
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Browsing Sport Content Through an Interactive

H.264 Streaming Session

Author(s)
Fernández, Iván Alén; Chen, Fan; Lavigne, Fabien;

Desurmont, Xavier; De Vleeschouwer, Christophe

Citation mmedia: 155-161

Issue Date 2010

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/9094

Rights

Copyright (C) 2010 IEEE. Reprinted from Iván Alén

Fernández, Fan Chen, Fabien Lavigne, Xavier

Desurmont, Christophe De Vleeschouwer, "Browsing

Sport Content through an Interactive H.264

Streaming Session", mmedia, pp.155-161, 2010

Second International Conferences on Advances in

Multimedia, 2010. This material is posted here

with permission of the IEEE. Such permission of

the IEEE does not in any way imply IEEE

endorsement of any of JAIST's products or

services. Internal or personal use of this

material is permitted. However, permission to

reprint/republish this material for advertising

or promotional purposes or for creating new

collective works for resale or redistribution

must be obtained from the IEEE by writing to

pubs-permissions@ieee.org. By choosing to view

this document, you agree to all provisions of the

copyright laws protecting it.

Description
2010 Second International Conferences on Advances

in Multimedia, Athens, Greece, June 13-June 19

Browsing Sport Content
Through an Interactive H.264 Streaming Session

Iván Alén Fernández∗, Fan Chen∗, Fabien Lavigne†, Xavier Desurmont‡ and Christophe De Vleeschouwer∗
∗ TELE, Université Catholique de Louvain-la-Neuve, Belgium

Email: {ivan.alen,fan.chen,christophe.devleeschouwer}@uclouvain.be
†Département TCTS, Université de Mons, Belgium

Email: Fabien.Lavigne@umons.ac.be
‡Image department, Multitel, Mons, Belgium

Email: desurmont@multitel.be

Abstract—This paper builds on an interactive streaming architecture
that supports both user feedback interpretation, and temporal juxta-
position of multiple video bitstreams in a single streaming session.
As an original contribution, these functionalities can be exploited to
offer improved viewing experience, when accessing football content
through individual and potentially bandwidth constrained connections.
Starting from a conventional broadcasted content, our system automat-
ically splits the native content into non-overlapping and semantically
consistent segments. Each segment is then divided into shots, based
on conventional view boundary detection. Shots are finally splitted in
small clips. These clips support our browsing capabilities during the
whole playback in a temporally consistent way. Multiple versions are
automatically created to render each clip. Versioning depends on the
view type of the initial shot, and typically corresponds to the generation
of zoomed in and spatially or temporally subsampled video streams.
Clips are encoded independently so that the server can decide on
the fly the version to send as a function of the semantic relevance
of the segments (in a user-transparent basis, as inferred from video
analysis or metadata) and the interactive user requests. Replaying
certain game actions is also offered upon request. The streaming is
automatically switched to the requested event. Later, the playback is
resumed without any offset. The capabilities of our system rely on the
H.264/AVC standard. We use soccer videos to validate our framework
in subjective experiments showing the feasibility and relevance of our
system.

Keywords-interactive streaming, browsing capabilities, clip segmen-
tation, view type detection, H.264/AVC.

I. INTRODUCTION

Mobile streaming service of on demand video content through
cell phone is becoming one of the highlights of new value-added
mobile services and it is commonly related to sports content. Lately,
the number of applications for this purpose developed on smart
phones increased dramatically and more and more multimedia
content is proposed on these devices. In addition to this, video
streaming is a technology that has gained large public attention
over the last few years. The latest MPEG-4 standard for video
compression, H.264, has been the subject of many studies in the
field of streaming [1][2][3]. In our framework, we focus on interac-
tive functionalities and propose a streaming architecture that offers
browsing capabilities to any client using an H.264/AVC compliant
player. Our system builds on an application, which targets adapting
TV sport broadcasting content for mobile terminals.

