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Abstract 
 

The syntax-based statistical machine translation model uses rules with 

hierarchical structures as translation knowledge, which can capture long-distance 

reorderings. Typically, a translation rule consists of a source side and a target 

side. However, the source side of a rule usually corresponds to multiple target-

sides in multiple rules. Therefore, during decoding, the decoder should select the 

correct target-side for a given source side. This is rule selection.  

Rule selection is of great importance to syntax-based statistical machine 

translation systems. This is because a rule contains not only terminals (words or 

phrases), but also nonterminals and structural information. During decoding, 

when a rule is selected and applied to a source text, both lexical translations (for 

terminals) and reorderings (for nonterminals) are determined. Therefore, rule 
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selection affects both lexical translation and phrase reorderings. However, most 

of the current syntax-based systems ignore contextual information when they 

select rules during decoding, especially the information covered by nonterminals. 

This makes it difficult for the decoder to distinguish rules. Intuitively, 

information covered by nonterminals as well as contextual information of rules is 

believed to be helpful for rule selection. 

In this work, rule selection for syntax-based Vietnamese-English statistical 

machine translation, we propose a maximum entropy-based rule selection model 

for syntax-based statistical machine translation. The maximum entropy-based 

rule selection model combines local contextual information around rules and 

information of sub-trees covered by variables in rules. Therefore, our model 

allows the decoder to perform context-dependent rule selection during decoding. 

We incorporate the maximum entropy-based rule selection model into a state-of-

the-art syntax-based Vietnamese-English statistical machine translation model. 

Experiments show that our approach achieves significant improvements over the 

baseline system. 

This thesis is organized into three main parts. The first chapter presents 

the introduction and overview of the thesis. The second and the third chapters 

summarize the related theories by a literature review, giving a detailed 

exposition of the theory of statistical machine translation and rule selection for 

syntax-based statistical machine translation. By discussing the experimental 

output, the last chapter summarizes this thesis and proposes further work. 
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Chapter 1 

Introduction 
 

1.1  Introduction 

1.1.1  Machine Translation 

Machine translation (MT) is the task of automatically translating a text 

from one natural language into another. The ideal of machine translation can be 

traced back to the seventeenth century, but it became realistically possible only 

in the middle of the twentieth century (Hutchins, 2005). Soon after the first 

computers were developed, researchers began on MT algorithms. The early MT 

systems consisted primarily of large bilingual dictionaries and sets of translation 

rules.  Dictionaries were used for word level translation, while rules controlled 

higher level aspects such as word order and sentence organization. Starting from 

a restricted vocabulary or domain, rule-based systems proved useful. However, 

as the study progressed, researchers found that it is extremely hard for rules to 

cover the  complexity of natural language, and the output of the MT systems 

were disappointing when applied to larger domains. Little breakthrough was 

made until the late 1980’s, when the increase of computing power made 

statistical machine translation (SMT) based on bilingual language corpora 

possible. In the beginning, much scepticism about SMT existed from the 

traditional MT community because people doubted whether statistical methods 

based on counting and mathematical equations can be used for the sophisticated 

linguistic problem. However, the potential of SMT was justified by pioneering 

experiments carried out at IBM in the early 1990s (Brown et all, 1993). Since 

then the statistical approach has become the dominant method in MT research. 
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 Several criteria can be used to classify machine translation approaches, yet 

the most popular classification is done according to the level of linguistic 

analysis (and generation) required by a system to produce translations. Usually, 

this can be graphically expressed in the machine translation pyramid in the 

Figure 1-1.  

 
Figure 1-1: The machine translation pyramid 

Generally speaking, the bottom of the pyramid represents those systems 

which do not perform any kind of linguistic analysis of a source sentence in 

order to produce a target sentence. Moving upwards, systems which carry out 

some analysis (usually by means of morphosyntax-based rules) are to be found. 

Finally, on top of the pyramid a semantic analysis of the source sentence turns 

the translation task into generating a target sentence according to the obtained 

semantic representation.  

Aiming at a bird’s-eye survey rather than a complete review, each of these 

approaches is briefly discussed in the following, before delving into the 

statistical approach to machine translation.  

Direct translation  

This approach solves translation on a word-by-word basis, and it was 

followed by the early MT systems, which included a very shallow 
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morphosyntactic analysis. Today, this preliminary approach has been abandoned, 

even in the framework of corpus-based approaches.  

Transfer-based translation  

The rationale behind the transfer-based approach is that, once we 

grammatically analyze a given sentence, we can pass this grammar on to the 

grammatical representation of this sentence in another language. In order to do 

so, rules to convert a source text into some structure, rules to transfer the source 

structure into a target structure, and rules to generate target text from it are 

needed. Lexical rules need to be introduced as well.  

Usually, rules are made manually, thus involving a great deal of expert 

human labour and knowledge of comparative grammar of a language pair. Apart 

from that, when several competing rules can be applied, it is difficult for systems 

to prioritize them, as there is no natural way of weighing them.  

This approach was massively followed in the 1980s, and despite much 

research effort, high-quality MT was only achieved for limited domains [Hut92].  

Interlingua-based translation  

This approach advocates for the deepest analysis of a source sentence, 

reaching  to a language of semantic representation named Interlingua. This 

conceptual language, which needs to be developed, has the advantage that, once 

the source meaning is captured in it, in theory we can express it in any number of 

target languages, so long as a generation engine for each of them exists.  

Though conceptually appealing, several drawbacks make this approach 

unpractical. On the one hand, the difficulty of creating a conceptual language 

capable of bearing the particular semantics of all languages is an enormous task, 

which in fact has only been achieved in very limited domains. Apart from that, 

the requirement that the whole input sentence needs to be understood before 

proceeding onto translating it, has proved to make these system less robust to the 
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grammatical incorrectness of informal language, or which can be produced by an 

automatic speech recognition system.  

Corpus-based approaches  

In contrast to the previous approaches, these systems extract the 

information needed to generate translations from parallel corpora that include 

many sentences which have already been translated by human translators. The 

advantage is that, once the required techniques have been developed for a given 

language pair, in theory it should be relatively simple to transpose them to 

another language pair, so long as sufficient parallel training data is available.  

Among many corpus-based approaches that sprung at the beginning of the 

1990s, the most relevant ones are example-based (EBMT) and statistical (SMT), 

although the differences between them are constantly under debate. Example-

based MT makes use of parallel corpora to extract a database of translation 

examples, which are compared to the input sentence in order to translate. By 

choosing and combining these examples in an appropriate way, a translation of 

the input sentence can be provided.  

In SMT, this process is accomplished by focusing on purely statistical 

parameters and a set of translation and language models, among other data-

driven features. Although this approach initially worked on a word-to-word basis 

and could therefore be classified as a direct method, nowadays several systems 

attempt to include a certain degree of linguistic analysis into the SMT approach, 

slightly climbing up the aforementioned MT pyramid.  

The following section further introduces the statistical approach to 

machine translation.  
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1.1.2  Statistical Machine Translation 

Statistical machine translation (SMT) is a machine translation paradigm 

where translations are generated on the basis of statistical models whose 

parameters are derived from the analysis of bilingual text corpora. The statistical 

approach contrasts with the rule-based approaches to machine translation as well 

as with example-based machine translation. 

  The first ideas of statistical machine translation were introduced by 

Warren Weaver in 1949, including the ideas of applying Claude Shannon's 

information theory. Statistical machine translation was re-introduced in 1991 by 

researchers at IBM's Thomas J. Watson Research Center and has contributed to 

the significant resurgence in interest in machine translation in recent years. 

Nowadays it is by far the most widely-studied machine translation method. 

Mainly, three factors account for this increasing interest: 

There is a growing availability of parallel texts (though this applies, in 

general, only to major languages in terms of presence in internet), coupled with 

increasing computational power. This enables research on statistical models 

which, in spite of their huge number of parameters (or probabilities) to estimate, 

are sufficiently represented in the data.  

The statistical methods are more robust to speech disfluencies or 

grammatical faults. As no deep analysis of a source sentence is done, these 

systems seek the most probable translation hypothesis given a source sentence, 

assuming the input sentence is correct.  

Last but not least, shortly after their introduction, these methods proved at 

least as good or even better as rule-based approaches in various evaluation 

campaigns. A clear example is the German project VerbMobil, which concluded 

that preliminary statistical approaches outperformed other approaches, on which 

research had been focused for many years.  
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 nơi nào có tuyết rơi ngày hôm qua? 

 
Figure 1-2:  Structure of typical statistical machine translation system[34] 

 

1.1.3  Rule selection for syntax-based statistical machine translation 

The syntax-based statistical machine translation (SMT) models (Chiang, 

2005 [9] ; Liu et al., 2006 [26]; Galley et al., 2006 [13]; Huang et al., 2006 [20]) use 

rules with hierarchical structures (synchronous context free grammar-SCFG) as 

translation knowledge, which can capture long-distance reorderings. Generally, a 

translation rule consists of a left-hand side (LHS) and a right-hand side (RHS). 

The LHS and RHS can be words, phrases, or even syntactic trees, depending on 

SMT models. Translation rules can be learned automatically from parallel corpus. 

Usually, an LHS may correspond to multiple RHS in the multiple rules. 

Therefore, in statistical machine translation, the rule selection task is to select the 

correct RHS for an LHS during decoding. 

 

1.2  Overview 
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Chapter 2 provides the detailed background, including the theory of 

statistical machine translation, hierarchical phrase-based model and rule-

selection for syntax based statistical machine translation.  

Chapter 3: Introduces the rule selection for syntax-based Vietnamese-

English statistical machine translation. 

Chapter 4 shows the detail of experiments, including the software used, 

the corpus texts, the process of a typical experiment and brief introductions of 

the programs written for the process. This chapter also includes a summary of 

the research questions corresponding to each experiment. 

Chapter 5 discusses the research questions with the experiment results. It 

draws a conclusion of this thesis and gives suggestion for future work. 

 

1.3  Contribution 

Up to now, there is no research about using hierarchical model for 

Vietnamese-English translation. We select hierarchical model as our baseline 

model for Vietnamese-English statistical machine translation. 

In this work, we propose a novel solution for rule selection for syntax-

based Vietnamese-English SMT. We use maximum entropy approach to 

combine various context features, context words of rules, boundary words of 

phrases, parts-of-speech information and the information of sub-trees covered by 

nonterminal in a rule. Therefore, the decoder can use rich context information to 

perform context-dependent rule selection. We build a maximum entropy-based 

rule selection (MaxEnt RS) model for each ambiguous hierarchical LHS (Left-

hand-side), which contains nonterminals and corresponds to multiple RHS’s 

(Right-hand-side) in multiple rules. We integrate the MaxEnt RS models into the 

state-of-the-art hierarchical SMT system (Chiang, 2005 [9]). Experiments show 

that the contextual information can help the decoder to perform a context-
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dependent rule selection. Thus, the translation quality of the state-of-the-art SMT 

system improves, and the improvements are statistically significant. 

