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Combining Testing and Static Analysis to Overflow and
Roundoff Error Detection

Do Thi Bich Ngoc � Mizuhito Ogawa.

Abstract This paper proposes a technique for auto-
matic detection of overflow and roundoff errors, caused
by the floating-point number to fixed-point number con-
version. First, a new range representation, “extended
affine interval”, is proposed to overapproximate over-
flow and roundoff errors. Second, the overflow and round-
off error analysis problem is encoded as a weighted
model checking, which is implemented as a static an-
alyzer CANA. Last, we propose a new testing refine-
ment loop, called “counterexample-guided narrowing”,
by combining the static analysis and testing. They are
composed and implemented in a prototype tool, CANAT,
in which analysis results are used not only for possible
roundoff error detection, but also for finding dominant
error factors in input parameters. To avoid widening,
currently we focus on programs with bounded loops
and arrays with fixed length, which typically appear
in encoder/decoder reference algorithms. Experimental
results on small programs show that the extended affine
interval is much more precise than classical interval, and
the counterexample-guided narrowing approach outper-
forms the random testing technique.
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1 Introduction

In the computers, a real number has a finite represen-
tation, i.e., either a floating-point number, or a fixed-
point number, which may introduce overflow and round-
off errors (ORE). OREs cause tricky behavior; for in-
stane, consider

p333.75�a2qb6�a2p11a2b2�121b4�2q�5.5b8�pa{p2bqq

for a � 77617, b � 33096. This is known as Rump’s
example [31] and IEEE 754 standard floating opera-
tions [22] return the results

Single precision 1.172604
Double precision 1.1726039400531786
Fourfold precision 1.17260394005317863185883490452

011838

which seem that the single precision is enough. How-
ever, if we symbolically compute with rational number
representations, it will result �54767{66192 (approx.
�0.8273960599).

Overflow and roundoff errors problem
A famous example that caused a serious disaster by

roundoff errors is “The Patriot Missile Failure” 1.
On February 25, 1991, during the Gulf War, an

American Patriot Missile battery in Dharan, Saudi Ara-
bia, failed to track and intercept an incoming Iraqi Scud
missile. The Scud struck an American Army barracks,
killing 28 soldiers and injuring around 100 other people.

1 http://www.ima.umn.edu/ arnold/disasters/patriot.html
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The reason is roundoff error cause by representing
the real number p1{10q by the fixed-point number.

1{10 � 1{24� 1{25� 1{28� 1{29� 1{212� 1{213� ...

which corresponds to the binary expansion of 1/10

0.0001100110011001100110011001100...

The 24 bit register in the Patriot stored instead

0.00011001100110011001100

introducing an error of

0.0000000000000000000000011001100...

(in binary), which is about 0.000000095 in decimal.
Multiplying by the number of tenths of a second in 100
hours gives 0.000000095 � 100 � 60 � 60 � 10 � 0.34.
A Scud travels at about 1,676 meters per second, and
thus travels more than an half kilometer in this time.

Another famous example of overflow errors is “The
Explosion of the Ariane 5” 2.

The ORE problems have been one of the central
issues in the numerical analysis [17,13]. There are three
kinds of OREs, caused by:

– real numbers to floating-point numbers conversion,
– real numbers to fixed-point numbers conversion, and
– floating-point numbers to fixed-point numbers con-

version.

The first category is most extensively investigated.
There are lots of works on mathematical reasoning to
estimate OREs, and there is a well-known methodology
for precise addition and subtraction, which concern the
effect of REs [27]. For nonlinear operations, such as
multiplication and division, recently verified numerical
computation is evolving.

We focus on ORE problems from a different view
point, static detection. There are several examples of
ORE analyses on the real numbers to floating-point
numbers conversion [20,21,33,38], including tool imple-
mentations [20,38,34].

We focus on ORE anslyses again from a different
view point, the floating-point numbers to fixed-point
numbers conversion. Our motivation comes from practi-
cal demands in industry. They had troubles on convert-
ing a DSP reference algorithm into a hard-wired one,
along with the floating-point numbers to fixed-point
numbers conversion. Apart from difficulties in hardware
encoding [3,5,25,26,37,51,52], OREs may cause visible
decoding errors.

2 http://www.ima.umn.edu/ arnold/disasters/ariane.html

For the floating-point numbers to fixed-point num-
bers conversion, an ORE analysis was proposed in [9–
11] with the same motivation. They used a sophisti-
cated representation, Classical interval (CI) [2,40] and
Affine interval (AI) [54,55]. CI is simple but imprecise,
because it does not handle correlations between vari-
ables. AI introduces symbolic manipulations on noise
symbols, to handle correlations between variables. AI
arithmetic supplies higher precision, especially in lin-
ear operations (e.g., addition, subtraction). However,
AI introduces a fresh noise symbol at each nonlinear
arithmetic operation, which may lead potential ineffi-
ciency. The problem raises a natural question: Can we
create a new interval that is simpler yet precise as AI?

We also observe the fact that OREs of the floating-
point numbers to fixed-point numbers conversion can be
tested, since we can compute both floating-point num-
bers and fixed-point numbers.

Target programs
Motivated by practical demands, our target pro-

grams are reference C algorithms for DSP encoders and
DSP decoders.

Our observation on DSP encoders/decoders is that
they contain unbounded loops, pointers manipulation,
dynamic arrays manipulation only in the outermost in-
terface of large input data (e.g., sound, video). The in-
put data are divided into small pieces and processed
by the core algorithm (e.g., Invert Direct Cosine Trans-
form algorithm), which (mainly) consists of loops with
a bounded number of iterations and arrays with a fixed
size [47]. For instance, in the Mpeg decoder, typical ar-
rays have size 8�8, typical loops are 8�8, and the outer-
most loop iterates depending on the resolution (Fig. 1)

8×8
loop

…

Outermost loop depending on resolution

8×8
loop

8×8
loop

Fig. 1 Typical loops in Mpeg decoder

Based on this observation, we restrict targets to
a subclass of C programs with bounded loops, fixed
size arrays, no pointer manipulations, and no procedure
calls.

Then, we set the ORE problems as follows:

Given a program, initial ranges of input parameters,
and the fixed-point format,
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/* CANAT

CANAT ALL sign 11 4

maintest x range -1 3

maintest y range -10 10

_test global rst 0.26

*/

typedef float Real;

Real rst;

Real maintest(Real x, Real y){

1. if (x>0)

2. {rst=x*x;}

3. else rst = 3*x;

4. rst = rst - y;

5. return rst;

}

Fig. 2 An example of a C program

1. Whether the largest RE of a result lies within given
threshold?

2. Whether overflow error may occur?
3. If they occur, where?

We say that the program is “safe” if for all inputs,
REs of the result lie in r�θ, θs.

Example 1 Fig. 2 shows a C program with annotations
that:

– initial ranges of x, y: x P r�1, 3s, y P r�10, 10s,
– fixed-point format p11 : 4q, and
– RE threshold is θ � 0.26

Note that base b � 2.
The questions are:

1. Does RE of rst lie within r�0.26, 0.26s?
2. May overflow error occur? Where?

The OREs will be propagated through computa-
tions of the program. Further, the computations them-
selves cause OREs because the arithmetic needs to round
the result to fit the number format. Besides, OREs are
also affected by types of statements (e.g., branch, loop,
assignment).

Testing vs static analysis
We may face a situation that an ORE analysis re-

ports that the roundoff error of the result exceeds the
roundoff error threshold, but a test cannot find any
counterexamples.

Example 2 Assume that for the program in Fig. 2, the
initial ranges of x, y are r�1, 3s, r�10, 10s, respectively.
The conversion from the floating-point type to fixed-
point type such that the width of integer part is 11 and
the width of fraction part is 4. It is safe if no overflow
errors occur and no roundoff errors of rst go beyond
r�0.26, 0.26s.

-0.26 0.260 rstr

-0.26 0.260 rstr

Not safe!

No 
counterexamples!

a. roundoff error of rst found by testing � r�0.20, 0.21s

-0.26 0.260 rstr

-0.26 0.260 rstr

Not safe!

No 
counterexamples!

b. roundoff error of rst found by analysis � r�0.28, 0.28s

Fig. 3 Results of analyzing and testing C program in Fig. 2

By random 100 test cases, all roundoff errors lie in
the range r�0.20, 0.21s � r�0.26, 0.26s, which means
no counterexamples are found (Fig. 3 a).

The ORE analysis (in Section 4) reports that the
roundoff error of rst lies in r�0.28, 0.28s, which exceeds
the roundoff error threshold r�0.26, 0.26s (Fig. 3 b).

Then, both testing and analysis cannot clarify whether
the program in Fig. 2 is safe.

The challenge is how to bridge the gap between test-
ing and static analysis?

Main results and paper structure
This paper proposes a technique for automatic de-

tection of overflow and roundoff errors, caused by the
floating-point number to fixed-point number conver-
sion. First, inspired by the range representation to un-
der approximate OREs [21], a new range representa-
tion, extended affine interval (EAI) is proposed to over-
approximate OREs. EAI does not increase the number
of noise symbols.

Second, the overflow and roundoff error analysis prob-
lem is encoded as a weighted model checking, which is
implemented as a static analyzer CANA. A weight do-
main is designed based on the EAI arithmetic.

Last, we propose a new testing refinement loop,
called “counterexample-guided narrowing”, by combin-
ing the static analysis and testing. This refinement of
testing is performed by detected OREs by CANA, in
which EAI shows dominant error factors among input
parameters. They are composed as a prototype tool,
CANAT.

To avoid widening, currently we focus on programs
with bounded loops and arrays with fixed length, which
typically appear in encoder/decoder reference algorithms.

Experimental results on small programs show that
the extended affine interval is much more precise than
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classical interval, and the counterexample-guided nar-
rowing approach clearly outperforms the random test-
ing technique.

The rest of this paper is organized as follows. Sec-
tion 2 formally presents ORE problems. In Section 3,
we introduce various interval arithemtic. We also pro-
pose a new range representation, EAI, adding to tradi-
tional CI and AI. The ORE analysis based on weighted
model checking is introduced in Section 4. We also de-
scribe the implementation of the proposed framework in
a tool, CANA. Section 5 proposes the counterexample-
guided narrowing approach to detect REs and its imple-
mentation, CANAT. Section 6 overviews related works.
Finally, Section 7 concludes the paper and indicates fu-
ture works. The content of Section 3 to 4 and that of
Section 5 were preliminary reported in [44] and [45],
respectively.

2 Representation of Real Numbers and the
ORE Problem

We first present overflow and roundoff error (ORE)
problem when represent real numbers in computers such
as floating-point numbers (Subsection 2.1) and fixed-
point numbers (Subsection 2.2). In Subsection 2.3, we
introduce ORE arithmetics, which decomposes a num-
ber into a pair of floating-point (or fixed-point) and a
roundoff error evaluation.

2.1 Floating-point Numbers and ORE problem

2.1.1 Floating-point Numbers

Floating-point numbers are often used to represent real
numbers in numerical computation. In a floating-point
number, the position of the radix point is dynamic.

Definition 1 A floating-point number x has a rep-
resentation in base b, with sign s, significand m, and
exponent e, such that

x � p�1qs �m� be (1)

where s is 0 or 1, m � d0.d1...dp�1 with 0 ¤ di   b,
and e is an integer. The set of floating-point num-
bers is denoted by Rfl

Remark 1 In order to optimize the quantity of repre-
sentable numbers, floating-point numbers are typically
in normalized form, which puts the radix point after
the first non-zero digit (e.i., d0 � 0).

Example 3 The decimal number x � 8.75, repre-
sented as p�1q0�0.875�101, has s � 0,m � 0.875, e �
1. Its equivalent binary format is x � p�1q0�p0.100011q�
2100 with s � 1,m � 0.100011, e � 100. The cor-
responding normal floating-point number is x �

p�1q0�p1.00011q�210 with s � 1,m � 1.00011, e � 10.

The floating-point format pb, p, emaxq determines a
set of representable floating-point numbers, in which:

– b is base (e.g. 2 or 10)
– p is number of digits in the significand
– emax is the maximum value of exponent e (the min-

imum value of e is emin � 1� emaxq.

