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A New Class of RC4 Colliding Key Pairs With
Greater Hamming Distance

Jiageng Chen ? and Atsuko Miyaji??

Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa
923-1292, Japan

{jg-chen, miyaji}@jaist.ac.jp

Abstract. In this paper, we discovered a new class of colliding key pairs
of RC4, namely, two different secret keys generate the same internal
state after RC4’s key scheduling algorithm. This is to our knowledge the
first discovery of RC4 colliding keys with hamming distance greater than
one, that is, the colliding key pairs we found can differ from each other at
three different positions, and the value difference between these positions
needs not be fixed. We analyzed the transition pattern and evaluated the
probability of the existence of this new class of colliding key pairs. Our
result shows that RC4 key collision could be achieved by two keys with
greater hamming distance than the ones found in [1] and [2]. And this
newly discovered class of colliding key pairs reveals the weakness that
RC4’s key scheduling algorithm could generate even more colliding keys.
We also proposed an algorithm for searching colliding key pairs within
this new class. Some concrete colliding key pairs are demonstrated in
this paper, among which 55-byte colliding key pair is the shortest one
we found by using our algorithm within one hour time.

1 Introduction

The RC4 stream cipher is one of the most famous ciphers widely used in real
world applications such as Microsoft Office, Secure Socket Layer (SSL), Wired
Equivalent Privacy (WEP), etc. Due to its popularity and simplicity, RC4 has
become a hot cryptanalysis target since its specification was made public on the
Internet in 1994 [3]. Various general weaknesses of RC4 have been discovered in
some previous works including [4–6], etc. Another popular cryptanalysis area for
RC4 is in the WEP environment. Such works include [7–10], etc.

Our paper focuses on RC4 key collisions. It describes the existence of secret
key pairs that generate the same initial states after key scheduling algorithm.
The study of “colliding keys” of RC4 can be dated back to 2000. It was pointed
out by Grosul and Wallach [1] that RC4 has related-key pairs that generate
hundreds of substantially similar output bytes when the key size is close to the
full 256 bytes. In Matsui’s paper [2], much stronger key collisions with shorter key
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size were explored. A state transition sequence of the key scheduling algorithm
for a related key pair of an arbitrary fixed length which can lead to key collisions
was presented.

In both [1] and [2], the colliding keys found only have hamming distance of
1. In this paper, we demonstrate another class of colliding key pairs. Differing
from [1] and [2], we showed for the first time that there exist colliding key pairs
whose hamming distance is 3, which is greater than 1. That is, two colliding
keys we found could differ at three positions and the value differences at these
three different positions do not need to be fixed. Our result shows that there
exist many more colliding key pairs than previously expected. We estimated the
number of colliding key pairs within this newly found class and also we proposed
a search algorithm which can be used to easily find such colliding key pairs.

Structure of the paper. In Section 2, we briefly describe the RC4 algorithm
followed by some previous works on RC4 key collision in Section 3. In Section 4,
we explain our new transition pattern which will lead to the collision. We give
probability evaluations in Section 5 and finally we describe an efficient colliding
key pair search algorithm. Some techniques needed for the probability analysis,
the total number of colliding key pairs we found and some concrete colliding key
examples are summarized in the Appendix.

2 Preparation

2.1 Description of RC4

The internal state of RC4 consists of a permutation S of the numbers 0, ..., N−1
and two indices i, j ∈ {0, ..., N −1}. The index i is determined and known to the
public, while j and permutation S remain secret. RC4 consists of two algorithms:
The Key Scheduling Algorithm (KSA) and the Pseudo Random Generator Al-
gorithm (PRGA). The KSA generates an initial state from a random key K of k
bytes as described in Algorithm 1. It starts with an array {0, 1, ..., N − 1} where
N = 256 by default. At the end, we obtain the initial state SN−1.
Once the initial state is created, it is used by PRGA to generate a keystream
of bytes which will be XORed with plaintext to generate ciphertext. PRGA is
described in Algorithm 2. In this paper, we focus only on KSA.

Algorithm 1. KSA
1: for i = 0 to N − 1 do
2: S[i]← i
3: end for
4: j ← 0
5: for i = 0 to N − 1 do
6: j ← j + S[i] + K[i mod l]
7: swap(S[i], S[j])
8: end for

Algorithm 2. PRGA
1: i← 0
2: j ← 0
3: loop
4: i← i + 1
5: j ← j + S[i]
6: swap(S[i], S[j])
7: keystream byte zi = S[S[i] + S[j]]
8: end loop



2.2 Previous Research on RC4 key collisions

Two important studies on RC4 key collisions are [1] and [2]. In [1], the authors
pointed out that for secret keys with lengths close to 256 bytes, it’s possible for
two keys to generate similar internal states after KSA and thus may generate
hundreds of similar bytes output during PRGA. Intuition in [1] comes from that
for two keys K1,K2, assume K1[i] = K2[i] except when i = t. When t is close to
255, internal state will be substantially similar. However, their discovery cannot
be strictly called key collision and their result only works for key length close to
256.