Our contribution is displayed in two sides: 

Research side:  

We propose a new solution for Vietnamese-English translation 

(hierarchical model), use a new kind of feature for rule selection (lexical features 

around terminal) and propose a new algorithm to extract features for rule 

selection. In addition, we use nice property of maximum entropy model to 

combine all features to help rule selection methods. 

Technique side: 

The Moses-chart is new baseline for syntax-based statistical machine 

translation. It’s developed by many machine translation experts and used in 

many machine systems.  When we used it, we had experiment in installing, using. 

It’s very helpful to develop a new model for machine translation. Beside that, 

using maximum entropy classifier, coltech-parser, SRILM, vn-tokenizer, vn-

tagger also helps us understanding deeply about machine translation system. 

Basing on research and technique side, we can find the good way for our 

research. 

 

 

 

 

 

 

 

 

 

 8



Chapter 2 

Background 
 

 

2.1  The theory of statistical machine translation 

The translation process in statistical machine translation can be formulated 

as follows: The translation for f(I
1) is the target string which maximizes 

probability of  P(eI
1| f J

1). Assuming that every target language string eI
1 = e1…eI 

is assigned a probability P(eI
1) of being the language model of the target 

language and a probability P(eI
1| f J

1) of being an admissible translation for the 

given source language string f1
J = f1… fJ. According to Bayes’ decision rule, the 

optimal translation for fJ
1 is the target string which maximizes the product of the 

target language model  P(eI
1) and the string translation model P(f I1| eJ

1).  

eI
1 =  arg max{P(e I1| fJ

1) 

     =    arg max{P(e I1) P(f J1| eI
1) 

Many existing systems for statistical machine translation make use of a 

special way of structuring the string translation model ([Brown et al. 1993a], 

[Dagan et al. 1993], [Kay and Roscheisen 1993], [Vogel et al. 1996]): The 

correspondence between the words in the source and the target string is 

described by alignments that assign target word positions to each source word 

position. The probability of a certain target language word to occur in the target 

string is assumed to depend basically only on the source words aligned to it. The 

overall architecture of the statistical translation approach is depicted in Figure 

2.1. This figure already anticipates the fact that the source strings will be 

transformed in a certain manner.  
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Once we specified the Bayes decision rule for statistical machine 

translation, we have to address three problems (Ney 2001)[14]: 

• The modeling problem, i. e. how to structure the dependencies of source 

and target language sentences; 

• The search problem, i. e. how to find the best translation candidate 

among all possible target language sentences; 

• The training problem, i. e. how to estimate the free parameters of the 

models from the training data. 

 
Source Language Text 

Preprocessing 

Global Search: 
maximize P(eI

1). P(f J1| eI
1) 

over eI
1 

Target Language Text 

P(f J
1| eI

1)

P(eI
1)

Language Model 

Translation Model 

fJ
1 

 

 

 

 

 

 

 

 

 

 

 

   Figure 2-1:  Architecture of the statistical machine translation approach based 

on Bayes’ decision rule. 

Various researchers have shown better translation quality with the use of 

phrase translation. The basic idea of phrase-based translation is to segment the 

given source sentence into phrases, then translate each phrase and finally 

compose the target sentence from these phrase translations.  
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Phrase-based MT can be traced back to Och's alignment template model[11], 

which can be re-framed as a phrase translation system. Other researchers 

augmented their systems with phrase translation, such as Yamada [43], who used 

phrase translation in a syntax-based model.  

Marcu introduced a joint-probability model for phrase translation. At this 

point, most competitive statistical machine translation systems use phrase 

translation, such as the CMU, IBM, ISI, and Google systems, to name just a few. 

Phrase-based systems came out ahead at a recent international machine 

translation competition (DARPA TIDES Machine Translation Evaluation 2003-

2006 on Chinese-English and Arabic-English).  

Of course, there are other ways to do machine translation. Most 

commercial systems use transfer rules and a rich translation lexicon. Until 

recently, machine translation researches have been focused on knowledge based 

systems that use an interlingua representation as an intermediate step between 

input and output.  

There are also other ways to do statistical machine translation. There are 

some efforts in building syntax-based models that either use real syntax trees 

generated by syntactic parsers, or tree transfer methods motivated by syntactic 

reordering patterns.  

The phrase-based statistical machine translation model presented here was 

defined by (Koehn et al. 2003[24]). The alternative phrase-based methods differ in 

the way the phrase translation table is created, which we discuss in detail below.  

2.1.1 Model 

           The figure below illustrates the process of phrase-based translation. The 

input is segmented into a number of sequences of consecutive words (so-called 
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phrases). Each phrase is translated into an English phrase, and English phrases in 

the output may be reordered.  

 

 

tất nhiên có John vui với trò chơi 

of course  john has fun with  the game 

Figure 2-2:  The process of phrase-based translation 

In this section, we will define the phrase-based machine translation model 

formally. The phrase translation model is based on the noisy channel model. We 

use Bayes’ rule to reformulate the translation probability for translating a foreign 

sentence f into English e as  

argmaxe p(e|f) = argmaxe p(f|e) p(e) 

This allows for a language model e and a separate translation model p(f|e).  

During decoding, the foreign input sentence f is segmented into a 

sequence of I phrases f1
I. We assume a uniform probability distribution over all 

possible segmentations.  

Each foreign phrase fi in f1
I is translated into an English phrase ei. The 

English phrases may be reordered. Phrase translation is modeled by a probability 

distribution φ(fi|ei). Recall that due to the Bayes rule, the translation direction is 

inverted from a modeling standpoint.  

Reordering of the English output phrases is modeled by a relative 

distortion probability distribution d(starti, endi-1), where starti denotes the start 

position of the foreign phrase that was translated into the ith English phrase, and 

endi-1 denotes the end position of the foreign phrase that was translated into the 

(i-1)th English phrase.  
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We use a simple distortion model d(starti, endi-1) = with an 

appropriate value for the parameter α.  

|1| 1−− −ii endstartα

In order to calibrate the output length, we introduce a factor ω (called 

word cost) for each generated English word in addition to the trigram language 

model pLM. This is a simple means to optimize performance. Usually, this factor 

is larger than 1, biasing toward longer output.  

In summary, the best English output sentence ebest given a foreign input 

sentence f  according to our model is  

ebest = argmax_e p(e|f) = argmaxe p(f|e) p_LM(e) ωlength(e) 

where p(f|e) is decomposed into 

p(f1
I|e1

I) = Φi=1
I φ(fi|ei) d(starti, endi-1) 

 

2.1.2   Word Alignment 

When describing the phrase-based translation model so far, we did not 

discuss how to obtain the model parameters, especially the phrase probability 

translation table that maps foreign phrases to English phrases.  

Most recently published methods on extracting a phrase translation table 

from a parallel corpus start with a word alignment. Word alignment is an active 

research topic. For instance, the problem was focused as a shared task at a recent 

data driven machine translation workshop (ACL 2005 workshop on building and 

using parallel texts: data-driven machine translation and beyond, June 29-30, 

2005). 

Presently, the most common tool to establish a word alignment is the 

toolkit Giza++ (Och and Ney, 2000[28]). This toolkit is an implementation of the 

original IBM Models that started statistical machine translation research. 

However, these models have some serious draw-backs. Most importantly, they 
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only allow at most one English word to be aligned with each foreign word. To 

resolve this, some transformations are applied.  

First, the parallel corpus is aligned bidirectionally, e.g., Vietnamese to 

English and English to Vietnamese. This generates two word alignments that 

have to be reconciled. If we intersect the two alignments, we get a high-precision 

alignment of high-confidence alignment points. If we take the union of the two 

alignments, we get a high-recall alignment with additional alignment points. See 

the figure below for an illustration.  
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Figure 2-4:  Word alignment from Vietnamese to English 
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Figure 2-3:  Word alignment from English to Vietnamese 
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Researchers differ in their methods where to go from here. We describe 

the details below.  
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Figure 2-5:  Intersection/Union of word alignment 

2.1.3  Methods for Learning Phrase Translations 

Most of the recently proposed methods use a word alignment to learn a 

phrase translation table. We discuss three such methods in this section and one 

exception.  

Marcu and Wong 

First, the exception: Marcu and Wong (EMNLP, 2002[27]) proposed to 

establish phrase correspondences directly in a parallel corpus. To learn such 

correspondences, they introduced a phrase-based joint probability model that 

simultaneously generates both the source and target sentences in a parallel 

corpus.  

Expectation Maximization learning in Marcu and Wong's framework 

yields both (i) a joint probability distribution φ(e, f), which reflects the 

probability that phrases e and f are translation equivalents; (ii) and a joint 
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distribution d(i,j), which reflects the probability that a phrase at position i is 

translated into a phrase at position j.  

To use this model in the context of our framework, we simply marginalize 

the joint probabilities estimated by Marcu and Wong (EMNLP, 2002[27]) to 

conditional probabilities. Note that this approach is consistent with the approach 

taken by Marcu and Wong themselves, who use conditional models during 

decoding.  

Och and Ney 

Och and Ney (Computational Linguistics, 2003[12]) propose a heuristic 

approach to refine the alignments obtained from Giza++. At a minimum, all 

alignment points of the intersection of two alignments are maintained. At a 

maximum, the points of the union of two alignments are considered. To illustrate 

this, see the figure below. The intersection points are black, the additional points 

in the union are shaded grey.  
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Figure 2-6: Methods for learning phrase translations of  Och and Ney 

Och and Ney explore the space between intersection and union with 

expansion heuristics that start with the intersection and add additional alignment 

points. The decision which points to add may depend on a number of criteria:  
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- In which alignment does the potential alignment point exist? Foreign-

English or English-foreign?  

- Does the potential point neighbor already established points?  

- Does neighboring mean directly adjacent (block-distance), or also 

diagonally adjacent?  

- Is the English or the foreign word that the potential point connects 

unaligned so far? Are both unaligned?  

- What is the lexical probability for the potential point?  

Och and Ney (Computational Linguistics, 2003[12]) are ambiguous in their 

description about which alignment points are added in their refined method. This 

method is reimplemented for Moses-chart (the software chosen in this thesis as 

baseline system) as following:   

The heuristic proceeds as follows: We start with intersection of the two 

word alignments. We only add new alignment points that exist in the union of 

two word alignments. We also always require that a new alignment point 

connects at least one previously unaligned word.  

Firstly, we expand to only directly adjacent alignment points. We check 

for potential points starting from the top right corner of the alignment matrix, 

and alignment points for the first English word, then continue with alignment 

points for the second English word, and so on.  

This is done iteratively until no alignment point can be added anymore. In 

the final step, we add non-adjacent alignment points, with otherwise the same 

requirements.  

We collect all aligned phrase pairs that are consistent with the word 

alignment: The words in a legal phrase pair are only aligned to each other, and 

not to words outside. The set of bilingual phrases BP can be defined formally 

(Zens, KI 2002[33]) as:  
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BP(f1J, e1J, A) = { ( fj
j+m, ei

i+n ) }:  

forall (i', j') in A :  

j <= j' <= j+m <-> i <= i' <= i+n  

The figure below displays all the phrase pairs that are collected according 

to this definition for the alignment from our running example. 