We basically follow the IEEE7542008 standard [22],
shown in Table 1. Thus, a normal floating-point number
closest to zero is �bemin and a number farest from zero
is �pb � b1�pq � bemax. For instance, in the binary 64
floating-point format,

– The number closest to zero is

�2�1022 � �2.225073858507202010�308

– The number farest from zero is

�pp1�p1{2q53q21024q � �1.7976931348623157�10308

2.1.2 OREs of Floating-point Numbers

Since floating-point numbers have the finite precision,
roundoff error may occur due to the finite fraction part,
and overflow error may occur due to the finite integer
part.

Roundoff error (RE) If the significand m of x is rep-
resented by more than p bits, x will be truncated (or
chopped) in some way. The IEEE7542008 standard de-
fines four rounding algorithms [22].

– Round to Nearest : This is the default mode. In this
mode results are rounded to the nearest representable
value. If the result is midway between two repre-
sentable values, the even representable is chosen.
Even here means the lowest-order bit is zero.

– Round toward 0 : All results are rounded to the largest
representable value whose magnitude is less than
that of the result. In other words, if the result is neg-
ative it is rounded up; if it is positive, it is rounded
down.

– Round toward �8: All results are rounded to the
smallest representable value, which is greater than
the result.

– Round toward �8: All results are rounded to the
largest representable value, which is less than the
result.
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parameter binary32 binary64 binary128 decimal32 decimal64 decimal128

b 2 2 2 10 10 10

p 24 53 113 7 16 34

emax +127 +1023 +16383 +96 +384 +6144

Table 1 The formats of floating-point numbers

Definition 2 Let x be a real number and let xfl be
its floating-point number representation. The roundoff
error (RE) is reflpxq � x� xfl.

Example 4 In the IEEE 754 decimal32 format (b �

10, p � 7, emax � 96),

Floating-point representation For x � 10{3, its floating-
point number representation is xfl � p�1q0�3.3333333�
100 and the RE is

reflpxq � 0.0000000333333333333333333333333....

Floating-point addition
e = 5 m = 1.234567 (123456.7)

+ e = 2 m = 1.017654 (101.7654)
e = 5 m = 1.234567

+ e = 5 m = 0.001017654 (after shifting)
e = 5 m = 1.235584654

This is the exact sum of the operands. It will be
rounded to seven digits and then normalized (if neces-
sary). The final result is e � 5;m � 1.235585, and the
low 3 digits of the second operand (654) are lost. The
RE of the addition is p�1q0�0.000000654105 � 0.0654.

Floating-point multiplication
e = 3 m = 4.734612

�e = 5 m = 5.417242
e = 8 m = 25.648538980104 (true product)
e = 8 m = 25.64854 (after rounding)
e = 9 m = 2.564854 (after normalization)

In this case, the lost information of the significand
m after normalization are (-0.0000001019896). The RE
of the multiplication is

p�1q1 � 0.0000001019896� 109 � 101.9896

Based on rounding mode, the value of RE may dif-
fer.

Lemma 1 For real number x and its normal floating-
point representation xfl, the RE reflpxq satisfy:
|reflpxq{x| ¤ Emach where

– Emach � b1�p for the rounding toward zero, and
– Emach � b1�p{2 for the rounding to nearest.

Overflow error (OE) If the exponents e of x is greater
than emax, it is an overflow error (OE). More pre-
cisely, for a real number x and its floating-point format
pb, p, emaxq, if x ¡ pb� b1�pq � bemax, an OE occurs.

Example 5 In the IEEE 754 decimal32 format (b �

10, p � 7, emax � 96),
e = 48 m = 4.734612

� e = 48 m = 5.417242
e = 96 m = 25.648538980104 (true product)
e = 96 m = 25.64854 (after rounding)
e = 97 m = 2.564854 (after normalization)

Since e ¡ emax, an OE occurs.

2.2 Fixed-point Numbers and ORE Problem

2.2.1 Fixed-point Numbers

Fixed-point numbers are a simple and an easy way to
express real numbers, using a fixed number of digits.
Due to the hardware simplicity, fixed-point numbers
are frequently used when hardware cost, speed, and/or
complexity are important issues. Fixed-point places a
radix point somewhere in the middle of the digits.

Definition 3 (Fixed-point number) A fixed-point
number a on base b is represented in the form:

a � spa1a2 . . . aip � aip�1 . . . aip�fp,

where

– sign part sp P t�,�u determines if a is positive or
negative,

– ak P r0, b� 1s for each k P r1, ip� fps,
– ip is the width of integer part, and
– fp is the width of the fraction part.

The set of fixed-point numbers is denoted by Rfx.
We omit the sign if it is positive.

In the fixed-point format pb, ip, fpq,
– b is base (e.g. 2 or 10).
– ip is number of digits in the integer part.
– fp is number of digits in the fraction part.

Example 6 The number Π is 3.14159 in the fixed-point
format pb � 10, ip � 2, fp � 5q.

A fixed-point number has a fixed window of rep-
resentation. The range value that can be represent is
p�bip � 1, bip � 1q, and the smallest positive is b�fp.
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2.2.2 OREs of Fixed-point Numbers

Roundoff error (RE) If the fraction part of number x
(real or floating-point) has more than fp digits, it needs
to truncates to fit the fixed-point format. This loses
information from digits fp� 1 in fraction part, and an
RE occurs.

Definition 4 Let x be a real number and let its fixed-
point number representation be xfx under the fixed-
point format pb, ip, fpq. An RE is refxpxq � x� xfx.

Depending on a rounding mode, the value of RE
may differ. For instance, for a real number x and its
fixed-point representation xfx, the RE refxpxq satisfies

– |refxpxq|   2�fp for the round toward zero, and
– |refxpxq|   b�fp{2 for the round to nearest.

Example 7 Let the fixed-point format be pb, ip, fpq �
p10, 8, 7q.

Fixed-point representation x � 10{3 is represented as
fixed-point number xfx � �3.3333333. The RE is

refxpxq � x�xfx � 0.0000000333333333333333333333....

Fixed-point multiplication

4.734612
� 5.417242

25.648538980104
25.6485389 (after truncating)

It loses information from the 8th digit of the fraction
part 0.000000080104, and its RE is 0.000000080104.

Overflow error (OE) If the integer part of number x
(real or floating-point) has more than ip digits before
the radix, it cannot be represented in the fixed-point
numbers, and an OE occurs. More precisely, for a real
number x and fixed-point format pb, ip, fpq, if x ¥ bip,
an OE occurs.

Example 8 For fixed-point format pb � 10, ip � 8, fp �
7q,

4734.612
� 54172.42

256485389.80104
Since the integer part has more than 8 digits, an OE

occurs.

2.3 ORE Arithmetic

In a program, the propagated error depends on not only
values of variables but also operators of the program.
For instance, the result of fixed-point multiplication
could potentially have as many bits as the sum of the
number of bits in the two operands. An ORE arithmetic
decomposes a number into a pair of a finite represen-
tation and an RE estimation, and each arithmetic op-
eration is defined on such pairs. There are three kinds
of ORE arithmetics corresponding with three kinds of
OREs (e.i., real numbers vs floating-point numbers,
real numbers vs fixed-point numbers, and floating-point
numbers vs fixed-point numbers).

2.3.1 Real-to-Fixed ORE Arithmetic

For a real number x and fixed-point format pb, ip, fpq,
we denote the fixed-point part of x by rdfppxq and
the RE by refppxq (� x � rdfppxq). If rdfppxq ¡ bip

we conclude that OE occurs, and if refppxq ¡ θ (where
θ is predefined threshold) we conclude that RE occurs.
The following definition describes the rules of propagat-
ing ORE when converting real numbers to fixed-point
numbers.

Definition 5 (Real-to-Fixed ORE arithmetic)
Let pxf , xrq and pyf , yrq be pairs of fixed-point

parts and REs of real numbers x, y. Real-to-Fixed ORE
arithmetic f � t`,a,b,cu is defined below.
pxf , xrq` pyf , yrq �

prdfppxf � yf q, xr � yr � refppxf � yf qq

pxf , xrqa pyf , yrq �

prdfppxf � yf q, xr � yr � refppxf � yf qq

pxf , xrqb pyf , yrq �

prdfppxf�yf q, xr�yf�xf�yr�xr�yr�refppxf�yf qq

pxf , xrqc pyf , yrq �

prdfppxf � yf q,
pxf � xrq � pyf � yrq � xf � yf � refppxf � yf qq

We define the Real-to-fixed ORE comparison op-
erators by comparing the range values of fixed-point
representations. For a given fixed-point representation
pxf , xrq, the corresponding range values are x̃ � rxf �

|xr|, xf � |xr|s. The results of Real-to-fixed ORE com-
parison operators may be true, false, or unknown.
Unknown means that the ranges of a fixed-point ex-
pression traverses both true and false of the condition,
and we cannot decide which will hold in real computa-
tion. Formally, Real-to-fixed ORE comparison opera-
tors are defined as follows:
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Definition 6 (Real-to-fixed ORE comparison op-
erators) Let pxf , xrq, and pyf , yrq be pairs of fixed-
point parts and REs of real numbers x, y.
ppxf , xrq   pyf , yrqq �$'&'%

true if pxf � xr   yf � yrq ^ pxf   yf q

false if pxf � xr ¥ yf � yrq ^ pxf ¥ yf q

unknown otherwise

ppxf , xrq �� pyf , yrqq �$'&'%
true if pxf � yf ^ xr � yrq

false if pxf , xrq   pyf , yrq _ pyf , yrq   pxf , xrq

unknown otherwise

Other comparison operators, such as ¡, ! �, are
defined using the operators above.

Example 9 Let x � 34.5678, y � 98.76543. We assume
the fixed-point format pb � 10, ip � 3, fp � 2q, “round
toward �8”, and the RE threshold θ � 0.01. We have:

– The fixed-point value of x is xfx � 34.56 and the
corresponding RE is xr � 0.0078

– The fixed-point value of y is yfx � 98.76 and the
corresponding RE is yr � 0.00543

We next show how to evaluate ORE arithmetic:

– Addition:

pxf , xrq` pyf , yrq�prdfpp34.56� 98.76q, 0.0078�
0.00543� refpp34.56� 98.76qq

�p133.32, 0.01323q

That means the result of addition is 133.32 and its
RE is 0.01323 ¡ θ. Thus, an RE is detected.

– Multiplication:
pxf , xrqb pyf , yrq �

prdfpp34.56�98.76q, 0.0078�98.76�34.56�0.00543
�0.0078� 0.00543� refpp34.56� 98.76qq
� p3413.14, 0.963631154q
That means the result of multiplication is 3413.14
p¡ 103q and its RE is 0.963631154 ¡ θ. Thus, both
an OE and an RE are detected.

2.3.2 Real-to-Float ORE Arithmetic

For a floating-point format pb, p, emaxq and a real num-
ber x, we denote the floating-point part by rdflpxq
and the RE by reflpxq (� x � rdflpxq). If rdflpxq ¡
pb � b1�p � bemax, we conclude that OE occurs, and
if reflpxq ¡ θ ) where θ is predefined threshold) we
conclude that RE occurs. The following definition de-
scribes the rules of propagating ORE when converting
real numbers to floating-point numbers.

Definition 7 (Real-to-Float ORE arithmetic) Let
pxf , xrq and pyf , yrq be pairs of floating-point parts
and REs of real numbers x, y. Real-to-Float ORE arith-
metic f � t`,a,b,cu is defined below.
pxf , xrq` pyf , yrq �

prdflpxf � yf q, xr � yr � reflpxf � yf qq

pxf , xrqa pyf , yrq �

rdflpxf � yf q, xr � yr � reflpxf � yf qq

pxf , xrqb pyf , yrq �

prdflpxf�yf q, xr�yf�xf�yr�xr�yr�reflpxf�yf qq

pxf , xrqc pyf , yrq �

prdflpxf�yf q, pxf�xrq�pyf�yrq�xf�yf�reflpxf�

yf qq

Real-to-float ORE comparison operators are defined
similar Definition 6.

2.3.3 Float-to-Fixed ORE Arithmetic

For a floating-point number x, the floating-point for-
mat pb, p, emaxq, and the fixed-point format pb, ip, fpq,
we denote the fixed-point part by rdfxpxq and the
RE by reff pxq (� refxpxq � reflpxq). If rdfxpxq ¡ bip

we conclude that an OE occurs, and if refxpxq ¡ θ
(where θ is predefined threshold) we conclude that an
RE occurs. The following definition describes the rules
of propagating ORE between floating-point numbers
and fixed-point numbers.

