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New Correlations of RC4 PRGA Using
Nonzero-Bit Differences

Atsuko Miyaji * and Masahiro Sukegawa

Japan Advanced Institute of Science and Technology
miyaji@jaist.ac.jp

Abstract. RC4 is the stream cipher proposed by Rivest in 1987, which
is widely used in a number of commercial products because of its sim-
plicity and substantial security. RC4 exploits shuffle-exchange paradigm,
which uses a permutation S. Many attacks have been reported so far.
No study, however, has focused on correlations in the Pseudo-Random
Generation (PRGA) between two permutations S and S’ with some dif-
ferences, nevertheless such correlations are related to an inherent weak-
ness of shuffle-exchange-type PRGA. In this paper, we investigate the
correlations between S and S’ with some differences in the initial round.
We show that correlations between S and S’ remain before “” is in the
position where the nonzero-bit difference exists in the initial round, and
that the correlations remain with non negligible probability even after
“” passed by the position. This means that the same correlations be-
tween S and S’ will be observed after the 255-th round. This reveals an
inherent weakness of shuffle-exchange-type PRGA.

1 Introduction

R(C4 is the stream cipher proposed by Rivest in 1987, which is widely used in a
number of commercial products because of its simplicity and substantial security.
Though many cryptanalysis of RC4 have been proposed so far [1,4,13,7,2,12,
8,11,9,3,5], it has remained secure under proper use. As a result, RC4 is widely
used in many applications such as Secure Sockets Layer (SSL), Wired Equivalent
Privacy (WEP), etc.

RC4 exploits shuffle-exchange paradigm, which uses a permutation S =
(S[0],---,S[N —1]) given in the initial, and outputs 8-bit data in each round
by updating the permutation S, where typically each S[i] (i € [0, N — 1]) is
8 bits and NV = 256. In more detail, RC4 consists of two algorithms, the Key
Scheduling Algorithm (KSA) and the Pseudo Random Generation Algorithm
(PRGA). KSA is given a secret key with ¢ bytes (typically, 5 < £ < 16) and gen-
erates the initial permutation Sy, which is an input of PRGA. PRGA is given
the initial permutation Sy, uses two indices 7 and j, (where 4 is a public counter
but j is one element of secret state information), updates S and j, and outputs

* This study is partly supported by Grant-in-Aid for Scientific Research (B),
203000032.



7Z = S[S[i] + S[j]] as a key stream at the end of each round. There are mainly
two approaches to the cryptanalysis of RC4, analysis of the weaknesses of the
KSA, and analysis of the weaknesses of the PRGA. Many works, however, focus
on the bias between a secret key and the initial permutation, which is an input
of PRGA. Some analysis of the weaknesses of the PRGA also focus on the corre-
lation between the first keystream output of PRGA and the secret key. We have
not seen any research on correlations in PRGA between two permutations with
some differences. However, such correlations should be investigated, since it is
reported that sets of two keys which output either the same initial permutations
or initial permutations with differences of just a few bits can be intentionally in-
duced [6]. Furthermore, correlations between outputs of two consecutive rounds
is an inherent weakness of shuffle-exchange-type PRGA.

In this paper, we focus on a shuffle-exchange structure of PRGA, where 1
swap is executed in each round. We investigate how the structure mixes the
permutation S, by observing correlations between two permutations, S and S’,
with some differences in the initial round. The set of indices where differences
exist in the initial round is represented by Diffy. The correlations are measured
over (a) the difference value of two permutations AS = S® S’ (b) the difference
value of two outputs of PRGA, AZ = Z @ Z’, and (c) the difference value of
two indices Aj = j @ j'. We start with Diffy = {dfp[1],dfo[2]}. Our results,
however, are easily applicable to other cases where there exist differences Diffg
with #Diffy > 2 in the initial round.

We show theoretically that correlations between two permutations S and S’,
such as AZ = 0, Aj = 0, and the hamming weight of AS, remain when i <
dfp[1]. Furthermore, we show that such correlations between two permutations
S and S’ remain with non negligible probability when i > dfg[1], thus, the
same correlations between permutations will be observed when i < dfy[2]. For
example, the probability that such correlations remain when ¢ > dfg[1] is greater
than 30% in the cases of dfy[1] > 93. We give the theoretical formulae of the
probability of both outputs being equal when i = dfg[1]. All theoretical results
have been confirmed experimentally.

This paper is organized as follows. Section 2 summarizes the known facts on
RC4 together with notation. Section 3 investigates correlations in each round
between two permutations S and S’ with some differences in the initial round.
Section 4 investigates correlations in each round between outputs of two per-
mutations S and S’. Section 5 shows the experimental results which confirm all
theories in Sections 3 and 4. Section 6 investigates how to predict inner states.

2 Preliminary

This section presents the KSA and the PRGA of RC4, after explaining the
notations used in this paper.
S, S’ : permutations
So, Sp : the initial permutations of PRGA
Diffy : the set of indices where differences between S and S’ exist in the initial round
r : number of rounds (r = 0 means the initial round)



dfo[1], dfo[2],- - - : the positions where differences exist in the initial round
ir,jr (4r): 43 and j (§') of S (S’) after r rounds
S, (S1): the permutation S (S’) after r rounds
S,[i] (S.[i]): the value of S, (S.) in the position i after r rounds
AS, : S, DS,

AS,[i] : S.[i] @ SL[i]
|AS,| : the number of indices with AS,.[i] # 0

Z. (Z)): the output under S (S’) at the r-th round

AZ, 7, & 7.
Ajr : jr @ Gy
AState[0], AState[1], - - - : the state differences between S and S’ (j and j') in a round r.

(The state differences of ¢ are omitted since the same 4 is used each other.)