 
Figure 2-7: An example for learning phrase translations of  Och and Ney 

applied for Moses-chart [31]. 

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, 

witch), (verde, green), (Maria no, Mary did not), (no daba una bofetada, did not 

slap), (daba una bofetada a la, slap the), (bruja verde, green witch), (Maria no 

daba una bofetada, Mary did not slap), (no daba una bofetada a la, did not slap 

the), (a la bruja verde, the green witch) (Maria no daba una bofetada a la, Mary 

did not slap the), (daba una bofetada a la bruja verde, slap the green witch), (no 

daba una bofetada a la bruja verde, did not slap the green witch), (Maria no daba 

una bofetada a la bruja verde, Mary did not slap the green witch)  

Given the collected phrase pairs, we estimate the phrase translation 

probability distribution by relative frequency:  

φ(f|e) = count(f,e) Σf count(f,e)  
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No smoothing is performed, although lexical weighting addresses the 

problem of sparse data. More details are explained in the paper on phrase-based 

translation (Koehn at al, HLT-NAACL 2003[24]).  

Tillmann 

Tillmann (EMNLP, 2003[4]) proposes a variation of this method. He starts 

with phrase alignments based on the intersection of the two Giza alignments and 

uses points of the union to expand these. 

Venugopal, Zhang, and Vogel 

Venugopal et al. (ACL 2003[1]) allows also for a collection of phrase pairs 

that are violated by word alignment. They introduce a number of scoring 

methods which take consistency with the word alignment, lexical translation 

probabilities, phrase length, etc. into account.  

Zhang et al. 2003[43] proposes a phrase alignment method that is based on 

word alignments and tries to find a unique segmentation of a sentence pair, as it 

is done by Marcu and Wong directly. This enables them to estimate joint 

probability distributions, which can be marginalized into conditional probability 

distributions.  

Vogel et al. (2003[35]) review these two methods and shows that the 

combining phrase tables generated by different methods improves results.  

 

2.1.4  The evaluation of machine translation  

It is important to evaluate the accuracy of machine translation against 

fixed standards, so that the effect of different models can be seen and compared. 

The obvious difficulty in setting  a standard for MT evaluation is the flexibility 

of natural language usage. For an input sentence, there can be many perfect 

translations. Knight and Marcu (2004) showed 12 independent English 
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translations by human translators, given the same Vietnamese sentence. All of 

the 12 are different, yet all correct.   

The most accurate evaluation is human evaluation, and it is frequently 

used for new MT theories. However, this method is far more time consuming 

than automatic methods. It is difficult for human evaluators to evaluate a large 

sample of translated sentences. Research has shown that certain machine 

evaluation methods correspond reasonably well with human evaluators, and thus 

they are usually used for the evaluation of large test sets. This section introduces 

three most common automatic evaluation methods, which are Bleu metrics, 

NIST metric and F-measure.   

 The Bleu metrics  

  The Bleu metrics (Papineni et al., 2001[30]) evaluates machine translation 

by comparing the output of an MT system with correct translations. Therefore, a 

test corpus is needed for this method, giving at least one manual translation for 

each test sentence. During a test, each test sentence is passed to the MT system, 

and the output is scored by comparison with the correct translations. This score 

is called the Bleu score. The output sentence is called the candidate sentence, 

and the correct translations are called references.   

  The Bleu score is evaluated by two factors, concerning the precision and 

the length of candidates, respectively. Precision refers to the percentage of 

correct n-grams in the candidate. In the simplest case, unigram (n=1) precision 

equals to the number of words from the candidate that appear in the references 

divided by the total number of words in the candidate.   

  The standard n-gram precision is sometimes inaccurate in measuring 

translation accuracy. Take the following candidate translation for example:   

   Candidate: a a a.  

Reference: a good example.  
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In the above case, the standard unigram  precision is 3/3=1, but the 

candidate translation is inaccurate with duplicated words. Because of this 

problem, Bleu uses a  modified n-gram precision measure, which consumes a 

word in the references when it is matched to a candidate word. The modified 

unigram precision of the above example is 1/3,  for the word ‘a’ in the reference 

is consumed by the first ‘a’ in the candidate.   

Similar to unigrams, modified n-gram precision applies to bigrams, 

trigrams and so forth. In mathematical form, the n-gram precision is as follows:  

∑∑
∑∑

∈−∈

∈−∈

−

−
=

CgramnCandidateC

CgramnCandidatC
n gramnCount

gramnMatched
P

)(

)(

}{

}{  

  Apart from modified n-gram precision, a  factor of candidate length is also 

included in the Bleu score. The main aim of this factor is to penalise short 

candidates, because long candidates will  be penalised by low modified n-gram 

precisions. Take the following candidate for example:   

Candidate: C++ runs.  

Reference: C++ runs much faster than Python.  

Both the unigram precision and the bigram precision for the above 

candidate are 1 (i.e. 100%), but the candidate contains much less information 

than the reference. To penalise such  short candidates, a brevity penalty score is 

used. Suppose that the length of the reference sentence is r, and the length of  the 

candidate is c. In equation form, the brevity penalty score is as follows:   

           BP =   

  When there are many references, r takes the length of the reference that is 

the closest to the length of the candidate. This length is called the effective 

reference length.   

1           if c > r 
e(1-r/c)     if c ≤ r 
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The Bleu score combines the modified n-gram score and the brevity 

penalty score. When there are many test sentences in the test set, one Bleu score 

is calculated for all candidate translations. This is done in two steps. Firstly, the 

geometric average of the modified n-gram precisions pn is calculated for all n 

from 1 to N, using positive weights wn which sum up to 1. Secondly, the brevity 

penalty score is computed with the total length of all candidates and total 

effective reference length for all candidates. In equation form,   

⎟
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⎛
= ∑

=

N

n
nn pwBPBLEU

1
logexp  

By default, the Bleu score includes the unigram, bigram, trigram and 4-

gram precisions, each having the same weight. This is done by using N=4 and 

wn=1/N in the above equation.   

  Experiments have shown that the Blue metrics are generally consistent 

with human evaluators, and thus are useful indicators for the accuracy of 

machine translation.   

 The NIST metric  

  The NIST metric (Doddington, 2002[10]) was developed on the basis of the 

Bleu metrics. It focuses mainly on improving two problems of the Bleu score. 

Firstly, the Bleu metrics use the geometric average of modified n-gram 

precisions. However, because current MT systems have not reached considerable 

fluency, the modified n-gram precision scores may become very small for long 

phrases (i.e. big n). Such small scores have a potential negative effect on the 

overall score, which is not desired. To solve this problem, the NIST score uses 

the arithmetic average instead of geometric average. In this way, all modified n-

gram precisions make zero or positive contribution to the overall score.  

Secondly, the Bleu metrics weigh all n-grams equally in the modified n-gram 

precision score. However, some n-grams carry more useful information than 
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others. For example, the bigram “washing machine” is considered more useful 

for the evaluation than the bigram “of the”. The NIST metric gives each n-gram 

an information weight, which is computed by:   
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Besides the above two differences, the NIST score also uses a special 

brevity penalty score. In equation form, it can be written as:  
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where Lref  is the average number of words in the references, Lsys is the 

number of words in the candidate, and  β is chosen to make BP=0.5 when the 

number of words in the candidate is 2/3 of the average number of words in the 

references.   

In summary, the NIST score for MT evaluation can be written as:   
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The F-measure  

  The F-measure (Turian et al., 2003[21]) is an MT evaluation method 

developed independently from the Bleu and NIST metrics. In the domain of 

natural language processing, the term  F-measure refers to a combination of  

precision and  recall. It is commonly used for the evaluation of information 

retrieval systems. Suppose that the set of candidates is Y and the set of references 

is X, the precision, recall and F-measure are defined as follows:   
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 In the simplest case, the F-measure for a MT translation candidate can be 

based on unigram precision and recall. See Figure 2-1 for an illustration of this 

method.   

E     •      

D    •       

C          • 

I         •  

A •       •   

B  •     •    

C   •       • 

H           

 A B C D E F I A B C 

Figure 2-8: Unigram matches, quoted from (Turian et al., 2003[21]). 

  In the above figure, each row represents a unigram (i.e. word) from the 

candidate translation (C), and each column represents a unigram from a 

reference (R). A dot (•) highlights the matching between a row and a column, 

which is called a hit. A matching is a subset of hits in which no two are in the 

same row or column. For the unigram case, the size of a matching can be defined 

as the number of hits in it. A matching with the biggest size is called a maximum 

matching, and is used as R ∩ C for precision and recall computations.  Figure 2-

8 shows a maximum matching with dark background.  
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  Denote the size of a maximum matching as MMS. In equation form, we 

have:  

||
|),(|)|(

C
RCMMSRCprecision =  

||
|),(|)|(

R
RCMMSRCrecall =  

Therefore, from the above definitions, the unigram F-measure can be 

calculated.   

The unigram form of the F-measure treats each sentence as a bag of words. 

This method ignores the evaluation of the word order in the candidate 

translations. One way to include the word order information is weighing 

continuous hits (i.e. phrases) more heavily than discontinuous hits. In formal 

definition, a run is a sequence of hits in which both the row and the column are 

contiguous. For example, the matching in Figure 2-1 contains three runs, each 

with length 1, 2 and 4 respectively. Denote a matching with M, and a run in M 

with r. To give longer runs more weight, the size of matching M can be 

calculated by:  

e
Mr

erlengthMsize ∑
∈

= )()(  

In the above equation, e is the weighing factor which favors longer runs 

when e>1. When e=1, the F-measure is reduced to the unigram case.   

  Experiments have shown that automatic evaluation methods are useful 

indicators of the quality of MT. However, they are not always consistent with 

human evaluators. Also, among different evaluation methods, some may perform 

comparatively better in certain cases but worse in others. For example, with the 

reference “programming methods”, the candidate “methods of programming” 

would have a comparatively low Bleu score, because it does not contain 

matching bigrams. The same candidate may have a better score by the unigram 
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F-measure, because word order information is not considered by this method. 

Therefore, the unigram F-measure is more consistent with human evaluators in 

this particular example.  In contrast, the candidate “methods programming of” 

will not be penalised by the unigram F-measure by the same reason. Therefore, 

the Bleu metrics will be more consistent with human evaluators in this case.   

The three automatic methods (Bleu metrics, NIST metric and F-measure) 

are currently the most commonly used for MT evaluation. In the experiments of 

this thesis, we applied with the BLEU metric, best known and best adopted 

machine evaluation for (machine) translation. 

 

2.2  Hierarchical phrase-based model 

The hierarchical model (Chiang, 2005[9]; Chiang, 2007[8]) is built on a 

weighted synchronous context-free grammar (SCFG). 

This is a statistical machine translation model that uses hierarchical 

phrases - phrases that contain subphrases. The model is formally a synchronous 

context-free grammar but is learned from a parallel text without any syntactic 

annotations. Thus it can be seen as combining fundamental ideas from both 

syntax-based translation and phrase-based translation.  