Definition 8 (Float-to-Fixed ORE arithmetic) Let
pxf , xrq and pyf , yrq be pairs of fixed-point parts and
REs of floating-point numbers x, y. Float-to-Fixed ORE
arithmetic f � t`,a,b,cu is defined below.
pxf , xrq` pyf , yrq �

prdfxpxf � yf q, xr � yr � reff pxf � yf qq

pxf , xrqa pyf , yrq �

prdfxpxf � yf q, xr � yr � reff pxf � yf qq

pxf , xrqb pyf , yrq �

prdfxpxf�yf q, xr�yf�xf�yr�xr�yr�reff pxf�yf qq

pxf , xrqc pyf , yrq �

prdfxpxf � yf q,
pxf � xrq � pyf � yrq � xf � yf � reff pxf � yf qq

Float-to-fixed ORE comparison operators are de-
fined similar Definition 6.

More precise ORE estimation
When we fix the conversion, such as from the floating-

point IEEE 754 binary64 p2, 53, 1024q to the fixed-point
p2, ip, fpq with size 2 bytes (e.i., ip � fp � 16) (which
frequently appears in practice), we can obtain better
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estimation of OREs. Assume “round to nearest” in Def-
inition 8.

Let δ� � refxpx � yq � reflpxf � yf q where � P

t�,�,�,�u. We now find the bound of δ� by consider-
ing the bound of reflpxf � yf q and refxpx � yq:

– Floating-point roundoff error rdflpx � yq:
Assume rdflpx � yq � p�p1qs � m � beq, we have
|reflpx � yq|   2�53�e{2. Without loss of generality,
we can assume e ¤ ip (otherwise an OE occurs in
the fixed-point operator pxf � yf q). Thus, we have:

|reflpx � yq|  2�53�e{2
  2�53�ip{2
  2�53�16�fp{2pbecause ip� fp � 16q
  2�38�fp

– Fixed-point roundoff error refxpxf � yf q:
Because the fixed-point format is unique, the results
of the addition and the substraction have the same
format. Thus, refxpxf � yf q � 0 for � P t�,�u.
For the multiplication, the fraction part of the result
has 2 � fp digits. The fraction part is round to fp
digits, and |refxpxf � yf q|   2fp{2� 22�fp{2.
For the division, similarly |refxpxf � yf q|   2fp{2.

Hence, we obtain the Float64-to-Fixed16 ORE
arithmetic by replacing reff px � yq with δ�, where � P
t�,�,�,�u and$''''&''''%
|δ�|   2�38�fp

|δ�|   2�38�fp

|δ�|   2fp�1 � 22�fp�1 � 2�38�fp

|δ�|   2fp�1 � 2�38�fp

(2)

3 Interval Arithmetics

In order to estimate OREs of arithmetic operations,
there are two known range representations: classical in-
terval [40] and affine interval [54,55]. In this section, we
firstly describe these two methods in detail in Subsec-
tions 3.1 and 3.2. Then, inspired by the idea in [21] for
under approximation, we propose an “extended affine
interval” for overapproximation in Subsection 3.3. Lastly,
we represent how to implement these intervals on com-
puters using floating-point type in Subsection 3.4.

3.1 Classical Interval

Classical interval (CI) was introduced in the 1960s by
Moore [40] as an approach to putting bounds on round-
ing errors in mathematical computations. In CI, the
upper and the lower bounds describe possible values.

Definition 9 A classical interval of x is an interval
x � rxl, xhs with xl ¤ x ¤ xh. The set of classical
intervals is denoted by R.

Definition 10 CI arithmetic consists of operations
t� ,� ,� ,�u on pairs of CIs defined below:

rxl, xhs � ryl, yhs � rxl � yl, xh � yhs

rxl, xhs � ryl, yhs � rxl � yh, xh � yls

rxl, xhs � ryl, yhs � rminpxlyl, xlyh, xhyl, xhyhq,

maxpxlyl, xlyh, xhyl, xhyhqs

rxl, xhs � ryl, yhs � rxl, xhs � r 1
yh

, 1
ul
s if 0 R ryl, yhs

The following example demonstrates how to com-
pute CI operations:

Example 10 For x P x � r�1, 3s, y P y � r�6, 10s. Let
us compute the bound of z � x � y (� P t�, �, �, �u)
using CI:

– Addition z � x� y:

z � x � y

� r�1, 3s � r�6, 10s
� r�1� 6, 3� 10s
� r�7, 13s

– Substraction z � x� y:

z � x � y

� r�1, 3s � r�6, 10s
� r�1� 10, 3� p�6qs
� r�11, 9s

– Multiplication z � x� y:

z � x � y
� r�1, 3s � r�6, 10s
� rmint6,�10,�18, 30u, maxt6,�10,�18, 30us
� r�18, 30s

– Division z � x� y:

z � x � y
� r�1, 3s � r�6, 10s

Since 0 P r�6, 10s, we cannot compute the bound of
z; instead a “devision by zero” warning occurs.

For x, x1, ..., xn P R, � P t�,�,�,�u, and a con-
stant c, we denote:

– x1x2 � x1 � x2, cx � xc � x � rc, cs,
– c � x � rc, cs � rxs, x � c � x � rc, cs, and
–
°n

i�1 xi � x1 � x2 � � � � � xn.
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CI arithmetic assumes that all intervals are inde-
pendent, even if exact values are dependent. The next
example illustrates such a problem.

Example 11 Let x P x � r�1, 3s. It is easy to see that:

x � x � r�1, 3s � r�1, 3s
� r�4, 4s

CI arithmetic assumes the first operand and the second
operand to be independent, while in fact, they represent
the same value x and the exact result is r0, 0s.

This leads to a great loss of precision in a long com-
putation chain, which is called “error explosion”.

3.2 Affine Interval

Affine interval (AI) was introduced by Stolfi [54,55]
as a model for self-validated numerical analysis. It was
proposed to address the “error explosion” problem in
conventional CI. In AI, the value are represented as
affine combinations (affine forms) of certain primitive
noise symbols, which stand for sources of uncertainty
in the data or approximations made during the compu-
tation.

Definition 11 An Affine interval of x is a formula

:x � x0 � x1ε1 � x2ε2 � � � � � xnεn

with x P rx0 �
°n

i |xi|, x0 �
°n

i |xi|s. x0 is called the
central value. For each i P r1, ns, εi P r�1, 1s is a noise
symbol, which stands for an independent component
of the total uncertainty. The set of affine interval forms
is denoted by :R.

In AI arithmetic, the results of linear operations
(e.i., addition, subtraction) are straightforward oper-
ations on AIs. However, the results of nonlinear oper-
ations (e.i., multiplication, division) are not AI forms.
Hence, we need to approximate the nonlinear parts of
the results by introducing new noise symbols.

Definition 12 AI arithmetic consists of operations
t:�, :�, :�, :�u on pairs of AIs as defined below. Let
:x � x0�

°n
i�1 xiεi and :y � y0�

°n
i�1 yiεi. AI operations

are as defined below:

:x :� :y � px0 � y0q �
°n

i�1pxi � yiqεi

:x :� :y � px0 � y0q �
°n

i�1pxi � yiqεi

:x :� :y � x0y0 �
°n

i�1px0yi � xiy0qεi � Bεn�1

:x :� :y � :x :� p 1
:y q, if 0 R rx0 �

°n
i |xi|, x0 �

°n
i |xi|s

where εn�1 P r�1, 1s is a new noise symbol, B is the
maximum value of p

°n
i�1 xiεiqp

°n
i�1 yiεiq, and 1

:y is com-
puted by Chebyshev approximation [54].

The range of values described an AI is evaluated by
replacing each noise symbol εi with r�1, 1s.

The advantage of AI is precision on linear opera-
tions, compared to CI. For instance, in Example 11,
values in a CI x � r�1, 3s are equivalently described by
an AI :x � 1� 2εx. Then,

:z � :x :� :x � 0

which shows the exact result of the subtraction px�xq.

For multiplication, there are choices to approximate
B, and a direct approximation of B is p

°n
i�1 |xi|qp

°n
i�1 |yi|q.

For division, we apply Chebyshev approximation below.
Chebyshev approximation in division
Chebyshev approximation aims to minimize the max-

imum absolute error. Let F be some space of func-
tions, e.g., polynomials, affine forms. An element of F
that minimizes the maximum absolute difference from a
given function f over a specified domain Ω is known as
a Chebyshev (or minimax) F-approximation to f over
Ω. We briefly overview the results in [54].

For univariate functions, the minimax affine approx-
imation is characterized by the following property.

Theorem 1 [54] Let f be a bounded and continuous
function from some closed and bounded interval I �

ra, bs to R. Let h be the affine function that best ap-
proximates f in I under the minimax error criterion.
Then, there exist three distinct points u, v, w P I where
the error fpxq�hpxq has maximum magnitude; and the
sign of the error alternates when the three points are
considered in ascending order.

This theorem provides an algorithm for finding the
optimum approximation in many cases, via the follow-
ing corollary:

Corollary 1 [54] Let f be a bounded and twice differ-
entiable function defined on some interval I � ra, bs,
whose seconde derivative f2 does not change sign inside
I. Let fapxq � αx�ζ be its minimax affine approxima-
tion in I. Then:

– The coefficient α is simply pfpbq � fpaqq{pb � aq,
the slope of the line rpxq that interpolates the points
pa, fpaqq and pb, fpbqq.

– The maximum absolute error will occur twice (with
the same sign) at the endpoints a and b of the range,
and once (with the opposite sign) at every interior
point u of I where f 1puq � α.

– The independent term ζ is such that αu�ζ � pfpuq�

rpuqq{2, and the maximum absolute error is δ �

|fpuq � rpuq|{2.
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This result gives us a method for finding the optimum
coefficients α and ζ, as long as we can solve the equation
f 1puq � α.

If an AI :y includes zero, a “division by zero” warn-
ing occurs. Thus, we only consider the cases y � rl, hs
are entirely either positive or negative (i.e., l ¡ 0 or
h   0). The Chebyshev approximation of 1

:y (Fig. 4) is
computed as follows:

– a � mint|l|, |h|u, b � maxt|l|, |h|u.
– α � �1{b2.
– dmax � 1{a� αa, dmin � 1{b� αb.
– ζ � pdmin � dmaxq{2, if l   0 then ζ � �ζ.
– δ � pdmax � dminq{2.
– 1

:y � α:y � ζ � δεk, where εk is a new noise symbol.

a u b

Fig. 4 Chebyshev approximation for 1
:y

Conversion between CI and AI
Standard range representation is CI. To apply AI,

conversion between them are needed.

– CI to AI : Given a CI x � rl, hs, a corresponding
AI is :x � l�h

2 � h�l
2 εk. Under valuations of noise

symbol εk to r�1, 1s, they represent the same range.
This is called AI coercion.

– AI to CI : An AI :x � x0 � Σn
i�1xiεi is projected

to a CI x � rx0 � Σn
i�1|xi|, x0 � Σn

i�1|xi|s.
This projection loses information on dependency of
uncertainty. This is called AI projection.

The following example demonstrates how to propa-
gate the ranges by using AI:

Example 12 For x P x � r�1, 3s, y P y � r�6, 10s. The
corresponding AI coercions of x, y are:

– :x � 1� 2εx

– :y � 2� 8εy

Let us compute the bound of z � x � y (� P t�, �u)
using AI:

– Addition z � x� y:

:z � :x :� :y
� p1� 2εxq :� p2� 8εyq

� 3� 2εx � 8εy

The AI projection of :z is r3 � 2 � 8, 3 � 2 � 8s �
r�7, 13s.

– Multiplication z � x� y:

:z � :x :� :y
� p1� 2εxq :� p2� 8εyq

� 2� 4εx � 8εy � 16ε1

where ε1 is new noise symbol standing for εxεy.
The AI projection of :z is r2� 4� 8� 16, 2� 4� 8�
16s � r�26, 30s.

3.3 Extended Affine Interval

AI is more precise than CI for linear operations, but
each time we perform a nonlinear operation, it intro-
duces a new noise symbol. This would be problematic
for a program with a large number of nonlinear opera-
tions.

