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Abstract

In this thesis we study subsystems of intuitionistic propositional logic, some of which
have not been given satisfactory Gentzen style sequent calculi. We provide appropriate
sequent calculi for such logics mainly by the method of dual-contexrt sequents and give a
new insight into the realm of subsystems of intuitionistic logic.

First we discuss sequent calculi for subintuitionistic logics K! and BPC which are de-
fined semantically using Kripke models. Extending a known sequent calculus for K’ with
ordinary sequents, we introduce a sequent calculus for BPC. These systems are, however,
not satisfactory in the respect that the rule for implication involves many premisses. Then
we consider dual-context sequents, which have proved popular in the field of linear logic.
After giving an interpretation of the sequents in Kripke models, we develop a dual-context
sequent calculus, which is closely related to Gentzen’s sequent calculus for intuitionistic
logic. The completeness theorem of the system with respect to the class of Kripke models
for K! is shown by means of a construction of the canonical model. We also introduce a
dual-context sequent calculus that is complete with respect to the class of Kripke models
for BPC. The cut-elimination theorem for the dual-context sequent calculi is proved by
syntactical methods including more global proof transformation than the ordinary proof
of cut-elimination.

Next we investigate relationships between subintuitionistic logics and substructural
logics, considering Hilbert style systems that characterize the implicational fragments of
subintuitionistic logics and substructural logics. The investigation clarifies the inclusion
relationships between the sets of formulas that are provable in each Hilbert style system
for these logics.

Finally we discuss sequent calculi for noncommutative substructural logics, particu-
larly the logic BB'I. This logic is important in the respect that it is a noncommutative
version of the implicational fragment of linear logic. While the usual sequent calculus for
BB'I is defined using merge operation, we introduce a sequent calculus for BB'I without
any merge operation. Roughly speaking, the system is obtained from the dual-context
sequent calculus for BPC by deleting the structural rules, according to the observation
that BB'I is a subsystem of BPC. The cut-elimination theorem for the system is proved
using global proof transformation technique analogous to that used in the proof of the
cut-elimination theorem for the dual-context sequent calculi for subintuitionistic logics.
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Chapter 1

Introduction

In the middle of 1930s, Gerhard Gentzen [18] introduced the logical calculi LJ for in-
tuitionistic logic and LK for classical logic. These calculi consist of rules to manipulate
not single formulas but what we call sequents: finite sequences of formulas separated by
commas and the symbol ‘—’. This extension of primitive syntactical concepts enabled
Gentzen to enunciate and prove the Hauptsatz in a convenient form. In the calculi LJ
and LK, the Hauptsatz appears as the cut-elimination theorem, which permits solutions
of important problems on intuitionistic logic and on classical logic. The cut-elimination
theorem for many other sequent calculi introduced after Gentzen’s LJ and LK has also
been applied to various studies in logic and computer science.

In this thesis we discuss sequent calculi for subsystems of intuitionistic propositional
logic; in particular we deal with some logics for which satisfactory sequent calculi have
not been given. In order to provide sequent calculi for such logics, we sometimes consider
sequents with one more symbol ‘;’, which are referred to as dual-context sequents. The
main goal of this thesis is to introduce appropriate sequent calculi for these subsystems
of intuitionistic logic and prove the cut-elimination theorem for them:.

In the following we explain the background of this research, motivating our approach,
and outline the work contained in the thesis.

1.1 Background and motivation

By its constructive nature, intuitionistic logic has played a central role in the study of
logic in computer science. Constructive argument induces an algorithmic interpretation
of formulas, which is made explicit by the Curry-Howard correspondence [27] between
the natural deduction system for intuitionistic logic and the typed A-calculus; formulas
correspond to types, proofs to terms, and reduction of proofs to reduction of terms. (For
exposition, see, e.g. Chapter 3 of [10], Chapter 6 of [24].) In [27], Howard also observed
a correspondence between cut-free proofs in a Gentzen style sequent calculus and normal
forms in the typed A-calculus. This observation was refined by Herbelin [22] using sequents
with the symbol ‘;’, and then the Curry—Howard correspondence for sequent calculi has
been one of recent topics in theoretical computer science. (A concise survey of this topic
is found in the introduction of [48]; see also [33].)

While natural deduction systems are suited to only a few nonclassical logics, sequent
calculi allow us to formalize much more nonclassical logics elegantly. Among others, logics
formalized by sequent calculi without some of the structural rules are called substructural



logics. They include linear logic, BCK logic, relevant logic and Lambek calculus, which
have been studied separately with their own motivations. (For general information on
substructural logics, see [15], [37].) The structural rules, in the intuitionistic case, are
given as follows. (A, B, C denote formulas and T'; A denote sequences of formulas.)

T A A A= C T,A—C

T A A = O (COIltI'aCtiOIl) m (Weakening)
I, A,B,A—C
T B AASC (exchange)

An intuitive meaning of a sequent I' — C' is that one can obtain C' using the formulas
occurring in I". The absence of the structural rules puts restrictions on the use of the
formulas. Without the contraction rule, each formula cannot be used more than once,
and without the weakening rule, each formula must be used at least once. Moreover,
without the exchange rule, one must take care on the order of occurrence of the formulas
in ['. Because of these effects, substructural logics are sometimes called resource-conscious
logics. Although logics obtained from Gentzen’s sequent calculus LJ by deleting some of
the structural rules are subsystems of intuitionistic logic, a restricted form of contraction
and weakening is available in intuitionistic linear logic with the modality ‘!". Given the
Girard translation [19], intuitionistic linear logic retains the constructive aspect of intu-
itionistic logic, and also it enables more delicate argument on the use of resources. (For
an introduction to linear logic, see [21])

Another kind of subsystems of intuitionistic logic, which we call subintuitionistic logics
following [36], are obtained semantically using Kripke models. While Kripke models for
intuitionistic logic are based on preorders (W, <) with reflexive and transitive relation <,
Kripke models for subintuitionistic logics are often based on (W, R) with more general
binary relation R. In this thesis we consider particularly the logic K’ defined by Kripke
models with any binary relation R, and the logic BPC defined by Kripke models with any
transitive relation R. Those Kripke models for subintuitionistic logics do not necessarily
force the formulas (A D (A D B)) D (AD> B)and (AD (BD>C)) D (BD(ADC())
which correspond to the contraction and the exchange rules, respectively, in the sequent
calculus LJ. This means that subintuitionistic logics may qualify as substructural logics
and that it is worth investigating the relationships between these logics for the purpose
of developing the resource-conscious aspects of subintuitionistic logics. Our first goal is
thus to provide sequent calculi for subintuitionistic logics that are suitable to compare
with systems for substructural logics.

< Intuitionistic logic>

Figure 1.1: Subsystems of intuitionistic logic



The class of subintuitionistic logics was studied by Corsi [12], Dosen [14], Restall [36],
giving Hilbert style systems for the least subintuitionistic logic K! and its extensions.
Gentzen style sequent calculi for subintuitionistic logics including K! were also given by
Gabbay and Olivetti [17] in the style of labelled deductive system and by Wansing [50]
in the style of Display Logic. Their systems are, however, not suitable for our purpose
because they are based on sequents involving rather complicated notations and therefore
considerably different from Gentzen’s sequent calculi LJ and LK. In contrast to them,
Kashima in his unpublished manuscript [28] has introduced sequent calculi for subintu-
itionistic logics that are based on the same sequents as those of LK. We discuss in detail
his system for K in Section 3.2.

The logic BPC, which is the abbreviated name for Basic Propositional Calculus, is
one of subintuitionistic logics, but it has also been studied independently. This logic was
first introduced by Visser [49] and recently developed by Ardeshir and Ruitenburg [5], [6].
Other studies on BPC with various motivations are found in [1], [39], [41], [45]. From our
viewpoint, BPC is convenient to consider its relationship to substructural logics with the
weakening rule such as BCK logic, since the formulas of the form A D (B D A) always
hold in BPC. Gentzen style sequent calculi for BPC have also been given several times,
but all of them are not satisfactory because they do not enjoy the subformula property
in the usual sense. The first sequent calculus for BPC was given by Ardeshir [4]. The
system includes a rule to infer ' =+ A D C from I' - A D B and ' - B D C, which
leads to failure of the subformula property. The second system was given by Sasaki [40].
It involves an auxiliary expression (A D B)* which is intended to denote implication in
intuitionistic logic. The cut-elimination theorem for the system holds, but yields only a
weak form of subformula property in the sense that even (A D B)™ is included in the
subformulas of A D B. The third system, which is a slight modification of the second
one, was given by Aghaei and Ardeshir [2]. It satisfies only a weak form of subformula
property either. Another system is found in the systems for subintuitionistic logics by
Wansing [50] mentioned above, which involves more auxiliary expressions.

All studies on subintuitionistic logics so far have never been related to substructural
logics, mainly because no satisfactory sequent calculi for subintuitionistic logics have
been given. This thesis is the first study that provides adequate sequent calculi for sub-
intuitionistic logics and gives more insight into these subsystems of intuitionistic logic.

1.2 Overview of the thesis

Having seen the background and motivation of this research, we give an overview of the
work in the thesis. The figure at the end of this section represents the structure of the
thesis, making our contributions clear.

We start with, in Chapter 2, a review of the propositional parts of Gentzen’s sequent
calculi LK for classical logic and LJ for intuitionistic logic. In Section 2.1 we show the
completeness and cut-elimination theorems for LK with the familiar notion of valuation,
intending an introduction to semantical proof of cut-elimination. In Section 2.2 we show
the completeness theorem of LJ with respect to Kripke semantics for intuitionistic logic,
which says that the provability in LJ is characterized by the mathematical structure. In
Section 2.3 we show the cut-elimination theorem for LJ in a syntactical way introducing
the mix rule instead of the cut rule.

Chapter 3 is devoted to studying subintuitionistic logics. The definitions of the least



subintuitionistic logic K! and the logic BPC are given semantically using Kripke models
in Section 3.1. Then in Section 3.2 we introduce Kashima’s sequent calculus GK’ and
show the completeness theorem of GK' with respect to the class of Kripke models for K’.
The cut-elimination theorem for GK follows from the proof of the completeness theorem
as for LK in Section 2.1. Next in Section 3.3 we extend the system GK’ to the sequent
calculus LBP which is complete with respect to the class of Kripke models for BPC. The
system LBP enjoys the subformula property in the strict sense unlike the sequent calculi
for BPC that have been introduced in the literature.

Although the sequent calculi GK! and LBP are complete with respect to semantics
for K! and for BPC and enjoy the subformula property, they are not satisfactory in the
respect that the rule for implication involves 2" premisses for n principal formulas in the
conclusion. This gives rise to difficulty in comparing GK! and LBP with sequent calculi
for intuitionistic logic and for substructural logics.

In order to provide sequent calculi for K and BPC that are suitable to compare with
systems for intuitionistic and substructural logics, we consider dual-context sequents, i.e.,
sequents of the form I'; A — A. Such kind of formulation has proved popular in the field
of linear logic; for example, the unified system LU [20], linear logic programming [26],
and linear type theories [7]. (Some related systems are discussed in Section 3.9 including
systems for modal logic.) In Section 3.4 we apply the formulation to the logic K/ and
develop the dual-context sequent calculus DK’. This system enjoys the subformula prop-
erty and is closely related to Gentzen’s sequent calculus LJ for intuitionistic logic. Unlike
in the system GK!I, each rule for implication in DK’ holds just one principal formula,
having the following form.

A—-A ILB,Y—C A—B
T ASBIASSC O T 5 A5 B

(=>)

Moreover we give a novel kind of interpretation of the sequents in Kripke models, where
I of a sequent I'; A — A denotes formulas in a point x of a Kripke model while A and A
denote formulas in any point y next to x. The soundness theorem of DK is proved easily
by virtue of the interpretation. To prove the completeness theorem of DK, we introduce
a useful notion of x-consistent pair (Definition 3.20), which plays an important role in the
construction of the canonical model. In Section 3.5 we also introduce the dual-context
sequent calculus LBP2 by modifying the system DK, and show that the system LBP2
is complete with respect to the class of Kripke models for BPC.

The cut-elimination theorem for DK’ and LBP2 is proved by syntactical methods in
Sections 3.6 and 3.7, respectively. The main difference from the proof of cut-elimination
for LJ arises in the case where the right rule over the cut rule is (—D). Since in the cut
rule of DK’ and LBP2 the cut formula cannot appear on the left hand of ;' it is not
possible to push the cut one step up in that case. Instead, we make a more global proof
transformation as shown in Figure 1.2, where we assume that the left rule over the cut
rule is (—D). This technique is applied also to the proof of the cut-elimination theorem
for LBB'I2 in Section 5.2.

In Chapter 4 we investigate the relationships between subintuitionistic logics and sub-
structural logics from a different perspective. We consider there Hilbert style systems that
characterize the implicational fragments of subintuitionistic logics and substructural log-
ics, and clarify the inclusion relationships between the sets of formulas that are provable
in each Hilbert style system for these logics.



Q) L Q2
AN~ A U;B,O—>FE 5
S ASBEUAOSE )

L P : D
A;A— B S ADBX,C—D S
;A%ADBF}) %DRZ%CDDF:)
AY>C>D (cut)
U
o L Py
;AN A A;A— B ¢ : Q2
AN > B () 4.5 &R .
3N, 0,00 5 F (cut)
-
A,Y:C = D

AsScoD (7P

Figure 1.2: Global proof transformation

In Chapter 5 we study sequent calculi for noncommutative substructural logics, par-
ticularly the logic BB'I. This logic is important in the respect that it is a noncommutative
version of the implicational fragment of linear logic. The usual sequent calculus for BB'T
is defined using merge operation (Section 7 of [3], [30]). In Section 5.1 we introduce the
sequent calculus LBBI2 without any merge operation and show the correspondence be-
tween BBl and LBB'I2. Roughly speaking, LBB'I2 is obtained from the system LBP2
by deleting the structural rules, according to the observation that BB'I is a subsystem of
BPC (cf. Section 4.3). The cut-elimination theorem for LBB'I2 is proved in Section 5.2
using global proof transformation technique analogous to that used in the proof of the
cut-elimination theorem for DK’ and LBP2.

In Chapter 6 we summarize the results of the thesis and indicate directions of further
studies derived from our work.
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Section 5.2*
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Figure 1.3: Structure of the thesis



Chapter 2

Sequent calculi for classical and
intuitionistic logics

In this chapter we review the propositional parts of Gentzen’s sequent calculi LK for clas-
sical logic and LJ for intuitionistic logic, concentrating our attention on their completeness
and cut-elimination theorems. These materials form the bases of later investigations into
sequent calculi for other logics.

2.1 Sequent calculus for classical logic

In this section we study Gentzen’s sequent calculus LK for classical propositional logic.
The completeness theorem with respect to truth-value semantics is proved, followed by
the cut-elimination theorem as a corollary. The content of this section will be useful to
understand semantical proof of cut-elimination for sequent calculi for other logics. We
begin by describing the language and semantics of classical propositional logic.