A SCFG rule has the following form: 

X → (α,  γ, ~) 

Where X is nonterminal, α is an LHS (left-hand side) string consists of 

terminal and nonterminal, γ (RHS right-hand side) is the translation of  α, ~ 

defines a one-to-one correspondence between nonterminals in α and γ. For 

examples, 

(1) X → (phát triển kinh tế ||| economic development) 

(2) X → (X1 của X2 ||| the X2 of X1) 
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(Because sometime α, γ contains commas (,), so that we use symbol “|||” 

to separate the source side (left-hand side) and the target side (right-hand side)) 

Rule (1) contains only terminals, which is similar to phrase-to-phrase 

translation in phrase-based SMT models. Rule (2) contains both terminals and 

nonterminals, which causes a reordering of phrases.  

The hierarchical model uses the maximum likehood method to estimate 

translation probabilities for a phrase pair (α, γ), independent of any other context 

information. 

To perform translation, Chiang uses a log-linear model (Och and Ney, 

2002[29]) to combine various features. The weight of a derivation D is computed 

by: 
iDDw

i
i

λφ )()( ∏=  

Where  φi (D) is a feature function and λi is the feature weight of  φi (D). 

During decoding, the decoder searches the best derivation with the lowest 

cost by applying SCFG rules. However, the rule selections are independent of 

context information, while the left neighboring n-1 target words are used for 

computing n-gram language model. 

An example about partial derivation of a synchronous CFG is as follows: 

 We have a rule: 

có X1 với X2 ||| have X2 with X1 

 Alignment phrases  are: 

[Úc] [là] [một] [trong số ít nước] [có] [quan hệ ngoại giao] [với] [Triều Tiên] 

[Australia] [is] [one of the few countries] [that have] [diplomatic relations] 

[with] [North Korea]  

Some extracted rules are as follows: 
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X → (có X1 với X2 ||| have X2 with X1)         (1)  

X → (X1 với X2 ||| the X2 that X1)            (2) 

X → (một trong số X1  ||| one of X1)            (3) 

X → (Úc ||| Australia)                (4) 

X → (Triều Tiên ||| North Korea)             (5) 

X → (là ||| is)               (6)  

X →(quan hệ ngoại giao ||| diplomatic relations)       (7)  

X →(một trong số ít nước ||| one of the few contrries)    (8) 

X →(S1 X2 |||  S1 X2)                                                    (9) 

S →(X1 ||| X1)              (10) 

We can get the derivation as: 

< S1 , S1>   

(9)   → <S2   X3 |||  S2   X3> 

(9)   → <S4   X5  X3 ||| S4   X5  X3> 

(10) → <X6   X5  X3 ||| X6   X5  X3> 

(4)   → <Úc  X5  X3 ||| Australia   X5  X3> 

(6)   → <Úc  là X3 ||| Australia  is  X3> 

 ….. 

        → <Úc  là một trong  số ít nước  có quan hệ ngoại giao với Triều Tiên ||| 

   Australia  is one of  the few countries that have diplomatic relations with 

North Korea> 

 

2.3  Rule selection for syntax-based statistical machine translation 

 Rule selection is of great importance to syntax-based SMT systems. 

Comparing with word selection in word-based SMT and phrase selection in 
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phrase-based SMT, rule selection is more generic and important. This is because 

that a rule contains not only  terminals (words or phrases), but also noterminals 

and structural information. Terminals indicate lexical translations, while 

nonterminal and structural information can capture short or long distance 

reordering. Consider the following rules for Vietnamese-to-English translation: 

(1)  X→ <với X1 của X2 ||| X2 of X1>  

(2)  X→ <với X1 của X2 ||| at X1 ’s X2>  

(3) X→  <với X1 của X2 ||| with X2 of X1>  

We can see syntactic structures of the same source-side in different rules 

in figure 2-9. 
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Figure 2-9: Syntactic structures of the same source-side in different rules 

These rules have the same source side. However, on the target side, either 

the translation for terminals or the phrase reoderings for nonterminals are quite 

different. During decoding, when a rule is selected and applied to a source side, 

both lexical translation (for terminals) and reorderings (for nonterminals) are 

determined. Therefore, rule selection affects both lexical translation and phrase 

reordering. 
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However, most of current syntax-based systems ignore contextual 

information when they select rules during decoding, especially the information 

of terminals and sub-trees covered by nonterminals. For example, the 

information of X1 and X2 is not recorded when  rules are extracted from the 

training. This makes the decoder hardly distinguish the two rules. Intuitively, 

information of terminals and sub-trees covered by nonterminals as well as 

contextual information of rules are believed be helpful for rule selection. 

Recent researchers showed that rich context information can help SMT 

systems select rules and improves translation quality (Galley et al. 2004, Huang 

and Chiang 2008, Liu et al. 2009, Marton and Resnik 2008, Chiang et al. 2009, 

Shen et al. 2009). 

The discriminative phrasal reordering models (Xiong et all., 2006[39]; Zens 

and Ney, 2006[42]) provided a lexicalized method for phrase reordering. In these 

model, LHS and RHS can be considered as phrases and reordering types, 

respectively. Therefore the selection task is to select a reordering type for 

phrases. They use a MaxEnt model (Zhang, Le. 2004) to combine context 

features and distinguished two kinds of reordering between two adjacent phrases: 

monotone or swap. However, our method is more generic, we use the maximum 

entropy approach  to combine rich contextual information around a rule and the 

information of sub-trees covered by nonterminals in a rule. In our model, the 

rules with hierarchical structures can handle reorderings of non-adjacent phrases. 

Furthermore, the rule selection can be considered as a multi-class classification 

task, while the phrase reordering between two adjacent phrases is a two-class 

classification task. 

Recently, word sense disambiguation (WSD) techniques improved the 

performance of SMT systems by helping the decoder perform lexical selection. 

Carpuat and Wu (2007b)[6] integrated a WSD system into a phrase-based SMT 
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system, Pharaoh (Koehn, 2004a)[25]. Furthermore, they extended WSD to phrase 

sense disambiguation (PSD) (Carpuat and Wu 2007a)[5]. Either the WSD or PSD 

system combines rich contextual information to resolve ambiguity problem for 

words or phrases. Their experiments showed stable improvements of translation 

quality. These are different from our work. On the one hand, they focus on 

solving the lexical ambiguity problem, and use a WSD or PSD system to predict 

translations for phrases which only consist of words. However, we put emphasis 

on rule selection, and predict translations for hierarchical LHS’s which consist of 

both words and nonterminals. On the other hand, they incorporated a WSD or 

PSD system into a phrased-based SMT system with a weak distortion model for 

phrase reordering. While we incorporate MaxEnt RS moels into the state-of-the-

art syntax-based SMT system, which can capture phrase reordering by using a 

hierarchical model. 

Chan et al (2007)[7] incorporated a WSD system into the hierarchical SMT 

system, Hiero (Chiang, 2005)[9], and reported statistically significant 

improvement. However they only focus on solving ambiguity for terminals of 

translation rules, and limited the length of terminals up to 2. Different from their 

work, we consider a translation rule as a whole, which contains both 

nonterminals and terminals. Moreover, they explored features for the WSD only 

on the source-side while we define context features for the MaxEnt RS models 

on both the source-side and target-side and use information of sub-trees covered 

by nonterminals in a rule. 

He et al., (2008)[44] integrating a MERS model (Zhang, Le. 2004) into a 

formally syntax-based SMT model, the hierarchical phrase-based model (Chiang 

2005)[9]. In another work, they incorporate the MERS model into a state-of-the-

art linguistically syntax-based SMT model, the tree-to-string alignment template 

(TAT) model (Liu et al., 2006[40]).  
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In this work, we incorporate the MERS model into Moses-chart (Hieu et al. 

2009)([18],[31]) and use our algorithm to extract features and rules. The basic 

differences are: 

- We re-implement [He et al 2008][44] for rule selection in hierarchical 

statistical methods on Vietnamese-English translation 

- He et al., (2008) used method suggested in (Chiang, 2005) to extract 

translation rules, and they used the tree-to-string alignment template (TAT) as 

translation rules while we use Moses-chart (Hieu et al., 2009) to extract 

translation rules. So that the rules we used are different from their rule as well as 

their linguistic and contextual information they used. 

- They didn’t use linguistic and contextual information around 

nonterminal. They only use linguistic and contextual informatyion for 

nonterminal while we use linguistic and contextual information for both 

nonterminal and terminals around nonterminal. 

- We applied the nice property of maximum entropy model to combine all 

features to help rule selection methods better. 

- We incorporate the maximum entropy-based rule selection into a state-

of-the-art syntax-based SMT model, the Moses-chart (Hieu et al., 2009). This 

model is developed by many machine translation experts and used in many 

machine translation systems, while they used the hierarchical phrase-based 

model (Chiang, 2005) and tree-to-string alignment template (TAT) model.  

 In the section 2.2, we presented about hierarchical phrase-based model and 

SCFG rule.  An SCFG rule has the form:  X → (α,  γ, ~) 

Where X is nonterminal, α is an LHS (left-hand side) string consists of 

terminal and nonterminal, γ (RHS: right-hand side) is the translation of  α, ~ 

defines a one-to-one correspondence between nonterminals in α and γ. 

 Next, we discuss more detail about translation rules used in our work. 
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 Definitions about translation rules 

 Definition 1: 

Given a word-aligned sentence pair < f, e, ~>, let fi 
j stand for the substring 

of f from position i to position j inclusive, and similarly for ei
j. Then a rule < fi

j , 

ei
j> is an initial phrase pair of < f, e, ~> iff:  

1.  fk ~ ek’  for some k ∈ [i, j]  and k’∈ [i’, j’];  

2.  fk   ∼ ek’ for all k ∈ [i, j] and k’∉ [i’, j’];   

3.  fk  ∼  ek’  for some k ∉ [i, j] and k’∈ [i’, j’]  

In order to obtain rules from phrases, we look for phrases that contain 

other phrases and replace the subphrases with nonterminal symbols. For example, 

given the initial phrases shown in Figure 2-11, we could form the rule: 

X → <X1 năm qua trong X2  ||| X2 over the last X1 years> 
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Figure 2-10: Grammar extraction example - Input word alignment. 
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Figure 2-11: Grammar extraction example - Initial phrases. 
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Figure 2-12: Grammar extraction example - Example rule. 

Definition 2  

The set of rules of <f, e, ~> is the smallest set satisfying the following:  

1. If < fi
j , ei’

j’> is an initial phrase pair, then  

X → <fi
j, ei’

j’>  is a rule of  <f, e, ~>.  

2. If (X → <γ, α>) is a rule of <f, e,∼> and <fi
j ei’

j’>  is an initial phrase 

pair such that γ = γ1fi
jγ2 and α = α1ei’

j’α2, then 

X → <γ1Xk γ2, α1Xk α2>  

where k is an index not used in γ and α, is a rule of  <f, e, ~> 
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This scheme generates a very large number of rules, which is undesirable 

not only because it makes training and decoding very slow, but also because it 

creates spurious ambiguity - a situation where the decoder produces many 

derivations that are distinct yet have the same model feature vectors and give the 

same translation. This can result in k-best lists with very few different 

translations or feature vectors, which is problematic for the minimum-error-rate 

training algorithm (Och 2003). To avoid this, Moses-chart filter it’s grammar 

according to the following constraints, chosen to balance grammar size and 

performance on the development set:  

1. If there are multiple initial phrase pairs containing the same set of 

alignments, only the smallest is kept. That is, unaligned words are not 

allowed at the edges of phrases. 