In [2], RC4 key collision for shorter key length was first explained and a 24-
byte key collision was found. The key pattern is almost same as in [1], namely,
two keys differ at only one byte position (K1[i] = K2[i] except when i = t)
and value difference is 1(K1[t] = K2[t] − 1). Under the above condition, [2] is
able to find a transition pattern that could lead to a total collision after KSA.
The intuition behind the transition pattern is that from the first time i touches
the different position t, the pattern ensures that there will always be only two
differences in the internal state as the key scheduling process goes on. And the
difference is absorbed when i touches t for the last time. Please refer to [2] for
the detailed description.

Our result shows that RC4 key collision can also be achieved even if the
hamming distance between two keys is greater than 1. Also, differing from [2],
our transition pattern is a self-absorbing type, which means that once the internal
states differences are generated due to the key differences, they will be absorbed
very quickly and the internal states returns to the same till i touches the next
key difference. We show this interesting pattern in the following section.

3 New transition pattern

3.1 Notations and intuitions

The following are the notations used in this paper.
K1,K2: Secret keys which satisfy K1[d] = K2[d]− t, K1[d + 1] = K2[d + 1] + t,

K1[d + t + 1] = K1[d + t + 1]− t. K1[i] = K2[i] for i 6= d, d + 1, d + t + 1.
S1,i, S2,i: S-boxes corresponding to K1(K2) at time i. When S1,i[p] = S2,i[p] for

some p, we use Si[p] to denote.
i, j1,i, j2,i: Internal state. j1,i(j2,i) corresponds to K1(K2) at time i. When

j1,i = j2,i, we use ji to denote.
d: Index of the first position where the values of the two secret keys differ

from each other.
t: The value difference between two keys at index d(t = K1[d]−K2[d]).
k: The length(bytes) of the secret key.
n: The number of times K1[d], ...,K1[d + t + 1](K2[d], ...,K2[d + t + 1])

appear during the KSA. n = b 256+k−1−d
k c

The colliding key pairs’ behavior is influenced by three parameters d, t, n. In or-
der to understand how a key pair with the relation described before can achieve



collision after KSA, we explain by illustrating three examples with different
d, t, n. In the simple case where n = 1 (different positions appear only once
during KSA), example 1 and 2 are given to show that collision can be achieved
by various d and t. Example 3 shows that in more complex cases where n > 1,
collisions are still possible. We analyze the key scheduling process for key pairs
with the above relation that can lead to collisions. We summarize the transition
pattern in the Table 1,2 and 3, which helps in tracking the internal state of
RC4 when i touches the different positions of the two keys. The internal state
part of each table tracks the information of i, j,K and S-BOX generated by the
two keys. Notice that the value of S-BOX denotes the state after the swap. The
“Difference” part of each table tells us the difference between two internal states
at time i.

3.2 Example 1 (d = 2, t = 2, n = 1(k = 256))

Table 1. d = 2, t = 2, n = 1(k = 256)

Internal State Difference

i K1[i]/K2[i] j1,i/j2,i 1 2 3 4 5 6

2 256− j1 2 * 2 3 4 5 * K1[2] = K2[2]− 2
256− j1 + 2 4 * 4 3 2 5 * j1,2 = j2,2 − 2, S1 6= S2