The language of classical propositional logic has a countable set PV of propositional
variables, the propositional constant | and the logical connectives A, V and D. The
set Form of formulas are constructed from these in the usual way. We use p,q,r,...
for propositional variables, A, B, C ... for formulas and I'; A, ¥, . .. for finite sequences of
formulas separated by commas. For each formula A, |A| denotes the number of occurrences
of logical connectives in A, and Sub(A) denotes the set of all subformulas of A. For each
set = of formulas, Sub(z) denotes the set J{Sub(A) | A € z}.

The semantics of classical propositional logic we consider here is the usual truth-value
semantics based on the notion of valuation.

Definition 2.1 A waluation is a function from PV to {t,f}. For a given valuation v :
PV — {t,f}, the function ¥ : Form — {t,{} is defined inductively as follows:

u(p) = v(p) for every p € PV,
o(L) =t,
U(ANB)=t iff ©(A)=79(B)=t,

A formula A is a tautology if v(A) =t for every valuation v.

7



A sequent of the system LK is defined as an expression of the form I' — A. The truth

of sequents of LK is defined in the following way.

Definition 2.2 A sequent I' — A of LK is true for a valuation v if
v(C) =t for every C occurring in I"  implies

(D) =t for some D occurring in A.

Proposition 2.3 For any formula A and any valuation v,
1. 5(A) =t if and only if — A is true for v,
2. A is a tautology if and only if — A is true for every valuation.

PRrROOF. Straightforward.

Now we introduce the sequent calculus LK. Initial sequents of LK are of the following

forms:

A— A,
1L — .
Rules of inference of LK are the following.

Structural rules:

r—- A r— A

AT oA W) Foad Y
A AT = A T — A A A
N oA (7Y
T A BT — A I - AABY
FBATSA ©7) rSAB Ay (79
Cut rule:
I —-AA A,H—>E( 6)
T A, S o
Rules for the logical connectives:
AT — A (AL =) B,I' - A (A2 )
ANB,I' = A ANB,I' = A
I —-AA F—>A,B(_>A)
I ->AAANB
AT = A B,F—>A(v_>)
AvVvB,I' = A
I —-AA (= V1) r—AB (= v2)
- AAVEB ' AAVEB
> AA B,H—>E( ) AT —-AB (=)
ASBTISAY 2 TSAASB -



Theorem 2.4 (Soundness of LK) For any sequent I' — A, if T' — A is provable in
LK, then T' = A is true for every valuation.

ProoOF. By induction on the proof of I' = A in LK. |

Next let LK—(cut) denote the system obtained from LK by deleting the cut rule. In
the following we show that LK—(cut) is sufficient to prove any sequent that is true for
every valuation. From this and Theorem 2.4, we can derive the cut-elimination theorem
for LK.

Definition 2.5 Let z,y be sets of formulas. A pair (x,y) is consistent (in LK—(cut)) if,
for any Ay,..., A, € x and any By,...,B, € y (m,n > 0),

Al;---aAm_>Bla-- Bn

is not provable in LK—(cut). (z,y) is saturated (in LK—(cut)) if it is consistent and
satisfies the following conditions:

1) ANBex implies A€z and B €z,
2) ANBey implies A€y or Bey,
3) AVBex implies A€ex or BEeEumr,
4) AVBey implies A€y and B €y,
5) ADBe€x implies A€y or BEeEur,
6) ADBecy implies A€z and B€y.

Lemma 2.6 Let x,y be finite sets of formulas. If (x,y) is consistent, then there ezists
a saturated pair (x',y") such that © C x’ and y C y'.

PRrROOF. Let C,...,C, be a sequence of all formulas in Sub(z U y) where |C;| > |Cj1|
for each i € {1,...,n —1}. We define a sequence of consistent pairs (z;,y;) (i =0,...,n)
as follows:

L. (x07y0) = (xay)
2. For i > 1, the pair (x;,y;) is obtained from (z; 1,y; 1) in the following way.

2.1. If C}; is of the form A A B and C; € Ti—1, then (17“%) = (xi—l U {A,B},yi_l).
Here (x;,y;) is consistent whenever (x;_1,y;_1) is consistent. Indeed, otherwise
there exist formulas Dy,...,D; € ;1 and F\,..., Ey € y;_; such that

Dl,...,Dj,A,B —)El,...,Ek
is provable in LK—(cut). Then
Dl,...,Dj,A/\B%EI,...,Ek

is also provable in LK—(cut), contrary to the consistency of (x; 1,y; 1).



2.2. If C; is of the form A A B and C; € y,; 1, then (x;,y;) is defined as either
(i 1,y 1U{A}) or (x;_1,y; 1 U{B}). Here we can define (z;, ;) to be consis-
tent whenever (x;_1,y;_1) is consistent. Indeed, otherwise there exist formulas
Dq,..., D]' € x;,_y and Ey,..., Fy € y;_1 such that

Dl,...,Dj%El,...,Ek,A
Dl,...,Dj%El,...,Ek,B

are both provable in LK—(cut). Then
Dl,...,Dj —)El,...,Ek,A/\B

is also provable in LK—(cut), contrary to the consistency of (x;_1,y;_1)-

2.3. If C; is of the form AV B and C; € x;_q, then (z;,y;) is defined as either
(wi—1 U{A}, yi—1) or (z;—1 U{B},y;—1). By an argument symmetric to that in
2.2, we can define (x;,y;) to be consistent whenever (z; 1,y; 1) is consistent.

2.4. If C; is of the form AV B and C; € y; 1, then (z;,y;) = (z;_1,y; 1U{A, B}). By
an argument symmetric to that in 2.1, the pair (z;,y;) is consistent whenever
(;_1,y;—1) is consistent.

2.5. If C; is of the form A D B and C; € x;_y, then (z;,1;) is defined as either
(i—1,yim1 U{A}) or (z;—1 U{B}, y;—1). Here we can define (z;,y;) to be consis-
tent whenever (x; 1,%; 1) is consistent. Indeed, otherwise there exist formulas
Dy,...,D; € x;_y and E,..., E; € y;_; such that

Dl,...,Dj%El,...,Ek,A
Dl,...,Dj,B%El,...,Ek

are both provable in LK—(cut). Then
Dl,...,Dj,ADB—)El,...,Ek

is also provable in LK—(cut), contrary to the consistency of (x; 1,y; 1).

2.6. If C; is of the form A D B and C; € y; 1, then (x;,y;) = (z; 1U{A}, y; 1U{B}).
Here (x;,y;) is consistent whenever (z; 1,y; 1) is consistent. Indeed, otherwise
there exist formulas Dy,...,D; € x;_; and Ey,..., B} € y;—; such that

Dl,...,Dj,A —FE,...,E, B
is provable in LK—(cut). Then
Dl,...,Dj —)El,...,Ek,ADB

is also provable in LK—(cut), contrary to the consistency of (x; 1,y; 1).

2.7. Otherwise, (z;,y;) = (i 1,Yi 1)-

Then (x;,y;) is consistent for all i € {0,...,n}, and (z,,y,) is saturated since the condi-
tions (S1)—(S6) are satisfied with the above constructions 2.1-2.6, respectively. The pair
(%, yn) satisfies © C x, and y C y,, so we complete the proof.

10



Lemma 2.7 For any sequent I' — A, if T' — A is true for every valuation, then I' — A
is provable in LK—(cut).

PROOF. Suppose that I' — A is not provable in LK—(cut). Let v and § be the sets of
formulas occurring in I and A, respectively. Then the pair (v, §) is consistent, and so by
Lemma 2.6, there exists a saturated pair (7', 4’) such that v C 4/ and § C ¢'. Now define
a valuation v : PV — {t,f} as follows:

_Jt if pery,
v(p) = { f otherwise.

Our aim is to show that I' — A is not true for this valuation v. Since v C 4" and § C ¢,
it suffices to show that for any formula C,

(C)=t, and
(C) =t.

C €+ implies ©
C €6" implies ©

We prove these by simultaneous induction on the structure of C'.

1. C'is a propositional variable p. If p € 4/ then (p) = v(p) = t by the definitions of
v and v. If p € 0’ then p ¢ ' by the consistency of (7/,d), and so v(p) = v(p) = 1.

2. C'is the propositional constant L. If | € ' then (v/,4’) is not consistent, which is
a contradiction. If L € ¢' then v(L) = f by the definition of v.

3. C'is of the form AAB. If AAB € 4/ then A € 4/ and B € +' by the condition (S1)
of the saturated pair (v/,0’). By the induction hypothesis, 5(A) = v(B) = t, and so
U(AANB)=t. If ANB € ¢ then A € ¢’ or B € §' by the condition (S2). By the
induction hypothesis, v(A) =f or ¥(B) ={, and so (A A B) =f{.

4. C'is of the form AV B. Symmetric to the previous case.

5. C'is of the form A D B. If AD B € 7/ then A € §' or B € %' by the condition (S5)
of the saturated pair (7',0’). By the induction hypothesis, 7(A) = f or ¥(B) = t,
and so U(A D B) =t. If AD B € ¢’ then A € 7' and B € ¢' by the condition (S6).
By the induction hypothesis, 5(A) =t and 5(B) =f, and so 7(A D B) =f.

From Theorem 2.4 and Lemma 2.7, we obtain the following results.

Theorem 2.8 (Completeness of LK) For any sequent ' — A, T' — A is provable in
LK if and only if I' = A is true for every valuation.

Theorem 2.9 (Cut-elimination for LK) For any sequent I' - A, if T' — A is prov-
able in LK, then it is provable in LK without using the cut rule.
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2.2 Sequent calculus for intuitionistic logic

In this section we study Gentzen’s sequent calculus LJ for intuitionistic propositional
logic, in particular its completeness with respect to Kripke semantics. Unlike in the
previous section we prove the completeness theorem with the help of the cut rule. The
cut-elimination theorem for LJ is proved in the next section by syntactical methods.

The language of intuitionistic propositional logic is the same as that of classical propo-
sitional logic. The sequent calculus LJ is obtained from LK by restricting the right hand
side of a sequent to at most one formula. More specifically, a sequent of LJ is an expres-
sion of the form I' = A, where A may be empty, and the sequent calculus LJ is defined
as follows. Initial sequents of LJ are of the following forms:

A— A,

1 — .

Rules of inference of LJ are the following.

Structural rules:

Al = C

W —)

A AT = C
iroc ()

LABI=C
T,B,AIl—C \°

Cut rule:

A All-C
Lin—c

(cut)

Rules for the logical connectives:

ATl = C
ANB,I' = C

B, I' - C
ANB,I' = C

(A1 =) (A2 =)

r- A I—-B
' = AAB

(= A)

AT—C BIL=C
VBT V™)

r—- A
' - AvVEB

I' —- B

(= V1) F 5 AVE

(— Vv2)

r-A BII—->C ATl —- B
ASBTIHSC O T>AOB

(=>)

The formula C' in each of these rules may be empty. The formulas A, B in the structural
rules and A A B, AV B, A D B in the rules for the logical connectives are called the
principal formulas of the respective rules.
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Next we introduce Kripke semantics for intuitionistic propositional logic, which is con-
sidered as truth-value semantics parameterized by preorders. The provability of sequents
in LJ is characterized by this mathematical structure.

Definition 2.10 Let (W, <) be a preorder, i.e., < be a reflexive and transitive relation
on a nonempty set W. An IPC-valuation is a function v : PV x W — {t,f} such that for
every p € PV and every x,y € W,

v(p,z) =t and = <y imply v(p,y)=t.

For a given IPC-valuation v, the function v : Form x W — {t,{} is defined inductively
as follows:

(p,z) = v(p, x) for every p € PV,
) =
ANB x) iff 9(A,z)=0(B,x)=t,
AV B,x) = iff 9(A,z)=t or v(B,x)=t,
ADByx)=t iff VYyeWx <y and 9(A4,y) =t imply ©(B,y) =t

<) @) <)

<)

(L,
(
(
o

Example 2.11 Consider a preorder ({0,1}, <) where < = {(0,0),(0,1),(1,1)}, and an

[PC-valuation v such that v(p,0) = f and v(p,1) = t. The situation is graphically
represented as follows.

1eP

0

Then o(p,0) =, and 0(p D L,0) =f since 0 < 1 and v(p,1) =t but (L, 1) =f. Hence
ipV(pDL),0)=t

Let (W, <) be a preorder and v an IPC-valuation. Consider a function V : PY — 2V
and a relation = (C W x Form) such that

V(p) ={z e W |v(p,x) =t} forevery pe PV,
rEA M 9(A4x)=

Then, Definition 2.10 is rephrased in the following style, which we employ in the sequel.
Definition 2.12 An IPC-model is a triple (W, <, V) where
e |V is a nonempty set,

e < is a reflexive and transitive relation on W,

e U is a function from PV to 2" such that for every p € PV and every x,y € W,

re€V(p) and z <y imply y € V(p).

13



For a given IPC-model M = (W, <, V'), the truth-relation =y, (C W x Form) is defined
inductively as follows:

T EMD ifft zeV(p) forevery pe PV,

x Fm L,

rEM ANB it zE=y A and |y B,

rEy AVB  iff =y A or xEy B,

rEyADB it VyeWx<y and ypEy A imply y Euy Bl

If © =ar A for every A occurring in a sequence I', we write = =y, I'. The subscript M
may be omitted if understood. A formula A is true in an IPC-model (W, <, V) ifz = A
for every x € W.

Lemma 2.13 For every IPC-model (W, <, V), every formula A and every x,y € W,
rEA and z <y imply ykE A
PROOF. By induction on the structure of A.
1. A is a propositional variable p. Follows from the definitions of = and V.
2. A is the propositional constant L. x = L is impossible by the definition of .

3. A is of the form B A C. Suppose that © | BAC and z < y. Then z | B and
x = C. By the induction hypothesis, y = B and y = C. Hence y = B A C.

4. A is of the form BV C. Analogous to the previous case.

5. Ais of the form B D C. Suppose that x =B D C and z < y. Toshow y = B D C,
suppose further that y < z and z = B. Then x < 2z by the transitivity of <. Since
z = B D C and z = B, we have z |= C' as required.

The truth of sequents of LJ in IPC-models is defined in the following way.

Definition 2.14 For a given IPC-model M, the truth-relation }=,; for sequents of LJ is
defined as follows:

rEy T — A iff xpy T implies = |y A.

The case where A is empty is the same as the case where A is L. The subscript M may be
omitted if understood. A sequent I' — A is true in an IPC-model (W, <, V) ifo =T — A
for every x € W.

Proposition 2.15 For any formula A, any IPC-model M = (W, <, V) and any x € W,
1. x Ep Adf and only if © Epy — A,
2. A is true in M if and only if — A is true in M.

PRrROOF. Straightforward. |
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Theorem 2.16 (Soundness of LJ) For any sequent I' — A, if ' — A is provable in
LJ, then T' — A is true in every IPC-model.

