent Support for QoS in Distributed Systems 40

5.1 Introduction : 40

5.2 An architecture for a QoS-based mobile agent system : : : : : : 40

5.2.1 QoS assumption : 42

5.2.2 Agents movement : 43

5.2.3 Adaptation : 44

5.2.4 Inter-agent communication : : : : : : : : : : : : : : : : : 44

5.3 Mobile agents and QoS adaptation in DMS : : : : : : : : : : : : 45

5.3.1 Agent-based adaptation strategy : : : : : : : : : : : : : 45

5.3.2 Agent-based adaptation mechanisms : : : : : : : : : : : 47

5.3.3 An application area : 49

5.4 Related Work : 51

5.5 Summary : 52

6 Multi-Agent System Support for QoS Negotiation 53

6.1 Introduction : 53

6.2 System Framework : 54

6.2.1 The problem : 54

6.2.2 The concepts : 55

6.2.3 Example Conference Ontology : : : : : : : : : : : : : : : 55

6.2.4 The negotiation protocol : : : : : : : : : : : : : : : : : : 57

6.3 System Implementation : 63

6.3.1 Step 1: Registration phase : : : : : : : : : : : : : : : : : 63

6.3.2 Step 2: Advertisement phase : : : : : : : : : : : : : : : : 64

6.3.3 Step 3: Brokering phase : : : : : : : : : : : : : : : : : : 65

6.4 Related work : 67

6.4.1 The CORBA Trader and Naming Services : : : : : : : : 67

6.4.2 The Service Location Protocol : : : : : : : : : : : : : : : 67

6.4.3 The QoS broker : 68

6.4.4 Jini : 68

6.5 Summary : 69

vi

7 Conclusions 70

7.1 Research contribution : 70

7.2 Research perspectives : 71

Publications 80

List of Figures

2.1 A new approach to client/server communications : : : : : : : : 6

2.2 A generic agent architecture : 7

3.1 Facilitator mediation in KQML : : : : : : : : : : : : : : : : : : 20

3.2 Structure of an ARTIMIS system : : : : : : : : : : : : : : : : : 21

3.3 The Aglet architecture and communication model : : : : : : : : 28

3.4 The design space of agent communication languages. : : : : : : 29

3.5 Common beliefs in agent communication. : : : : : : : : : : : : : 30

4.1 A simple view of QoS Management : : : : : : : : : : : : : : : : 38

5.1 A virtual host spanning multiple machines : : : : : : : : : : : : 41

5.2 A client view of the mobile agent system : : : : : : : : : : : : : 42

5.3 The QoS negotiation process : 43

5.4 Agents structure in end-to-end QoS provision : : : : : : : : : : 46

5.5 Agent-based hierarchical adaptation : : : : : : : : : : : : : : : : 47

5.6 Agent-based Adaptation Model : : : : : : : : : : : : : : : : : : 48

5.7 Agent-based adaptation scenario : : : : : : : : : : : : : : : : : : 49

5.8 Example system: storing data in a multimedia database : : : : : 50

5.9 Example system: fetching data from a multimedia database : : 50

6.1 System architecture : 54

6.2 User and QoS broker interaction : : : : : : : : : : : : : : : : : : 58

6.3 QoS manager and Facilitator interaction : : : : : : : : : : : : : 58

6.4 Service advertisement and request : : : : : : : : : : : : : : : : : 60

6.5 Network agents and Facilitator interaction : : : : : : : : : : : : 60

6.6 Request results : 61

6.7 Local QoS negotiation : 62

6.8 Large scale QoS negotiation : 62

6.9 Structure of JKQML : 63

6.10 Registration phase : 66

6.11 Advertisement phase : 66

6.12 Brokering phase : 66

vii

List of Tables

2.1 Example of Agent systems : 9

3.1 KQML reserved performatives : : : : : : : : : : : : : : : : : : : 17

3.2 ARCOL primitives : 22

3.3 FIPA primitive communicative acts : : : : : : : : : : : : : : : : 23

3.4 Comparison of ACL models. : 33

1

Chapter 1

Introduction

1.1 Research context

In the past decade, research and development in computer science has adopted

a whole new technology for analyzing, designing and implementing software

systems under the label of agent technology. Software agents are being pro-

posed as a means to better cope with the increasing volume and complexity of

information and computing resources. As successful applications of the agent

paradigm spread across a wide range of domains from e-mail �ltering to large

complex, mission critical systems (e.g. air-tra�c control), much confusion

added to the understanding of the word agent itself. As a result, the simple

question \what is an agent ?" hardly �nds a clear answer.

However, there are two well-known perspectives in de�ning the word agent:

the software engineering perspective and cognitive science (AI) perspective.

The �rst refers to a piece of software called autonomous or mobile agent

that can migrate autonomously inside a network and accomplish tasks on be-

half of its owner as illustrated in �gure 2.2 whereas multi-agent systems

(MAS) are static entities with capabilities and mental attitudes. While a mo-

bile agent migrates alone from host to host to perform tasks on behalf of its

owner, an element of a multi-agent system needs its peers in order to perform

tasks.

Like societies of humans, there is a need for agents in a multi-agent system

to rely on one another, enlist the support and cooperation of peers in order

to solve complex tasks. These agents will be able to cooperate only through

a meaningful agent communication language (ACL) that can bear cor-

rectly their mental states and convey precisely the content of their messages.

With the emergence of the Internet and its related services came recognition

that ACLs could play an important role in the design of multi-agent systems.

Several MAS prototypes for enterprise integration like ADEPT [29] (business

2

Introduction 3

management), COOL [2] (supply chain management) and AMBEI [57] (man-

ufacturing integration) have been built. The majority of actual agent applica-

tions exist in distributed environments where Quality of Service (QoS) is

also an important issue and an interesting application area of the agent tech-

nology.

1.2 Research scope and contribution

This thesis aims to apply the software agent technology to QoS provision in

several phases. The approach we adopted here articulates around three inde-

pendent steps:

� First, an architecture to help build an e�cient link between a user and

the resource providers is proposed. This architecture implements the mobile

agent technology and the concept behind the logical disk interface introduced

in [13] by clearly separating QoS negotiation and resource management.

� Second, an agent-based QoS adaptation scheme that relies on macro-

adaptation (coarse-grained adjustements), and micro-adaptation (�ne-grained

corrective actions), is presented. This structure spans all the con�gurations

made of components selected by a QoS manager.

� Third, we propose in this dissertation, a framework for resource discov-

ery and QoS negotiation on the Internet. This framework uses the concepts

of multi-agent systems and an agent communication language (ACL) with the

Knowledge Query and Manipulation Language (KQML) [17]. To illustrate the

e�ectiveness of this approach, we designed a simulation system where a user

and several service agents engage in a structured communication through

the mediation of a QoS Broker Agent and a Facilitator Agent.

The original contribution of this research stems from using the concept of

multi-agent systems and agent communication languages (ACL) to deal with

QoS issues in distributed systems.

1.3 Dissertation outline

After this introductory chapter, the remaining chapters are organized as fol-

lows:

� In chapter 2, we present important terminology, principles, and con-

cepts for understanding of software agent technology. The nature of mobile

agents, their management, interaction, and transfer between hosts as well as

the security concern they raise are introduced. In addition, we present impor-

tant issues of agent standardization and interoperability.

Introduction 4

� In chapter 3, we present the state of the art in agent communication

languages (ACL) with current issues and perspectives related to their design.

Several ACLs have been designed for speci�c purposes, but a common well

accepted standard has yet to come. This chapter looks inside the main issues

that lie on the road for a universal ACL.

� In chapter 4, we introduce the concept of Quality of Service (QoS),

its applications and issues related to QoS provision. This chapter aims to give

a brief overview of the �eld of Quality of Service as an interesting application

area of the software agent technology.

� In chapter 5, we deal in several phases with the applications of agent

technology to QoS provision in distributed systems. We propose some agent-

based architectures for QoS negotiation and adaptation.

� In chapter 6, we describe the design and implementation of our multi-

agent systems-based QoS negotiation framework for large scale Internet appli-

cations. In contrast to previous mobile agent architectures, multi-agent sys-

tems rely on peer cooperation through ACLs to achieve their goal. Our imple-

mentation uses the Knowledge Query and Manipulation Language (KQML) as

an inter-agent communication language together with the JKQML Java API.

� In chapter 7, we �nally conclude this dissertation with a statement of

the research conducted and some perspectives.

Chapter 2

Agents Terminology, Principles,

and Concepts

2.1 Software agents

There are two well-known perspectives in de�ning the word agent: the soft-

ware engineering perspective and the cognitive science (AI) perspective. The

�rst refers to a piece of software called mobile agent or autonomous agent

that can migrate autonomously inside a network and accomplish tasks on be-

half of their owners as illustrated in �gure 2.2 whereas multi-agent systems are

static entities.

Today, some applications of agent technology suggest that agents be classi�ed

as interface agents, mobile agents, co-operative agents, reactive agents, smart

or intelligent agents, hybrid agents, and heterogeneous agents. In this chapter,

we will focus our attention on mobile and multi-agent systems only.

2.1.1 Mobile agents

A mobile agent is a program that can migrate autonomously across a heteroge-

neous network. At anytime it can halt, move together with its state and data

to a new machine, and resume execution at the point where it stopped. Mo-

bile agents are a new kind of abstraction in the client/server communication

world. The mobile agent technology has found many interesting applications

in distributed multimedia systems, real-time systems, mobile computing, and

factory automation.

Due to its unique ability to transport itself from one host to another, a

mobile agent has no �xed location. A mobile agent moves to a new host where

a service is available and uses it on behalf of its owner. More precisely, when

an agent migrates, it enters a context within an agent system called place

5

Agents Terminology 6

Network

Machine A
PC/Client

Machine B
PC/Server

Client Service

Service

RP (Remote Programming) paradigm with Mobile Agents

Figure 2.1: A new approach to client/server communications

where it can execute. The place of origin and the place of destination may

be located inside the same or di�erent agent systems. A mobile agent system

activity is described by its:

Agents interaction

Interaction between mobile agents is achieved through simple synchronous or

asynchronous message exchange. The Internet Inter Object Protocol (IIOP)

and RMI are the most widely used communication protocols for agents.

Agents transfer

More pricely, when an agent migrates, it enters an agent execution environment

within an agent system called a place where it can execute. The place of origin

and the place of destination may be located inside the same agent system. A

mobile agent system is characterized by its:

Agents Terminology 7

Messaging
Subsystem

Environment
Agent Execution

Server Application
Environment

Communication Infrastructure

Client Application
Environment

Agent Execution
Environment

Messaging
Subsystem Agent migrating

Figure 2.2: A generic agent architecture

Agent management

Agent management is concerned about the life cycle of an agent: its creation,

interpretation, execution, transfer, and termination (destruction). Figure 2.2

describes a generic agent architecture. In particular, when an agent imple-

mented in an object-oriented language intends to migrate to a known destina-

tion, the following procedure is enacted:

� it sends a request for transfer to the destination host system;

� the host system suspends the agent and

identify the elements that compose the state of the agent;

� the host system serializes the agent and

its state then encode it according to the current transport protocol;

� the agent is sent to its destination.

At the receiving end, the incoming agent is decoded, deserialized with its

state restored, and its execution resumed.

Agent security

Although security and safety is not a new topic in general distributed environ-

ment, software agents bring a new kind of security and safety concern. This

concern stems from some questions users ask themselves about the integrity

and privacy of the message entrusted to agents as well as their authentication

at the destination site. Security and safety issues are handled on two fronts:

the software agent itself and the receiving host.

An agent and its content should be protected from tampering by unknown

users or spoo�ng hosts. The fact that an agent can visit several hosts exposes

its privacy and the integrity of the information gathered.

Agents Terminology 8

The receiving host must be protected from malicious agents because some

agents have the potential of causing damage at their destination. The core

principle is to isolate sensitive resources (�le system, OS ...) at the host by

con�ning the activities of incoming agents inside a carefully designed execu-

tion environment called place. In addition, the implementation language of the

agent ought to provide some security mechanisms. The JAVA programming

language, safe TCL (Ousterhout, 1996), the Telescript language by General

Magic are examples of language that embeds security features that restrict

access rights to agents at the host.

The inter-operability problem

The popularity and success of the agent technology led to the design of a mul-

titude of agent systems in industry and academia. Although some of these

systems may share a common implementation language, most are of di�erent

architecture and do not inter-operate at all. In order to promote interoper-

ability and encourage diversity among agent systems designers, the Object

Management Group (OMG) proposed the Mobile Agent System Interoperabil-

ity Facilities (MASIF) standard. The OMG aims to standardize with MASIF

the agent management, agent transfer, agent naming scheme, agent systems

types, and agent location identi�cation.

Example mobile agent systems

Several agent systems for commercial as well as research purposes have been

built. Table 2.1 presents some agent systems.

2.1.2 Multi-agent Systems (MAS)

A Multi-agent system is a distributed computing system composed of several

interacting computational entities called agents. These constituent agents have

capabilities, provide services, can perceive and act on their environment. Due

to an increasing number of applications, the concept of multi-agent system

has expanded to a broader meaning. Nowadays, it is easily used for all types

of systems composed of multiple autonomous components with the following

characteristics:

- a single component is unable to solve a given problem - data is dis-

tributed across the system

hspace*.2in- communication inside the system is asynchronous

In addition, MAS provide a framework for constituents agents to interact,

exchange message, and cooperate to achieve a common goal.

Agents Terminology 9

URLLanguageDeveloperDescriptionNameNo. Applications

10

11

12

13

15

16

17

18

19

20

14

9

8

7

6

5

4

3

2

1 Concordia Framework for agent develop. Mitsubishi E. I. T. USA Java

Aglet Java class libraries IBM, Tokyo Java http://

http://www.meitica.com/HSL

www.aglets.trl.ibm.co..jp

Agent Tcl Transportable agent system R. Gray U. Dartmouth Tcl Tk http://cs.darthmouth.edu/~agent

Odyssey Set of Java class libraries General Magic Telescript http://www.genmagic.com/technology/odyssey

OAA Open Agent Architecture SRI International, AI C, Java, VB General purpose http://www.ai.sri.com/~oaa/main.html

Ara Agent for Remote Action U. Kaiserslautern C/C++, TCL, Java Partially connected c. D.D. B. http://www/uni-kl.de/AG-Nehmer/Projekte/Ara.

http://www.ObjectSpace.com

http://133.65.66.181/agent/index.html

http://www.informatik.uni-stuttgart.de/ipvr/vs

http://www.camb.opengroup.org/RI/java/moa

http://www.neci.nj.nec.com/PLS/Kali.html

dah28@cl.cam.ac.uk

http://www.cs.umn.edu/Ajanta

http://www.cnri.reston.va.us/home/koe

http://www.berlin.inesc.pt/agentspace

http://www2.toshiba.co.jp/plangent/index.html

http://java.stanford.edu

http://www.fujitsu.co.jp/hypertext/free/kafka

http://www.ics.uci.edu/~bic/messengers

Tacoma Tromso and Cornel Moving Agents Norway and Cornell U. C, Unix-based Client/Server issues / OS support

Platform for distributed objectsVoyager ObjectSpace Java Support for agent system

General purposeJavaIchiro Sato, JapanAgent building platformAgentSpace

Information management

Electronic commerce

Internet

Mobile computing data base

Mole First Java-based Agent system

MOA Mobile Objects and Agents OpenGroup, UK

Stuttgart U. , Germany Java , UNIX-based General purpose

Java General purpose

Kali Scheme Distributed impl. of Scheme NEC research Inc. Scheme

The Tube mobile code system David Halls, UK Remote execution of Scheme

Distributed data mining, load balancing

Ajanta Network mobile object concept Minoseta U.

Knowbots Research infrastructure of MA CNRI , USA

AgentSpace Mobile agent framework Alberto Sylva, Brazil

Plangent Intelligent agent system Toshiba Corporation

JATLite Java agent framework dev./ KQML Stanford U.