Video analysis and processing have been largely investigated to
identify regions or periods of interest in sport events broadcasting
context, as reviewed by [4]. This knowledge is typically used to cre-
ate zoomed-in content, more suited to low bandwidth (and thus low
resolution) accesses. Several proposals to create summaries of sport

events have also been developed based on semantic knowledge
about the scene content, as proposed by [5]. Together, those Region
of Interest (RoI) detection and video summarization mechanisms
can a priori support the generation of valuable content for mobile
accesses. This is because mobile users generally want to access
summarized versions of the content at a small resolution. However,
such automatic generation of zoomed-in summaries strongly relies
on the accuracy and reliability of the knowledge available about
the content of the scene. To deal with the imperfections of practical
and real-life fully automatic video analysis systems, our interactive
streaming architecture allows the end-user to switch from the native
and spatially sub-sampled content to a zoomed-in and/or temporally
compacted mode, depending on his/her viewing preferences and
on the content of the scene. Knowledge about video view-type
and hot spots (goals, etc) of the game is also exploited to reduce
the interaction load on the user. Typically, zoomed-in is only
considered for far views, and fast-forward mode is systematically
disabled when entering a semantically important period of the
game.

Our framework proposes to allow the end-user to decide about
the version of the content (s)he would like to visualize. Hence, the
automatic system produces one or several versions of the content,
and the user gets the opportunity to switch interactively between
the versions. Typically, the (automatically) produced low-resolution
versions include a sub-sampled version of the native video, plus one
zoomed-in (and cropped) version for far camera views, focusing on
the region-of-interest detected in the original high-resolution video.
An alternative sub-sampled version in fast forward speed mode
is also provided during the whole sequence. In our framework,
replays of hot spots actions are also proposed to the user just by
switching the playback to a highlight/prominent action displayed
formerly. In practice, client-transparent switching between versions
is enabled by splitting each produced video in short clips that
are temporally pipelined by the server, based on user’s requests.
From the client’s perspective, everything happens as if a single pre-
encoded video was streamed by the server. Therefore, the global
viewing experience is drastically improved by using the featured
capabilities. In the following, the set of clips resulting from this
versioning process and the associated organizational information
are referred to as enriched or enhanced content.

In the context of real-life and large scale deployment of the
system, one could imagine to monitor how the end-users actually
visualize the content, so as to cancel the non-accessed versions
from the available list of clips. This mechanism has not been

2010 Second International Conferences on Advances in Multimedia

978-0-7695-4068-9/10 $26.00 © 2010 IEEE

DOI 10.1109/MMEDIA.2010.28

155

considered in our experiments, but would be easy to implement
on top of our architecture.

The remaining of the paper is organized as follows: Section II
presents the proposed architecture for interactive video streaming,
through client-transparent temporal concatenation of pre-encoded
video clips. In Section III, we describe how the soccer game is
divided into clips based on the monitoring of production actions,
and how several versions are generated to offer multiple rendering
opportunities for each clip. In Section IV, we introduce the inter-
active commands that are offered to the client to improve his/her
viewing experience and the strategy that is followed to provide the
browsing capabilities based on the semantic segmentation of the
game. Finally, Section V presents some qualitative results, while
Section VI concludes.

II. INTERACTIVE BROWSING ARCHITECTURE

The main objectives of our architecture is to offer interactivity to
any client of a video streaming session when using an H.264/AVC
compliant player, based on the content pipelining feature. As
depicted in Figure 1 the communication is established with the
client through the Real Time Streaming Protocol (RTSP).

A. Architecture of the Streaming Server

The architecture proposed in a previous work by the authors [6],
is now extended to a real scenario by developing the session control
to offer the new browsing capabilities using its main feature: the
temporal content pipelining. For this purpose the RTSP control
messages are also extended and the segmentation (and metadata
associated to it) is managed in a temporally consistent way.

The architecture on the server side is composed of 3 main
components: the enhanced content creation unit, the streaming
server and the session control module.

1) The Enhanced Content Creation Unit fills the Video Content
Database, without actively taking part afterwards in the streaming
system. Its purpose is threefold:

• It analyzes the TV like video content to identify regions-of-
interest and produce several multiview replay or zoomed-in
versions of the content, as described in Section III-B2.

• It divides the video sequences in small pieces that are encoded
based on H.264 according to the requirements explained in
sections II-B and III-A.

• It generates the metadata (shown in Section II-C) that are
required to model and define the interactive playing options
associated to the different clips. Therefore, the metadata
information is used by the session control to monitor the
streaming session in response to the interactive user requests.