ProOOF. By induction on the proof of I' — A in LJ. Here we consider only the rules
(D—) and (—D). Take any IPC-model (W, <, V) and any z € W. For the rule (D—),
we show z = A D B,T',1I — C. Suppose that z A D B,[',1I, i.e., that = F A D B,
z =T and z = II. Since z =T — A by the induction hypothesis, we have z = A, and
since x = A D B, we have z = B. Moreover, since x = B,II — C by the induction
hypothesis, we have z = C' as required. For the rule (—D), we show x =" — A D B.
Suppose that x |=T". To show x = A D B, suppose further that z < y and y = A. Then
by Lemma 2.13, we have y = T'. Since y = A,T" — B by the induction hypothesis, we
have y = B as required. |

To prove the completeness theorem of LJ, we introduce the following notions.

Definition 2.17 Let z,y be sets of formulas. The pair (z,y) is consistent (in LJ) if, for
any Ay,..., Ay, € x and any By, ..., B, € y (m,n > 0),

Al,...,Am—>B1\/"'\/Bn

is not provable in LJ. (x,y) is mazimal consistent (in LJ) if it is consistent and for any
formula A, A€ xor Acy.

Note that the notation B; V ---V B, above is justified by the cut rule which ensures
the associativity of V on provability in LJ. The cut rule is also used in the proof of the
following lemma.

Lemma 2.18 Let x,y be sets of formulas. If (x,y) is consistent, then there ezists a
mazximal consistent pair (z',y") such that x C 2’ and y C y'.

Proor. Let C,C5, ... be an enumeration of all formulas. We define a sequence of pairs
(Tn,yn) (n=0,1,...) as follows:

(zo,90) = (7,9),

(xma Ym U {Cm+1}) if (ajma Ym U {Cm+1}) is Consistent,

(Tma1s Ymy1) = {(me{Om+1}7ym) otherwise.

Then (%41, Ym+1) is consistent whenever (z,,, y,) is consistent. Indeed, otherwise there
exist formulas A,,..., A; € xp, and By, ..., B; € y,, such that

Al,...,Ai—>Bl\/"'\/Bj\/Cm+1,
Al,...,Ai,Cm+1—>B1\/"'\/Bj

are both provable in LJ. However, by using the cut rule,
Al,,AZ—>B1\/\/BJ

is provable in LJ, contrary to the consistency of (2, ¥m). Thus (z,,y,) is consistent for
all n, and we obtain a maximal consistent pair (U5 Zn, Uneo Yn)- |
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Theorem 2.19 (Completeness of LJ) For any sequent I' — A, I' — A is provable in
LJ if and only if T' — A is true in every IPC-model.

PROOF. From left to right, we have Theorem 2.16. For the other direction, suppose that
' — A is not provable in LJ. Let v be the set of all formulas occurring in I'. Then the
pair (7, {A}) is consistent, and so by Lemma 2.18, there exists a maximal consistent pair
(u,v) such that v C u and {A} C v (so A ¢ u by the consistency of (u,v)). Now define
an IPC-model (W*, <* V*) as follows:

e W* is the set of all maximal consistent pairs,
o (z,w) <" (y,2) if zCy,
o V¥(p) ={(z,w) e W*|pex} foreverype PV.

It is easy to verify that (u,v) € W*, <* is reflexive and transitive, and if (z,w) € V*(p)
and (z,w) <* (y, z) then (y,2) € V*(p). Thus (W*, <* V*) is indeed an IPC-model. Our
aim is to show (u,v) £ I' — A, which means that I' — A is not true in this [PC-model.
Since v C u and A ¢ u, it suffices to show that for any formula B, B € u if and only if
(u,v) E B. (It suffices even when A is empty, since (u,v) & L.) For this we prove by
induction on the structure of B that for any (x,w) € W*,

B ez ifand only if (z,w) | B.
1. B is a propositional variable p. Follows from the definitions of V* and |=.
2. B is the propositional constant L. | € z is impossible by the consistency of (z, w).

3. B is of the form C' A D. Suppose C' A D € x. Since C A D — C'is provable in LJ,
C € w contradicts the consistency of (xz,w). Hence C' € x. Similarly, D € z. By
the induction hypothesis, (z,w) | C and (z,w) | D. Thus (z,w) = C A D. For
the other direction, suppose (z,w) = CAD, i.e., (z,w) = C and (z,w) = D. Then
C € x and D € z by the induction hypothesis. Since C, D — C A D is provable in
LJ, C A D € w contradicts the consistency of (z,w). Hence C' A D € x.

4. B is of the form C'V D. Suppose C'V D € x. Since C'V D — C'V D is provable in
LJ, C,D € w contradicts the consistency of (z,w). Hence C' ¢ w or D ¢ w, and
so C € x or D € z. By the induction hypothesis, (z,w) = C or (z,w) = D. Thus
(x,w) = C'V D. For the other direction, suppose (z,w) = C'V D. Then (z,w) E C
or (z,w) E D, and by the induction hypothesis, C' € x or D € x. Since C' — C'V D
and D — C'V D are provable in LJ, C'V D € w contradicts the consistency of (x, w).
Hence C'V D € x.

5. B is of the form C' D D. Suppose C' D D € z. To show (z,w) = C D D, suppose
further (z,w) <* (y,2) and (y,2) E C. Then C D D € y by the definition of
<*, and C' € y by the induction hypothesis. Since C' D D,C' — D is provable
in LJ, D € z contradicts the consistency of (y,z). Hence D € y holds, and by
the induction hypothesis, we have (y, z) = D as required. For the other direction,
suppose C' D D ¢ x, i.e., C D D € w. Then the pair (x U {C},{D}) is consistent.
Indeed, otherwise I', C' — D is provable in LJ for some I consisting of formulas in x.
Then I' — C' D D is also provable in LJ contrary to the consistency of (z,w). Thus
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(xU{C},{D}) is consistent, and by Lemma 2.18, there exists a maximal consistent
pair (y, z) such that x U {C} C y and {D} C z (so D ¢ y by the consistency of
(y,2)). Now we have (z,w) <* (y,2), (y,2) = C and (y,z) = D by the induction
hypothesis. This means (z,w) = C D D.

2.3 Cut-elimination theorem for LJ

In the previous section we proved the completeness theorem of LJ, using the cut rule. The
present section is devoted to proving the cut-elimination theorem for LJ in a syntactical
way. For the proof of the cut-elimination theorem, we will introduce the mix rule and
show mix-elimination instead of cut-elimination.

First we introduce the notion of height of a proof in LJ.

Definition 2.20 The height h(P) of a proof P in LJ is defined inductively as follows:
1. If P is an initial sequent, then h(P) = 1.

2. If P is obtained from the proof @) by applying a one-premiss rule, then h(P) =
h(Q) + 1.

3. If P is obtained from the proofs ); and (s by applying a two-premiss rule, then
h(P) = max{h(Q1), h(Q2)} + 1.

Now we prove the cut-elimination theorem for LJ.

Theorem 2.21 (Cut-elimination for LJ) For any sequent I' — A, if T' — A is prov-
able in LJ, then it is provable in LJ without using the cut rule.

ProOOF. We introduce the following mix rule:

r—-A II—-C
F,HA—>O

(mix)

where II has at least one occurrence of A, and II, is obtained from II by deleting all
occurrences of A. The formula A is called the miz formula of this inference. It is seen

that the cut rule
r—LA AIll—C

rLim—c

(cut)

is derivable from the mix rule and some structural rules as follows.
r—LA All—-C

F, HA —C

rLim—c

(mix)

Thus, for the proof of the theorem, it suffices to consider the system with the mix rule
instead of the cut rule and show mix-elimination instead of cut-elimination. Our strategy
is that of eliminating each mix rule above which any other mix rule does not occur.
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Let P be a proof with only one mix rule occurring as the last inference whose mix
formula is A. Let P, and P, be the subproofs of P whose end-sequents are the left and
right premisses of the mix rule, respectively. The proof of eliminating the mix rule in P
is by induction on |A|, with a subinduction on h(P) + h(P;). Let r and r, be the left and
right rules over the mix rule, respectively. We consider the following four cases:

1. At least one of P, and P, is an initial sequent.

2. Neither of P, and P, is an initial sequent, and the mix formula is principal in both
r; and r;.

3. The mix formula is not principal in 7.

4. The mix formula is principal in r and not principal in 7,.

Case 1. One of the premisses is an initial sequent A — A, say the left.

A=A TI=C
A,HA—>C

(mix)
The conclusion follows from the right premiss by some structural rules.
The right premiss is the initial sequent L — . If 7 is (— w), the proof looks like

I' —
r— 1

(= w) 1 —

T (mix)

The conclusion of (mix) is the same as the premiss of (— w). The case where r; is one of
the other rules is handled as in Case 3 below.

Case 2. Neither of the premisses is an initial sequent, and the mix formula is principal in
both 7 and r,. We first consider the case where ry is (— A) and 7, is (A1 —).

r A ' > B All=C
roass N Tapioc EM.T)
T llanp — C i

If AA B does not occur in I, i.e., IT4,p is the same sequence as I, then we construct the
following proof.
' ip
r—-A All—-C
VI, — C
rLim—c

This (mix) can be eliminated by the induction hypothesis. On the other hand, if AA B
occurs in II, then we construct the following proof.

(mix)

R P
r A4 I'> B . Py
.p  Todsrp N ATSC
- A T,A 5 — C (mix) mix
I T4, (ITang)a — C

F,HA/\B —C
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The upper (mix) can be eliminated by the subinduction hypothesis, and then the lower
(mix) can be eliminated by the induction hypothesis. The cases where r; is (— A) and 7,
is (A2 —) and where ry is (— V1) or (— V2) and r, is (V —) are proved analogously.

In the case where 7 is (—D) and r, is (D—), the proof looks like

B n in

AT —- B n—-A BX—C

r>i58 ) dspasoc P77
(mix)

' 1ase, Xas — C

If A D B occurs in both II and ¥, then we construct the following proof.

P
AT > B L p, ' R,
TS asp (D) : : AT S B :
T>A>B T I ToB o iP
LIlysp — A A,F—>B( ix) r-+A>B B,E—>C( ix)
I a5, T4 = B i T,B,%4o5 - C , . %
(mix)

I 1a5E, T4, U, (Bass)s = C
[ a5, X458 = C

These (mix)’s can be eliminated by the induction and the subinduction hypotheses. If
A D B does not occur in IT or in ¥, we will dispense with some of the above (mix)’s.

Next we consider the cases where r or r, is a structural rule whose principal formula
is the mix formula. In the case where r, is (¢ —), which led us to introduce the mix rule
instead of the cut rule, the proof looks like

L Py
R AATSC
r 54 An-c °

T, > C (mix)
This is transformed into
P iR
r—-A AAIl—-C )
T 1, > C (mix)

where the (mix) can be eliminated by the subinduction hypothesis. The cases where r, is
(e =), rris (w —) and r is (— w) are proved easily.

Case 3. Neither of the premisses is an initial sequent, and the mix formula is not principal
in ;. We consider the case where 7 is (D—).

R P
r+A BA—=C (5=) . Py
ADB,I'’'A—=C IT— D

ADBT,ATlc— D (mix)
This is transformed into
P in
Py, BA—-C II—D, .
(mix)

I A B,ATlc—D
ASBT AN, oD )
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where the (mix) can be eliminated by the subinduction hypothesis. The other cases are
proved analogously.

Case 4. The mix formula is principal in r; and not principal in .. We consider the case
where 7, is (D—).

no P
P oA B,E—>D(D_>)
r-Lc¢ ADBILY—D '\

(mix)

F,ADB,Hc,Ec—)D

If C' occurs in both II and ¥, then we construct the following proof.

n i
R ip [5C BSoD
T 1, — A BLScoD
A5 BT, 5% = D

I'AD B¢, Y — D

These (mix)’s can be eliminated by the subinduction hypothesis. If C' does not occur in
IT or in ¥, we will dispense with some of the above (mix)’s. The other cases than that
where r, is (D—) are proved analogously.

2.4 Notes

Gentzen’s LK, LJ and cut-elimination In [18], Gentzen introduced the sequent
calculi LK and LJ for classical and intuitionistic predicate logics, respectively. As far as
the propositional part is concerned, our formulation in this chapter differs from Gentzen’s
original one in that we use the propositional constant | whereas Gentzen used the logical
connective = with the following rules. (A is empty in the case of LJ.)

r—-AA
ﬁA,F—)A

AT —- A

(=) T > A,-A

(=)
Gentzen proved the cut-elimination theorem for both the calculi LK and LJ by syntactical
methods. He introduced the notion of rank to measure the simplicity of a proof rather

than height that we used in the previous section. Our proof of the cut-elimination theorem
for LJ mainly follows Chapter 4 of [47].

Alternative sequent calculus for intuitionistic logic There is another sequent cal-
culus for intuitionistic logic that allows natural semantical proof of cut-elimination. The
system is obtained from LK by restricting the rule (—D2) to that of LJ. The complete-
ness theorem of the system with respect to Kripke semantics for intuitionistic logic can
be proved without using the cut rule, where (S1)-(S5) in Definition 2.5 are adopted as
the conditions of saturated pairs. Syntactical proof of cut-elimination for the system is
also possible with the help of the so-called inversion lemma. For the details, see, e.g. [43].
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Chapter 3

Sequent calculi for subintuitionistic
logics

In this chapter we study sequent calculi for subintuitionistic logics. We first introduce sys-
tems based on sequents of the same form as those of Gentzen’s LK for classical logic, and
then introduce systems based on dual-context style sequents which are close to Gentzen’s
LJ for intuitionistic logic. We prove the completeness and cut-elimination theorems for
each of these systems.

3.1 Semantics of subintuitionistic logics

Subintuitionistic logics are defined semantically through Kripke models. While Kripke
models for intuitionistic logic are based on preorders (W, <) with reflexive and transitive
relation <, Kripke models for subintuitionistic logics are often based on (W, R) with more
general binary relation R. Here we deal with in particular the logic K’ defined by Kripke
models with any binary relation R, and the logic BPC defined by Kripke models with
any transitive relation R. Those Kripke models for K/ and BPC do not necessarily force
the formulas corresponding to the contraction rule and the exchange rule in the sequent
calculus LJ for intuitionistic logic.

The language of subintuitionistic logics is the same as that of classical propositional
logic. Kripke models for K and BPC are defined as follows.

Definition 3.1 A model is a triple (W, R, V') where
e IV is a nonempty set,
e R is a binary relation on W,
e V is a function from PV to 2V.
A BPC-model is a model (W, R, V') such that
e R is transitive,

e for every p € PV and every x,y € W,

z € V(p) and zRy imply y € V(p).
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For a given model M = (W, R, V), the truth-relation =), (C W x Form) is defined
inductively as follows:

T EMp iff zeV(p) forevery pe PV,

T L,

tEy ANB iff zEy A and z =y B,

rEy AVB iff xEy A or zEy B,

rEy ADB iff VyeW[zRy and y =y A imply y E=u Bl
If x |=pr A for every A occurring in a sequence I', we write z =y, I'. The subscript M

may be omitted if understood. A formula A is true in a model (W, R,V) if 2 = A for
every x € W.