Kafka Multi-agent libraries for Java Fujitsu lab. Japan Java, UNIX-based

Messengers Autonomous messages U. California Irvine C (Messenger-C)

General purpose

Distributed systems / Internet

http://www.tacoma.cs.uit.no/

 Scheme

Java

Python

Java

Java

Java

Support for dynamic application

Intelligent tasks

Information retrievial, Interface agent

General purpose

General purpose

Table 2.1: Example of Agent systems

Agents interaction

Like societies of humans, there is a need for agents in a multi-agent system to

rely on one another, enlist the support of peers in order to solve complex tasks.

Agent communication languages (ACL) are at the core of agent interaction

and communication. One of the main objectives of ACL design is to model a

suitable framework where heterogeneous agents can interact, communicate in

meaningful statements.

Example applications of MAS

To date, several industrial applications of MAS exist in manufacturing, telecom-

munications, and commercial applications include information management

and electronic commerce. In addition, MAS are being applied in areas like

games and medicine (patient monitor, health care). Several MAS prototypes

for enterprise integration like ADEPT [29] (business management), COOL [2]

(supply chain management) and AMBEI [57] (manufacturing integration) ex-

ist. In addition, agent-based software engineering promises to be an interesting

application area. Several industrial, commercial, and medical applications of

Agents Terminology 10

MAS exist.

Industrial applications

- Manufacturing: YAMS (Yet Another Manufacturing System) is a

multi-agent system that applies the Contract Net protocol to manufacturing

control. A manufacturing enterprise is modeled as a hierarchy of workcells that

are further grouped into exible manufacturing systems (FMS). A collection

of such FMS constitutes a factory seen as an element of an organization of a

company. The goal of YAMS is to manage e�ciently the production process

at these plants. Factories and their components are modeled as agents that

have plans representing their capabilities.

- Process Control: ARCHON is an agent-based process control appli-

cation for building multi-agent systems. ARCHON has been applied to elec-

tricity transport management and particle accelerator control. This system is

said to be one the world's �rst �eld-tested multi-agent systems.

- Telecommunications: In order to monitor and manage in real-time

large distributed telecommunications networks, negotiating agents have been

used by Gri�eth and Velthuijsen to represent entities involved in a set up

of a call. In addition, network management and control, transmission and

switching.

- Air Tra�c Control and Transportation Systems are other suc-

cessful industrial applications of MAS in industry.

Commercial Applications

- Information Management: Our modern society is characterized by

its huge amount of information that we must process in a short time. This

leads us to what is known as the information overload. In order to alleviate

users workload, direct , information �ltering and information management is

being carried out successfully by agents in a number of systems:

Maxims is an electronic mail �ltering agent which \learns to prioritize, delete,

forward, sort, and archive mail messages on behalf of a user".

WARREN is �nancial portfolio management multi-agent system that �nds and

�lters information in a �nancial context. This system is made of agents that

cooperatively self-organize to monitor and track stock quotes, �nancial news,

and company earnings reports.

- Electronic Commerce: Commercial decision making can be placed in

the hands of agents. Some of systems create an environment where buying and

selling are conducted by agent on behalf of user. Other applications include

BargainFinder and MAGMA a virtual marketplace for electronic commerce.

- Business Process Management: ADEPT for the management of

business processes andAMBEI supply chain management have been designed.

ADEPT deals with a business process as a community of negotiating and

service providing agents.

Agents Terminology 11

There are also applications in the areas of entertainment, games, interac-

tive theatre, and medicine.

2.2 Summary

In this chapter, we have presented mobile agents, multi-agent systems, issues

related to these technologies, and some of their applications in industry. Al-

though both technologies share the important interoperability problem, they

have di�erent approaches in dealing with it.

Chapter 3

The State of the Art in Agent

Communication Languages

With the emergence of the Internet and its related services came recognition

that agent communication languages (ACL) could play an important role in

the design of multi-agent systems (MAS) and agent-oriented software integra-

tion.

An agent language stems from the need for better problem solving paradigms

in distributed computing environments. One of the main objectives of ACL

design is to model a suitable framework that allow heterogeneous agents to

interact, communicate with meaningful statements that convey information

about their environment or knowledge. In addition, in the process of solving a

complex task, an agent may need to cooperate in a concise language with other

agents able to bring their contribution. ACLs evolve around the key concept

of communicative act (CA) from Speech Act theory [56]. A communicative act

is a special type of action realized by sending a message.

Several ACLs (KQML, FIPA ACL, OAA ICL, ARCOL, Agent-0, PLACA,

LOGOS) have been implemented. However, due to their speci�c approaches,

agents from di�erent environments cannot communicate. In order to build a

consensus, the Foundation for Intelligent Physical Agents (FIPA) is designing

a standard [19] that promises to bring into a common fold future ACLs in in-

dustry and academia. However several issues related to semantics, interaction

protocols, and ontology remain. This chapter attempts to present the state of

the art in agent communication languages (ACL) from the engineering as well

as the cognitive science perspectives.

12

The State of the Art in ACL 13

3.1 Generalized ACL Framework

3.1.1 ACL design principles

To date, the design of ACLs has evolved around several principles like het-

erogeneity, interoperability, transparency, extensibility, cooperation and coor-

dination, and performance. An agent communication language could be of

value to a wide number of application areas if these principles are observed. A

generalized ACL framework may be characterized by:

� the heterogeneity principle states that agents should be able to commu-

nicate regardless of their implementation environments. The meaning of the

message exchanged should be context independent and reect a global per-

spective rather than the sender or receiver private perspectives;

� the cooperation and coordination principle states that e�ective coopera-

tion to solve a complex task requires a meaningful communication language.

Generally, communication is one of the means of conveying, exchanging infor-

mation about an agent knowledge or environment. An ACL should give agents

the means to rely on one another, enlists the support of other agents in order

to achieve goals. The actual application of this principle depends on the design

of an appropriate interaction or negotiation protocol for a given task. These

protocols are high-level protocols di�erent from message transport mechanisms

and are intimately linked to their context. In a multi-agent system, when a

complex task must be subdivided between several agents, negotiation occurs

in the assignement and gathering of partial results for a complete solution.

The building blocks of a negotiation mechanism as suggested in [52], are the

de�nition of a domain of interaction, the negotiation protocol with the rules

of interaction, and negotiation strategies;

� the separation principle states that a message content, structure, and

transport mechanism are distinct entities that should be handled separately;

� the interoperability principle states that an ACL should provide hetero-

geneous agents with the means to inter-operate. For example, agent-based

software integration was conceived to help heterogeneous software components

modeled as agents inter-operate in an appropriate language;

� the transparency principle states that multi-agent systems should be shielded

from the complexities of the underlying ACL speci�cations. An appropriate

ACL API should free agents from speci�c details and set interactions to a

higher level. With ACL transparency, the underlying transport protocol de-

�nes message handling and MAS need not embed any additional functionality;

� the extensibility and scalability principles states that ACL designers may

add new communicative acts compatible with the existing ones. These new

types may implement de�ned interaction protocols. In addition, the design of

The State of the Art in ACL 14

an ACL should take into account any scalability issue related to the growing

number of agents in a multi-agent system;

� the performance principle states that an ACL implementation should use

e�ciently system resources (CPU, memory, and bandwidth). The primitive

communicative acts supplied with the language should be compatible with the

underlying network technology and exhibit unicast, multicast as well as syn-

chronous and asynchronous connection capabilities. In addition, an ACL must

support reliable, safe and secure message exchange between agents.

3.1.2 ACL speci�cations

ACL speci�cations are concerned with the description of a message structure,

its semantic model, and the underlying interaction protocols. These speci�ca-

tions de�ne a language and supporting protocols and encompasse:

� the message format de�nes the primitive communicative acts and message

parameters (sender, receiver, message-id, protocol and language) with expres-

sions that describe actions at the content, message, and communication layers.

In particular, the message content describes facts, actions, or objects in any

content language. Other parameters could deal with the message meaning

(ontology) and delivery. In addition, the ACL supplies the users with a �nite

set of primitive communicative acts;

� an ACL semantics model lays down the foundation for a concise and unam-

biguous meaning of agent messages and depends on the interactive behavior

and capabilities of these agents. When agents interact or cooperate to achieve

a goal, the mutual understanding of the messages exchanged depends on the

semantics given to communicative actions. Approaches in providing a seman-

tics to an ACL are based on mental concepts of belief, desire, and intention

([36], [6] and [18]) or social agency [61].

� interaction protocols (or conversation policies) are sets of well-de�ned pat-

terns of interactions designed to facilitate inter-agent communication. Al-

though protocols are optional, agent communication must be consistent with

a chosen protocol. A number of protocols like the followings, are used in ACL

design:

� Direct communication protocol is applied when a sender agent knows the

receiving agent and its capabilities;

� The Contract Net protocol, originally designed by Davies and Smith in

[10] in its generic form, sets the interaction patterns between an agent (the

manager) who enlists the support, through a call for proposals, of a number

of other agents (contractors) to perform some complex task. Contractors sub-

mit proposals to the manager who evaluates and assigns tasks under some

conditions. The successful contractors commit themselves to performing the

The State of the Art in ACL 15

assigned task and sending back the result to the manager;

� The mediated communication protocol uses the services of special agents

(facilitators) that act as brokers between agents in need of some service and

other agents that provide them. Mediation involves needy agents subscribing

to services; facilitators brokering, recruiting, and recommending agents that

registered their identity and capabilities.

� Shared ontologies and content language are prerequisites to knowledge shar-

ing because the ability to exchange messages doesn't assume the understanding

of their content. ACL designers share the same concerns in ontology develop-

ment with researchers in the �elds of Knowledge-Based Systems and Natural

Language Processing (ontological engineering). A good ontology should dis-

play as agreed by Mahesh in [41] the following features.

- Dependency and relevance: An ontology must be domain-dependent and

its taxonomy and relationships should show clearly their relevance to that do-

main. For example, ontologies for education and conference should not share

elements;

- Coverage: For practical reasons, an ontology should have a broad coverage

of its domain and must be independent of the message content language. This

point is specially important when this ontology is being shared by multiple

agents in several contexts;

- Simplicity and clarity: The organization of an ontology should be simple

and easy to process by an agent and accessible to a human reader. The inher-

itance structure should not be tied to a particular context nor formalism (e.g.

�rst order logic);

- Extensibility: A good ontology should be extensible, concise, versatile and

incorporate �ne-grained concepts. This extensibility will give room for im-

provement and allow designers to add incrementally new elements as condi-

tions change.

� Generally, services like security, and transport for an agent system are

provided by the underlying communications infrastructure. Agent communi-

cation languages should provide to interacting agents the means to specify

their requirements for the quality of network communications. These require-

ments may include:

- Integrity and con�dentiality: for the type of data encryption, integrity

checks during network communications;

- Authentication: the sender agent may require authentication of the receiver

before actually sending the message. Authentication services are normally pro-

vided in secure communications infrastructures.

The State of the Art in ACL 16

3.2 Existing ACL Models

The design of ACLs has adopted several approaches: the declarative ap-

proach (e.g. KQML, ARCOL, FIPA, and AOP), the procedural approach (e.g.

ICL and Mobile Agent Communication), and the \social agency" approach.

Theses approaches, depending on their implementation environments, exhibit

strengths and weaknesses. We introduce and briey assess in the following

subsections well known agent communication models.

3.2.1 The KQML Communication Model

The Knowledge Query and Manipulation Language (KQML) is a versatile,

general-purpose language that supports communication between several agents

with a set of reserved primitives called performatives. KQML described by

Finin in [21] is the result of research done by the Knowledge Sharing Ef-

fort(KSE) [17], an initiative that aims to develop a foundation for software

systems interaction and interoperability. Three working groups with comple-

mentary objectives compose this consortium: the Interlingua group designed

the Knowledge Interchange Format (KIF) as a common language for describing

a message content, the Shared and Reusable Knowledge Base group is concerned

about the content of sharable knowledge bases, and the the External Interface

group produced the KQML language and looks at interactions of system com-

ponents at run time.

In KQML, an agent's mental attitudes (belief, intention, commitment, choice)

are expressed in the message that represents a communicative act. These com-

municative acts are called performatives and de�ne the permissible operations

that an agent can conduct. The content of a KQML message is described in

KIF whereas its format is expressed with suitable performatives. The com-

plete list of KQML reserved performatives and their meaning is illustrated in

table 3.1.

The State of the Art in ACL 17

Table 3.1: KQML reserved performatives

MeaningName

S wants R to make something true in its environment, undo a previous achieve

S wants to inform R that a sentence is not in its VKB

S wants to inform R about a sentence in or not in its VKB

End-of-stream marker to a multiple-response (stream-all)

S wants one or all of R’s instantiations of the :content that are true of R

S wants to know if the :content is in R’s VKB

Multiple version of ask all

recruit-one , recruit-all

recommend-one , recommend-all

broker-one , broker-all

transport-address

broadcast

forward

register , unregister

discard

rest

next

ready

standby

sorry

error

subscribe S wants regular updates about a performative from a facilitator

S is ready to respond to a previous message from R

S wants R to remove one or all matching sentences from its VKB, or undo a previous delete

Discourse

Facilitation

Networking

Mechanics
and

Intervention

and

S : sender agent R : receiver agent F : facilitator VKB : agent’s virtual knowledge base

S understands R’s message but cannot provide further help

S considers R’s previous message as ill-formed

S wants R to announce its readiness to provide a response to the message in the content

S asks R to add the content to its VKB , undo a previous insert action

S informs R of its ability and willingness to process inquiries in content

S wants R’s next response to a previous message it sent

S wants R’ remaining reply to a previous message

S ignores any remaining response to a previous multi-response message

S announces to F (facilitator) its presence and symbolic name, reverse a previous register act

S wants F to forward a message to another agent

S wants F (facilitator) to broadcast a message to all agents that it knows

S associates its symbolic name with a new transport address

S asks F to find an agent able to provide one or all responses to a <performative>

S wants F to recommend to him an agent that is able to perform a <performative>

S wants F to find one or all suitable agents able to respond to a <performative>

advertive , unadvertise

achieve , unachieve

delete-one , delete-all , undelete

insert , uninsert

deny

tell , untell

eos

stream-all

ask-one , ask-all

ask-if

Category

A simple scenario of conversation in KQML about a call for papers for a

conference where C is the conference chairman agent, R is the receiver agent,

and A is one of R's acquaintances (R included), would be as follows:

The conference chairman sends (broadcasts) a call for papers to interested

agents like R who eventually forwards (tell) the message to their acquain-

tances like A.

The State of the Art in ACL 18

(broadcast

:sender C

:receiver R

:reply-with id0

:language KQML

:ontology kqml-ontology

:content (tell

:sender C

:receiver A

:reply-with id0

:language Prolog

:ontology conference

:content ``call(papers,conf)''

)

)

Following the reception of the forwarded call for papers to the conference,

agent A submits (tell) his paper to the conference chairman agent C.

(tell

:sender A

:receiver C

:in-reply-to id0

:language Prolog

:reply-with id1

:ontology conference

:content ``submit(paper,conf)'')

After reviewing submitted papers, C informs (tell) A of the result.

(tell

:sender C

:receiver A

:language Prolog

:in-reply-to id1

:ontology conference

:content ``accepted(paper,conf)'')

KQML is made of three layers: the communication layer (sender, receiver,

and message id), the message layer (performatives and message format), and

the content layer (ontology, content language, and message content). There

The State of the Art in ACL 19

are mainly two types of agent communication: direct and mediated communi-

cations. In the �rst scheme, an agent sends directly messages to known agents

able to process them. In the second scheme, an agent makes requests for ser-

vices to a special agent called a facilitator. The role of a facilitator is to

coordinate the interactions of agents involved in a particular problem solving

by

� forwarding requests to appropriate agents,

� forwarding updates to agents that have subscribed to particular events,

� brokering, recruiting, and recommendingsuitable agents.

� initiating distributed problem solving between agents.

� content-based routing and smart multicasting.