2) The Streaming Server Module is the core of the system, which
supports client-transparent interactive streaming through on-the-fly
content pipelining. Client-transparent temporal content pipelining
allows the server to stream multiple successive video streams in a
single session, without negotiating with the client the establishment
of a new streaming session. Hence, with this feature the server is
able to change the streamed content while maintaining a unique
output stream and keeping the existing session uninterrupted. As a
result, both a temporal and computational gain are achieved as the
client does not need to establish more than one streaming session.
The streaming server delivers all the data content through the Real-
time Transport Protocol (RTP).

Figure 1. Diagram of the architecture’s workflow

3) The Session Control Module determines, at every moment,
which video clip has to be transmitted next. This unit consequently
decides the video clips that are concatenated based on requests
from the client, and on versions offered by the enhanced content
creation unit. Therefore, the session control is an essential part of
the system, as it monitors almost any information flowing through
the system.

B. Temporal pipelining

Temporal content pipelining is the technique that allows a
streaming server to juxtapose multiple streams in a single con-
tinuous sequence, so that multiple streams can be forwarded to
the client through a unique streaming session. The key for imple-
menting this functionality is the session control module using the
advanced features of the H.264 codec [7], regarding the encoding
parameters transmission.

The H.264 standard defines two kinds of parameter sets: se-
quence parameter sets (SPS) and picture parameter sets (PPS). The
first applies to a wide range of images, while the latter only to
particular pictures. Every Network Adaptation Layer (NAL) unit
containing data information (VLC NAL unit with VLC standing for
Video Coding Layer), includes in its header a parameter linking it
to a PPS, which in turn links to a specific SPS. In our proposed
framework, the SPS updates are always neccesarily sent between
two pipelined segments. In fact, all clips are encoded independently
from each others. Since the first NAL unit of an H.264 segment
always contains the SPS and the PPS, multiple sequences can be
transmitted consecutively without any interruption, and the output
is still compliant to the H.264 standard. On the client’s side, a
unique sequence is received, which however, is built step by step
by the server.

C. Session Control and Metadata

The session control processes the user’s feedback and uses
the metadata associated to the clips, to decide the next clip
to be delivered. The metadata information is generated by the
enhanced content creation and is stored within a Extensible Markup
Language (XML) file.

Two different kinds of temporal relationships between clips are
introduced, as depicted in Figure 2. Case A typically corresponds to
an optional inclusion of a replay within the stream. The sequence
playback is resumed after the additional content without any offset.
The same relationship can be considered if target advertising is
inserted in the stream according to the user preferences. In contrast,
case B considers contending versions, and only one version is

156

Case A Case B

Original Sequence

Related Segments

Figure 2. Metadata considered structures

actually included in the output stream. As an example, several
video resolutions (zooming) and fast-forward/regular speed mode
are taken into account.

When temporal continuity is required, switching can only occur
at the intersection between two consecutive clips. Those instants
are depicted with vertical dashed lines in Figure 2. For this reason,
the sequences have to be divided in very small clips as each clip
has to be completely delivered before switching. Otherwise the
browsing capabilities would only be offered in a coarse granularity
basis.

In the case that temporal continuity is not required, as happens
when the user wants to skip some non-relevant content, any
buffered data in the server is discarded, so as to start reading the
new clip file as soon as possible, thereby reducing to the minimum
the overall latency associated to the switching mechanism. Like
in the previous cases, the playback proceeds without causing
any decoding error and the streaming behavior is not damaged,
performing the switching flawlessly.

D. Interaction with the Client’s Video Player

The system’s interactivity relies on the RTSP commands that are
exchanged between the server and the client. The user must be able
to send a switching command, which induces a system response
according to its content. The browsing features are then triggered
by sending the appropriate request to the server.

A standard RTSP message is used by the client player to
communicate its feedback. The considered RTSP command in our
architecture is OPTIONS, as described in [8]. Combined with the
header Require, it provides an efficient and simple way to signal
user’s feedback during the transmission. A specific value in the
field of this header such as “Switching-feature”, directly associates
the RTSP command with the browsing capabilities of our server.
A new line in the header, starting like “Switching-Parameter: ”
signalizes and conveys the different possible requests of the user
(zooming, replay or fast forward mode). The mentioned interactive
requests are associated one-by-one to new-functional buttons of
the player’s interface. These buttons consequently trigger a RTSP
command from the user side when they are pressed.

