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Abstract

The digital signature is a technology which guarantees the validity of the data together
with the signer. In proportion as the spread of personal computers and open networks, the
signature scheme becomes even more important than ever. More efficient and functional
signature schemes are required.

In this thesis, we focus on two kinds of digital signatures, that is, fast on-line sig-
natures and proxy signatures. “On-line” means the phase of real-time requirement for
signing message. The dominant factor of on-line phase usually consists of some modular
arithmetics such as multiplication and modular reduction. A signature scheme without
modular reduction is called “on the fly” signature. On the other hand, a proxy signature
means the scheme, which allows a designated person to sign on behalf of an original signer.

Our contributions are summarized as follows:

1. We research new mathematical problems, named self-powering RSA problem and
extended finding order problem. Those problems are used as the underlying problem
in our schemes;

2. We propose a new on the fly signature by improving the Poupard-Stern scheme
(PS-scheme). Our scheme has the efficiency in terms of both amount of work and
transmitted data size;

3. We design and analysis an new fast on-line signature, which has new feature in that
on-line multiplication is not required;

4. We construct new proxy signature schemes, which are based on the original signer’s
message recovery. We also propose two practical schemes, whose security is based
on Discrete logarithm and RSA problems, respectively.

We investigate the above themes in terms of both security and efficiency. Our schemes
satisfy the provable security using well-known or our proposed assumptions. All our
schemes are enough practical from both computational and transmitted-data point of
view.
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Chapter 1

Introduction

1.1 Preface

Cryptography is a strategy of information protection. Through the ages, cryptography
has protected communications through hostile environments, especially in the case of war
or diplomacy. One can see that an innovative progress was made in such situations.
For example, the world’s first digital computers were built to crack the codes in World
War II. In 1949, the publication by C. E. Shannon, “Communication Theory of Secret
Systems” [49], opened up a new field of cryptography. He built on the information theory
and showed for instance that “perfect secrecy” (theoretically secure ciphertext) requires
a one-time secret key which is as long as the plain text. In 1977, Data Encryption
Standard (DES) [31] was published by National Bureau of Standards. The idea of a
“open algorithm” is a revolutionary event in cryptography. Before the publication of
DES, there apparently were no publications containing a complete algorithm for practical
cryptographic usage.

The remarkable breakthrough of the cryptography came with the publication in 1976
by W.Diffie and M.E.Hellman of their work “New Directions in Cryptography” [9]. In
the paper, they proposed the concept of public key cryptography and showed that secret
communication is possible without an exchange of secret key in advance, while usual sym-
metric cryptosystem was required for such preparations. Their splendid idea was to use
two different keys, a public key for encryption and a private key for decryption. Based on
this asymmetry, they further proposed the concept of digital signatures. Here, the private
key is used to sign a message and the public key is used to verify a signature. However,
they did not provide realizations of the new concepts, but they proposed a protocol that
allows two entities to share a common secret key only by exchanging information in public.

The concept of public key cryptography inspired many researchers, and it soon became
a fast-growing and fascinating research theme. In the following years, although many re-
alization of public key encryption and digital signature schemes were proposed, most
notable one was RSA scheme. This scheme was introduced by three inventors R.L.Rivest,
A.Shamir and L.Adleman who published the paper “A method for obtaining digital sig-



natures and public key cryptosystems” [42] in 1978. This scheme was the first practical
public-key encryption and digital signature schemes. Based on these primitives, more
complex systems such as digital payment schemes or voting schemes were devised.

Nowadays, public-key cryptography and in particular digital signatures will play a key
role in the emerging information society. Existing applications of such a cryptography in-
clude the authentication and encryption of bilateral communication (e.g., e-mail, internet
banking, on-line shopping), electronic voting, and access control. Digital signatures can
serve as a mechanism for making legally binding statements (e.g. contracts, testimonies.)

The goal of this thesis is propose now notions and techniques leading to digital sig-
nature systems that can be applied in practice. It is our belief that we provide elegant
schemes with both security and efficiency. The security is an indispensable property for
any puclic-key cryptosystem as well as the efficiency.

We now procced in three basic directions toward this ideal and consider how to effi-
ciently extend digital signature with the best security. Those three themes, are described
as follows.

1. Number theoretic problem

The security of public key cryptosystems relies on a number theoretic problem which is
considered as a difficult problem. Difficult problem means the computational requirement
in finding a solution. Those problems are called hard problems.

In a cryptographic setting, a number theoretic problem is regarded as a hard problem
and suppose that such a problem is hard to solve. Informally, this means that any adver-
sary cannot solve the problem in reasonable time. Concrete to say, a number theoretic
problem is said to be easy if it can be solved for all possible inputs with a non-negligible
fraction in (expected) polynomial time. In other words, if there is an algorithm which can
solve a problem for all instances of a problem with non-negligible fraction in polynomial
time, then any cryptosystem, whose security is based on that problem, must be considered
insecure.

Nowadays, RSA problem [42], integer factoring problem, discrete logarithm problem
etc., are well used in practical public-key cryptosystems. Among those problems, RSA
problem is the most widely used in the real world. However, the true computational
complexities of those hard problems has not been known. For example, the most effi-
cient algorithms ever proposed to solve the integer factoring problem is the number field
sieve [25] and it takes sub exponential time. They are widely believed to be intractable,
although any proof is not known.

Although the only lower bounds to solve these problems are the trivial linear bounds
generally, one can not provide any evidence of their intractability. Consequently, it is
important to study their relative difficulties. For this reason, various techniques reducing
one computational problem to another one have been proposed and studied very well.
These reductions provide the techniques for converting algorithms that solves the second
problem into an algorithm for solving the first problem.



2. Fast on-line signature

Up to the present, the computational performance of public-key cryptosystem is consider-
ably inferior to that of symmetric-key cryptosystem. Therefore, one of the most important
things for public-key cryptosystems is to study the computational efficiency. The most
critical computation is the signature generations because the signature verification is done
in rather high-performance machine. We now focus on the signer’s computational work.
It consists of two kinds of computation for the signer: pre-computation and (actual) sig-
nature generation. The pre-computation can be computed during idle hours because it is
completely independent of the message to be signed. The computational amount in the
pre-computation part is not critical, is called off-line processing.

On the other hand, the (actual) signature generation which does directly influence
the processing time, is called on-line processing. To estimate the efficiency of a signature
scheme, we separately consider the two types of computation. The fast on-line signature is
required various applications. The pre-computation usually consists of hasing, addition,
multiplication and modular reduction. Since the computational amount of hasing or
addition is much smaller than that of multiplication or modular reduction, we usually
discuss only multiplication and modular reduction. A signature scheme without on-line
modular reduction, which is proposed by Poupard and Stern in [38], is called on the fly
signature.

We now focus on the computational efficiency of both the algorithm for multiplication
and the algorithm for modular reduction. A recursive algorithm due to Karatsuba and
Ofman [20] reduce the complexity of the multiplication. On the other hand, Barrett
reduction [3] reduce the complexity of the modular reduction and it is much advantageous
if reduction is performed with a single modulus. As a result, the Barrett reduction is
further advantageous than the Karatsuba-Ofman algorithm if the single modulus can be
used in the case of the modular reduction. From this reason, we are longing for a signature
scheme such that the actual on-line computation is only modular reduction and the signer
can compute a value with a single modulus.

3. Proxy signature

Proxy signatures, introduced by Mambo, Usuda and Okamoto in [27], allow a designated
person to sign on behalf of an original signer. Suppose that an employee in a company
needs to go on a business trip without special tool available for access to the company.
She has instructed her secretary to respond some important e-mail on behalf of her. Proxy
signature gives a solution for such a situation, which has the following properties:

e Unforgeability. Only the original signer and the designated proxy signer can
create a valid proxy signature;

e Proxy signer’s deviation. A proxy signer cannot impersonate the original signa-
ture;



Verifiability. From a proxy signature, a verifier can be convinced of the original
signer’s agreement on the signed message.

Distinguishability. Proxy signatures are distinguishable from normal signatures
by anyone;

Identifiability. An original signer can determine from a proxy signer the identity
of the corresponding proxy signer;

Undeniability. A proxy signer cannot repudiate her generated signature.

In some cases, a stronger notion of identifiability in which anyone can determine the
proxy signer’s identity from the proxy, is required signature.

Our contribution

In this thesis, we study the following themes:

1.

We research new mathematical problems named self-powering RSA problem and
extended finding order problem. Those problems are used as underlying problem
in our schemes. To discuss the former problem, we propose a modified Guillou-
Quisquarter identity-based scheme whose security is based on the problem. We
show that Modified G@Q scheme is more efficient than previous one because it is not
necessary to use a hash function in our scheme. We also show that our fast on-line
schemes (described below) as secure as the latter problem, if we set a public key
(modulus) n which n consists of three or more prime factors.

. We propose a new on the fly signature by improving the PS-scheme. In PS-scheme,

the size of secret key is fixed by modulus n, so that this feature lead to some
drawbacks in terms of both the computational work and the communication load.
The main idea of our scheme is to reduce the size of secret key in PS-scheme by using
a public element g which has a specific structure. Consequently, our schemes are
improved with respect to the computational work (which means the computational
cost for “pre-computation”, “(on-line) signature generation” and “verification”) and
the data size such as a secret-key and a signature.

. We design and analysis an new fast on-line signature. One may consider that our

scheme is a counterpart against on the fly signatures. Our scheme would require
a modular exponentiation as preprocessing. However, no multiplication is used in
the actual (i.e. on-line) signature generation. This means that the phase involves
only a hasing operation, addition and a modular reduction. Hence, our approach
to obtain the fast on-line signature is different from theirs. Our study is the first
approach for the fast signature scheme without on-line modular multiplication.



4. We construct a new notion for proxy signature scheme. The remarkable property in
our scheme is that in verification, the verifier accept the signature if and only if the
verifier recovers the message created by the original signer. In our thesis, we propose
new proxy signatures, DLP-PS and RSA-PS. Both schemes have the property that
the original signer can control signing power of proxy signer to some extent. DLP-PS
is obtained by improving the basic proxy signature and controls the power of proxy
signer by adding usage condition to proxy signer’s public key implicitly, which uses
idea of message recovery. In verifying proxy signers signature, the usage condition
can be checked independent of a message. RSA-PS controls the power of proxy
signer by adding usage condition to proxy signer’s public key explicitly, which uses
the idea of ID-based cryptosystem. The efficiency of our proposed schemes are better
than that of previous one with respect to both computational time and transmitted
data size.

Thesis Outline

This thesis is organized as follows. Chapter 2 gives a general cryptographic background,
which is used for the understanding of basic concepts used in later chapters. Chapter 3
presents the fundamental definitions and models with respect to three-pass identification
scheme. The current schemes are also presented. Chapter 4 formally models the digital
signature scheme and present current schemes. Chapter 5 gives a discussion of proposed
mathematical problems. It also proposes a new identification scheme which is based on
one of those problems. Chapter 6 deals with the fast on-line signature. In this chapter,
two kinds of schemes are proposed. One of them is a on the fly signature which is obtained
by improving PS-scheme. Another scheme is a signature without on-line multiplication.
Chapter 7 propose a new system of the proxy signature, and show the two schemes which
are based on the discrete logarithm and RSA problems, respectively. Chapter 8 concludes
this thesis with remarks.

1.2 Preliminary Definition
We first define symbols, notations and definitions. They are used throughout our thesis.

e 7 denotes a set of all integers.

e 7, denotes a set of integers more than p.

Zy, denotes a multiplicative group of Z,, that is Z; = {x € Z,[gcd(z,p) = 1}.

N denotes a set of all natural numbers.

N.; denotes a set of natural integers more than i.



® N,iime denotes a set of all primes.

e Ord,(g) denotes the order of an element g € Z.

e a|b means a divides b equivalently, that is, a is a divisor of b, or a is a factor of b.
e |z| means the number of bits of z, that is, |z| is the size of .

e ||z|| means the absolute value of x.

e gcd(a, b) means greatest common divisor of integer a and b.

e Inx is the natural logarithm of z, that is, the logarithm of x to the base base of
natural logarithm, e.

e logx is the logarithm of x to the base 2.

e (-) denotes Euler totinent function, that is, p(n) is the greatest number among the
possible orders of elements in Z.

e )\(-) denotes so called Carmichael function, that is, A(n) is the greatest number
among the possible orders of elements in Z.

On-line computing This is the (prover’s/signer’s) computational
work which can be computed after (random chal-
lenge/message to be signed) is determined.

Off-line computing This is the (prover’s/signer’s) computational
work which can be computed without (random
challenge/message to be signed).

Fast on-line signature This is the signature which has the on-line com-
putational efficiency.

Strong prime We say that a prime p is a strong prime if p =
2p" + 1 and p' is also prime.

Generic (digital) signature This means a signature scheme which can be de-
rived from a three-pass identification scheme by
using an appropriate hash function.

RSA modulus We say that modulus n is RSA modulus if n is a
product of two distinct prime, that is, n = pq for
primes p # q.

TA This is the abbreviation for Trusted Authority.

PPT This is the abbreviation for the probabilistic

polynomial-time Turing.
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Definition 1.2.1 ((Big-O/small-0) notation) Let f(k) > 0 and g(k) > 0 be two
functions. If

e (dc> 0,3u, Vo > u)[f(z)/g(x) < ],

e (Ve > 0,3u, Vo >u)[f(z)/g(x) < ],
hold, we write as f(z) = O(g(x)) and f(z) = o(g(x)), respectively. n
Definition 1.2.2 ((Polynomial/sub exponential/exponential) time algorithm)

e Polynomial time algorithm. It is an algorithm whose running time is of the
form O(n®), where n is the input size and ¢ is a constant number.

e Sub exponential time algorithm. It is an algorithm worse running time is of
the form e°™, where e is the natural logarithm and n is the input size.

e Exponential time algorithm. It is an algorithm worse running time is of the
form O(c™), where n is the input size and ¢ > 1 is a constant number.

Definition 1.2.3 (Negligible/non-negligible/overwhelming) Let f(k) > 0 be a func-
tion. If

o (Ve >0)[f(z) = o(1/2°)],
o 1/z°=O(f(x)),
o 1— f(z) = of1/29)
hold, we say f is negligible, non-negligible and overwhelming, respectively. Additionally,
e f(k) < e(k) means that a function f(k) is negligible for k,
e f(k) > e(k) means that a function f(k) is not negligible for k,
e f(k) > 1—¢e(k) means that a function f(k) is overwhelmingly for k.

In this thesis, we use the term “negligible”, “non-negligible” or “overwhelming” for
the purpose of security parameter. Hence we usually omit the description “for security
parameter” except for the special case.



Chapter 2

Cryptographic Background

2.1 Introduction to Public Key Cryptosystems

Public-key cryptography provides a radical departure from all that has gone before. For
one thing, public-key algorithms are based on mathematical functions rather than on
substitution and permutation. But more important, public-key cryptography is asym-
metric, involving the use of two separate keys, in contrast to the symmetric conventional
encryption, which uses only one key.

The idea behind a “public-key” system is that it might be possible to find a cryptosys-
tem which it is computationally infeasible to determine the decryption rule Dg even by
using the encryption rule Eg. If so, then the Ex could be made public by publishing
it in a directory (hence we call this “public-key” system). the advantage of a public-key
system is that Alice (or anyone else) can send an encrypted message to Bob (without the
prior communication of a secret key) by using the public encryption rule Ex. Bob will
be the only person that can decrypt the ciphertext, using his secret decryption rule D.

