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Abstract ���

We analyzed the bioactive compounds in Panax ginseng C.A. Meyer by using ���

nanoparticle-assisted laser desorption/ionization (nano-PALDI) mass spectrometry (MS). �	�

To this end, we prepared manganese oxide nanoparticles (d = 5.4 nm) and developed a �
�

nano-PALDI MS method to analyze the standard ginsenosides and identify these ���

ginsenosides in an extract of Panax ginseng. The nanoparticles served as an ���

ionization-assisting reagent in MS. The mass spectra did not show any background ���

interference in the low-m/z range. Our pilot study showed that the nanoparticles could ���

ionize the standard ginsenosides and also respective lipid and ginsenosides�in the extract ���

without the aid of chemical and liquid matrices used in conventional MS methods. ���

Analysis of the post-source decay spectra obtained using nano-PALDI MS will yield ���

information regarding the chemical structure of the analyte.  ���
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Introduction �	�

Herbal products have been used in traditional Chinese medicine (TCM) for a �
�

long time and have recently gained attention as complementary and alternative ���

medicines (Hijikata, Miyamae, Takatsu & Sentoh, 2007; Sun et al., 2009; Xu & Xu, ���

2009). Panax ginseng C.A. Meyer is one of the most famous oriental herbs used in ���

TCM, and it contains many bioactive compounds, including triterpene glycosides called ���

ginsenosides. Although ginsenosides have been thought to be the main bioactive ���

components in Panax ginseng (Metori, Furutsu & Takahashi, 1997; Newman et al., ���

1992; Wu et al., 1992), their role in the efficacy of Panax ginseng has not been ���

completely elucidated. Recent articles have reported that multiple components in Panax ���

ginseng, such as lipids, polysaccharides, peptides, and amino acids act synergistically �	�

(Spelman, Burns, Nichols, Winters, Ottersberg & Tenborg, 2006; Zeng, Liang, Jiang, �
�

Chau & Wang, 2008). Therefore, to elucidate the efficacy of this herb, simultaneous ���

analysis of the secondary-metabolite complexes of relatively small molecules like ���

ginsenosides is very important.  ���

Mass spectrometry (MS) is a powerful technique used to analyze metabolites in ���

biological samples and tissues. It can be used to directly and simultaneously detect ���

multiple components in crude samples such as TCM products. Although MS combined ���
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with liquid chromatography (LC) and gas chromatography (GC) can be used to analyze ���

ginsenosides (Cui, Song, Liu & Liu, 2001; Fuzzati, Gabetta, Jayakar, Pace & Peterlongo, ���

1999; Li, Mazza, Cottrell & Gao, 1996; Tawab, Bahr, Karas, Wurglics & �	�

Schubert-Zsilavecz, 2003; Wang et al., 2008), these techniques are time consuming �
�

(analysis time, ~30 min.). Matrix-assisted laser desorption/ionization (MALDI) MS is a ���

soft and sensitive ionization technique that uses chemical matrices such as ���

4-hydroxy-�-cinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), and sinapic ���

acid (SA) to facilitate ionization of the analyte. However, one of the main problems of ���

MALDI-MS is the overlapping of the matrix peaks and fragment peaks in the low-mass ���

region (m/z ~ 800). These shortcomings significantly complicate the application of these ���

techniques in the multiple-component analysis of samples such as TCM products and ���

their metabolites. It is our approach that these shortcomings can be overcome by using ���

advanced analytical techniques developed through interdisciplinary collaboration.         �	�

Nanomaterials have shown great potential in facilitating the development of new �
�

technologies (Chithrani & Chan, 2007; Moritake et al., 2007; Taira, Hatanaka, Moritake, ���

Kai, Ichiyanagi & Setou, 2007). Nanoparticles (NPs) have been used in the ���

development of solar cells (Kitada, Kikuchi, Ohono, Aramaki & Maenosono, 2009), ���

sensors (Ai, Zhang & Lu, 2009; Kalogianni, Koraki, Christopoulos & Ioannou, 2006), ���
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catalysts (Mitsudome, Noujima, Mizugaki, Jitsukawa & Kaneda, 2009), drug delivery ���

systems (Moritake et al., 2007), and imaging techniques (Taira, Sugiura, Moritake, ���

Shimma, Ichiyanagi & Setou, 2008). However, there have been very few studies on the ���

use of NPs in food chemistry (Ravindranath, Mauer, Deb-Roy & Irudayaraj, 2009; Yang, ���

Kostov, Bruck & Rasooly, 2009). Previous studies used photospectroscopy with NPs to �	�

detect analytes; however, this technique afforded limited detection of the multiple �
�

components in food. In our previous reports, to obtain ionization-assisting agents that ���

could be used to perform nanoparticle-assisted laser desorption/ionization ���

(nano-PALDI) MS without significantly increasing the background signals, we prepared ���

metal oxide nanoparticles surrounded by amorphous SiO2 and an amino group (Figure 1 ���

c and d) (Moritake, Taira, Sugiura, Setou & Ichiyanagi, 2009; Taira, Kitajima, ���

Katayanahi, Ichiishi & Ichiyanagi, 2009; Taira et al., 2008). Here, we investigated the ���

suitability of nano-PALDI MS for analyzing lipid and ginsenosides in Panax ginseng ���

extracts. We assessed the ionization of several standard ginsenosides by using ���

nano-PALDI MS as an analysis marker for crude samples. Further, we used the �	�

nano-PALDI MS technique to separate and evaluate the original ingredients in the �
�

complicated MS spectrum for ginseng extract.  	��

Method 	��
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Materials 	��

Standard ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1 with purity >98 %, >94%, 	��

>99%, >99%, >99%, >99%, and >99%, respectively) were purchased from Funakoshi 	��

(Tokyo, Japan). The extract was obtained from tissue-cultured Panax ginseng (TCPG) 	��

(Nitto Denko, Osaka, Japan). The TCPG powder was extracted using hot water (80°C) 	��

for 2 h, dried, and re-extracted with 70% (v/v) methanol. The extract thus obtained was 	��

applied to a small column (Sep-Pak cartridge C18 and NH2; Waters, Milford, USA) to 		�

concentrate the ginsenosides. 	
�

 
��

Preparation of nanoparticles  
��

Manganese oxide-based nanoparticles were prepared by mixing aqueous solutions 
��

of MnCl2·4H2O (5 ml, 100 mM; WAKO Pure Chemicals, Japan) and 
��

3-aminopropyltriethoxysilane (5 ml; γ-APTES; Shinetsu, Kagaku, Japan). After stirring 
��

at room temperature for 1 h, the resulting precipitate was washed several times with 
��

ultrapure water and dried at 55�°C in an incubator. The dried samples were pulverized in 
��

a porcelain mortar. The morphology and diameter distribution of the nanoparticles were 
��

investigated using a transmission electron microscope (TEM; H-7100; Hitachi, Japan). 
	�

 

�
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Nano-PALDI mass spectrometry ����

The utility of the nanoparticles as ionization-assisting materials in mass spectrometry ����

was confirmed in a MALDI-TOF-type instrument (TOF = time of flight; ����

Voyager-DE-RP; Applied Biosystems, Germany) by using a N2 laser with an emission ����

wavelength of 337 nm. Samples of standard ginsenosides samples such as G-Rb1, G-Rb2, ����

G-Rc, G-Rd, G-Re, G-Rf, and G-Rg1 were chosen for the analysis. The nanoparticles (1 ����

mg) were dispersed in 1 mL of methanol or in 1 mL of a 10 mM methanolic solution of ����

sodium acetate. Each sample was independently dissolved in distilled water at a ����

concentration of 100 pmol/µL. Each analyte solution (1 �L) was pipetted on to the ��	�

surface of the nanoparticle-coated target plates. The peptides used for external ��
�

calibration were deposited on the plate to minimize the mass shift. The analyte surface ����

was irradiated with 100 laser shots in the positive mode.  ����

 ����

Results and discussion ����

Ability of the nanoparticles to assist ionization of pure sample analytes ����

  We used the standard ginsenosides G-Rb1 [exact mass (Me): 1108.6], G-Rb2 (Me: ����

1078.6), G-Rc (Me: 1078.6), G-Rd (Me: 947.2), G-Re (Me: 947.2), G-Rf (Me: 800.5), ����

and G-Rg1 (Me: 800.5) to evaluate the usefulness of employing nanoparticles as laser ����
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desorption/ionization materials. The mass spectra of the standard ginsenosides were ��	�

obtained in the presence of nanoparticles with sodium ions, thereby ensuring that the ��
�

precursor ions were obtained in the form of [M + Na]+ ions (Taira et al. 2008). In this ����

study, the standard ginsenosides formed sodium-adduct ions and yielded high-intensity ����

signals. Further, to characterize a variety of ginsenosides, we performed post-source ����

decay (PSD) MS for structural analysis.  ����

For G-Rb1, we obtained a precursor [M + Na]+ ion at m/z 1132.1. This ion yielded ����

fragment ions [z1 + Na]+ (at m/z 789.3), which corresponded to the combination of the ����

agricone moiety and disaccharide moiety of R1 or R2, and [y1 + Na]+ (at m/z 364.7), ����

which corresponded to the disaccharide moiety of R1 or R2 (Figure 2a).  ����

Similarly, the PSD spectra of G-Rb2 and Rc showed a precursor ion at m/z 1102.1 and ��	�

the 2 derivative ions, namely, [y1 + Na]+ at m/z 335.2, which corresponded to the ��
�

disaccharide moiety of R1, and [z1 + Na]+ at m/z 789.8 (Figure 2b) and 789.6 (Figure 2c), ����

which corresponded to the combination of the agricone and disaccharide moieties of R2.  ����

For G-Rd, we obtained an [M + Na]+ ion at m/z 970.1 and 3 fragment ions at m/z ����

789.3, 365.2, and 203.1. The fragment ion [z1 + Na]+ at m/z 789.3 corresponds to an R1 ����

molecule without the glucose moiety. The m/z values for the smaller fragment ions [y2 ����

+ Na]+ and [y1 + Na]+ (365.2 and 203.1, respectively) were consistent with the ����
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molecular masses of sodium-adducted disaccharide and glucose moieties from R2 and R1, ����

respectively (Figure 2d). ����

For G-Re (m/z of the precursor ion, 970.1), we obtained 2 fragment ions [z1 + Na]+ ��	�

and [y1 + Na]+ at m/z values 789.2 and 203.1, respectively. The mass difference ��
�

between the precursor ion and the fragment ion at m/z 789.2 was 180.9, which indicated ����

the loss of a glucose molecule. The fragment ion at m/z 203.1 indicated a ����

sodium-adducted glucose moiety from R1 (Figure 2e). The same exact mass of Rf and ����

Rg1 showed difference in the PSD spectra. The PSD of G-Rf showed only 1 fragment ����

ion [z1 + Na]+ at m/z 365.2, which corresponded to the disaccharide moiety from R3 ����

(Figure 2f). In contrast, the PSD of G-Rg1 showed 2 fragment ions, namely, [z1 + Na]+ ����

and [y1 + Na]+ at m/z values 643.8 and 202.9, respectively, which corresponded to the ����

agricone and glucose moieties of R1 or R3 and the divided glucose moiety from R1 or R3, ����

respectively (Figure 2g). We distinguished the molecules with the same exact mass on ��	�

the basis of the differences in the composition of disaccharides (G-Rf) and ��
�

monosaccharides (G-Rg1). These nano-PALDI PSD fragmentation patterns were in ����

good agreement with the MALDI PSD fragmentation patterns of standard ginsenosides ����

(data not shown). This finding indicated that our technique could also yield accurate ����

results under mild ionization conditions without unnecessary degradation of the ����



ACCEPTED MANUSCRIPT 

bioactive molecule. These results could be utilized for analyzing the index of raw ����

sample like plant extracts.  ����

We observed a number of high-intensity signals for ginsenosides in the extract of ����

Panax ginseng t mass spectra obtained with nanoparticles in the absence (Figure 3a) or ����

presence (Figure 3b) of sodium ions. Although there were few MS signals with ��	�

intensity greater than m/z 600, we could confirm the signals that corresponded to ��
�

ginsenosides. In the case of the G-Rb1 ions (m/z 1131.6 [M + Na]+; 1147.6 [M + K]+), ����

both sodium- and potassium-adduct ions were observed in the absence of sodium ����

acetate (Figure 3a inset), because the extract originally included salt ions, especially ����

sodium and potassium salts. In the MS spectrum, such salt ions preferentially appeared ����

in their adducted form, rather than the protonated form. However, the related signals ����

showed a convergence only in the case of the sodium-adducted form (m/z 1131.2). ����

Interestingly, the correlation between the signals of the sodium-adducted form of ����

G-Rg1 (m/z 823.1) and G-Rb2 or Rc (m/z 1102.1) appeared only in the presence of ����

sodium acetate (10 mM) (Figure 3b inset). In addition, the background noise in the ��	�

presence of sodium acetate (Figure 3b inset), was lower than in the absence of sodium ��
�

acetate (Figure 3a inset). The sodium-adducted forms of G-Rg1 and G-Rb2 or Rc were ����

more easily ionized than other ion-adducted forms, such as the proton- or ����
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potassium-adducted form. This result indicated that the ginsenosides had optimal ����

ionization forms. Moreover, in the low molecular range (m/z 200–400), the signal ����

intensities in the presence of sodium ions (Figure 3b), were lower than that in the ����

absence of these ions (Figure 3a); thus, the signals in this region indicated a ����

preferential ionization to the protonated form. This technique can be used for accurate ����

and simple analysis of complex mixtures such as foods and nutrients; however, the ����

differences in the ionization characters of these samples must be carefully considered ��	�

while performing these analyses. ��
�

To perform structural analysis using post-source decay (PSD) nano-PALDI mass �	��

spectrometry, we deduced that the 4 signals at m/z 551.5, 823.1, 1102.4, and 1132.1 �	��

were obtained from the extract of Panax ginseng in the presence of sodium ion and �	��

determined that these signals originated from lysophosphatidylcholine (LPC)-(1-acyl �	��

20:1) ([M + H]+ ion), G-Rg1 ([M + Na]+ ion), G-Rb2 or G-Rc ([M + Na]+ ion), and �	��

G-Rb1 ([M + Na]+ ion). For the precursor [M + H]+ ion of LPC-(1-acyl 20:1) at m/z �	��

551.1, the typical fragment ions [y1]+ and [z1 + H]+ were detected at m/z 85.9 and 298.5, �	��

respectively; this finding provided information on the trimethylamine moiety and the �	��

fatty acid (1-acyl 20:1) in the sequence. The PSD fragment patterns indicated that the �		�

promptly obtained lipid fragment ions did not originate from the observed molecular �	
�
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ions, because the prompt fragmentation occurred immediately after the formation of �
��

highly unstable protonated precursor ions (Figure 4a) (Al-Saad, Zabrouskov, Siems, �
��

Knowles, Hannan & Hill, 2003).  �
��

Similarly, the PSD spectra of ginsenosides showed fragment ions similar to those of �
��

the standard ginsenosides G-Rg1, G-Rb2 or G-Rc, and G-Rb1. The PSD spectrum of �
��

G-Rg1 showed 2 derivative ions that corresponded to the glucose ions (m/z 202.9; [M + �
��

Na]+) of R1 or R2 and the agricone moieties (m/z 643.8; [M + Na]+) (Figure 4b).  �
��

We detected a precursor ion at m/z 1102.1 and 2 derivative sodium-adduct ions at m/z �
��

336.3 and m/z 789.0, which corresponded to the disaccharide moiety of R1 or R3 and the �
	�

combination of the disaccharide and agricone moieties of R1 or R3, respectively. The �

�

difference between G-Rb2 and G-Rc can be attributed to the arabinose conformation ����

(arabinopyranose for G-Rb2 and arabinofuranose for G-Rc) within the disaccharide ����

moiety of R2; this conformation can complicate the distinction between G-Rb2 and G-Rc ����

using the PSD MS technique (Figure 4c). The corresponding PSD spectrum of G-Rb1 is ����

shown in Figure 4d. We detected an [M + Na]+ precursor ion at m/z 1132.1 and 2 ����

fragment ions, namely, [M + Na]+ at m/z 788.4 and [M + Na]+ at m/z 365.0. These ����

fragment ions could be considered as the z1 and y1 ions, which are characteristic of the ����

cleavage of the glycosidic bonds at R1 or R2.  ����
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These fragment patterns were in good agreement with the PSD spectra of standard ��	�

ginsenosides (Figure 2 a, b, c, and g). We could identify the bioactive components such ��
�

as ginsenosides and lipids from the extract by using the nano-PALDI MS technique.  ����

 ����

4. Conclusions ����

Nano-PALDI MS allowed ionization and background-free analysis of the small ����

molecules in a Panax ginseng extract. The nanoparticles could ionize the standard ����

ginsenosides in the presence of external sodium ions. The obtained signals corresponded ����

to those of sodium-adduct ions. Although conventional matrices do not ionize the ����

analyte in the presence of external salt ions, this technique can facilitate the analysis of ����

crude samples like plant extracts. Using this technique, we detected lipids and ��	�

ginsenosides in the Panax ginseng extract and identified the optimal ion forms of these ��
�

compounds. We mainly focused on using nano-PALDI MS to investigate the role of ����

ginsenosides as the active components of Panax ginseng. However, the contributions of ����

other compounds, such as saccharides, peptides, and proteins, should be investigated. ����

The nano-PALDI MS technique is a good substitute for MALDI and has great potential ����

for rapid screening of bioactive ingredients such as ginsenosides in plant extracts; ����

however, further studies are required to establish their traceability in foods and nutrient ����
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product. ����

In addition, the nanoparticles may be utilized in the mass spectrometric analyses of ����

biomedical tissues (Taira et al., 2008) and in cellular analysis (Moritake et al., 2009). ��	�

The nanoparticle-based approach used in this study can be employed for simple and ��
�

efficient identification of various ingredients of foods and herbal products used in TCM.  ����

 ����
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 ��
�

Figure legends ����

Figure 1 ����

A schematic illustration of nanoparticle-assisted laser desorption/ionization ����

(nano-PALDI) mass spectrometry (a). Transmission electron microscopy (TEM) image ����

of the nanoparticles (b). When reserpine (100 pmol) was used as a model drug with the ����

nanoparticles, the nano-PALDI mass spectra (c) did not show any background ����
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interference in the low-mass region. In contrast, the mass spectra of reserpine with ����

4-hydroxy-�-cinnamic acid (CHCA) showed �
�������� noise in the low-mass region ����

(d). ��	�

 ��
�

Figure 2 ����

The post-source decay nanoparticle-assisted laser desorption/ionization (nano-PALDI) ����

mass spectra of the standard ginsenosides G-Rb1 (a), G-Rb2 (b), G-Rc (c), G-Rd (d), ����

G-Re (e), G-Rf (f), and G-Rg1 (g). The abbreviations for the sugar moieties are glc ����

(β-D-glucose), arap (α-L-arabinose; pyranose), araf (α-L-arabinose; furanose), and rha ����

(α-L-rhamnose). ����

 ����

Figure 3 ����

Mass spectra of the extract with nanoparticles (NPs) alone (a) and with NPs in the ��	�

presence of sodium acetate (NaAc: 10 mM) (b). The superimposed spectra of ��
�

tissue-cultured Panax ginseng (TCPG) extract with NPs in the absence (upper) and ����

presence of (lower) additional NaAc.  ����

 ����

Figure 4 ����
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The post-source decay nanoparticle-assisted laser desorption/ionization (nano-PALDI) ����

mass spectra of lysophosphatidylcholine (LPC)-(1-acyl 20:1) (a), ginsenoside (G)-Rg1 ����

(b), G-Rb2 or G-Rc (c), and (G)-Rb1 (d). The abbreviations for the sugar moieties are the ����

same as those used in Figure 2. ����
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Figure 4 Taira et al.