III. CLIPS DEFINITION AND VERSIONING

This section explains how a broadcasted video content is split
into non-overlapping clips. It then associates a discrete set of
versions to each clip, depending on their view type. In Section
III-A, the clip definition relies on video shot extraction. A shot
is defined as a portion of the broadcasted video that has been
produced with constant or smoothly evolving camera parameters.

The reason why we define clips based on video shots is because,
as explained in Section III-B1, the versions that are available for a
portion of video directly depend on the characteristics of the shot
(replay, far or close view, etc). Hence, switching between versions
should be allowed between shots, meaning that a boundary between

shots should also define a boundary between clips. By first dividing
the video into a sequence of shots and dealing each one with
different strategies according to the view type provides a reasonable
and computationally efficient base for further processing.

A. Clips Definition based on Shot Boundary Detection

On the one hand, as explained above, clips should be at least
delimited by shot boundaries. On the other hand, by definition
(see Figure 2), the switching operations are limited to the border
of the clips. Hence, reducing the size of the clips below the one of
the shots is required to offer the switching capabilities that are
available into each view type shot. In our implementation, the
segmentation of the video in clips is thus based on the monitoring
of the production actions using shot boundary detection and then,
a finer segmentation in clips. The last segmentation, in principle
as fine as possible, is based on a trade-off between the switching
capabilities and the streaming performance, as explained in Section
V.

Compared to general videos, sport team videos usually have
well-organized structures of shots, based on several elemental view
types of cameraworks. For each shot, the cameraman can give either
a far view for describing the complexity of the team sports, show
more details of the action in a local area with a medium view, or
zoom into a close-up view for enhancing the emotional involvement
of the audience. Furthermore, sudden view switching during the
evolving of a tight game action is suppressed in order to avoid the
distraction of audience attention from the current game.

Figure 3. Histogram transition around a typical fade-in fade-out shot
boundary.

A difficult problem in shot boundary detection is to deal with
special effects supporting smooth transition between two scenes,
e.g., fade-in fade-out. Using histogram-features as in [9], we notice
that the histogram is gradually varying along with this smooth
scene switching, as shown in Figure 3. Hence, shot-boundary
detectors based on difference of histograms between two successive
frames are not efficient in this case. Therefore, an improved shot-
boundary detector is proposed based on the difference between the
average histogram of its left and right neighborhoods as displayed
in Figure 4.

157

Figure 4. Shot boundary detector improved for the detection of smooth
varying shot boundaries.

B. Clips Versioning

A similar analysis for view type, as the one proposed next, was
used in [10] to detect exciting events (i.e., game parts with both
close-up scenes and replays). In our framework, the view types are
classified in different groups: replays, non-grass close-up views and
close, medium or far grass view camera. At the end, far views are
computed in order to obtain an alternative zoomed-in version that
is stored in the enhanced content creation unit.

1) View Type Definition: The two major methods for detecting
replays are detection of replay-logos, and detection of slow-motions
[11]. Although replay-logos are producer-specific, this approach is
the one followed because it is easier and more accurate to detect
replay logos than to detect slow-motions, due to the fact that the
view angle in the replay might change a lot from the normal play.

A simple but efficient method to detect view types in soccer
context has been proposed by [12]. For scenes having a large
portion of grass area, the non-grass blobs within the grass area
reflect objects in the soccer field. The basic idea is to evaluate the
ratio between grass area and non-grass area in each subdivision of
the scene to identify the view type. Scenes with few or even without
grass region could be either a public view or a game view. A game
view without grass area usually gives a quite close view of the
scene, even though it is a medium view, e.g., a scene focusing on
the foot actions of the players. Therefore, it is safe to treat all these
scenes without grass area as close-up views. Based on the method
in [12], we further preclassify the scene type according to the
percentage of overall grass ratio, and use support vector machine
to replace the linear classifier to achieve a better performance, as
shown in Figure 5. Extra robustness is achieved by running the
view-type classification over all frames within the shot and making
the final decision by taking a majority vote.