Example 3.2 Consider a (BPC-)model ({0,1,2,3},<,V) where < is the usual strict

order on natural numbers and V' is a function such that V(p) = {2,3}, V(¢) = {3} and
V(r) = ). The situation is graphically represented as follows.

30D 4

0o

Then 2 =p D ¢, and 3 = p D ¢ since there is no x € {0,1,2,3} such that 3 < z. Hence

1EpD(pDq). However, 1 p Dgsince 2 =pand 2~ q. Thus 0~ (pD (p D)) D
(p D q), which means that (p D (p D ¢)) D (p D ¢) is not true in this model.

On the other hand, 3 = p D r and hence 1 = ¢ D (p D r). However, since 3 |= ¢ and
3Fr,wehave 2 gD randsolpD(¢Dr). ThusOE (gD (pDr) DD (¢D
7)), which means that (¢ D (p D 7)) D (p D (¢ D r)) is not true in this model either.

Lemma 3.3 For every BPC-model (W, R, V'), every formula A and every x,y € W,
rEA and xRy imply ykE A.
PROOF. By induction on the structure of A.
1. A is a propositional variable p. Follows from the definition of BPC-model.
2. A is the propositional constant L. x = L is impossible by the definition of .
3. Ais of the form BAC. Suppose that z = BAC and zRy. Then z = B and x |= C.
By the induction hypothesis, y = B and y = C. Hence y = BAC.
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4. A'is of the form B Vv C'. Analogous to the previous case.

5. Ais of the form B D C. Suppose that z = B D C' and zRy. To show y = B D C,
suppose further that yRz and z = B. Then xRz by the transitivity of R. Since
z = B D C and z = B, we have z |= C as required.

3.2 Sequent calculus for K’

In this section we study a sequent calculus GK’ which was introduced by Kashima [28].
The system is based on an analysis of a system for the modal logic K, and differs from
it only in the rules for implication and modal operator. We show that GK’ is complete
with respect to the class of Kripke models for K/, and obtain the cut-elimination theorem
for GK! as a corollary.

First a sequent of GK! is defined as an expression of the form I' — A. The truth of
sequents of GK' in Kripke models is defined in the following way.

Definition 3.4 For a given model M, the truth-relation =), for sequents of GK’ is
defined as follows:

rEy T —= A iff xpEy T implies x |y D for some D occurring in A.

The subscript M may be omitted if understood. A sequent I' — A is true in a model
(W,R,V)ifx =T — A for every z € W.
Proposition 3.5 For any formula A, any model M = (W, R, V) and any v € W,

1. x Epm Adf and only if v Epy — A,

2. A is true in M if and only if — A is true in M.

PRrROOF. Straightforward. |

Now we introduce the sequent calculus GK’. Initial sequents of GK! are of the
following forms:

A— A,
1=
Rules of inference of GK' are the following.

Structural rules:

= A - A
AT 5 A W) FoAAd Y
A AT = A T AAA
ATSA () rSAaa4 (70
T, A BT — A I A AB,Y
FBATSA ©7) rSAB Ay (79
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Cut rule:

r-AA AIl—-X
O — A Y

(cut)

Rules for the logical connectives:

AT — A
ANB,I' = A

B,I' - A
ANB,I' = A

(A1 =)

(A2 =)

r-AA I'-AB A
r>aarng N

ATl'—-A BT —A y
AVBT A V™)

r—-AA
'—-AAVB

- AB
'—-AAVB

(— V1) (— Vv2)

Al,A—>B,F1 AQ,A%B,FQ AQn,A%B,FQn (D)
Cio>Dy,....C,, DD, —ADB

where n Z 0, Az = Dila' . -aDika Fz = Cik+17 N
Enumerate all the partitions of (1,...,n):

(Lo, n)) (1), (2, )Y ((2), (1,3, o)),
) (2,3), (1,4, )y (L), ()

The number of the partitions is 2", and ((iy, ..., %), (ikt+1,...,%,)) is defined to be the ith
partition.
For example, when n = 0, 1,2, the rule (D) takes the forms

,C;.,and iy, ...,1, are defined as follows.

A— B
—>ADB(D)

Y

A-)B,Cl Dl,A—>B (D)
Ci>o>D,—+ADB ,

and
A%B,Cl,cg DI,A%B,CQ DQ,A—>B,01 Dl,DQ,A—>B

Ci>D,CyD>Dy—ADB (D)

)

respectively.

The rule (D) of GK’ may be well understood via the rule

r—- A
Oor — OA (0)
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of the sequent calculus for the modal logic K and the translation of each formula A D B of
K’ into the formula O(=A’V B') of K. For example, when n = 2, the rule (D) corresponds
to the following inference in the sequent calculus for K.

A = B,C},C)

~C[,A 5 B,Cy D\, A = B.,Cy DyA —B.C
~C{V D, A’ = B, Cj ~C}, Dy, /= B D}, Dy A' > B
~CiV D;,~C, A 5 B ~CiV D, Dy A B

~CIV D, ~Cyv Dy A — B
~CV D, ~CyV D, — —A", B
~C'V D, ~CyV D, — AV B o
O(=C! v DY), 0(=C v D}) — O(=A'V B

Generalizing this analysis to arbitrary n, we arrive at the rule (D) of GK'.

Theorem 3.6 (Soundness of GK') For any sequent I' — A, if I' — A is provable in
GKI, then ' = A is true in every model.

PROOF. By induction on the proof of I' = A in GK!. Here we consider only the rule
(D). Let (W,R,V) be any model. By the induction hypothesis, each upper sequent
A;;A — B,T; of the rule (D) is true in the model (W,R,V). Our aim is to show
xEC, DDy,...,C,, DD, - AD B for any x € W. Suppose x = C; D D, for every [
with 1 <1 < n. To show z E A D B, suppose further xRy and y = A. Then consider
theset 0 = {j | y = D;, 1 < j < n} and take A; consisting of the formulas D, with j € 6.
Since y E A;; A — B, T, we have y = B or y = C) for some C; occurring in [';, where
[ ¢ § by the partitioning of A; and I';. However, y |= C) is impossible, because it together
with the supposition z = C; D D, implies y |= D;, which contradicts the definition of 4.
Therefore we have y = B. |

Next let GK’—(cut) denote the system obtained from GK' by deleting the cut rule.
In the following we show that GK’—(cut) is sufficient to prove any sequent that is true
in every model. From this and Theorem 3.6, we obtain the cut-elimination theorem for

GK!'.
Definition 3.7 Let z,y be sets of formulas. A pair (z,y) is consistent (in GK'—(cut))
if, for any Ay,..., A, € z and any By,...,B, €y (m,n > 0),

Al,...,Am%Bl,...,Bn

is not provable in GK!—(cut). (z,y) is saturated (in GK!—(cut)) if it is consistent and
satisfies the following conditions:

1) AANB€x impliess A€z and B €z,
2) ANBey impliess Aecy or BEey,
3) AvBex implies A€cx or BEuz,
4) AVvBey implies A€y and B€y.
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Lemma 3.8 Let z,y be finite sets of formulas. If (x,y) is consistent, then there ezists
a saturated pair (z',y") such that x C 2’ C Sub(z Uy) and y C y' C Sub(z Uy).

PRrROOF. Let C,...,C, be a sequence of all formulas in Sub(z U y) where |C;| > |Cj1|
for each i € {1,...,n —1}. We define a sequence of consistent pairs (z;,y;) (i =0,...,n)
as follows:

L (z0,%0) = (z, ).
2. For i > 1, the pair (x;,y;) is obtained from (z;_1,y;_1) in the following way.
2.1. If C}; is of the form A A B and C; € Ti—1, then (17“%) = (xi—l U {A,B},yi_l).

Here (x;,y;) is consistent whenever (x;_1,y;_1) is consistent. Indeed, otherwise
there exist formulas Dy,...,D; € ;1 and F\, ..., Ey € y;_; such that

Dl,...,Dj,A,B —)El,...,Ek
is provable in GK’—(cut). Then
Dl,...,Dj,A/\B%EI,...,Ek

is also provable in GK’—(cut), contrary to the consistency of (z; 1, 1)-

2.2. If C; is of the form A A B and C; € y;_1, then (x;,y;) is defined as either
(i 1,y 1U{A}) or (x;_1,y; 1 U{B}). Here we can define (z;, ;) to be consis-
tent whenever (x; 1,%; 1) is consistent. Indeed, otherwise there exist formulas
D,,...,D; € xj_y and E,..., B}y € y;—; such that

Dl,...,Dj%El,...,Ek,A
Dl,...,Dj%El,...,Ek,B

are both provable in GK!—(cut). Then
Dl,...,Dj —>E1,...,Ek,AAB

is also provable in GK’—(cut), contrary to the consistency of (x; 1, 1)-
2.3. If C; is of the form AV B and C; € x;_q, then (z;,y;) is defined as either
(i1 U{A},y; 1) or (z; 1 U{B},y; 1). By an argument symmetric to that in
2.2, we can define (x;,y;) to be consistent whenever (z; 1,y; 1) is consistent.
2.4. If C; is of the form AV B and C; € y; 1, then (z;,y;) = (z;_1,y; 1U{A, B}). By
an argument symmetric to that in 2.1, the pair (z;,y;) is consistent whenever
(;_1,y;—1) is consistent.

2.0. Otherwise, (xz,yz) = (%—1,%—1)-
Then (x;,y;) is consistent for all i € {0,...,n}, and (z,,y,) is saturated since the condi-
tions (S1)—(S4) are satisfied with the above constructions 2.1-2.4, respectively. The pair

(@, yn) satisfies x C z,, C Sub(zx Uy) and y C y, € Sub(z Uy), so we complete the
proof. [ |
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Lemma 3.9 For any sequent I' — A, if ' = A is true in every model, then T' — A is
provable in GK'—(cut).

PROOF. Suppose that I' — A is not provable in GK’—(cut). Let v and § be the sets
of formulas occurring in I' and A, respectively. Then the pair (v,0) is consistent, and
so by Lemma 3.8, there exists a saturated pair (u,v) such that v C u C Sub(yUd) and
d C v C Sub(y U ). Now define a model (W, R, V) as follows:

e W is the set of all saturated pairs (z,w) such that x Uw C Sub(y U ),
e (r,w)R(y,z) iff V(ADB)e€x[A€zorBEey],
e V(p) ={(z,w) e W |peux} foreverype PV.

Our aim is to show (u,v) = I' — A, which means that I' — A is not true in this model.
Since 7 C u and 6 C v, it suffices to show that for any (z,w) € W,

C €z implies (z,w)E C, and
C € w implies (z,w) j= C.

We prove this by induction on the structure of C.

1. C is a propositional variable p. If p € x then (z,w) € V(p) by the definition of
V, and so (z,w) = p. If p € w then p ¢ x by the consistency of (z,w), and so

(x,w) ¢ V(p), i.e., (z,w) & p.

2. C'is the propositional constant L. If 1 € x then (z,w) is not consistent, which is
a contradiction. If 1 € w then (z,w) = L by the definition of |=.

3. C'is of the form AAB. If AAB € z then A € x and B € z by the condition (S1) of
the saturated pair (z,w). By the induction hypothesis, (z,w) = A and (z,w) | B,
and so (z,w) = AAB. If ANB € wthen A € w or B € w by the condition (S2).
By the induction hypothesis, (z,w) & A or (z,w) & B, and so (z,w) = A A B.

4. C'is of the form A vV B. Symmetric to the previous case.

5. C'is of the form A D B. Suppose A D B € . By the definition of R, if (x, w)R(y, 2)
then A € z or B € y, and so (y,z) = A or (y,z) = B by the induction hypothesis.
This means (z,w)R(y, 2) and (y, 2) = A imply (y, 2) = B. Hence (z,w) = A D B.
For the latter claim, suppose A D B € w. Let C; D Dy,...,C,, D D, be a sequence
of all formulas of the form E D F'in x. Then, there exists at least one consistent pair
(0;U{A}, {B}U~;) with 1 <i < 2™ where §; and ~; are the sets of formulas in A; and
I'; in the rule (D), respectively. Indeed, otherwise Cy D Dy,...,C, D D, —- A D B
is provable in GK!—(cut), which contradicts the consistency of (z,w). Applying
Lemma 3.8 to such a consistent pair (6; U{A}, {B}U~;), we obtain a saturated pair
(y,z) such that 6; U{A} Cy, {B}U~v; C zand yUz C Sub(; U{A}U{B}U~;) C
Sub(z Uw) C Sub(y U ) (so we have (y,z) € W). By the definition of R and the
induction hypothesis, we have (z, w)R(y, z), (y,2) = A and (y, z) = B. This means
(z,w) = AD B.

27



From Theorem 3.6 and Lemma 3.9, we obtain the following results.

Theorem 3.10 (Completeness of GK!) For any sequent I' — A, I' — A is provable
in GK! if and only if T' — A is true in every model.

Theorem 3.11 (Cut-elimination for GK') For any sequent I' — A, if T — A is
provable in GK!, then it is provable in GK! without using the cut rule.

3.3 Sequent calculus for BPC

In this section we introduce a sequent calculus LBP by modifying the system GK’ in
the previous section. We show that LBP is complete with respect to the class of Kripke
models for BPC, and obtain the cut-elimination theorem as a corollary.

The notions of sequents of LBP and their truth in Kripke models are defined in the
same way as those of GK!. The sequent calculus LBP is obtained from GK by replacing
the rule (D) by the following one:

Al,E,A%B,Fl AQ,E,A—)B,FQ AQn,E,A%B,FQn ( )
,Cio>Dy,....,C, DD, —>ADB

where n > 0, and A; and T; are as in the rule (D) of GK.

Theorem 3.12 (Soundness of LBP) For any sequent I' — A, if T' — A is provable
in LBP, then I' — A s true in every BPC-model.

ProOOF. By induction on the proof of ' — A in LBP. Here we consider only the rule
(D). Let (W, R, V) be any BPC-model. By the induction hypothesis, each upper sequent
A, Y, A — B,T; of the rule (D) is true in the BPC-model (W, R, V). Our aim is to
show = = ¥,Cy D Dy,...,C,, D D, - A D B for any x € W. Suppose z | ¥ and
x | Cy D Dy for every [ with 1 <1 < n. To show z = A D B, suppose further xRy and
y = A. Then y = ¥ by Lemma 3.3. Here consider the set 6 = {j | y = D;, 1 < j < n}
and take A; consisting of the formulas D; with j € 6. Since y = A;, X, A — B, T, we
have y = B or y = () for some C; occurring in I';, where [ ¢ ¢ by the partitioning
of A; and T';. However, y = () is impossible, because it together with the supposition
x = C; D Dy implies y = Dy, which contradicts the definition of §. Therefore we have
y E B. |

Next let LBP—(cut) denote the system obtained from LBP by deleting the cut rule.
We show that LBP —(cut) is sufficient to prove any sequent that is true in every BPC-
model. The notions of consistent and saturated pairs (in LBP—(cut)) are defined in the
same way as in Definition 3.7.