RC4 has a secret internal state which is a permutation of all the N = 2"
possible n-bit words and index j. RC4 generates a pseudo-random stream of
bits (a keystream) which, for encryption, is combined with the plaintext using
XOR; decryption is performed in the same way. To generate the keystream, the
cipher makes use of a secret internal state which consists of two parts (shown in
Figure 1): A key scheduling algorithm, KSA, which turns a random key (whose
typical size is 40-256 bits) into an initial permutation Sy of {0,..., N — 1}, and
an output generation algorithm, PRGA, which uses the initial permutation to
generate a pseudo-random output sequence.

The algorithm KSA consists of N loops. It initializes S to be the identity
permutation, and both ¢ and j to 0, and then repeats three simple operations:
increment %, which acts as a counter, set j by using S and a secret key K with
£ bytes where each word contains n bits, and swap two values of S in positions
i and j. Finally, it outputs a random permutation S = Sy.

The algorithm PRGA is similar to KSA. It repeats four simple operations:
increment ¢, which act as a counter, set j by using S and the previous j, swap two
values of S in positions ¢ and j, and output the value of S in position S[i] + S[j].
Each value of S is swapped at least once (possibly with itself) within any N
consecutive rounds. All additions used in both KSA and PRGA are in general
additions modulo N unless specified otherwise.

KSA(K) PRGA(K)
Initialization Initialization:
Fori=0...N -1 i1=0
Sli) =1 j=0
j=0 Generation loop:
Scrambling: t=1+1
Fori=0...N—1 Jj=7+S[i
j=i+Slil+Kli (mod 0)] Swap(S[il, S[j])
Swap(S[i], S[5]) Output z = S[S[i] + S[4]]

Fig. 1. The Key Scheduling Algorithm and the Pseudo-Random Generation Algorithm



3 State Analysis of Permutations with Some Differences

This section analyzes correlations between two permutations, S and S’, with
some differences in the initial round. The set of indices where differences exist
in the initial round is represented by Diffy = {dfy[1],dfo[2],---}. The indices
with nonzero bit differences are arranged in order of positions that i will reach
after the next round. Therefore, if nonzero bit differences exist in positions 0
and N — 1 in the initial round, then Diffo = {dfo[1],dfo[2]} = {N — 1,0} since i
will be incremented to 1 in the first round.

3.1 Overview of Analysis

Assume that two permutations S and S” with Diffy = {dfy[1], dfo[2]} in the initial
round are given, where (So[dfo[1]], So[dfo[2]]) = (a, b) and (S§[dfo[1]], S{[dfo[2]]) =
(b,a) (See Figure 2). Then, the initial state of differences between Sy and S is:

AState[0] : (AS[z] # 0 <= z € Diffy) A (4j = 0).

Then, we analyze the conditions in each round in which the initial state changes
from the current state to another, or remains the same.

0 12 3 dfo[1] dfo[2] 253 254 255 0 12 3 dfo[1] dfo[2] 253 254 255
SLIT T TTel " Tol T T T 1 SCILTTI T Tl Tol T TT]
i
SCIT T [lel o] T T T ST T LT Tel Jal T TT]
Fig. 2. AState[0] Fig. 3. Event[1]

0 12 3 dfo[1] dfo[2] 253 254 255 0 1 2 dfo[1] dfo[2] 253 254 255
SCIT T TTel " fel T T T sCIT T o] Te] Tel I T 1]
i i
Fod 7 e O e~ I I O O Y B 1 A [ T ]

Fig. 4. Event[2]

Fig. 5. Event[3]

The transitions of state are different according to the position of 4, that is,
i < dfg[l]; i = dfp[1] and the nonzero bit difference still exists in the position
dfp[1]; ¢ = dfp[1] but the nonzero bit difference does not exist in the position
dfp[1], which are formalized as follows.

Event[1] : i, < dfg[1]
Event[2] : [i, = dfo[1]] A [AS,_1[dfo]
Event[3] : [’LT = df()[l]] AN [AST_l[df()[

(Figure 3),
(Figure 4),

1] # 0]
0] (Figure 5).

]
1l
Figures 3, 4, and 5 show each event, where (z,z') = (b,a) or z = z'. We will
see the reason for this in the following subsections. The following subsections
describe each transition and the probability of its occurrence in each event. We
will see that the state of differences between two permutations S and S’ has the
Markov property, that is, given the state in a certain round (the present state),
the state in a future round (future states) is independent of past rounds.

1] #
1] =



3.2 Transitions of AState[0] before the nonzero bit difference

This subsection shows Theorem 1, which describes the transitions from the initial
state in Event[1] and their associated probabilities. The state diagram is given
in Figure 60

j, ¢ Diffq

Fig. 6. State Diagram of PRGA in Event[1]

Theorem 1. Assume that two initial permutations S and S’ are in the state of
differences AState[0] in the (r —1)-th round, and that Event[1] occurs in the r-th
round.