2) Zoom-in for Far View: The zoom-in algorithm is applied
only if the camera view type is far and there is no replay in the
concerned shot. In a soccer scene with far view, RoI is usually
unique and well defined. The ball is the central element of the
scene. Indeed, players react according to its position. Consequently,
detecting the ball in the video generally provides focusing on the
RoI of the scene. Based on the work published already by the
authors in [13], a ball detector localizes the interesting area of the
scene. Then, the current frame is resized and centred on the ball,
taking into account some parameters, such as the ball position and

Figure 5. View Type Classification based on Grass Region Ratio.

its speed. Moreover, if a shot-boundary is detected, the parameters
of the zooming frame are reinitialized. In the Figure 6 we show
an example of our framework. The purpose of this algorithm is
to adapt the size of a football video match extracted from TV
broadcasting to a small device screen. The zoomed-in sequences
are offered to the user as an alternative to the native sub-sampled
sequence replacing the original segments upon request.

(a) (b)

Figure 6. Original and processed zoom versions of the same frame.

IV. SWITCHING CONTROL BASED ON SEMANTIC
SEGMENTATION

This section presents the browsing capabilities provided by our
system based on version switching. Zoom-in versions of far view
shots, replays of highlight moments of the match, and fast forward
mode are proposed as alternatives to the regular mode.

A. Definition of Segments and Interaction Strategy

Section III has described how multiple versions can be generated
automatically for each shot of the broadcasted video. Furthermore,
we have explained how a shot is divided into clips to support
switching between versions within a shot. In this section, we

158

explain how those switching opportunities are exploited in practice.
The purpose is twofold. On the one hand, the switching control
strategy should offer personalization capabilities to the user. On the
other hand, it should be defined in a way that limits the load on the
end-user, i.e. we do not want that the user ends up in controlling
the switching instead of enjoying the content.

To achieve a reasonable trade-off between load and flexibility
of control, we introduce the notion of semantically meaningful
segment. It is defined by the set of consecutive clips that describe
a single action of the game. All the video segments are thus inde-
pendent and self-contained. The interaction strategy is based on the
definition and semantic relevance of these segments. Specifically,
the segments are divided in two main groups: highlighted segments
and non-highlighted segments. The first ones contain the crucial
actions of the soccer game, meanwhile the latest include portions
of the match that have less relevance. The level of relevance of a
segment directly affects the switching mechanisms. In particular,
the fast-forward mode is automatically interrupted when starting
an important action of the game.

Figure 7 presents the interaction strategy supported by our frame-
work. In the figure three segments of the match are represented,
and the one in the middle contains a highlight action. The browsing
features are described next:

Figure 7. Switching control strategy. Dashed arrows represent potential re-
quests from the user, while continuous arrows depict automatic connections
between versions based on the interaction strategy. The central segment
corresponds to an important action of the match.

1) The fast forward version is available for all the segments of
the match, and the user can request to switch from the regular
mode to the fast-forward mode at whatever point by pressing a
dedicated button on the player interface. By pressing again the
same button the regular mode can be recovered when desired. In
both cases temporal consistency is preserved during the streaming.
It is remarkable that every time a new highlight segment starts, the
playback is automatically switched to the regular mode indepen-
dently of the ongoing speed of the playback. The objective is to
allow the user to watch very fast the parts of the game that are
not relevant under his/her request, but also catching back his/her
attention when an important action is close to happen. Again,
the user has the possibility to switch to fast-forward mode when
he/she is not interested in a certain gameplay even if this has been
categorized as important. Between two non-relevant segments the
regular mode is not launched if fast-forwarding is activated. To
provide a better user experience, our strategy has also considered
to skip the replay clips of the segments that are played by the user
in fast forward mode, as shown in the Figure 7 in the last segment.

2) Zoomed-in versions are available for the far view clips. Again,

the user can switch to the zoom-in mode or switch back to the
regular mode by properly interacting with the player interface. The
zoomed-in version is the one proposed by default to the viewer
at the beginning of every far view shot of the camera. It may
happen that at a certain moment the automatically generated zoom-
in version is not well centred in the RoI or that the viewer wants to
watch the position of certain players that are not close to the ball.
This is the reason why we give the viewer the faculty to decide
the mode he/she considers convenient to receive. By default, the
purpose of the zoom-in version is to replace the far-view clip of
the original segment adapting the view to a small-screen device.
At the end of every zoomed-in clip, the playback in regular mode
continues with a new clip, the one right after the far-view. Note
that when the fast forward mode is active the zoomed version of
the video is not available as the user is not interested to focus in the
current gameplay. Therefore, zoomed-in and fast-forward features
are completely decoupled.