In [21], instead of introducing new noise symbols, co-
efficients of noise symbols are replaced with CIs. Arith-
metic operations are designed for under approximation,
and we apply similar ideas for overapproximation. This
is called an extended affine interval (EAI), which also
avoids introduction of new noise symbols for nonlinear
operations.

Definition 13 An extended affine interval of x is
a formula px � x0 �

ņ

k�1

xkεk

with x P x0 �
°n

k�1 xkr�1, 1s, where εi P r�1, 1s is
a noise symbol for each i P r1, ns and xj P R for each
j P r0, ns. The set of extended affine intervals is denoted
by pR.

The linear operations of EAI arithmetic are designed
similarly to those of AI arithmetic. For nonlinear op-
erations, unlike AI, EAI arithmetic does not need to
introduce new noise symbols. The results of nonlin-
ear operations approximate nonlinear parts, with CI
coefficients. For example, let us consider the multipli-
cation of two EAIs. Let px � x0 �

°n
i�1 xiεi, py �
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y0 �
°n

i�1 yiεi. Without loss of generality, assume that°n
k�1 ykr�1, 1s �

°n
k�1 xkr�1, 1s. We have:px p� py � px0 �

°n
i�1 xiεiq p� py0 �

°n
i�1 yiεiq

� x0y0 �
°n

i�1px0yi � xiy0 � xiBqεi, where B �°n
i�1 yiεi. A direct approximation of B is

°n
k�1 ykr�1, 1s.

Formally, EAI arithmetic is defined as follows:

Definition 14 EAI arithmetic consists of operations
tp�, p�, p�, p�u on pairs of EAIs.

Let px � x0 �
°n

i�1 xiεi, py � y0 �
°n

i�1 yiεi, X �°n
k�1pxk r�1, 1sq, and Y �

°n
k�1pyk r�1, 1sq. Then,

px p� py � px0 � y0q �
°n

i�1pxi � yiqεipx p� py � px0 � y0q �
°n

i�1pxi � yiqεipx p� py � x0y0 �
°n

i�1px0yi � xiy0qεi � Bpx p� py � px p� p 1
py q if 0 R x0 �

°n
k�1 xkr�1, 1s

where:

B �

#
p
°n

i�1 xiεiqY if Y � X

Xp
°n

i�1 yiεiq otherwise

and 1
py is computed by Chebyshev approximation [54].

Similar to AI arithmetic, the commutative property
holds for both addition and multiplication; the associa-
tive property only holds for addition; and the distribu-
tive property does not hold.

Remark 2 The overapproximation B may conceal some
noise symbols. If we are sensitive to this matter, B can
be modified as:

B � αp
°n

i�1 xiεiqY � βXp
°n

i�1 yiεiq

with α � |X|

p|X| � |Y |q
and β � p1� αq.

Conversion between CI and EAI
To apply EAI, the conversion between them are

needed.

– CI to EAI : Given a CI x � rl, hs, a corresponding
EAI is x̂ � l�h

2 � h�l
2 εk. Under valuations of a noise

symbol εk to r�1, 1s, they represent the same range.
This is called EAI coercion.

– EAI to CI : An EAI x̂ � x0 � Σn
i�1xiεi is projected

to a CI x � x0 � Σn
i�1xir�1, 1s. Replacement of

a noise symbol εk to r�1, 1s loses information on
dependency of uncertainty. This is called EAI pro-
jection.

Example 13 For x P x � r�1, 3s, y P y � r�6, 10s. The
corresponding EAI coercions of x, y are:

– x̂ � 1 � 2εx

– ŷ � 2 � 8εy

– Addition z � x� y:

ẑ � x̂ �̂ ŷ
� p1 � 2εxq �̂ p2 � 8εyq

� 3 � 2εx � 8εy

The EAI projection of ẑ is

3 � 2r�1, 1s � 8r�1, 1s � r�7, 13s

– Multiplication z � x� y:

ẑ � x̂ �̂ ŷ
� p1 � 2εxq �̂ p2 � 8εyq

� 2 � 4εx � 8εy � B

where X � 2r�1, 1s � r�2, 2s and Y � 8r�1, 1s �
r�8, 8s.

Because X � Y . Hence, B � 8εyX � r�16, 16sεy.
Then, ẑ � 2 � 4εx � r�8, 24sεy

The EAI projection of ẑ is

2 � 4r�1, 1s � r�8, 24s�r�1, 1s � r�26, 30s

Although EAI does not introduce new noise sym-
bols, this does not mean EAI arithmetic is always less
precise than AI arithmetic. AI arithmetic only advances
in cases when we reuse the results of nonlinear parts.

Example 14 Let z � x� x; t � z � z and x P r�1, 31s.

– AI arithmetic: :x � 1�2εx, :z � 1�4εx�4ε1 where
ε1 is introduced for multiplication εxεx.
:t � :z :�:z � 0

– EAI arithmetic: px � 12εx, pz � 1�r0, 8sεx.
t̂ � ẑ�̂ẑ � r�8, 8sεx

In this case, AI is more precise than EAI. However, if we
compute the bound of t � x�x�x�x (without reusing
the multiplication x� x), both AI and EAI return the
same bound.

3.4 Interval Representations by Floating-point
Numbers

As pointed in [54,55], the interval representations them-
selves are affected by OREs, since boundaries and co-
effcients are represented by floating-point numbers. We
will briefly overview how to overapproximate CI, AI,
and EAI.

For x P R, we define:

– Ó x P Rfl is the round toward �8 of x,
– Ò x P Rfl is the round toward �8 of x, and
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Floating-point classical interval
For CI, a safe approximation is to truncate down

the lower bound and truncate up the upper bound of
an interval.

Definition 15 A floating-point classical interval of CI
x� rl, hs for l, h P R is

Ù x �Ù rl, hs � rÓ l, Ò hs.

The set of floating-point classical intervals is denoted
by Ù R.

The floating-point CI arithmetic is obtained by ap-
plying the Ù operator for each operation � P t�,�,�,�u.
For Ù x, Ù y P Ù R, we define Ù x � Ù y �Ù pÙ x � Ù yq.

Note that, since Ó x ¤ x ¤Ò x, x �Ù x, and the
extended � gives an overapproximation, i.e., x � y � Ù

pÙ x � Ù yq.
This is confirmed by two steps:

– For x, y P R, x �Ù x and y �Ù y. Hence, for � P
t�,�,�,�u, px � yq � pÙ x � Ù yq.

– By definition, pÙ x � Ù yq � Ù pÙ x � Ù yq.

Floating-point affine interval
For AI, instead of truncating coefficients in an ap-

propriate way, we simply introduce a new noise symcol.

Definition 16 An Floating-point affine interval of
AI :x � x0 �

°n
k�1 xkεk P :R is a formula

Ù :x �Ó x0 �
ņ

k�1

Ó xkεk � Bεn�1

where new noise symbol εn�1 is introduced for REs
and B �

°n
k�0pÒ xk� Ó xkq. The set of floating-point

extended affine intervals is denoted by Ù :R.

The floating-point AI arithmetic is obtained by in-
troducing a new noise symbol for each operation of AI
arithmetic. For example, let Ù :x �Ó x0 �

°n
k�1 Ó

xkεk, Ù :y �Ó y0 �
°n

k�1 Ó ykεk be two floating-point
AI. The addition is

Ù :x� Ù :y �Ó pÓ x0� Ó y0q�
ņ

k�1

Ó pÓ xk� Ó ykqεk�Bεn�1

where B �
°n

k�1pÒ pÓ xk� Ó ykq� Ó pÓ xk� Ó ykqq.
Floating-point extended affine interval
For EAI, we safely approximate CI coefficients by

the floating-point CI.

Definition 17 A floating-point extended affine in-
terval of EAI px � x0 �

°n
k�1 xkεk P pR is

Ù px �Ù x0 �
ņ

k�1

Ù xkεk.

The set of floating-point extended affine intervals is de-
noted by Ù pR.

The floating-point EAI arithmetic is obtained by
replacing each CI at a coefficeint by the floating-point
CI.

From now on, we will apply floating-point CI, floating-
point AI, and floating-point EAI, instead of CI, AI, and
EAI, respectively.

4 ORE Analysis as Weighted Model Checking

It has been suggested intimate connections between dataflow
analysis and model checking [41,50]. A program is firstly
encoded into a model (transition system) by abstrac-
tion, and a program analysis is formulated as a model
checking problem. This is nicely adopted for control
flow analysis and/or classical dataflow analysis in Dragon
book [1,28]. However, as natural requests, we intend
more richer dataflow, such as quantity properties with
more precise treatments on conditional branches. For
instance, linear constraint propagation [41], affine re-
lation analysis [49], or ORE constraint analysis [44]
are such examples. In these cases, the direct encod-
ing will be a-transition-as-an-environment-transformer,
which requires all possible environments as states. This
will lead the state explosion problem in model checking.

In 2003, Rep [48] proposed weighted pushdown model
checking, in which each transition is associated with a
weight. A weight directly represents dataflow, that is,
how an abstract environment will be transformed, with-
out generating explicit environments as states. This will
not improve complexity in theory, but in practice we
can combine with an on-the-fly generation of weights,
which drastically reduces the search space during model
checking.

We follow this weighted model checking approach
(but without using a pushdown stack). Due to infin-
ity (or unboundedness) of weight domains for the ORE
analysis, we restrict ourselves to acyclic models only.
This is a strong limitation, but our main application
target is DSP algorithms, which typically consists of
loops with bounded number of iterations and arrays
with fixed lengths. An effective widening operation de-
sign to avoid this restriction is left for future work. We
also put an input range for the ORE analysis, since a
narrower input range results more precise analysis re-
sults. As side effect, this also enables us to generate
weights in an on-the-fly manner.
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4.1 Dataflow Analysis as Weighted Model Checking

4.1.1 Weighted Model Checking

Weighted model checking computes dataflow (or, an up-
date of environments) by associating a weight to each
transition in the model, and the goal is to determine
the weight summary of the meet-over-all-path.

Weight domain and weighted transition system. In weighted
model checking, the weight domain D is an idempotent
semiring.

Definition 18 An idempotent semiring is a quintu-
ple pD,`,b,0,1q, where 0,1 P D and `, b are binary
operators on D such that, for a, b, c P D,

– pD,`q is a commutative monoid with the unit 0,
– pD,bq is a monoid with the unit 1,
– b distributes over `, i.e., abpb`cq � pabbq`pabcq

and pa` bq b c � pab cq ` pbb cq,
– ` is idempotent, i.e., a` a � a, and
– 0 is the zero element of b, i.e., ab 0 � 0b a � 0.

In the context of dataflow analysis, each element of
an idempotent semiring is regarded as follows:

– 0 stands for interruption of dataflow,
– 1 stands for the identity function (i.e., no state up-

date),
– b is the composition of two successive dataflow, and
– ` merges two dataflow at the meet of two transition

sequences.

The weighted transition system is then defined as a
transition system “plus” a weight domain.

Definition 19 Let P � pP,∆, s0q be a transition sys-
tem with P to be a finite set of states, ∆p� P � P q
to be a set of transitions, and s0pP P q to be an ini-
tial state. A weighted transition system (WTS) is
a triplet W � pP, S, fq, where S � pD,`,b,0,1q is
an idempotent semiring and f : ∆ Ñ D is a map that
assigns a weight to each transition.

Let ∆� be the set of all sequences of transitions.
For σ � rr1, . . . , rks P ∆�, we define vpσq �∆ fpr1q b

. . . b fprkq. If σ is a transition sequence from a state
c to a state c1, we denote c ñσ c1. The set of all such
sequences is denoted by pathspc, c1q, i.e.,

pathspc, c1q � tσ | c ñσ c1u

Weighted model checking. Weighted model checking finds
the weight summary of pathspc, c1q, which is the sum-
mation `σPpathspc,c1qvpσq.

There are two kinds of generalized reachability prob-
lems:

Definition 20 Let W � pP,S, fq be a weighted tran-
sition system with P � pP,∆, s0q. Let C � P and
c P P .

– The generalized predecessor problem is to find
δpcq � `tvpσq | σ P pathpc, c1q, c1 P Cu.

– The generalized successor problem is to find
δpcq � `tvpσq | σ P pathpc1, cq, c1 P Cu

If a cycle exists in a weighted model, pathspc, c1q be-
comes infinite. For the termination of a weighted model
checking, an idempotent semiring needs to be bounded.