Lemma 3.13 Let x,y be finite sets of formulas. If (x,y) is consistent, then there exists
a saturated pair (z',y') such that © C 2’ C Sub(z Uy) and y Cy' C Sub(zUy).

PRrROOF. Similar to the proof of Lemma 3.8. |
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Lemma 3.14 For any sequent I' — A, if T — A is true in every BPC-model, then
' = A is provable in LBP—(cut).

PROOF. Suppose that I' — A is not provable in LBP—(cut). Let v and § be the sets
of formulas occurring in I and A, respectively. Then the pair (v, 0) is consistent, and so
by Lemma 3.13, there exists a saturated pair (u,v) such that v C u C Sub(y U ) and
d C v C Sub(yUd). Now define a BPC-model (W, R, V') as follows:

e W is the set of all saturated pairs (z,w) such that x Uw C Sub(y U ),
e (z,w)R(y,z) iff zCyandV(ADB)e€x[A€zorBEey],
o V(p) ={(z,w) e W |peua} forevery pe PV.

It is easy to verify that R is transitive and that (x,w) € V(p) and (z,w)R(y, z) imply
(y,2z) € V(p). Thus (W, R, V) is indeed a BPC-model. Our aim is to show (u,v) T —
A, which means that [' — A is not true in this BPC-model. Since v C v and § C v, it
suffices to show that for any (z,w) € W,

C €x implies (z,w) = C, and
C € w implies (z,w) j= C.

This is proved by induction on the structure of C'. Here we consider only the case where
C' is of the form A D B. The other cases are proved in the same way as those in the
proof of Lemma 3.9. Suppose A D B € z. By the definition of R, if (z,w)R(y, z) then
A€ zor Bey,andso (y,z) = Aor (y,z) E B by the induction hypothesis. This means
(x,w)R(y, z) and (y,z) E A imply (y,z) | B. Hence (z,w) E A D B. For the latter
claim, suppose A D B € w. Let Cy D Dy,...,C, D D, be a sequence of all formulas
of the form F D F in x. Then, there exists at least one consistent pair (6; Uz U {A},
{B} U~;) with 1 < i < 2™ where §; and ~; are the sets of formulas in A; and T'; in the
rule (D), respectively. Indeed, otherwise ¥,C; D Dy,...,C,, D D, — A D B is provable
in LBP—(cut) for some ¥ consisting of formulas in z, which contradicts the consistency
of (z,w). Applying Lemma 3.13 to such a consistent pair (§; Uz U {A},{B} U ~;), we
obtain a saturated pair (y,z) such that §; Uz U{A} Cy, {B} U~ C zand yUz C
Sub(0; Uz U {A} U{B} U~;) C Sub(z Uw) C Sub(yUJ) (so we have (y,z) € W). By
the definition of R and the induction hypothesis, we have (z,w)R(y, z), (y,2) E A and
(y,2) = B. This means (xz,w) = A D B.

From Theorem 3.12 and Lemma 3.14, we obtain the following results.

Theorem 3.15 (Completeness of LBP) For any sequent I' — A, T' — A is provable
in LBP if and only if T — A is true in every BPC-model.

Theorem 3.16 (Cut-elimination for LBP) For any sequent I' — A, if ' — A is
provable in LBP, then it is provable in LBP without using the cut rule.
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3.4 Dual-context sequent calculus for K’

In Section 3.2 we showed that the sequent calculus GK’ is complete with respect to se-
mantics for K and that the cut-elimination theorem holds for GK’. However, the system
GK! is not satisfactory in the respect that the rule for implication involves 2" premisses
for n principal formulas in the conclusion. This gives rise to difficulty in comparing GK’
with sequent calculi for intuitionistic logic and for substructural logics.

The system we introduce in this section avoids the problem on GK’ by splitting the
left hand side of a sequent and making just one principal formula in the rules for impli-
cation. This dual-context style system, which we call DK, is close to Gentzen’s sequent
calculus LJ for intuitionistic logic and suitable to compare with systems for intuitionistic
logic and for substructural logics. We show that DK’ is complete with respect to the
class of Kripke models for K/, making good use of the structure of the sequent. The
cut-elimination theorem for DK is proved by syntactical methods in Section 3.6.

Formally, a sequent of DK is defined as an expression of the form I'; A — A, where
A may be empty. The interpretation of the sequents in Kripke models is defined in the
following way.

Definition 3.17 For a given model M = (W, R, V'), the truth-relation =, for sequents
of DK is defined as follows:

rEyT;A— A iff By T implies
Vy € WizRy and y Ey A imply y = Al

The case where A is empty is the same as the case where A is L. The subscript M may be
omitted if understood. A sequent I'; A — A is true in a model (W, R, V)ifz ET;A — A
for every x € W.

Proposition 3.18 For any formula A, A is true in every model if and only if ;— A is
true in every model.

PrOOF. The implication from left to right is straightforward. For the other direction,
suppose that A is not true in a model M = (W, R, V), i.e., © [£y A for some x € W.
Then consider a model M' = (W U {y}, RU {(y,z)},V) where y ¢ W. We can show by
induction on the structure of B that for any w € W, w =) B if and only if w =y B.
Hence = £y A, and so y fEpr ; — A, which means that ; — A is not true in M'. |

Now we introduce the sequent calculus DK’. Initial sequents of DK’ are of the
following forms:

A — A,

;L —
Rules of inference of DK’ are the following.
Structural rules:

L A—=C

IA—-C
ATASC Gw =)

(w; =) T AA SO A 5 A

30



A ATA = C T A, A A = C

AT ASC @) FAASC be™)
VA, B,ILA=C IAVA B, = C
T BALASC &) FABAY SO e
Cut rule:
A=A LAY > C ‘
TILA,Y - O (cut)
Rules for the logical connectives:
AA—=C Al B, A —C A9
FANBASC M) FANBASC M2
A — A F;A—>B(_>A)
ITA—AAB
LAA—-C TIBJA—=C y
TAVB,A = C (v =)
A— A (= V1) A — B (= v2)
ITVA— AVBEB ITA— AV B
NA—-A ILB,YXY—C 5 A—B 5
T ASBIASSC O T5458 ()

The formula C' in each of these rules may be empty. The formulas A, B in the structural
rules and A A B, AV B, A D B in the rules for the logical connectives are called the
principal formulas of the respective rules.

Theorem 3.19 (Soundness of DK?) For any sequent T; A — A, if I'; A — A is prov-
able in DK, then T'; A — A is true in every model.

PROOF. By induction on the proof of I'; A — A in DK!. Here we consider only the
rules (OD—) and (—D). Take any model (W, R, V) and any x € W. For the rule (OD—),
we show x =T, A D B, II; A, ¥ — C. Suppose x =I';A D B,Il and zRy and y E A, X.
Since x = T; A — A by the induction hypothesis, we have y = A, and since z = A D B,
we have y = B. Moreover, since = |=IT; B, X — C' by the induction hypothesis, we have
y | C as required. For the rule (—D), we show x ;' = A D B. Suppose xRy and
y =T. Since y =T; A — B by the induction hypothesis, we have that yRz and z E A
imply z = B. This means y = A D B. Therefore we have z =;T" — A D B. |

To prove the completeness theorem of DK, we introduce the following notions.
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Definition 3.20 Let z,y, z be sets of formulas. A pair (y, 2) is z-consistent (in DK')
if, for any Ay,..., A, € z, any By,..., B, € y, and any C4,...,C,, € z (I,m,n > 0),

Al,...,Al;Bl,...,Bm—>01V"'VCn

is not provable in DK!. (y, 2) is mazimal z-consistent (in DKY) if it is z-consistent and
for any formula A, A € yor A € 2.

Lemma 3.21 Let z,y, z be sets of formulas. If (y,z) is x-consistent, then there exists a
mazximal x-consistent pair (y',2") such that y Cy' and 2z C 2.

PROOF. Let Dy, Ds,... be an enumeration of all formulas. We define a sequence of pairs
(Yn, 2n) (n=0,1,...) as follows:

(yo, ZO) = (ya Z)a

(Yms 2m U{Dms1}) if (Ym, 2m U {Dmi1}) is z-consistent,

(Ym+1 Zme1) = { (Ym U {Dmy1}, 2m) otherwise.

Then (Ymai1, Zmy1) 18 z-consistent whenever (Y, zm,) is a-consistent. Indeed, otherwise
there exist formulas A,,...,4; €z, By,...,B; € y,, and C},...,Cy € 2, such that

A1,---,Az‘;B1,---,Bj%C1\/"'\/Ck\/Dm+1,
Ala"'aAi;Bla"'aBjaDm—i-l_>Cl\/"'\/ck
are both provable in DK’. However, by using the cut rule,
Al,...,Ai;Bl,...,Bj%Cl\/...\/c’k

is provable in DK’ contrary to the z-consistency of (Y, 2m). Thus (y,, 2,) is z-consistent
for all n, and we obtain a maximal xz-consistent pair (US> o Yn, Un g 2n)- |

Theorem 3.22 (Completeness of DK') For any formula A, ;— A is provable in
DK if and only if A is true in every model.

PRrOOF. The implication from left to right is immediate by Theorem 3.19 and Proposi-
tion 3.18. For the other direction, suppose that ; — A is not provable in DK’. Then the
pair (0, {A}) is P-consistent, and so by Lemma 3.21, there exists a maximal ()-consistent
pair (u,v) such that {A} C v (so A ¢ u by the (-consistency of (u,v)). Now define a
model (W*, R* V*) as follows:

e IW* is the set of all maximal ()-consistent pairs,
e (r,w)R*(y,z) iff (y,z) is z-consistent,
o V¥(p) ={(z,w) e W*|pex} foreverype PV.

Our aim is to show (u,v) &= A, which means that A is not true in this model. For this
purpose, we prove by induction on the structure of B that for any (z,w) € W*,

B e x ifandonlyif (z,w)pE B.
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. B is a propositional variable p. Follows from the definitions of V* and |=.

2. B is the propositional constant L. | € =z is impossible by the ()-consistency of
(x,w).

3. B is of the form C AD. Suppose CAD € z. Since ;C AD — C is provable in DK/,
C € w contradicts the ()-consistency of (z,w). Hence C' € x. Similarly, D € z. By
the induction hypothesis, (z,w) | C and (z,w) | D. Thus (z,w) = C A D. For
the other direction, suppose (z,w) = C A D, i.e., (x,w) | C and (z,w) = D. Then
C € z and D € x by the induction hypothesis. Since ;C, D — C' A D is provable in
DK!, C A D € w contradicts the (-consistency of (z,w). Hence C A D € x.

4. B is of the form C'Vv D. Suppose C'V D € z. Since ;CV D — C V D is provable
in DK!, C, D € w contradicts the ()-consistency of (z,w). Hence C' ¢ w or D ¢ w,
and so C' € z or D € x. By the induction hypothesis, (z,w) = C or (z,w) = D.
Thus (z,w) = C' Vv D. For the other direction, suppose (z,w) = C' VvV D. Then
(x,w) = C or (z,w) E D, and by the induction hypothesis, C' € z or D € x. Since
:C — CVDand ;D — CVD are provable in DK!, C'V D € w contradicts the
consistency of (z,w). Hence C'V D € .

5. B is of the form C' O D. Suppose C' O D € z. To show (z,w) = C D D, suppose
further (z, w)R*(y, z) and (y, z) = C. Then (y, z) is z-consistent by the definition of
R*, and C € y holds by the induction hypothesis. Since C' D D;C — D is provable
in DK!, D € z contradicts the z-consistency of (y,z). Hence D € y holds, and by
the induction hypothesis, we have (y, z) = D as required. For the other direction,
suppose C' D D ¢ z, ie.,, C D D € w. Then the pair ({C},{D}) is x-consistent.
Indeed, otherwise I'; C' — D is provable in DK’ for some I' consisting of formulas
in . Then ;I — C D D is also provable in DK’ contrary to the (-consistency
of (z,w). Hence ({C},{D}) is z-consistent, and by Lemma 3.21, there exists a
maximal x-consistent pair (y, z) such that {C'} C y and {D} C z (so D ¢ y by the
x-consistency of (y, 2)). Now we have (z,w)R*(y, 2), (y,2) | C and (y, 2) & D by
the induction hypothesis. This means (z,w) = C D D.

3.5 Dual-context sequent calculus for BPC

It is possible to introduce a dual-context sequent calculus also for BPC. In this section
we consider a modification of the system DK’ and show that it is complete with respect
to the class of Kripke models for BPC. The modified system is called LBP2 after LBP
in Section 3.3.

Sequents of the system LBP2 and their interpretation in Kripke models are defined
in the same way as those of DK’. The sequent calculus LBP2 is obtained from DK’ by
replacing the rule (—D) by the following one.

IAA— B ()
I'A—>ADB

33



Proposition 3.23 For any formula A, A is true in every BPC-model if and only if ;— A
s true in every BPC-model.

PrOOF. The implication from left to right is straightforward. For the other direction,
suppose that A is not true in a BPC-model M = (W, R, V), i.e., x [y A for some
x € W. Then consider a model M' = (W', R', V) where W' = W U {y}, y ¢ W and
R =RU{(y,z)} U{(y,2) | zRz}. Tt is easy to see that R’ is transitive, and so M' is a
BPC-model. Then we can show by induction on the structure of B that for any w € W,
w = B if and only if w |y B. Since € W and z &y A, we have z [, A. Hence
y s — A, which means that ; — A is not true in M'. |

Theorem 3.24 (Soundness of LBP2) For any sequent T'; A — A, if T;A — A is
provable in LBP2, then I'; A — A is true in every BPC-model.

PROOF. By induction on the proof of I'; A — A in LBP2. We consider only the rule
(—D). Take any BPC-model (W, R, V') and any = € W. To show z =;T',A — A D B,
suppose that Ry and y = I'yA. Then by Lemma 3.3, yRz implies z = A. Since
y E I'’A;A — B by the induction hypothesis, we have that yRz and z = A imply
z = B. This means y = A D B. Hence we have z =;T,A - A D B. |

To prove the completeness theorem of LBP2, we define the notions of x-consistent
and maximal z-consistent pairs (in LBP2) in the same way as in Definition 3.20.

Lemma 3.25 Let z,y, z be sets of formulas. If (y,z) is x-consistent, then there exists a
mazximal x-consistent pair (y',2") such that y Cy' and 2z C 2.
PROOF. Similar to the proof of Lemma 3.21. |

Theorem 3.26 (Completeness of LBP2) For any formula A, ;— A is provable in
LBP2 if and only if A is true in every BPC-model.