3) Replay of certain segments of the match: It may happen that
the user is really interested in one of the segments of the match.
Even if this segment includes replay clips, the user can be interested
to see it several times. This is typically the case for a beautiful goal
or a penalty action. Therefore, the user can request at the beginning
of every new segment the replay of the previous one by pressing
a dedicated button. After the repeated segment is displayed, the
playback of the current segment where the replay was requested
is recovered without any offset. The user can request this replay
multiple times. In Figure 7 is shown this possible request from the
viewer at the beginning of the last segment, as the previous one
contains a highlight moment of the game. Note that the opportunity
to replay a non-relevant segment is also provided and protects the
viewer from missing an action when displaying the segment in
fast-forward mode and suddenly realizing that (s)he has missed a
detail (s)he wants to focus back.

B. Automatic definition of semantically meaningful segments

A video segment is defined as a period covering several succes-
sive clips closely related in terms of story semantic, e.g., clips for
an attacking action in football, including both a free-kick and its
consequence. Proposed by the authors in [14], a general diagram
of state transition consists in one round of offense/ defense as
described in Figure 8. The diagram contains the essential structure
of a segment and the different view types (clips) that are included.
Each segment usually starts with a close view for highlighting the
player who kicks off. Then, the offensive side makes trials of score
after several passing actions, rendered through far or medium views
that are the major part of the segment. This trial ends up in one
of three possible results: being intercepted, scoring, or being an
opportunity.

H ER O SC EN E

C LOSE

KIC K-OF F T YPE
à C OR N ER
à PLAC E-KIC K
à KIC K-OF F

F AR

M ED IU M

GAM E PLAY H ER O SC EN E

C LOSE

F EAT U R E

R EPLAY

R EPLAY

Repeat zero or m ore tim es Repeat zero or m ore tim es

O r

Figure 8. General structure of a gameplay and view types.

159

After the key event is finished, some close-up shots might be
given to raise the emotional level. According to the importance of
the corresponding event, replay clips might also be appended. Close
view, medium view and replay are all optional. The state chain from
the action-start to one of the results is regarded as a semantically
complete segment, and based on this structure, the video is divided
into a series of segments. Before a new round, exceptional actions
might happen, which include foul, medical assistance, and player
exchange. These actions are separated in the state graph from the
main action as individual segments.

State transition motivates scene switching, and is thus reflected
in the production actions. This observation is exploited to segment
the video based on the monitoring of production actions, instead of
(complex) semantic scene analysis tools. Although there are some
complex cases, e.g., the offensive side tries many times of shooting,
our segmentation rule is still applicable because the producer will
not switch the view type during those periods due to the tightness
of match. Hence, a boundary between two segments will always
we associated to a boundary between two clips.

We assume that manual annotations are provided at production
time to identify the most interesting actions in terms of game and
emotional relevance. Such assumption is in accordance with the
current practice in production rooms, as long as the annotations
are only provided for the key actions of the game, in the form of
a star rating system. Our approach follows this practical use case.
Hence, each segment is assumed to be characterized by a set of
annotations. Therefore, highlight actions, such as a goal or a red
car, are related to the segment where they occur. A possible empty
set of annotations for a particular segment would mean that is not
essential. As a result, the segments are classified in two groups: rel-
evant and non-relevant segments. The interaction strategy presented
in the previous section is based on this division. More complex
analysis based on audio-only and video-only analysis perspective,
or more generally, as a multimodal problem [15], could be used
to automatically detect outstanding events in the game. By using
them, manual annotations would not be longer required.

V. RESULTS AND VALIDATION

The streaming abilities are implemented using the liveMedia
library [16] that has been extended to deliver H.264 encoded files,
including the advanced feature for temporal content pipelining
through the session control and the enhanced content creation unit.
Our simulations have revealed that the fact that the video sequence
is segmented in small pieces, as described in Section III-A, does not
penalize the fluency of the streaming playback. On the server side,
although clips have to be pipelined dynamically in the transmission
buffer, the processing load is not dramatically increased, and the
rhythm of delivery of RTP packets is preserved.