All concerned agents are expected to register their identities, interests and

capabilities with a facilitator depicted in �gure 3.1. In a KQML communi-

cation environment, a K-router handles incoming messages which are further

processed by the KQML Router Interface Library (KRIL) API.

A number of applications of the KQML language ranging from the engi-

neering of hardware and software systems to database systems and technology

integration experiments have been conceived. One of the most promising appli-

cations is the Agent-Based Software Integration (ABSE) approach [23] where

integration and inter-operation between software components is achieved with

facilitator agents.

Advantages and limitations of KQML

The main advantage of KQML is its ability to support a wide range of agent

architectures with its extensible set of performatives. A message that is opaque

to its content o�ers an attractive feature. It is with this language that the

concept of agent communication language made of distinct and independent

layers was �rst de�ned. As a result, KQML became the de facto standard

for agent communication in several areas. However, the early KQML had

some critics like Cohen and Levesque in [6] point out to a confusion in the

usage of its performatives. Partly due to this weakness, a number of KQML

dialects arose in industry and KQML-speaking agents implemented in di�erent

environments cannot communicate. Fortunately, the new uno�cial KQML

speci�cation in [37] is making signi�cant improvements to its semantics and

set of performatives.

3.2.2 The ARCOL Communication Model

The ARTIMIS agent technology developed by France Telecom described in

[54] is a generic framework for instantiating communication-enabled agents.

The State of the Art in ACL 20

tell(X)

Subscribing

Brokering

Recruiting

Recommending

tell(X)

recruit(tell(X))

Reply(B)

A F

Agent

B

Agent Facilitator

subscribe(ask(X))

K-RouterK-Router

KRIL KRILKRIL

tell(X)

ask(X)

tell(X)

ask(X)

advertise(ask(X))

tell(X)

ask(X)

advertise(ask(X))

broker(ask(X))

tell(X)

KRIL : KQML Router Interface Language

recommend(ask(X))

advertise(ask(X))

K-Router

Figure 3.1: Facilitator mediation in KQML

In ARTIMIS, illustrated in �gure 3.2, an agent can cooperatively interact with

humans as well as with other agents. Here, agents' communicative acts are

modeled as normal \rational actions". In other words, the rational unit at the

heart of ARTIMIS enables agents to reason about knowledge and plan actions

pertaining to their communicative acts. ARCOL1 (ARTIMIS COmmunication

Language) is the inter-agent communication language used in the ARTIMIS

system to de�ne agents' communicative acts. An ARCOL expression relies on

the language called SL (Semantic Language) for the de�nition of its semantics.

SL in turn uses the language SCL (Semantic Content Language) to describe

the semantics content of a communicative act. All primitives communicative

1http://www.drogo.cselt.stet.it/�pa/cfp1

The State of the Art in ACL 21

acts of ARCOL are shown in table 3.2.

An agent i who believes a proposition p would like to inform another agent

j of p is expressed as: < i, INFORM(j, Bi p) > .

ARCOL contains the following set of mutually exclusive primitives:

�Inform: An agent uses the assertive Inform to convey a message to an-

other agent provided it believes the content of this message itself. In ARCOL,

sincerity is a sine-qua-non condition for all communicative acts.

Human

Natural Language

ARCOL’s processing

Natural Language Processing

ARCOL’s processing

Natural Language Processing

ARTIMIS’s

Kernel

ARCOLARCOL

ARCOL

Kernel

Agent’s

Kernel

ARTIMIS’s
Agent’s

Kernel

Figure 3.2: Structure of an ARTIMIS system (c1997 D. Sadek)

� Request: The directive Request enables an agent to impose an action on

another agent provided it has the capabilities to perform that action.

�Con�rmation (opposite Discon�rmation, like the Inform primitive, re-

quires sincerity from an agent. When the sender believes that the receiver

is uncertain about the property being transmitted, the communicative act be-

comes context-relevant.

�Inform Referent enables an agent to inform another agent of the value of

a referent with a given description. These CA are mutually exclusive.

The goal or intention of an agent in performing a communicative act is

called the Rational E�ect (RE), whereas the pre-requisites to this act are known

as the Feasibility Preconditions (FP) composed of the ability preconditions and

the context relevance preconditions.

The State of the Art in ACL 22

Table 3.2: ARCOL primitives

Rational Effect (RE)

Agents : A (actor) and B (interlocutor) Agent mental attitudes : Belief (B) , Uncertainty (U) , Choice (C) , Goal (G)

A believes p

A believes that B beleives the opposite of p

B believes p

Qualifications or

Feasibility
Preconditions (FP)

Goal or

A believes p

A believes that B is uncertain about p
(context relevance)

A believes that B is not Uncertain about p

Confirm

is a persistent goal for B
A believes that the accomplishment of a

A believes that B is able to accomplish p

FP of a regarding A’s mental attitudes

or B believes p

Inform Request Disconfirm

Action a accomplishment B believes p B believes p

a is a communicative act p is a proposition

Primitives

A believes that B is uncertain about p

A believes p

Advantages and limitations of ARCOL

The most important feature of the ARCOL language is its formal semantics

as a reliable support for interoperability. In addition, ARCOL has a small

set of primitives that can be combined. However, according to Singh in [61],

ARCOL's �xed context with the sender agent required to be sincere is an

impediment to heterogeneity. ARCOLmessages not only have limited coverage

but also ignore their community public perspective. Indeed, the performance

conditions imposed by ARCOL restrict the scope of its practical applications.

3.2.3 The FIPA Standard ACL

The Foundation for Intelligent Physical Agents (FIPA) 2 is an international

organization that aims to develop a set of generic agent standards with the

contribution of all parties involved in agent technology. In particular, the FIPA

standard for ACL attempts to identify the practical components of inter-agent

communication and cooperation and de�ne a concise formal semantics and

supporting communication protocols. In fact, the main FIPA standard spec-

i�cation [19] is composed of 7 sub-speci�cations: agents management, agents

communication, agents interaction, personal travel assistance, personal assis-

tance, audio-visual entertainment and broadcasting, and network management

and provisioning. The core of the FIPA speci�cation for agents communica-

tion - communication primitives (performatives), formal model, and content

(Semantic Language SL) - draws from the ARCOL language in [54] designed

by France T�el�ecom whereas KQML inspired the structure of its messages.

Agents who comply to the FIPA standard (FIPA ACL agents) are required

2http://www.�pa.org

The State of the Art in ACL 23

Table 3.3: FIPA primitive communicative acts

Inform

Inform-ref (macro-act)

Cfp

Propose

Accept-proposal

Reject-proposal

Disconfirm

Confirm

Subscribe

Query-ref

Query-if

Not-understood

Failure

Inform-if (macro-act)

Action of calling for proposals to perform a given action

Senders informs Receiver about the falsity of p when Receiver might beleive that it is true

Sender informs Receiver about the truth of p when Receiver is uncertain

Action of informing that an action failed

Sender informs Receiver that a given proposition is true

Sender informs Receiver that it doesn’t understand the meaning of the previous message

Action of submitting a proposal for an action under some pre-conditions

Action of accepting a previously submitted proposal

Action of asking an agent about the truth value of p

Macro action to inform Receiver about the truth value of p

Action of asking an agent for an object refered to by an expression

Action of rejecting a proposal to perform an action during a negotiation

Agree Action of agreeing to perform some action, possibly in the future

Action of refusing to perform a request and providing reasons for this attitude

Action of cancelling some previously requested action with temporal extent

Sender requests Receiver to forward message to known agents satisfying some condition

Sender requests Receiver to forward message to agents that satisfy some condition

Sender requests Receiver to perform action

Resquest when p becomes true

Request whenever p becomes true

Refuse

Proxy

Request

Request-when

Request-whenever

Request of information and updates from the Receiver about value of a referenced object

Name Meaning

 Propagate

S : sender agent R : receiver agent F : facilitator VKB : agent’s virtual knowledge base :content and :to are keywords

Cancel

Request to any agent other than self to perform an action or find an agent able to perform itRequest-whomever

Macro action to inform Receiver about the object that corresponds to a descriptor (name)

Category

Negotiation

Request

Error

Information

Action

to send correct, concise and unambiguous messages that follow consistently

selected protocols. Communicative acts are organized in the following 5 cate-

gories in table 3.3.The previous conference scenario is expressed as follows in

the FIPA ACL language:

First, agent C - chairman - sends (cfp) a call for papers to an agent R.

(cfp

:sender C

:receiver R

:reply-with call-proposal

:language sl

:ontology conference

:protocol FIPA-Contract-Net

:content ((action R (submit(paper,conf))) true))

The State of the Art in ACL 24

Agent R submits his paper for review to agent C.

(propose

:sender R

:receiver C

:in-reply-to call-proposal

:reply-with proposal-R

:language sl

:ontology conference

:content (action (submit(paper,conf)))

)

Agent C informs (accept-proposal) agent A that its paper has been ac-

cepted for the conference.

(accept-proposal

:sender C

:receiver R

:in-reply-to proposal-R

:language Prolog

:ontology conference

:content ``(accepted(R, paper ,conf))''

)

Advantages and limitations of FIPA ACL

FIPA-ACL is an agent communication language that involves several parties

in industry and academia. As a standard, FIPA-ACL lays out clearly the

practical components of inter-agent communication and cooperation and a

well-de�ned formal semantics foundation. This feature makes it a concise

reference point.

In contrast to other well-known ACL models, the FIPA-ACL su�ers from a

lack of practical applications that could point out its strengths or limitations.

3.2.4 The Agent Oriented Programming (AOP)Model

In 1989, Yoav Shoham introduced a new programming paradigm called agent-

oriented programming (AOP). This paradigm described in [58], is a compu-

tational framework that draws from Arti�cial Intelligence (AI), Speech Act

The State of the Art in ACL 25

theory, and Object Oriented Programming (OOP). According to Shoham, \an

agent is an entity whose state is viewed as consisting of mental components

such as beliefs, capabilities, choices, and commitments". A complete AOP sys-

tem should include three primary components:

� A concise formal language to express an agent's communicative act with

its mental states.

� An interpreted language with a reserved set of performatives that include

agents' mental states.

� A means to model devices into agents.

There are only three primitive communicative acts in the AOP model: inform,

request and unrequest that can be combined to express a variety of actions.

Here agents act under the constraints of internally consistent and persistent

beliefs, commitments, current and prior decisions. In addition, an agent could

have commitments towards others that it cannot revoke although it can cancel

its own decisions.

In the line of these principles, Torrance [66] designed the AGENT-0 pro-

gramming language to specify agents with their capabilities, beliefs, commit-

ments together with a set of commitment rules. Agents' beliefs consist of a

set of facts bound to a proposition at a particular instant in time whereas a

commitment is a particular proposition. A communicative act is carried out

if and only if all the three parts - message condition, mental condition, and

action - of the related commitment rule are satis�ed.

Advantages and limitations of AOP

The idea of ascribing mental attitudes to software agents in the AOP model

is indeed unique and attractive. However, the small number (only three) of

primitives communicative acts available makes the AOP model un�t for most

real-world applications. According to David Parks in [16], AOP is still an

underdeveloped �eld because this theory doesn't address the important issues

of:

- formal description of the underlying mental theory,

- security in heterogeneous networks,

- consistency of beliefs and actions across implementations.

The AOP theory needs an expressive implementation language in order to

become a complete programming paradigm.

3.2.5 The SRI OAA Communication Model

SRI International 3 designed the Open Agent Architecture (OAA) de-

scribed in [42] as a means for integrating a community of software agents in a

3http//www.ai.sri.com/� oaa

The State of the Art in ACL 26

distributed environment. To support this architecture, SRI conceived a logic-

based declarative language called InterAgent Communication Language

(ICL). This language is designed to �t a broad concept of agent in OAA where

software agents and human users - privileged agent members - interact, share

services in a dynamic community via facilitators. In this architecture, the term

communication covers inter-agent as well as human-agent interactions.

Information exchange, activities, and requests of constituent agents are pro-

cessed as events represented in the OAA by ICL expressions. For exam-

ple, a request expressed in natural language as \Inform all about the Agent

Communication Language workshop" is translated in an ICL expression as

send message(email, 'all', [subject(ACL workshop)]). An event has a type, in-

cludes parameters and a content. In the OAA framework, ICL is best described

as a middleware which helps implement cooperation mechanisms between ser-

vice providers (servers), service requesters (clients), and facilitator agents. It

handles temporal constraints and supports only three speech act types: Solve,

Do, and Post. The ICL language is structured around two layers:

- the conversational protocol layer describes the event types and related pa-

rameter lists;

- the content layer which is an extension of the PROLOG programming lan-

guage, describes the content (goals, triggers, and data elements) of events of a

conversation.

Many applications like the Automated O�ce, the Multimodal Map, MVIEWS,

the Agent Development Tools, and Language Tutoring have been build with

the OAA architecture and ICL.

Advantages and limitations of OAA ICL

The OAA framework has adopted the procedural approach in designing its

inter-agent communication language ICL. In addition to being e�ciently exe-

cutable, this language is simple and exhibits powerful features like the ability to

handle parallel solving of a list of persistent and distributed goals. Its wide per-

spective makes it an excellent communication medium between sofware agents

on one hand and human users and software agents on the other hand. Unfor-

tunately, the ICL language is tied to a particular agent architecture (OAA)

and its procedural nature does not allow a bi-directional conversation. In addi-

tion, there is no mechanism for the variety of agents (software and human) to

share a common ontology or merge vocabulary and knowledge on a large scale.

Although the idea of incorporating natural language may be appealing, the

development of the OAA architecture may have to face all the issues known in

Natural Language Processing.

The State of the Art in ACL 27

3.2.6 The Mobile Agent Communication (MAC)model

A mobile agent is a program that can migrate autonomously across a hetero-

geneous network. At anytime it can halt, move together with its state and

data to a new machine, and resume execution at the point where it stopped.

Mobile agents are a new kind of abstraction in the client/server communica-

tion world. The most common communication mechanism for mobile agents is

message passing (requests, queries). In addition, some alternatives like remote

procedural calls (RPC), remote method invocation (RMI), and the Commmon

Object Request Broker (CORBA) in speci�c cases for distributed applications.

The mobile agent technology has found many interesting applications in dis-

tributed multimedia systems, real-time systems, mobile computing, factory

automation and mission-critical systems.

Unlike AI, software engineering makes no assumption about mental states

nor social structure of mobile agents. Here, agents are only processes that are

able to move autonomously and perform tasks on behalf of a user at remote

locations. This property leads to a di�erence in the way agent communication

is de�ned as illustrated by the following example.

The Aglet communication model

Aglets (Agile applets) are Java objects designed at IBM Tokyo Research

Center 4. They can migrate together with their data, code, and states au-

tonomously inside a computer network and execute work on behalf of their

owner. Agents communicate with message passing (local host) or remote mes-

sage passing (remote host) like in �gure 3.3. These messages are objects (mes-

sage objects) that are serialized, marshaled, sent, then stored at the receiving

end in a message queue. The programming principles of Java mobile agents are

explained by the designers of this technology in [39]. They can be a now-type

(synchronous message), a future-type asynchronous message, an asynchronous

one-way type message.

Advantages and limitations of MAC

Agents that are able to migrate certainly o�er an attractive alternative to com-

mon RPC communication style between hosts. Inter-agent communication is

however limited to simple requests. Due to the characteristics of mobile agents,

there is neither exchange of information nor sharing of domain knowledge. The

aim of communication here is not to seek the cooperation of other agents in

solving a task but rather to use services provided at the destination host. As

4http://www.trl.ibm.co.jp/aglets

The State of the Art in ACL 28

Aglet runtime environmentAglet runtime environment

Aglet Transport ProtocolAglet Transport Protocol

TCP/IP based network

Agent Agent

Serialized message object

Figure 3.3: The Aglet architecture and communication model

there is no concept of community of agents, one may wonder if mobile agents

really communicate.