(1) The state changes to the state AState[0] (resp. AState[l], resp. AState[2]) if
Jr & Diffy (resp. j. = dfg[2], resp. j. = dfg[1]), where

AState[0] : [AS,[z] # 0 <= z € Diffy] A [AF, =0],
AState[1] : [AS,[z] # 0 <= z € Diff1] A [Aj, = 0],
AState[2] : [AS,[z] # 0 <= z € Diffs] A [Aj, =0].

and where Diffy = {df{[1],df1[2]} = {dfo[1],i.} and Diffy = {df;[1],df>[2]} =

{dfo[2],ir}.
(2) Each transition occurs with the following probabilities if j is distributed ran-
domly:

N -2 1
Prob [AState[0]] = N Prob [AState[1]] = N’ and Prob [AState[2]] = N
where each probability is taken over choices of S and S’ in state AState[0] in the

initial round.

proof: (1) It is clear that j. = j. holds in any case, since j, = jr—1 + Sr—1[ir],
Ajr.—1 =0, and i, ¢ Diffg. In the case of j,. & Diffy, AS,_1[i,] = AS,_1[j-] =0
holds and, thus, positions of non-zero-bit differences remain the same as those
in (r — 1)-round. Therefore, AState[0] occurs. In the case of j,. = dfy[2],

(Sr[ir]vsr[jr]) = (Sr—l[jr]asr—l[ir]) = (baSr—l[ir]);
(Sp[in], SuL3,D) = (Sh 1 [57], Shalin]) = (@, Sy [in])s



and, thus, the non-zero-bit difference in the position dfy[2] moves to the current
ir. Therefore, AState[1] occurs. In the case of j,. = dfg[1],

(Sr[ir]vsr[jr]) = (Sr—l[jr]asr—l[ir]) = (C":Sr—l[ir]);
(Sp[in], SuL3, D) = (Sh oy [;], Shalin]) = (0, 574 [i]);

and, thus, the non-zero-bit difference in the position df[1] moves to the current
i». Therefore, AState[2] occurs.

(2) The probability that each state will occur follows from the above discus-
sion. O

Theorem 1 implies that

- |AS,| =2 and Aj, = 0 hold as long as i, is not equal to the position that a
nonzero bit difference exits in the initial round.

— If j,. = dfp[1] at least once in the r-th round during i, < dfy[l], then the
nonzero bit difference in the position dfy[1] moves to the current i.. As a
result, the nonzero-bit difference that was originally in the position dfy[1]
affects neither |AS| nor Aj until the (r + N — 1)-th round. This is the case
in which Event[3] occurs.

The following corollary describes the detailed cases in which 4 is not equal to
any position that a nonzero bit difference exits before the N-th round.

Corollary 1 Assume that two initial permutations S and S’ in the state of
differences AState[0] are given. Then, if either of the following events occurs,

then i is mot equal to any position that a nonzero bit difference exits; and both
|AS,| = 2 and Aj,. =0 hold until the N-th round.

Event[4] : [j,, = dfo[1](1 < Fir, < dfo[1])] A [jrs = dfo[2)(ir, < Jir, < dfo[2])]
Event[5] : [jr, = dfo[2](1 < Jir, < dfo[1] = )] A [jr, = dfo[1](ir, < Jir, < dfo[1])].

Note that i, is less than dfg[1] — 1 since ir, < i, < dfp[1].

proof: Assume that Event[4] has occurred in (jy,, jr, ), that is, first j., = dfg[1]
for 1 <i,, < dfp[l] has occurred. This means that AState[2] has occurred in the
index of i,, and, thus, AS,,[z] # 0 <= =z € Diff;. Therefore, the nonzero-bit
difference in the position dfg[1] moves to the position i, . Next, it is assumed
that j., = dfo[2](ir, < ir, < dfg[2]) has occurred. Then, AS,,[z] # 0 <= x €
{iry,1r,} by applying Theorem 1 to Diffy. Thus, ¢ is not equal to any position
that a nonzero bit difference exits until the N-th round.

Assume that Event[5] has occurred in (jp,, jr, ), that is, first j., = dfp[2] for
1 < ip, < dfg[l] —1 has occurred. This means that AState[1] has occurred in
the index of i,, and, thus, AS,,[z] # 0 <= z € Diff;. Then, the index dfy[2]
no longer indicates a nonzero bit difference. Next, it is assumed that j., =
dfo[1](ipy < ir, < dfg[1]) has occurred. Then, AS,,[z] # 0 <= x € {is,,ir,} by
applying Theorem 1 to Diff;. Thus, i is not equal to any position that a nonzero
bit difference exits until the N-th round. O

The probability that Event[3] occurs, Prob [Event[3]], is computed by the next
theorems.



Theorem 2. Assume that two initial permutations S and S’ in the state of
differences AState[0] with dfg[1] > 5 are given. Then, Event[3] will occur with
the following probability if j is distributed randomly:

1y dfoll]-1
Prob [Event[3]] = 1 — <%> ,

where the probability is taken over choices of S and S' with differences in Diffy
in the initial round.

proof: Event[2], the complement of Event[3], occurs if and only if j # dfo[1]
during i < dfo[1]. Therefore, Prob [Event[3]] = 1— (& )dfo[l] ! if j is distributed
randomly. O

In the case of dfy[1] < 5, we can describe Prob [Event[3]] by the conditions of Sy
as follows:

Theorem 3. Assume that two initial permutations S and S’ in the state of
differences AState[0] with dfg[1] < 5 are given. Then, Event[3] will occur in the
following probability if So[l], So[2], and So[3] are distributed mndomly:

(1) In the case of dfo[1] = 2, Prob [Event[3]] = Prob [So[l] = j1 = 2] =
(2) In the case of dfp[1] =

N}

2N -3

Prob [Event[3]] = Prob [So[1] = 3] + Prob [So[1] # 2,3 A So[1] + So[2] = 3] = NN 1)’

(8) In the case of dfo[1] =4

Prob [Event[3]] = Prob [So[1] = 2] + Prob [So[1] = 4] + Prob [So[1] = 3 A So[2] = N — 2]
+ Prob[So[1] # 2,3,4 A So[3] # 0,1 A So[1] + So[2] + So[3] = 4]
3)

_20eN-3)
N(N—l)

where the probability is taken over choices of S and S" with differences in Diffy
in the initial round.

proof: (1) Event[3] occurs if and only if j; = dfp[1] = 2, where j; = jo + So[1] =
So[1]. Therefore, Prob [Event[3]] = Prob[So[1] = 2] = &