2.1.1 Requirement
We show algorithms which public-key cryptography must fulfill:

1. Tt is computationally easy for Bob to generate a pair (PKp, SKp), where PKp is
a public key and SKp is a secret key.

2. It is computationally easy for a sender Alice who know the public key PKp and the
message M which is encrypted by Alice to generate the corresponding ciphertext

C - EPKB(M)-

3. It is computationally easy for the receiver Bob to decrypt the resulting ciphertext
C using the private key to recover the original message

M = D5k, (C) = Dsky[Epi, (M)].



4. It is computationally infeasible for an opponent who know the public key PKp to
determinate the secret key SKp.

5. It is computationally infeasible for an opponent who know the public key PKpz and
a ciphertext C' to recover the original message M.

We can add a sixth requirement that, although useful, is not necessary for all public-
key applications:

6. The encryption and decryption functions can be applied in either order

M = Epk,y[Dsi, (M)].

There are formidable requirements, as evidenced by the fact that only one of such
algorithm has received widespread acceptance in over a quarter-century since the concept
of public-key cryptography was proposed.

Before elaborating on why the requirements are so formidable, let us first recast them.
The requirements boil down to the need for a trapdoor one-way function. “one-way
function” is one that maps a domain into a range such that every function value is easy
whereas the calculation of the inverse is infeasible:

Y =f(X) easy.
X = fYY) infeasible.

Generally, “easy” is defined to mean a problem that can be solved in polynomial time
as a function of input size. Thus, if the length of the input is n bits, then the time cost to
compute the function is proportional to n®, where a is a fixed constant. Next, the term
“infeasible” is a much fuzzier concept. In general, we can say a problem is infeasible if the
effort to solve it grows faster than polynomial time as a function of input size. For example,
if the length of the input is n bits and the time to compute the function is proposition
to 2", it is considered infeasible. Unfortunately, it is difficult to determine if a particular
algorithm exhibits this complexity. Furthermore, traditional notions of computational
complexity focus on the worst-case of average-case complexity of an algorithm. These
measures are worthless for cryptography, which requires that it be infeasible to invert a
function for virtually all inputs, not for the worst case or even average case.

We now turn to the definition of a “trapdoor one way function”, which, like the one-
way function, is easy to calculate in one direction and infeasible to calculate in the other
direction unless certain additional information is known. With the additional information,
the inverse can be calculated in polynomial time. We can summarize as follows: A
trapdoor one-way function is a family of invertible functions fx, such that,

Y = fr(X) easy, if K and X are known.
X = f(Y) easy, if K and Y are known.
X = f(Y) infeasible, if Y is known but K is not known.

Thus, the development of a practical public-key scheme depends on discovery of a suitable
trapdoor one-way function.



2.1.2 Application

In broad terms, we can classify the use of public-key cryptosystems into three categories:

1. Encryption/Decryption : The sender encrypts a message with the recipient’s public
key.

2. Digital Signature : The sender “signs” a message with its private key. Signing is
achieved by a cryptographic algorithm applied to the message or to a small block
of data that is bound in some way to the message.

3. Key exchange: Two sides cooperate to exchange a session key. Several quite different
approaches are possible, involving the private key(s) of one or both parties.

Some algorithms are suitable for all three applications, whereas others can only be used
for one or two of these applications.

2.1.3 Identity-Based Cryptosystem

An identity-based cryptographic system, which was proposed by A.Shamir [48], is an
asymmetric system wherein an entity’s public identification information (unique name)
plays the role of its public key. This system is used as input by a trusted center T  to
compute the entity’s corresponding private key.

In usual public-key cryptosystems, every user has a key-pair (s, P), where s is a secret
key, only known to this user and P is a public key which anybody may know. By definition,
public keys need not be protected for confidentiality; on the contrary, they have to be as
made as public as possible. But this “publicity” becomes drawback toward active attacks,
such as the substitution of a “false” public key to a “true” one in a directory. Therefore
besides key-pair (s, P), we must include his identification string I and “guarantee” G that
P is really the public key of user I, and not the one of an imposer I.

When we adopt the Identity-based systems, the public key is equivalent to the identity.
i.e. P =1. And guarantee is equivalent to the secret key itself. i.e. G = s. Since there is
no certificate to store and to check, this system has good properties.

After computing the entity’s private key, T' transfers the entity’s private key to the
entity over a secure (authentic and private) cannel. This private key is computed from
not only the entity’s identity information, but must also be a function of some privileged
information known only to 7' (71”s private key). This is necessary to prevent forgery and
impersonation - it is essential that only 7" be able to create valid private keys corresponding
to give identification information. Corresponding (authentic) publicly available system
data must be incorporated in the cryptographic transformations of the ID-based system,
analogous to the certification authority public key in certificate-based systems.
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2.2 Complexity Theory

Nowadays, the security in the practical public key cryptosystem, depends on the hardness
of solving problem for number theory. This section shows the known results of determin-
istic and probablistic polinomial-time reductions among the problems.

2.2.1 Complexity Issues in Cryptography

One very important observation is that a public-key cryptosystem can never provide
unconditional security. Consequently, it is important to study the computational security
of public-key systems.

Certainly a minimal expectation of a public-key cryptoystem is that this system cannot
be cracked in polynomial time. If this condition is satisfied, then every polynomial time-
bounded algorithm there exits infinitely many messages whose codes the algorithm, cannot
crack. This leaves open possibility that there exists some algorithm, and infinitely many
messages whose codes this algorithm can crack in polynomial time. For a public-key
cryptoystem to be secure, it must be the case that ciphertexts cannot be cracked for most
messages.

2.2.2 Complexity Class

We first define several complexity classes.

Definition 2.2.1 (Complexity Class P) The set of all decision problems that are solv-
able in polynomial time is called the complezity class P.

The computational tasks that need to get solved in practice are not all of the kind
that take a “yes” or “no” answer. For example, we say need to find a satisfying truth
assignment of a Boolean expression, not just to tell whether the expression is satisfiable;
in the traveling salesman problem we want the optimal tour, not just whether a tour
within a given budget exists; and so on. We call such problems requiring an answer more
elaborate than “yes” or “no”, “function problems”. We can show the following definition
which is associated with this problems.

Definition 2.2.2 (Complexity Class FP) The class of all function problems in P is
called the complexity class FP.

2.2.3 Turing Reducibility

In this thesis, we introduced the (Turing) reducibility concept to evaluate the difficulty of
solving the problem. These reduction are defined in the same manner of the reductions
among languages over some finite alphabet. As for the concept, we obey the paper in [45].
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We first define the function @) to solve the program P;, and the function ¢, to solve the
program P,, respectively. If one adopt P, as a subroutine, and can construct polynomial
time computable program P,, then we say “Q)y reduces to (), ”.

We show the instruction in graphical as follows:

P

R

input — PTM —— output

P.

Figure 2.1: Querying an oracle.

In Figure 2.1, PTM means “Polynomial-time Turing Machine”. With respect to re-
ductions, there exist some classifications:

Definition 2.2.3 (Polynomial Turing reduction) For two functions f and g, the fol-
lowing reductions are used in this paper:

e Many one reduction. f</g denotes that f reduces to g with respect to (func-
tionally) polynomial many-one reducibility. This reduction means that there exists
a polynomial-time computable function h; and hy such that f(x) = he(g(hi(x))) for
all input z.

e Turing reduction. f<?g denotes that f reduces to g with respect to (functionally)
polynomial-time Turing reducibility. This reduction means that a deterministic
polynomial-time bounded Turing machine can access an oracle adaptively, where
the number of queries to an oracle is bounded by the polynomial time.

e Expected Turing reduction. fg;fpg denotes that f reduces to g with respect to
(functionally) expected polynomial Turing reducibility. This reduction means that
there exists a probablistic polynomial-time bounded Turing machine can access an
oracle adaptively, where the number of queries to an oracle is bounded by expected
polynomial time.

By definitions, it is obvious such that for function f and g,

f<hg= f<ltg = f<idrg,
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Number theoretic problems

We first define the various number theoretic problems and also define the corresponding
functions solving the problems. i.e. for a query to the function, the oracle (function)
returns the answer if such an answer exists.

Definition 2.2.4 (Discrete logarithm problem over Z*) It is given n € N.i,g €
Zn,y € Zy, to find x € Z, such that y = g* mod n. We denote by DL, the function enable
to solve the problem. [

Definition 2.2.5 (Factoring problem) It is given n € Ny, to find a such that 1 <
a < n and a|n. We denote by FACT the function enable to solve the problem. ]

Definition 2.2.6 (RSA problem [42]) It is given n € Ny, e € Z:;(n),y € Z;, to find
x such that y = 2° mod n. We denote by RSA the function which enable to solve the
problem. [

Definition 2.2.7 (Strong RSA problem ) It is given n € Ny, y € Z?, to find a pair
(e,x) with e > 1 and x € Z} such that y = 2° mod n. We denote by RSA the function
which enable to solve the problem. [

Results

It is known that st-RSA <7 RSA, RSA </’ FACT and FACT < DL, [37, 1, 52]. All the
results including our results are shown in Chapter 5.
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Chapter 3

Three-pass identification scheme

3.1 Introduction

Identification is a process of verifying the entity’s identity. This scheme allows one entity,
called prover, to identity herself to another entity, called verifier, in such a way that the
adversary listening in the open network, cannot impersonate the prover.

The identification techniques, belonging to the information security, may be divided
into two categories. One category is so-called weak identification, such as conventional
password schemes. Another category is strong identification.

This chapter focus on a strong identification, called challenge response identification.
One disadvantage of simple password protocol is that when a prover gives the password
to the verifier, the verifier later can impersonate the prover. On the other hand, in
challenge-response public-key techniques, the prover can prove its identity to the verifier
without revealing the secret itself to the verifier. This might nonetheless reveal some
partial information about the provers secret.

Zero-knowledge protocols, which is one of challenge response schemes are designed to
avoid such a problem, by allowing a prover to demonstrate knowledge of a secret while
revealing no information except for public information.

In this chapter, we introduce three-pass zero-knowledge based protocols. That is a
practical scheme because the flow is only 3-pass. Moreover, there is another advantage,
that is, such identification schemes can be transformed into digital signature schemes.

3.2 Model and Definition

We illustrate the general structure of 3-pass identification scheme.

e Key generation. it is a probabilistic algorithm which on input a string 1¥ and
a random tape wy, outputs a pair (pk, sk) with public key pk and secret key sk,
where k£ is a security parameter.

14



e Identification. In this protocol, there exists two PPT parties, a prover P with
random tape wp and a verifier V' with random tape wy. We describe interactive
protocol as follows. Here A — B denotes the parameter’s flow from A to B for
entities A and B.

Move 1 (P — V): P computes commitment x, and sends x to V.
Move 2 (V — P): V computes challenge e, and sends e to P.
Move 3 (P — V): P computes answer y, and sends y to V.

On input the above parameters (z,e,y), V finally check whether the proof is valid
or not.

First attempts to provide a definition to the concept of proofs of knowledge appear in
Feige, Fiat and Shamir [11] and Tompa and Woll [51]. The issue of defining protocols of
knowledge has been extensively investigated by Bellare and Goldreich. In this thesis, we
follow the approach of Feige, Fiat and Shamir [11] and prove the security in our proposed
identifications.

P and V means the honest prover and the honest verifier, respectively. We denote by
R = {(z,s)} a relation whose decision can be computed in polynomial time, where x is
a common input tape and s is a knowledge of P such that {(z,s)} € R. Let (P,V) an
interactive protocol between two entities P and V. Then the interactive proof system of
knowledge is defined as follows.

Definition 3.2.1 (Interactive proof system) We say that (P, V) is a interactive proof
system of knowledge for the relation R, if the following conditions hold:

e Completeness.

AP, VY(z, s) [(z, s) € R]
Pr[(P,V) accepts z] > 1 — e(|z|).

e Soundness.
AM,VP*,Vx,Vs*, Vw,
Pr[(P*(s*),V) accept x] > e(|z|)
= Pr[M(P*(s*,w,), x) outputs s such that (z,s) € R],

*

. *9 .
, s P"’s random tape;

where P* represents an honest/dishonest prover (PPT); w
and M is a PPT which on inputs p* and x, outputs s.

Definition 3.2.2 (Indistinguishability) Let D; and D, be two distributions of prob-
ability. We denote by A(p, p,),the distance between D; and Ds:

Moo= 3 | Prle=p]- By o=l
pefo,1}~

Then we classify into three indistinguishabilities.
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e Perfect indistinguishability. We say that D; and D, are perfectly indistinguish-
able if A(D17D2) =0.

e Statically indistinguishability. We say that D; and D, are statically indistin-
guishable if A, p,) < €(|a]).

e Computational indistinguishability. We say that D; and D, are computa-
tionally indistinguishable if there is not any distinguisher D with a non-negligible
advantage.

It is obvious that if two distributions are perfectly (resp. statically) indistinguishable,
they are statically (resp. computationally) indistinguishable.

Definition 3.2.3 (Honest verifier zero-knowledge identification protocol) We say
that the protocol is honest verifier (perfectly/statically/computationally) zero-knowledge
identification protocol if the distance between the real (i.e.(P, V')) and the simulated
distributions is (perfectly/statically /computationally) indistinguishable. u

3.3 Protocol

This section survey the conventional identification protocols based on or motivated by
zero-knowledge techniques.

3.3.1 Schnorr scheme

Schnorr identification scheme [46, 47| allows pre-computation which reduce the real-time
computation for the entity to one multiplication modulo a prime ¢q. Consequently, one
may say that it is suitable for claimants of limited computational ability.

Key generation: The following steps are executed:
1. Pick up two primes p and ¢ satisfying ¢|p — 1.
2. Find an element g € Z; such that Ord,(g) = q.
3. Pick up a random number s and compute v = ¢~* mod n.

Secret-key/public-key: The public key is (p, ¢, g,v) and corresponding secret key is g.

Identification: A prover P and a verifier V' execute the following steps:
1. P picks up a random number r € Zsy., computes the commitment r = ¢" mod n and
sends x to the verifier.
2. V picks up a random challenge e € Zor and sends e to the prover.
P computes an answer y = r + se mod ¢, and sends y to the verifier.
4. V checks whether z = ¢Yv° mod p holds or not. If the equations holds, V' accepts.
Otherwise rejects.

b
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3.3.2 Guillou-Quisquater scheme

Guillou and Quisquater proposed a variant of Fiat-Shamir identification protocol [12].
The security is base on the RSA problem. This protocol is specified in ISO/IEC 1488-2.

Key generation: The following steps are executed:
1. Pick up two primes p and ¢ and compute n = pq.
2. Pick up a € Z¥ and compute b satisfying ab = 1 mod ¢(n).
3. Pick up a random number u and compute s = ©~* mod n.

Secret-key/public-key: The public key is (n, a,u) and corresponding secret key is s.