Definition 21 An idempotent semiring is bounded
if there are no infinite descending chains wrt �, where
a � b if, and only if, a` b � a.

4.2 Weight Domain for ORE Analysis

For an ORE problem, we abstract a concrete environ-
ment as an abstract environment by using intervals.

Definition 22 Let V ar be the set of all variables of
the program. An abstract environment at a program
location is the set of functions AbsEnv � tV ar Ñ Φk

Ku,
where k � |V ar| and ΦK P tΦK, :ΦK, pΦKu. We define
the zero environment e0 P AbsEnv by e0pxq �K for
x P V ar. Let e, e1 P AbsEnv, and environment meet
operation is defined below:

e\ e1 � λx.epxq \ e1pxq

where \ P t\, :\, p\u.
Weight design
The standard definition of a weight domain has the

base set of weights D � AbsEnv Ñ AbsEnv. We then
theoretically define the weight domain for D as follows:

Definition 23 The weight domain (bounded idempo-
tent semiring) S � pD,`,b,0,1q with

D � AbsEnv Ñ AbsEnv,
1 � λx.x,
0 � λx.e0,

w1 ` w2 �

$'&'%
λx.w1pxq \ w2pxq if w1, w2 � 0

w1 if w2 � 0

w2 if w1 � 0

w1 b w2 �

#
w2 � w1 if w1, w2 � 0

0 otherwise
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where \ P t\, :\, p\u.
However, this does not satisfy the descending chain

condition (boundedness), since intervals are infinitely
many (thus the abstract domain is infinite). To cope
with this problem, we:

– restrict the models to be acyclic,
– fix an initial abstract environment I, and
– generate weight on-the-fly.

In the context of our ORE analysis, the intuition
behind the first two is,

– a target program has bounded loops only; thus af-
ter unfolding loops, abstraction produces an acyclic
transition system, and

– the result of ORE analysis depends heavily on the
input value; we will set a possible range of inputs at
the program entry in advance.

On-the-fly weight generation
We first introduce the augmented weight domain to

associate an input abstract environment to each weight.
“ ” means any input.

Definition 24 The augmented weight domain S� �

pD�,`,b,0�,1�q consists of D� � tpW,wq | W P

AbsEnv, w P Du, 0� � p ,0q, 1� � p ,1q, and

w�
1 ` w�

2 �

#
pW1, w1 ` w2q if W1 � W2

0� otherwise

w�
1 b w�

2 �

#
pW2, w1 b w2q if W1 � w2pW2q

0� otherwise

for w�
1 � pW1, w1q, w

�
2 � pW2, w2q P D�.

Now we are ready to define the on-the-fly weight do-
main S�P,I for a transition system P and I P AbsEnv.
The intuition is, starting from the initial abstract en-
vironment I, only reachable instances of weights are
computed in on-the-fly manner.

Definition 25 For a transition system P and I P AbsEnv,
the weight domain S�P,I � pD�

P,I ,`,b,0,1q is a sub
semiring of S� with D�

P,I � D�. D�
P,I is given by"

pW,wq
Dσ, σ1 P ∆� Dc, c1 P P . s0 ñ

σ c ñσ1 c1

^W � vpσqpIq ^ w � vpσ1q

*
In implementation, we will identify D� � AbsEnv�

D with D� � AbsEnv �AbsEnv by

pW,wq � pW,wpW qq

for W P AbsEnv, w P D.

4.3 ORE Analysis

The ORE analysis problem will be solved as weighted
model checking on acyclic models by the following steps
(Fig. 5).

1. As preprocessing, translate a C program into CIL
(three address code language). Then, each loop are
unfolded and each array is replaced with a set of
variables (as many as its length). We obtain an
acyclic program without arrays.

2. Generate weighted transition system, which is a con-
trol flow graph with an associated ORE arithmetics
operation corresponding to a CIL instruction. ORE
arithmetics is prepared for three types (CI, AI, EAI).

3. Apply weighted model checking. During model check-
ing, weights are generated by an on-the-fly manner
from given initial ranges of input parameters.

4.3.1 Abstract domain for ORE problem

Abstract domain
The abstract value of a variable aims to cover all

of its possible values at one program location. For the
ORE problem, the abstract value is a pair of fixed point
and roundoff error ranges. We will show three kinds of
abstractions based on CI, AI, and EAI range represen-
tations.

Definition 26 Let fxp and rdf be corresponding range
representations of fixed point and roundoff error.
CI abstract domain Φ � tpfxp, rdfq|fxp, rdf P Ru
AI abstract domain :Φ � tpfxp, rdfq|fxp, rdf P :Ru

EAI abstract domain pΦ � tpfxp, rdfq|fxp, rdf P pRu
For a fresh symbol K (which stands for undefined or

uninitialized), we define ΦK � ΦY tKu.

Abstract arithmetic
Abstract arithmetic aims to propagate both fixed

point ranges and roundoff error ranges of variables.

Definition 27 Replacing pxf , xrq, pyf , yrq, f, and ε in
the definition of ORE arithmetic (Definition 8) with

– pxf , xrq, pyf , yrq,f � t`,a,b,cu, and ε, we obtain
CI abstract arithmetic,

– p:xf , :xrq, p:yf , :yrq, :f � t :̀ , :a, :b, :cu, and :ε, we obtain
AI abstract arithmetic, and

– ppxf , pxrq, ppyf , pyrq, pf � t p̀ , pa, pb, pcu, and pε, we obtain
EAI abstract arithmetic,

where#
ε � pε � rb�fp{2, b�fp{2s
:ε � pb�fp{2qεr with a fresh noise symbol εr
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C program
int

 

main () {
fixed x; int

 

n; int

 

i;
rst

 

= x;  i = 0;   
while (i <= n) {

…

ORE report
OE may occur for x
RE of x lies within [0,0.0012]
…

(v_inf, v_ine) ∈ Itv×Itv

(v_outf, v_outr) ∈ Itv×Itv

1

2

3

5 4
T F

…

Transition system +  Weight function

3 address codes
int

 

main {
fixed x; int

 

n; int

 

i;
rst

 

= x;  i = 0;   
if (i <= n) {

…
C front-end

Abstract

Model checker

ORE abstraction

Weighted PDS library

CIL

Weighted model checking

Fig. 5 ORE analysis as weighted model checking

To illustrate how to create EAI abstract numbers and
compute EAI abstract arithmetic, we consider the fol-
lowing example:

Example 15 The EAI abstract numbers px̂f , x̂rq, pŷf , ŷrq

for variables x, y, respectively, in Example 1 are"pxf � r1, 1s � r2, 2sε1pxr � r2�5, 2�5sε3" pyf � r0, 0s � r10, 10sε2pyr � r2�5, 2�5sε4

since fp � 5, the REs of x and y are in r�2�fp�1, 2�fp�1s �

r�2�5, 2�5s p� r�0.03125, 0.03125sq and δ� � 2�6 �

2�11 � 2�43 � 2�6.
Then, at the line 2 (rst � x � x), pyrstf ,yrstrq �

ppxf , pxrq pb ppxf , pxrq is projected as follows:yrstf � pxf p� pxf

� pr1, 1s � r2, 2sε1q p� pr1, 1s � r2, 2sε1q

� r1, 1s � r0, 8sε1

yrstr � 2�̂pxf �̂x̂r p� pxr�̂pxr�̂δ�
� r�0.031250, 0.031250s � r�0.123091, 0.123091sε1

� r0.059615, 0.065385sε2

Abstract comparison operations
Instead of nondeterministic transitions at a condi-

tional branch, the conditional expression can often be
evaluated by using abstract environment. This is useful
in avoiding unnecessary execution paths. The abstract
comparison operations are defined by using ORE com-
parisons as follows:

Definition 28 Replacing pxf , xrq, pyf , yrq, in the def-
inition of x̃ in ORE comparisons (Definition 6) with

– pxf , xrq, pyf , yrq, we obtain CI abstract compar-
ison operations o � t¤, �u,

– p:xf , :xrq, p:yf , :yrq, we obtain AI abstract compar-
ison operations :o � t:¤, :�u, and

– ppxf , pxrq, ppyf , pyrq, we obtain EAI abstract com-
parison operations po � tp¤, p�u.
The following example illustrates how to evaluate

EAI abstract comparison p .

Example 16 Use ppxf , pxrq, and ppyf , pyrq as in Example 17.
ppxf , pxrq p  0 is evaluated as follows:

– xf � r�1, 3s
– xr � r�2�5, 2�5

Since pxf , xrq   0 is unknown, we can conclude
that ppxf , pxrq p  ppyf , pyrq is unknown.

Meet operation
At the meet of two paths in a program, we need

to combine the results that are generated from these
paths. The result of the meet must bind all input ab-
stract values. We first consider how to compute the
union of two ranges:

Definition 29 The unions of ranges are:

– CI: rxl, xhsYryl, yhs � rminpxl, ylq,maxpxh, yhqs.
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– AI: pu0�
°n

i�1 uiεiq :Y pv0�
°n

i�1 viεiq � pu0�v0
2 �

|u0�v0|
2 εn�1 �

°n
i�1 tiεiq where εn�1 P r�1, 1s is a

new noise symbol and, for each i,

ti �

#
ui if |ui| ¡ |vi|,
vi otherwise.

– EAI: pu0 �
°n

i�1 uiεiq pY pv0 �
°n

i�1 viεiq �

pu0 Y v0q �
°n

i�1pui Y viqεi.

Then, the result of meet operation is a pair of the
union of fixed point ranges and the union of roundoff
error ranges.

Definition 30 The meets in abstract values are:

– CI meet: pxf , xrq \ pyf , yrq � pxf Y yf , xr Y yrq

– AI meet: p:xf , :xrq :\ p:yf , :yrq � p:xf :Y :yf , :xr :Y :yrq

– EAI meet: ppxf , pzrq p\ ppyf , pyrq � ppxf pY pyf , pxr pY pyrq

\ P t\, :\, p\u is extended to ΦK P tΦK, :ΦK, pΦKu by
K \pxf , xrq � pxf , xrq\ K� pxf , xrq.

4.3.2 Weighted transition system for ORE analysis

In preprocessing phase, C programs are transformed
into CIL, a three address code language. We replace
each array with fixed length by a set of variables that
correspond to locations in an array. Thus, our target
instructions are restricted as follows.

– Assignment: “x � y � z” with � P t�,�, �, {u.
– Conditional instruction: “if x � y then s” where

s is an instruction and � P t , �,¡,¡�,�, ! �
u. If the condition px � yq is false, s is not visited;
otherwise, s is visited.

– Control instruction: “return loc”, “goto loc”, “break”,
“continue”. Control moves to the specified location,
and the values of variables do not change.

– While Loop: “while x � y { body }” with � P t 

, �,¡,¡�,�, ! �u. body is repeated as long as the
condition px�yq holds. Inside body, “break” will exit
from the loop.

In preprocessing phase, the bounded while loops are
unfolded as a sequence of conditional instructions, and
we obtain an acyclic CIL program.

The weight function is defined as follows:

Definition 31 For an acyclic transition system P and
I P AbsEnv, the weight function fP,I : ∆ Ñ D�

P,I is
given in Table 2.

Then, we obtain the weighted transition system:

W � pP,S�P,I , fP,Iq.

We explain how to generate a weighted transition
system by Example 1 (in Introduction).

instruction weight

”x � y � z” pWi, txo � yi e zi, vo � vi|v P V arztxuuq
where e is the corresponding

abstract arithmetic operation of �

“if x � y then s” 0� if xi e yi � false; 1� otherwise,
where e is the corresponding

abstract comparison of �

Control inst. 1�

Table 2 Weight function of ORE analysis

maintest{

st1. if (x > 0) {

st2. rst = x * x;}

else {

st3. __cil_tmp1 = (Real )3;

rst = __cil_tmp1 * x;}

st4. rst -= y;

st5. return (rst);

st6. }

Fig. 6 CIL code for Example 1

st1

st2 st3

st4

if

 

(x>0) if not(x>0)

rst

 

= x*x rst

 

=3*x

rst

 

=rst-y

st6

st5
return

 

rst

Fig. 7 CFG of three address codes in Fig. 6

Example 17 We use EAI representation type.
The CIL codes of the C program in Fig. 2 are shown

in Fig. 6. Let st1, ..., st6 be its locations.
To distinguish variables at each locations, we will

denote a variable v at the location sti by vpiq. The
fixed-point value and RE of v are denoted by v̂

piq
f , v̂

piq
r

respectively.
The transition system is P � pP,∆q, where P �

tst1, st2..., st6u, ∆ is shown in Fig. 7 and f is defined
in Table 3.