3 X + 2 X + 7 * 2 S[X + 7] 4 5 * K1[3] = K2[3] + 2
X X + 7 * 4 S[X + 7] 2 5 * j1,3 = j2,3, S1 6= S2

4 256−X − 7 4 * 2 S[X + 7] 4 5 * K1[4] = K2[4]
256−X − 7 2 * 2 S[X + 7] 4 5 * j1,4 = j2,4 + 2, S1 = S2

5 Y Y + 9 * 2 S[X + 7] 4 S[Y + 9] * K1[5] = K2[5]− 2
Y + 2 Y + 9 * 2 S[X + 7] 4 S[Y + 9] * j1,5 = j2,5, S1 = S2

Let’s demonstrate the case in which the key length is k = 256 byte, d = 2 and
t = 2. Our key pattern requires that K1[d] = K2[d]− t, K1[d+1] = K2[d+1]+ t,
K1[d + t + 1] = K1[d + t + 1] − t and all other parts of the key must be the
same. Now we describe how the new transition pattern works. First, before i
touches index d, in this example we assume j1(j2) does not touch d or d + 2.
When i = d, we require j1,2 = d(j1,2 = 2) and j2,2 = d + 2(j2,2 = 4). Since
j1,2 = j1 + 2 +K1[2] and j2,2 = j1 + 4 +K2[2] then according to the key pattern,
we know that K1[2] = 256 − j1 and K2[2] = 256 − j1 + 2. Therefore, at step
i = d, S1[d] will not be swapped and S2[d] will be swapped to index d+ t. When
i increases to d + 1, we need K1[d + 1] and K2[d + 1] to absorb the difference
between j1 and j2. In this example, we let K1[3] = X + t and K2[3] = X for
some X. When i touches d+ t, namely, i = 4, we need j1,4 = d+ t and j2,4 = d,
namely, j1,4 = 4 and j2,4 = 2 so that the difference between the two S-Boxes is
absorbed. Now the internal difference exists only between j1,4 and j2,4. Finally
when i = d+ t+ 1, namely, i = 5, then K1[d+ t+ 1](Y) and K2[d+ t+ 1])(Y+2)



are there to absorb the difference between j1,4 and j2,4. For the rest of the
steps(i > d + t + 1), the internal state remains the same, until the end of KSA.
Table 1 describes the above transition procedure.

3.3 Example 2 (d = 3, t = 3, n = 1(k = 256))

In Example 2, we change the values d and t to demonstrate that parameters
d, t need not be fixed in order to achieve collisions. The transition pattern is
summarized in Table 2. It is easy to understand by following Example 1.

Table 2. d = 3, t = 3, n = 1(k = 256)

Internal State Difference

i K1[i]/K2[i] j1,i/j2,i 2 3 4 5 6 7

3 256− j1 3 * 3 4 5 6 7 K1[3] = K2[3]− 3
256− j1 + 3 6 * 6 4 5 3 7 j1,3 = j2,3 − 3, S1 6= S2

4 X + 3 X + 10 * 3 S[X + 10] 5 6 7 K1[4] = K2[4] + 3
X X + 10 * 6 S[X + 10] 5 3 7 j1,4 = j2,4, S1 6= S2

5 Y X + Y + 15 * 3 S[X + 10] S[X + Y + 15] 6 7 K1[5] = K2[5]
Y X + Y + 15 * 6 S[X + 10] S[X + Y + 15] 3 7 j1,5 = j2,5, S1 6= S2

6 256− (X + Y + 15) 6 * 3 S[X + 10] S[X + Y + 15] 6 7 K1[6] = K2[6]
256− (X + Y + 15) 3 * 3 S[X + 10] S[X + Y + 15] 6 7 j1,6 = j2,6 + 3, S1 = S2

7 Z Z + 13 * 3 S[X + 10] S[X + Y + 15] 5 S[Z + 13] K1[7] = K2[7]− 3
Z + 3 Z + 13 * 3 S[X + 10] S[X + Y + 15] 5 S[Z + 13] j1,7 = j2,7, S1 = S2

3.4 Example 3 (d = 4, t = 2, n = 2(k = 128))

Notice that Examples 1 and 2 directly apply to the situations where the three
different positions of the key appear only once during the KSA, such as the
256-byte key. However, when the three different positions of the key appear
more than once, in other words, when the key becomes short, extra conditions
need to be satisfied in order to achieve collision. Table 3 is one example for
k = 128, d = 4, t = 2; in this case, the different positions of the key will appear
twice during KSA. This example will give us all the techniques for even shorter
keys. In order to extend the pattern to normal situations, we use abstract values
such as a, b instead of specific values. The transition pattern is summarized in
table 3.

In this example, index 4, 5, 7 is the first appearance (n = 1) of the different
positions of the key, while index 132, 133, 135 is the second appearance (n = 2).
After i touches index 135, the two internal states become same for the rest of
KSA. Because the key pairs are determined during the first appearance (index
4, 5, 7), index 132, 133, 135 have to use the same keys as index 4, 5, 7. So it is very
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natural to think that in order for the transition pattern to work for shorter keys,
there are some extra conditions that need to be satisfied and the requirement
for those extra conditions come from the fact that keys are determined in the
first appearance and could not be changed from that point. According to the
transition table 3, we can derive j1,134 = j1,133 + K1[6] + S1,133[134] = (X +
S[133] + 134) + (254 − X − a − b) + (j3 − j131 + 134 + a − d), thus S[133] =
a + b + j131 − j3 − a + d − 132. We also know from the table that S[132] =
j3− j131 + 132 + a− d. This gives us S[132] +S[133] = a+ b. This is exactly the
extra condition that our transition sequence should satisfy in the case of n = 2.
In summarizing, the following conditions should be satisfied in order to achieve a
collision for case d = 4, t = 2, n = 2(k = 128). All the conditions could be derived
from the transition table 3 except for the little tricky one S[132]+S[133] = a+b,
which we have just calculated.