Identification: A prover P and a verifier V' execute the following steps:
1. P picks up a random number r € Zs., computes the commitment x = r* mod n and
sends x to V.
2. V picks up a random challenge e € Zo+ and sends e to P.
P computes an answer y = rs® mod n and sends y to V.
4. V checks whether x = u°y® mod n holds or not. If the equations holds, V' accepts.
Otherwise rejects.

b

3.3.3 Guillou-Quisquater identity-based scheme

The Guillou-Quisquater identification scheme in Section 3.3.2 can be transformed into
what is known as an identity based identification scheme. In this case, certificates are not
required. Instead, TA (Trusted Authority) computes the value u as a function of user’s
ID string, using a public hash function H : {0,1}* — {0,1}". The value u is computed
from the user’s ID string via public hash function H.

TA’s parameter generation: The TA execute the following steps.
1. Pick up two distinct primes p and ¢ and compute n = pq.
2. Pick up a € Z¥ and compute b satisfying ab = 1 mod ¢(n).

TA’s parameter: The TA’s public key is (n,a) and the corresponding secret key is two
primes p and ¢ (or b).

User’s parameter generation: Suppose that TA issue the parameter for user P. Let
ID be a P’s ID information. Then TA executes the following steps.

1. Compute u = H(ID).

2. Compute s = u~* mod n.

User’s parameter: The P’s ID string is u and the corresponding secret key is s.

Identification: Suppose P and verifier V' construct an interactive proof system. Then
they execute the following steps.
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1. P picks up a random number r € Z, computes the commitment x = r* mod n, and
sends x to the verifier.

2. V picks up a random challenge e € Zy. and sends e to P.

P computes the answer y = rs® mod n and sends y to V.

4. V computes u = H(ID) and checks whether x = u°y® mod n holds or not. If the
equations holds, V' accepts. Otherwise rejects.

w

One can replace the redundancy function instead of 7. In this case, a example of the
redundancy function is the redundancy mapping of the preprocessing stage of ISO/IEC
9796.
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Chapter 4

Digital Signature Scheme

4.1 Introduction

A cryptographic primitive, which is fundamental in authentication, authorization, and
non-repudiation is called the digital signature. The purpose of a digital signature is to
provide a means for an entity to bind its identity to a piece of information. The process of
signing entails transforming the message and some secret information held by the entity
into a tag is called a signature.

The concept of a digital signature was recognized for several years, before any practical
was available. The first scheme was the RSA signature scheme, which even now remains
one of the most practical techniques available. Subsequent research has resulted in many
alternative digital signature techniques. Some schemes offer significant advantages in
terms of functionally and implementation.

This chapter describes some general models for digital signature schemes. Some con-
crete signature schemes, such as conventional, on the fly and proxy signatures, are also
presented.

4.2 Model and Definition

A digital signature scheme consists of the following three algorithms:

e Key generation. As well as in the key generation of 3-pass identification scheme in
Section 3.2, it is a probabilistic algorithm which on input 1* and a random tape wg,
outputs a pair (pk, sk) with public key pk and secret key sk, where k is a security
parameter.

e Signature generation. It is a possibly probabilistic algorithm on input a random
tape wg, sk and a message m to be signed, outputs a signature o.

e Verification. It is a deterministic algorithm on input pk, m and a candidate
signature o for m, outputs a bit, i.e. “accept” or “reject”.
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The goal of attack in signature scheme is that an adversary (not actual signer) obtain
forged signatures. To evaluate the security in signature schemes, we must cover two
aspects, type of attack and that of forgery.

Definition 4.2.1 (Type of attack) There exist the following types of attack in signa-
ture scheme:

e No message attack. An adversary can only obtain a public key.

e Known message attack. An adversary can obtain a polynomial number of pairs
of message and the corresponding signature. However she does not allow to choose
those messages she like.

e Chosen message attack. In the same way as in known key attack, an adversary
can obtain a polynomial number of pairs of message and the corresponding signature.
Furthermore, she can allow to choose those messages she like.

e Adaptively chosen message attack. Under the above chosen message attack,
an adversary can choose each message adaptively.

Definition 4.2.2 (Type of forgery) There exist the following types of forgery in sig-
nature scheme:

e Total forgery. An adversary obtain the secret key.

e General forgery. An adversary obtain the signature for a given message which
she does not chooses herself.

e Existential forgery. An adversary obtain a pair of a message and the correspond-
ing signature.

Definition 4.2.3 (Secure signature) We say that an signature scheme is secure if the
probability, which any PPT adversary with random tape w, can obtain a existential
forgery under the adaptive chosen message attack, is negligible:

Pr  [Verifer accept the adversary| < e(k)
WK,WS,WA

Provable security. Informally, it is said that a signature scheme is provably secure if
its security can be tied close to the security of cryptosystem and proved mathematically.
In 1984, Goldwasser et al. proposed the first signature scheme [16] satisfying the above
condition. In the scheme, they used the assumption of claw-free permutations pairs, that
is, given two permutations f; and f, find a triple (x,y, z) such that fi(z) = fo(y) = 2.
Unfortunately, those provable secure schemes including [4, 29, 43] are not practical in
terms of complexity or data size (or both).
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Random oracle model. If the hash function in the signature scheme are modeled
as being truly random functions, such a model is called random oracle model [12, 5.
In this model, we assume that all parties including adversary, can access to a public
random oracle, which on input a string z, returns a (truly) random string #(z) with some
appropriate length. In a real world, such an ideal hash function does not exist. So, in case
of implementation, we replace the the random oracle by a “well defined” cryptographic
hashing function, such as MD5 or SHA1. The signature schemes which are provably
secure in random oracle model, such as PSS [6] or Guillou-Quisquater scheme [17], give
the the benefit of good security with good performance. Therefore these schemes are
much practical.

Converting form identification to signature scheme. As for the generic 3-pass iden-
tification protocol involving commitment-challenge-response sequence, such as Schnorr [47],
the following technique proposed by Fiat and Shamir [11] may be used to convert the iden-
tification scheme to a signature scheme: One replaces random challenge e of the verifier
by the appropriate one-way hashed value: e = H(x, m), where x is the commitment and
m is the message to be signed.

4.3 Conventional Signature

4.3.1 RSA signature

The RSA signature scheme [42] was the first practical signature scheme based on public-
key techniques. Let H : {0,1}* — {0,1}" be a hash function.

Key Generation: The following steps are executed.
1. Pick up two distinct primes p and ¢ and compute n = pq.
2. Pick up e € Z and compute d satisfying ed = 1 mod ¢(n).

Public key/Secret key: The public key is (n,e) and the corresponding secret key is d
(or two primes p and q).

Signature Generation: A signer executes the following step.

1. Compute h = H(m)
2. Compute 0 = h? mod n

Signature: The signature of m is o.

Verification: A verifier executes the following steps.
1. Compute h = H(m)
2. Check h = 0 mod n

The ISO/IEC 9796 standard lists RSA as a compatible cryptographic algorithm. PSS
(Probabilistic Signature Scheme) is a provably secure way of creating signatures with

RSA. The proof of security for PSS takes place in the random oracle model. The method
for creating digital signatures with RSA is described in PKCS #1 [44].
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4.3.2 Schnorr signature

The Schnorr signature scheme [47] is derived from an identification protocol given in
Section 3.3.1. Signature generation in this scheme requires one exponentiation modulo
p and one multiplication modulo p. Then the exponentiation modulo p could be done
off-line. The method requires hash function H : {0, 1}* — {0, 1}

Key generation: The following steps are executed:
1. Pick up two primes p and ¢ satisfying ¢|p — 1.
2. Find an element g € Z; such that Ord,(g) = ¢.
3. Pick up a random number s and compute v = ¢~* mod n.

Public key/Secret key: The public key is (p, ¢, g, v) and corresponding secret key is g.

Signature Generation: A signer executes the following step.
1. Pick up a random number r € Z, and compute z = ¢" mod n.
2. Compute a hash value e = H(x, m)
3. Compute y = r + se mod q.

Signature: The signature of m is (e, y).

Verification: A verifier executes the following steps.
1. Compute ' = ¢¥v® mod p.
2. Compute ¢’ = H(x,m).
3. Check whether 2’ = ¢¥v¢ hold or not. If the equation holds, the verifier accept.
Otherwise reject.

4.4 On the Fly Signature

4.4.1 Related Work

In 1992, Giraut [15] modified Schnorr’s signature scheme [47] in which an RSA modulus is
used instead of a prime modulus. This modification leads to no modulo reduction in the
signature generation. Therefore, in Girault’s scheme, faster processing of the signature
generation is possible than in Schnorr’s one. In 1998, Poupard and Stern [38] investigated
and gave provable security for Girault’s scheme, and named that scheme GPS-scheme.

In 1999, Poupard and Stern [39] proposed a generic signature scheme (PS-scheme),
whose security relies on the difficulty of integer factoring. In this scheme, the size of
the public-key is smaller than that in GPS-scheme. Consequently, compared with GPS-
scheme, the computational cost and the data size can be decreased, and PS-scheme is
seemed more secure under the one-key attack scenario [39]. However, PS-scheme has
some drawbacks. For instance, the size of secret key is only dependent on modulus n,
and considerably large (about |n|/2). This drawback leads to inefficient results in both
communication work and data size. Moreover, computational cost in the verification is
very high.
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4.4.2 Giraut-Poupard-Stern scheme

Giraut-Poupard-Stern scheme [38] (GPS-scheme) is a variant of the Schnorr scheme. This
scheme uses an RSA modulus in stead of a prime modulus in Schnorr scheme. We use a
hash function # : {0,1}* — {0,1}'B|.

Key generation: The following steps are executed:
1. Pick up two distinct primes p and ¢, and compute n = pq.
2. Find an element g € Z; such that the order of g is a high order, that is, Ord,(g) =
A(n).
3. Pick up a random number s € Zg and compute v = ¢g~° mod n.

Public key/Secret key: The public key is (n, g,v) and corresponding secret key is s.

Signature Generation: A signer executes the following step.
1. Pick up a random number r € Z 4 and compute x = g" mod n.
2. Compute a hash value e = H(x, m).
3. Compute y = r + se in Z.

Signature: The signature of m is (e, y).

Verification: A verifier executes the following steps.
1. Compute =’ = ¢g%v¢ mod p.
2. Compute ¢’ = H(x, m).
3. Check whether both y < A and 2/ = g¥v® hold or not. If the equations holds, the
verifier accept. Otherwise reject.

The above parameters A, B and s satisfy the condition B < s < A.

4.4.3 Poupard-Stern scheme

Poupard-Stern scheme [39] (PS-scheme) is the first practical on the fly signature. The
security of PS-scheme is provably as secure as the integer factoring problem. We use a
hash function 7 : {0,1}* — {0,1}'B].

Key generation: The following steps are executed:
1. Pick up two (distinct) strong primes p and ¢, and compute n = pq.
2. Find an element g € Z} such that Ord,(g) € {\(n), A(n)/2}.
3. Compute s =n —p(n) (=p+q-+1).

Public key/Secret key: The public key is (n, g) and corresponding secret key is s.

Signature Generation: A signer executes the following step.
1. Pick up a random number r € Z 4 and compute x = g" mod n.
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2. Compute a hash value e = H(z,m).
3. Compute y = r + se in Z.

Signature: The signature of m is (e, y).

Verification: A verifier executes the following steps.
1. Compute ' = ¢ ™ mod p.
2. Compute ¢ = H(xz,m)
3. Check whether both y < A and 2’ = ¢V ™ hold or not. If the equations holds, the
verifier accept. Otherwise reject.

The above parameters A, B and s satisfy the condition B < s < A.

Hereafter, we describe the features and the drawbacks in PS-scheme. A secret-key in
PS-scheme is s = n — ¢(n) which depends only upon (a part of) the public-key n. The
two parameters n and s are congruent under the modulo ¢(n), and the size of s is about
a half of that of n.

Moreover, the computation of y is executed on Z, and the information on a secret-key
is protected by computing r + se with condition r > se. Therefore, we can see that the
size of r also depend upon that of se.

In the verification step, the size of y has to be explicitly verified whether the condition
y < A holds or not. This kind of verification cannot be seen in the existing signature
schemes [13, 42, 47|, hence we can say that such a verification indeed characterizes PS-
scheme.

Unfortunately, PS-scheme has the following drawbacks.

High computational cost for verifier: In the verification step, y < ne holds actually.
And the order of g € Z is not open. Therefore, the computational cost for a verifier
is considerably large as |ne| increases. The verifier must compute full exponentiation
(ly — ne| bits) calculus such as z = ¢¥~" mod n.

Inefficiency by the increase of a secret-key size: If the size of a secret-key s increase
for the security reason, then this scheme shall get inefficient in view of (1) the computa-
tional cost for pre-computation, signature generation and verification, and (2) data size
such as the size of signature.

Restriction for the structure of a public-key n: When we set up a public-key n to
be the product of three or more primes, the size of a secret-key shall accordingly increase.
For example, in case n is the product of three primes, that is, p, ¢ and r, the secret-key
s (=n—(n)) turns out to be n — (p—1)(¢ —1)(r—1) (=pg+qr+rp—(p+q+r)+1),
whose size is about 3/2 times of that in case n is the product of two primes.

Our fast on-line schemes (Scheme I and II) solve the above problems. Scheme I is
obtained by improving PS-scheme, and Scheme II is more efficient than Scheme I. Those
our schemes are described in Section 6.
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4.5 Proxy Signature

4.5.1 Related Work

In 1996, Mambo, Usuda, and Okamoto [27] formulated the general idea of proxy signature
and gave a solution by proposing the primitive schemes. This scheme allows a designated
person, called a proxy signer to sign on behalf of the original signer. In their protocols,
an original signer Alice creates a proxy secret key o from her original secret key x, and
secretly gives it to a proxy signer Bob. In order to generate a signature instead of Alice,
he chooses a message m,, and generates a proxy signature Sig,(m,) by using his proxy
secret key o. Then a verifier e.g., Carol can know that the signature is generated by Bob.

In 1997, Kim, Park and Won [21] revised the above concept to propose the two new
types of digital proxy signatures, which are called partial delegation with warrant and
threshold delegation. Zhang [53] proposed two schemes for partial delegation with nonre-
pudiable property, which means it is possible to decide who the actual signer of a proxy
signature is. Therefore, in these schemes only the proxy signer can create a valid signature
for the original signer.

In 1998, Lee, Hwang and Wang [24] pointed out that Zhang’s second scheme [21] does
not have such a property and showed that a dishonest proxy signer can cheat to get the
original signer’s signature. Hence they modified the scheme to prevent such attacks.

4.5.2 Mambo-Usuda-Okamoto scheme

We summarize Mambo-Usuda-Okamoto proxy signature scheme [27] (MUO-scheme). S,,
S, and V' denote original signer, proxy signer and verifier, respectively. We first show
some parameters.

e Original signer’s parameter: The original public key is (p, g,), and the corre-
sponding original secret key is x.

e Proxy signer’s parameter: The proxy public key is K and the corresponding
proxy secret key is o.

e Proxy signature: The proxy signature of m, is o.
The protocol of MUO-scheme is given as follows.

Original parameter generation: S, executes the following steps.
1. (Original generation) S, picks up an primes and finds an element g € Z. She picks
up a random number x € Z,_; and computes y = ¢g” mod p.

