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Abstract— We consider the problem of joint decoding of signals
transmitted from two correlated sources at a destination. In
order to achieve high spectral efficiency at a high range of the
channel signal-to-noise power (SNR), a high transmission rate
is required. In this paper, we design a class of codes for joint-
decoding by exploiting bit interleaved coded modulation with
iterative decoding (BICM-ID) technique. Extrinsic information
transfer (EXIT) chart analysis is used to evaluate the convergence
property as well as to examine the optimality of the system.
The simulation results show that the joint decoding with the
designed code achieves the performance close to theoretical limits
supported by the Slepian-Wolf and Shannon theorems.

I. INTRODUCTION

Joint decoding of signals transmitted from correlated
sources can achieve higher performance in comparison to
separate decoding of signals from each source because the cor-
relation can well be exploited in decoding. The theoretical limit
of compression rates for two correlated source information has
been proved by Slepian and Wolf [1]. The practical design
of source-channel coding of two binary information sequences
using punctured turbo codes over additive white Gaussian noise
(AWGN) channels is proposed in [2]. The performance of
source-channel coding using punctured turbo codes is very
close to the theoretical limits established by the combination
of Shannon and Slepian-Wolf theorems [2], [3]. In a higher
signal-to-noise power ratio (SNR) value range of the channel,
however, higher transmission rates are required to approach
the theoretical limit, however, it is still not yet fully examined
that whether or not applying the binary source-channel codes
to the system with high order modulations can achieve good
performance.

Bit interleaved coded modulation with iterative decoding
(BICM-ID) techniques have been proposed as high order
modulation techniques. Transmitter of BICM-ID systems is
a concatenation of an encoder and a mapper, which are
separated by an interleaver. Recently, a BICM-ID technique
using repetition-based codes and arithmetic extended mappings
has been proposed [4]. The BICM-ID scheme can achieve
performance close to the capacity of point-to-point communi-
cation and also reduce computational complexity of decoding
by bit-reduction encoding in comparison to ordinary extended
mapping schemes [5]. Ref [4] combines the idea of algebraic
network coding [6] and BICM-ID, where the authors call

the technique bit reduction encoding, though. This BICM-ID
scheme is exploited for the joint decoding of correlated sources
over AWGN channels in this paper.

Extrinsic information transfer (EXIT) chart [7] has been
known as a useful tool for analyzing convergence properties
of iterative decoding. EXIT chart, which describes mutual
information (MI) transfer characteristics, required when ex-
amining the optimality of the system without performing
lengthy chain simulations; To evaluate the actual convergence
characteristics, decoding trajectory has to be used. In [8], [9],
repeat-accumulate (RA) codes and low-density parity-check
(LDPC) codes are designed by changing degree distributions
to match the EXIT functions. If a system has only one iteration
loop, the EXIT functions can be expressed in two-dimension
(2D) chart, and the curve-fitting techniques can be used for
the code optimization based on a single 2D EXIT chart as
in [8], [9]. However, the joint decoding of correlated sources
is comprised of more than two iteration loops. Therefore, to
analyze the joint decoder, the EXIT projection techniques [10]
are used. The code is designed by using curve-fitting method
on the projected EXIT chart. The joint decoder with the codes,
of which projected EXIT charts are well matched is expected
to achieve good performance. The simulation results show that
the joint decoding with the designed code can achieve the
performance that is 1.7 dB away from the theoretical limits
provided by Slepian-Wolf and Shannon theorems.

The remainder of this paper is organized as follows. In
Section II, we discuss the system model of joint decoding with
correlated sources. In Section III, an example of code design
is shown and the performance with the code is evaluated by
the simulation. Section IV concludes the paper with summary
and our future works.

II. SYSTEM MODEL

In this system model, two source stations S1 and S2, and one
destination D are considered as shown in Fig. 1. The source
stations S1 and S2 generate information sequence U1 and U2,
respectively. The sequences are correlated, i.e., H(U1, U2) <
H(U1) + H(U2), where H(·) indicate the entropy function.
The correlation model between the sources is given in the
following way [2]. U1 is the binary i.i.d. sequence, U1 =
{u(1)

1 , u
(2)
1 , . . . , u

(K)
1 } ∈ {0, 1}K and P (u(k)

1 = 0) = 1/2,
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Fig. 1. System model of joint decoding with two correlated sources, where
S1 and S2 generate correlated information.
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Fig. 2. Graph representation of repetition-base encoder with single parity
check bits.

where K is the length of the sequence. The sequence U2 is
defined as u

(k)
2 = e(k) ⊕ u

(k)
1 , where ⊕ indicates addition

over the Galois field 2 and e(k) is memoryless binary random
variable, taking value 1 with probability pe, i.e., P (e(k) =
1) = pe.