However, slight bitrate cost and some constraints are applied
over the encoder H.264 and the subsequent NAL units, in order to
enable adaptive streaming and video content segmentation:

1) The overall compression speed is clearly damaged as the
encoding process of every sequence is divided in the multiple seg-
ments and several alternative versions are provided. Nevertheless,
the scenarios we consider are based on on demand video content.
Hence, all the segments are preprocessed and included in the video
database in advance, and because of this, the performance of the
global system is not damaged.

2) Every new clip has to start with a new Instantaneous Decoding
Refresh (IDR) frame, penalizing the encoding flexibility. Therefore,
the segmentation in multiple pieces of every sequence constraints
the maximum size of the GOP (Group of Pictures) to the size of
the encoded clips. Moreover, bitrate overhead is resulting from the
use of IDR refresh frames. For this reason, a trade-off between
the time of the system’s response to the user’s feedback, and
the size of the clip has to be achieved, as every clip has to be
completely delivered before starting to send the new one (due
to the constraint of switching between versions in a temporally
consistent way). If the clips are short, the system switches the
playback very fast independently of the instant when the user’s
request is received by the server. However, the penalty in terms of
bitrate increases when the clip size decreases (GOP is also small
increasing the bitrate). The opposite result occurs if the clips are
longer. In our simulations we used sequences encoded at 25 fps
and clip segmentation approximately every 15 frames. On the one
hand, using 1 GOP per clip, a GOP of 15 frames is good enough in
order not to penalize the global bitrate. The global loss in quality in
PSNR in the luminance and chroma is less than 0.5 dBs respect to
encoding the same sequence without the GOP constraint across
several bitrate configurations (as depicted in Figure 9). On the
other hand, the maximum latency in the server due to the clip
segmentation is less than 700 milliseconds, as in the worst of the
cases, the server has just sent the first frame of a new clip when
receiving a typical request to switch the version. This delay is
a good approach as depending on the Round Trip Time (RTT)
of the wireless network and the preroll buffer of the player, the
minimal delay is already in the order of 2-3 seconds. Algorithms
for adaptive video streaming could be used in order to minimize the
latency due to the clip segmentation, just by decreasing the delivery
time between frames belonging to the same clip and increasing the
delivery time before starting a new one. In the fast-forward mode,
by using the same granularity of clip segmentation, the maximum
latency is already divided by the acceleration factor.

The cost of the restriction is also low when measuring the loss of
quality with other techniques such as Structural similarity (SSIM).
In this case, when handling very low bitrates (150-600 kbps) the
loss of similarity can drop until 0,002 meanwhile for higher bitrates
(1200-2000 kbps) this difference is lower than 0,0005.

Figure 9. Video quality comparison in the luminance component when
applying or not the GOP constraint. Red line represents a sequence encoded
with GOP 15, while the blue line depicts the same sequence encoded
without GOP restrictions. The Bitrate is computed for different QPs.

160

Sequence Quantization Bitrate increment
dimensions Parameter (%)

176x144 16 0,86
176x144 32 5,95
352x288 16 0,68
352x288 32 5,73
720x576 16 0,76
720x576 32 3,84

Table I
INCREMENT OF BITRATE USING VIDEO SEGMENTATION DUE TO THE

REQUIRED SPS AND PPS HEADERS TO SYNCHRONIZE THE DECODER

3) Finally, it is also important to consider the increment of
bitrate due to the SPS and PPS headers that are used in every
new video segment. In the case that all the video sequence is
encoded once, they have to be sent to the client just one time
at the beginning. This is not the case when the sequence is splitted
in several segments as in our framework. In Table I we include
the increment of bitrate for different video resolutions at different
levels of quality (by modifying the quantization parameter: QP).
As we can observe, the cost of the headers is very low and almost
negligible for higher quality encoding parameters (QP=16). The
size of the header is almost constant in every case, independently
of the encoding parameters that are being used. Hence, when the
quality of the image is increased at the cost of spending bitrate,
the related cost of the headers gets lower and lower. The video
segmentation occurs again approximately every 15 frames.