Proxy parameter generation: S, and S, executes the following steps.
2. (Proxy generation) S, picks up a random number k € Z, ; and computes a pair
(K, o) with K = g* mod p, and 0 = 2 + kK mod p — 1
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3. (Proxy delivery) S, sends a pair (K, 0) to S, through a secure channel.
4. (Proxy verification) S, checks whether ¢° = y K mod p hold or not. If it does, then
S, accepts it as a valid proxy parameter. Otherwise she rejects it.

Signature and verification phase: S, and V' execute the following steps.

5. (Signing by the proxy signer) In order to generate a signature on behalf of S,. S,
chooses a message m,, by using her proxy secret key o, and generates a proxy
signature Sig,(m,) by executing a ordinary (generic) signing operation (such as
Schnorr scheme [47]). She sends (m,, Sig,(m,)) to V.

6. (Verification of the proxy signature) V' uses the original and proxy public keys
(n,g,y, K) and executes the checking operation as in the ordinary signature scheme.

Unfortunately, if someone directly implements this scheme, we will have the following
problem.

Proxy Signer’s Deviation. Proxy signer can freely sign any message which he want to
do, even if the original signer does not intend to do so.

One primitive solution for them would be obtained by adding usage condition M3* to
the above scheme. This is the message which includes proxy signer’s identity information,
deadline for signing power, categories which means a kind of messages she can sign, and so
on. Then Alice generates a signature Sig, (M;°) for M7 by using her original secret key
x and sends (M}¢, Sig, (M) to Bob. Then he deals it with a kind of certificate. To sign
a message instead of Alice, Bob generates a signature and sends it with that certificate. In
verification Carol checks the validity of both the signature and the certificate. Therefore
one more verification should be required, once a usage condition is just added. Apparently
it is rather troublesome since one verification need at least one modular exponentiation.

4.5.3 Kim-Park-Won scheme

Kim, Park and Won propose new types of proxy signatures [21] (KPW-scheme), called
partial delegation with warrant. The proxy public key ¢ in this case is computed from
original signers public key z and a usage condition M7¢. Let S,, S, and V' be original
signer, proxy signer and verifier, respectively. We use a hash function H : {0,1}" —
{0,1}", where ¢ is a security parameter.

In KPW-scheme, original signer’s parameter, proxy signer’s parameter, Proxy signa-
ture and original parameter generation are the same as MUO-scheme. The protocol of
KPW-scheme is given as follows.

Proxy parameter generation: S, and S, executes the following steps.
2. (Proxy generation) S, picks up a random number k € Z, ; and computes a pair
(K, o), where K = g* mod p, 0 = ex +kmodp—1 and e = H(M, K)
3. (Proxy delivery) S, sends a pair (K, 0) to S, through a secure channel.
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4. (Proxy verification) S, computes e = H(M3¢, K). She checks whether g” = y°/K mod
p hold or not. If it does, then S, accepts it as a valid proxy parameter. Otherwise
she rejects it.

Signature and verification phase: S, and V' execute the following steps.

5. (Signing by the proxy signer) In order to generate a signature on behalf of S,. S,
chooses a message m,, by using her proxy secret key o, and generates a proxy
signature Sig,(m,) by executing a ordinary (generic) signing operation (such as
Schnorr scheme [47]). She sends (m,, Sig,(m,)) to V.

6. (Verification of the proxy signature) V' uses the original and proxy public keys
(n,g,y, K) and executes the checking operation as in the ordinary signature scheme.

Note that V' must explicitly obtain M7¢ from somewhere, and M7¢ should be used in
verification every time. This leads to the terrible inefficiency of the transmitted data size.
It is desired that new proxy signature schemes controlled by the usage condition can be
realized with a little additional computation time and additional memory.

Our proposed proxy signature schemes, DLP-PS and RSA-PS; solve the above draw-
backs. We explain our schemes in Section 7.
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Chapter 5

New Mathematical Problem and Its
Application

5.1 Introduction

In this chapter, we propose two kinds of the mathematical problems, self powering RSA
problem and extended finding order problem. Each problem is used as the underlying
problem of our schemes.

To estimate the difficulties of the problems, we use the technique of Turing reducibility.
The way of description is the same as that of Section 2.4.

All the results of the reducibility are illustrated in Figure 5.1. In the figure, it is shown

that for functions f,g and R € {</, §J;?, szp}, f KN g means f R g.

5.2 Modified RSA Problem

We describe our new problems which are variations of the RSA problem.

Definition 5.2.1 (Self-powering RSA problem) It is given an RSA modulus n, to
find » > 1 and s € Z;, such that r = s” mod n. We denote by inv-RSA the function enable
to solve the problem. ]

One more problem can be proposed by switching a parameter r from the find part to
the given part.

Definition 5.2.2 (Extended self-powering RSA problem) It is given an RSA mod-
ulus n and r € Z7,,,, to find s € Z;, such that r = s" mod n. |

One may recall another variation of RSA problem, called strong RSA problem [2, 14].
This is proposed by Fujisaki and Okamoto.

Strong RSA problem is a problem, given an RSA modulus n and y € Z,, find a pair
(x,e) such that y = z° mod n. In the problem. we can see four parameter (n,e,z,y)
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<

Figure 5.1: Reductions among functions.

On the other hand, our problem has only three parameter (n,r,s), and parameter r is
appeared in two places. This means that our problem is the problem to find r th root of
r for modulo n.

Table 5.2 lists the four possibilities of the variations.

Table 5.1: Variations of the RSA problem.

‘ ‘ Name H Given part ‘ Find part ‘ Equation ‘
1 (original) RSA n, e,y x y = z° mod n
2 strong RSA n,y €,T y =x°mod n
3 self-powering RSA n r,s r=s"modn
4 | extended self-powering RSA n,r s r =s" modn

We show the results of Turing reducibility.
Theorem 5.2.3 inv-RSA <" ex-inv-RSA.

Proof. Assume that n is an instance of inv-RSA. Firstly k € Z; is picked up at ran-
dom. We first pick up & € Z, at random. Then (n,k) be a query to ex-invRSA. If
ged(k, o(n)) = 1, the oracle returns s such that & = s* mod n. In [40] it is shown that
©(n) > 1n(2)/In(2n)-n for positive number n. Hence the probability p which the condition
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is satisfied at one time is estimated as

p(p(n)) In2  ¢(n)
n In(2p(n)) n
In 2 In(2)
>

Therefore the expected times of repetition to obtain & satisfying ged(k, p(n)) = 1, is less
than log?(2n), which is bounded by a polynomial in expected polynomial time in |n|. This
means that inv-RSA reduce to ex-inv-RSA in expected polynomial time. 0

Theorem 5.2.4 ex-inv-RSA </? RSA.

Proof. Assume that (n,r) is an instance of ex-inv-RSA. Let (n,y) be a query to RSA.
Since ged(r, p(n)) = 1, the oracle RSA always returns s satisfying » = s" mod n. Hence s
is regarded as the output of ex-inv-RSA(n,r). O

Theorem 5.2.5 ex-inv-RSA </’ ex-st-RSA.

Proof. Assume that (n,y) is an instance of ex-inv-RSA. Note that, in ex-st-RSA setting,
ged(y, o(n)) = 1. This means that for the query (n,y) to ex-st-RSA, the oracle always
returns the answer = such that y = ¥ mod n. Then (z,y) is regarded as the answer of
ex-inv-RSA. l

Theorem 5.2.6 ex-st-RSA </’ st-RSA.

Proof. The difference between ex-st-RSA and st-RSA is that ged(y, p(n)) = 1 in ex-st-RSA
whereas y € Z, in st-RSA, and the other parameters are the same. Consequently this
theorem is trivial. Assume that (n,y) is an instance of ex-st-RSA. For the query (n,y) to
st-RSA, the answer s of the oracle st-RSA is directly regarded as the answer of ex-st-RSA
since ged(y, ¢(n)) = 1. O

5.3 Modified Finding Order Problem

In this section, we propose another problem, extended finding order problem.

Definition 5.3.1 (Extended finding order problem) It is given n € Ny, and g € Z;,
to find L, where L is a multiple of Ord,(¢g) and |L| is bounded by a polynomial in |n|.
We denote by Order the function enable to solve the problem. [ ]
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Okamoto [33] and Brickell and McCurley [7] proposed variant of Schnorr’s scheme [47],
respectively. In their papers, they consider the following problem:

Definition 5.3.2 (Finding order problem) It is given n € Ny and g € Z;, to find ¢
such that Ord,(g) = ¢. We denote by Order the function enable to solve the problem.

We can say that our proposed problem is a variant of finding order problem. The
main difference is that the output of finding order problem is just the order of n, that is
Ord,(g), whereas the variant one is a multiple of the order.

The results of Turing reducibility are stated as follows. Let RSA and FACT be two
functions given in Section 2.2.3.

Theorem 5.3.3 RSA </ Ex-Order.

Proof. Assume that (n,e,y) is an instance of RSA. Then (n,y) is a query for Ex-Order.
The oracle Ex-Order returns L such that y* = 1 mod n. Then we extract an integer b
satisfying L = e®b for an integer a. Note that ged(e,b) = 1, we can compute d’ such that
ed’ = 1 mod b. Finally we compute 2’ = 3¢ mod n. Since 2'° = (y%)¢ = y™+! mod n
for an integer ¢, 2’ can be regarded as the answer of RSA. The above algorithm has the
running time of O(|L||n|?), which is bounded by polynomial in |n|. O

Theorem 5.3.4 Ex-0Order gf;’,’ FACT.

Proof. Assume that (n,g) is an instance of Ex-Order. Then we can get all the factors
of n by using an oracle FACT repeatedly. The iteration is bounded by polynomial in |n|
because the number of the factors of n is less than |n|. Next we compute p(n). Since
Ord,(g)|¢(n), 2" can be regarded as the answer of Ex-Order. O

Theorem 5.3.5 Ex-Order </’ Order.

Proof. Assume that (n,g) is an instance of Ex-Order. For a query (n,g) to Order, the
oracle returns ¢ = Ord,,(g). The answer of Ex-Order is q. 0

In the public-key cryptosystem, such as RSA, the modulus n must satisfy the condition
such that ¢(n) is not smooth for the security reason. We next consider the Turing
reducibility of functions which have such an n.

We define two functions Order+ and FACT+. Order+ and FACT+ are the same functions
as Order and FACT respectively, except that the number ¢ of factors of n satisfy ¢t =
O(log |n|) and all the prime factors of n are strong primes.

In the above setting, we obtain the results as follows.

Theorem 5.3.6 Ex-Order+ gé&“ FACT+.
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Assume that (n, g) is an instance of Ex-Order+. As well as in Theorem 5.3.4, we can get
all the factors of n by using an oracle FACT+. Then the answer of Ex-0Order+ is obtained
by computing ¢p(n). O

Theorem 5.3.7  FACT+ <% Ex-Order+.

Proof. Assume that n is an instance of FACT+. We first pick up k£ € Z,, at random. For a
query (n, k) to Ex-Order+, the oracle returns L such that L = ¢-Ord,, (k) for some integer
c. If Ord, (k) = A(n), that is, L is a multiple of maximal order A(n), then such a L lead
to the factorization of n by using the algorithm [28] and the running time is O(|n||L|).
The probability p which satisfy the above condition at one time, is estimated as

D 1 1 1

_ o0 _elllp) _ Lpp (1)L L
p(n) 20 Lipe 2044 pi 22

Consequently, the expected number of repetition to obtain such a L is less than 2%,

Since t satisfies t = O(log |n|), such an expected time is bounded by a polynomial. This
means that the reduction algorithm executes in expected polynomial time. O

5.4 Application

In this section, we describe the application of self-powering RSA problem.

Modified Guillou-Quisquater Identity-based Identification scheme

TA’s parameter generation: The TA execute the following steps.
1. Pick up two distinct primes p and ¢ and compute n = pq.

TA’s parameter: The TA’s public key is n and the corresponding secret key is two
primes p and q.

User’s parameter generation: Suppose that TA issue the parameter for a user P. Let
u be a P’s ID information. Then TA executes the following steps.
1. Compute ' such that uu’ = 1 mod ¢(n).

2. Compute s = u~* mod n.

User’s parameter: The P’s ID string is u and the corresponding secret key is s.

Identification: Suppose P and verifier V' construct an interactive proof system. Then
they execute the following steps.
1. P picks up a random number r € Z,, computes the commitment z = r* mod n, and
sends x to the verifier.
2. V picks up a random challenge e € Zy. and sends e to P.
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Parameter Generation

TA’s parameter
Public key: RSA modulus n = pq

Secret key: two primes p # ¢

Identification
Prover Verifier
ID string: u € Z*(p(n)
Secret key: s = u'* mod n
rERr Zn
z =7r%¥modn r
< e ER ZQb
e Y
y =rs®modn
Check:

?
r = ufy" mod n

Figure 5.2: Modified Guillou-Quisquater identity-based identification scheme.

3. P computes the answer y = rs® mod n and sends y to V.

4. V computes u = H(ID) and checks whether x = u°y* mod n holds or not. If the
equations holds, V' accepts. Otherwise rejects.

We list the difference between the proposed scheme and the original one.

Table 5.2: Comparison of original and proposed Guillou-Quisquater identity-based iden-

tification schemes.

TA Prover
Public key | Secret key | ID string |  Secret key
Original scheme n,e D, q uw=H(ID) | s =u""¢ mod n
Proposed scheme n D, q ue€Z: |s=u"modn
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5.5 Conclusion

We have constructed two mathematical problems and investigated those difficulties. A
variants of Guillou-Quisquater identity-based identification scheme have also proposed.
This scheme, based on our proposed problem, is efficient since there is no assumption of
the hash function.

At present, the following questions are not known:

e Whether finding order problem reduce to extended fining order problem in the sense
of polynomial time Turing reducibility;

e Whether RSA problem reduce to self-powering RSA problem in the sense of poly-
nomial time Turing reducibility.

Those questions remain as open questions.
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Chapter 6

Fast On-Line Signature

6.1 Introduction

In this chapter, we propose two signature schemes, named Scheme I and Scheme II, which
have signer’s on-line computational efficiency.

Our schemes are as secure as integer factoring problem for modulus n (in the random
oracle model). To satisfy the security, we uses asymmetric basis g in Z; which is a variant
of [34]. This property leads to the good efficiency in terms of both size of data and amount
of work.

Scheme I is a improved version of PS-scheme and realize a compactness. The perfor-
mance in Scheme [ is much superior to that in PS-scheme. Especially, the computation
work in verification are much reduced by the changing n in x = ¢~ mod n (PS-scheme)
into z in £ = ¢¥=% mod n (our schemes).

Scheme II would require a modular exponentiation as preprocessing. However, no
multiplication is used in the actual (i.e. on-line) signature generation. This means that
the phase involves only a hashing operation, addition and a modular reduction. This
paper is the first approach to obtain the fast signature scheme without on-line modular
multiplication.

6.2 Preliminary Description

In this section, we describe security model. For our security analysis, we follow the
approach of Feige, Fiat and Shamir [10] described in Section 3.
In [38], one can see the two types of attacks as follows.

e One key attack. An adversary try to forge valid signatures for fixed public key.

e Possible key attack. An adversary try to forge valid signatures for possible public
keys, where “possible public key” means any public key satisfying the condition of
the parameter.
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The one key attack scenario seems to analyze the security more strictly than the
possible key attack scenario. Therefore, all our schemes are estimated under the one key
attack scenario.