3.2.7 The \Social Agency" Communication Model

In conventional multi-agent systems based on mental attitudes like belief, in-

tention, and commitment, agent communication su�ers from the lack of a

concise and universally accepted formal semantics. As a result, agent commu-

nication is con�ned in the realm of restricted environments and heterogeneous

agents do not interact. As agents are commonly de�ned in terms of autonomy,

interoperability and their ability to cooperate, coordinate actions towards a

common goal, mental attitudes alone may not help de�ne a concise formal se-

mantics. A number of attractive solutions to this drawback has been proposed

recently by Singh in [61], Colombetti in [8] and Moulin in [43]. Singh advocates

a formal semantics model that emphasizes social agency whereas Colombetti

proposes modal logic as a basis for the de�nition of the semantics of agent

communication language.

Singh's \social agency" model

Singh proposes a theory that provides a concise foundation for the design of

multi-agent systems. In this theory, he shows that the success of multi-agent

systems depends on how well the underlying ACL supports interaction among

agents in a social setting. In [61], he suggests that many elements depicted in

�gure 3.4 contribute to the meaning of communication between agents:

� perspective could be private (sender's) or public (agent society's): the

message sent contains knowledge and attitudes about senders only or some

shared knowledge of the multi-agent system.

� type of meaning is individual or conventional (group of agents),

The State of the Art in ACL 29

� basis deals with semantics or pragmatics,

� context should be exible to make agent communication more meaningful,

� coverage of communicative acts should be wide (including all categories of

Speech Act theory) in order to improve interactions in a multi-agent system.

In addition, Singh introduces in [62] a social semantics for ACL based on social

commitments within temporal logic.

Meaning

Perspective

Type

Basis

Context

Coverage

C
on

st
ru

ct
io

n
D

es
ig

n
au

to
no

m
y

au
to

no
m

y
E

xe
cu

ti
on

L
ow

H
ig

h
L

ow

H
ig

h

Complete

Flexible

Semantic

Conventional

PublicPrivate

Personal

Pragmatic

Fixed

Limited

Figure 3.4: The design space of agent communication languages (c1998

IEEE): The region in the left represents existing ACLs, which follows a mental

agency model. The region in the upper right represent the desired goals, which

dictate a social agency model: high design and execution autonomy, high cover-

age (include all signi�cant categories of communicative acts), exible context,

semantic basis for meaning, conventional meaning type, and a public perspec-

tive.

Colombetti's modal-logic-based approach

Colombetti proposes in [8] the idea of agents with \social mental states". With

modal logic, he de�nes concepts related to social interactions of agents. These

The State of the Art in ACL 30

interactions could create common beliefs expressed in di�erent ways as illus-

trated in �gure 3.5. In order to establish common beliefs in a group of agents,

he suggests that one or several of the following mechanisms should be consid-

ered:

� Deduction: knowledge can be inferred from another knowledge,

� Displayed information is perceived by all agent when an event takes place,

� Mutual observation between agents is a way to acquire new knowledge,

� Intentional communication is public and implies common beliefs.

In addition, he analyzes in [7] the social commitment entailed by the perfor-

mance of communicative acts.

Common

Beliefs

 beliefs

common

Space of

Mutual

observation

information

Communication

Displayed

Figure 3.5: Common beliefs in agent communication.

Advantages and limitations of the social agency model

The social dimension of multi-agent systems is a valuable asset for the design

and management of a wide range of these systems. The theoretical foundation

of the social agency model laid down by Singh, Colombetti and Moulin may

prove to be an important tool for the new �eld of agent-based software inte-

gration. This approach is a macro theory that may be di�cult to implement in

real world environments because computation models impose constraints that

the social agency model may not accommodate.

The State of the Art in ACL 31

3.2.8 Other Communication Models

The COOL language: COOL in [2] is a language for multi-agent systems de-

signed by the Interprise Integration Laboratory at the University of Toronto

and the Technical University of Berlin. It is based on WinterP (made of Lisp)

and addresses the issues of agent interaction, representation, reasoning and

legacy software integration.

The LOGOS language: LOGOS is an agent communication language designed

at the NASA. It is written as a set of two Java classes describing its structure

and content and contains four message types: COMMAND, REQUEST, REPLY, and

INFORM. Several primitives communicative acts speci�c to air craft control are

provided.

Agent-0 derived languages: AgentK: Davies and Edwards in [9] conceived an

interesting integration of AGENT-0 and KQML called Agent-K . LikeAGENT-

0, AGENT-K has no planing features. To correct this, Thomas in [65] designed

PLACA, a language that enables agents with intentions and planing capabili-

ties.

The APRIL and MAIL languages: These two languages stem from the ES-

PRIT project IMAGINE. APRIL is a general purpose language for the design

of multi-agent systems with multitasking, communication, and pattern match-

ing properties whereas MAIL is a system that provides plans for agents and

was intended to use APRIL as its implementation language.

3.3 Models Comparison and Current Issues

3.3.1 ACL models comparison

The lack of a universally accepted formal semantics and message format for

existing ACL models makes it di�cult to make a comparison in terms of per-

formance. Nevertheless, given table 3.4, we can assess languages described in

this survey along the principles listed in section 2.1.

Heterogeneity: Unlike the \social agency" approach, several declarative lan-

guages like KQML, ARCOL, FIPA ACL do not explicitly embed any feature

related to global perspective of an agent environment. This shortcoming, ele-

gantly pointed out by Singh in [61], may come from the Belief-Desire-Intention

perspective of these languages. In particular, the many dialects of KQML in

real world applications demonstrate its low heterogeneity. In addition, AR-

COL and FIPA ACL . On the other hand, the ability of all OAA agent sys-

tems, regardless of their implementation language and platform to communi-

cate through ICL demonstrates gives an excellent exemple of heterogeneity.

While separation and transparency are common underlying principles of

The State of the Art in ACL 32

existing ACLs, the interoperability issue is addressed from di�erent point of

views. For example, the KSE group supports interoperability at the levels

of communication language, ontology, and knowledge base with respectively

KQML, Ontolingua and, the Knowledge Interchange Format (KIF). Unfortu-

nately, with real world practical applications of KQML, several dialects arose

and di�erent agents are unable to interoperate. On the other hand, FIPA

and ARCOL propose prede�ned interaction protocols (conversation policies)

in addition to a formal semantics of individual messages to support interoper-

ability. In fact, these approaches need to include a global semantics for agents

conversations (compositional semantics) and �ne-grained constraints on their

ACLs.

Although extensibility and scalability are originally parts of the design strate-

gies of KQML, ARCOL, FIPA ACL, and OAA ICL, their underlying seman-

tics and conversation policies do not explicitly show how extensions should

be integrated in harmony with existing communicative acts. For example, in

a domain-speci�c implementation of an ACL, a user may create new perfor-

matives (communicative acts) which do not necessarily �t in any prede�ned

conversation policy. As a result, an incoherent interpretation of messages may

a�ect the common goal of participating agent in a conversation.

The actual performance of existing ACLs is generally evaluated at the trans-

port protocol level with their corresponding API. For example, a number of

KQML implementations (Lockheed KQML, Loral/UMBC KQML) has e�cient

communications layers and various enhancements signi�cantly reduced com-

munication costs. How the choice of an ACL contributes to the performance of

a multi-agent system may not be easy to evaluate. However, some experiences

suggest that the lack of reliability and safety properties in most ACLs could

be an impediment to performance in multi-agent systems.

The descriptions in the previous sections show that there are three per-

spectives in ACL design: the declarative approach, the procedural approach,

and the approach based on the concept of \social agency".

On one hand, the declarative languages FIPA ACL and KQML have sim-

ilar syntax, identical message format and share several parameters. In KQML,

primitive CAs must bear the burden of describing the actual mental attitudes

(intention, belief, commitment, and choice) of the message sender whereas

FIPA ACL embeds some of these properties in the expression of the message

content. In addition, the structure of a message in KQML must exhibit ex-

plicitly features pertaining to agent management, communication management

(transport and facilitation), and multiple response queries. In contrast, FIPA

o�ers equivalent primitives embedded in a speci�c request primitive and has

no facilitation features outside of a directory facilitator (DF). Some critics like

Cohen and Levesque argued in [6] that KQML semantics is ill de�ned and its

The State of the Art in ACL 33

Table 3.4: Comparison of ACL models.

commitment rules
mental attitudes and

Modal logic as a basis

Social agency or
Social structure

Social community

with public perspective
and common beliefs

Formal semantics

FIPA-Contract Net
FIPA-query, FIPA-request
FIPA-Auction-Dutch/Dutch

ICL expressions

Knowledge Interchange Format

SL language

PROLOG-like

No defined language

No predifined language

No predefined content
language

Content Semantics

Informal semantics

Formal semanticsSL language

Formal semantics

based on modal logic

Support for

No predifined negotiation protocol

No predefined protocol

ACL elements

ACL models

Minimal Cooperativeness Protocol

Corrective-Answer Protocol

Suggestive Answer Protocol

KQML

ARCOL

FIPA

ICL (OAA)

AOP

Social Agency

No semantics No predefined protocol

No predefined protocolNo semantics
Procedural approach

Message Format Content Syntax / Language Interaction Protocol

Layered structure
Seperation between content,
 message,
 and communication

 message,
 and communication

Seperation between content,
Layered structure

Structure based on a first

and Rational Effect (RE)
with Feasibility Precondition (FP)
order modal language

\performatives" (communication primitives) are ambiguous and do not cover

completely all interactions in agents conversation. Over time, KQML designers

improved its semantics and provided a better foundation for the many appli-

cations using this language. Although, the FIPA standard ACL is arousing

much interest, indeed, as Labrou and Finin stated in [20]: \KQML has played

a `pioneering' role in de�ning what an ACL is and what issues are when it

comes to integrating communication into agent systems."

On the other hand, in mobile agent systems, communication is intimately tied

to the underlying transport protocol and is mainly in the form of simple re-

quests for information. No assumption is made about the mental state of a

mobile agent nor is any form of knowledge exchanged.

Then, models based on the social dimension of agent interactions like Singh's

\social agency" in [61] and Colombetti's \space of common beliefs" in [8] seem

complementary. The second approach could be used as a practical application

of the �rst and include agents mental attitudes.

3.3.2 Issues and perspectives

Research in ACL is concerned with issues of design approach (procedural ver-

sus declarative), semantics, interaction or negotiation protocols (conversation

policies), ontologies, and supporting communication infrastructures. Although

semantics has attracted much attention, the question of designing a satisfac-

The State of the Art in ACL 34

tory ontology shared by all parties involved in a conversation still remains an

important issue. In addition, the idea of structuring a conversation around es-

tablished conversation patterns known as interaction protocols or conversation

policies (e.g. Contract-net), and the choice of such protocols, adds a new di-

mension to the ACL implementation debate. Agent communication languages

will be of long term value to industry and academia only if these pragmatic

issues are resolved.

� Design approach: ACL designers adopt either the procedural approach

or the declarative approach. In the �rst approach (e.g. OAA ICL), ACL ex-

pressions (messages) are modeled as procedural statements that inform the

recipient agent about the requirements of the sender and how these require-

ments should be carried out. In the second approach (e.g. KQML, FIPA ACL),

messages are modeled as declarative statements that specify a primitive com-

municative act, an ontology, a content language, an interaction protocol, and

a message content. Generally, the choice of an approach depends on the archi-

tecture of the current multi-agent system and the nature of the information

exchanged. Although the declarative approach is used in the KQML and FIPA

ACL de facto standards, ACLs implemented with procedural statements like

the OAA ICL from SRI International make excellent applications.

� Consensus on Semantics appears to be the most important and challeng-

ing problem faced by the ACL research community. Although several attempts

to de�ne a good semantics has been done like in [18] and [36], there are still

some important aspects (Singh in [61] and Moulin in [43]) that must be taken

into account. A common ACL semantics is needed to guarantee that concepts

used in a message are correctly interpreted at the receiving end with no regard

to context. To this end, a semantics based solely on mental state of agents

may not be appropriate for all domains. Ultimately, the standard semantics for

ACL will include a complete coverage of its domain, have the means to handle

a exible context, a conventional type, and a public perspective. In this line

of thought, Moulin in [43] argues that the notion of role, decision power, social

network and communicative conventions have an impact on agent communi-

cations.

� Interaction protocol, naming, registration, and facilitation services are

important elements of an ACL design. Compliance with interaction protocols

and conformance testing are essential for ACLs conceived according to some

standard because sending a message doesn't guarantee its correct interpreta-

tion at the destination. These rules will ensure that di�erent implementations

of an ACL will let agents communicate e�ciently. To date, these issues have

received little attention.

Due to their practical importance and interest of industry in this technology,

di�erent multi-agent systems may need to interact. Independently developed

The State of the Art in ACL 35

systems may be reused as components or constituent agents in a new integrated

multi-agent system. For this reason, interoperability between di�erent systems

becomes a necessity that can be achieved only if some aspects of agent com-

munication is standardized. The Foundation for Intelligent Physical Agent

proposed a comprehensive set of MAS management standards including an

ACL standard that could be a solution to the interoperability issue. However,

a single, uni�ed ACL may not suit all application domains. For example, the

procedural approach in the design of the ICL language in the OAA system

[42] prevents any kind of interoperation with agents using a declarative ACL

in their native system. Instead of a one size �ts all approach to the design of

ACLs, practical applications of ACLs in industry will ultimately suggest that

only some aspects of an ACL like semantics and ontology need to be standard-

ized leaving room and the freedom to a given system to conceive its message

format, select its content language, and communicative acts.

3.4 Summary

In this chapter, we suggested a general ACL framework motivated by a number

of design principles and speci�cations. In addition, we described elements of

the structure of an agent communication language. Then we presented some

emerging ACL models together with similarities and di�erences between these

models. Multi-agent systems and related ACLs are promising areas of research

and new perspectives like social interaction of agents are paving the way for a

better foundation of agent communication.

Last, we presented some of the current issues in ACL design. Although se-

mantics seems to attract a lot of attention, we showed that issues related to

ontology design and agent interaction protocols deserve as much attention if

agent communication languages must be of value to industry and academia.

Chapter 4

Quality of Service (QoS)

A number of applications like Video-on-Demand (VoD), Desktop Video Confer-

encing, Distributed Collaborative Environments, Distant Learning are taking

advantage of the new capabilities o�ered by current networks and end-systems.

However, these applications will not be able to provide satisfactory level of

service if a suitable QoS provision scheme is not designed to sustain their ac-

tivities.

Originally, the principles of Quality of Service (QoS) were applied to com-

puter network communications. As QoS is gaining wide acceptance, its mech-

anisms are being applied to end-systems in distributed multimedia systems

(DMS) as well. The concept of QoS is best described through the levels of

service, a given provider can o�er in order to sustain an activity.

4.1 QoS concepts and management

In a distributed multimedia environment, any activity that contributes to the

production, delivery and consumption of some multimedia data can be char-

acterized by the quality of its service. The followings are some well accepted

phases of Quality of Service provision borrowed from the network communica-

tions area that are used in distributed multimedia environments:

QoS Speci�cation: A service user must specify to the provider with objec-

tive or subjective QoS parameters the level of service that it expects.

QoS Negotiation and Mapping: In this process, the system must identify

the set of components that are able to provide and sustain completely the

required level of service. Then, with adequate mapping, the required QoS are

translated from one system layer to another.

Resource Allocation and Admission Control: In conjunction with the

negotiation phase, necessary resources are reserved for an activity. The re-

quired resources availability could be an issue unless the admission control

36

Quality of Service 37

functions compares beforehand the activity needs with the existing resources.

Admission is then granted when enough resources exist.

Monitoring: Once an activity has started, a given system layer constantly

monitors the lower layer to check for alteration in the value of the performance

parameters.

Maintenance and Adaptation: These processes aim to counteract the per-

cieved degradation or violation of the contracted QoS. Adaptation is achieved

through change in the topology of the components selected by the negotiation

process, a coarsed or �ne grained resource adjustment or an explicit change of

service by the user.