VI. CONCLUSION AND FUTURE WORK

In this paper, we described a flexible interactive streaming
system, over one underlying key mechanism: temporal content
pipelining, which allows to switch the video content at whichever
point of the playback in a temporally consistent way. This mecha-
nism uses the client’s feedback, requiring only one open streaming
session per user and no advanced implementation mechanisms.
Experimental results show that the video segmentation doesn’t have
any effect in the fluency of the streaming playback and in addition,
the bitrate is not significantly increased. Therefore, the browsing
features don’t damage the global performance of the system.

We also present three different switching capabilities when
streaming video soccer content: zooming over RoIs, fast forward
and additional replays selection. All together, subjectively increases
the perceived quality of the streaming experience. The profits of
our architecture mainly rely on supporting personalized content
selection according to the interaction with the viewer.

Finally, our framework is also able to include, for example,
targeted advertising just by implementing the concept of client
profile. In addition to the interactive selection of versioned video
segments, the architecture is also designed to allow the insertion of
promotional or any other kind of content in the middle of the main
streaming playback. Later, the playback can be resumed directly
without any kind of offset, interruption or efficiency cost. Hence,
our interactive architecture can be extended to offer support to
multiple streaming applications. In this paper we focus on adapting
broadcasting TV soccer content for smart phone terminals.

ACKNOWLEDGMENT

The authors would like to thank Walloon Region project Wal-
como and Belgian NSF for funding part of this work

REFERENCES

[1] M. F. Sayit and T. Tunah, “Video streaming with h.264 over the
internet,” in Signal Processing and Communications Applications,
Apr. 2006, pp. 1–4.

[2] Z. Li and Z. Zhang, “Real-time streaming and robust streaming
h.264/avc video,” in Third International Conference on Image
and Graphics, Dec. 2004, pp. 353–356.

[3] A. Argyriou and V. Madisetti, “Streaming h.264/avc video over
the internet,” in Consumer Communications and Networking
Conference, Jan. 2004, pp. 169–174.

[4] X. Yu and D. Farin, “Current and emerging topics in sports video
processing,” in IEEE International Conference on Multimedia and
Expo (ICME), 2005.

[5] Y. Takahashi, N. Nitta, and N. Babaguchi, “Video summarization
for large sports video archives,” Multimedia and Expo, IEEE
International Conference on, vol. 0, pp. 1170–1173, 2005.

[6] E. Bomcke and C. De Vleeschouwer, “An interactive video
streaming architecture for H.264/AVC compliant players,” in
IEEE International Conference on Multimedia and Expo(ICME),
New-York, USA, 2009.

[7] ITU-T, “H.264: Advanced video coding for generic audiovisual
services,” Series H : Audiovisual and multimedia systems, 2005.

[8] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming
protocol (rtsp),” RFC 2326 (Proposed Standard), Apr. 1998.

[9] D. Delannay, C. De Roover, and B. Macq, “Temporal alignment
of video sequences for watermarking systems,” Santa Clara, USA,
2003, pp. 481–492, SPIE.

[10] J. Owens, “Television sports production, 4th Ed,” in Focal press,
2007.

[11] H. Pan, P. van Beek, and M. I. Sezan, “Detection of slow-motion
replay segments in sports video for highlights generation,” in
ICASSP ’01: Proceedings of the Acoustics, Speech, and Signal
Processing, 2001. on IEEE International Conference, Washing-
ton, DC, USA, 2001, pp. 1649–1652, IEEE Computer Society.

[12] A. Ekin, A. M. Tekalp, and R. Mehrotra, “Automatic soccer
video analysis and summarization,” Image Processing, IEEE
Transactions on, vol. 12, no. 7, pp. 796–807, 2003.

[13] F. Lavigne, F. Chen, and X. Desurmont, “Automatic video
zooming for sport team video broadcasting on smart phones,”
in International Conference on Computer Vision Theory and
Applications,VISAPP, Angers, France, 2010.

[14] F. Chen and C. De Vleeschouwer, “A resource allocation frame-
work for summarizing team sport videos,” in IEEE International
Conference on Image processing(ICIP), Cairo, Egipt, 2009.

[15] J. Li, T. Wang, W. Hu, M. Sun, and Y. Zhang, “Soccer highlight
detection using two-dependence bayesian network,” in IEEE
International Conference on Multimedia and Expo (ICME), 2006.

[16] “Live555 media server streaming application library’s webpage,”
http://www.live555.com/liveMedia/faq.html.

161