The initial abstract environment Winit at st1 is gen-
erated from initial range values of variables (given in the
topmost comments in Fig. 2), in that:#

xpinitq � pr1, 1s � r2, 2sε1, r2�5, 2�5sε3q

ypinitq � pr10, 10sε2, r2�5, 2�5sε4q
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Then, the resulting weighted transition system is W �

pP,S�P,Winit
, fq.

transition weight

(st1,st2) if ppxpinitq
p¡0q � falseq 0� else 1�

(st1,st3) if notppxpinitq
p¡0q � falseq 0� else 1�

(st2,st4) pW
pinq
i , trstp2q � xpinq pb xpinq,

vp2q � vpinq| v P V arztrstuuq

(st3,st4) pW pinq, t cil tmp1p3q � 3,

rstp3q � cil tmp1p3q pb xpinq,

vp3q � vpinq| v P V arzt cil tmp1, rstuuq

(st4,st5) pW pinq, trstp4q � rstpinq pa ypinq,

vp4q � vpinq| v P V arztrstuuq

(st5,st6) 1�

Table 3 Weight function for a CIL code in Example 17

Since the abstraction is an overapproximation, we
conclude soundness of ORE analysis.

Theorem 2 An ORE analysis on a subclass of acyclic
CIL programs is sound.

4.3.3 ORE Analysis Example

We continue to explain how ORE analysis works by the
example in Fig. 2.

Example 18 Let the input EAI xp1q � px̂
p1q
f , x̂

p1q
r q and

yp1q � pŷ
p1q
f , ŷ

p1q
r q as shown in Example 17.

St1 is a conditional branch. Since the initial range of
x is r�1, 3s, CANA cannot decide the condition x ¡ 0.
Thus, it traces both st2 and st3, and later merges their
results.

At st2, the RE of rst is computed by multiplication
b̂ as:

yrstp2qr �r�0.031250, 0.031250s � r�0.123091, 0.123091sε1

� r0.059615, 0.065385sε3

and at st3,

yrstp3qr � 3�̂x̂r � r0.093750, 0.093750sε3

And they are merged as:yrstr�r�0.031250, 0.031250s � r�0.123091, 0.123091sε1 �

pr0.059615, 0.065385s Y r0.093750, 0.093750sqε3

�r�0.031250, 0.031250s � r�0.123091, 0.123091sε1

� pr0.059615, 0.093750sqε3

At st4, by subtraction â, we get the RE of rst:

xrstp4qr �r�0.031250, 0.031250s � r�0.123091, 0.123091sε1 �

r0.059615, 0.09375sε3 � r�0.031250,�0.031250sε4

RE bound of rst is by r�0.279341, 0.279341s by re-
placing each εi with r�1, 1s in r̂.

By nature of analysis, this analysis overapproximates
REs. It occurs at the conditional branch (line 1) and the
multiplication. For instance, at st2, δ̂ (in b̂) is approx-
imated with r�0.031250, 0.031250s.

The example above shows that the overapproxima-
tions will occur at (1) nonlinear operations; (2) unde-
cided conditional branch. In case the conditional branch
is decided, analysis will not overapproximate it. Below,
how the treatment of conditional branches in ORE anal-
ysis will improve the overapproximation.

Example 19 In Example 18, if we reduce the initial
range of xf to r1, 3s, the condition x ¡ 0 is decided
to be true at st1, and CANA ensures that st3 will not
be executed. Then, at st4, by substraction â,

pr�r�0.031250, 0.031250s � r�0.123091, 0.123091sε1

� r0.059615, 0.065385sε3

� r�0.031250, � 0.031250sε4

RE of rst is bounded by r � r�0.250976, 0.250976s
by replacing each εi with r�1, 1s in r̂.

This result is more precise than that in Example 18.

4.4 Experiments

Implementation

We have implemented our analysis framework in a tool
C ANAlyzer (CANA). CANA uses two libraries: CIL
library 3 and WPDS library 4.

– CIL (C Intermediate Language) is a high-level rep-
resentation that permit source-to-source transfor-
mation of C programs. CIL is used to generate three
address codes, information about variables, and the
CFG of a C program.

– WPDS (Weighted Pushdown System) is a library,
which provides functions to the sets of forward- or
backward- reachable configurations in a weighted
pushdown system. Since we exclude procedure calls
and unbounded loops, we adopt WPDS only for
weighted finite acyclic state transition systems

The inputs of CANA are subclass of ANSI C pro-
grams and initial ranges of variables. The outputs of
CANA are roundoff error ranges of variables at each
point of the program, and warning about overflow errors
(if they occur). CANA has six main modules (Fig. 5.4)
as follows:

3 http://hal.cs.berkeley.edu/cil/
4 http://www.fmi.uni-stuttgart.de/szs/tools/wpds/
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CANA system

CIL library

WPDS library

ORE report

C program 
Input ranges of vars

 
RE threshold

Collect data

Create Fun f

WDomain

Var

 

& Fun Info

WPDS

Create PDS

CFGStm

 

InfoInterval arithmetics

Expression library

Fig. 8 CANA system

1. Collect data module generates information required
for the analysis, including: statement information
(Stm Info), (2) variable and function information
(Var and Func Info), and (3) CFG of C program.

2. Range arithmetics module includes three types of
interval arithmetics: CI arithmetic, AI arithmetic,
and EAI arithmetic.

3. Evaluate exps module evaluates the abstract values
of expressions based on types of range arithmetics.

4. Create PDS module generates transition system from
control flow graph of a C program.

5. Create Fun f module assigns a weight to each tran-
sition.

6. WDomain module defines two operations: b and `.

Experimental results

We have implemented in CANA three types of interval
representations: CI, AI, and EAI. CANA can analyze
programs that have nested loops 64� 64.

In order to compare the efficiency of EAI arithmetic
to CI and AI arithmetics, we analyzed source codes of
three examples:

1. a program computes a polynomial of degree 5
2. a program computes the sine function
3. a tiny fragment, which frequently appears in the

mpeg decoder reference algorithm.

Fig. 9 shows experimental results of analyzing these
programs (on PC with Intel(R) Core(TM) Duo CPU

[x] [0,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8]

real err 0.01909 0.03 0.03891 0.061588
CI 0.04373 0.0599 0.09172 0.148848

AI 0.0377 0.0406 0.06179 0.104468
EAI 0.03232 0.0356 0.05763 0.100454

0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
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a. The analysis result of P5(x)

[x] [0,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8]

real err 0.00647 0.0108 0.01049 0.010206
CI 0.0204 0.0208 0.02139 0.022198

AI 0.02035 0.0204 0.02029 0.019976
EAI 0.01759 0.0176 0.01749 0.017184

0
0.02
0.04
0.06
0.08
0.1
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x range

er
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b. The analysis result of Sin(x)

[exps] [0,30] [30,60] [60,90] [90,120]

real err 1.36309 1.3631 1.36309 1.363086
CI 1.73766 1.7377 1.73766 1.737656

AI 1.63453 1.6345 1.63453 1.634531
EAI 1.63453 1.6345 1.63453 1.634531

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

[0,30] [30,60] [60,90] [90,120]
exps range
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r 
ra
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e 
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Test CI AI EAI

c. The analysis result of pMpeg(exps)

Fig. 9 The experimental results



19

1.66GHz, 1.5Gb of memory). Fig. 9a shows results of
analyzing the program that computes P5pxq � 1� x�
3x2�2x3�x4�5x5, where the fraction part fp � 8. The
true err row is the width of roundoff error ranges which
are found by testing; the CI, AI, and EAI rows are the
widths of roundoff error ranges computed by CI arith-
metic, AI arithmetic, and EAI arithmetic, respectively.
Our experiments show that EAI is more precise than
CI and is comparable to AI. We got similar results for
the program that computes sine of x shown in Fig. 9b,
and the fragment of the mpeg decoder pMpegpexpsq in
Fig. 9c. All tests run in less than 2 seconds.

5 Detecting REs based on
Counterexample-guided Narrowing

Static analysis is useful in proving safety properties
of ORE problem. But it requires overapproximation
in both propagating REs and control flows like con-
ditional branches. Hence, it may return spurious coun-
terexamples. Fortunately, in our setting, the floating to
fixed-point conversion, we can compute the exact RE,
whereas there are in general no ways to compute exact
real numbers. Though testing can return exact REs, it
cannot cover all possible inputs. If we are lucky, wit-
ness of large REs would be eventually found, yet most
of them may be missed. Another challenging problem
is how to reduce the number of test cases if the input
domain is large and the input parameters are many.

A popular approach to deal with spurious coun-
terexamples is counterexample-guided abstraction refine-
ment (CEGAR) [6]. Inspired by CEGAR, we combine
testing and RE analysis.

This section proposes an approach for detecting REs
of C programs, which combines static analysis and test-
ing, and make them refine each other. We call this com-
bination counterexample-guided narrowing. First, we ap-
ply an overflow and roundoff errors analysis from our
previous work [44] which returns an overapproximation
of REs as an Extended affine interval (EAI). Fortu-
nately, an EAI represents the relations between the in-
put value and the RE of the output. These relations
can be used to clarify: variables are irrelevant to REs
of the results, variables affect the REs the most, and the
ranges of inputs are most likely to cause the maximum
RE. These observations effectively narrow the focus of
test data generation. Second, in case testing does not
find a witness of RE violation, the analysis may over-
approximate too much. Further, the narrower the in-
put ranges are, the more precise the analysis result will
be. Therefore, with a “divide and conquer” refinement
strategy, we can check the most suspicious part first.

Throughout the section, we focus only on roundoff
errors. We assume that ORE analyzer (CANA) does
not detect any overflow errors.

5.1 Observation on RE Analysis

The inputs of an RE analysis consist of

– a C program (with m-input variables) to be ana-
lyzed (base b � 2),

– a fixed-point format psp, ip, fpq,
– an RE threshold θp¡ 0q, and
– a pair of a fixed-point range rli, his and an RE range
rlm�i, hm�is with�2�fp�1   lm�i ¤ hm�i   2�fp�1

for each i-th input variable.

We will fix the last three elements as an environment
of the RE analysis. We call the Cartesian product D �

rl1, h1s � � � � � rl2m, h2ms an input domain.
Throughout the RE analysis, all ranges are repre-

sented as EAIs with 2m noise symbols (where εi and
εm�i correspond to noise symbols of the fixed-point
part and the RE of values of the i-th input variable).
Thus, we coerce input CIs to EAIs by EAI coercion. In
the context of the RE analysis, we denote:
Input domain D � rl1, h1s�� � ��rl2m, h2ms is pv̂1, . . . , v̂2mq

with v̂i � p li�hi

2 q � phi�li
2 qεi.

As notational convention, the analysis result is de-
noted by an EAI:

pr � r0 �
°2m

i�1 riεi

The analysis result r̂ shows extra information about
the effects of inputs on r̂, since EAI coercions of input
ranges and r̂ share common noise symbols. If violations
are found (i.e., EAI projection of r̂ exceeds r�θ, θs),
we need to check whether they are spurious by testing.
Fortunately, we have useful observations below, which
will optimize test data generation and testing.

– RE bound for each test case: Assume that the
valuation of noise symbols for the test case t �

pt1, . . . , t2mq is pλ1, . . . , λ2mq, i.e.,

λi �

#
0 if li � hi
2ti�pli�hiq
phi�liq

otherwise

Then, the RE for the input t is bounded by the
valuation of r̂ with pλ1, . . . , λ2mq.

– Irrelevant noise symbol: If the coefficient of a
noise symbol εk is rk � r0, 0s, the noise symbol εk

will not affect the RE of result.
– Sensitivity of noise symbols: If |rk| ¤ |rh|, the

noise symbol εk affects r̂ more than εh.
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The following example will demonstrate how they
affect the testing phases:

Example 20 In the analysis result of Example 18:

– For the test case t � pxf , yf , xr, yrq � p1, 5, 0, 0q,
the valuation of noise symbols is pε1, ε2, ε3, ε4q �

p0, 0.5, 0, 0q. The RE bound of t is

r�0.031250, 0.031250s � r�0.26, 0.26s

Therefore, t is not a counterexample.
– Since r2 � r0, 0s, ε2 is an irrelevant noise symbol.