PrOOF. The implication from left to right is immediate by Theorem 3.24 and Proposi-
tion 3.23. For the other direction, suppose that ; — A is not provable in LBP2. Then the
pair (), {A}) is P-consistent, and so by Lemma 3.25, there exists a maximal ()-consistent
pair (u,v) such that {A} C v (so A ¢ u by the (-consistency of (u,v)). Now define a
BPC-model (W*, R*,V*) as follows:

e W* is the set of all maximal ()-consistent pairs,
e (z,w)R*(y,z) iff x Cy and (y,2) is z-consistent,
o V¥(p) ={(z,w) e W*|pex} foreverype PV.

It is easy to verify that R* is transitive and that (x,w) € V*(p) and (z, w)R*(y, z) imply
(y,2) € V*(p). Thus (W*, R*,V*) is indeed a BPC-model. Our aim is to show (u,v) & A,
which means that A is not true in this BPC-model. To this end, we prove by induction
on the structure of B that for any (z,w) € W*,

B e x ifandonlyif (z,w)} B.
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Here we consider only the case where B is of the form C' D D. The other cases are
proved in the same way as those in the proof of Theorem 3.22. Suppose C' D D € z.
To show (z,w) = C' D D, suppose further (z,w)R*(y, z) and (y,z) = C. Then (y, z) is
x-consistent by the definition of R*, and C' € y holds by the induction hypothesis. Since
C D D;C — D is provable in LBP2, D € z contradicts the z-consistency of (y,2). So
D € y holds, and by the induction hypothesis, we have (y,2) = D as required. For the
other direction, suppose C' D D ¢ z, i.e., C D D € w. Then the pair (z U {C},{D})
is z-consistent. Indeed, otherwise I'; A, C — D is provable in LBP2 for some I" and A
consisting of formulas in . Then ;I'; A — C D D is also provable in LBP2 contrary to
the (-consistency of (z,w). Hence (z U {C},{D}) is z-consistent, and by Lemma 3.25,
there exists a maximal z-consistent pair (y,z) such that x U {C} C y and {D} C 2z
(so D ¢ y by the z-consistency of (y,z)). Now we have (z,w)R*(y, z), (y,2) E C and
(y,z) & D by the induction hypothesis. This means (z,w) = C D D.

3.6 Cut-elimination theorem for DK?

In Section 3.4 we proved the completeness theorem of DK, using the cut rule. The pres-
ent section is devoted to proving the cut-elimination theorem for DK’ in a syntactical
way. Our proof of cut-elimination for DK’ includes more global proof transformation
than the ordinary syntactical proof of cut-elimination for other systems.

First we introduce the notion of height of a proof in DK.

Definition 3.27 The height h(P) of a proof P in DK! is defined inductively as follows:
1. If P is an initial sequent, then h(P) = 1.

2. If P is obtained from the proof @) by applying a one-premiss rule, then h(P) =
h(Q) + 1.

3. If P is obtained from the proofs (); and ()2 by applying a two-premiss rule, then
h(P) = max{h(Q1), h(Q2)} + 1.

Now we prove the cut-elimination theorem for DK!. In the following proof, the main
difference from the proof of cut-elimination for LJ arises in Case 4.

Theorem 3.28 (Cut-elimination for DK’) For any sequent T; A — A, if T; A — A
is provable in DK, then it is provable in DK! without using the cut rule.

ProOOF. We introduce the following mix rule:

A=A ILY > C
DVILA Y, —C

(mix)

where ¥ has at least one occurrence of A, and ¥, is obtained from Y by deleting all
occurrences of A. The formula A is called the mizx formula of this inference. It is seen

that the cut rule
A—-A LAY C

TILA,S - C

(cut)
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is derivable from the mix rule and some structural rules as follows.
A— A ILAY > C

VLAY, —>C

OLILAY - C

(mix)

Thus, for the proof of the theorem, it suffices to consider the system with the mix rule
instead of the cut rule and show mix-elimination instead of cut-elimination. Our strategy
is that of eliminating each mix rule above which any other mix rule does not occur.

Let P be a proof with only one mix rule occurring as the last inference whose mix
formula is A. Let P, and P, be the subproofs of P whose end-sequents are the left and
right premisses of the mix rule, respectively. The proof of eliminating the mix rule in P
is by induction on |A|, with a subinduction on h(P,) + h(P;). Let r and r, be the left and
right rules over the mix rule, respectively. We consider the following four cases:

1. At least one of P, and P, is an initial sequent.

2. Neither of P, and P, is an initial sequent, and the mix formula is principal in both
r and r,.

3. The mix formula is not principal in ;.

4. The mix formula is principal in r and not principal in 7.

Case 1. One of the premisses is an initial sequent ; A — A, say the left.

A=A ILY—>C
H;A,EA%C

(mix)

The conclusion follows from the right premiss by some structural rules.
The right premiss is the initial sequent ; L — . If r| is (— w), the proof looks like
A= (= w)
A — L W ;L —
A —

(mix)

The conclusion of (mix) is the same as the premiss of (— w). The case where ry is one of
the other rules is handled as in Case 3 below.

Case 2. Neither of the premisses is an initial sequent, and the mix formula is principal
in both r and r,. Note in this case that r and r, are not (—D) and (D—), because the
mix formula cannot be principal in (D—). Here we consider the case where 7 and r, are
(= A) and (A1 —).

n i -

MA—-A T5A— B A I;AY—C Al
FTAsand N Tarssso M)
(mix)

F,H;A, ZA/\B —C

If AA B does not occur in ¥, i.e., Y4, p is the same sequence as Y, then we construct the
following proof.
. Py : P
A5 A LAY C
[VILA Y, —>C
LILAY - C

(mix)
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This (mix) can be eliminated by the induction hypothesis. On the other hand, if AA B
occurs in X, then we construct the following proof.

R in
MA—-A T5A— B . Py
: (= A) -
. Py A — AANB H;A,E—)C( ix)
A > A T ILA A Sup —C mix
(mix)

Fa Fa H’ Aa AA, (EA/\B)A — C
F,H;A,EA/\B —C

The upper (mix) can be eliminated by the subinduction hypothesis, and then the lower
(mix) can be eliminated by the induction hypothesis.

Case 3. Neither of the premisses is an initial sequent, and the mix formula is not principal
in 7. Here we consider the case where 7 is (D—).

) )

A = A @&A%C:) L Py
FTASBoAASC ) mysp

T,A>B,0,ILA AN Y — D (mix)
This is transformed into
n o in
:p, ®:BA-C YD,
(mix)

TiA = A ,I; B,A,Sc = D
FASBO M AAY. 5D )

where the (mix) can be eliminated by the subinduction hypothesis.

Case 4. The mix formula is principal in 7 and not principal in .. The problematic cases
are those where 7, is (—D). The other cases are proved in the usual way. Here we consider
a few subcases of those problematic cases.

Subcase 4.1. ry is (— A) and r, is (—D).

: Py - P - P
A —>A ;A B . C' = D
rAsans N T505D
;A Sus —C DD

(—=2)
(mix)

In this case, each A A B in ¥ must be introduced by (w;—) in the proof P,. Giving up
all such (w;—)’s, we obtain the following proof.

-
;EA/\B —C>D (—>D)
A Y g —CDD
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Subcase 4.2. 7y is (—D) and r, is (—=D).

P ' P,
A;A— B S:C' = D
A5A58°) 565D

A YA —>C DD

(—=2)
mix)

In this case, A D B in ¥ may be introduced by (D—) in the proof P.

O : Qo
;AN —-A U;BO—>FE 5
3 ASBUANOSE O

P
S:C'—= D ()
;X—>CDD

Now consider the following proof.

@ Py
DA — A A;A—>B( ix) D Q2
>, AN~ B MY v BO6 S E

(mix)

D,A,U;A,0, > E
3N, 0,005 F

These two (mix)’s can be eliminated by the induction hypothesis. Note that A in the
end-sequent ®, A, W; A,© — E replaces A D B in the sequent ®, 4 D B,V;\,0 — F.
On the other hand, when A D B is introduced by (w;—) as in Subcase 4.1, we introduce
A by (w;—)’s instead of A D B. Replacing these kinds of (A D B)’s in P, by A’s, we
can construct a proof of A, ¥ 45p;C' — D, and obtain a proof of ; A, ¥ 4-p — C D D.

3.7 Cut-elimination theorem for LBP2

In this section we prove the cut-elimination theorem for LBP2 in a syntactical way. The
proof is more embarrassing than that for DK in the previous section, since it involves
the so-called inversion lemma. We will change the way of case-splitting before in the proof
of cut-elimination for LBP2.

First we introduce the notion of height of a proof in LBP2.

Definition 3.29 The height h(P) of a proof P in LBP2 is defined inductively as follows:
1. If P is an initial sequent, then h(P) = 1.

2. If P is obtained from the proof @) by applying a one-premiss rule, then h(P) =
h(Q) + 1.

3. If P is obtained from the proofs )1 and (s by applying a two-premiss rule, then
h(P) = max{h(Q1), h(Q2)} + 1.
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Next we prove the following lemma, which is needed in the proof of the cut-elimination
theorem for LBP2.

Lemma 3.30 Suppose that a sequent T'; A — C' is provable in LBP2 without using the
cut rule. Then the sequents I'; A, B, Aapnp — C, I'; A, Aqyp — C and I'; B, Ay — C
are provable in LBP2 without using the cut rule, where Aanp and Ay p are the sequences
obtained from A by deleting all occurrences of AN B and AV B, respectively.

PrOOF. By induction on the height of the proof of I'; A — C. Here we consider only the
case where the last rule applied is (—D).

AD— E
IA—-DDFE

(=>)

By the induction hypothesis, I'; A, B, Ayrp, D — FE is provable without using the cut
rule. In the resulting proof, each A A B in I" must be introduced by (w;—). Giving up
all such (w;—)’s, we can construct the following proof.

FA/\B;A,B,AA/\B,D —F
;FA/\BaAaBaAA/\B — D D) E
s A, B, U ang, Aaupp DD FE

(=>)

The sequents ; A, T'avp, Aavp — D D E and ; B,["syp, Aavp — D D E are proved in
analogous ways to the above. |

Now we prove the cut-elimination theorem for LBP2.

Theorem 3.31 (Cut-elimination for LBP2) For any sequent T'; A — A, if T; A —
A is provable in LBP2, then it is provable in LBP2 without using the cut rule.

ProOF. We introduce the following mix rule:

A=A ILY > C
DVILA Y, —C

(mix)

where Y has at least one occurrence of A, and X, is obtained from ¥ by deleting all
occurrences of A. The formula A is called the mizx formula of this inference. It is seen

that the cut rule
A=A ILAY > C

T ILA,Y - C

(cut)

is derivable from the mix rule and some structural rules as follows.
CA— A ILAY = C

[VILA Y, —>C

[VILA Y - C

(mix)

Thus, for the proof of the theorem, it suffices to consider the system with the mix rule
instead of the cut rule and show mix-elimination instead of cut-elimination. Our strategy
is that of eliminating each mix rule above which any other mix rule does not occur.
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Let P be a proof with only one mix rule occurring as the last inference whose mix
formula is A. Let P, and P, be the subproofs of P whose end-sequents are the left and
right premisses of the mix rule, respectively. The proof of eliminating the mix rule in P
is by induction on |A|, with a subinduction on h(P) + h(P;). Let r and r, be the left and
right rules over the mix rule, respectively. We consider the following three cases:

1. At least one of P, and P, is an initial sequent.
2. Neither of P, and P, is an initial sequent, and the mix formula is not principal in 7.
3. The mix formula is principal in 7.

Case 1. One of the premisses is an initial sequent ; A — A, say the left.

A—> A ILY - C
H;A,EA—)C

(mix)

The conclusion follows from the right premiss by some structural rules.
The right premiss is the initial sequent ; L — . If r| is (— w), the proof looks like

A —

A — L
A —

(= w) ;L —

(mix)

The conclusion of (mix) is the same as the premiss of (— w). The case where r; is one of
the other rules is handled as in Case 2 below.

Case 2. Neither of the premisses is an initial sequent, and the mix formula is not principal
in 7. Here we consider the case where 7 is (D—).

Py D Py

;A = A Q&A%CD%) . P,
I,ADB,®;A A~ C ;2 — D

T,A>B,0,ILA NS — D (mix)
This is transformed into
Py . P,
P, ®BA—~C IILY—>D 6 .
(mix)

A= A ®,I;B,A,Sc > D _
FASBOILAAYSe 5D )

where the (mix) can be eliminated by the subinduction hypothesis.

Case 3. The mix formula is principal in 7. The case where 7 is (— w) is easy. We assume
that r; is one of (= A), (— V1), (— V2) and (—D).

Subcase 3.1. 7y is (— A).

P ' P,
IA—>A ;A B L P,
rAasans N myLe
F,H;A,EA/\B - C

(mix)
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Applying Lemma 3.30 to the proof P, we can construct a proof P! of II; A, B, ¥ snp — C
without using the mix rule. Then we construct the following proof.

- 7
F,A—}A H;A,B,EA/\B—)C .
| (mix)
PQ F,H,A, (BaxA/\B)A_>C
A B T.ILA, B, Sarp > C .
(mix)

Fa Fa H7 Aa AB, (EA/\B)B —C
F,H;A, EA/\B —C

These two (mix)’s can be eliminated by the induction hypothesis. (Except for Lemma 3.30
we would have got into trouble when 7, is (—D).)

Subcase 3.2. ry is (— V1).

r
A — A . P,
rasave YD ny'se

TILA Sap — C (mix)

Applying Lemma 3.30 to the proof P,, we can construct a proof P! of II; A, ¥ 4yp — C
without using the mix rule. Then we construct the following proof.

P P
A=A ILA YA —C
Fa Ha Aa (EA\/B)A —C

OILGA YAy = C

(mix)

This (mix) can be eliminated by the induction hypothesis.
Subcase 3.3. 7y is (— V2). Similar to the previous case.

Subcase 3.4. ry is (—D). We consider only the case where r, is (—D).

L Py RE
IAJA— B (—5) I;,C — D (—5)
T ASA5B 2 Tx=coD 2

T A TLop Saon > C oD )
Our first goal is to construct a proof of II; ', A, ¥ 455, C' — D without using the mix rule.
If A D B does not occur in Y, i.e., ¥ 45p is the same sequence as ¥, then the required
sequent follows from the end-sequent of the proof P, by (;w —). If A D B occurs in ¥,
then we construct the following proof.

L Py
IiA, A — B L p,
TAS4A5B ) myéop
LT, A, (%,C)asp — D
ML, A %50 — D

(mix)
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This (mix) can be eliminated by the subinduction hypothesis. In the resulting proof of
ILT,A Y 455,C — D, each A D B in Il must be introduced by either (w;—) or (D—).
Let us consider the latter case.

Q1 P Q2
;AN A W;B’G—)E(D%)
®ADB,V;ANO - F

LT, A, S455,C — D

We then consider the following proof.