S3[4] + 2 = S3[6] (1)
j1,4 = 4(j2,4 = 6) (2)
j5 6= 4, 6 (3)
j1,6 = 6(j2,6 = 4) (4)

S131[132] + 2 = S131[134] (5)
j1,132 = 132(j2,132 = 134) (6)
j133 6= 132, 134 (7)
S131[132] + S131[133] = a + b (8)
j1,134 = 134(j2,134 = 132) (9)

Notice that (5) and (8) will give (9), so actually we only need (1) to (8). From
the above analysis, we could easily derive the sufficient and necessary conditions
for our transition pattern, namely,

1. jd+pk = d + pk for p = 0, ..., n− 1. (corresponding to (2),(6))
2. jd+pk+t = d + pk + t for p = 0. (corresponding to (4),(9))
3. Sd+pk[d + pk] + t = Sd+pk[d + pk + t] for p = 0, ..., n− 1. (corresponding to

(1),(5))
4. (Sd+pk[d+pk]+· · ·+Sd+pk[d+pk+t−1]) mod 256 = Sd[d]+· · ·+Sd[d+t−1]

for p = 1, ..., n− 1. (corresponding to (8))
5. jd+pk+1, ..., jd+pk+t−1 6= d+ pk, d+ pk+ t for p = 0, ..., n− 1. (corresponding

to (3),(7))

4 Probability Analysis

In this section, we give probability estimation for our transition pattern.
Assume that K1 and K2 form a k byte key pair which has the following

properties: K1[d] = K2[d] − t, K1[d + 1] = K2[d + 1] + t, K1[d + t + 1] =
K1[d + t + 1] − t for some t, d and n. From the previous section, we know the
conditions for our transition pattern. Now we formalize some conditions into
events for convenience in the analysis.



Event A: jd+pk = d + pk for p = 0, 1, 2, ..., n− 1.
Event B: Sd+pk[d + pk] + t = Sd+pk[d + pk + t] for p = 0, 1, ..., n− 1
Event C: (Sd+pk[d + pk] + · · ·+ Sd+pk[d + pk + t− 1]) mod 256 = Sd[d] + · · ·+
Sd[d + t− 1] for p = 1, 2, ..., n− 1.
Event D: jd+pk+1, ..., jd+pk+t−1 6= d + pk, d + pk + t for p = 0, ..., n− 1.

Lemma 1. The probability of Event A is

P (A) = P (jd+pk = d + pk) =
1

256
for p = 0, 1, ..., n− 1

Proof. Here we assume that j behaves randomly, thus P (jd+pk = p+ dk) = 1
256 .

Lemma 2. The probability of Event B is

P (Bd,k,p) =
255

256
× (

254

256
)d+pk−1 +

1

256
for p = 0, ..., n− 1

Proof. There are two cases that could lead to Sd+pk[d+pk]+t = Sd+pk[d+pk+t].
Case 1(Event D): Sd+pk[d + pk] and Sd+pk[d + pk + t] have not been swapped
before. The probability for this case(Event D) is ( 254

256 )d+pk−1.
Case 2(Event E): Sd+pk[d + pk] and Sd+pk[d + pk + t] have been touched before
i touches d + pk. The probability of Event E is the complement of Event D,
namely, 1− ( 254

256 )d+pk−1.
According to the law of total probability, we have
P (B) = P (B|D)P (D) + P (B|E)P (E)

= 1× ( 254
256 )d+pk−1 + 1

256 × (1− ( 254
256 )d+pk−1)

= 255
256 × ( 254

256 )d+pk−1 + 1
256

Fig. 1. Event B

Figure 1 shows the experimental and theoretical results with d + pk from
3 to 200. From the figure, we can see that the theoretical result agrees with
the experimental result very well. Notice that the probability of Event B is not
affected by value t.

Before evaluating Event C, let’s first look at the following Lemma 3.



Lemma 3. The probability of Sv[v
′
] in round v equals to some value u(u <

v or u = v
′
, v
′ ≥ v) is as follows:

(1) When u = v
′
, then

P (Sv[v
′
] = u) = (

255

256
)v

(2) When u < v, then

P (Sv[v
′
] = u) = (255

256 )v−1× 1
256+

∑v−1
t1=u+1( 255

256 )v−2×( 1
256 )2+

∑v−2
t1=u+1

∑v−1
t2=t1+1( 255

256 )v−3×
( 1
256 )3 + · · ·+

∑v−(n−1)
t1=u+1 · · ·

∑v−1
tn−1=tn−2+1( 255

256 )v−n × ( 1
256 )n

where n = v − u.

Proof. (1) When u = v
′
, Sv[v

′
] = v

′
means after round v, S[v

′
] remains un-

touched. Thus the probability is ( 255
256 )v.