2. Initial phrases are limited to a length of 10 words on either side.  

3. Rules are limited to two nonterminals plus terminals on the Vietnamese 

side.  

4. Rules can have at most two nonterminals, which simplifies the decoder 

implementation. This also makes our grammar weakly equivalent to an 

inversion transduction grammar (Wu 1997)[38], although the conversion 

would create a very large number of new nonterminal symbols. 

5.  It is prohibited for nonterminals to be adjacent on the Vietnamese side, 

a major cause of spurious ambiguity.  

6. A rule must have at least one pair of aligned words, so that translation 

decisions are always based on some lexical evidence. 

Other Rules  

Glue rules.  

Having extracted rules from the training data, let X be the grammar’s start 

symbol and translate new sentences using only the extracted rules. For 
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robustness and for continuity with phrase-based translation models, we allow the 

grammar to divide a Vietnamese sentence into a sequence of chunks and 

translate one chunk at a time. We formalize this inside a SCFG using rules as 

follows, which we call the glue rules:   

S→ <S1 X2 ||| S1 X2>  

S→ <X1 |||  X1>  

These rules rewrite an S (the start symbol) as a sequence of Xs which are 

translated without reordering. Note that if we restricted our grammar to comprise 

only the glue rules and conventional phrase pairs (that is, rules without 

nonterminal symbols on the right-hand side), the model would reduce to a 

phrase-based model with monotone translation (no phrase reordering).  

Entity rules.  

Finally, for each sentence to be translated, we run some specialized 

translation modules to translate numbers and dates in a sentence, and insert these 

translations into the grammar as new rules. Such modules are often used by 

phrase-based systems as well, but here their translations can plug into 

hierarchical phrases. For example, the rule:  

X → <X1 năm qua ||| over the last X1 years> 

allows to generalize the number of years.  
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Chapter 3 

Rule selection for syntax-based Vietnamese-English statistical 

machine translation 
 

The syntax-based statistical machine translation is a model using rules 

with hierarchical structures as translation knowledge, which can capture long-

distance reorderings. Typically, a translation rule consists of a source side and a 

target side. However, the source side of a rule usually corresponds to multiple 

target-sides in multiple rules. Therefore, during decoding, the decoder should 

select correct target-side for a source side. This is called rule selection.  

Rule selection is of great importance to syntax-based statistical machine 

translation systems. This is because that a rule contains not only terminals 

(words or phrases), but also nonterminals and structural information. During 

decoding, when a rule is selected and applied to a source text, both lexical 

translations (for terminals) and reorderings (for nonterminals) are determined. 

Therefore, rule selection affects both lexical translation and phrase reorderings. 

However, most of the current syntax-based systems ignore contextual 

information when they select rules during decoding, especially the information 

covered by nonterminals. This makes the decoder hardly distinguish rules. 

Intuitively, information covered by nonterminals as well as  contextual 

information of rules is believed to be helpful for rule selection. 

In this work, we propose a maximum entropy-based rule selection model 

for syntax-based Vietnamese-English statistical machine translation. The 

maximum entropy-based rule selection model combines local contextual 

information around rules and information of sub-trees covered by variables in 

rules. Therefore, the nice properties of maximum entropy model (lexical and 
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syntactic information for rule selection) are helpful for rule selection methods. 

Our model allows the decoder to perform context-dependent rule selection 

during decoding. We incorporate the maximum entropy-based rule selection 

model into a state-of-the-art syntax-based Vietnamese-English statistical 

machine translation model. Experiments show that our approach archives 

significant improvements over the baseline system. 

Our works are described as follows: 

Firstly, we determine a baseline system to translate lower-cased and 

tokenized Vietnamese sentences into lower-cased and tokenized English 

sentences. 

Secondly, we extract rules from aligned words of Vietnamese-English 

parallel corpus.  

Thirdly, we extract features from rules, parse trees and tagged sentences of 

Vietnamese-English parallel corpus. 

Then, we integrate the features into maximum entropy-based rule selection 

model (MaxEnt RS model); after that we integrate score features into 

hierarchical phrase-based model.  

Next, we evaluate and analyze experimental results.  

Lastly, we test performance of the model on the large scale corpus. 

The diagram of rule selection for syntax-based Vietnamese-English SMT 

is shown in Figure 3-1. 
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Figure 3-1: Rule selection for syntax-based Vietnamese-English statistical  
                   machine translation  
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 This chapter describes about maximum entropy based rule selection model.  

 In this chapter, we describe some characteristics of Vietnamese, maximum 

entropy-based rule selection model (MaxEnt RS model) for Vietnamese-English 

statistical machine translation, features of MaxEnt RS model,  the way to extract 

features and method to integrate the MaxEnt RS model into the translation model 

(hierarchical phrase-based model). 

 

3.1 Vietnamese language and machine translation in Vietnam 

3.1.1 Vietnamese language 

Vietnamese is spoken by about  80 millions people around  the world,  yet  

very  few concrete works on this language have been noticed in natural language 

processing until now.   

To begin with some characteristics of Vietnamese, we remind some 

important specificities of Vietnamese (T. B. Nguyen et al., 2004[37]). 

Vocabulary 

Vietnamese has a special unit called "tiếng" that corresponds at the same 

time to a syllable with respect to   phonology,   a  morpheme  with   respect   to  

morpho-syntax,   and   a  word  with   respect   to   sentence constituent   creation.   

For   convenience,  we   call   these   "tiếng"   syllables.  The  Vietnamese   

vocabulary contains: 

-Simple words, which are monosyllabic. 

-Reduplicated words composed by phonetic reduplication (e.g. trắng/white 

- trăng trắng/whitish). 

-Compound words   composed by  semantic   coordination  (e.g.  

quần/trousers,   áo/shirt - quần áo/clothes). 

-Compound words composed by semantic subordination (e.g. xe/vehicle, 

đạp/pedal - xe đạp/bicycle). 
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-Some  compound  words  whose   syllable   combination   is   not   

recognizable   (bồ nông/pelican). 

-Complex words phonetically transcribed from foreign languages (cà phê/ 

coffee). 

Grammar 

As with other isolating languages, the most important syntactic  

information source in Vietnamese is word order. The basic word order is subject- 

verb-object. The other syntactic means are tool words, the reduplication, and the 

intonation. 

Vietnamese belongs to the class  of   topic-prominent   languages  (Charles  

N.  Li  & Sandra A. Thompson, 1976). In these languages, topics are coded in 

the surface structure and they tend to control co-referentiality (cf. Cây đó lá to 

nên tôi không thích / Tree that leaves big so I not like, which means This tree, its 

leaves are big, so I don't like it); the topic-oriented "double subject" construction 

is a basic sentence type (cf. Tôi tên là Nam, sinh ở Hà Nội / I name be Nam, born 

in Hanoi,  which means My name is Nam,  I was born in Hanoi),  while a 

subject-oriented construction as the passive and "dummy" subject sentences are 

rare (cf. There is a cat in the garden should be translated in Có một con mèo 

trong vườn / exist one <animal-classifier> cat in garden). 

 

3.1.2 Machine translation in Vietnam 

In Vietnam, with the booming of Internet, the demand for translation from 

popular foreign languages such as English, French, etc. into Vietnamese sharply 

increases. Building machine translation systems is the most concerned topic in 

Vietnamese’s natural language processing research circle. There are four main 

machine translation groups with different approaches: 
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- National Center for Technology Progress: Rule-based approach to 

English-Vietnamese MT systems. These are the only MT commercial systems in 

Vietnam (EVTRAN3.0, VETRAN3.0) 

- Univ. of Natural Sciences, VNU HCM: Transfer-based MT using BTL 

(Bitext Transfer Learning) for English-Vietnamese MT systems. They have 

experience in building dictionary and bilingual corpus. 

- HCM Univ. of Technology, VNU HCM: Since 1989 they have various 

trails. Statistical approach to Vietnamese-English translation (since 2002) and 

phrase-based approach to English-Vietnamese translation and phrase extraction 

from Penn Tree-bank (since 2003) 

- The research group at JAIST: Rule-based approach to English-

Vietnamese MT system. The system is completed but still not published. Now, 

they focus on statistical MT, and improve the rule-based MT system using 

statistical techniques. 

Works on machine translation in Vietnam are in top layers but less basic 

work at lower layers. They lack of common itinerary. Works are done in 

isolation, not having inheritance. People have to do their work from the scratch 

without sharing and collaboration. 

This research, rule selection for syntax-based Vietnamese English 

statistical machine translation is a new solution for Vietnamese-English machine 

translation. We use maximum entropy-based rule selection model for our work. 

This is helpful to combines local contextual information around rules and 

information of sub-trees covered by variables in rules. Therefore, the nice 

properties of maximum entropy model (use of lexical and syntactic features of 

Vietnamese language for rule selection) are helpful for rule selection methods. 

This is useful for better phrase reordering as well as better lexical translation, so 

that our approach archives significant improvements over the baseline system. 
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3.2  Maximum entropy-based rule selection model (MaxEnt RS model) 

The rule selection task can be considered as a multi-class classification 

task. For a source-side, each corresponding target-side is a label. The maximum 

entropy approach (Berger et all, 1996)[3] is known to be well suited to solve the 

classification problem. Therefore, we build a maximum entropy-based rule 

selection (MaxEnt RS) model for each ambiguous hierarchical LHS (left-hand 

side).  

Following (Chiang, 2005)[9], we use (α, γ) to represent a SCFG rule 

extracted from the training corpus, where α and γ are source and target strings, 

respectively. The nonterminal in α and γ are represented by Xk , where k is an 

index indicating one-to-one correspondence between nonterminals in source and 

target sides. Let us use f(Xk ) to represent the source text covered by Xk  and e(Xk ) 

to represent the translation of f(Xk ). Let C(α) be the context information of the 

source text matched by α and C(γ) be the context information of target text 

matched by γ . Under the MaxEnt  model, we have: 

∑ ∑
∑=

' ))](),(),(),((exp[
))](),(),(),((exp[

))(),(,|( '
γ

αγλ
αγλ

αγ
i kkii

i kkii
kkrs XeXfCCh

XeXfCCh
XeXfP  

Where hi a binary feature function, λi the feature weight of hi. The MaxEnt RS 

model combines rich context information of grammar rules, as well as 

information of subphrases which will be reduced to nonterminal X during 

decoding. However, these information is ignored by Chiang’s hierarchical model. 

We design five kinds of features for a rule (α, γ): Lexical, Parts-of-speech 

(POS), Length, Parent and Sibling features. 

 

3.3  Lexical and syntactic features for rule selection 

3.3.1 Lexical features of nonterminals  
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 Each hierarchical rule has nonterminals. Features of nonterminals consist 

of Lexical features, Parts-of-speech features and Length features: 

Lexical features, words adjacent to the left and right of α, and boundary 

words of subphrase f(Xk) and e(Xk); 

Parts-of-speech (POS) features, POS tags of source words defined in 

lexical features; 

Length features, the length of subphrases f(Xk) and e(Xk). 