(2) Event[3] occurs if and only if j; = dfp[1] = 3 or jo = df[1] = 3. If Sp[1] = 3,
then we get 71 = jo + S()[l] = S()[l] =3 = dfo[l] If So[l] # 2, then So[l] =
J1 # 2, which means that Sp[1] is not swapped with Sp[2] in the first round.
This implies that S1[2] = Sp[2]. Thus, if [So[1] # 2, 3] A [So[1] + So[2] = 3], we

get Jo = j1 + S1[2] = So[l] + So[2] = 3 = dfp[1]. Therefore, Prob [Event[3]] =
1y N—2 _ 3N-3
NN-1) ~ N(N-D)"

(3) Event[3] occurs if and only if j; = dfg[l] = 4, jo = dfo[l] = 4, or j3 =
dfo[1] = 4. I So[1] = 4, then we get ji = jo + So[l] = So[1] = 4 = df[1]. If
So[l] = 2, then j; = jo + So[l] = 2; So[1] is swapped with Sp[2]; and, we get
Jo = j1 + S1[2] = j1 + So[l] = 4 = dfp[1]. Note that Sp[1] is swapped with
So[2] if and only if Sp[1] = 2. If Sp[1] # 2,4 and Sp[1] + So[2] = 4, then we get
J2 = J1 + S1[2] = So[1] + So[2] = 4 = dfp[1].




If Sp[1] = 3 and Sp[2] = N —2, then j; = Sp[1] = 3; and Sp[1] is swapped with
So[3], which implies that (S1[1], S1[3]) = (So[3], So[1]). Then, in the 2nd round,
Jo = j1 + S1[2] = 3+ Sp[2] = 1; and S;[2] is swapped with Si[1], which implies
that S2[3] = S1[3] = 3. Thus, in the 3rd round, we get j3 = j2 + S2[3] = 4. Note
that Sp[1] is swapped with Sp[3] if and only if Sp[1] = 3.

If So[1] # 2,3,4; So[3] # 0,1; and Sp[1]+ So[2]+ So[3] = 4, then S;[2] = Sp[2];
S1[3] = So[3]; and Sp[1] + Sp[2] # 3. This implies that S;[3] is not swapped with
S1[2] and that S»[3] = Si[3]. Thus, we get jz = So[1] + So[2] + So[3] = 4. To
sum up all conditions which are independent of each other, Prob [Event[3]] =

2(2N—3
N + N(N 1) + N(N o+ NJ(VN 31) = ]\(T(N—li' O

3.3 Transitions of AState[0] on the nonzero bit difference

This subsection shows Theorem 4, which describes each transition of the initial
state AState[0] and the probability of its occurrence in Event[2] . The state
diagram is given in Figure 7.

AState[0]

(Jr ') = (dfo[1], dfo[2])

or
(Jr 31} = (dfo[2], dfo[1])

Theorem 4. Assume that two permutations S and S" are in the state of differ-
ences AState[0] in the (r — 1)-th round.

(1) The state changes to AState[3] (resp. AState[3'], resp. AState[4], resp. AState[4'],
resp. AState[5], resp. AState[6]), if [, = dfo[2]]A[j]. & Diffo] (resp. [j,. = dfg[2]]A

[7» & Diffo], resp. [j» = dfo[1]] A [j. & Diffo], resp. [j. = dfp[1]] A [j» & Diffo],
resp. jr, jr & Diffy, resp. jl,j. € Diffy), where

Jlr' den[Z] _; —dfn _-f —dfu[
! EDiffu gr = dfol2)” eD.frn J, ¢ Diff,

Jr & Diffg JrJdr & Diffy

Fig. 7. State Diagram of PRGA in Event[2

AState[3] : [AS,[z] # 0 <= =z € Diffs] A [Aj, # 0],
AState[3'] : [AS,[z] # 0 <= z € Diffs/] A [Aj. # 0],
AState[4] : [AS,[z] # 0 <= z € Diff4] A [Aj. # 0],
AState[4'] : [AS,[z] # 0 <= z € Diffy] A [Aj. # 0],
AState[5] : [AS,[z] # 0 <= z € Diff5] A [Aj, #0],
AState[6] : [[AS,| = 0] A [Ajr # 0],



where

DiffS’ = {df3’[1]v df3’ [2]} = {df()[l] .77‘} = {irajr}a

Diffy = {df4[1],df4[2], df4[3]} = {dfo[1],dfo[2],5;} = {ir, dfo[2], 4.},
Diffy = {dfy/[1],df 4 [2], df 4 [3]} = {dfg[1],dfo[2],5-} = {ir,dfo[2],7-},
Diff5 = {df5[1],df5[2], df5[3], df5[4]} = {dfo[1], dfo[2], jr, j.} = {ir, dfo[2], jr, j.}-

(2) Each transition occurs with the following probability, if j is distributed ran-
domly:

Prob [AState[3] V AState[3']] = Prob [Event[2]] - 13,((]]\[\,:21)),
N

[AState] [Event]
Prob [AState[4] V AState[4']] = Prob [Event[2]] - ]%,((N:?)a
Prob [AState[3] = Prob [Event[2]] - L2 (V=5),
Prob [AState[6]] = Prob [Event[2]] - m

proof: (1) It is clear that j. # j. in each case, since Aj, = Aj._; +ASr 1lir] =
AS,_1[ir] # 0. In the case of j, = df0[2] and j,. & Diffy, S,._1[i,] = Sp_1[dfo[1]] =
a is swapped with S,_1[j.] = b; 1ir] = S._y[dfo[1]] = b is swapped with
S!_1[jr], which implies that S 71[df0[ ]] = a remains the same. Thus, we get
AS,[z] # 0 <= x € Diffz after the r-th round. In the case of j. = dfy[2] and
jr & Diffy, the same also holds.