@ Py
O:AN— A F;A,A—>B( ix) : Qs
3.T;N,A, > B WY 9. B O E

(mix)

3.1, 0\, A,,Op > F
AW EY

These two (mix)’s can be eliminated by the induction hypothesis. Note that I" and A in the
end-sequent ®, ", U; A, A, © — FE replace A D B in the sequent &, A D B, V; A\, 0 — F.
On the other hand, when A O B in IT is introduced by (w; —), the conclusion A D B, ®; A
— F of (w;—) may be replaced by I, ®; A/ A — E with (w;—) and (;w —). Replacing
these kinds of sequents as well as those below in the proof of II; ', A, ¥ 4~5,C — D, we
can construct the following proof.

FanADB;A,F,A, EADB,C—)D (—)D)
;F,HADB,A,F,A, EADB —C O D
;FaAanADBaEADB —C > D

3.8 Hilbert style systems for K! and BPC

In this section we consider Hilbert style systems for K/ and BPC, and their relationships
with the dual-context sequent calculi introduced in the previous sections. Hilbert style
systems for subintuitionistic logics have been studied in [12], [14], [36], [41], [44]. Here
we show a correspondence between Hilbert style systems and our sequent calculi, which
yields the completeness of the Hilbert style systems with respect to the classes of Kripke
models for K/ and for BPC.

In the following we will omit parentheses using the convention that A and V bind more
strongly than D. We will also use T as an abbreviation of p D p for a fixed propositional
variable p, and AT as the formula (--- ((A; AA2) AA3)---AA, 1) AA, if T is a nonempty
sequence Ay, ..., A,, as T if [' empty.

Now we introduce a Hilbert style system HK!, which consists of the following axiom
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schemes:

(A1) ADA,

(A2) (ADB)A(BDC)D(ADC(),
(A3) AABD A,

(A4) AABD B,

(A5) (ADB)A(ADC)D(ADBAC),
(A6) ADAVB,

(A7) B> AVB,

(A8) (ADC)A(BDC)D(AVBDO(O),
(A9) AAN(BVC)D(AAB)V(AANC),
(

A10) LD A,

and the following rules of inference:

A ADB A A B
—p  MP) Boa A, anp M-

Lemma 3.32 For any formula A, if A is provable in HK!, then ;— A is provable in
DK'.

PRrROOF. By induction on the proof of A in HK’. It is straightforward to see that ; — A
is provable in DK’ for any axiom A of HK!. For (MP), suppose that both ;— A and
: — A D B are provable in DK’. Then by the cut-elimination theorem, there is a cut-free
proof of ;— A D B in DK’. The last applied rule of the cut-free proof must be (— D),
and so ; A — B is provable in DK’. From this and ; — A, we obtain ; — B using the cut
rule in DK’. The cases of (AF) and (A1) are proved easily. |

Next we consider the converse of Lemma 3.32. One of the difficulties in establishing
derivability in Hilbert style systems for subintuitionistic logics is caused by the lack of the
deduction theorem. (For this notion, see, e.g. Theorem 1.12 of [11].) In the following we
provide some derivable rules and formulas that facilitate inference in HK'.

Lemma 3.33 The following rules are derivable in HK'.

ADB BDC(TY) ADB ADC
ADC ADBAC

(DAT)

ProoF. For (Tr), we have the following proof.

ADB BOC (AT) (A2)
(ADB)A(BDC) (ADB)A(BDC)D (ADC)

ADC (MP)
For (DAT), we have the following proof.
ADB A>C (AT) (A5)
(ADB)A(ADCO) (ADB)A(ADC)D(ADBAC) AP
ADBAC (MP)
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Lemma 3.34 The following rules are derivable in HK'.

AD(BD>C) AD(C>D) T B>C A>D(C>D)
AD(BD>D) (5T AD(BD>D)

(Tr2)

ProOOF. For (DTr), we have the following proof.
AD(BD>C) AD(CDD) (A2)

A>BoOr oD M Bseyao D) (B D)
AD(BDD)

(Tr)

For (Tr2), we have the following proof.
BOC
———— (AF
AD(BDC(C) (AF) AD(CDD)
AD (B DD)

(DTr)

Lemma 3.35 The following rule is derivable in HK'.

C>(DDA)
CAN(ADB)D(DD>B)

ProOOF. We have the following proof.

(A3)
CANADB)DC CD(DDA) T (A4)
CA(ADB)> (Do A) (Tr) CA(A>B)>(ADB)
CAN(ADB)D(DD>B)

(DTr)

Lemma 3.36 The formula (A D> B) D (AANC D BAC) is provable in HK'.

PrOOF. We have the following proof.

(A3) (A1) (A4)
ANCDA (ADB)D(ADB) oo ANCSC o
A>5B)5Arco58) Y TS5BS @AACSO) ﬂ
(ADB)D(AACOB)A(ANC D) (5AT)

From this and (AANC D B)A(AANC D C) D (AANC D BAC), which is an instance of
(A5), we obtain (A D B) D (AANC D BAC) by (Tr). |

Lemma 3.37 The formula (DANA D C)N(DAB D C) D (DA(AVB) D C) is provable
in HK”.

PRrROOF. We derive the formula from D A (AV B) D (D A A) V (D A B), which is an
instance of (A9), and (DAADC)A(DABDC)D ((DANA)V (DA B) D C), which is
an instance of (A8), using (Tr2). |

v
(
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Now we prove the converse of Lemma 3.32 in the following form.

Lemma 3.38 If a sequent T'; A — A is provable in DK', then AT D (AA D A) is
provable in HK' or AT D (ANA D L) is provable in HK' when A is empty.

PROOF. First we assume the associativity and commutativity of A on AT and A A in
the formulas of the form AT D (AA D A). This is ensured by the rules (Tr) and (Tr2)
and the fact that for any associative commutative replacement (AT')" of AT, the formula
(AT) D AT is provable in HK’.

The lemma is shown by induction on the proof in DK’. Here we consider only a few
cases. If the last inference of the proof is

L AAA—-C TIBJA—=C y
TAVB,A = C (v =)

then we have the following proof in HK’.

AT D (A(A4,A)DC) AT D (A(B,A)DC)
ATD(ANAANADC) ATD(ANAABDCO) AT
ATS> AAAASCOIANDABS O OAD

From this and (AAAA D C)A(AAAB D C) D (NAA(AVB) D (), which is provable by
Lemma 3.37, we obtain AT D (AAA(AVB) D C) by (Tr). Hence AT D (A(AVB,A) D
C) is provable in HK'.

If the last inference is

A—=A ILB,YXY—C (5-)
[ADB,ILA Y —>C

then we have the following proof.

AL D (ANAD A) Lemma 3.36
ATA(AD B) D (AA D B) 7ommad3d A5 B) S (NAAAS D BAAY) .
ATA(ADB) D (AMAAAS O BAAY) g

Then (AT A (A D B))AAITI D (AAAAY D BAAY) is also provable in HK’. From
this and (AT' A (A D B)) AAIL D (BAAYX D C), which is derivable from the induction
hypothesis AII D (A(B,X) D C), we obtain (A\I'A(A D B))AAILD (NAAAYX DC)
by (DTr). |

From Lemmas 3.32 and 3.38, we obtain the following.

Theorem 3.39 For any formula A, A is provable in HK' if and only if ; — A is provable
in DK.

PRrROOF. From left to right, we have Lemma 3.32. For the other direction, suppose that
; — A is provable in DK’. Then by Lemma 3.38, T D (T D A) is provable in HK’. Since
T is an instance of (A1), we see that A is provable in HK! by applying (MP) twice. W

Combining Theorem 3.39 with Theorem 3.22, we have the following result.
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Theorem 3.40 (Completeness of HK') For any formula A, A is provable in HK' if
and only if A is true in every model.

Next we consider a Hilbert style system for BPC and its correspondence to LBP2.
The Hilbert style system HB consists of the axiom schemes (A1)—(A10) of HK! as well as

the following ones:
(All) AD (BDA),

(A12) AD (BDAAB),

and (MP) as the single rule of inference. Note that the other rules (AF) and (AT) of HK!
are derivable in HB by applying (MP) to the axiom schemes (A11) and (A12).

Lemma 3.41 For any formula A, if A is provable in HB, then ;— A is provable in
LBP2.

PROOF. By induction on the proof of A in HB. If A is an instance of the axiom schemes
(A11) or (A12), then we easily see that ;— A is provable in LBP2. The other cases are
shown as in the proof of Lemma 3.32. [ |

Lemma 3.42 If a sequent T; A — A is provable in LBP2, then AT D (ANA D A) is
provable in HB or AT D (AA D 1) is provable in HB when A is empty.

PROOF. We proceed in the same way as in the proof of Lemma 3.38. The only difference
is the case where the last inference is of the form

IAJA— B 5
TAs458 (2

Then we have the following proof in HB.

Al12
/\AD(EAlD}\A/\A) AT D (A(A,A) D B)
AT, A) D (ADANANA) A(LA)D(AAANADB)
A, A) D (AD B)
T2 (A(IA) D (AD B))

(D Tr)

(AF)

From Lemmas 3.41 and 3.42, we obtain the following.

Theorem 3.43 For any formula A, A is provable in HB if and only if ; — A is provable
in LBP2.

PROOF. Similar to the proof of Theorem 3.39. |

Combining Theorem 3.43 with Theorem 3.26, we have the following result.

Theorem 3.44 (Completeness of HB) For any formula A, A is provable in HB if
and only if A is true in every BPC-model.

46



3.9 Notes

Subintuitionistic logics The class of subintuitionistic logics was studied by Corsi [12],
Dosen [14], Restall [36], giving Hilbert style systems for the least subintuitionistic logic K’
as well as its extensions defined by Kripke models with various kinds of binary relations.
The logic BPC was earlier introduced by Visser [49] and has been recently developed by
Ardeshir and Ruitenburg [5], [6]. Other studies on BPC with diverse motivations are
found in [1], [39], [41], [45].

Sequent calculi for subintuitionistic logics Gentzen style sequent calculi for sub-
intuitionistic logics including K’ were given by Gabbay and Olivetti [17] in the form of
labelled deductive system that is tailored for a particular kind of proof search, and by
Wansing [50] in the form of Display Logic, a general scheme for Gentzen style systems.
The sequent calculus GK! we discussed in Section 3.2 was introduced by Kashima in
his unpublished manuscript [28]. His original system is based on sequents consisting of
finite sets of formulas rather than finite sequences, and accordingly dispenses with the
contraction and the exchange rules. Besides it has no cut rule, which is proved to be
admissible through the completeness theorem with respect to the class of Kripke models
for KI. Syntactical proof of cut-elimination for GK’ (and for LBP) is also possible via
rather involved discussions.

Sequent calculi for BPC Gentzen style sequent calculi for BPC have been considered
several times. The first sequent calculus for BPC was given by Ardeshir [4]. The system
includes a rule to infer ' = A D C' fromI' - A D B and I' — B D C, which leads
to failure of the subformula property. The second system was given by Sasaki [40]. It
involves an auxiliary expression (A D B)" which is intended to denote implication in
intuitionistic logic. (Extension of the language of BPC by an additional intuitionistic
implication was considered in [45].) The cut-elimination theorem for the system holds,
but yields only a weak form of subformula property in the sense that even (A D B)* is
included in the subformulas of A D B. The third system, which is a slight modification
of the second one, was given by Aghaei and Ardeshir [2]. It satisfies only a weak form of
subformula property either. Another system is found in the systems for subintuitionistic
logics by Wansing [50] mentioned above, which involves more auxiliary expressions.

Dual-context sequent calculi for subintuitionistic logics The idea of applying
dual-context sequents to formalizing subintuitionistic logics was suggested by the system
for BPC in [40] mentioned above. The point is that we did not introduce an additional
(and semantically ambiguous) implication but consider implication at the previous world
in Kripke models. This enabled us to prove the soundness theorem smoothly and to prove
the completeness theorem in a parallel way to that for LJ. (The completeness theorem
in the form of the converse of Theorem 3.19 is, however, not valid in the present system.
For example, the sequent | ;— is true in every model, but it is not provable in DK'.)
Dual-context sequent calculi for other subintuitionistic logics discussed in [12], [14], [36]
may also be defined by modifying the system DK.

Dual-context sequent calculi for modal logics Having seen the ability of dual-
context sequent calculi to formalize subintuitionistic logics, we also see that the same
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method works well in formalizing modal logics by considering T D A of subintuitionistic
logics as the formula OA of modal logics. For example, a dual-context sequent calculus
for the modal logic K is defined as the system with the following left and right rules for
the modal operator.

[AA =Y - rh—A
rotasy 0 Tooal

— 0)

The completeness and cut-elimination theorems for the dual-context sequent calculus for
K are proved similarly to those for DK’ in this chapter. On the other hand, there are
some systems based on sequents of this kind in the field of modal logic. Bierman and
de Paiva [9], Davies and Pfenning [13] have used sequents with modal and nonmodal
contexts to give natural deduction systems for intuitionistic modal logic. Heuerding et
al. [23] have introduced one-sided systems based on split sequents to ensure termination
of proof search. Our systems DK’ and LBP2 are, however, closer to the system based
on more general 2-sequents by Masini [31], where a 2-sequent of the form

is interpreted as the formula

(ATL 2 VAV I(AT 5V A) v O(T(AT, DV A,)--))

and the correspondence between the 2-sequent calculus and a Hilbert style system for
the modal logic KD is shown. On comparing the above interpretation with ours (Def-
inition 3.17), we find that the sequent I';;Ty — A of DK! and LBP2 corresponds to
the 2-sequent such that n = 2, Ay is empty and A, = A. This means that dual-context
sequent calculi can be viewed as a simplification of 2-sequent calculi, and practically they
are sufficient to formalize logics such as K/ and BPC. (An earlier work by Sato [42] gives
a cut-free system for the modal logic S5 based on sequents of the form I';; T’y — Ag; Ay,
which are considered as 2-sequents such that n = 2.)
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Chapter 4

Relationships between
subintuitionistic and substructural
logics

In this chapter we investigate the relationships between subintuitionistic logics and sub-
structural logics from a different perspective than that in Chapter 3. We consider here
Hilbert style systems that characterize the implicational fragments of subintuitionistic
logics and substructural logics, and clarify the inclusion relationships between the sets of
formulas that are provable in each Hilbert style system for these logics. This investiga-
tion together with dual-context sequent calculi in Chapter 3 leads to sequent calculi for
noncommutative substructural logics in the next chapter.

4.1 Implicational fragments of substructural logics

Substructural logics are logics defined by Gentzen style sequent calculi in which appli-
cations of the structural rules are restricted. They include linear logic and BCK logic,
which are sometimes called resource-conscious logics because each assumption (i.e., for-
mula on the left hand side of a sequent) cannot be used more than once in the absence
of the contraction rule. Here we consider substructural logics obtained from the impli-
cational fragment of the sequent calculus LJ by deleting some of the structural rules.
We also present Hilbert style systems for these logics to compare them with systems for
subintuitionistic logics in the next section.

Throughout this chapter, the language has the only logical connective D, and formulas
are those constructed from the set PV of propositional variables and the connective D. We
first define the sequent calculus LJ, which is the implicational fragment of the sequent
calculus LJ for intuitionistic logic. A sequent of LJ+ is an expression of the form I' — A.
Initial sequents of LJ~ are of the following form:

A — A

Rules of inference of LJ are the following.