Side Type Name Description 

Wα -1 The source word adjacent to the left of α 

Wα +1 The source word adjacent to the right of α 

)( kXfWL  The first word of f(Xk) 

Lexical 

features 

)( kXfWR  The last word of f(Xk) 

Pα -1 POS of Wα -1 

Pα +1 POS of Wα+1 

)( kXfPL  POS of   )( kXfWL

Pos features 

)( kXfPR  POS of   )( kXfWR

Source-

side 

Length 

feature 
)( kXfLEN Length of source subphrase f(Xk) 

)( kXeWL  The first word of e(Xk) Lexical 

features 
)( kXeWR  The last word of e(Xk) 

Target-

side 

Length 

feature 
)( kXeLEN  Length of target subphrase e(Xk) 

Table 3-1 Lexical features of nonterminals 
 
For example, we have a rule, source phrase and source sentence as follows: 
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Rule 

X →( , X1 bị mời ra X2  ||| , X1  shown X2 ) 

 

Source Phrase 

, anh_ta  đã  bị mời ra khỏi 

, he was shown the 

Source sentence 

/e /v /n /e /p /, /n /r /v /v /v /v /n 

Sau_ khi lăng_mạ chủ_ nhà của anh_ấy , anh_ta đã bị mời ra khỏi cửa 

 
After having insulted his host , he was shown the door   

X1  anh_ta đã 
X2    khỏi   
  
X1   he was  
X2   the 

 

Features of this example are shown as Table 3-2 

Type Features 

Wα -1  = anh_ấy     Wα +1 = cửa 

)( 1XfWL = anh_ta      =  đã     =  khỏi   =  khỏi )( 1XfWR )( 2XfWL )2( XfWR

Lexical Features 

)( 1XeWL  = he     =  was    = the     =  the )( 1XeWR )( 2XeWL )( 2XeWR

Pα -1  = p       Pα +1  = n POS Features 

)( 1XfPL =  n     =  r    =  v   =  v )( 1XfPR )( 2XfPL )( 2XfPR

Length Features )( 1XfLEN = 2     = 1    =  2   = 1 )( 2XfLEN )( 1XeLEN )( 2XeLEN

Table 3- 2: Lexical features of nonterminals of the example 

 

3.3.2 Lexical features around terminals 

Lexical features around terminals have the same meaning with features of 

nonterminals 
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Lexical features, words adjacent to the left and right of  subphrase f(Xk) 

and e(Xk); 

Parts-of-speech (POS) features, POS tags of the source words defined in 

lexical features. 

Side Type Name Description 

1)( −kXfW  The first word adjacent preceding the left of f(Xk) Lexical 

feature 
1)( +kXfW  The first word adjacent following the right of f(Xk) 

1)( −kXfP  POS of   1)( −kXfW

Source-

side 

POS 

Features 
1)( +kXfP  POS of   1)( +kXfW

1)( −kXeW  The first word of e(Xk)-1 Target-

side 

Lexical 

features 
1)( +kXeW  The last word of e(Xk)+1 

Table 3-3 Lexical features around terminals 

Example:  with a rule 

X →( anh_ta X1 bị  X2  lần đầu_tiên |||  he  X1 was X2  on the first time ) 

 

We have lexical features around terminals shown as Table 3-4 

 Type Features 

1)( 1 −XfW = anh_ta, = bị 1)( 2 −XfWLexical feature 

1)( 1 +XfW  = bị , = lần  1)( 2 +XfW

1)( 1 −XfP  = n, = v 1)( 2 −XfP

Source-side 

POS Features 

1)( 1 +XfP  = v, = r 1)( 2 +XfP

1)( 1 −XeW  = he, = was 1)( 2 −XeWTarget-side Lexical features 

1)( 1 +XeW  = was, = on 1)( 2 +XeW

Table 3-4: Lexical features around terminals of the example 
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3.3.3 Syntactic features 

Let R → <α, γ, ∼>  is a translation rule and f(α) is a source phrase covered 

by α. Xk is nonterminal in α, T(Xk) is sub-tree covering Xk. 

Parent feature (PF): 

The parent node of T(Xk) in the parse tree of a source sentence. The same 

sub-tree may have different parent nodes in different training examples. 

Therefore, this feature may provide information for distinguishing source sub-

trees.  

In Figure 3.2 shows that the Parent feature of a subtree covering X1 is NP.  

Sibling feature (SBF) 

The sibling features of the root of T(Xk). This feature considers 

neighboring nodes which share the same parent node. 

In Figure 3.3 shows that the Sibling feature of a subtree covering X1 is N .

     NP
 

       

 

                 

 

                

 

 

quan_hệ   ngoại_giao với Triều_Tiên 

N

VPN

V X1:PP

E NP

 

          

 
Figure 3-2: Sub-tree covers nonterminal X1:PP 
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Figure 3-3: NP - Parent feature of a sub-tree covers nonterminal X1:PP  
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Figure 3-4: N - Sibling feature of a sub-tree covers nonterminal X1:PP 

quan_hệ   ngoại_giao với Triều_Tiên 

N

N

V

VP

NP

X1:PP

NPE

Those features: Lexical feature, Parts-of-speech features, Length features, 

Parent features and Sibling features make use of rich information around a rule, 

including the contextual information of a rule and the information of sub-trees 

covered by nonterminals. These features can be gathered according to Chiang’s 

rule extraction method (Chiang 2005)[9]. We use Moses-chart to extract phrases 
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and rules. Using the Toolkit of Le Hong Phuong [16] to tag, tokenize Vietnamese 

source sentence, Coltech-parser of  Hanoi University of Engineering and 

Technology to parse Vietnamese a source sentence, after that we use following 

algorithm to extract features: 

R={Ri}={Hirerarchical rules}, P={Pj,P’
j}={Vietnamese-English phrase 

alignment}, S={Sl,El}={sentence pair}, S’={S’
l}={tagged Vietnamese sentence}, 

S’’= {S’’
l}={parsed Vietnamese sentence} 

Input:    Hirerarchical rules, Vietname-English phrase alignment, sentence pair,  

               Tagged Vietnamese sentence,  Parsed Vietnamese sentence 

Output: Features of nonterminals; Features around terminals and Syntactic features 

1  for i ∈ {1.. n} do 
2      Xk = Nonterminal of LHS of Ri 

     X’k = Nonterminal of RHS of Ri 
     Y =  LHS of Ri 
     Z=  RHS of Ri 

3      for  j ∈ {1.. m} do      
4         if  Y ∈P j, Z ∈P’ j then 
5  Xk  = phrase 

X’k = phrase’ 
6  for  l ∈  {1.. v} do 
7      features of nonterminal:  

Lexical features 
   Wα -1 =  word adjacent to the left of  Pj in Sl   
   Wα+1=    word adjacent  to the right of  Pj in Sl   
   =  word to the left of  Pj    )( kXfWL
   =  word to the right of  Pj  )( kXfWR
   =  word to the left of  P’j    )( kXeWL
   =  word to the left of  P’j    )( kXeWR

          Parts-of-speech features 
   Pα -1= POS of Wα -1 in S’l 
   Pα +1= POS of Wα+1 in S’l 
  = POS of   in S’l )( kXfPL

)( kXfWL
  = POS of   in S’l )( kXfPR )( kXfWR

         Lenght features 
  =  Length of source subphrase Xk )( kXfLEN
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)( kXeLEN =   Length of target subphrase X’k 
8     features around terminal: 

         Lexical features 
 =  word adjacent to the left of Xk in Pj    1)( −kXfW
 = word adjacent to the right of Xk in Pj    1)( +kXfW
 = word adjacent to the left of X’k in P’j    1)( −kXeW
 = word adjacent to the right of X’k in P’j    1)( +kXeW

          Parts-of-speech features 
 = POS of  in S’l 1)( −kXfP 1)( −kXfW

    = POS of   in S’l 1)( +kXfP 1)( +kXfW
9    Syntax features: (T(Xk) is sub-tree covering Xk. in parsed S’’l)  

    Parent features = parent of  T(Xk)  
      Sibling features = sibling features of root of T(Xk) 
10         enfor 
11      enif 
12   endfor 
13    endfor 

 

In Moses-chart, the number of nonterminal of a rule are limited up to 2. 

Thus a rule may have 36 features at most. 

 After extracting features from training corpus, we use the toolkit 

implemented by Yoshimasa Tsuruoka, Tsujii laboratory, Department of 

Computer Science, University of Tokyo (2006)[19] to train a MaxEnt RS model 

for each ambiguous hierarchical LHS.   

The flowchart of algorithm to extract features shows in figure 3-5 
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R={Hirerarchical rules} 
P={Vietnamese-English phrase alignment} 
S= {sentence pair} 
S’={tagged Vietnamese sentence} 
S’’= {parsed Vietnamese sentence} 

Figure 3-5: The flowchart of  algorithm to extract features 
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3.4  Integrating MaxEnt RS model into the translation model 

We integrate the MaxEnt RS model into the SMT model during the 

translation of each source sentence. Thus the MaxEnt RS model can help the 

decoder perform context-dependent rule selection during decoding. 

In (Chiang, 2005)[9], the log-linear model combines 8 features: the 

translation probabilities P(γ | α) and P(α | γ ), the lexical weights Pw(γ | α) and  

Pw(α | γ ), the language model, the word penalty, the phrase penalty, and the glue 

rule penalty. For integration, we add two new features: 

(1)  ))(),(,|( kkrs XeXfP αγ .  

This feature is computed by the MaxEnt RS model, which gives a 

probability that the model selects a target-side γ given an ambiguous source-side 

α, considering context information. 

(2)   Prsn = exp(1).  

This feature is similar to the phrase penalty feature. In our experiment, we 

find that some source-sides are not ambiguous, and correspond to only one 

target-side. However, if a source-side  α’ is not ambiguous, the first features Prs 

will be set to 1.0. In fact, these rules are not reliable since they usually occur 

only once in the training corpus. Therefore, we use this feature to reward the 

ambiguous source-side. During decoding, if an LHS has multiple translations, 

this feature is set to exp(1), otherwise it is set to exp(0). 

The advantage of our integration is that we need not change the main 

decoding algorithm of a SMT system. Furthermore, the weights of the new 

features can be trained together with other features of the translation model. 

Chiang (2007)[8] uses the CKY (Cocke-Kasami-Younger) algorithm with a 

cube pruning method for decoding. This method can significantly reduce the 

search space by efficiently computing the top-n items rather than all possible 

items at a node, using the k-best algorithms of Huang and Chiang (2005)[9] to 
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speed up the computation. In cube pruning, the translation model is treated as the 

monotonic backbone of the search space, while the language model score is a 

non-monotonic cost that distorts the search space. Similarly, in the MaxEnt RS 

model, source-side features form a monotonic score while target-side features 

constitute a non-monotonic cost that can be seen as part of the language model. 