Furthermore, we would like to establish theorems claiming that illegal actions such
as impersonation are as difficult as mathematically well established problems. Therefore,
Scheme I and IT use slightly generalized asymmetric basis [34], which is defined as follows.

Definition 6.2.1 (Asymmetric basis) Let n be an RSA modulus such that n = pq.
Then we say that ¢ is an asymmetric basis in Z; if the multiplicity of 2 in Ord,(g) is not
equal to that of 2 in Ord,(g). n

Lemma 6.2.2 Let n be an RSA modulus and g be an asymmetric basis in Z}. Assume
that we find L > 0 such that ¢* = 1 mod n. Then we can construct a Turing machine M
which on input n, g and L outputs a factor of n in time O(|L||n|?)

Proof. This lemma is basically due to [34]. Hereafter, we describe how to construct M.
At first, M extract the odd part b of L, such that L = 2%b. Since g is an asymmetric
basis in Z7, it holds ¢?* = 1 mod p and ¢* = 1 mod ¢, and also holds g* = 1 mod p and
g = —1 mod ¢. Then we have the following results: p | ¢’ —1 and n { g*—1. Consequently,
M can find a factor of n by computing ged(g® — 1 mod n, n).
Note that the modular exponentiation algorithm and the extended Euclidean algo-
rithm have a running time of O(|L||n|?) and O(|n|?), respectively. Hence M can execute

the above steps in time O(|L||n|?). O

In Section 6.5, we discuss the schemes in which the modulus n is built from more
than three primes. In this case, those schemes cannot indicate the equivalence of integer
factoring problem. Therefore, we show that one can solve the extended finding order
problem if such schemes break. The extended finding order problem is a problem relative
to the integer factoring and described in Section 5.3.

6.3 On the Fly Signature

6.3.1 Identification Scheme

Scheme I has the parameters &, x, a, b and ¢ with 287! < s < 2F <« 2% <« 2. For more
detailed conditions, we refer to Section 6.3.3.

Key generation step: The following steps are executed:
1. Pick up two same-size primes p and ¢, and compute n = pq.
2. Choose an element g € Z; which is an asymmetric basis in Z'.
3. Pick up a random number z € Zj- and computes s = z mod ¢, where Ord,(g) = ¢.

Secret-key/public-key: The secret-key is s and the corresponding public-key is (n, g, 2).
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Parameter Generation

RSA modulus n = pg
asymmetric basis ¢ in Z;
random number z €g Zge

s = z mod Ord,(g)
21 < s < 2F < 20 < 20e

Identification

Prover Verifier

Public key: n, g, z
Secret key: s

r €ER Loa

v = ¢ modn pre-compute (7, )

T

~

A

& ER ZQb

~

y=r+se
Check:

?
y < 2% 4207k and

7
r=¢gy"**modn

Figure 6.1: Proposed identification scheme: Scheme I

Identification step: A prover and a verifier execute the following steps:
1. The prover picks up a random number r € Zsy., computes the commitment xr =
¢" mod n and sends x to the verifier.
2. The verifier picks up a random challenge e € Zq and sends e to the prover.
. The prover computes an answer y = r + se in Z, and sends y to the verifier.
4. The verifier checks whether both y < 2% + 2% and # = ¢¥ *° mod n hold or not. If
both equations hold, the verifier accepts. Otherwise she rejects.

o

The security is as secure as integer factoring problem for modulus n (in the random
oracle model). To satisfy the security, Scheme I uses asymmetric basis g in Z* which is a
variant of [34].
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Security Analysis

We show that our proposed scheme is a three-pass honest-verifier statically zero-knowledge
identification protocol. As a strategy, we focus on that our scheme provides completeness,
soundness and the honest-verifier statistical zero-knowledge property, respectively.

Theorem 6.3.1 (Completeness) In the proposed identification scheme, the prover who
has a secret key, and who follows the scheme, is always successfully accepted.

Proof. The answer y correctly computed by the prover with the secret-key, is r + se
with |se| < |r| < a. Hence such a y satisfies y < 2%2°+*. Furthermore, from the following
equations:

gy_ze — (rtse)—ze r+(zmodq)e—ze _ gr = xmodn,

g =9

a correctly generated answer y always passes the verification. O

Theorem 6.3.2 Assume that a PPT adversary Pis accepted by honest verifiers with
probability 1/2% + ¢ with ¢ > 0. Then there exists a PPT machine M, which can

figure out the secret-key s from the public-key, with overwhelming probability, in time
0(2¢n|°M /e).

Proof. Denote, by ]B(w), an adversary P with a random tape w. Also denote, by
o(w, e), the predicate that P(w) is accepted for challenges e = (e1, ... ,e;). Then with
notation by [5], we have Prw < T;e; + Zop (1 <i <) @ p(w,e)] > 1/2% + &, where
T is a set of possible random tapes. Let €2 C 7 be the set of random tapes w such that
Pre; < Zo; (1 <i</l) : p(w,e)] >1/2% +¢/2. From the Splitting Lemma in [35], we
have Prjw « 7 1w € Q] > ¢/2.

As follows, we construct a machine M which, on input of the public data, outputs two
valid answers y;, y» and the corresponding challenges ey, e5. First M picks up a random

g € Z;. The probability for one trial that the order of g is A(n) is greater than 1/2%* from
the following:

p(A(n) ol 1 1 1
e(n)  2[La _2tH<1 )

i ” > ot
Then M chooses a random Z € [25+52¢), and gives (n, §, 2) to P(w) as the public data. Let
1 < < /. For each 1, ﬁ(w) gives the i-th commitment x;. Then M repeats the following
2% times: M returns a challenge and gets the answer from P(w), and M resets P(w) to be of
the state just before M sends the challenge. Since Pr|w + T;e + Zy :w € Q & p(w, e)] >
£/2, with probability at least £/2, w € Q, and after that execution, M has two valid an-
swer 1,2 and the corresponding two challenges e;,e5. By repeating this procedure
2|n|/e times, M can obtain such y;,ys, e, e with overwhelming probability in time
O(2%|n|T /s + |n|°W).
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The two pairs (e, y1) and (e, y2) should pass the verification for the same commitment
z. That means z = g ***modn = §*>"*2modn. This implies g¥—¥2)—2(e1=¢2) = I modn
and hence L := (y; — y2) — Z(e; — e2) is a multiple of the order of g.

Since the probability that an order-\(n) base is picked up is at least 1/2%, by repeating
the process given above 2%|n| times', M can meet the case that the order of § is A(n)
and that such (ey,y;) and (es, y2) are obtained, with overwhelming probability in time

O(2%0T|n|°M /¢).
By using technique of Lemma 6.2.2, M can factor n, and hence figure out the secret-key
s from the public-key z. O

Theorem 6.3.3 (Soundness) Assume that a polynomial-time adversary P is accepted
by honest verifiers with non-negligible probability, that log(|n|) = o(¢), and that ¢ is
bounded by a polynomial on |n|. Then there exists a probabilistic polynomial-time ma-
chine M, which can figure out the secret-key s from the public-key, with overwhelming
probability.

Proof. This proposition can be shown as well as [38]. Let m(|n|) be that non-negligible
probability. Then there exists a d such that u(|n|) > 1/|n|? for infinitely many |n|’s.
Since log(|n|) = o(¢), 1/k* < 1/2|n|¢ holds for |n| large enough. Letting e = 7(|n|)/2,
we can obtain that the secret-key is figured out in time O(2%¢|n|T /s + |n|°V). Therefore
since both ¢ and 1/e are bounded by a polynomial on |n|, there is a polynomial-time
machine M which can compute the secret-key from the public data, with overwhelming
probability. O

Theorem 6.3.4 (Zero-knowledge property) The proposed identification scheme pro-
vides the statistical zero-knowledge property, if ¢7'/2% is negligible, where T'(|n|) is the
maximal number of repeating of the identification with an identical key.

Proof. We prove this proposition as well as [38]. To prove the proposition, we show
that we can construct a polynomial-time machine (simulator) M which simulates the
communication between the prover P and a dishonest verifier 1% trying to get information
on s by choosing the challenges not randomly but by some computation. In the i-th round
of the identification, V has already obtained some information, denoted by I;, P sends a
commitment x;, and V chooses the challenge e;(I;, z;) possibly using I; and ¢;.

For the i-th round of the identification, the simulator M randomly picks up €, € Zo
and y, € [®,2%), where ® := (2° — 1)(2% — 1). If ¢;(I;, 2}) # e}, then M tries again with
another pair (e}, y;). Otherwise M outputs (z}, €}, y.).

For a function F : Z, — Zs., an integer A and a positive constant A, N'(F, A, A) is
defined to be the number of pairs (e,y) € [0,2°) x [4, A + A) such that F(g¥=%) = e.
If F(g¥=*°) = e, then since z = smodq holds, we have gW—s9=2(c+d) — ¢ oL ¢ 4 d for
any integer d # 0. Hence the set [0,2°) x [4, A + A) is separated into (A — s5(2° — 1))
subsets each of which has exactly one pair (e,y) such that F(g¥*¢) = e, and 2s(2° — 1)

'Note that 2% |n| = |n|%®M) follows from t = O(log |n|).
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subsets each of which has at most one pair (e,y) with F(g¥ %¢) = e. Therefore we can
get A —® < N(F, A, A) <A+ from & = (2° —1)(2F — 1) > 5(2° — 1).
Denote, by p(z, e,y), the probability to obtain the triplet (¢, ¢, y) in the communication

between P and V', and denote, by p/(z, e, y), the probability to obtain the triplet (¢, ¢, y)
by the simulator M. Let e;(I;,z;) = F(z;). Then we have the following:

g"modn = «, 0<vy—s0<2%
p(a7577): Z Pr F(gr):ﬁa :ﬁx F(&):B, )
0<r<2e r+sF(g") =~ a = ¢g""*modn

where for a predicate p, x(gp) is the characteristic function of p, that is, x(p) =1, if p is
true, and x(p) = 0, otherwise. If the triplet («.(3, ) satisfies v € [®,2%), F(a) =  and
a = ¢g"*#modn, we have p(c, 8,7) = 1/2%. Hence the summation of the probability over
a € 75,3 ¢€0,2%),y € [® 2% with a = ¢7"*’modn, is equal to N'(F,®,2* — &)/2% by
the definition of A/. On the other hand, as well as in [38], we have the following:

v € [®,29),
pile, B,7) =x | Fla) =5, JN(F,®,2° — D).

a = ¢"*’modn

Therefore the summation of the differences, ¥ := Za,ﬁ,'y Ipi(, B,7) — pi(a, B,7)], has a
upper bound of 8¢(2°—1)/2%, because ¥ = 2(1 —N'(F, ®,2% — ®)/2%) holds similarly with
[38], because 2¢ —® < N(F, ®,2¢—®) holds, and because ® := (2" —1)(2F—-1) < (2°—1)2¢
follows from 2571 < ¢ < 2F. Tf ¢/2% is negligible, then so is 8¢(2°—1)/2%, and consequently,
the output by (P, ‘N/) and that by M are statistically indistinguishable. For a T-round
identification by P and 17, we have the following:

Spe= Y [PelCenens) = (o Bri)] — Prl(ad el o)) = (o0, Bl < 82— D)L
ai:ﬁifyi:iST
from Appendix A in [38], and if ¢7/2% is negligible, then so is X7, and hence the proposed

identification scheme has the statistical zero-knowledge property. O

6.3.2 Signature Scheme

As well as conventional identification schemes such as Schnorr [47] or Guillou-Quisquater
[19], our identification scheme Scheme I can be turned into a signature scheme by using
the technique in [12]. That is, the challenge in the identification is replaced with an
appropriate hash function.

Key generation step: This is the same as our identification scheme.

Secret-key /public-key: This is the same as our identification scheme.
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Signature generation step: Suppose a signer which has a public key and the cor-
responding secret key, generates the signature of her message m € {0,1}". Then she
executes the following steps:

1. Pick up a random number r € Zs. and compute x = g" mod n.

2. Compute e = H(z,m).

3. Compute y = r + se in Z.

Signature: The signature for a message m is (z,e,y).

Verification step: Suppose a verifier which has the signer’s public-key and the cor-
responding message, checks the validity of the signature for m. Then she executes the
following steps:
1. Check whether y < 2%+ 2°*% holds or not. If the equation does not hold, then reject
the signature and stop this protocol.
2. Compute ¢/ = H(x,m) and =’ = g "** mod n.
3. Check whether both e = ¢’ and z = 2’ hold or not. If both equations hold, accept
the signature. Otherwise reject it.

The performance in Scheme I is much superior to that in PS-scheme. Concrete to say,
compared with PS-scheme, the size of a secret-key in Scheme I and a signature can be
reduced by at least 69% and 47%, respectively. Furthermore, Scheme I has an advantage
that the computational cost can also be smaller. Compared with PS-scheme, the compu-
tational cost in Scheme I for pre-computation, signature generation and verification can
be reduced by at least 38%, 69%, and 64%, respectively.

Security Analysis

In Section 6.4.1, we have proved that our identification scheme is three-pass honest-verifier
statistically zero-knowledge identification protocol. This result includes all the properties
to apply the technique of the forking lemma in [35]. Therefore, we can say that, in the
random oracle model [5, 35], our signature scheme is existentially unforgeable under the
adaptive chosen message attack.

As a strategy, we actually show that if there exists a polynomial-time adversary which
can existentially forge a signature in the proposed scheme, then we can construct a PPT
machine which can compute the integer factoring problem.

Theorem 6.3.5 The signatures in the proposed scheme can be statistically simulated by
a polynomial-time machine, if 2°¢/2% is negligible.

Proof. As follows, we can construct a polynomial-time simulator M. First M randomly
picks up €' € [0,2%) and 3 € [®,2%). Then M computes 2’ := ¢g¥ ~** modn, and outputs
(2',€',y") as a valid signature. Denote, by p(a, ,7) and p'(«, 3,7), the probabilities
that (a, 3,7) is output by the signature algorithm and the simulator, respectively. Then
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letting R : {0,1}* — {0,1}® be an ideal hash function (random oracle), for a given
message m € {0,1}*, we have the following:

g')’*zﬁmodn = q, g7fzﬁm0dn = Q,
x| Rla,m) =3, x| R(a,m)=p,
Y — Sﬁ € [07 2a) Y € [(I)a 2a)
= d ! =
ple, B,7) 5 and p'(a, B,7) N(R, @25~ 3)

Then like in Proposition 6.3.4, the summation ¥ := Zaﬂﬁ Ip(c, B,7) — ' (e, B,7)| has a
lower bound of 8 - 2°¢/2%, which is negligible, if 2°q/2¢ is negligible. 0J
Like [38, 39, 35|, we first give the security proof against no-message adversaries. Then
using Proposition 6.3.5, we can show that our signature scheme is secure.

Theorem 6.3.6 Assume that 1/2° is negligible. Also assume that a polynomial-time
no-message adversary A can ask @Q(k) queries to the random oracle, where Q(k) is a
polynomial on k. If A can forge a message m and one corresponding signature with prob-
ability € > 0 within the time bound 7', then we can construct a polynomial-time machine
M which can factor n within |[n|%M") 4 (u(k) + v(k))T, with probability &’/2%, for two
polynomials u(k) and v(k), where &' := 1 (1 — e_(a_z%)“(k)) (1 — e_(%_(iﬂ)%”)”(k)),
where e is the base of natural logarithm. (Note that £'/2% is non-negligible, if and only
if £ is non-negligible.)