Hence, v2 (or fixed-point part of y) does not affect
RE of rst.

– We have |r1| � 0.123091 � maxt|r1|, . . . , |r4|u, thus
ε1 is the most sensitive noise symbol. Hence, v1 (or
fixed-point part of x) affect the RE of rst the most.

The analysis result is helpful to optimize test phase,
includes:

– Pre-evaluate test case: if RE bound of a test case
t lies in the RE threshold bound, we need not exe-
cute test for t.

– Reduce input ranges: which reduces segments
in each input range if corresponding REs are sub-
sumed. Especially, for an irrelevant noise symbol.

– Choice of the number of ticks, which takes more
ticks in the input ranges of more sensitive noise sym-
bols.

5.2 Refining Test Data Generation

5.2.1 Test Data Generation

For an input domain D � rl1, h1s � � � � � rl2m, h2ms, a
basic strategy of test data generation is to divide the
input domain into meshes and select one test case from
each mesh.

Definition 32 For an interval rl, hs, and k ¡ 1, the k-
ticks of rl, hs starting from c are tc, c�∆, � � � , c�pk�
1q∆u where ∆ � h�l

k and c is a number lies in rl, l�∆s.

Remark 3 This c intends a randomly generated flicker;
since refinement loops will repeat, we would like to
avoid generating the same test cases.

Example 21 Let us consider the C program as Fig. 2.

– For xf P r�1, 3s, let k1 � 10, then ∆1 � p3 �
p�1qq{10 � 0.4. Let c1 � �0.8, we got the set of
ticks Xf � t�0.8, � 0.4, �, 3.8u

– For xr P r�2�5, 2�5s, let k2 � 10, then ∆2 � p2�5�

p�2�5qq{10 � 0.00625. Let c2 � �0.03, we got the
set of ticks Xr � t�0.03, � 0.02375, �, 0.0265u

– For yf P r�10, 10s, let k3 � 10, then ∆3 � p10 �
p�10qq{10 � 2. Let c3 � �9, we got the set of ticks
Yf � t�9, � 7, �, 9u

– For yr P r�2�5, 2�5s, let k4 � 10, then ∆4 � p2�5�

p�2�5qq{10 � 0.00625. Let c4 � �0.028, we got the
set of ticks Yr � t�0.028, � 0.02175, �, 0.0285u

Hence, the set of test data is T � Xf�Yf�Xr�Yr.
E.g., For test case t1 � p�0.8,�9,�0.03,�0.028q, the
input of fixed-point program is px, yq � p�0.8,�9q; the
input of floating-point program is px, yq � p�0.83,�9.028.

For an input domain D � rl1, h1s � � � � � rl2m, h2ms,
all combinations of ki-ticks of rli, his for i ¤ 2m are
the set of test data. Then, we execute a program in two
ways: with floating-point arithmetic and fixed-point arith-
metic. The difference between them is a true RE. How-
ever, the number of test data grows with the power of
the 2m-th degree.

5.2.2 Range Reduction

For two ranges rl1, h1s, rl2, h2s, we denote rl1, h1s ¤

rl2, h2s if u ¤ v for each u P rl1, h1s and v P rl2, h2s

(i.e., h1 ¤ l2). Reducing input range is executed based
on the observation as the following lemma.

Lemma 2 Assume 0 R ru, vs. Then,

– r�v,�us ¤ ru, vsr�u
v , u

v s ¤ ru, vs if 0   u ¤ v

– ru, vs ¤ ru, vsr� v
u , v

u s ¤ r�v, us if u ¤ v   0

This lemma means that if 0 R rui, vis � ri we can
ignore test data with corresponding noise symbol εi in
r�ui

vi
, ui

vi
s (resp. r� vi

ui
, vi

ui
s) for 0   ui ¤ vi (resp. ui ¤

vi   0). The reason for this is that the true REs for test
data with εi in r�ui

vi
, ui

vi
s (resp. r� vi

ui
, vi

ui
s) are bounded

by the valuations when a noise symbol εi is either 1 or
�1 whatever a true coefficient has a value in rui, vis.

In a special case ui � vi � 0, a valuation of εi does
not matter. Thus, only a valuation with 0 is considered.

From observations above we reduce the input do-
main D to two input domains Dmax (which contain an
input that causes the maximum RE) and Dmin (which
contain an input that causes the minimum RE) with-
out loosing opportunities to find test cases that cause
violation of REs.

Definition 33 For an input domain
D �

p l1�h1
2 � h1�l1

2 ε1q � � � � � p l2m�h2m

2 � h2m�l2m

2 ε2mq and
the analysis result

pr � ru0, v0s �
2m̧

i�1

rui, visεi,
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the subdomain Dmax of D is

p
l1 � h1

2
�

h1 � l1
2

ε1q�� � ��p
l2m � h2m

2
�

h2m � l2m

2
ε2mq

where

εi �

$''''&''''%
r |ui|
|vi|

, 1s if 0   ui ¤ vi

r�1,� |vi|
|ui|

s if ui ¤ vi   0

r0, 0s if ui � vi � 0
r�1, 1s otherwise

and the subdomain Dmin is

p
l1 � h1

2
�

h1 � l1
2

ε1q�� � ��p
l2m � h2m

2
�

h2m � l2m

2
ε2mq

where

εi �

$''''&''''%
r�1,� |ui|

|vi|
s if 0   ui ¤ vi

r |vi|
|ui|

, 1s if ui ¤ vi   0

r0, 0s if ui � vi � 0
r�1, 1s otherwise

An EAI pr � r0 �
°2m

i�1 riεi is maximum (resp. min-
imum) if each of elements r0 and riεi is maximized
(resp. minimized). Thus the maximal (resp. minimal)
RE will occur among valuations of εi in ru{v, 1s (resp.
r�1,�u{vs) if 0   u ¤ v, and in r�1,�v{us (resp.
rv{u, 1s) if u ¤ v   0. Therefore, from Lemma 2, we
obtain the next theorem.

Theorem 3 If there exists a counterexample in D, then
there exists a counterexample in Dmax YDmin.

Example 22 By observation of analysis result r̂ in Ex-
ample 18, we can find Dmax of the input domain D
is

pr1, 1s � r2, 2sε1q�pr10, 10sε2q�pr2�5, 2�5sε3q�pr2�5, 2�5sε4q

with ε1 � r�1, 1s, ε2 � r0, 0s, ε3 � r0.63589, 1s, and
ε4 � r�1,�1s. Hence, Dmax is projected to

r�1, 3s�r0, 0s�r0.019872, 0.03125s�r�0.03125,�0.03125s.

Hence, we can conclude that the input with yf � 0 and
yr � �0.03125 will cause the maximum RE.

5.2.3 More Ticks for more Sensitive Noise Symbols

We need a strategy to setting ticks for each initial ranges
in input domain. A bad strategy of setting ticks will cre-
ate several test cases which cause similar REs and all of
them lie within RE threshold bound. Testing over these
test cases are not needed.

Analysis result r̂ shows the effects of noise symbols
to the REs. A larger coefficient of a noise symbol causes

stronger effect on the RE of the result. For example,
the variable corresponding to dominant noise symbol
will strongly affect REs, in other words, the changing
of this variable causes the changing of RE the most.
Therefore, setting more ticks on the initial range of this
variables can lead the test cases to various REs. Based
on this observation, our basic idea is, in input domains
Dmin, Dmax, the initial range of variables which are
predicated strongly affect REs will be set more ticks
than other initial ranges. The strategy of setting num-
ber of ticks is then depending on coefficients of noise
symbols in analysis result as follows:

Definition 34 Let r̂ � r0 �
°2m

i�0 εi be analysis result
of input domain D1 � ru1, v1s � � � � � ru2m, v2ms.

For σ ¡ 0, a tick frequency ti (wrt σ) for the input
interval rui, vis is

ti �

#
r| 2�ri|

σ s if ui   vi

1 if ui � vi

Here, rxs denotes the round up of x.

Example 23 For r̂ in Example 18 and Dmax in Exam-
ple 22, the tick frequency t1, t2, t3, and t4 wrt σ � 0.01
(of ε1, ε2, ε3, and ε4, respectively) are,

t1�r
2�0.123091

0.01 s � 25
t2�1
t3�r

2�0.09375
0.01 s � 19

t4�1

Thus, the number of test cases is 25� 1� 19� 1 � 475,
and the RE found by testing 475 test cases is 0.219720.

5.3 Refinement of Analysis by Narrowing Input
Domains

An analysis may report spurious counterexamples. For-
tunately, our RE analysis becomes more precise if an
input domain becomes narrower. There are two rea-
sons that make input domain decomposition reduces
the overapproximations:

– a smaller input domain is more likely to be deter-
ministic on conditional branches, and

– a smaller input domain is more likely makes EAI
arithmetic more precise.

Our “divide and conquer” strategy has two phases:

– Reduce an input domain D to Dmax and Dmin (Def-
inition 33)

– Divide the input ranges (in Dmax and Dmin) of the
most sensitive noise symbol εk into two ranges.



22

Definition 35 Let Dmax � rl1, h1s � . . . � rl2m, h2ms

be an input domain and εk be the most sensitive noise
symbol. Then:

– D1
max � Dmax|vk�rlk,

lk�hk
2 s

– D2
max � Dmax|vk�r

lk�hk
2 ,hks

where vk is the k-th element of D1
max (D2

max).
For Dmin, we also have a similar partition strategy.

The next round of the RE analysis will be performed
for input domains D1

max and D2
max. Our early experi-

ence shows that often one of analysis results of D1
max

and D2
max lie in the RE threshold bound. Thus this

simple strategy becomes quite effective.

Example 24 From Example 20, the most sensitive noise
symbol is ε1.
Form Example 22, the new input domain Dmax is

r�1, 3s�r0, 0s�r0.019872, 0.03125s�r�0.03125,�0.03125s

and ε1 is the most sensitive symbol (Example 20).
Hence, we will divide the initial range of v1 (r�1, 3s)

into two new subranges r�1, 1s and r1, 3s and we get:

D1
max�Dmax|v1�r�1,1s

�r�1, 1s � r0, 0s � r0.019872, 0.03125s�
r�0.03125,�0.03125s

D2
max�Dmax|v1�r1,3s

�r1, 3s � r0, 0s � r0.019872, 0.03125s�
r�0.03125,�0.03125s

RE analyses on two domains D1
max and D2

max report
that:

– the REs of all input in D1
max lie in r�0.22, 0.22s

– the REs of all input in D2
max lie in r�0.25, 0.25s

Hence, we can conclude the REs of all input in Dmax

lie in RE threshold bound r�0.26, 0.26s.
Similarly, we get the REs of all input in Dmin also

lie in the RE threshold bound, and we can conclude the
program is “safe”. Note that, before decomposition, it
was r�0.28, 0.28s (Example 18), which exceeds the RE
threshold bound (Fig. 10). If we reduce RE threshold
bound θ in 0.219720   θ   0.22, both D1

max and D2
max

are not enough. In such a case, we will investigate sub-
domain which has larger RE found testing first in the
later rounds.

Combining Analysis and Testing Algorithm
Algorithm 5.3 shows the algorithm combining the

analysis and testing. Function analyzepPfl, Dq analyzes
the program Pfl with input domain D, and return the
overapproximate RE in EAI form r̂. Function reduceMaxpr̂, Dq
reduce domain D to Dmax. Function reduceMinpr̂, Dq

-0.26 0.260 rstr

-0.26 0.260 rstr

-0.26 0.260
rstr

Not safe!

Safe!

1
maxD

2
maxD

maxD

Fig. 10 Effects of decomposition of Dmax to D1
max, D2

max

reduce domain D to Dmin. Function gentestpD, r̂q gen-
erate a set of test cases T of domain D using analysis
result r̂. Function testpPfl, Pfx, tq executes both two
programs Pfl, Pfx with test case t and return the differ-
ence between result of these two program, called set of
test results DR. Function devidepD, r̂q divides domain
D into two new subdomains D1, D2 based on analysis
result r̂.