Both source stations transmit information sequences us-
ing time-division multiplexing technique over AWGN chan-
nels. The information sequences are encoded using repetition-
based codes. The encoders add a single parity bit every
mSPC bits, then the sequences including single parity bits
are repeated ℓ times. Coded sequence is denoted by Cs =
{c(1)

s , c
(2)
s , . . . , c

(Ns)
s }, where s = 1 or 2 indicates the source

index, and Ns indicates the length of the coded sequence. The
rate of the codes are Rc,s = K/Ns. Fig. 2 shows the example
of graph representation of the codes. Since in practical design
of code, the values of ℓ are not constant, the degrees of variable
nodes take various values. The ratio between the number of
bits which are repeated ℓ times and the number of bits before
repetition operations are defined by dv,ℓ. Here,

∑
ℓ dv,ℓ = 1.

Coded bits are permuted by the interleaver πs, and the
interleaved coded bits are denoted by C̃s. The coded bits C̃s

are converted into symbols using extended mapping in which
every 16 coded bits {b1, b2, . . . , b16} are reduced to 8 bits
{t1, t2, . . . , t8} as follows [4].

t1 = b1 ⊕ b2 ⊕ b3, t2 = b4 ⊕ b5, t3 = b6 ⊕ b7, t4 = b8,

t5 = b9 ⊕ b10 ⊕ b11, t6 = b12 ⊕ b13, t7 = b14 ⊕ b15, t8 = b16

After the bit reductions, {t1, t2, t3, t4} and {t5, t6, t7, t8} are
mapped to sI and sQ, respectively, by applying mapping rule
shown as in Fig. 3. By this mapping rule, 16 bits are allocated
to one complex symbol. The transmitted symbol is sI + jsQ.
The factor graph representation of the mapping is shown in
Fig. 4.

A. Iterative Demapping and Decoding

The destination station jointly decodes the received signals
transmitted by S1 and S2 based on sum-product algorithm
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Fig. 3. Base Mapping of 16 ASK.
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Fig. 4. Graph representation of mapping.

(SPA) on a factor graph [11]. Since real and imaginary parts of
the signals preserve orthogonality in this system, the decoding
can be performed independently at real and imaginary part. The
decoder consists of two demappers (DEM), decoders (DEC),
interleavers, and an factor updating log likelihood ratios (LLR)
using information of correlation (COR) as shown in Fig. 5. In
this paper, the connection of base-demapper and check-node
decoder (CND) is referred to as demapper, and that of one
variable node (VND) and single-parity check (SPC) decoder
as decoder. Since there is no loop on the factor graphs inside
the demappers or decoders, only one iteration is needed to
improve LLRs, every time the updated a priori information
is provided. Therefore, iterative decoding is performed only
between demappers and decoders, and a decoder and the other
decoder via the COR factor.

1) Iterative Demapping of Base-Mapping: Let r be the
real part or imaginary part of the received signal. The base
mapper makes four bits {t1, t2, t3, t4} converted to one symbol
of 16 ASK. Constellation points are denoted by φk, where k =
1, . . . , 16, and φ(tm = b) indicates a set of constellation points
of 16 ASK which are taken bit tm = b (m = 0, . . . , 4, b =
0, 1). The extrinsic LLR of the bit tm is calculated by

Le(tm) = ln

∑
φk=φ(tm=1)

p(r|φk)p(φk|tm = 1)

∑
φk=φ(tm=0)

p(r|φk)p(φk|tm = 0)
, (1)

where p(r|φk) is the conditional probability distribution func-
tion (pdf), and expressed as,

p(r|φk) =
1√

2πσs

exp
(
−|r − φk|2

2σ2
s

)
. (2)
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With a priori LLR La(tn), (1) can be expressed as

Le(tm) = ln

∑
φk=φ(tm=1)

p(r|φk) exp

 ∑
n ̸=m

φ−1
k (n)La(tn)


∑

φk=φ(tm=0)

p(r|φk) exp

 ∑
n ̸=m

φ−1
k (n)La(tn)

 ,

(3)

where φ−1
k (n) indicates the value of n-th bit corresponding to

the constellation point φk.
2) Check and Variable Node Decoding Operation: At the

check node of degree nXOR, extrinsic LLR of a bit bm is
calculated by,

Le(bm) = 2 tanh−1

 nXOR∑
k=1,k ̸=m

tanh
La(bk)

2

 , (4)

where La(bk) is a priori LLR of bk. The check node decoding
is performed at both the CND and SPC.