Proof. Denote, by Q; and p;, the i-th query and the corresponding answer from the
random oracle.

First M picks up a base g € Z* and z € [2¥*% 2¢). Then M gives (n,g,2) to A, and
makes A execute u(k)-time attacks with a random tape w, where u(k) is a polynomial on
k. The probability that A succeeds to output m and (z,e,y), is at least 1 — e_(g_fb)“(k).
Suppose that A succeeds for the i-th query. After that, M makes A execute more v(k)-
time attacks with another random oracle which return the same answers, py,...,p; 1
for the first (i — 1) queries, Q,...,Q;_1. Then the probability that A succeeds for
the i-th query to the second random oracle to output m and (z,€',y’'), is at least &' :=
L (1 _ e*(ﬁ*z%)wf)) (1 _ e*(%*(i“)ﬁ)v('@)_

If the order of g is A(n), then M can get a multiple of A(n) by computing z — (y —
y')/(e — €'). That means M can figure out a multiple of A(n) if M chooses an order-A(n)
base g, and if A outputs two signatures. Hence the probability that M can find a multiple
of A(n) is at least ' /2%, since denoting, by G and A, the events that the order of § is A(n)
and that A outputs two valid signatures (x,e,y) and (z,€’,y’), we have the following:

Pr[G & A] = Pr[A|G] - Pr[G] = Pr[G] - Pr[A] = %g.

When the order of g is A(n), M can get a multiple of A(n) and hence the factorization of
n by Lemma 6.2.2. U
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Theorem 6.3.7 Assume that 2°¢/2% and 1/2° are negligible. Also assume that a polynomial-
time adversary A can forge a signature with non-negligible probability by executing adap-
tive chosen-message attacks. Then we can construct a polynomial-time machine M which
can factor n with non-negligible probability.

Proof. From the assumption that 2°q/2¢ is negligible, by Proposition 6.3.5, the signature
oracle can be simulated by a polynomial-time machine. The proof is almost the same
with the previous one except for that M takes not only a role of the the signing oracle
but also a role of the signing oracle.

Unlike the previous proposition, we should consider the collision among (x,e)’s. For
« € Z,, the probability that the commitment x is equal to a is at most 1/q + 1/2°%
Suppose that A can ask Q(k) queries to the random oracle and R(k) queries to the signing
oracle. Then such a collision occurs with probability at most (Q(k)R(k) + R(k)*)(1/q +
1/2%), which is negligible, since we may assume 1/2% is negligible, and since also 1/q is
negligible from 2¢~! < ¢ < 2¥. Denote, by 4 and C, the events that A succeeds to output
two valid signatures (z,e,y) and (z,€’,y’) for a message m and that a collision among
the commitments occurs, respectively. Then since Pr[A & —C| > Pr[A] — Pr[C], the
probability that M can obtain such two valid signatures without occurring any collisions,
is non-negligible, since Pr[A] is non-negligible, and since Pr [C] is negligible. Therefore
M can factor n with non-negligible probability. OJ

6.3.3 Parameter Generation

In this section, we describe the conditions of the parameters to keep the security and the
corresponding signature scheme. We also show that how to implement the parameters.

Parameter a and b: In case of signature y = r + se, with |r| = a, |s| = k and |e| = b,
the values of a, b, k, k shall satisfy a > b+ k + k for its security.

Parameter c: If y > ze were allowed, then an adversary could impersonate the signer
to easily compute y, along with the actual protocol, such that xr = ¢¥7*° mod n holds.
To keep off such an attack, the condition of ¢ > k + 2k shall be required from ¢ + b >
a+ Kk > b+ k+ 2k. Furthermore, if ¢ > 2¢ were satisfied, then s = z would hold, that is,
the secret-key would be disclosed. Hence also ¢ < 27" shall be required, and it is always
held since ¢ < 2F < 2¢72% < 2¢7#,

Parameter «: The information leak parameter x should be set up so that 2"-time
computation should be intractable.

Parameter g: If an adversary could figure out r € Z} from x (= ¢g" mod n) generated by
the actual signer, then she could break the signature scheme. We can see the algorithms to
extract r, such as Pollard lambda method in [36] and the baby-step giant-step method in
[22]. One may say that the former is better than the latter since it has same computational
complexity (exponential-time: O(,/q)) but does not need memory. The size of ¢ shall be
set up not so that r can be figured out with such an algorithm.
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Choice of p,q and g: We describe how to find p, ¢ and an asymmetric basis g in Z .

! v/

1. Pick up two primes p = 2p'p” + 1 and ¢ = 2¢'¢" + 1 such that p’ and ¢ are also
primes, and p” and ¢"” are odd numbers.

2. Choose a,, € Z satistying g, = alf V" £ 1 mod p. In the same way, choose og € L}

satisfying a, # ¢ — 1 mod ¢, ol £ 1 mod ¢ and gy = ol £ 1 mod g.

1

3. Compute n = pg and g = ¢(¢ ' mod p)g, + p(p ' mod ¢)g, mod n.

In Step3, g is computed by using the technique of Chinese Reminder Theorem (CRT).
Note that Ord,(¢g) = p’ and Ord,(g) = 2¢'. Therefore Ord,(g) = lem(p’, 2¢') = 2p'q'.

Choice of H: Next, we discuss secure hash algorithm which we should adopt. If H were
an ideal hash function, then the proposed signature scheme would be secure under the
meaning of the description in Section 6.4.2. Since such a random function does not exist
in the real world, in implementation, we are recommended to adopt MD5 by [41] or SHA-1
by [30], each of which is designed so that the algorithm can be a collision intractable hash
function [8].

6.3.4 Optimized scheme

Let us consider the optimized scheme of data size in Scheme II. We now focus on the
following two parts:

Elimination of x: In the same way in Section 6.2.4, the parameter x can be eliminated
for the efficiency. Consequently, the signature for m consists of (e, y).

Elimination of z: The size of public key is optimized as follows. We regard actual
public-key as (n,g), and z is computed by z = H'(n,g), where H' is a hash function
H' :{0,1}" — {0,1}".

We give optimized scheme obtained by the above technique. Let # : {0,1}" — {0,1}°
and # : {0,1}* — {0,1}" be two hash functions.

Key generation step: The following steps are executed:
1. Pick up two same-size primes p and ¢, and compute n = pq.
2. Choose an element g € Z; which is an asymmetric basis in Z;.
3. Computes z = F(n,g) and s = z mod ¢, where Ord,(¢) = q.

Secret-key/public-key: The secret-key is s and the corresponding public-key is (n, g).

Signature generation step: A singer executes the following steps:
1. Pick up a random number r € Z,. and compute x = ¢" mod n.
2. Compute e = H(z,m).

3. Compute y = r + se in Z.
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Parameter Generation

RSA modulus n = pg
asymmetric basis g € Z with Ord,(g) = s
< s <20 <2

Identification

Prover Verifier

Public key: n, ¢
Secret key: ¢

Z a
; E_Rgr 2rnod ,, | pre-compute (r, )
T
< & ER Z2b
y =71+ (emod s) Y -
Check:

?
y < 2%+ 2% and

)
= ¢ "°modn

Figure 6.2: Proposed identification scheme: Scheme II

Signature: The signature for a message m is (e, y).

Verification step: A verifier executes the following steps:

1.

Check whether y < 2%+ 2°** holds or not. If the equation does not hold, then reject
the signature and stop this protocol.

Compute 2’ = G(n, g) and ¢’ = F(g¥"*'* mod n, m).
Check whether ¢’ = e holds or not. If the equation holds, accept the signature.
Otherwise reject it.

6.4 Signature Without on-line Multiplication

6.4.1

Our identification scheme uses the parameters, k, s, @ and b with 2¥71 < s < 2% <« 2¢ « 2.
For more details, we refer to Section 6.4.3. We now give our identification protocol.

Identification Scheme
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Key generation step: The following steps are executed:
1. Pick up two same-size primes p and ¢, and compute n = pq.
2. Choose an element ¢g € Z; which is an asymmetric basis in Z*, where Ord,(¢) = s.

Secret-key /public-key: The secret-key is s and the corresponding public-key is (n, g).

Identification step: A prover and a verifier execute the following steps:

1. The prover picks up a random number r € Zsy., computes the commitment xr =
¢g" mod n and sends x to the verifier.

2. The verifier picks up a random challenge e € Z,, and sends e to the prover.

3. The prover computes 2 = ¢ mod s and an answer y = r + 2z in 7Z, and sends y to the
verifier.

4. The verifier checks whether both y < 2% + 2¥ and z = ¢Y~° mod n hold or not. If
both equations hold, the verifier accepts. Otherwise she rejects.

In Step3, the on-line multiplication for the prover is eliminated. This is the main idea
of our scheme.

Note that, in the conventional identification schemes such as Schnorr [47] or Guillou-
Quisquater [19], the challenge e can be a fixed constant. In the following, such schemes
have some rounds. However, in our identification, e has the condition such that 2F < e.
Therefore, the round of our identification is constant and fixed one. We can say such a
property indeed characterizes our schemes.

Security Analysis

We show that Scheme II is a three-pass honest-verifier statically zero-knowledge identifi-
cation protocol.

As well as section 6.2.1, we show that Scheme II provides completeness, soundness
and the honest verifier statistical zero-knowledge property.

Theorem 6.4.1 (Completeness) In the proposed identification scheme, the prover who
has a secret-key, and who follows the scheme, is always successfully accepted.

Proof. The answer y correctly computed by the prover, is r + z, where z = mod s. Since
r < 2% and z < ¢ < 2%, those conditions satisfy y < 2¢ + 2¥. Furthermore, from the
following equations:

—e (r+z)—e

gy =g r+(z—emods)

=g =¢" = xr mod n,

a correctly generated answer y always passes the verification. 0]

Theorem 6.4.2 (Soundness) If there exists a polynomial-time adversary P which is
accepted by honest verifiers with probability > 1/2°+¢,& > 0, where the average running
time is 7. Then, by using P, we can construct a polynomial-time machine M, which can
figure out the factorization of public-key n, in expected time O(T /e + |n|°M).
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Proof. We show to construct M on input a random tape RT and a public key (n, g)
outputs L such that ¢* = 1 mod n.

1. Pick up RT at random, input RT to P and obtain a value z from P.
2. Pick up a random number e € Z, input e to P and obtain a value y from P.

3. Check whether the above parameters (z,e,y) are, in verification, valid or not. If
they are valid, fix the RT, store (z,e,y), and go to next step. Otherwise stop this
protocol.

4. Check whether M obtains same commitment x and different parameters e,y such
as (r,e,y) and (z,€',y'). If such parameters are obtained, output L = (y — ') —
(e —€') > 1. Otherwise stop this protocol.

As for the above protocol, if we repeat kT'/¢ times, M can obtain L with non-negligible
provability, by the results of [32, 35].

Here L > 1 is a multiple of Ord,(g), that is, g* = 1 mod n, and ¢ is an asymmetric
basis. Therefore, as in the consequence of Theorem 6.2.2, M can obtain the factorization
of public in expected time O(kT /e 4 |n|M). O

Theorem 6.4.3 (Zero-knowledge property) The proposed identification scheme pro-
vides honest-verifier statistical zero-knowledge property, if 2s/2% is negligible.

Proof. We prove the above theorem along the line of Theorem 6 in [38]. To prove the
theorem, we show that we can construct a polynomial-time machine (simulator) M which
simulates the communication between the honest prover and a honest verifier.

In this case, M executes the following steps:

1. Pick up two random numbers: €' € Zy and y' € Zoa.
2. Compute 2’ = ¢V ¢ mod n.
3. Output (', €', y').

We denote by 7, the probability in the communication between a honest prover and
a honest verifier, that is, Pr [(z, e, y) = («, §,7)]. Then we have the following:

a = ¢" mod n,

™ =Pr b =e,
vy=r+%
1 a=¢"* mod n,
:2a+b' ZPI‘ 626,
0<r<2a r=y- Qf
0<e<2b

a=¢"" modn,

1
:2a+b-Pr 0<p <2,
0<~y— <20
1 _
:2a+b-x(a:g"’ % mod n)

X0 < B <2 x( <vy<2094+Q)),
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where (e mod ¢) and (3 mod ¢) are denoted by Q and €', respectively. For a predicate
@, x(Q) means the characteristic function of @, that is, if @ is true, then x(Q) = 1,
otherwise x(Q) = 0.

In the same way as above, the probability by M, that is, Pr[(z',¢’,y') = (o, 3,7)] is
denoted by 7. In this case, we have the following:

a = ¢¥ ¢ mod n,
n' =Pr B=¢€,
=y
a=¢"" modn,

1
~ atb Z Pr p=e,

a _ !
g =
= 9atb x(e = g7 mod n)

X(0< B <2%)-x(0 <y <29,

Next, we will estimate the distance between actual system and M. We first define
A=3, 5 Il =], where ||z|| denotes the absolute value of z. From the results of 7
and 7', we obtain

A=Y 7+ D) -7+ D
8

a:g"f—ﬁ modn g

0<p<2b Qf <vy<2e 20 <y <20 4O
0<~y<Qf

Since
(55 )2

a, a, B

B
0<y< Q! 20 <y <20 4+Qf

and

S -l =0,

a, B
Q' <y<2e

we can conclude A < 2¢/2%. This proves the theorem. O

6.4.2 Signature Scheme
Let 7 : {0,1}* — {0,1}" be a hash function.

Key generation step: This is the same as our identification scheme.

Secret-key/public-key: This is the same as our identification scheme.
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Signature generation step: Suppose a signer which has a public-key and the cor-
responding secret-key, generates the signature of her message m € {0,1}". Then she
executes the following steps:

1. Pick up a random number r € Zs. and compute x = g" mod n.

2. Compute e = H(z,m).

3. Compute z =emod s and y =r + z in Z.

Signature: The signature for a message m is (z,e,y).

Verification step: Suppose a verifier which has the signer’s public-key and the cor-
responding message, checks the validity of the signature for m. Then she executes the
following steps:
1. Check whether y < 2% + 2* holds or not. If the equation does not hold, then reject
the signature and stop this protocol.
2. Compute ¢/ = H(x,m) and =’ = g~ mod n.
3. Check whether both e = ¢’ and z = 2’ hold or not. If both equations hold, accept
the signature. Otherwise reject it.

We now give the concrete evaluation measured by comparing the integer factoring
based scheme, OTM-scheme (resp. PS-scheme) and our scheme. Compared with OTM-
scheme, our scheme enables the computational cost to be reduced by 32% for verification.
For the data size, the signature size is reduced by 21%. In the following, compared with
PS-scheme, our scheme enables the computational cost to be reduced by 83% for pre-
computation and by 78% for verification. For the data size, the secret-key size is reduced
by 68% and the signature size is 58%.

Security Analysis

In Section 6.4.1, we have proved that our identification scheme is three-pass honest-verifier
statistically zero-knowledge identification protocol. This result includes all the properties
to apply the technique of the forking lemma in [35]. Therefore, we can say that, in the
random oracle model [5, 35], our signature scheme is existentially unforgeable under the
adaptive chosen message attack.