In the case of j, = dfy[1] and j.. & Diffq, i, = j. = dfp[1] occurs; S,_1[i,] =
Sy—1[jr] = a remains the same; and S._,[i,] = b is swapped with S| _,[j,], Thus,
we get AS,.[z] # 0 <= z € Diff, after the r-th round. In the case of jI. = dfg[1]
and j, ¢ Diffy, the same also holds.

In the case of j.,j. & Diffg, Sp_1[ir] = a (resp. S,._[i»] = b) is swapped
with S,_1[j-] (resp. S|._,[j.]), where nonzero-bit difference did not exist; and
both S,._1[dfp[2]] = b and S|._;[dfo[2]] = a still remain the same. Thus, we get
AS,[z] # 0 <= z € Diff5 after the r-th round.

In the case of (j,, j.) = (dfo[1],dfo[2]), S._[ir] = Si._;[dfo[1]] = b is swapped
with S!_[j.] = S._,[dfo[2]] = a while both S,_4[i.] = S-—1[j»] = a and
Sy—1[jr] = b remain the same. Thus, all nonzero-bit differences disappear af-
ter swapping in the r-th round. The same also holds in the case of (j.,j.) =
(dfo[2], dfo[1]).

(2) The probability that each state will occur follows from the above discussion.
a

4 Correlation between outputs and state transitions

This section analyzes the differences between outputs of two permutations S and
S’ in each transition described in Section 3, where two initial permutations S
and S’ are in the state of differences AState[0].
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4.1 Owutputs before the nonzero-bit difference

This subsection investigates the correlation between outputs of two permutations
in each transition before the first nonzero-bit difference (i.e. i < dfy[1]). The
states of differences of two permutations in any round r < dfg[1] are AState[0],
AState[1], or AState[2] from Theorem 1. The probability that both outputs of
permutations are equal, Prob[AZ = 0], is given in the next theorem.

Proposition 1 Assume that two initial permutations S and S’ are in the state
of differences AState[0] in the (r — 1)-th round, and that Event[1] occurs in the
r-th round. Then, Prob[AZ = 0] in each state is as follows:

N-2 2 2
Prob[AZ = 0] =
rob| I=—F~—~y-o " ~n-D

if AState[0], AState[l], or AState[2] occurs, respectively.

proof: Theorem 1 has shown that
- Ajr =0 and j,,i, ¢ Diffy if AState[0],
- Aj, =0, i, € Diff; and j, ¢ Diffy if AState[l1],
- Aj,. =0, i, € Diffy and j,. ¢ Diffy if AState[2].
Then, the necessary and sufficient conditions for AZ = 0 in each state are as
follows.
° IﬁWASState[O] : AZ =0 <= [A(S,[ir] + Sr[Jr]) = O] A [Sr[ir] + Sr[jr] € Diffo]
< S,[ir] + S:-[j-] & Diffo
Thus, Prob[AZ = 0] = 822
In AState[l]: AZ =0 <= [A
S‘r‘
Thus, Prob[AZ =0] = ( —
In AState[2]: AZ =0 <= [A(S

Sy liv] + Seldr]) # O] A [Spliv] + Si[ir], SLliv] + SL[j.] € Diffy]
o)+ Siliel S1ir] + vl € Diff
since #Diff; = 2 and S,[i;)] + Sr[jr] # Si.lir] + SLljr]-
rlir] + Seljr]) # O A [Se[iv] + Se[fr], Silin] + Sp1jr] € Diffs]
S‘r‘ vl + Srljrl, Silir] + Sy [jr] € Diffs
Thus, Prob[AZ =0] = N(N 5 since #Diff; = 2 and S,[i,] + S;[jr] # S,[ir] + S,[jr]-
From the above, Proposition 1 follows. O

From Theorem 1 and Proposition 1, the probability of Prob[AZ = 0] if r <
dfo[1] (i.e. i < dfp[1]) can be computed as follows.

.—|A

[}

v '_‘Av

Corollary 2 Assume that two initial permutations S and S" with Diffy = {dfo[1], dfo[2]}

: _ol= (N=2)° 4 :
are given. Then, Prob[AZ—O]—( N ) +N2(N_1),zfr<df0[1].

4.2 Outputs on the nonzero-bit difference

This subsection investigates the correlation between outputs of two permutations
in each transition when r = dfy[1] (i.e. i = dfp[1]). The probability that both
outputs are equal, Prob[AZ = 0], is given in the next theorem.



11

Proposition 2 Assume that two initial permutations S and S’ are in the state
of differences AState[0] in the (r — 1)-th round, and that Event[2] occurs in the
r-th round. Then, Prob [AZ = 0] in each state is as follows:

Prob[AZ = 0] = NRrN ) if AState[3] vV AState[3']
Prob [AZ = 0] = NRrN 5 + N(N iy if AState[4] V AState[4’]
Prob[AZ = 0] = R (13 7y if AState[5]
Prob[AZ = 0] = if AState[6]

proof: Let c and ¢’ € [0, N—1] be values in positions of j,. and j/. before swapping
in the r-th round, that is, (¢,¢') = (Sr—1[jr], St_1[j.]). On the other hand,
(a,5) = (Sy_1[dfo[1]], Sr1 [dfol2]]) = (Si_, [dfo[2]], S1_ [dfo[1]]). (See Figure 2).
Theorem 4 has shown that:

Astate[3] : (S,[ir], Sylir]) = (b, a) A (SLlir), SLLiL]) = (¢/s) (e e = band & # a,b);
Astated]: (Sylir], Sr1jr]) = (a,0) A (S1[in], SHJ) = (¢,B) (ie. a = c and ¢ # a,b);
AState[5] : (Sy[ir], Sr[jr]) = (¢, a) A (SL[ir], SL[GL]) = (¢, b) (i.e. ¢ # c and ¢, ¢ # a,b);
AState(6] : AS, = 0, (S,[i.] S, ) = (a,a) A (S2[ir]. S = (a,b) (e ir = jy )

or AS, =0, (Se[ir], Sr[jr]) = (b,a) A (Splir], Sp[57]) = (b,0) (ie. ir = jp).
Therefore, the necessary and sufficient conditions of AZ = 0 in each state are

as follows.