Re-negotiation: When a degradation of the QoS level has reached a critical

level and nothing further can be done to recover or adapt to a lower level of

service, a re-negotiation is initiated by the system. This scheme proposes an

entirely new QoS provision process. A change of service preferences by a user

also can triger a re-negotiation. In addition, the QOS contract binds the enti-

ties (network provider, network and end-system resources ...) involved in the

QoS provision. We de�ne it in generic terms as follows:

typedef struct{

service-spec_t : service-spec;

committment_t : committment;

monitoring_t : monitoring;

adaptation_t : adaptability;

dependability_t : dependability;

service-contract_t }

The contract is composed of the service speci�cation, the class of com-

mitment the resources are able to provide to sustain a given activity, the mon-

itoring process, the adaptation process, and a subjective parameter we call

dependability.

A user states with objective and subjective parameters in the service spec-

i�cation the performance expected. For instance, in dealing with timeliness

parameters like loss, delay, jitter and throughput could be considered.

The commitment clauses are known as Deterministic, Statistical and

Best e�ort. The �rst guarantees that resources are exclusively dedicated to

an activity. The second is a loose version of the �rst where a service tolarates

some uctuations because resources are shared and eventually pre-empted.

The best e�ort commitment does not guarantee any level of service nor does

it permit control over any resource. These clauses are qualitative expressions

that helps precise the nature of the service required.

Quality of Service 38

QoS Termination

Critical Level

Adaptation

Re-negotiation

QoS Maintenance

QoS violation

QoS Degration

Lower limit

Upper limit

QoS within
bounds

Required
QoS

New QoS
provision

Figure 4.1: A simple view of QoS Management

The scope of the usual service contract could be extended with the depend-

abiliy parameter. Dependability, with the values High, Average and Low, is a

subjective QoS requirement that states the level of trust and con�dence a user

is putting in the system. The dependability parameter puts an emphasis on

the user, whereas the commitment clauses (deterministic, statistical, and best

e�ort) relate to the way the system manages its resources. For example, a user

working on a low-end system might concede a low dependance. However, when

a multimedia �le is being transfered from a remote server, the deterministic

clause is required for loss.

4.2 Example of QoS architectures

Several research projects have proposed QoS architectures that have emerged

in the literature. We propose here a brief overview of these architectures as

described in [1]

- The Tenet QoS model [15]: The Tenet Architecture by the Tenet Group at the

University of California at Berkeley, is a family of protocols including a Real

Quality of Service 39

Time Chanel Administration Protocol (RCAP) for generic connection estab-

lishment, resource reservation and signaling. The other element, Continuous

Media Transport Protocol (CMTP) deals with the transport and network layer

for resource reservation and ow setup.

- The QoS-A model [5]: The Quality of Service Architecture (QoS-A) is an ar-

chitecture composed of several layers and planes with speci�c functions. The

distributed systems platform, the orchestration layer, the transport layer, the

network layer, the data link layer, and the physical layer. In addition, QoS

management is achieved in three vertical planes:

The protocol plane for media control,

The QoS maintenance plane for monitoring and �ne-grained maintenance pur-

poses,

The ow management plane for ow establishment, QoS mapping, and QoS

scaling (�ltering and QoS coarse-grained adaptation).

- The OSI QoS model [28]: The OSI QoS Framework de�nes concepts and is

dedicated to QoS support for OSI communications. It helps identify objects

for QoS management in open systems standards. This framework includes:

* QoS requirements with the management and maintenance functions,

* QoS characteristics which describe the elements and their measures,

* QoS categories that group related QoS dimensions,

* QoS management functions are applied to meet QoS requirements.

- The Int-serv QoS model [3]: Inter-serv architecture by the Internet Engineer-

ing Task Force (IETF) is dedicated to QoS control for multi*media applications

over an integrated services inter*network. Although initially reserved to the

network, Inter*Serv applies also to end*systems. It includes four components:

* a packet scheduler

* a classi�er for mapping incoming packets to QoS classes,

* an admission controller for ow admission,

* a reservation setup protocol for ow speci�c state in the routers along the

path of the ow.

4.3 Summary

In this chapter, we examined the concept of Quality of Service, its require-

ments and elements involved in its provision and management. QoS spec-

i�cations, QoS negotiation and mapping, resource allocation and admission

control, maintenance and adaptation, and negotiation are the necessary steps

in providing QoS for any system in need of a sound service. A number of ar-

chitectures like Tenet, QoS*A, and OMEGA, conceived in academia illustrate

di�erent design approaches.

Chapter 5

Mobile Agent Support for QoS

in Distributed Systems

5.1 Introduction

In this chapter, we propose two di�erent architectures for supporting QoS in

distributed systems:

In the �rst architecture, a mobile agent is an object characterized by its at-

tributes and methods, which performs operations. A meta-object like in the

Apertos Operating System described in [75] is an abstraction for the set of

methods that operate on appropriate resource managers when satisfying sev-

eral QoS. The foundation of our architecture lies on three concepts: An agent

is an object that negotiates QoS on behalf of a user. Here a virtual host is

a meta-object that spans several resource managers and a place is a dynamic

virtual location inside a virtual host where mobile agents use some services.

The second architecture presents a QoS adaptation scheme based on the mo-

bile agent technology. Then we introduce the idea of macro-adaptation as the

coarse-grained adjustments, and micro-adaptation for �ne-grained corrective

actions on resources.

5.2 An architecture for a QoS-based mobile

agent system

In the design of the proposed architecture, four entities come into play: a

virtual host, a virtual host interface, a place and a resource manager. A

place, located inside a virtual host, is responsible for providing the adequate

computation resources for the execution of an agent and grants it the desired

QoS. A place con�nes the actions of the agent to a restricted environment

40

MA Support for QoS 41

for portability and security reasons. Each place is con�gured specially by

an interface according to the requests submitted by the mobile agent. This

interface is the virtual host interface, which is also in charge of translating

the subjective user de�ned QoS parameters into system compliant parameters.

The virtual host interface separates the responsibilities of QoS negotiation and

Physical host Physical host Physical host

virtual host

Timeliness

Availability
Consistency

precision

Place

Agent

Figure 5.1: A virtual host spanning multiple machines

resources management.That is to say: the mobile agent system takes care of

QoS negotiation at the user level while the virtual host deals with resource

management at the machine level. In fact, we propose in this paper a protocol

for QoS control that relies on the movements of mobile agents inside and

between places. In order to satisfy its owner's QoS request, the mobile agent

in our system implement an e�ective policy of QoS control inside places created

on demand. The virtual host interface receives mobile agents and translates

their data (subjective QoS) into system de�ned QoS . With this data, it

con�gures an adequate place inside a virtual host. Then, the mobile agent

enters that place and use the services provided there.

MA Support for QoS 42

Resource
 Manager

Resource
 Manager

Resource
 Manager

virtual host

Client Application Client Application

Virtual Host Interface

Timeliness

Availability
Consistency

precision

Place

Agent

Agent Agent

virtual host

Timeliness

Availability

Consistency

Place

virtual host

Acurracy

Consistency

precision

Place

Heteregeneous Network

Physical host Physical host Physical host

Agent Agent

Figure 5.2: A client view of the mobile agent system

5.2.1 QoS assumption

In this model,we assume that a client application targets a �xed number of

QoS: timeliness for systems with time constraints, accuracy, precision, avail-

ability and consistency. We assume also that a number of host machines scat-

tered across the network have the necessary resources to satisfy the user needs.

Each place inside a virtual host in conjunction with the adequate resource man-

agers provides several types of QoS and not necessarily the entire set of QoS.

In addition, in our context a resource reservation scheme exists at the level of

each physical host machine.

MA Support for QoS 43

5.2.2 Agents movement

A client application with multiple QoS requests expressed as timeliness, ac-

curacy, precision, availability and consistency may need several resources in

order to be satis�ed. In this case, the mobile agents in charge migrate with

these requests to an appropriate virtual host. Before any operation, the sub-

jective QoS is translated by the virtual host interface into system de�ned QoS.

With this data, the interface con�gures a suitable place within the virtual host.

Each virtual host spans, over the network, a number of resource managers and

host machines containing the needed resources. When a place is built, the

mobile agent moves into it and tries to secure the available QoS and migrate -

if necessary - to other places to satisfy the complete set of requested QoS. In

Client application Mobile Agent Virtual host Resource manager Physical host

QoS negotiation phase Resources management phase

2. Subjective QoS
request

1.QoS satisfaction request

3. Local resource
allocation request

4. Local resource
 reservation request

5. Local resource
 commitment

6. Available local
resource granted

7. Available QoS
granted

8. Available QoS
 satisfaction

Subjective QoS
translation

System QoS
translation

Figure 5.3: The QoS negotiation process

particular, when a time constraint is set by the client application, the mobile

MA Support for QoS 44

agent must set a priority to the timeliness parameter and accept lesser values

for other QoS. Assuming that the execution environment is reliable, the agent

migrates throughout the entire network, from virtual host to virtual host in

order satisfy all QoS requests.

5.2.3 Adaptation

On one hand, during the execution of an agent at a place, resources at physical

hosts can be added, removed or simply fail unexpectedly. In such cases, the

virtual host interface recon�gures a new place inside the related virtual host

and reassigns the agent to this new place or the agent simply travels to another

place. Here the only impact on the mobile agent movement is the change

of path taking in account the new event. This simple and straigthforward

strategy helps rearrange available resources and maintain user satisfaction.

On the other hand, as mobile agents are bound to perform many operations

and use the services provided by multiple hosts, some concerns naturally arise

about the reliability of the agent itself, its execution environment, the host

machine and the network it uses. To deal with this issue we propose a simple

scheme for failure recovery. At the time it leaves a place, an agent creates a

checkpoint on a persistent store. This way, when a host crashes together with

an agent, the last host visited can completely recreate this agent with its state.

5.2.4 Inter-agent communication

As many agents migrate across the network on behalf of their owner to sat-

isfy di�erent QoS requests, they need to cooperate for optimization purposes.

Agents communicate with one another by passing messages about new envi-

ronmental conditions at their respective place. This way, an agent can have

an impact on the computation of other agents. For example, when an agent,

on behalf of the real time system user, plans to migrate to a place where time-

liness (CPU time) used to be available; another agent staying at the targeted

place knows that a failure of the local resource makes this QoS no longer satis-

�able at the virtual host managing it. So the latter agent, upon request, sends

a message to the �rst agent which then changes its path. Also, the level of

QoS available locally may not be su�cient and the agent in need looks else-

where for better service. The inter-agent communication is achieved through

asynchronous messages rather than Remote Procedure calls (RPC) for ex-

ibility purposes. In this scheme, an agent calls a communication primitive.

The supplied arguments here are the identity of the receiving agent and the

message.

MA Support for QoS 45

5.3 Mobile agents and QoS adaptation in DMS

In a distributed multimedia environment, unstability, uctuations in the level

of service or temporary failures are inherent parts of the activity of any system.

As a result, service maintenance or adaptation are required if user con�dence

is important. In our context some particular motivations are the following:

1.In distributed systems environments, shared resources due to system policies

(resources management, priotities, ...) may not be available on request.

2.Congestions in the network or end-sytems often occur.

3.Di�erent clients QoS requirements, depending on preferences, may create

conicts.

4. Granted resources may be pre-empted and not be guaranteed over time.

In our approach to adaptation, we de�ne the concept of macro-adaptation

as all the coarse-grained adjustments relying on agents movement with change

in components topology; whereas micro-adaptation describes all the �ne-

grained corrective actions done at the lower level resources along agents hier-

archy. In addition, in this agent-centric design, we assume that QoS monitoring

and resource reservation are done at the component level. Our idea is to or-

ganize an adaptation strategy inside mobile agents themselves: computation

is adaptated to the available services. The interactions between mobile agents

and component interfaces incorporate the adaptation mechanisms.

5.3.1 Agent-based adaptation strategy

Macro-adaptation and micro-adaptation are done in an integrated and hierar-

chichal fashion.

An integrated approach:

The system we propose is integrated in two aspects:

First, all components spanned by related mobile agents, are integrated in a

single end-to-end QoS provision process.

Traditionally, the negotiation process identify a �nite set of components that

are able to sustain an activity and assign to each, in a rigid con�guration, its

share in the overall end-to-end QoS provision. In contrast, with the introduc-

tion of mobile agents, several components assembled in a loose con�guration,

are connected dynamically to provide the required QoS. Such an approach is

described in [34]. In our scheme, system agents coordinate the operations of

system components and communicate with network agents responsible of net-

work transactions at the transport layer of the network.

Second, all adaptation mechanisms in research related to QoS provision have

been implemented as isolated processes activated when a degradation or viola-

tion actually occurs. However, unstability, degradation are unavoidable events

MA Support for QoS 46

in heterogeneous environments. We beleive that the best way to deal with

these events is to predict them long before they happen. The QoS negotia-

tion process, the resource allocation and admission control should incorporate

strategies that prevent as much as possible violations of QoS requirements.

Interface

Resources

Component

Interface

Resources

Component

System Agent

Interface

Resources

Component

Interface

Resources

Component

System Agent

Component

Interface

Resources

Component

Interface

Resources
Network Agent

End system
(source)

End system
(sink)

Heteregeneous Network

User

User agent

Figure 5.4: Agents structure in end-to-end QoS provision

A hierarchical approach:

When a degradation or violation is detected, maintenance or adaptation is

carried out along the following steps:

1. The system identi�es the component that fails to satisfy the local QoS.

2. The related agent (ex. end-system agent) attempts to solve the problem

locally by:

2.1. moving the computation to a peer component (ex. end-system com-

ponent).

2.2. sending a message to a sub-component agent to make the necessary

corrections down into the hierarchy or interact with the resource manager.

2.3. sending a message to another agent located elsewhere and the previ-

ous steps are performed there.

3. If local adaptation fails, the adaptation process is moved to another part

of the system (ex. network). The same strategy as in (2.) is re-enacted.

4. When resources are scarce or the service requires a strict amount of re-

sources (deterministic clause), mobile agents may transfer immediatly the com-

putation into another part of the system.

Horizontally, computation is moved with the QoS access point from the cur-

rent component to a peer component.

MA Support for QoS 47

Vertically, a message is sent to an agent at a sub-component down in the

hierarchy. The target agent can further move the computation to a peer sub-

component if necessary. Should the QoS maintenance or adaptation to a lower

QoS fail, the end-system agent sends a message to the network agent to carry

out a similar strategy.

End-system components
(Workstation)

Interface

Network components
(Net. node)

Peripheral components
(Video camera, mic, speaker.)

Interface Interface

Net. agents

Interface

Resources

(Memory, CPU,
access to disk)

Interface

Resources
Interface

Resources

End syst. agents Service agents

(Routers,Bandwidth)

Resource agents Net.service agents Resource agents

M
ac

ro
-a

da
pt

at
io

n
M

ic
ro

-a
da

pt
at

io
n

User agent

V
er

tic
al

 a
ge

nt
 r

el
at

io
ns

hi
p

(s
ub

-a
ge

nt
s

re
la

tio
n)

Horizontal agent relationship
(peer to peer relationship)

(Buffers, Compression Cards)

Component Component Component

End-system
sub-component

Interface

Sub-component
Interface

Sub-component

End-system
sub-component

Network
sub-component

Interface

Sub-component
Interface

Sub-component

Interface

Sub-component

Interface

Resources

(Memory, CPU,
access to disk)

Service agentsNet. agentsEnd syst. agents

Network
sub-component

Figure 5.5: Agent-based hierarchical adaptation

5.3.2 Agent-based adaptation mechanisms

Agents interacting with components

The main purpose of our system is to make existing services at a component

available on request to agents. In normal situation, the level of the service

MA Support for QoS 48

o�ered matches the request. Otherwise, a maintenance or adaptation to a lower

level is proposed. Upon receiving from the user agent the QoS contract with the

speci�ed QoS parameters, an end-system agent moves to the agent execution

environment of a component as depicted in �gure 5. In this environment, the

agent makes the necessary computations, calls the Application Programmer

Interface (API) in order to use the services.