Theorem 6.4.4 Let () be the number of queries which a polynomial-time adversary A
executing the adaptive chosen-message attack, can ask to the random oracle, and let R
be the number of queries which A can ask to the actual signer. Assume that 2s/2% is
negligible. Also assume that, A can forge a signature with non-negligible probability
e > 10(R + 1)(R + q)/2°, where the average running time of A is 7. Then we can
construct a polynomial-time machine M which can factor n with non-negligible probability
in expected time O(QT /= + |n|°M).
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Proof. By the result of Theorem 6.4.3, the signature oracle in our signature scheme
can be statistically simulated by a probabilistic polynomial-time machine M which works
according to the protocol like [35].

When M uses A, she can obtain two distinct signatures (z,e,y) and (2/,¢€’,y") such
that = 2, but e # ¢’. Then, we can get a multiple of Ord,(g) such that L > 1 and
g = 1 mod n. Here g is an asymmetric basis in Z¥, therefore by the result of Lemma
6.2.2 we can get a factor of n in expected time O(QT /s + |n|°M). O

6.4.3 Parameter Generation

We describe remarks on the parameters for the security of Scheme II.

Parameters a and b: For the security reason, the values of a and b shall satisfy:
a = k+ Kk and b = a + Ky, where k is a security parameter satisfying |s| = k with
Ord,(g) = s, and where both k; and k9 are information leak parameters.

Parameters k1 and ko: By Theorem 6.4.3, we must set such that 1/2%! is intractable.
As for ko, let us first consider the following problem: given (n, g, «, k3), find 3, where
g® = ¢” mod n and where || is at least ky-bits smaller than |o|. In our schemes, we must
set, ko on the condition that the problem is hard to solve for the security parameter k.
For implementation, we should take x; and k5 greater than 64 and 24 bits, respectively.

Parameter s: Let us consider the attack which an adversary computes s only from the
information of the public-key (n,g). We can see the algorithms to extract s, such as
Pollard lambda method in [36] and the baby-step giant-step method in [23]. One may
say that the former is better than the latter since it has same computational complexity
(exponential-time: O(y/s)) but does not need large memory. The size of s shall be
set, up such that the above algorithms cannot apply for the security parameter k. For
implementation, we should take |s| = k greater than 160 bits for the security reason.

6.4.4 Optimized Scheme

As for the signature scheme in Scheme II, we can diminish the size of the signature.
Consequently, communication lord is more efficient than before. We now focus on the
following two parts:

Elimination of x: When we have two parameters e and y, the parameter x can be
generated by computing x = ¢¥”"¢ mod n. Therefore, the signature z is eliminated like
conventional generic signature schemes such as Schnorr [47] or Guillou-Quisquater [19].
In this case, the signature for m consists of (e, y).

Using a short-size e: As for the signature scheme in Scheme II, signature e is, in a
certain sense, verbose. In our signature scheme, large-size e such as 2 < e is actually
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needed in verification. Hence, we can use the following technique: we regard short-size e
satisfying 2F < e < 2% as signature, and in verification, we extend the size of e by using
appropriate hash function.

We use two hash functions F : {0,1}* — {0,1}° and G : {0,1}° — {0,1}", where
¢ has the condition 2¢ <« 2°. The optimized signature scheme, which apply the above
techniques, are as follows:

Key generation step: This is the same as our identification scheme.
Secret-key /public-key: This is the same as our identification scheme.

Signature generation step: A singer executes the following steps:
1. Pick up a random number r € Z,. and compute x = ¢" mod n.
2. Compute e = F(z, m).

3. Compute e = G(e), z=€emod s and y =7+ z in Z.

Signature: The signature for a message m is (e, y).

Verification step: A verifier executes the following steps:
1. Check whether y < 2% + 2* holds or not. If the equation does not hold, then reject
the signature and stop this protocol.
2. Compute € = G(e) and e = F(g¥=¢ mod n, m).
3. Check whether ¢/ = e holds or not. If the equation holds, accept the signature.
Otherwise reject it.

As for the hash function G, we should take ¢ greater than 160 bits for implementation.

6.5 Further Discussion

In this section, we analyze the security of our schemes (Scheme I and II) in the case that
n is built from more than three primes. We have seen that our schemes are provably as
secure as the integer factoring problem for RSA modulus n if (1) public element g is an
asymmetric basis in Z and (2) public key n is a RSA modulus. We now consider the case
such that the number of factors of n is more than three. Then there exists some practical
reasons to use more than three prime factors of n.

e In response to the small primes, key generation takes less time.

e The pre-computation for the signer take less time if one uses the Chinese Remainder
Theorem. For example, using three primes vs. two primes theoretically gives a
speedup of 9/4.
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The reducibility is not known at present such that breaking our schemes with multi-
prime modulus reduce to integer factoring problem. Therefore, we use the extended
finding order problem given in Section 5.3 for the security.

Let ) be the number of queries which a polynomial-time adversary A (adaptive chosen-
message attacker) can ask to the random oracle. Let R be the number of queries which
A can ask to the the actual signer.

Theorem 6.5.1 Assume that 2°¢/2% and 1/2°, in Scheme I with multi-prime modulus,
are negligible. Also assume that A can forge a signature with non-negligible probability
e > 10(R+ 1)(R + ¢)/2°, and with the average running time 7. Then we can construct
a polynomial-time machine M which can solve the extended finding order problem for
public key (n, g) with non-negligible probability in expected time O(QT /).

Proof. (Sketch) We firstly show that the signatures in Scheme I can be statistically
simulated by a polynomial-time machine. This machine is simulated according to the
protocol like in [35].

We denote, by p(«, 3,7) and p'(«, 3,7), the probabilities that («, 3, 7) is output by
the signature algorithm and the simulator, respectively. We set ¢ = (2° —1)(2F — 1), and
let R : {0,1}* — {0,1}" be an ideal hash function (random oracle) for a given message
m € {0,1}". For an integer A and a positive constant A, N (R, A, A) is defined to be the
number of pairs (e, y) € [0,2°) x [4, A+ A) such that R(¢g¥=*¢,m) = e. Then we have the
following:

¢ *# mod n = a,

x| Rla,m) =3,

— 0,2¢
ple, B,7y) = ! Sﬁ; 0,2
and
¢ *# mod n = a,
x| Rla,m) =5,
P(,8,7) = — =02
o N(R7¢72a_¢)) ’

where for a predicate p, x(gp) is the characteristic function of p, that is, x(p) =1, if p is
true, and x(p) = 0, otherwise.

Therefore, the summation ¥ = Za,,@‘,’y Ip(ev, B,7) — (e, 3,7)|, has a upper bound of
8q(2° —1)/2¢, because ¥ = 2(1 — N (R, ¢, 2% — ¢)/2%) holds similarly with [38], because
20 —® < N (R, ¢,2° — ¢) holds, and because ¢ = (2° — 1)(2F — 1) < (2° — 1)2q follows
from 281 < ¢ < 2%, If ¢/2¢ is negligible, then so is 8¢(2° — 1)/2%, and consequently, the
output by real signer and that by the simulator are statistically indistinguishable.

Next, by using the technique in [35], we can get a multiple of Ord,(g), L, such that
g¥ = 1 mod n. This means that we obtain the extended finding order’s answer L for
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(n,e). Hence this proves the theorem. O

It is obvious that the same result can be obtained for Scheme II.

We now consider the secure size of n, and also discuss secure number of the prime
factors for n in our schemes.

Of course, if the modulus n were factored, then the proposed signature schemes would
be broken. In [25], we can see the number field sieve method for factorization, which is
the most efficient algorithm ever proposed, and whose running time depends upon the
size of n. On the other hand, in [26], we can see the elliptic curve method, which is also
one of efficient algorithms for factorization, and whose running time depends upon the
size of factors of n. Therefore, the faster one is determined according to the size of the
input and upon the number of the factors of n.

Referring to [50] for computational cost of algorithms, in case that |n| = 1024 and
that n has three prime factors, the number field sieve method is faster, whereas in case
n has four prime factors, the other is faster. Hence we recommend |n| = 1024 and the
number of n is three for the security reason.

6.6 Performance

We evaluate the efficiency of our signature scheme by comparing existing on the fly sig-
natures. Table 6.1 gives the performance of various schemes, such as OTM-scheme, PS-
scheme and GPS-scheme, including ours.

The parameters in the schemes are set up as follows.

e Scheme I has a = 224 and b = 248 by taking k£ = 160, x; = 64 and ky = 24. This
scheme is also use the technique of Section 6.4.4.

e Scheme II has a = 104, b = 80 and ¢ = 288 by taking £ = 160. To set up the same
condition as our scheme, in this scheme, n is a RSA modulus and ¢ is an asymmetric
basis in Z}. Furthermore, the size of public-key is optimized as follows.

e PS-scheme has |A| = 656 and |B| = 80 by taking k£ = 513.
e GPS-scheme has |A| = 1184 and |B| = 80 by taking k£ = 1024.

Additionally, we set |n| = 1024 for all schemes.
Next, we show the comparison between OTM-scheme (resp. PS-scheme and resp.
GPS-scheme) and our signatures.

Scheme I: We consider the computational efficiency between the multiplication in Scheme
[ and the modular reduction in the other on the fly schemes. In the multiplication, a
recursive algorithm due to [20] reduces the complexity of the multiplying. On the other
hand, in the modular reduction, we can use the efficient technique such as [3, 36].
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Those methods are further advantageous than [20] because a single modulus can be
used in our schemes and many reductions are performed by using such a modulus. That is,
in Scheme I the modulus s is fixed because s is a secret key. This property lead to a good
computational efficiency for modular reduction. On the other hand, such an efficiency
does not exist for the multiplication in on the fly signatures.

Consequently, the on-line modular reduction in Scheme I is faster than the on-line
multiplication in on the fly signatures from implementation point of view.

Scheme II: One of the verifications in OTM-scheme is z = ¢¥** mod n, where in the
index of g, we can see the multiplication of two parameters z and e. On the contrary,
the verification in our scheme is x = ¢Y7° mod n, hence the multiplication in the index
does not exist. The large-size index involved by the multiplication, lead to the inefficiency
from both the amount of work and data size point of view. Nowadays, the existing on
the fly signatures have the same drawbacks.

Consequently, CVF and SSig in our scheme is superior to those in OTM-scheme. Since
the public key in our scheme and that in OTM-scheme are (n, g) and (n, g, 2), respectively,
the number of the parameters in our scheme is smaller than that in OTM-scheme.

PS-scheme: The size of secret key in PS-scheme is only dependent on the modulus n,
and that is considerably large (about |n|/2). This drawback leads to inefficient results
with respect to the computational work (CPC, CSG and CVF) and the data size (SSK and
SSig).

On the other hand, since PS-scheme is intended to be used with a modulus product
of two strong primes, g = 2 is a correct basis and do not have to be included in the public
key. Consequently, we can set SPC = 1024 for PS-scheme. Therefore, one may say that
PS-scheme is more efficient than our scheme in terms of size of public key.

GPS-scheme: Since the public key in GPS-scheme consists of three parameters such as
(n, g,v), the size of the public key is SPK = 3072. Hence, GPS-scheme has the largest size
for public-key of all the schemes in Table 6.1.

Note that, in the table, all the schemes are based on the one-key attack scenario.
Consequently, GPS-scheme has provable security such that the scheme is as secure as
the discrete problem for modulo n. However, the size of secret-key in GPS-scheme is
considerably large: SSK = 1024. In the same reason as in PS-scheme, this result leads to
the inefficiency mentioned above.

Table 6.1 show that our signature scheme is quite efficient from both the computational
cost and the data size point of view.
6.7 Conclusion

We have proposed two fast on-line signature schemes, which are derived from a three-pass
identification scheme.
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Scheme I is a signature scheme without on-line modular reduction, which is called on
the fly signature. whereas Scheme II is one without on-line multiplication. Therefore
Scheme II is, in a sense, a counterpart for on the fly signature schemes.

Compared between two types of signatures, the on-line computation of Scheme II take
less time than that of Scheme I, because modular reduction is faster than multiplication
from implementation point of view.

We have obtained the results that under such an attack, if we set that n is an RSA
modulus and ¢ is an asymmetric basis, our schemes are as secure as integer factoring. On
the other hand, if we set that n consists of three or more prime factors of n, our schemes
are equivalent to the extended finding order problem.

It is not unknown at present whether our schemes is as secure as integer factoring
problem in the case of multi-prime modulus. This remains open problem.
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Table 6.1: Performance of signature schemes.

CPC CVF SPK SSK SSig
Scheme Utp (x M) CsG (xM) | (bits) | (bits) | (bits)
Integer
Scheme I factoring 61 248 mod 160 | 372 2048 160 304
with ¢
Integer
Scheme IT factoring 61 80 x 160 552 2048 160 384
with ¢
PS-scheme Integer 381 80 x 512 1656 1024 513 736
factoring
GPS-scheme Discrete log. 381 80x 1024 | 1796 3072 | 1024 | 1264
for modulo n
Abbreviation:

UMP means the underlying mathematical problem that the signature scheme relies
on for its security.

CPC, CSG and CVF mean the computational cost for pre-computation, signature
generation and verification, respectively

SPK, SSK and SSig means the size of a public-key, a secret-key and a signature,
respectively.

M represents the computational cost for one multiplication under a 1024-bit mod-
ulus.

« mod [ represents the computational cost for modular reduction of an a-bit number
and a (-bit number modulus.

v X 0 represents the computational cost for multiplication of an y-bit number and
a 0-bit number on Z.

Notes:

e For all schemes in the table, we set up the parameter under the line of the one-key

attack scenario [39].

For respective computational cost, a primitive arithmetic of binary methods [22]
are used, e.g. amount of work for ¢g® mod n is 2|a|M if |n| = 1024. Of course
there exist more sophisticated techniques which reduce the amount of computational
work. However we think they estimate the concrete performance without loss of
generosity.

In UMP, integer factoring with g means that it is a variant of integer factoring
problem on input RSA modulus n and the asymmetric basis g, outputs the factor
of n.

In CPC, the signer uses the technique of CRT. In this case, the signer must secretly
have the factors of n, p and q.
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Chapter 7

Proxy signatures with message
recovery

7.1 Introduction

In this chapter, we propose two new proxy signature schemes, DLP-PS and RSA-PS,
in which the original signer can control signing power of a proxy signer to some extent.
DLP-PS, which is given by improving MUO-scheme and KPW-scheme, controls the power
of a proxy signer by adding usage condition to proxy public key implicitly, which uses
idea of message recovery. In verifying proxy signer’s signature, the usage condition can be
checked independent of a message. RSA-PS controls the power of a proxy signer by adding
usage condition to proxy public key explicitly, which uses idea of ID-based cryptosystem
[48]. Up to the present, any proxy signature [21, 24, 53, 27] is based on Discrete logarithm
problem. Therefore RSA-PS is a new type scheme, which is based on RSA.

7.2 Our Basic Idea

We describe the basic idea to solve the problem stated in Section 4.5.

e Proposed Proxy Signature. This is a variant system of the original proxy sig-
nature defined in Section 4.5. In our schemes there exists the following property:
In verification, the verifier accepts it if and only if she recovers the usage condition
created by the original signer. Otherwise she rejects it. Therefore, in our schemes,
the original signer can control the signer’s power. For keeping the security, it must
be infeasible for the proxy signer to forge the signature such that she switches the
original signer’s usage condition to the proxy signer’s one.