In AState[3]: AZ =0

& [Splir] + Se[jr], Splir] + S,[4;] € Diffs] A[A(S,[ir] + Sp[7:]) # O]

Aand [(a’ + bv ¢+ b) = (dfO[l]aj:ﬂ)a (.7:«: dfO[l])]

Thus, Prob[AZ = 0] = y—y since a +b # ¢’ + b always holds.

The same reasoning holds in the case of AState[3'].

In AState[4]: AZ =0

= [[A(S:[ir] + S:[2]) = O] A[S,[ir] + Si[dr] & Diffa]] VI[A(S:[ir] + Sr[5]) # 0]A
[So[ir] + Srlin], Shlin] + Spljr] € Diffa] A Sy[S[iv] + Sp[iv]] = Sy [Sy[ir] + S35 ]]]

<= R2a=c+bA2a¥¢ lef4] VI[(2a, c +b) = (ir,dfo[2]), (4., %), (dfo[2],ir)].

Thus, Prob[AZ =0] = N 2) + N(N Ty

The same reasoning holds in the case of AState[4'].

In AState[5]: AZ =0

= [[A(S [ir] + Sr[jr]) = O] A [Sr[ir] + Sr[jr] & Diffs]] V[[A(S,[ir] + Sr[jr]) 7 0]A
[Seliv] + Seld2], Sylin] + S,[57) € Diffs] A Sp[Sr[ir] + Spldr]] = S3[S,[ir] + S,.[5:]]]

= c+a=c +bAc+a¢Diffs]\V
[(a' + & b + cl) = (dfo[l]vjr)v (jra dfO[Q])v (df0[2]7-77l“)]7 (]7’4, dfO[l])]a

Thus, Prob[AZ = 0] = 355 + yv—1)-

In AState[6] : Prob[AZ = 0] since A(Sy[ir] + Sr[jr]) # 0 and AS,. = 0.

From the above, the proposition follows. O

The probability Prob[AZ = 0] when i = dfy[1] follows immediately from Theo-
rem 4 and Proposition 2.

Corollary 3 Assume that two permutations S and S’ in the (r — 1)-th round
are in AState[0] and Event[2] occurs in the r-th round. Then, the probability that
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both outputs are equal in the r-th round, Prob[AZ = 0], is given as follows:

Prob[AZ = 0] = Prob [Event[2]] - <N2 —4N+2 202N - 1)(N - 2))

N2(N -1) N2(N —1)?
From Corollaries 2 and 3, we get the following theorem.
Theorem 5. Assume that two initial permutations S and S’ with

Diffy = {dfp[1],dfo[2]} are given. Then, the probability P, = Prob[AZ = 0] in
the round r = dfy[1] is given as

on 2_ (AN 1) (N —
P=P- ((%)2 + m) +(1-P)- (%2(;52-{)2 + 2(2]\]]\&(]5)_(1;!)22)) )

=P ((N72)2 N2_4N-_2 2(2N71)(N72)) 4 N2_aN42 | 22N-1(N-2)

N T NZ(N-1) =~ NZ(N-1)2 NZ(N-1) NZ(N—1)2

where P = Prob [Event[3]].

proof: The state of differences between two permutations has the Markov prop-
erty. Therefore, the probability Prob[AZ = 0] in r = dfy[1] is determined only
by the state in the r-th round, where either Event[2] or Event[3] occurs. Theo-
rem 5 follows from this fact. O

The second term of (1 — Py) - (N2_4N+2 + 2(2N_1)(N_2)) can be dealt with

NZ(N-1) NZ(N-1)
as an error term if dfp[1] is large, which will be discussed in Section 5.

5 Experimental Results and New Bias

This section shows experimental results of Theorems 2, 3, and 5, and Corol-
lary 2 in Sections 3 and 4. All experiments were conducted under the following
conditions: execute KSA of RC4 with N = 256 for 10® randomly chosen keys
of 16 bytes, generate the initial permutation Sy, and set another initial per-
mutation S; with Diffy. Experiments are executed over the following sets of
Diffg: dfg[1] = 2,---,255" for Theorems 2 and 3; and Diffy = {dfy[1],dfo[2]} =
{2 — 254,255}, {2,3 — 255}, and {3,4 — 255} for Theorem 5 and Corollary 2.

The percentage absolute error € of experimental results compared with theoreti-
ental value—theoretical value| x 100(%)

cal results is computed by e = ¥R ‘
experimental value

which is also used in [10].

5.1 Experimental Results of Event[3]

Figure 8 shows experimental results of Prob [Event[3]] and its associated percent-
age absolute error, where the theoretical value is computed by Theorems 2 and
3. The horizontal axis represents dfo[1] = 2, - -, 255. The left side of vertical axis
represents Prob [Event[3]], and the right side represents the percentage absolute
error. Table 1 shows the cases of dfy[1] < 6 in detail.