(2) When u < v, u will be in index v
′

after v rounds(i touches v−1). In order for
this to happen, first, we need u to remain untouched before i touches it, other-
wise u will be swapped somewhere before i and the chance for it to be swapped
to index v

′
will be lost. The probability of this is ( 255

256 )u. Then when i touches

u, we have several choices, either to swap u directly to index v
′
(we call this one

hop), or to swap u to an intermediate index t1 between index u and v, and then
when i touches t1, u can be swapped to index v

′
(we call this two hops), etc. As

you may guess, there exist maximum v − u hops. We analyze one-hop, two-hop
and three-hop cases here.
One hop: When i touches u, u is swapped to index v

′
with probability 1

256 and
remains untouched for v − u− 1 rounds. Thus the probability is (255

256 )u × 1
256 ×

( 255
256 )v−u−1=( 255

256 )v−1 × 1
256

Two hops: When i touches u, u is first swapped to index t1 between index
u and v with probability 1

256 . For t1 − u − 1 rounds, index t1 remains un-

touched. Then when i touches t1, u is swapped to index v
′

with probability
1

256 and then index v
′

remains untouched for v − t1 − 1 rounds. Notice that
the intermediate index t1 can vary between u + 1 and v − 1, thus the probabil-
ity of the above is

∑v−1
t1=u+1( 255

256 )u × 1
256 × ( 255

256 )t1−u−1 × 1
256 × ( 255

256 )v−t1−1 =∑v−1
t1=u+1( 255

256 )v−2 × ( 1
256 )2

Three hops: The analysis is the same as for two hops. The only difference for
three hops is that we have two intermediate indices t1 and t2, and t1 can vary
between index u + 1 and v − 2 and t2 can vary between index t1 + 1 and v − 1.
Thus the probability is

∑v−2
t1=u+1

∑v−1
t2=t1+1( 255

256 )u × 1
256 × ( 255

256 )t1−u−1 × 1
256 ×

( 255
256 )t2−t1−1 × 1

256 × ( 255
256 )v−t2−1 =

∑v−2
t1=u+1

∑v−1
t2=t1+1( 255

256 )v−3 × ( 1
256 )3.

For cases of more than 4 hops, the above analysis works in the same way. By
summing these results together, we get our final result.

We tested 4 sets of data where (v, v
′
) equal to (64, 64), (64, 74), (128, 128) or

(128, 138) respectively. The theoretical result agrees well with the experimental
result, except for a few points as shown in Figure 2. This result is sufficient for
our probability evaluation.



Fig. 2. Theorem 3

Now we are ready to calculate Event C by using the above Lemma and
partition techniques. Refer to Appendix A for a more specific description of the
integer partitioning algorithm.

Lemma 4. The probability of Event C is

P (Cd,k,p) =

#(Q(X)−I(X))∑
i=0

t−1∏
j=0

(Pd+pk[d + pk + j] = qij)

where Q(X) denotes the partition function with input X the number to be par-
titioned, and the output is a set of t-element tuples. Each tuple represents a
t distinct element partition of X. Let PS = Sd[d] + · · · + Sd[d + t − 1] and
PD = (d + pk) + · · · + (d + pk + t − 1). X ∈ {q = {0, ..., bPD−PS

256 c}|PS +
256 × q}. I(X) denotes the subset of Q(X) which satisfies the following con-
ditions: Sd+pk[d + pk], ..., Sd+pk[d + pk + t − 1] > d + pk and Sd+pk[d + pk] 6=
d + pk,...,Sd+pk[d + pk + t− 1] 6= d + pk + t− 1. qij denotes the jth element in
tuple i of set Q(X)− I(X).

Proof. According to the definition of Event C, our goal is to partition the sum
Sd[d]+· · ·+Sd[d+t−1] and calculate the probability that the t-element partition
will be in position d+pk, ..., d+pk+t−1. Here, one thing to notice is that when the
difference between (d+pk)+· · ·+(d+pk+t−1) and Sd[d]+· · ·+Sd[d+t−1] is larger
than 256∗q for some q ≥ 0, than the partition of Sd[d]+· · ·+Sd[d+t−1]+256∗q
is also a possible partition for positions d + pk, ..., d + pk + t − 1. Thus the
input of partition function Q(X) can vary depending on the relation between
PS and PD. The subset I(X) indicates partitions that will never occur in the



situation of RC4. This is easy to see because before i touches index d + pk,
S[d + pk], ..., S[d + pk + t − 1] could never become a value greater than index
d + pk except for the value of the index itself, which is the case in which these
values have never been swapped before. Thus Q(X)−I(X) denotes all the legal
partitions.∏t−1

j=0(Pd+pk[d + pk + i] = qij) is the probability of each legal partition being in
positions d+pk, ..., d+pk+t−1. The probability is calculated by using Lemma 3,
and we have t elements for each partition, so we need to multiply them together.
Since there are a total #(Q(X)−I(X)) partitions, by summing them together,
we get the probability of Event C.