Input: Pfl, Pfx, initial ranges of variables, RE threshold
θ

Output: Return “safe” or counterexample or unknown

Initial list of subdomains LD � rDs, a set of test data

T � H, a set of RE DR � H;

while lengthpLDq   10 do
pop one element D from LD;

r̂ � analyzepPfl, Dq;
if pr̂ � r�θ, θsq then

continue ;

end

Dmax = reduceMaxpr̂, Dq;
Dmin=reduceMinpr̂, Dq;
push Dmin into LD;
rmax � maxt|testpPfl, Pfx, tq||t P T u;
Let tmax P T such that rmax � testpPfl, Pfx, tmaxq ;
if prmax ¡ θq then

return counterexample tmax;

end

tD1, D2u � dividepDmax, r̂q;
if tmax P D1 then

push D2 into LD;
push D1 into LD;

else

push D1 into LD;

push D2 into LD;

end

end
return unknown;

Algorithm 1: Combining analysis and testing
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5.4 Implementation and Experiments

CANAT implementation

CIL lib

RE analyzer

Decompose
domain

Generate  test

RE Tester

Counterexamples

C program,
Fixed point format, 
Input ranges, and
RE threshold θ

Analysis phase Testing phase

Pflt

 

and
input domain

The best 
test case 

Test data

Su
bd

om
ain

ch
oic

e

Safe

EAI lib Convert Fxp

Pflt

 

and Pfxp

Reduce range

Fig. 11 CANAT system

Fig. 11 shows the construction of CANAT. CANAT
uses three external tools:

– CIL library 5 as a preprocessor,
– Weighted PDS library 6 as a backend weighted model

checking engine, and
– CANA [44] as an RE analyzer.

CANAT has 4 main modules as follows:

1. Reduce range module clarify: (1) the subdomains of
input domain that contain maximum (or minimum)
REs, (2) the choice of ticks for testing generation.

2. Decompose domain module divides the reduced do-
main (e.g., Dmax,Dmin) into two subdomains.

3. Generate Test module generates set of test data T
based on information obtained from Reduce range
module.

4. RE Tester module automatically generates two pro-
grams corresponding to input C program, one uses
fixed-point arithmetic, while the other uses floating-
point arithmetic. Then, these two programs are ex-
ecuted with the set of test data T . The testing REs
are the differences between the results of these two
programs.

5 http://hal.cs.berkeley.edu/cil/
6 http://www.fmi.uni-stuttgart.de/szs/tools/wpds/

Experimental results

Table 4 shows the results of checking 4 programs (on
PC with Intel(R) Xeon(TM)CPU 3.60GHz, 3.37Gb of
memory). The first column shows the names of 4 pro-
grams.

1. P2 from Fig. 1: We set the initial range r�1, 3s �
r�10, 10s, fp P t7, 8, 9, 10u, and θ P t0.001�0.002i |
0 ¤ i ¤ 9u.

2. P5 that computes P5pxq � 1�x�3x2�2x3�x4�

5x5: We set the initial range r0, 1s, fp P t7, 8, 9, 10u,
and θ P t0.001� 0.01i | 0 ¤ i ¤ 9u.

3. Sine that computes the sine function using Taylor
expansion up to degree 21: We set the initial range
r0, 1s, fp P t7, 8, 9, 10u, and θ P t0.001�0.005i | 0 ¤
i ¤ 9u.

4. pMpeg that consists of one 8 � 8 loop taken from
the mpeg4 decoder reference algorithm: We set the
initial range r0, 30s, fp P t7, 8, 9, 10u, and θ P t0.001�
0.05i | 0 ¤ i ¤ 9u.

We compare experimental results by

1. ORE analysis by CANA (CANA) followed by Ran-
domly generated testing (Random test), and

2. Counter example guided narrowing loop by repeat-
ing ORE analyes (CANAT anmalysis) and refined
testing (CANAT test).

Both try 40 settings (i.e., different numbers of digits in
fixed-point numbers, different RE thresholds) for each
program. For fair comparison, we make the total num-
bers of test cases to be the same for each setting; Ran-
dom test generates 200 test cases, and (CANAT test)
generates 20 test cases for each refinement loop, which
is repeated 10 times.

%Checked columns show that how many percent-
age (among 40 settings) is detected either to be safe or
ORE violation. Although the experiment remains a toy,
it shows clear improvement of testing and analysis.

6 Related Work

The ORE problems are one of the central issues in the
numerical analysis [17,13]. There are lots of works on
mathemarical reasoning to estimate OREs [17,16], and
there is a well-known methodology for the precise ad-
dition of floating numbers, which cancells the effect
of REs [27]. It is extended to the precise multiplica-
tion [46], and recently verified numerical computation
is evolving.

Our focus is more on static detections of OREs of
programs, and we omit huge references of these areas,
which are beyond scope of the paper.



24

Input CANA Random Time %Checked CANAT CANAT CANAT %Checked

program test (s) analysis test time(s) of CANAT

P2 15 11 7 65.00% 20 18 13 95.00%

P5 9 15 14 60.00% 12 19 24 77.50%
Sine 19 7 37 65.00% 21 8 81 72.50%
pMpeg 11 11 65 55.00% 11 19 121 75.00%

Table 4 Experimental results of CANAT

Range representations of real numbers
Due to REs, we need to evaluate values of real num-

bers by some representation of ranges. They are classi-
cally classified into:

– Interval, which is the Cartesian product of one di-
mensional intervals [2,40].

– Octagon, which is surrounded by either vertical, hor-
izontal, or diagonal lines [39].

– Polyhedra, which is represented as the conjunction
of linear inequalities [8]. Recently, its refinement
SubPolyhedra was proposed [29] by reducing deduc-
tion rules among linear inequalities, yet preserving
expressiveness.

We are more focus on intervals, and we call a range
described by a pair of the lowest and the highest value
by a classical interval (CI). CI is generalized to allow
swapping of boundaries [18].

By introducing noise symbols, which preserve de-
pendency of uncertainty, Affine interval (AI) has been
proposed [54,55]. Later, we will see how AI is applied
as overapproximation for ORE analyses.

Extended Affine interval (EAI) has proposed for un-
der approximation, based on the mean value theorem
and Kaucher arithmetic [21]. EAI replaces real coeffi-
cients of AI with CI coefficients. We apply this idea for
overapproximation of ORE analysis.

ORE analysis
For a static analysis, we need a concrete semantics.

We obey the semantics of propagation of OREs to [32].
There are three kinds of OREs, caused by:

– real numbers to floating-point numbers conversion,
– real numbers to fixed-point numbers conversion, and
– floating-point numbers to fixed-point numbers con-

version.

ORE analysis are mainly investigated for the first
and the third.

For the real numbers to floating-point numbers con-
version, ORE analysis adapt AI [20,33] (which intro-
duced widening operators to handle loops), except that
the octagon abstract domain is used in [38].

They are implemented and showed experimental re-
sults. FLUCTUAT is presented in [20] and [38] showed
a case study on an embedded avionics software. The

technique of [33] is further applied on TMS320 C3X
assembler programs [34].

These ORE analyses are overapproximation, and
easily cause false positives. An ORE analysis with un-
der approximation is proposed based on the mean value
theorem and Kaucher arithmetic [21], to sandwich OREs
from both sides. However, strictly speaking, this under
approximation is for real number variables rather than
floating-point number variables.

The floating-point numbers to fixed-point numbers
conversion typically appears in hard-wired algorithms
and/or embedded systems. Apart from difficulties in
hardware encoding difficulties [3,5,25,26,37,51,52], there
are strong demand to solve ORE problems.

For the floating-point numbers to fixed-point num-
bers conversion, Fang, et.al. proposed an ORE analy-
sis based on AI, intended for DSP applications [9–11].
We are facing on the same problem, but with differ-
ent intervals, EAI. In our implementation, we adapted
a sophisticated weighted model checking, whereas they
adapt direct bit-vector encoding. For scalability, they
also applied probabilistic reduction of the search space.

Thanks to the problem nature, we can examine OREs
by testing, since we can compute both floating-point
numbers and fixed-point numbers. [56] showed a such
testing tool.

We further combined an ORE analysis and test-
ing by a counter example guided narrowing approach,
which refines the focus of testing and avoid false posi-
tives in an early stage.

Numerical Constraint Solvers
Recently, several tools have been developed as vari-

ations of SMT to solve non-linear numerical constrains.
For instance,

– iSAT [12], which evaluates non-linear operations to
interval constraints by overfapproximation.

– minismt [57], which covers specific irrationals, such
as rational numbers and roots of small integers. They
are symbolically represented and its bounded search
is encoded as CNF.

– a tool for Simulink/Stateflow models [24], which ap-
plied a variation of polyhedra, called the bounded
vertex representation for under-approximation.
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Ganai and Ivancic [14] introduced a new method to
face with decision problems involving non-linear con-
straints on bounded integers. Each nonlinear operation
is encoded into a Boolean combination of linear arith-
metic constraints based on CORDIC algorithm. Then,
the linearized formula will be input of a DPLL-style In-
terval Search Engine that explores various combination
of interval bounds using a SMT solver.

To solve an interval constraint, they divide the in-
put ranges to smaller ranges, which is similar to ours.
Adding to the difference of target domains (i.e., bounded
integers and floating/fixed-point numbers), the differ-
ences are, (1) we use EAI instead of CI, (2) combination
with testing, and (3) weighted model checking instead
of (SMT) solver.

To solve dataflow equations over infinite domains,
such as numerical constraints (mostly on integers), sev-
eral algorithms are proposed in the context of weighted
pushdown model checking [19,15,30,41].

The library Apron of numerical abstract domains is
also freely available [23].

Refining analyses and testing
As general setting of static detection, recently the

refinement loop of analyses and testing is extensively
investigated.

Counterexample Guided Abstraction-refinement (CE-
GAR) [6] is widely applied methodology, in which the
initial abstract model typically nondeterministic con-
trol structures for conditional branches. When (possible
spurious) counter examples are found, symbolic tech-
niques refine the model by hooking more deterministic
behavior.

Proofs from Tests [4] presented an algorithm DASH
to check if a program satisfies a safety property. It uses
only test generation, and it refines and maintains a
sound program abstraction as a consequence of failed
test generation operations. This enables us a light-weight
refinement loop with neither any extra theorem prover
calls nor any global may-alias information.

Our methodology of counter example guided nar-
rowing tries to refine the focus of testing based on ORE
analysis results. Fortunately, by the nature of EAI, ORE
analysis results tell us which input parameter is domi-
nant for REs. By using this information, we can effec-
tively focus on the most problematic point.

7 Conclusion

Motivated by automatically detecting OREs of the hard-
wired conversion of DSP encoders/decoders, this paper
proposed techniques for automatic detection of overflow

and roundoff errors, caused by the floating-point num-
ber to fixed-point number conversion. Our contribution
is summarized as follows.

– An extended affine interval (EAI) is newly proposed
to overapproximate overflow and roundoff errors.
EAI has two main advantages over current meth-
ods: EAI is more precise than CI and EAI forms are
more compact than AI forms.

– An ORE analysis method based on weighted model
checking is proposed and implemented as CANA.

– The counterexample-guided narrowing, in which an
analysis and testing refine each other, is applied to
the RE problem and implemented as CANAT. Thus,
the result will be more precise than either testing or
static analysis alone.

We also performed preliminary experiments of CANA
and CANAT, which shows optimistic results.

For future works, one obstacle is the scalability of
CANA and CANAT. We are optimistic since DSP al-
gorithms (e.g., digital video compression [47]) are of-
ten compositional. They typically consist of sequences
of computations with fixed-length arrays and bounded
loops. Therefore, we can divide the algorithm to small
fragments and check each separately.

Second, widening operator design. Currently, we did
not introduce widening operators, but first focus on pre-
cision of ORE detection. (For instance, the widening
operator [20] leads to inevitably lose precision a lot.)
Its drawback is that the class of target programs has
strong limitation, though it seems enough for the core
part of DSP encoders/decoders.

We are also interested in an automatic correction
of a program to improve with less OREs. For instance,
in [36], there are several techniques to automatically
improve numerical precision, such as:

– swapping the order of arithmetic operations,
– explicit shifting of the order of magnitude, and
– symbolic executions.

Our ORE analyzer, CANA, can generate the informa-
tion about range values of fixed-point numbers and
their RE at each point of the program. There infor-
mation is helpful information to automatic source code
correction.
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