Ouly the cases of 2 < dfg[1] < 6 give the percentage absolute error € > 5,
and, thus, our theoretical formulae closely match the experimental results if

! Event[3] does not depend on dfo[2]. See Theorems 2 and 3.
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dfg[1] > 6. The initial permutation Sy, that is the output of KSA, has a great
influence on Event[3] when dfg[1] is small. Our results indicate that the bias in
So is propagated to Prob[Event[3]] as the bias in Sy has been reported in [8,2,
10].

Figure 8 also indicates that the nonzero bit difference in the position dfg[1]
moves to another position until i = dfg[1] with Prob [Event[3]] > 30% when
dfp[1] > 93 and, thus, the correlations between S and S’ such as Aj = 0 and
|AS| = 2 remain the same until ¢ = dfy[2].

5.2 Experimental Results of Outputs

Figure 9 shows experimental results of Prob[AZ = 0] in r = dfp[1] — 1, dfg[1],
and dfg[1] + 1, and percentage absolute error in r = dfp[1] (i.e. i = dfp[1] — 1),
where the theoretical value is computed by Theorem 5. The horizontal axis repre-
sents dfp[1] = 2, -+ ,254. The left side of vertical axis represents Prob [AZ = 0],
and the right side represents the percentage absolute error. By using the exper-
imental results, we investigate each case of outputs before or on the nonzero-bit
difference.

Outputs before the nonzero-bit difference:

Let us discuss Prob[AZ = 0] in r = dfy[1] — 1 (i.e. i = dfp[1] — 1) for dfy[1] =
2,---,254. The probability is theoretically estimated in Corollary 2. Our theo-
retical and experimental results indicate that both outputs of two permutations
are coincident with a high probability Prob[AZ = 0] > 0.98 during i < dfy[1]?.

Let us discuss® Prob[AZ = 0] in r = dfg[1] + 1 for dfg[1] =2, - - , 253, where
dfo[1]4+1 =i < dfp[2]. Actually, it corresponds to the case in which 4 is before the
nonzero bit difference dfy[2] since dfg[1] + 1 is an index of nonzero bit difference
when i = dfp[1] + 1 from the fact of dfp[1] + 1 < dfp[2].

Our experimental results show that Prob[AZ = 0] in the round dfp[1] + 1 is
almost the same as in the round dfy[1], which reflects the results in Theorem 1.
To sum up, we see that it is highly probable that both outputs of permutations
are coincident as long as ¢ does not indicate the index of nonzero bit difference
in the current round.

Table 1. Experimental results with € > 5 of Event[3]

|dfo[1][Theoretical value[Experimental value| (%) ]

2 0.003906 0.005350 26.991
3 0.007797 0.009069 14.027
4 0.015548 0.018221 14.667
5 0.015534 0.016751 7.265
6 0.019379 0.020501 5.472

? Similar experimental results to 4 = dfo[1] — 1 hold during i < dfo[1] — 1.
% The case of dfy[1] = 254 is omitted since i indicates the second nonzero bit difference
dfo[2] = 255.
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Outputs before the nonzero-bit difference:
Let us discuss Prob[AZ = 0] in r = dfg[l], where there exists originally* a
nonzero-bit difference. Prob[AZ = (] is estimated theoretically in Theorem 5.
From the fact that the percentage absolute error € < 1 holdsin 2 < Vdfy[1] < 254,
we see that our theoretical formulae closely match the experimental results in
any Diffy.

Let us discuss the relation between two events of AZ = 0 and Event[3] in
r = dfy[1]. Figures 8 and 9 show that dfy[1] satisfying Prob[AZ = 0] > 30%
is almost the same as dfy[1] satisfying Prob [Event[3]] > 30%. In fact, P, =
Prob [AZ = 0] in the round dfo[1] deeply affects P, = Prob [Event[3]] as we have
seen in Theorem 5. Figure 10 shows the comparison between P; and P, for

2 < dfp[1] < 255, where two percentage absolute errors are listed, €; = “DzT:Pl‘
and e = ‘P2_(theomticl‘;;)PrOb[Eve"t[SH‘ for experimental values P; and P». The hori-
zontal axis represents dfo[1] = 2,- -+ ,254. The left side of vertical axis represents

Prob [AZ = 0], and the right side represents the percentage absolute error. Ex-
perimental results show that ¢; < 5 (resp. 10) if dfg[1] > 15 (resp. dfp[1] > 9)
and, thus, we see that the observable event AZ = 0 can indicate that the internal
event Event[3] occurs with extremely high probability.

Figure 11 shows experimental results of Prob[AZ = 0] in the round dfp[1] = 3
in each case of 4 < dfg[2] < 255 (dfp[1] = 3), and percentage absolute error.
The horizontal axis represents dfg[2]. The left side of vertical axis represents
Prob [AZ = 0], and the right side represents the percentage absolute error. The
percentage absolute error € < 0.8 holds in 4 < Vdfy[2] < 255. We see that
our theoretical formulae closely match the experimental results independent of
another nonzero-bit difference dfy[2].

5.3 Experimental Results of biases in Sp[1] and Sp[2]

Let us discuss Event[3] when dfg[1] = 3 in detail, where the error € > 10 (Ta-
ble 1). Theorem 3 says that both Sp[1] and Sp[2] determine Event[3], that is,
Event[3] <= [So[1] = 3] V[So[1] # 2,3 A So[1] + So[2] = 3]. Here we investigate
the bias in Sp[1] and Sp[2] from the point of view of Event[3].

Figure 12 shows experimental results concerning the occurrence of Sy[1] with
0 < Sp[1] < 255, and the percentage absolute error, where the theoretical value
(a random association) of occurrence of each Sp[1] is % = 3.906 x 1073, Figure 13
shows experimental results concerning the occurrence of Sp[2] when Sp[1] = 3,
and the percentage absolute error, where the theoretical value (a random asso-
ciation) of occurrence of each (Sp[1] = 3, So[2]) is m =1.532x 107°. The
horizontal axis represents Sp[1] or Sp[2]. The left side of vertical axis represents
each probability, and the right side represents each percentage absolute error.