Figure 3 represents the experimental and theoretical probability of Sd[d] +
Sd[d+1]+· · ·+Sd[d+t−1] ≡ Sd+k[d + k] + Sd+k[d + k + 1] + · · ·+ Sd+k[d + k + t− 1]
(mod 256) for fixed k, t and various d.

Fig. 3. Event C

Lemma 5. The probability of Event D is

P (Dt) = (
254

256
)t−1

Proof. There are t − 1 places between index d + pk and d + pk + t. When i
touches these positions, j should not touch d + pk and d + pk + t. This gives us
the probability (254

256 )t−1.



Theorem 1. Assume that K1 and K2 form a k-byte key pair which has the fol-
lowing properties: K1[d] = K2[d]− t, K1[d + 1] = K2[d + 1] + t, K1[d + t + 1] =
K1[d+ t+ 1]− t for some fixed t, d and n. Then the probability that K1 and K2

are a colliding key pair is

Pcol(t, d, k) = (P (A))n+1(P (Dt))
n

n−1∏
p=0

P (Bd,k,p)

n−1∏
p=1

P (Cd,k,p)

Proof. Recall the conditions we summarized in the previous section. What we are
doing here is just combining all the conditions. When p = 0, there is no restriction
on Event C. The probability is (P (A))2P (B)P (D). When p ≥ 1, according to

the previous analysis, we have
∏n−1

p=1 P (A)P (B)P (C)P (D). By multiplying these
two cases together, we get our result.

Since parameters d and t are not required to be fixed in our pattern, the total
probability should include various d and t. This gives us the following Corollary.

Corollary 1. Assume that K1 and K2 form a k-byte key pair which has the
following properties: K1[d] = K2[d]− t, K1[d+1] = K2[d+1]+ t, K1[d+ t+1] =
K1[d+ t+ 1]− t. Then the probability that K1 and K2 are a colliding key pair is

Pcol(t, d, k) =

k−4∑
d=0

k−d−2∑
t=2

(P (A))n+1(P (Dt))
n

n−1∏
p=0

P (Bd,k,p)

n−1∏
p=1

P (Cd,k,p)

Proof. Let’s look at the bounds for d and t. First, for every fixed d, the max
value t has to satisfy d+ t = k−2, and the smallest value of t is 2 in our pattern.
Thus 2 ≤ t ≤ k − d− 2. Then we look at d. d could start from 0. The max d is
such d that t = 2, so we have d + 2 = k − 2 which gives us 0 ≤ d ≤ k − 4.

Corollary 1 gives us the total collision probability of two keys with length k
satisfying conditions K1[d] = K2[d]−t, K1[d+1] = K2[d+1]+t and K1[d+t+1] =
K1[d + t + 1] − t. Thus the number of colliding key pairs could be calculated
by multiplying 28∗k. Since calculating Event C is time consuming and involves
exponential time partition algorithm, to evaluate all d and t is a time-consuming
job. We approximate by evaluating some fixed d and t. We choose d, t such that
for a given k, they make the different positions of the key pair appear least
often in the KSA. For example, for k = 24, we choose d = 17, t = 2 so that the
different positions of the key pair appear 10 times not 11 times during KSA.
The probability of the 10 times dominates, so we can ignore the 11 times d, t.
Our results can be seen as an approximate lower bound of the total number of
this new kind of colliding key pairs, and also we compare our work with the
results in [2]. Future work is required for a more precise evaluation. Please refer
to Appendix B for the detailed results. The values in parentheses in our result
denote the chosen values of d and t.



5 An Efficient Search Technique

Searching for such colliding key pairs randomly will hardly generate any results.
Finding the colliding key pairs we found involved some detection tricks. Recall
the necessary conditions of the transition pattern we have to satisfy, namely,
Event A, Event B, Event C and Event D. For Event B and Event C, we can
control them to let them occur with much higher probability. We do this as
follows: assume when i touches index d − 1, S[d], ..., S[d + t − 1] have not been
swapped, thus we can pre-compute the sum Sd[d]+ · · ·+Sd[d+ t−1] = d+ · · ·+
(d+t−1). Then we compute n−1 partitions of the sum, namely, (qi,1, ..., qi,t), i ∈
[1, n−1], d for Event C. Also for Event B we can calculate pi = qi,1 + t according
to the partitions we calculated. Now we need to adjust two secret keys during
KSA so that the values of p and q will be swapped to the corresponding positions
S[d+pk], ..., S[d+pk+ t] during the first appearance of the secret key. After the
secret key begins to duplicate during KSA, we only hope that those positions
d + pk, ..., d + pk + t will not be touched before i touches them and Event A
occurs.
The above algorithm gives us a much more efficient way to search for this new
class of colliding key pairs. The key point here is that we can control the behavior
of the keys to satisfy our conditions in the process of the first key appearance
in KSA. However, as the length of the key becomes shorter, in other words,
as the number of appearances of the key increases, we’ll have less control over
the behavior during the KSA process. By using our algorithm, we are able to
find a 55-byte colliding key pair within one hour. Refer to Appendix C for some
concrete colliding key pairs we found.