For translating a source sentence FJ
I, the decoder adopts a bottom-up 

strategy. All derivations are stored in a chart structure. Each cell c[i,j] of the 

chart contains all partial derivations which correspond to the source phrase f j
i . 

For translating a source-side span [i,j], we first select all possible rules from the 

rule table. Meanwhile, we can obtain features of the MaxEnt RS model which 

are defined on the source-side since they are fixed before decoding. During 

decoding, for a source phrase f ji, suppose the rule 

X → (f ki X1 f jt ||| e k’
i’ X1 e j’t’) 

is selected by the decoder, where i ≤ k < t ≤ j and k+1 < t, then we can gather 

features which are defined on the target-side of the subphrase X1 from the 

ancestor chart cell c[k+1, t-1] since the span [k+1, t-1] has already been covered. 

Then the new feature scores Prs and Prsn can be computed. Therefore, the cost of 

derivation can be obtained. Finally, the decoding is completed when the whole 

sentence is covered, and the best derivation of the source sentence FJ
I is the item 

with the lowest cost in cell c[I,J]. 
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Chapter 4 

The detail of experiments 

 
We applied the above theory to Vietnamese-English SMT with large-scale 

experiment. This chapter records the details of the experiment, including the 

software systems, the training and testing corpora, and the typical process that is 

used by the experiments. The output and research questions are discussed in 

chapter 5. 

The system for the experiments is built upon existing pieces of software. 

The engineering work includes choosing and compiling of the software systems 

and libraries, selecting and formatting of corpora, code analysis in accordance 

with the theory of the last two chapters, software development work to combine 

and coordinate different software systems, and application of automatic MT 

evaluation methods. One of the challenges of the experiments is training the 

system with significantly large amounts of data within a reasonable time frame; 

the techniques used include filtering dispensable time consuming data, running 

tasks in parallel, and doing experiments incrementally.    

 

4.1  Software 

4.1.1 Baseline 

Moses[31], a beam-search decoder for factored phrase-based statistical 

machine translation models, is a statistical machine translation system that 

allows you to automatically train translation models for any language pair.   

• Beam-search: an efficient search algorithm finds quickly the highest 

probability translation among the exponential number of choices 
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• Phrase-based: the state-of-the-art method in statistical machine 

translation allows translation of short text chunks. 

• Factored: words may have factored representation (surface forms, lemma, 

part-of-speech, morphology, word classes...). 

The decoder was mainly developed by Hieu Hoang and Philipp Koehn at 

the University of Edinburgh and extended during a Johns Hopkins University 

Summer Workshop and further developed under EuroMa-trix and GALE project 

funding.  The Moses decoder was supported by the European Framework 6 

projects EuroMatrix, TC-Star, the European Framework 7 project 

EuroMatrixPlus, and the DARPA GALE project, as well as several universities 

such as the University of Edinburgh, the University of Maryland, ITC-irst, 

Massachusetts Institute of Technology, and others. 

Moses supports models that have become known as hierarchical phrase-

based models and syntax-based models. Moses-chart is a main branch of Moses 

referred as tree-based models.  

Traditional phrase-based models have as an atomic translation step the 

mapping from an input phrase to an output phrase. Tree-based models operate on 

so-called grammar rules, which include variables in the mapping rules. 

 X1 không phải →  not X1    (Vietnamese-English) 

  ate X1 →   habe X1 gegessen   (English-German) 

 X1 of the X2 →     le X2 X1   (English-French) 

The variables in these grammar rules are called non-terminals, since their 

occurrence indicates that the process has not yet terminated to produce the final 

words (terminals). Besides a generic non-terminal X, linguistically motivated 

non-terminals such as NP (noun phrase) or VP (verb phrase) may be used as well 

in a grammar (or translation rule set).        
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        Phrase-based decoding generates a sentence from left to right, by adding 

phrases to the end of a partial translation. Tree-based decoding builds a chart, 

which consists of partial translation for all possible spans over the input sentence.  

Moses-chart is strong for language pairs. Moses-chart implements a CKY+ 

algorithm for an arbitrary number of non-terminals per rule and an arbitrary 

number of types of non-terminals in the grammar. 

The baseline system (Moses-chart) translates lower-cased and tokenized 

source sentences into lower-cased and tokenized target sentences.  

We chose Moses-chart as a baseline system because the source of Moses-

chart is open. It is developed by many experts and also used in many machine 

translation systems. 

 
Figure 4-1: The model of Moses-chart [18] 

4.1.2 Giza++ 

GIZA++ (Och and Ney, 2000) is a general word alignment tool. It is used 

by this thesis to obtain word-to-word translation probabilities between 
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Vietnamese and English. It is based on the word alignment models, and it 

incorporates many features. GIZA++ software [15] is written in C++.   

 

4.1.3 SRILM 

SRILM[17] is a collection of C++ libraries, executable programs, and helper 

scripts designed to allow both production of and experimentation with statistical 

language models for speech recognition and other applications. SRILM is freely 

available for noncommercial purposes. The toolkit supports creation and 

evaluation of a variety of language model types based on N-gram statistics, as 

well as several related tasks, such as statistical tagging and manipulation of N-

best lists and word lattices.  

Fuliang Weng wrote the initial version of the lattice rescoring tool in 

SRILM; Dimitra Vergyri developed the score combination optimizer based on 

simplex search; Anand Venkataraman contributed N-best decoding and other 

enhancements to the statistical tagging tools. Development of SRILM has 

benefited greatly from its use and constructive criticism by many colleagues at 

SRI, the Johns Hopkins summer workshops, and the larger research community.  

 

4.1.4 Tokenizer 

VNTokenizer[16] is an automatic tokenizer for tokenization of Vietnamese 

texts developed by Le Hong Phuong (INRIA Lorraine, the French National 

Institute for Computer Science and Automation.)[16].  

The program is developed in the Java programming language and is 

platform-independent, the program gives very good result precision and recall 

ratios are in the range of 96%-98%. 

Example: 

bạn không thể ngăn cản anh ấy tiêu tiền của chính anh ấy 
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The result: 

bạn không_thể ngăn_cản anh_ấy tiêu_tiền của chính anh_ấy 

4.1.5 Tagging 

VNTagger[16] is also developed by Le Hong Phuong. This is an automatic 

tagger for tagging Vietnamese texts with high accuracy around 95%. The 

software is written in Java programming language and is platform-independent. 

The development of the software has been greatly facilitated thanks to open 

source implementation of a maximum entropy part-of-speech tagger of the 

Stanford Natural Language Processing Group. This software implements a 

maximum entropy classifier which uses a conjugate gradient procedure and a 

Gaussian prior to maximize the data likelihood (Toutanova et al., 2003). It’s also 

freely distributed under the GNU/GPL license and available online. 

Example: 

    vợ của anh ấy vẫn nhận được tin tức của anh ấy thường xuyên 

The result: 

   vợ/N của/E anh_ấy/P vẫn/R nhận/V được/R tin_tức/N của/E anh_ấy/P 

thường_xuyên/A  

 

4.1.6  Parser 

Coltech-parser is developed by Hanoi University of Engineering and 

Technology. Coltech-parser is a mono-lingual parser that supports different types 

of statistical parsing models. It is used in the experiments to produce Vietnamese 

mono-lingual grammars. This parser is implemented in Java.  

The Coltech-parser requires tokenization of information for each sentence 

in the input sentence. Therefore, before using the parser, Tokenization 

(VNTokenizer - Le Hong Phuong, 2009[16]) is required, which tokenizes input 

words.   
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 Example: 

 (anh_ấy uống cà_phê vừa_xong thì anh_ấy bắt_đầu thấy ngái_ngủ) 

 The result: 

 ((S (S[-H] (NP[-H] (NP[-H] (P[-H] anh_ấy))) (VP (V[-H] uống) (NP 

(NP[-H] (N[-H] cà_phê) (N vừa_xong))))) (C thì) (S (NP[-H] (NP[-H] (P[-H] 

anh_ấy))) (VP (V[-H] bắt_đầu) (VP (V[-H] thấy) (AP (A[-H] ngái_ngủ))))))) 

 

4.1.7 Maximum entropy classification 

We chose maximum entropy classification toolkit developed by 

Yoshimasa Tsuruoka, Tsujii laboratory, Department of Computer Science, 

University of Tokyo (2006)[19].  It’s also freely distributed under the GNU/GPL 

license and available online . 

This toolkit is a C++ class library for maximum entropy classification. 

The main features of this library are: fast parameter estimation using the 

BLMVM algorithm (Benson and More, 2001)[2], smoothing with Gaussian priors 

(Chen and Rosenfeld, 1999)[36], modeling with inequality constraints (Kazama 

and Tsujii, 2003[23]), support for real-valued features, saving/loading a model 

to/from a file and allowing integrating model data into source code. 

We used it with extracted features of ambiguous rules as input and output 

as scores of ambiguous rules. 

 

4.2 Corpus 

  We carry out experiment on the corpus includes 16,397 Vietnamese-

English sentence pairs which were collected from some grammar books (named 

“Conversation”) (Nguyen et al., 2007[32]) with 853k Vietnamese and 637k 

English words as our training. The English part is used to train a trigram 

language model. We use the corpus with 672 sentence pairs as the test set.  
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Name Type Vietnamese English 

Total 16,397 16,397 

Minimum 1 1 

Maximum 40 40 

Train corpus 

Average 7.72 8.92 

Total 672 672 

Minimum 1 1 

Maximum 31 28 

Test corpus 

Average 7.53 8.28 

Table 4-1: Statistical table of train and test corpus 

4.3 Training 

To train the translation model, we first run GIZA++ (Och and Ney, 

2000[28]) to obtain word alignment in both translation directions. Then we use 

Moses-chart to extract SCFG grammar rules. We use toolkits of Le Hong 

Phuong to tag, pos and parse Vietnamese source sentence. Meanwhile, we 

gather lexical and syntactic features for training the MaxEnt RS models. The 

maximum initial phrase length is set to 10 and the maximum rule lengh of the 

source side is set to 5. 

We use SRI Language modeling toolkit (Stocke, 2002[17]) to train 

language models for both tasks. We use minimum error rate training (Och, 

2003[12]) integrated in Moses-chart to tune the feature weights for the log-linear 

model. 

The translation quality is evaluated by BLEU metric (Papineni et al., 

2002[30]), as calculated by mteval-v11b.pl with case-insensitive matching of n-

grams, where n=4. 
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4.4 Baseline + MaxentRS 

 As we described, we add two new features to integrate the Maxent RS 

models into the Moses-chart.  

(1)  ))(),(,|( kkrs XeXfP αγ .  

This feature is computed by the MaxEnt RS model, which gives a 

probability that the model selects a target-side γ given an ambiguous source-side 

α, considering context information. 

(2)   Prsn = exp(1).  

This feature is similar to phrase penalty feature. In our experiment, we 

find that some source-sides are not ambiguous, and correspond to only one 

target-side. However, if a source-side  α’ is not ambiguous, the first features Prs 

will be set to 1.0. In fact, these rules are not reliable since they usually occur 

only once in the training corpus. Therefore, we use this feature to reward the 

ambiguous source-side. During decoding, if an LHS has multiple translations, 

this feature is set to exp(1), otherwise it is set to exp(0). 