These experimental results indicate a non-uniform distribution of Sp[1] and
So[2] when Sp[1] = 3. Tables 2 and 3 show some cases that indicate a non-uniform

* If Event[3] has occurred in the round r < dfo[1], then df[1] is not an index of nonzero
bit difference.
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distribution as follows:

Prob [Sp[1] = 3] = 5.303 x 1072 > 3.906 x 1073,
Prob [So[1] = 3 A Sp[2] = 2] > 2.0 x 107° > 1.532 x 10~ for Va < 135,
Prob [So[1] = 3 A 0 < Sp[2] < 128] = 3.05299 x 102 > 1.9531 x 10,

These non-uniform distribution will be used for a new cryptanalytic analysis in
Section 6.

Table 2. Probability of occurrence Sp[1]

| So[1] | Probability of occurrence So[1]

0-9 {/0.0039 0.0039 0.0054 0.0053 0.0053 0.0053 0.0053 0.0052 0.0052 0.0052
10 - 19{|0.0052 0.0052 0.0052 0.0052 0.0052 0.0051 0.0051 0.0051 0.0051 0.0051
20 - 29(/0.0051 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0049 0.0050 0.0049
30 - 39(/0.0049 0.0047 0.0049 0.0049 0.0048 0.0049 0.0048 0.0048 0.0048 0.0048

Table 3. Probability of occurrence Sp[2] in So[1] =3

| So[2] | Probability of occurrence Sp[2] in Sp[1] =3
0-6 |/0.0000211 0.0000227 0.0000207 - 0.0000286 0.0000280 0.0000281
7-13 1|0.0000280 0.0000278 0.0000286 0.0000277 0.0000278 0.0000270 0.0000274
14 - 20 {|0.0000273 0.0000270 0.0000271 0.0000270 0.0000270 0.0000269 0.0000269
108 - 1141|0.0000216 0.0000213 0.0000213 0.0000206 0.0000216 0.0000207 0.0000219
115 - 121}|0.0000212 0.0000216 0.0000204 0.0000207 0.0000210 0.0000202 0.0000218
122 - 128|0.0000210 0.0000211 0.0000206 0.0000206 0.0000205 0.0000208 0.0000206

6 A new cryptanalytic analysis

Here we investigate how to analyze the internal state of S or j. Assume that
two permutations S and S’ with Diffy = {dfy[1], dfo[2]} in the initial round are
given, and that both outputs of PRGA are observable.

Then, by observing both outputs Z and Z' of PRGA, we can recognize the
index of the first nonzero-bit difference from the first round in which both outputs
are not equal. This is investigated in Section 5.2. Therefore, if neither dfy[1] nor
dfp[2] are known, the first nonzero-bit difference is predictable.

Consider the case of dfg[1] = 2. By checking whether AZ = 0 in the 2nd
round, we can recognize whether Event[3] has occurred. If Event[3] has oc-
curred, then Sp[1] = 2 holds from Theorem 3. The experimental result shows
Prob [Event[3] | dfp[1] = 2] = 0.005350 (see Table 1). However, if we try to pre-
dict Sp[1] from a random association, then the probability is 1/256 = 0.003906.
Therefore, one can guess Sp[1] with an additional advantage of W X
100 = 36.9 %.

Consider the case of dfp[l] = 3. By checking whether AZ = 0 in the 3rd
round, we can recognize whether Event[3] has occurred. Let us discuss how to
predict both Sp[1] and Sp[2]. If Event[3] has occurred, then [Sp[1] = 3]V [So[1] #
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2,3 A Sp[1] + So[2] = 3] holds, from Theorem 3. In the case of Sp[1] = 3, the
experimental results show that Prob [Event[3] | dfp[1] = 3] = 0.009069 (see Ta-
ble 1) and Prob [Sp[1] = 3] = 0.0053 (see Table 2). On the other hand, we pre-
dict Sp[2] with the probability 1/255. Therefore, we can predict (So[1], So[2])
with the probability 0.0053 x 1/255 = 2.078431 x 10~°. In the case of [Sp[1] #
2,3ASo[1]4+So[2] = 3], if Sp[1] is predicted, then Sp[2] can be predicted promptly.
We find that Prob [Event[3] A [So[1] # 2, 3] A [So[1] + So[2] = 3]] = (0.009069 —
0.0053) x 1/254 = 1.483858 x 103, Therefore, we can predict (So[1], So[2]) with
the probability 1.483858 x 10~°. Taking both together, the probability to predict
(So[1], So[2]) is 2.078431 x 10~ + 1.483858 x 105 = 3.562289 x 107, On the
other hand, if we try to predict (Sp[1], So[2]) from a random association, then
the probability is 1/256 x 1/255 = 1.531863 x 10~°. Therefore, one can guess

(So[1],So[2]) with an additional advantage of 2:202285-L331863 » 100 = 132.54
%.

7 Conclusion

In this paper, we have investigated, for the first time, correlations between two
permutations, S and S’, with some differences in the initial round. We have
shown that correlations between two permutations S and S’ remain before “i”
is in the position where the nonzero-bit difference exists in the initial round, and
that the correlations remain with non negligible probability even after “4” passed
by the position. All theoretical results have been confirmed experimentally.

Our results imply that the same correlations between two permutations will
be observed with non negligible probability after the 255-th round. This reveals
a new inherent weakness of shuffle-exchange-type PRGA. We have also investi-
gated how to predict inner states such as S and j and shown that we can guess
inner states with an additional advantage.
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