An example of interface is the Java Database Connectivity Layer and the

Java Advanced Windowing Toolkit. Here we assume that during the previous

Resource Allocation and Admission Control, resources necessary to sustain the

computation have been reserved. When there is a degradation and the level of

service is not satisfactory and all attempts to maintain it has failed, the agent

has the option to adapt its computation to the available resources. That is,

the mobile agent alters a QoS level to a lower level.

End System Component

Resources

Interface

End System Component

QoS access is moved with
interaction point

Services

Resources

Interface

Services

Figure 5.6: Agent-based Adaptation Model

Agents migration:

Agents mobility is supported by the object serialization functions included in

the Java language. For the three types of agents (user agent, end-system agent

and network agent) migration happens inside their respective domain (end

system or network). An agent migrates between peer components of the same

domain. A network agent assigned to nodes can migrate only between nodes

and so do end-system agents. Often, the operation of a component depends

on other sub-components. These sub-components are visited by related agents

down in the hierarchy. All computations are identical at this level as at the

upper level. At the bottom of the hierarchy, in connection with the resource

manager, resource agents participate in �ne grained adjustments called micro-

adaptation by travelling between locations.

Inter-agents interactions:

Along the hierarchy, agents send messages in a serialized form horizontally to

peer agents located in another domain or vertically to agents related to sub-

MA Support for QoS 49

components or resources. The two types of communication are at the heart of

agents cooperation for maintenance or adaptation.

Macro-adaptation

Micro-adaptation

Context Agent Migration Agent interaction

End-system

Network

Peripheral
(Video camera, Mic.)

End-system

Network

Peripheral

WS ----> WS

Node ----> Node

NSAP ----> NSAP

Video Cards --->
Video Cards

CPU/Memory ---->
CPU/ Memory

Router ----> Router

Buffer ----> Buffer

Codec ----> Codec

Message

Component API

Message

Component API

Message

Component API

Message

Resource Manager

Message

Resource Manager

Message

Resource Manager

QoS Adaptation
Strategy

Figure 5.7: Agent-based adaptation scenario

5.3.3 An application area

Let's consider a system that captures images and stores them in a remote

multimedia database storage (MMDBS). In addition, this data in the remote

server is accessible to other users ready to be displayed locally. That is, the

whole system can be used in two modes. When a user captures data and stores

it remotely. The source is a camera together with a set of workstations linked

in a subnetwork and the sink is the multimedia database server. Conversely, a

user in need of some multimedia data could fetch it from the database server

and display it locally.

In the �rst mode, a QoS manager in its negotiation phase would simply

select a con�guration made of the following components: the camera, a work-

station with a video capture card, a path of nodes and routers in the network

and the database storage.

When all the resources allocation and admission tests complete, the service

starts. We assume all the workstations in the subnetwork have the same ca-

pabilities and resources. The camera physically linked to a given workstation

MA Support for QoS 50

capture images which are compressed, sent accross the network and stored in

the database.

Camera

WS

WS

WS

Multimedia
Database
Server

Network

Data flow

End system
(source)

End system
(sink)

Figure 5.8: Example system: storing data in a multimedia database

In the second mode where data is fetched from the remote server, the

QoS manager selects a con�guration made of the following components: the

database server (the source), a path of nodes and routers in the network and

a workstation (display sink). In fact, during the QoS negotiation phase, sev-

eral potential con�gurations of components and resources were identi�ed and

recorded by the QoS manager.

WS

WS

WS

Network

Data flow

End system
(source)

Display unit

Multimedia
Database
Server

End system
(source)

Figure 5.9: Example system: fetching data from a multimedia database

Here the user agent, system agents and network agents are located re-

spectively in the user application, the end-system and the network. When a

degration or violation occurs, the QoS manager tries to locate and identi�es

the failing component (source workstation, network node, router or database

server). The mobile agent located at the failing component has two alter-

natives. On one hand, it can send a message to other agents located at sub-

components like the operating system, the hard disk, the memory or video cap-

ture card. On the other hand, the mobile agent can move the necessary data

MA Support for QoS 51

to another workstation (macro-adaptation) and restart computation where it

stopped. As a result, the intial QoS level is maintained or adapted to a lower

level. In case violation is detection at network node or router, the correspond-

ing agent migrates with all the data to another node or router.

Although the service started with a given con�guration of system components,

the mobile agents give us the possibility to move computation from one com-

ponent to another. The con�guration changes dynamically to cope with vio-

lations.

5.4 Related Work

A number of works have addressed the problem of QoS adaptation with various

techniques but few use the agent technology to improve QOS provision. For

example, the system described in [47] use the interaction of classes of mobile

and �xed agents, the concepts of contract and QoS agency. Unfortunately, the

ideas of several classes of agents, which communicate, create necessarily con-

gestion on the network. In addition, in [47] neither the issue of reliability nor

changes in the environment are addressed. Although our basic architecture is

similar in principle to the Telescript model in [24], the concept of virtual hosts

in our system separating the responsibilities of QoS negotiation and resource

management is new.

On the other hand, In [25], a QoS manager conducts QoS adaptation by in-

teracting with static QoS agents bound to components. The QoS adaptation

strategy relies on three schemes are. The �rst called Component Recon�gura-

tion Scheme (CRS) performs adaptation by altering the components topology

and initiating a smooth and transparent transition. The second named Re-

source Recon�guration Scheme (RRS), redistributes the level of QoS supported

by each component in a given con�guration to cope with violation and keep

the overall end-to-end QoS.

In [72], the concept of binding as abstraction of communications between com-

ponents is used to sustain the required QoS through monitoring, adaptation

and recon�guration. Here binding objects, organized in a hierarchy, apply

adaptation policies dynamically.

In [69], a hierarchical QoS adaptation based on the organization of bind-

ing objects is proposed. In this paper, adaptation is carried out along a hi-

erarchy of bindings. From the top with coarse-grained actions to the bottom

with �ne-grained atomic resource control, the adaptation mechanisms are em-

bedded in the binding components which are conceived as communications

abstractions. In addition, these bindings are responsible for the end-to-end

QoS maintenance.

MA Support for QoS 52

In [12], an agent-based approach is introduced to carry out corrective QoS

adaptation in a cloud of non-RSVP-capable network routers. Static agents

monitor tunnel properties and interact with RSVP routers to deliver the re-

quired QoS.

In the above systems, when agents are used, their functions are limited to

monitoring the level of QoS and eventually notifying the system of QoS viola-

tions at the host component. Our approach that consists of moving the QoS

access point from one component to a peer component with mobile agents is

new. The initial con�guration need not be altered unless no component is able

to compensate the degradation. Adaptation is performed smoothly by mobile

agents horizontally or vertically in an integrated fashion. System agents - at

the source or sink - and network agents cooperatively manage the end-to-end

QoS transparently.

5.5 Summary

This chapter presented two architectures for agent support of QoS provision:

The �rst approach o�ers signi�cant advantages over classical methods in the

QoS negotiation process. We borrowed the concept of Logical Disk from the

operating system �eld and applied it together with the mobile agent technology

in the QoS negotiation and management area. The mobile agent technology

is well suited to applications which execute on a network with high latency or

applications which operate on a partially connected basis.

The second approach is a description of QoS adaptation that relies on the

exibility of mobile agents. In general QoS provision, a static con�guration of

system components is provided. To this static con�guration, the mobile agent

technology allowed us to substitute a dynamic one. The adaptation strategy

evolves around the interactions of agents and components interfaces on one

hand, and the cooperation between agents themselves on the other hand. To

achieve this, we have introduced macro-adaptation and micro-adaptation to

describe the operations of agents that cooperate along a hierarchy. This second

model - due to its integrated and hierarchical aspect - could improve the overall

QoS provision signi�cantly provided the entire system is reliable.

Chapter 6

Multi-Agent System Support

for QoS Negotiation

6.1 Introduction

The tremendous growth of the Internet in the past few years sparked a whole

new range of applications and services based on its technologies. Users will be

able to take full advantage of these new capabilities only if there is an appro-

priate con�guration to deal with the scalability and heterogeneity problems

inherent to the Internet. In this line, resource discovery on the network and

Quality of Service (QoS) assurance are important subjects that are drawing at-

tention. In particular, the Service Location Protocol (SLP) [50] designed by the

Internet Engineering Task Force (IETF) aims to enable network-based appli-

cations to automatically discover the location of services they need. However,

SLP was designed for use in networks where the Dynamic Host Con�guration

Protocol (DHCP) [11] is available or multicast is supported at the network

layer. Neither DHCP nor multicasting extends to the entire Internet because

these protocols must be administered and con�gured. As a result, SLP does

not scale to the Internet.

Our objective in this chapter is to present a new QoS negotiation scheme

and deal with two important limitations in resource management for large-

scale applications: scalability and communications costs. We propose here a

framework that relies on the concept of multi-agent systems and the Knowl-

edge Query and Manipulation Language (KQML) [17]. In this framework, a

user agent, a QoS manager agent, one or several facilitator agents, and service

agents (application agent, system agent, network agent, and resource agent) en-

gage in a mediated communication through the exchange of structured KQML

messages.

53

MAS Support for QoS 54

6.2 System Framework

6.2.1 The problem

In standard QoS provision schemes for application running on small or local

area networks, a QoS manager determines all con�gurations that can sustain

an activity by:

� identifying necessary system component and building potential con�gu-

rations.

� classifying these con�gurations

� selecting the most suitable con�guration.

This approach assumes that the QoS manager has knowledge of poten-

tial service providers, system components and resources that exist in its en-

vironment and can communicate directly with them. As long as the number

of entities involved in this service is small, this scheme is feasible and com-

munication costs are acceptable. However, in a heterogeneous setting like the

Internet with millions of computers, this approach shows two clear limitations:

� First: During negotiation, the QoS manager alone must bear all the bur-

Service Agent

KRIL

KQML manager

Java object

handler
Performative

interpreter
Content

K-Router

User Agent QoS broker

KQML message KQML message

KRIL

KQML manager

Java object

handler
Performative

interpreter
Content

K-Router

KRIL

KQML manager

Java object

handler

interpreter

K-Router

Content

Performative

TCP/IP network

KRIL

KQML manager

Java object

handler
Performative

interpreter
Content

K-Router

Facilitator

KQML message

Se
rv

ic
e

A
dv

er
tis

em
en

t

Se
rv

ic
e

Su
bs

cr
ip

tio
n

KRIL : KQML Router Interface Language

Figure 6.1: System architecture

den of identifying and selecting appropriate resources on a large scale network

like the Internet. This situation adds a substantial overload on the operation

of the QoS manager. In addition, services and resource may not be guaranteed

consistently.

� Second: When the number of entities involved in a direct communica-

MAS Support for QoS 55

tion with the QoS manager is small, communication costs remain reasonable.

However, in the Internet, these costs become prohibitive even with auxiliary

local QoS managers.

To address these scalability and communication cost issues we propose a frame-

work for QoS negotiation illustrated in �gure 6.1 where clients applications and

service providers engage in a mediated communication. The mediators called

facilitators and QoS brokers are supplied with information about identities

and capabilities of service providers by the providers themselves. These en-

tities are modeled as software agents with attributes, capabilities and mental

attitudes as in AI. At the core of our framework lies the concept of multi-agent

system composed of a user agent, a QoS manager agent, facilitator agent, and

service agents (network agents) communicating in KQML.

6.2.2 The concepts

Prior to starting a service, a user speci�es and supplies the QoS manager with

a level of service expressed in QoS parameters. Then, the QoS manager must

identify the set of components that can sustain this service. This process uses

the following concepts:

� An ontology provides a vocabulary for representing and conveying knowl-

edge about a topic (e.g. QoS) and a set of relationships that hold among the

terms in that vocabulary.

6.2.3 Example Conference Ontology

Types used in this ontology: STRING, NUMBER, and DATE.

Taxonomy:

Persons

Organizers

General chair

Program chair

Registration chair

Tutorial chair

Program committee

MAS Support for QoS 56

Elements

Themes

Agent Architectures

Agent Communication Languages (ACL)

Mobile Agents

Network Agents

Agent-based Software Engineering

Tutorials

Background statement

Target audience

Presenter's resume

Outline and description

Submission

Deadline

Material format

Destination

Notification

Software demo.

Technical content

Requirements (hardware and software)

Demo. storyboard

Relationships:

Relation Domain Range

==

submissionAuthor Submission Person

submissionDate Submission DATE

demoAuthor Software Demo. STRING

demoDate Software Demo. DATE

TutorialAuthor Tutorial STRING

notificationSender Program Chair Notification

member Organizers Person

relevance Submission Themes

relevance Tutorial Themes

relevance Sofware demo. Themes

Our architecture uses four ontologies:

� a yellow page ontology for service advertisement by service agents. Yel-

low pages allows agents to locate other agents, given their names, addresses,

functions, and capabilities. It is a service oriented general-purpose search

MAS Support for QoS 57

mechanism. This facility competency relies on the willingness of agents to reg-

ister and update their identities, services, and locations to the local facilitator;

� a white page ontology only for locating an agent given its name.

� a general QoS ontology for the current domain knowledge, and a

� QoS broker ontology for asking network options.

� A KQML manager encompasses :

� Conversations that group messages with a common thread identi�ed

by the \:reply-with" and :in-reply-to"parameters;

� content interpreters that handle incoming response messages accord-

ing to the ACL, content language and ontology associated to these messages.

Originally, a KQML message is opaque to its content. A message content is

processed by a content interpreter that gives a meaning to message received;

� performative handlers that process a ACL message performative,

content language and ontology.

� content-based routing is achieved by the local KQML Router (K-

Router). Messages sent by an agent can also be routed according to the in-

terests of other agents. When relevant information is advertised by an agent, it

is forwarded by a facilitator to the requester via the K-Router. The K-Router

in conjunction with the facilitator initiate a mediated communication between

agents.

6.2.4 The negotiation protocol

In our framework, four types of agents communicate in KQML according to

the following protocol:

� The user informs its agent via an interface of a level of service.

� The user agent sends to the QoS manager agent a KQML message con-

taining the required level of service. This interaction is described in �gure 6.2.

� The QoS manager needs to identify all components necessary to build a

con�guration that can sustain an activity. Our simulation system considers

only network parameters although a complete QoS con�guration requires all

application, system and network parameters. For this purpose, the network

agent sends a KQML message to the facilitator agent and can ask its coop-

eration in four di�erent ways (subscription, brokering, recruiting, and recom-

mendation) in discovering all the appropriate resources. A structure of this

KQML message and agent interaction is shown in �gure 6.3.

MAS Support for QoS 58

QoS spec.

:receiver

:reply-with

:ontology

:language

:content (

anACL

id1

QoS

QoS-manager (Network QoS Broker)

:sender User

tell(

:throughput 10 :delay 5 :jitter .2 :loss 5))

Corresponding KQML message

Figure 6.2: User and QoS broker interaction

(broker-all

:sender
:receiver
:reply-with

Facilitator
id0

:language KQML
:ontology kqml-ontology
:content

QoS-manager

(ask-all
QoS-manager:sender

:reply-with
:language anACL

id1

:ontology QoS-broker
:content (:throughput 10 :delay 5 :jitter .2 :loss 5)))

Service request

Corresponding KQML message

Figure 6.3: QoS manager and Facilitator interaction

MAS Support for QoS 59

� The facilitator agent acts as a resource broker that

� recruits, recommends appropriate service agents (application agents,

system

agents, network agents) to the QoS manager;

� forwards the QoS manager messages (brokering and recruiting) to

suitable service

agents; and

� informs (on subscription) or recommend to the QoS manager service

agents

ful�ll its requirements.

� All service agents (Network agents) advertise their capabilities to the the

facilitator agent like in as in �gure 6.4 and �gure 6.5. Upon request from the

QoS broker, the facilitator supplies the identities and locations of necessary

network resources. At last, the user may view on an appropriate interface in

�gure 6.6 the available resources.