6 Conclusion

We discovered a new class of colliding key pairs with properties differing from
those discovered in [2]. Our new transition pattern requires relatively loose con-
ditions on the key pairs, namely, our colliding key pairs can differ at more than
one position and the value difference can also be more than one. We gave prob-
ability evaluations of our colliding key pairs and showed the scale of this new
class of colliding key pairs. An efficient search algorithm was proposed which can
allow us to find 55-byte colliding key pairs easily. We leave finding even shorter
colliding key pairs and more precise probability evaluation as future work.
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A Integer Partition Techniques

We refer to “The Art of Computer Programming Vol 4” regarding integer parti-
tion techniques. The partitions of an integer are the ways to write it as a sum of
positive integers. The following Algorithm 3 calculates all partitions of integer n
into a fixed number of parts. This algorithm was featured in C.F. Hindenburg’s
18th-century dissertation [Infinitinomii Dignitatum Exponentis Indeterminati].
This algorithm generates all integer t-tuples a1...at such that a1 ≥ · · · ≥ at ≥ 1
and a1 + · · ·+ at = n.

Algorithm 3. Partition n into t parts (Pa(n,t))

1: [Initialize.] Set a1 ← n− t + 1 and aj ← 1 for 1 < j ≤ t. Set at+1 ← −1.
2: [Visit.] Visit the partition a1...at. Then go to 4 if a2 ≥ a1 − 1.
3: [Tweak a1 and a2]. Set a1 ← a1 − 1, a2 ← a2 + 1, return to 2.
4: [Find j.] Set j ← 3 and s← a1 + a2 − 1. Then, if aj ≥ a1 − 1,

set s← s + aj , j ← j + 1, repeat until aj < a1 − 1.
5: [Increase aj.] Terminate if j > m. Otherwise set x← aj + 1, aj ← x,

j ← j − 1.
6: [Tweak a1...aj.] While j > 1, set aj ← x, s← s− x and j ← j − 1.

Finally set a1 ← s and return to 2.

For example, Pa(11,4) will generate the following partitions:

8111, 7211, 6311, 5411, 6221, 5321, 4421, 4331, 5222, 4322, 3332



Use it twice, namely, Pa(n,t) and Pa(n,t-1) to include 0 value cases in the parti-
tions, and perform the permutation on each tuple (a1...at) to cover all the cases.
Then this is our Q function.

B Number of colliding key pairs

Table 4 shows the number of newly discovered colliding key pairs, compared with
[2]’s results. The values in the parentheses denote d and t. ”-” means colliding
key pairs do not exist theoretically.

Table 4. log2 (number of colliding key pairs)

k [2] Ours(d,t) k [2] Ours(d,t) k [2] Ours(d,t) k [2] Ours(d,t) k [2] Ours(d,t)

15 - - 25 106.9 9.2(7,2) 35 211.2 147.8(12,2) 45 306.4 267.9(32,2) 55 394.9 367.9(37,2)

16 - - 26 120.7 13.5(3,2) 36 219.6 153.1(5,2) 46 314.9 275.7(27,2) 56 403.2 375.9(33,2)

17 2.7 - 27 130.5 45.8(14,2) 37 232.3 159.6(3,2) 47 323.3 283.4(22,2) 57 411.5 383.9(29,2)

18 18.5 - 28 139.2 49.6(5,2) 38 242.0 194.0(29,2) 48 331.6 291.1(17,2) 58 419.7 391.8(25,2)

19 34.0 - 29 153.0 83.8(25,2) 39 250.7 201.8(23,2) 49 339.9 298.3(12,2) 59 427.9 399.7(21,2)

20 48.7 - 30 162.5 91.0(17,2) 40 259.2 209.4(17,2) 50 348.1 305.4(7,2) 60 436.1 407.6(17,2)

21 58.8 - 31 171.2 97.2(9,2) 41 267.6 216.5(11,2) 51 356.3 311.7(3,2) 61 444.2 415.4(13,2)

22 73.7 - 32 179.7 108.8(3,2) 42 275.9 223.1(5,2) 52 368.7 343.7(49,2) 62 452.4 423.1(9,2)

23 83.0 - 33 193.7 133.7(26,2) 43 287.7 229.8(3,2) 53 377.8 351.8(45,2) 63 460.5 429.1(4,2)

24 97.7 4.7(17,2) 34 202.6 141.0(19.2) 44 297.6 259.7(37,2) 54 386.4 359.8(41,2) 64 468.6 444.9(3,2)

C Some Concrete Colliding Key Pairs

We demonstrate 4 colliding key pairs in this section with n from 1 to 4. “-”
denotes that K1 and K2 have the same value.