The extrinsic LLR of a bit bm from variable node of degree
nVAR is given by

Le(bm) =
nVAR∑

k=1,k ̸=j

La(bk), (5)

where La(bk) is a priori LLR of bk. This variable node
decoding is performed at the VND.

3) LLR updating operation using Correlation Information:
The COR factor updates the LLRs using the correlation
information. The probability P (u(k)

s = 0, 1) of u
(k)
s = 0, 1

is calculated by using the probability P (u(k)
ŝ = 0, 1) of the

other information bit u
(k)
ŝ = 0, 1 and correlation parameter pe,

P (u(k)
s = 0) = (1 − pe)P (u(k)

ŝ = 0) + peP (u(k)
ŝ = 1), (6)

P (u(k)
s = 1) = (1 − pe)P (u(k)

ŝ = 1) + peP (u(k)
ŝ = 0). (7)

The LLR updating rule at the COR factor is expressed by
converting (6) and (7) to LLR domain,

Le(u(k)
s ) = ln

 (1 − pe) exp
(
La(u

(k)
ŝ )

)
+ pe

(1 − pe) + pe exp
(
La(u

(k)
ŝ )

)
 . (8)

B. Mutual Information Transfer functions

The demapper MI transfer function is denoted by

IE,DEM = TDEM (IA,DEM, γSsD) , (9)

where γSsD indicates the SNR of SsD channel, and IA,DEM

denotes the MI between the transmitted coded bit and the
demapper output LLR, fed into the demapper block. The MI
transfer function of the VND to the demapper is expressed as

IVND→DEM = TVND→DEM (IE,DEM, IE,SPC, IE,COR) (10)

=
mSPC

(mSPC+1)
∑

ℓ

ℓ·dv,ℓ

∑
ℓ

ℓ·dv,ℓJ
(√

σ2
D,S,COR(ℓ−1)

)

+
1

(mSPC+1)
∑

ℓ

ℓ·dv,ℓ

∑
ℓ

ℓ·dv,ℓJ
(√

σ2
D,S(ℓ−1)

)
, (11)

where

σ2
D,S,COR (ℓ) = ℓ · J−1 (IE,DEM)2

+ J−1 (IE,SPC)2 + J−1 (IE,COR)2 (12)

σ2
D,S(ℓ) = ℓ · J−1 (IE,DEM)2 + J−1 (IE,SPC)2 , (13)

J(·) indicates the function that converts the standard deviation
of LLR to MI in AWGN channels, and J−1(·) is its inverse
function [8], [9], IE,DEM, IE,SPC, and IE,COR are MIs of LLRs
from the DEM, SPC, and COR to the VND, respectively.

The MI transfer function from the VND to the SPC is
similarly expressed as

IVND→SPC = TVND→SPC(IE,DEM, IE,SPC, IE,COR) (14)

=
mSPC

mSPC + 1
·
∑

ℓ

dv,ℓJ
(√

σ2
D,COR(ℓ)

)
+

1
mSPC + 1

·
∑

ℓ

dv,ℓJ

(√
σ2

D(ℓ)
)

, (15)

where

σ2
D,COR = ℓ · J−1 (IE,DEM)2 + J−1 (IE,COR)2 (16)

σ2
D = ℓ · J−1 (IE,DEM)2 . (17)

The MI transfer function from the SPC decoder to the VND
is approximated by

IE,SPC = TSPC (IVND→SPC) (18)

≈ 1 − J
(√

mSPCJ−1 (1 − IVND→SPC)
)
. (19)

The MI transfer function of the VND to the COR factor is
expressed as

IVND→COR =
∑

ℓ

dv,ℓJ
(√

σ2
D,S(ℓ)

)
(20)



The MI transfer function of LLR updating factor which uses
correlation information is denoted by

IE,COR(LE,COR,s; Us) = TCOR (IA,COR, pe) , (21)

where (s, ŝ) is the source pair, (1, 2) or (2, 1), and IA,COR

indicates the MI of a priori LLR given by,

IA,COR = I(LA,COR,ŝ; Uŝ). (22)

By the sufficient activations (9), (10), (14), and (18) with the
fixed IA,COR, IVND→COR converges fixed point ĨVND→COR.
The EXIT function between IA,COR and ĨVND→COR is defined
by TDEM+DEC,

ĨVND→COR = TDEM+DEC (IA,COR) (23)

The EXIT function TDEM+DEC can be seen as the projected
function which indicates the limit of MI improvement by
iterations between demapper and decoder with fixed IA,COR.