MAS Support for QoS 60

Advertising services

Service request

Service request

Advertising services

Figure 6.4: Service advertisement and request

(ask-one
 :sender facilitator
 :receiver localHost
:reply-with rw1
:language anACL
:ontology QoS
:content (

:throughput:content (:delay :jitter :loss)))
Service Request

Corresponding KQML message

Figure 6.5: Network agents and Facilitator interaction

MAS Support for QoS 61

Figure 6.6: Request results

This QoS negotiation model for large scale Internet applications is applied in

two ways: locally or remotely. When the required resources are available lo-

cally and registered at the local facilitator, negotiation is done at the current

host as illustrated in �gure 6.7.

On the other hand, when some resources are unavailable on site, the local

facilitator reaches out to other facilitators at di�erent locations as illustrated

in �gure 6.8. The local facilitator forwards requests (broker-all) to remote

facilitators which in turn conduct a local inquiry. In fact, this approach to

agents interaction is already used in the �eld of agent-based software engineer-

ing where application programs are modeled as software agents and interaction

is supported by an appropriate ACL. In this approach, agents are organized

in a federated system with messages relayed by facilitators between hosts.

MAS Support for QoS 62

Facilitator Agent

User Agent

QoS Manager Agent

Application resources

Network resources

System
 resources

Figure 6.7: Local QoS negotiation

User Agent

QoS manager
Agent

Facilitator
Agent

Service Agent

Facilitator
Agent

Service Agent

Facilitator
Agent

Service Agent

TCP/IP based network

Figure 6.8: Large scale QoS negotiation

MAS Support for QoS 63

6.3 System Implementation

In experimenting with this model of resource discovery and QoS negotiation,

we implemented a system prototype in the JAVA language that simulates QoS

negotiation between several agents at the network level. That is to say, to

illustrate our approach, a user agent and network agents communicate via a

QoS broker and a facilitator in terms of network parameters only. First, local

negotiation is considered, then it is extended to remote locations on the Inter-

net.

The implementation of our prototype includes the following tools:

- The Java-based KQML API called JKQML in

[26]. The JKQML API with its structure in �gure 6.9 adapted from [26]

provides a platform for designing KQML-enabled agents. JKQML is written

completely in the JAVA language and provides interoperability to software

that need to exchange information and services. The whole interaction pro-

Protocol Manager

KTP Handler

ATP Handler

OTP Handler

Naming Service

Performative Handler

Content Interpreter

Message Transfert

Conversation Pool

Conversation Policy

Conversation

KQML manager

Protocol Manager

KTP Handler

ATP Handler

OTP Handler

Naming Service

Performative Handler

Content Interpreter

Message Transfert

Conversation Pool

Conversation Policy

Conversation

KQML manager

Message Sender Message Receiver

Message flow

Figure 6.9: Structure of JKQML

cess between the players in our multi-agent system can be described in three

steps:

6.3.1 Step 1: Registration phase

All agents register to the facilitator with the \lifecycle" ontology by sending a

KQML message object in the following piece of code:

MAS Support for QoS 64

KQML kqml = new KQML(); (a new KQML message object is created)

String rw = new String(kManager.getInitialID()); (reply identification)

kqml.setPerformative(``register'');

kqml.setParameter(``:name'', agentName);

kqml.setParameter(``:sender'', localHost);

kqml.setParameter(``:receiver'', facilitator);

kqml.setParameter(``:reply-with'', rw);

kqml.setParameter(``:language'', ``anACL'');

kqml.setParameter(``:ontology'', ``lifecycle'');

kqml.setContent(``(:class Facilitator)'');

6.3.2 Step 2: Advertisement phase

In the advertisement phase depicted in �gure 6.11, service agents advertise

their capabilities at the facilitator with the \yellow pages" ontology by send-

ing a KQML message object in the following Java method:

KQML kqml = new KQML();

String rw = new String(kManager.getInitialID());

kqml.setPerformative(``insert'');

kqml.setParameter(``:name'', agentName);

kqml.setParameter(``:sender'', localHost);

kqml.setParameter(``:receiver'', receiverAddr);

kqml.setParameter(``:reply-with'', rw);

kqml.setParameter(``:language'', ``anACL'');

kqml.setParameter(``:ontology'', ``yellowpages'');

String content = new String(

``(:ProviderName "Network A" ''

`` :category QoS''

`` :subCategory network''

`` :class anacl_NetQoS''

`` :name Network-A''

`` :language anACL''

`` :ontology QoS)''

);

MAS Support for QoS 65

6.3.3 Step 3: Brokering phase

In the brokering phase depicted in �gure 6.12, the user agent, the QoS manager,

and facilitator negotiate through the following code:

KQML kqml = new KQML();

String rw = new String(kManager.getInitialID());

String rw2 = new String(kManager.getInitialID());

kqml.setPerformative(``advertise'');

kqml.setParameter(``:name'', agentName);

kqml.setParameter(``:sender'', localHost);

kqml.setParameter(``:receiver'', facilitator);

kqml.setParameter(``:reply-with'', rw);

kqml.setParameter(``:language'', ``KQML'');

kqml.setParameter(``:ontology'', ``kqml-ontology'');

KQML kqml_i = new KQML();

kqml_i.setPerformative(``broker-all'');

kqml_i.setParameter(``:sender'', facilitator);

kqml_i.setParameter(``:receiver'', localHost);

kqml_i.setParameter(``:in-reply-to'', rw);

kqml_i.setParameter(``:language'', ``KQML'');

kqml_i.setParameter(``:ontology'', ``kqml-ontology'');

KQML kqml_ii = new KQML();

kqml_ii.setPerformative(``{\bf ask-all}'');

kqml_ii.setParameter(``:sender'', facilitator);

kqml_ii.setParameter(``:receiver'', localHost);

kqml_ii.setParameter(``:reply-with'', rw2);

kqml_ii.setParameter(``:language'', ``anACL'');

kqml_ii.setParameter(``:ontology'', ``QoS'');

String content = new String(

``(:throughput''

`` :delay''

`` :jitter''

`` :loss)''

);

kqml_ii.setContent(content);

kqml_i.setContent(kqml_ii);

kqml.setContent(kqml_i);

MAS Support for QoS 66

The corresponding UML representations of these phases are:

User Agent QoS manager Facilitator Service Agent

Registration

Confirmation

Confirmation

Register(X)

Register(X)

Register(X)

Confirmation

Figure 6.10: Registration phase

Advertise(insert YP)
Advertising

YP : Yellow Pages

User Agent QoS manager Facilitator Service Agent

Figure 6.11: Advertisement phase

Broker(Ask(QoS))

Ask(QoS)

Forward(QoS)

User Agent QoS manager Facilitator Service Agent

Tell(QoS)

Brokering

Figure 6.12: Brokering phase

MAS Support for QoS 67

6.4 Related work

A number of service discovery protocols have been implemented for di�erent

platforms but few of them deal directly with the issue of QoS. Some of these

are the CORBA architecture [48] with its Trader and Naming Services,

Service Location Protocol (SLP) designed by the Internet Engineering Task

Force, the QoS Broker designed by Klara Nahrstedt in [44], and recently Sun

Microsystem Jini.

6.4.1 The CORBA Trader and Naming Services

CORBA is a middleware that enables a client application to request informa-

tion from an object implementation at the server side. The ORB core provides

CORBA with the basic communications services necessary to transfer requests

from clients to object implementations.

In addition, CORBA can advertise available objects and services on behalf of

object implementations via a Common Object Services Speci�cations (COSS)

service called the trader Service. With the CORBA trader service, new

object implementation application servers can be added and be available at

anytime and anywhere.

Services are registered with the Naming Service by specifying its name and

object reference. A client who wishes to access the service speci�es the name

of the service, which the Naming Service uses to retrieve the corresponding

object reference.

Services are registered with the Trader Service by specifying its service type,

properties and object reference. A client who wishes to access the service,

speci�es the type of the service and constraints. Therefore, the Trader Ser-

vice can be viewed as a yellow pages phone book. In spite of the similarities

in both approaches, it is important to note that the main di�erence between

our system and CORBA services is that we are dealing with messages which

bear meaning and are organized in conversations. The players in our system

are agents that are engaged in structured conversations while CORBA enables

applications to exchange only objects, data structures, and propositions.

6.4.2 The Service Location Protocol

The idea of using multiple agents for the discovery of services accross a local

area network has already been used by the SLP. In this model, the following

agents play an important role:

� A user agent (UA) acts on behalf of a user or client in need of a service;

� A service agent (SA) declares its services to a directory agent previously

MAS Support for QoS 68

discovered;

� A directory agent (DA) accepts requests and registrations from a UA or a SA.

There are two fundamental di�erences between the SLP scheme and our

approach: SLP uses multicast and DHCP protocols to initialize its scalable

service discovery framework. However, as DHCP cannot extend to the entire

Internet, SLP is unable to scale to the entire Internet. A user agent itself

must send its queries to a remote DA when a service is not available locally.

In contrast, our approach considers a federation of services as illustrated in

�gure 6.8 with several facilitators. Only facilitators may forward requests

from one region to another. In addition, we use KQML messages to convey

these requests accross the Internet.

6.4.3 The QoS broker

The QoS broker in [44] is an architecture for resource and QoS management

which (1) orchestrates resources needed for tasks in the application and trans-

port subsystems, (2) negotiates with network resources management, and (3)

negotiate with remote QoS Broker. In this model, some protocol entities on

the networked multimedia system called broker-buyers are resource \buyers"

and others at remote sites called broker-sellers \sell" these resources. In addi-

tion, communications between the broker-buyer and the broker-seller are split

in two entities: the broker-sender and the broker-receiver. Here, the buyer or

the seller could alternatively play the role of sender or receiver.

The main di�erence between the QoS broker and our approach is that the

QoS broker does not include any mediator between parties. QoS negotiation

services like the negotiation of application QoS and the negotiation of network

QoS are processed on a peer to peer, peer to group, group to peer basis through

direct communication. Obviously, when the number of resources involved in

the system grows, scalability becomes a big concern.

6.4.4 Jini

Jini is a network operating system for a broad range of electronic devices and

software services designed at Sun Microsystems. Jini allows you to create a

\federation" of devices and software components in a single distributed com-

puting space. Although the components work together to serve a common

goal, they're still identi�ed as separate components on a network. The Jini

discovery architecture is similar to that of SLP. Jini agents discover the exis-

tence of a Jini Look Up Server which collects service advertisements like the

facilitators in our system. Jini agents then request services on behalf of client

MAS Support for QoS 69

software by contacting the Look Up Server. Jini uses attributes modeled as

java objects to �nd services that match a given client requirements. However,

the fact that an installation of a Java Virtual Machine needs memory and

resources, Jini may not be able to run on devices with limited resources.

6.5 Summary

In this chapter, we have presented a framework for quality of service negoti-

ation with resource discovery over the internet. The main novel contribution

of this framework is the introduction of the concept of multi-agents together

with KQML an agent communication language. In contrast to existing auto-

matic resource discovery protocols like the SLP, our scheme scales to the entire

Internet. To illustrate its e�ectiveness, we designed a prototype simulation

system based on the IBM Java KQML API with several agents. The partic-

ipating agents: the user agent, the QoS broker agent, the facilitator agent,

and network agents interact in the KQML language. Although this approach

to QoS negotiation may look attractive, the important number of facilitator

could eventually be a concern. An alternative to this drawback could be to let

facilitators move from host to host with necessary information.

Chapter 7

Conclusions

7.1 Research contribution

We have proposed in this thesis two di�erent perspectives of software agent

technology: mobile agents and multi-agents systems. The �rst stems from

software engineering while the second is rooted in arti�cial intelligence. As we

realized in the research conducted that mobile agents had limited applications

in complex problem solving, we turned to multi-agent systems as a new tool

for the mechanisms of QoS provision. We showed that successful multi-agent

systems depend heavily on a good communication language characterized by

its format, semantics, and interaction protocol. Then, we proposed a general

framework and some design principles of ACLs, described their structure, is-

sues related to their design, and some perspectives that promise to pave the

way for the ideal ACL. Last, we argued that the concept of multi-agent sys-

tems together with agent communication languages could be valuable tools for

QoS provision in distributed systems. To illustrate our approach, we designed

a prototype multi-agent system for QoS negotiation on large scale networks.

The original contribution of our approach lies in the fact that we use an ACL,

namely KQML, together with middle agents called QoS manager agent and

facilitator agent in resource discovery and relay of meaningful statements be-

tween users and these resource providers. In contrast to models like SLP in [50]

and the QoS broker in [44] users do not need to know the location of services

nor do they have to initiate any direct communication. As facilitators dwell in

a given host and orchestrate services in that host, we acknowledge that in the

case of the Internet with a huge number of hosts, scalability may be a serious

concern.

70

Conclusions 71

7.2 Research perspectives

In the QoS-based MAS prototype developed, we intend to split the facili-

tator function into an information gatherer part and an information fetcher

part. The �rst should act as a resident facilitator and the other should be-

have as a mobile agent that migrates from host to host and interacts with

resident facilitators. Such an architecture will undoubtely raise the problem

of communication protocol. In Search for the ideal ACL, questions related to

interoperability, consensus on semantics, interaction protocols, and ontology

design need to be tackled.

Several standardization e�orts are being conducted in mobile agent research

(OMGMASIF) as well as in multi-agent systems research (FIPA and ARPA) in

order to make di�erent systems interoperate. In industry, mobile agents-based

applications and multi-agent systems-based applications may need to inter-

act as parts of a larger system. For this reason,we are interested in bringing

together Mobile Agents and multi-agent systems. However several questions

need answers: should multi-agent systems make use of mobile agents ability

to migrate. How should we coordinate di�erent communication protocols ?

Incorporation ACL capabilities into mobile agents could open interesting per-

spectives. We are looking forward to tackling these issues in future research.

In addition, we are specially interested in applying the software agent

technology to the �eld of Active Networks in distributed systems. Active

Networks provide a exible framework for the initiation of user speci�c adapta-

tion procedures within a network. Many active network architectures use the

mobile agents technology but few have implemented the multi-agent system

paradigm together with agent communication languages. The concepts of mo-

bile agents and multi-agent systems are indeed parallel to the concepts of active

packets, active nodes, and active networks. It could be interesting to consider

nodes in an active network as elements of a multi-agent systems with the active

packets being carried around by mobile agents. Although this approach may

sound attractive many security and protocol issues must be addressed in order

to have a good system. We are looking forward to do substantial research in

this direction in the future.

Bibliography

[1] Aurrecoechea C. , A. Campbell, and L.Hauw. A Survey of QoS

Architectures. In: ACM Multimedia Systems Journal, Special Issue

on QoS Architectures, 1997.

[2] Barbuceanu, M. and Fox, M. S. COOL: A Language for Describing

Coordination in Multi-Agent Systems, In V. Lesser (ed.), Proceed-

ings of the First Intl. Conference on Multi-Agent Systems, AAA

Press/The MIT Press, 1995, pp. 17-25.

[3] Braden, S. Clark Integrated Services in the Internet Architecture:

An Overview, Request for Comment RFC-1633

[4] Bradshaw, Je�rey M. KAoS: Towards an Industrial-Strength Open

Agent Architecture, In: J. M. Bradshaw (Ed.), Software Agents,

AAAI press/The MIT press, June 1995.

[5] Campbell, Andrew. Integrated Quality of Service for Multimedia

Commumications, In: Proceedings of IEEE INFOCOM'93, San

Francisco, USA, 1993.

[6] Cohen, Philip R. and Levesque, Hector. Communicative Actions for

Arti�cial Agents, In: J. M. Bradshaw (Ed.), Software Agents, AAAI

press /The MIT press, June 1995, pp 419-436.

[7] Colombetti, Marco. Semantic, normative, and practical aspects of

agent communication. In: Thomas Dean (ed.), Proceedings of IJ-

CAI'99 Workshop on Agent Communication Languages, Stockholm,

Morgan Kaufman Publishers, San Francisco, CA, August 1999.