C.1 k = 132, d = 125, t = 5, n = 1

K1[000] ∼ K1[023] : d6 0d c0 2c ab d2 86 09 15 ec 7c d5 69 cd 3b 75 6e b2 34 b9 8f d1 fd b0
K2[000] ∼ K2[023] : - - - - - - - - - - - - - - - - - - - - - - - -
K1[024] ∼ K1[047] : 65 42 ab 48 df fd 7b c9 79 0a 25 44 35 86 5c 9b 45 5a a7 e5 6b 2b 43 6c
K2[024] ∼ K2[047] : - - - - - - - - - - - - - - - - - - - - - - - -
K1[048] ∼ K1[071] : 76 94 e8 41 f6 ec bb c9 e4 2e 62 b5 d8 11 17 e3 05 e7 c9 fd c1 36 3d 80
K2[048] ∼ K2[071] : - - - - - - - - - - - - - - - - - - - - - - - -
K1[072] ∼ K1[095] : 53 00 38 f5 11 58 65 cd 73 43 2e 64 ea 25 d2 0e 75 26 8b a1 7a 10 a0 06
K2[072] ∼ K2[095] : - - - - - - - - - - - - - - - - - - - - - - - -
K1[096] ∼ K1[119] : c6 2e 05 28 9e 60 23 9c 04 b1 ae 7e 58 f3 93 22 66 72 a4 f8 50 2f 22 1b
K2[096] ∼ K2[119] : - - - - - - - - - - - - - - - - - - - - - - - -
K1[120] ∼ K1[131] : 39 09 b4 f6 03 a5 4e 08 c7 f3 b2 84
K2[120] ∼ K2[131] : - - - - - aa 49 - - - - 89



C.2 k = 85, d = 5, t = 3, n = 2

K1[00] ∼ K1[23] : 5a 54 aa ff 51 4e e8 b6 50 bf d7 8e 35 0b 47 2e 17 a1 8c 86 db cf fb 3c
K2[00] ∼ K2[23] : - - - - - 51 e5 - - c2 - - - - - - - - - - - - - -
K1[24] ∼ K1[47] : 13 52 22 1a e0 5d 7d a3 91 d8 4c 45 21 c3 f2 f2 d6 ec c0 d9 ea c4 5f 95
K2[24] ∼ K2[47] : - - - - - - - - - - - - - - - - - - - - - - - -
K1[48] ∼ K1[71] : 3e b6 6b 30 30 6d 78 9c df 79 7c 81 44 e7 65 10 af d6 95 38 9d dd 97 6f
K2[48] ∼ K2[71] : - - - - - - - - - - - - - - - - - - - - - - - -
K1[72] ∼ K1[84] : 9f 5c 87 94 ce 80 4d 44 a9 6b b4 fc 3a
K2[72] ∼ K2[84] : - - - - - - - - - - - - -

C.3 k = 66, d = 58, t = 2, n = 3

K1[00] ∼ K1[23] : 83 db 06 ee 00 8d 7d cb e5 0c 3a b7 33 ec 8f 93 c5 7d 8d 95 64 c5 d9 19
K2[00] ∼ K2[23] : - - - - - - - - - - - - - - - - - - - - - - - -
K1[24] ∼ K1[47] : 18 45 54 82 be e1 eb 03 4f 96 75 08 b5 6e c6 81 36 16 0d 15 77 8a a2 6b
K2[24] ∼ K2[47] : - - - - - - - - - - - - - - - - - - - - - - - -
K1[48] ∼ K1[65] : 6f 49 53 96 67 6b cd 0b 88 09 40 db b0 7b 8d 7f 68 0d
K2[48] ∼ K2[65] : - - - - - - - - - - 42 d9 - 7d - - - -

C.4 k = 55, d = 36, t = 2, n = 4

K1[00] ∼ K1[23] : 89 2d b4 26 2c 12 3b 51 09 87 49 92 88 38 d9 3d e1 7d 4e 35 11 99 fc 76
K2[00] ∼ K2[23] : - - - - - - - - - - - - - - - - - - - - - - - -
K1[24] ∼ K1[47] : f7 35 46 79 89 b3 00 dd 15 16 a9 14 35 05 b2 5f f6 a0 09 66 d9 08 e4 76
K2[24] ∼ K2[47] : - - - - - - - - - - - - 37 03 - 61 - - - - - - - -
K1[48] ∼ K1[54] : 17 7e 2b 7a 69 5b 69
K2[48] ∼ K2[54] : - - - - - - -