We state our system more concretely. In verification, the verifier can check two mes-
sages at once: One is a usage condition Mj“ and the other is a message m;, which the
proxy signer chooses on behalf of the original signer. Note that those messages are guaran-
teed by distinct entities, respectively: An original signer signs M} by using a manner of
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Table 7.1: Comparison of the original and the proposed proxy signatures.

Underlying Proxy signer’s Type of Type of
Scheme o .
Problem power usage condition proxy signature
MUO-scheme || Discrete log. not restricted none any
KPW-scheme || Discrete log. restricted appendix any
DLP-PS Siscrete log. restricted recovery message recovery
RSA-PS RSA restricted recovery message recovery

signature schemes with message recovery, and creates a proxy signer’s parameter. In the
following, a proxy signer signs m,, by using a manner of signature schemes with appendix.
Therefore in the verification, the proxy signer does not need to sends M.

For further discussion, the performance evaluation will be given in Section 7.5.

7.3 Proposed Proxy signatures

7.3.1 DLP-basesd Scheme

We show the scheme (DLP-PS), which is based on discrete logarithm problem. Let Sop,
Sp and V be original signer, proxy signer and verifier, respectively. We first introduce
some parameters and the proxy signature in DLP-PS.

e Original signer’s parameter: The original public key is (p, g,), and the corre-
sponding original secret key is x.

e Proxy signer’s parameter: The proxy public key is the pair (y, p) and the cor-
responding proxy secret key is o.

e Proxy signature: The proxy signature for m, is (r, s).
The protocol is given as follows.

Original parameter generation: Sy executes the following step.
1. (Original generation) So picks up an prime p and finds an generator g € Z;. She
picks up a random number x € Z,_; and computes y = g” mod p.

Proxy parameter generation: Sy and Sp execute the following steps.
2. (Proxy generation) Sp creates a usage condition My¢ € 7, generates k € Z,
randomly, and computes:
p =My " mod p;
o =—xp+k modp—1.
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3. (Proxy delivery) So sends a pair (p, o) to Sp through a secure channel.
4. (Proxy verification) Sp recovers My¢ by computing:

M = g%y”p mod p.

If both redundancy and contents in M} are valid, She accepts it as a correct proxy
parameter. Otherwise she rejects it.

Signature and verification phase: Sp and V execute the following steps.
5. (Signing by the proxy signer) In order to generate a signature on behalf of Sp, Sp
chooses a message m,, € Z, picks up a random number £ € Z,_;, computes:

r =g* mod p;
s =o+kh(r,m,) mod p—1,

and sends (my, (r,s), p) to V. Then the proxy signature for m, is (r, s).

6. (Verification of the proxy signature) V' verifies M;¢ by using the original and proxy
public keys (n, g,y, p). Then she computes:

M = g*or"me) mod p.

If both redundancy and contents in M7¢ are valid, she accepts it as a correct proxy
signature. Otherwise she rejects it.

In Step 6, if the proxy signature is valid, then the verification holds since:

gsvrh(rvmp) mod p = go"i'kh(r:mp)yppg_kh(r:mp)
— g—:vp—l—n—l—kh(r,mp)gxngcg—ng—kh(r,mp)

= M3¢ mod p.

7.3.2 RSA-based Scheme

We show the protocol RSA-PS which is based on the RSA problem. Let Sp, Sp and V be
original signer, proxy signer and verifier, respectively. We first introduce some parameters
and the proxy signature in RSA-PS.

e Original signer’s parameter: The original public key is (n,e, g) and the corre-
sponding original secret key is x.

e Proxy signer’s parameter: The proxy public key is M} and the corresponding
proxy secret key is o.

e Proxy signature: The proxy signature for m, is (r, s).
The protocol is given as follows.
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Original parameter generation: Sy executes the following step.
1. (Original generation) Sp picks up two primes p and ¢ and computes n. She generates
a element g € Z;, which is a generator of both Z; and Z. She also picks up e € Z;(n)
and computes x such that ed = 1 mod ¢(n).

Proxy parameter generation: Sy and Sp execute the following steps.
2. (Proxy generation) So creates a usage condition M}® € Z, and computes:

o= (M;")" mod n.

3. (Proxy delivery) Sp sends o to Sp through a secure channel.
4. (Proxy verification) Sp recovers My¢ by computing:

M:c = ¢ * mod n.

If both redundancy and contents in Mp© are valid, She accepts it as a correct proxy
parameter. Otherwise she rejects it.

Signature and verification phase: Sp and V execute the following steps.
5. (Signing by the proxy signer) In order to generate a signature on behalf of Sp, Sp
chooses a message m, € Z, picks up a random number £ € Z,,, computes:

r :gkh(mp)a mod n;

s =g °k mod n,

and sends (my, (r,s)) to V. Then the proxy signature for m, is (r, s).
6. (Verification of the proxy signature) V' verifies M2¢ by using the original and proxy
public keys (n, e, g, M;¢). Then she computes:

M = r¢s"™») mod n.

If both redundancy and contents in M7¢ are valid, she accepts it as a correct proxy
signature. Otherwise she rejects it.

In Step 6, if the proxy signature is valid, then the verification holds since:
,resh(mp) modn = (gkh(mp)o_)e(g—ek)h(mp)
— gekh(mp)(Mgc)e:vg—ekh(mp)

= Mj¢ mod n.

Note that this protocol includes the idea of ID-based cryptosystem [48], which is an
asymmetric system employing user’s identities instead of public keys. Therefore My*
created by the original signer is employed as the proxy public key, and this value is
recovered in the verification.
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Notation
Original Signer A — B . Attack from A to B

\
_—

Proxy Signer

Third Party

Proxy Si gner’

Figure 7.1: Adversary’s target

7.4 Security Consideration

Figure 7.4 illustrates the entities appeared in proxy signatures and adversary’s target from
one entity and the other one. In the figure, we see the following entities:

e Original signer;
e Proxy signer;
e The other proxy signer different from the above one;

e Third party who is not a designated proxy signer.

We consider the above all entities except for the original signer may attack. On such
attacks, the adversaries can use all information they have. Especially, the following attack
model is considered in this thesis:

Insider attack: The adversary who is a designated proxy signer, try to obtain forged
signature of the other’s proxy signer. She can give a partial proxy signature of a proxy
message m,, to the honest proxy signer and obtain a valid partial signature.

As a strategy, the reductions and mathematical function, given in Section 2.2.2, are
used in our poofs.

Next, we explain hash function in detail to discuss the rigorous security of our proto-
cols. During the discussion of security consideration, we may use following hash function:
Let h be an ideal hash function as mentioned before. Then we define i as follows.

= o [ h(x) ifx#O0;
h“*‘{1 if = 0;

To prove the security for our systems, we use h as our hash function instead of h. The
system using h is trivially more secure than that using h. Hence the proofs of the security
for the system using h can guarantee that for the systems using h. Hereafter we denote
h by h for the simplicity.

For the proof of security, we use the functions RSA and DLP given in Section 2.2.3.
Additionally, the following functions are also used.
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Definition 7.4.1 (Function to break DLP-PS) DLP-PS (p, g, y, p, my, r, s, 0') is
a function that on input p € Nyime, 9 € Zy, y € Z,, p € Z;, m, € {0,1}*, r € 7,
§ € Ly, 0 € Z,_y, outputs o € Z, | such that y = g* mod p, p = Mg mod p,
o =—-zp+kmodp—1,r =g modp, s =0+ kh(r,m,) modp — 1 with a hash
function h, v € Z, 1, My* € Zy 1, k € Ly, |, k € Ly 1, p' = M’ch_”’ mod p, o' =

—zp + K modp —1, M') € Zy_y, ' € Z,_,, if such a o exists. N

Definition 7.4.2 (Function to break RSA-PS) RSA-PS (n, e, g, m,, 7, s, 0') is a
function that on input n € Nsy, e € Z3,,, g € Z;, my, € {0,1}, r € Z}, s € Z,
o' € Zy, outputs o € Zy such that n = pg, o = (M})* mod n, r = g*"m) 5 mod n
with a hash function 2, s = g~* mod n, p € Nyrime, ¢ € Nppime, My € Z,,, k € Zy,
o' = (M')* mod n, M") € Z,, if such a o exists. ]

The results of the difficulties to forge a signature are given as follows.

Theorem 7.4.3 (Security of DLP-PS)
1. DLP </» DLP-PS.
2. DLP-PS <’ DLP.
Proof.
1. DLP(p, g, X) = DLP-PS (p, g, X', 1,1, 1,1, 1, 1, 1)

2. DLP-PS </? DLP:
DLP-PS (p7 g,Y, p, My, T, S, mlpa T,)
= —DLP(p, g,y)p + DLP(p, g, (g°vr""™))~1 - p) + DLP(p, g,r")h(r',m,)

UJ
Theorem 7.4.4 (Security of RSA-PS)
1. RSA </’ RSA-PS.
2. RSA-PS <’ RsA.
Proof.
1. RSA(n, e, C) = RSA-PS (n, e, 1,1, 1, 1,1, M'}°)
2. RSA-PS (n, e, g, my, r, s, &, m',, s') RSA(n, e, C)
= RSA(n, e, (s")"™'»)) . RSA(n, e, r¢sh(m»))
0J
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Table 7.2: Performance of computation time.

Original-PS

(with M) DLP-PS | RSA-PS

Original-PS

Proxy parameter

. 1280 2560 1280 1280
generation
Proxy signature 1280 + H 1280+ H | 1280+ H | 2560 + H
generation
Verification 2560 + H 5120+ H 3840+ H | 2048 + H

7.5 Performance Evaluation

In this section, we evaluate the efficiency of our proposed schemes with respect to both
computational time and transmitted data size.

Let us denote the computation time for modular multiplication and squaring by M
and S, where the modulo size for Z, and Z,, is 1024 bits, and where |e| = 16 bits for RSA-
PS. Here we assume that s = 0.75M, and that we use a primitive method like binary
method [23] to compute exponentiation.

From Table 7.2 and 7.3, we see that the efficiency of our schemes are better than
that of original one. Here Original-PS denotes the scheme of both MUO-scheme and
KPM-scheme.

In Table 7.2, compared DLP-PS with Original-PS(with M), we see that computa-
tion time for verification is reduced by 25%. This is the reason why Original-PS(with
M’Ifc) needs two verification, whereas DLP-PS needs only one. On the relationship be-
tween RSA-PS and Original-PS(with M}¢), those types are different. Hence it is not so
significant to compare the computation time. So is it on the transmitted data size.

In Table 7.3, we focus on the values in the first row at first. Usually, those original
public keys will be preliminary delivered to each verifier and they store them. Therefore,
most important values are those in the third row, because the proxy signer must send
an above mentioned-size signature for verification. Compared DLP-PS with Original-
PS(with M}¢), the transmitted data size for verification is reduced by less than 40%.

Table 7.2 shows computation time, where H means amount of work to compute a
hashed values, and Table 7.3 shows transmitted data size. To evaluate the same condition,
both Original-PS and Original-PS(with M}¢) are executed by the method of DLP-based
message recovery.

7.6 Conclusion

We have proposed two new proxy signature schemes, called DLP-PS and RSA-PS, In
both schemes, the original signer can control the signing power of proxy signer to some
extent. DLP-PS, improved the basic proxy signature [27], controls power of a proxy
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Table 7.3: Performance of transmitted data size.

Original-PS

(with M°)

Org. pub. key 3072 3072 3072 2064
Pxy. par. 2048 4096 2048 1024
Verification 3072 + |my| | 5120 + [mp| + M| | 3072+ |myp| | 2048 + [my|

Original-PS DLP-PS RSA-PS

signer by adding usage condition to the proxy signer’s public key implicitly, which uses
idea of message recovery. In verifying proxy signer’s signature, the usage condition can
be checked independent of a message. RSA-PS controls the signing power of a proxy
signer by adding usage condition to proxy signer’s public key explicitly, which uses idea
of ID-based cryptosystem [48].
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Chapter 8

Conclusion

The main goal of this thesis is to design and analyze practical authentication cryptosys-
tems. Throughout this thesis, we focus on both efficiency and provable security of the
proposed systems.

In this thesis, we have studied the following themes:

1. We have defined two mathematical problems, named self-powering RSA problem
and extended self-powering RSA problem. Those are used as underlying problem
in our schemes. Using the problems, we have constructed efficient cryptosystems.
We also have proposeed an identification scheme whose security is based on our
problems. Our scheme is given by improving Guillou-Quisquater identity-based
scheme [18]. In the identity-based [48] scheme, we can see the two types of attack as
follows. One key attack: Adversary try to forge for the fixed ID-based public key.
Possible key attack: Adversary try to forge for the possible ID-based public-keys.

Under one key attack scenario, our scheme is as secure as extended self-powering
RSA problem. On the other hand, our scheme is as secure as self-powering RSA
problem under the self-powering RSA problem.

2. We have constructed on the fly signatures by improv PS-scheme. In our schemes, a
public-key ¢ has a specific structure. Consequently, in comparison with PS-scheme,
the size of secret-key is small (< |n|/2). In the following, our schemes realize
a compactness of signature. Especially, the computation work in verification are
much reduced by the changing n in x = ¢~ mod n (PS-scheme) into z in z =
¢Y~*¢ mod n (our schemes).

Concrete to say, compared with PS-scheme, the size of a secret-key and a signature
can be reduced by at least 69% and 47%, respectively. Furthermore, Our scheme
has an advantage that the computational cost can also be smaller. Compared with
PS-scheme, the computational cost for pre-computation, signature generation and
verification can be reduced by at least 38%, 69%, and 64% (resp. 54%, 63%, and
61%), respectively.
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3. We have proposed fast signature scheme without on-line multiplication. The proofs
for our schemes are based on a formal security model and we have given the provable
security. We aim to provide our schemes that can be applied in current smart cards.

As for the security, our scheme is as secure as integer factoring problem based on a
RSA modulus n (in the random oracle model). To satisfy the security, our schemes
use a public key g with specific structure, called asymmetric basis, and which is a
variant of [33]. This property leads to the good efficiency in terms of both size of
data and amount of work.

Concrete to say, compared with OTM-scheme, the size of a signature in our sig-
nature can be reduced by at least 21%, and computational cost in our scheme for
verification can be reduced by 32%, respectively. In the same way, compared with
PS-scheme, the size of a secret key and a signature can be reduced by at least 68%
and 58%, respectively. Furthermore, the computational cost for pre-computation
and verification can be reduced by at least 83% and 78%, respectively.

4. We have constructed a new notion for proxy signature and proposed two schemes,
named DLP-PS and RSA-PS. The main idea is that our schemes are based on
original signer’s message recovery. This feature leads to the reduction of transmitted
data size and controls the proxy signer’s power efficiently.

DLP-PS, improved the basic proxy signature [27], controls the power of a proxy
signer by adding usage condition to proxy public key implicitly, which uses idea of
message recovery. In verifying proxy signer’s signature, the usage condition can be
checked independent of a message. RSA-PS controls the power of a proxy signer by
adding usage condition to proxy public key explicitly, which uses idea of ID-based
cryptosystem. Up to the present, any proxy signature is based on DLP. Therefore
RSA-PS is a new type scheme, which is based on RSA.

In the course, we make some technical and theoretical contributions which enhance
our understanding of digital signatures including identifications.
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