[8] Colombetti, Marco. Di�erent ways to have something In: common,

In: H. Christiansen T. Andreasen and H.L. Larsen (eds.), Proceed-

ings of the Third International Conference on Flexible Query An-

swering Systems (FQAS'98), LNAI 1495, Springer Verlag: Berlin,

1998, pp 95-109.

72

References 73

[9] Davies, W. H. E. and Edwards, P. Agent-K: An integration of AOP

and KQML, In: Proceedings of The CIKM '94 Workshop on Intel-

ligent Agents,Gaithersburg, Maryland, December 1994.

[10] Davis, Randal and Smith. Negotiation as a metaphor for distributed

problem solving, Arti�cial Intelligence 20, 63-109, 1983.

[11] Droms, R. rfc1541. Technical Report rfc1541, IETF, Network Work-

ing Group, October 1993.

[12] de Meer, Hermann; J-P. Richer, A. Pulia�to and O. Tomarchio. Tun-

nel Agents for Enhanced Internet QoS, IEEE Concurrency, April-

June,1998. pp. 30-39.

[13] de Jonge, Wiebren; M. Frans Kaashoek and Wilson C. Hsieh. The

Logical Disk: A New Approach to Improving File Systems, In: Pro-

ceedings of the Fourteenth ACM Symposium on Operating Systems

Principles, December, 1993, pp 15-28.

[14] Dignum, Frank. Social interactions of autonomous agents; private

and global views on communication, In: Proceedings of The 4th

ModelAge workshop, January 1997.

[15] Ferrari, D. The Tenet Experience and the Design of Protocols for

Integrated Services Internetworks, Multimedia Syst. J., May, 1998.

[16] Parks, David. Agent-oriented programming : A practical evaluation,

Technical Report 94720, University of California, Berkeley, 1997

[17] Patil, Ramesh S. , Fikes, Richard E., Schneider, Peter F. Patel, Don

Mckay. The DARPA knowledge sharing E�ort: Progress Report, In:

Michael Huhns and Munindar P. Singh (Ed.), Readings In: Agents,

Morgan Kaufmann, 1998, pp 243-254.

[18] Smith, Ira A. and Cohen, Philip R. Toward a semantics for an agent

communications language based on speech acts, In: Proceedings of

the Thirteen National Conference on Arti�cial Intelligence. AAAI

press /The MIT press, August, 1996.

[19] FIPA, Foundation for Intelligent Physical Agents. Fipa spec 2 agent

communication language, Technical Report Draft, version 0.1, 1999.

[20] Finin, Tim; Labrou, Yannis; and Peng, Yun. The current land-

scape of agent communication languages, Intelligent Systems, 14(2),

March-April 1999.

References 74

[21] Finin, Tim; Labrou, Yannis; and May�eld, James. KQML as an

Agent Communication Language, In: J. M. Bradshaw (Ed.), Soft-

ware Agents, AAAI press/The MIT press, June 1995, pp 291-315.

[22] Fischer S. , A. Ha�d,G., Bochmann,and H. de Meer. Cooperative

QoS Management for Multimedia Applications, In: Proceeding of

the 4th IEEE Int. Conf. on Multimedia Computing and Systems,

Ottawa, Canada, June 1997, pp. 303-310.

[23] Genesereth, Michael R.and Ketchpel, Steven P. Software Agents,

Communications of the ACM, July 1994, pp 37-48.

[24] General Magic. Telescript Technology and Mobile Agents.

[25] Ha�d H. and G. V. Bochmann, Quality of Service Adaptation in Dis-

tributed Multimedia Applications, ACM Multimedia Systems Jour-

nal, Vol.6, 1997.

[26] Hajime Tsuchitani, Osamu Furusawa. Jkqml. AlphaWorks, IBM,

1998.

[27] Hutchison D., Coulson G. , Campbell A. , Blair G. Quality of Service

Management in Ditributed Systems, In: Sloman M.(ed), Network

and Distributed Systems Management, Chapter 11, Addison Wesley.

Reading, Mass.

[28] International Standard Organization. ISO Quality of Service Frame-

work, ISO/IEC JTC1/SC21/WG1 N9680

[29] Jennings, N. R. et al. Managing business processes using intelligent

agents, In: Proceedings of BCS Expert Systems Conference (ISIP

track), Cambridge, UK, 1996.

[30] Jenings, N. R. ; Sycara, Katia; Wooldridge, M. A roadmap for

agent research and development, Autonomous agents and multi-

agent systems, 1, p 7-38, Kluwer, Boston, 1998.

[31] Jorg, P. Muller. The Design of Intelligent Agents - A Layered Ap-

proach, LNAI 1177, Springer Verlag, 1996.

[32] Kearney, Paul. Proposal for standard inter-agent communication

language, Technical report SLE/DIS/97-01, Sharp Laboratories of

Europe Ltd, UK, January 1997.

References 75

[33] Kone Mamadou Tadiou and Shimazu Akira. The state of the art

in agent communication languages. submitted to Knowledge and

Information Systems, 1999.

[34] Kone Mamadou Tadiou and Tatsuo Nakajima. An Architecture

for a QoS-based Mobile Agent System, In: Proceedings of 5th

Int. Conf. on Real-Time Computing Systems and Applications, Hi-

roshima, Japan, Sept. 1998.

[35] Labrou, Yannis; Finin, Tim; and Yun Peng. The interoperability

problem: bringing together mobile agents and agent communication

languages, In: Proceedings of 32nd Hawaii International Confer-

ence on System Sciences, mini-track on Software Agents (HICSS-

99), Maui, HI, January 1999.

[36] Labrou, Yannis and Finin, Tim. Semantics and conversation for an

agent communication language, In: Michael Huhns and Munindar

P. Singh (Ed.), Readings In: Agents, Morgan Kaufmann, 1998, pp

235-242.

[37] Labrou, Yannis and Finin, Tim. A proposal for a new kqml spec-

i�cation, Technical Report TR-CS-97-03, University of Maryland,

Baltimore County (UMBC),1997.

[38] Labrou, Yannis and Finin, Tim. Semantics for an agent communi-

cation language, In: The Fourth International Workshop on Agent

Theories, Architectures, and Languages, Providence, Rhode Island,

USA, 1997.

[39] Lange, Danny and Mitsuru, Oshima. Programming and Deploying

Java Mobile Agents with Aglets, Addison Wesley, August 1998.

[40] Linder B. Communicating rational agents, In: A

Common Formal MODEL of Cooperating Intelligent AGEnts,

http://www.cs.uu.nl/people/bernd/Model.

[41] Mahesh, K. Ontology development for machine translation: Ideol-

ogy and Methodology, Technical Report MCCS-96-292, Computing

Research Laboratory, NewMexico State University, Las Cruces, NM.

[42] Martin, David L. ; Cheyer, Adam J. ; and Moran, Douglas B. The

Open Agent Architecture: A Framework for Building Distributed

Software Systems, Applied Arti�cial Intelligence 13 (1/2), 91:128,

January-March 1999.

References 76

[43] Moulin, Bernard. The Social Dimension of Interactions In: Multia-

gent Systems, In: Wayne Wobcke and Chengqi Zhang (Eds.), Agent

and Multi-agent Systems, LNAI 1441, Springer Verlag: Berlin, 1997.

[44] Nahrsted, Klara and Jonathan M Smith. \The QoS Broker," IEEE

Multimedia, pp. 53-67, Spring 1995.

[45] Nakajima, Tatsuo and Hiroyuki Aizu. Environment Server: A Sys-

tem Support for Adaptive distributed Applications, In: World

Wide Computing and its Applications WWWCA '98, Proceedings of

the Second International Conference,Tsukuba, Japan, March 1998,

pp.142-157.

[46] Nwana, Hyacinth S. Software Agents. In: Hyacinth S. Nwana and

Nader Azarmi (Eds.), Software Agents and Soft Computing, Towards

Enhancing Machine Intelligence; Concepts and Applications, LNAI

1198, Springer Verlag: Berlin, December 1996.

[47] Oliveira, Luiz A.G. , Paulo C. Oliveira and Eleri Cardozo. An Agent-

Based Approach for Quality of Service Negotiation and Management

in distributed systems, In: Mobile Agents, Proceedings of the First

International Workshop,MA '97, Berlin, Germany, April 1997, pp

1-12.

[48] Randy Otte, Paul Patrick, Mark Roy. Understanding Corba, The

Common Object Request Broker Architecture, Prentice Hall, 1996.

[49] Peng, Yun; Finin, Tim; Labrou, Yannis, Long, Tolone, Agent-based

Approach for Manufacturing Integration: The CIIMPLEX Experi-

ence, Applied Arti�cial Intelligence 13(1/2), 39-64, 1999.

[50] Perkins C. Slp white paper, Technical report, Sun Microsystems,

1998.

[51] Radouniklis, Nikolaos; Baumann, Joachi; and F. Hohl. Kurth

Rothermel and Radu Popescu-ZeletIn: (Eds.), Communication Con-

cepts for Mobile Agent Systems, LNCS 1219, Springer Verlag: Berlin,

April 1997, pp 123-135.

[52] Rosenschein, Je�rey S. Consenting Agents: Negotiation Mechanism

for Multi-Agent Systems, In: Ruzena Bajcsy (ed.), Proceedings of the

Thirteenth International Joint Conference on AI, IJCAI'93, Cham-

bery, France, Morgan Kaufman Publishers, San Francisco, 1993, pp

792-799.

References 77

[53] Russel, Stuart and Norvig, Peter. Arti�cial Intelligence, A Modern

Approach, Prentice Hall, 1995.

[54] Sadek, M. D.; Bretier, P.; and Panaget, F. ARTIMIS: Natural Dia-

logue Meets Rational Agency. In: Proceedings of the 1997 Interna-

tional Joint Conference on Arti�cial Intelligence (IJCAI'97), Palo

Alto, Morgan Kaufmann Publishers, 1997.

[55] Sadek, M. D.; Bretier, P.; Cadoret, V.; and Cozannet, A. A coop-

erative spoken dialogue system based on a rational agent model: A

�rst implementation on the AGS application. In: Proceedings of the

ESCA/ETR Workshop on Spoken Dialogue System: Theories and

Applications, Vigso, Denmark, 1995.

[56] Searle, J. R. Speech Acts: An essay in the philosophy of language,

Cambridge University Press, Cambridge, 1969.

[57] Shen, W. and Xue, D. Agent-based manufacturing enterprise in-

frastructure for distributed integrated intelligent manufacturing sys-

tems, In: Proceedings of the Practical Application of Intelligent

Agents and Multi-agent Systems, London, UK, 1998, pp. 533-550.

[58] Shoham, Yoav. Agent-oriented programming, Arti�cial Intelligence

60(1), 51-92, 1993.

[59] Singh, Munindar P. Towards a formal theory of communication for

multi-agent systems, In: John Mylopoulos and Ray Reiter (eds.),

The Twelfth International Joint Conference on Arti�cial Intelligence

(IJCAI'91), Sidney, Australia, 1991, pp 69-74.

[60] Singh, Munindar P. Multiagent Systems - A Theoritical Framework

for Intentions, Know-How and Communications, LNAI 799, Springer

Verlag, 1994.

[61] Singh, Munindar P. Agent communication languages: Rethinking

the principles, IEEE Computer, 31(12), 40-47, December 1998.

[62] Singh, Munindar P. A Social Semantics for Agent Communication

Languages, In: Thomas Dean (ed.), Proceedings of the ACL Work-

shop, IJCAI'99, Stockholm, Sweden, Morgan Kaufman Publishers,

San Francisco, CA, August 1999.

[63] Stanford KSL Network Services. Ontolingua, ontologies editor. KSL

Home Page, 1995.

References 78

[64] Tassel, J�erôme. Quality of Service(QoS) adaptation using Reective

Java. British Telecom Technical Report.

[65] Thomas, S. Rebecca. The PLACA Agent Programming Language,

In: Intelligent Agents, ECAI-94, Proceedings of the Workshop on

Agent Theories, Architectures, and Languages, 1995, pp. 355-370.

[66] Shoham, Yoav. AGENT0: a simple agent language and its inter-

preter, In: Proceedings of AAAI, Anaheim, 1991, pp. 704-709.

[67] Torrance, M. and Viola, Paul. The AGENT0 manual, In: Stanford

Technical Report CS-TR-91-1389, 1991, pp. 704-709.

[68] Waddington D. and David Hutchison. End-to-end QoS Provision-

ing through Resource Adaptation, In: Proceedings of the 8th IFIP

Conference on High Performance Networking - HPN'98, Vienna

University of Technology, Vienna, Austria, September 1998.

[69] Waddington D. and David Hutchison. End-to-end QoS Provision-

ing through Resource Adaptation, In: Proceedings of the 8th IFIP

Conference on High Performance Networking - HPN'98, Vienna

University of Technology, Vienna, Austria, September 1998.

[70] Waddington D., Chritopher Edwards and D. Hutchison Resource

Management for Distributed Multimedia Applications, In: Proceed-

ings of the Second European Conference on Multimedia Applications,

Services and Techniques - ECMAST, Milan, Italy, May 1997; LNCS

1242.

[71] Waddington D. , Chritopher Edwards and D. Hutchison. Resource

Management for Distributed Multimedia Applications, In: Proceed-

ings of the Second European Conference on Multimedia Applications,

Services and Techniques - ECMAST, Milan, Italy, May 1997; LNCS

1242.

[72] Waddington D. and G. Coulson, A Distributed Multimedia Com-

ponent Architecture, In: Proceeding of the �rst International on

Enterprise Distributed Computing, Gold Coast, Australia, October

1997.

[73] Werner, Eric. Cooperating Agents: A Uni�ed Theory of Commu-

nication and Social Structure, In: L. and Huhns, M. N (Eds.),

Distributed Arti�cial Intelligence, volume II, Pitman/Morgan Kauf-

mann Publishers, July 1997.

References 79

[74] Wooldridge, Michael. Veri�able semantics for agent communication

languages, In: International Conference on Multi-Agent Systems

(ICMAS'98, August, Paris, France, 1998.

[75] Yokote Yasuhiko. The Apertos Reective Operating System: The

concept and Its Implementation, In: ACM OOPSLA'92, 1992, pp.

414-434.

Publications

[1] Mamadou Tadiou Kone and Tatsuo Nakajima. An Architecture for

a QoS-based Mobile Agent System, Proceedings of the Fifth Interna-

tional Conference on Real-Time Computing Systems and Applications

(RTCSA'98), Hiroshima, Japan, October 27-29, 1998, pp.145-148.

[2] Mamadou Tadiou Kone and Tatsuo Nakajima. Mobile Agents and QoS

Adaptation in Distributed Multimedia Systems, Proceedings of the Third

World Multiconference on Systemics Cybernetics, Orlando, Florida, July

31 - August 4, 1999. Volume 1, pp. 570-576.

[3] Mamadou Tadiou Kone, Akira Shimazu, and Tatsuo Nakajima. The

State of the Art in Agent Communication Languages, Knowledge and

Information Systems (KAIS), an international journal, Springer Verlag,

May 2000.

[4] Mamadou Tadiou Kone and Tatsuo Nakajima. A Multi-agent System

Architecture for QoS Management in Distributed Multimedia Systems,

Smartnet'99, Bangkok, Thailand, Thongchai Yongchaeron, Finn Arve

Aagesen, and V. Wuwongse (Eds.) Intelligence in Networks, Kluwer

Academic Publishers, November 2000, pp. 121 - 134.

[5] Mamadou Tadiou Kone and Tatsuo Nakajima. An Agent-based Frame-

work for Large Scale Internet Applications, Networking 2000, Paris,

France. Lecture Notes in Computer Science(LNCS), Springer Verlag,

Berlin, May, 2000.

[6] Mamadou Tadiou Kone and Tatsuo Nakajima

A Multi-agent System Support for QoS Negotiation, Proceedings of the

JSSST 3rd Annual Workshop on Systems for Programming and Appli-

cations, SPA 2000, Japan, March 2000.

80