The advantage of our integration is that we need not change the main 

decoding algorithm of a SMT system. Furthermore, the weights of the new 

features can be trained together with other features of the translation model. 

To run decoder, we share the same pruning setting with the baseline 

system.  

After using Moses-chart to extract rules, we have rule-table (table which 

contains rules) and moses.ini (a file which consists of variables for decoding). 

Each hierarchical rule in rule-table has a form as following: 

, [X][X] trước [X] ||| , [X][X] before [X] ||| 1-1 ||| 0.0975805 0.135281 

0.0584394 0.108758 2.718 ||| 0.539366 0.900618  

In this form  

[X][X]:  Nonterminal;  
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, [X][X] trước [X]:   Left-hand side 

  , [X][X] before [X]:       Right-hand side 

0.0975805 0.135281 0.0584394 0.108758 2.71: scores of rule  

We insert two scores into the rule, change variables of moses.ini file and 

adjust codes of Moses-chart, we get the result in Table  4.2  

System Vietnamese-English 

corpus 

Moses 24.60 

Moses-chart 27.03 

      + MaxEnt RS 

      Lexical features of nonterminal 

              (Lex+POS+Len) 

27.69 

      Lexical features around nonterminal  

             (Pos+Lex) 

27.17 

      Syntax features 

             (Parent and sibling) 

27.67 

      Lexical features of nonterminal +  

              Syntax features 

27.78 

      All features 28.02 

Table 4-2: BLEU-4 scores (case-insensitive) on Vietnamese-English 

corpus.  

Lex=Lexical Features, POS=POS Features, Len=Length Feature, Parent= 

Parent Features, Sibling =Sibling Features. 

Using all features to train the MaxEnt RS models, the BLEU-4 score is 

28.02, with an absolute improvement 0.99 over the baseline.  
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In order to explore the utility of the context features, we train the MaxEnt 

RS models on different features sets. We find that Lexical features of 

nonterminals and syntactic features are the most useful features since they can 

generalize over all training examples. Moreover, Lexical features around 

terminals also yields improvement. However, these features are never used in the 

baseline. 
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Chapter 5 

The results and conclusions 
 

5.1 The result and discussion 

Using Moses-chart to extract rule, with 16,397 Vietnamese-English 

sentences in the training sets, we extracted 1,090,670 rules. There are 887,487 

rules contains nonterminals and 203,189 rules does not contain nonterminals. 

The number of glue grammar rules are 3 and the number of rules which match in 

the test are 9,051 rules. The result is shown in Table 5-1. 

Name Number 

The number of rules 1,090,670 

The number of rules contain nonterminals  887,478 

The number of rules don’t contain nonterminals 203,189 

The number of glue grammar rules 3 

The number of rules which match in the test 9,051 

Table 5-1: Statistical table of rules 

When we use Baseline and Beaseline + MaxEnt RS (all features), the 

number of hierarchical rules and ambiguous hierarchical rules change. The result 

shows in  Table 5-2. 

 Rule Number of 

Hierarchical-LHS 

Number of Ambiguous 

hierarchical-LHS 

Baseline 9,051 5,261 2,155 

+MaxEnt RS 

(All features) 

9,051 6,021 3,953 

Table 5-2: Number of possible source-sides of SCFG rule for Vietnamese-

English corpus and number of source-sides of the best translation.  
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Table 5-2 shows the number of source-sides of SCFG rules for 

Vietnamese-English corpus.  After extracting grammar rules from the training 

corpus, there are 9,051 source-sides which match the test corpus, they are 

hierarchical LHS’s (H-LHS, the LHS which contains nonterminals). For the 

hierarchical LHS’s, 40.96% are ambiguous (AH-LHS, the H-LHS which has 

multiple translations). This indicates that the decoder will face serious rule 

selection problem during decoding. We also note the number of the source-sides 

of the best translation for the test corpus.  However, by incorporating MaxEnt 

RS models, that proportion increases to 65.65%, since the number of AH-LHS 

increases. The reason is that, we use the feature Prsn to reward ambiguous 

hierarchical LHS’s. This has some advantages. On one hand, H-LHS can capture 

phrase reorderings. On the other hand, AH-LHS is more reliable than non-

ambiguous LHS, since most non-ambiguous LHS’s occur only once in the 

training corpus. In order to know how the MaxEnt RS models improve the 

performance of the SMT system, we study the best translation of baseline and 

baseline+MaxEnt RS. We find that the MaxEnt RS models improve translation 

quality in 2 ways. 

Better Phrase reordering 

Since the SCFG rules which contain nonterminals can capture reordering 

of phrases, better rule selection will produce better phrase reordering. For 

example, the source sentence:  

“... năm thành viên thường trực của hội đồng bảo an Liên hợp quốc ... ”  

is translated as follows: 

Reference: 

          ... the five permanent members of the UN Security Council ... 

Baseline: 
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... the [United Nations Security Council]1 [five permanent 

members]2 ... 

+MaxEnt RS:  

...[the five permanent members]2 of [the UN Security Council]1 ... 

The source sentence is translated incorrectly by the baseline system, which 

selects the rule 

X→<X1 của  X2 |||  the X1 X2> 

and produces a monotone translation. In contrast, by considering information of 

the subphrases X1 and X2 , the MaxEnt RS model chooses the rule 

X→<X1 của X2 ||| X2 of X1> 

and obtains a correct translation by swapping X1 and X2 on the target-side. 

Better Lexical Translation 

The MaxEnt RS models can also help the decoder perform better lexical 

translation than the baseline. This is because the SCFG rules contain terminals. 

When the decoder selects a rule for a source-side, it also determines the 

translations of the source terminals. For example, the translations of the source 

sentence:  

“Tôi ngại rằng chuyến bay này đầy”  

are as follows: 

Reference: 

 I’m afraid this  flight is full. 

Baseline:  

I’m afraid already booked for this flight. 

+MaxEnt RS:  

I’m afraid this flight is full. 

     Here, the baseline translates the Vietnamese phrase 
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này đầy ” into “booked”   by using the rule: 

X→<X1 này đầy ||| X1 booked> 

The meaning is not fully expressed since the Vietnamese word “này” is 

not translated. However, the MaxEnt RS model obtains a correct translation by 

using the rule: 

X→<X1 này đầy ||| X1 full> 

However, we also find that some results produced by the MaxEnt RS 

models seem to decrease the BLEU score. An interesting example is the 

translation of the source sentence: 

 “Tên của con đường này là gì”: 

Reference1:  

What is the name of this street? 

Reference2:  

What is this street called? 

Baseline:  

What is the name of this street? 

+MaxEnt RS:  

What’s this street called? 

In fact, both translations are correct. But the translation of the baseline 

fully matches Reference1. Although the translation produced by the MaxEnt RS 

model is almost the same as Reference2, as the BLEU metric is based on n-gram 

matching, the translation “What’s” cannot match “What is” in Reference2. 

Therefore, the MaxEnt RS model achieves a lower BLEU score. 
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Moses-chart he attempt to stood up 

Moses-chart 

      + features 

he made an effort to stand up. 

anh_ấy nỗ_lực đứng_dậy 

Reference he attempts to stand up 

Moses-chart We come into the morning of 

day Friday  

Moses-chart 

      + features 

We arrived in the morning of 

the sixth 

Chúng_tôi đến vào buổi_sáng 

của ngày thứ_sáu 

Reference We arrived on the morning of 

Friday 

Moses-chart so will is five night , sir .  

Moses-chart 

      + features 

such will be the fifth night, sir 

như_vậy sẽ là 5 đêm , thưa 

ông . 

Reference such will be the fifth night, sir 

Moses-chart he has just finished their coffee 

began to see him sleeping 

Moses-chart 

      + features 

he drinks coffee than when he 

began to feel drowsy 

anh_ấy uống cà_phê vừa_xong 

thì anh_ấy bắt_đầu thấy 

ngái_ngủ 

Reference no sooner had he drunk the 

coffee than he began to feel 

drowsy  

Table 5-3:  

Some output sentences of Moses-chart, Moses-chart + features and Reference 
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5.2  Summary 

Like human translation, machine translation has two essential factors – 

unit element (unbreakable word or phrase that carries meaning) translation and 

target sentence organisation. The simplest models for SMT are word-based, 

where the unit elements are words and sentence organisation modeled by 

comparatively simple mechanisms such as word reordering. One of the main 

improvements of phrase-based models over the word-based models is on the 

definition of unit elements, which includes phrases. Hierarchical phrase based 

and tree-based models further improved the target sentence organisation. The 

models have improved translation accuracy by evolving towards a higher level of 

abstraction, while word alignment often serves as the basis for more complex 

models. 

Rule selection is of great importance to syntax-based statistical machine 

translation systems. This is because that a rule contains not only terminals 

(words or phrases), but also nonterminals and structural information. During 

decoding, when a rule is selected and applied to a source text, both lexical 

translations (for terminals) and reorderings (for nonterminals) are determined. 

Therefore, rule selection affects both lexical translation and phrase reorderings. 

In this work, we propose a generic lexical and syntactic approach for rule 

selection. We build maximum entropy-based rule selection models for each 

ambiguous hierarchical source-side of translation rules. The MaxEnt RS models 

combine rich context information, which can help the decoder perform context-

dependent rule selection during decoding. We integrate the MaxEnt RS models 

into the hierarchical SMT model by adding two new features. Experiments show 

that the lexical and syntactic approach for rule selection achieves statistically 

significant improvements over the state-of-the-art syntax-based SMT system. 
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5.3 Future work 

Our approach can be used for the formally syntax-based statistical 

machine translation systems and also can be applied to the linguistically syntax-

based statistical machine translation systems. For future work, we will explore 

more sophisticated features for the Maximum entropy-based rule selection 

models and test the performance of the Maximum entropy-based rule selection 

model on large scale corpus. 

 Each of languages has different structure and vocabulary, but also uses the 

same method. We want apply this model for another language and compare the 

result to find a good way as well as a good result. 

Clearly, phrase-based systems are very good at predicting content words, 

but are less accurate in producing function words, or producing output that 

correctly encodes grammatical relations between content words. Syntax-based 

can help to solve this problem, so that syntax-based is good way to approach for 

statistical machine translation.  

We see that using deep syntactic structures yielded by an HPSG parser can 

improve syntax-based translation. We want to study and evaluation of other 

method to improve syntax-based statistical machine translation such as: 

Maximum entropy-based rule selection (in this thesis), Head-driven phrase 

structure grammar (HPSG), Deep syntactic structures and other existing 

approaches to construct a sufficient model for syntax-based statistical machine 

translation. 

We will evaluation of the model obtained, applying the model to different 

languages (English-Japanese, English-Vietnamese,..) in different size of corpus,  

improving of our model to achieve a sufficient model for syntax-based statistical 

machine translation, which: 
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- Integrates linguistic information in our model 

- Uses deep syntactic structures in our model. 

- Integrates into several languages 

- Promises result 
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