C. Rate limit based on Slepian-Wolf and Shannon Theorems

The theoretical limits of compression rate of correlated
sources are given by Slepian-Wolf theorem [1]. The source
compression rates of U1 and U2 are denoted by Rs,1 and Rs,2,
respectively, and the achievable rates can be expressed as:

Rs,1 ≥ H(U1|U2) (24)
Rs,2 ≥ H(U2|U1) (25)

Rs,1 + Rs,2 ≥ H(U1, U2). (26)

Channel coding with rates Rc,1 and Rc,2 is used by S1 and
S2, respectively. The source stations S1 and S2 transmit signals
using extended mapping with Rm,1 and Rm,2 bits per symbol.
The capacities of the S1D and S2D channels are denoted by
CS1D and CS2D, respectively. The relation between achievable
rates and capacities is expressed following inequalities:

Rs,1Rc,1Rm,1 ≤ CS1D (27)
Rs,2Rc,2Rm,2 ≤ CS2D. (28)

Combining the inequalities (24 –28), we get,

H(U1|U2) ≤
CS1D

Rc,1Rm,1
(29)

H(U2|U1) ≤
CS2D

Rc,2Rm,2
(30)

H(U1,U2) ≤
CS1D

Rc,1Rm,1
+

CS2D

Rc,2Rm,2
. (31)

The theoretical limits of rates are given by (29), (30), and (31).

D. Problem Definition

To improve the spectrum efficiency, high transmission rates
are preferable. The transmission rate is given by Rc,sRm,s,
where s = 0 or 1. Since rate Rm,s = 16 bits/symbol is
constant in the system, coding rate Rc,s has to be high with
guaranteeing that the EXIT functions have the way to converge
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to the point where mutual information is unity. This problem
can be written as following.

max
dv,ℓ

Rc,s =
1∑

ℓ

ℓ·dv,ℓ

· mSPC

mSPC + 1
(32)

subject to ĨVND→COR > IA,COR + ϵmargin, (33)

where ϵmargin denotes to the margin to keep EXIT function
having the tunnel to reach perfect MI in practical realization.

III. EXAMPLE OF CODE DESIGN

The systematic designs are treated in this paper as Rc,1 =
Rc,2 = Rc, and γS1D = γS2D = 10 dB. The SNR of both
S1D and S2D are the same. An example of the distribution of
repetition times dv,ℓ designed keeping (33) is dv,2 = 0.9875
and dv,86 = 0.01187 and single parity check bits are appended
every 31 bits, i.e., mSPC = 31, when the correlation paremeter
is pe = 0.025 and length of information sequences are 50865.
The coding rate of this code is Rc = 0.3179. The demapper
EXIT function at 10 dB and the decoder functions when
IA,COR = 0, 0.1, . . . , 1 are shown in Fig. 6 with the designed
codes. In Fig. 7, the projected EXIT function and snapshots
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of decoding trajectories are shown. Since the projected EXIT
functions TDEM+DEC,1 does not intersect with the function
TDEM+DEC,2 and trajectories can reach a (1, 1) point, perfect
information of U1 and U2 can be retrieved by iterations. In
Fig. 8, the bit-error ratio (BER) performance is shown. Since
the transmission rate is RmRc = 5.086, The limit of SNR
with coding rate Rc = 0.3179 is 8.355 dB. With the designed
code, about 1.7 dB away from the theoretical limit. If the
signals transmitted by sources are independently decoded at
the destination station, the Shannon limit of SNR is 15.18 dB.
By jointly decoding of both received signal, about 5 dB gain
can be achieved.

IV. CONCLUSION

The code design for joint decoding of the signals transmitted
from correlated sources are considered. By using curve-fitting
method on the projected EXIT chart, the code is proposed
to achieve close to the limit established by the Slepian-Wolf
and Shannon theorems. For future work, the code design at
asymmetric channel gains will be considered.
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