Structural rules:

A= C T, A A A= C T, A B,A—C
FTAAsCc W) rissc @) T BAASC &)
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Cut rule:

Fr A AAYSC

AT s o0 )
Rules for the logical connective:
r— A A,B,E—>C(D_>) IA— B ()
AAD B ILY = C ' -ADB

We obtain sequent calculi from the above system LJ- by deleting some of the struc-
tural rules. The sequent calculi LBCK and LBCIW are obtained from LJ~ by deleting
the rules (¢ —) and (w —), respectively. The sequent calculus LBCI, which is known to
be the implicational fragment of linear logic, is obtained from LJ- by deleting both the
rules (¢ —) and (w —).

Next we introduce Hilbert style systems corresponding to the sequent calculi defined
above. They consist of combinations of the following axiom schemes:

B) (BODC)D((ADB)D(ADCQ)),

C) (AD(BD20C)D(BDADQO)),
) ADA,
K) AD(BD>A),

(
(
(I
(
(W) (A>(ADB))D>(ADB),

and the following rule of inference:

A ASB
B bJ-

We define the Hilbert style systems BCI, BCK, BCIW and BCKW as the systems con-
sisting of the axiom schemes indicated by the letters in their names and of the rule (mp).
It is shown that these systems correspond to the sequent calculi LBCI, LBCK, LBCIW
and LJ-, respectively.

Theorem 4.1 For any formula A, if A is provable in BCI, BCK, BCIW and BCKW,
then — A is provable in LBCI, LBCK, LBCIW and LJ-, respectively.

PrOOF. By induction on the proof of A in each Hilbert style system. It is straightforward
to see that for any axiom A of the Hilbert style system, — A is provable in the respective
sequent calculus. For (mp), we have the following proof.

—- A B—B
—~+~AD>DB A>DB-—B (5=)
(cut)
— B

To prove the converse of Theorem 4.1, we introduce the following notation.
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Definition 4.2 For any finite sequence I' of formulas and any formula A, the formula
[' D A is defined inductively as follows:

' DA = A ifl is the empty sequence,
C,I'>A=C>((>A).

Lemma 4.3 The following rules are derivable in BCI.

ADB '>A ADB /.
(CD>A)D(CDB) (pref) DB (tr7)

PROOF. For (pref), we have the following proof.
(B)
ADB (ADB)D((C>A)D(CD>B))
(C>A)D(CDB)

(mp)

For (tr*), we have the following proof.

ADB
" (pref)
I'>A I'>A)D>('D>B)
TS B (mp)

Lemma 4.4 The formula (A D B) D ((I' D A) D (I' D B)) is provable in BCL.

PRrOOF. By induction on the length of I'. When T" is empty, the formula is an instance
of (I). When I' = C,T”, we have the following proof.

(ind. hyp.) (B)
(ADB)D(I">A)>(I">B) (IM>A)>I'>B)>(I'>A) >(I'd>B)) o
(ADB)D((I'>A) > (I'>B)) (tr7)
i
Lemma 4.5 The following rules are derivable in BCI.
AD(BDC(O) '>A .
BD(ADC)(eX) (ADB)D(FDB)(SHH)
PROOF. For (ex), we have the following proof.
(€)
AD(BDC) (AD(BDC(C)D>D(BD(ADC(0)
B> (ADC(C) (mnp)
For (suff*), we have the following proof.
Lemma 4.4
(ADB)D(('>A) > (I'D>B))
'>A I'oA)>(AD>B)>(I'D>B)) (ex)
(A>B)D>(I'D>B) (mp)
i
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Now we prove the converse of Theorem 4.1 in somewhat more general form.

Theorem 4.6 If a sequent I' — A is provable in LBCI, LBCK, LBCIW and LJ-,
then T' D A is provable in BCI, BCK, BCIW and BCKW, respectively.

PROOF. First note that each instance of the axiom scheme (I) is provable in BCK and
BCKW as follows:

(K) (©)
AD(TDA) (AD(TDA)D(TD(ADA)
T TDO(ADA) (mp)
154 (mp)

where T is any provable formula, e.g., an instance of (K).
The theorem is shown by induction on the proof in each sequent calculus. Here we
consider only a few cases. If the last inference of the proof is

P4 ABI=C
AASBIYSC P

then we have the following proof in the Hilbert style system.

oA .
(ADB)%(FDB) (suff”)

Ag@xngm)(Bg@gCDD«Agmgatngmnffﬂ
AS((A>B) > ([T o (To0)) (tr)
If the last inference is
DA, B,A—C

TBAASC &7
then we have the following proof.

(C)
I'DADMBDO(ADC)) AD(BDO(ADC))D(BDO(AD((ADC(O)) o
I > (B> (A>(ADC)) (tr")

The cases of the other structural rules are proved similarly. |

We close this section with the definitions of some more Hilbert style systems which
do not have the axiom scheme (C). The Hilbert style system BB'I is obtained from the
system BCI by replacing the axiom scheme (C) by the following one:

(B) (A>DB)D((BDC)D(AD(O)).

The Hilbert style systems BB'IK and BB'IW are obtained from BB'I by adding the axiom
schemes (K) and (W), respectively. Note that each instance of the axiom scheme (B’)
is provable in BCI, and so the systems BB'I, BB'IK and BB'IW are subsystems of BCI,
BCK and BCIW, respectively.

52



4.2 Implicational fragments of subintuitionistic log-
ics

As seen in Example 3.2, each instance of the axiom schemes (W) and (C) is not necessarily
true in Kripke models for subintuitionistic logics. This means that subintuitionistic logics
may qualify as substructural logics and that it is worth investigating the relationships
between these logics.

In this section we introduce Hilbert style systems for the implicational fragments of
K’ and BPC to compare them with systems for substructural logics introduced in the
previous section. Although Hilbert style systems for K/ and BPC were already given in
Section 3.8, they are not suitable for our purpose because to derive some implicational
formulas in those systems one needs axioms with other connectives. Here we consider
Hilbert style systems that characterize the proper implicational fragments of K! and of
BPC, which facilitate a set-theoretic comparison between theorems of subintuitionistic
logics and substructural logics.

First we introduce a Hilbert style system B*IK, which consists of the following axiom
schemes:

(I) ADA,

(K) AD(BDA),

B*) 'o(B2C)>(('>AD>B))D([IT>(AD0))),
and the following rule of inference:

A ADB
T(mp)-

This system turns out to characterize the implicational fragment of BPC. On the other
hand, the system for the implicational fragment of K’ consists of the axiom scheme (),
the rule (mp) and the following two additional rules:

A I'>D(ADB) T'>(BD>C(O)
B> A’ '>(ADC0) '

In the following we show that B*IK is indeed a system for the implicational fragment
of BPC. As for the system for the implicational fragment of K/, we can proceed in a
similar way. (See [14] for the details.) Since it is not easy to show the correspondence
between B*IK and the implicational fragment of any other system for BPC, we prove

again the completeness theorem of B*IK with respect to the class of Kripke models for
BPC.

Theorem 4.7 (Soundness of B*IK) For any formula A, if A is provable in B*IK then
A s true in every BPC-model.

PrOOF. By induction on the proof of A in B*IK. Here we show that each instance of
the axiom scheme (B*) is true in every BPC-model and that truth in every BPC-model
is preserved by (mp).

For (B*), take any BPC-model (W, R, V') and any x € W. To show z = (I' D (B D
C)D>((>ADB))D(I'D>(ADC))),suppose zRy and y =T D (B D C). To show
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yE(TD>(ADB))D(I'D(ADC()),suppose further yRz and 2 =T D (A D B). Then
by Lemma 3.3, we have z =T D (B D C). Now our aim is to show z =T' D (A D (). For
this, it suffices to prove that for every w €e W, ifw EI' D (AD B)andw =1 D (B D C)
then w =T D (A D (). This is easily seen by induction on the length of T'.

For (mp), suppose that A and A D B are both true in every BPC-model and that
B is not true in a BPC-model M = (W, R, V). Then there exists an € W such that
x [y B. Now consider a model M' = (W', R', V) where W' = W U {y}, y ¢ W and
R =RU{(y,z)} U{(y,2) | zRz}. It is easy to see that R’ is transitive, and so M’ is a
BPC-model. Then we can show by induction on the structure of C' that for any w € W,
w =y C if and only if w =y C. Since x € W and x 5y B, we have = (=y B, which
contradicts with z =y A and y Epr A D B. |

Theorem 4.8 (Completeness of B*IK) For any formula A, A is provable in B*IK if
and only if A is true in every BPC-model.

PRrROOF. From left to right, we have Theorem 4.7. For the other direction, let e be the set
of all formulas that are provable in B*IK. Define a relation R between sets of formulas as
follows:

xRy iff xCyandif AD B é€xand A€y then B € y.

Then we consider a BPC-model (W*, R*, V*) where

e W* is the set of all x such that eRx and if ' D (BD>C)€xand ' D (AD B) ex
then ' D (A D C) €z,

e RR* is the restriction to W* of R,
e V¥(p)={zxeW*|peuz} foreverype PV.

It is easy to verify that e € W* R* is transitive, and if x € V*(p) and zR*y then
y € V*(p). Thus (W*, R*,V*) is indeed a BPC-model. Our aim is to show that if a
formula A is true in this BPC-model then A € e, i.e., A is provable in B*IK. For this
purpose, it suffices to show that for any x € W*,

rEA ifand onlyif A€ x.

We prove this by induction on the structure of A. The base case is straightforward. For
the induction step, it follows from the definition of R that xt = A D Bif A D B € «.
Conversely, suppose © = A D B. We show first 2Ry for y = {C' | A D C € z}. Since
eRr and C D (ADC) €e, if C €xthen ADC € xandsoC €y. Hence x C y. Also,
ifC ODODexand C €y, ie, ADC €xthen A D D € x by the condition for z € W*,
and hence D € y. Thus we have xRy, which implies also eRy by the transitivity of R.
Moreover y € W* holds since we can find that ' D (D D E) eyand ' D (C D D) €y
imply I' D (C' D E) € y. We have also A € y since A D A € e C z, and hence y = A
by the induction hypothesis. Now we have z = A D B, xR*y and y = A. Thus y = B
holds, and by the induction hypothesis, we have B € y, i.e., A D B € z as required. W
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4.3 Relationships between subintuitionistic and sub-
structural logics

We have seen that the system B*IK characterizes the implicational fragment of BPC. In
B*IK, each instance of the axiom schemes

(B) (BODC)D((ADB)D(ADC(Q)),
(B) (A>DB)D((B>C)D(AD())

is provable. Indeed, (B) is (B*) with I empty. For (B'), we first derive (A D B) D ((B D
C) D (B> ()) from (K) and (I), and (A D B) D ((B > C) D (A D B)) from (K). Then
we derive (B’) from the two and (B*) with'=A > B,B D C.

On the other hand, each instance of the axiom schemes

(W) (A>D(ADB))D(ADB),
(C) (AD(BD(C)D(BD(ADCQ))

is not in general provable in B*IK, because it is not necessarily true in BPC-models as
seen in Example 3.2.

As a result, we have the following scheme, which represents the inclusion relationships
between the sets of formulas that are provable in each system for subintuitionistic and
substructural logics.

BCKW(=Int-)
/ \
B*IK(=BPC-) BCK
BB'IK BCI(=1ILL~)
\ /
BB'I

Figure 4.1: Relationships between subintuitionistic and substructural logics

Here Int-, BPC-, K/5 and ILL5 mean systems for the implicational fragments of in-
tuitionistic logic, BPC, K’ and (intuitionistic) linear logic, respectively. Note that the
systems B*IK and BCK are incomparable. An example of a formula that is provable in
B*IK (and K’5) but not in BCK is (p 2 ¢) D (¢ 2> 7)) D ((p D ¢) D (p D r)). In the
next chapter we study sequent calculi for subsystems of BPC, in particular the logic BB'I,
a noncommutative substructural logic without the axiom scheme (C).
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4.4 Notes

Implicational fragments of substructural logics For general information on sub-
structural logics, see [15], [37]. The names of the axiom schemes (B), (C), (I), (K), (W)
and (B’) come from the principal types of certain specific combinators (or closed A-terms).
See [24]. The cut-elimination theorem holds for the systems LBCI, LBCK, LBCIW and
LJ-. See, e.g. [34]. In the literature, authors often take as the basic system full Lambek
logic FL, which is, roughly speaking, obtained from LJ by deleting all structural rules.
The Hilbert style system corresponding to the implicational fragment of FL consists of
the axiom schemes (B) and (I) and of the rule (mp) as well as the following one:

B AD>(BD>C)
as50  mp2).

This correspondence and those of BCI, BCK, BCIW and BCKW (Theorems 4.1 and 4.6)
are well-known. Our proof of Theorem 4.6 is mainly based on [29], in which still more
substructural implicational logics are discussed.

Implicational fragments of subintuitionistic logics The Hilbert style system for
the implicational fragment of K in Section 4.2 was given by Dogen [14]. Our proof of
Theorem 4.8 is mainly based on the proof of the completeness theorem of that system
in [14]. One of minor differences in the proof is that Dosen showed in the induction that
z = A D Bimplies A D B € z by the contraposition using Zorn’s Lemma.

26



Chapter 5

Sequent calculi for noncommutative
substructural logics

In this chapter we study sequent calculi for noncommutative substructural logics, in par-
ticular the logic BB'I. This logic is important in the respect that it is a noncommutative
version of the implicational fragment of linear logic. We introduce a new sequent calculus
for BB'I and prove the cut-elimination theorem for the system.

5.1 Sequent calculus for BB'I
We recall that the Hilbert style system BB'T consists of the following axiom schemes:

(B) (BODC)D((ADB)D(ADC(Q)),
(B) (A>DB)D((BD>C)D(ADC(0)),
(I) ADA,

and the following rule of inference:

A ASB
B bJ-

The usual sequent calculus (Section 7 of [3], [30]) corresponding to the system BB'I is
defined using merge operation. (For the precise definition of the system, see Section 5.3.)
In this thesis we introduce a sequent calculus for BB'T without merge operation, and show
the cut-elimination theorem for the system. Although BB'I is called a noncommutative
logic ([8], [25], [32], [35]), our system allows exchange for the left hand side of a sequent
except for the rightmost formula.

Here is the definition of the sequent calculus LBB'I2. Initial sequents of LBBI2 are

of the following form:
A— A

Rules of inference of LBB'I2 are the following.
Structural rule:

[ A B,A,C — D
FBAACSD )
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Cut rule:

r—-A AJA—D
A" =D

(cut)

where A is empty if [' is empty. The formula A is called the cut formula.

Rules for the logical connective:

r,c— A AB%DC}ﬂ RA%B(
AAD B, I,C — D ' -ADB

—D)

We first show the correspondence between the systems BBl and LBB'I2, assuming
the cut elimination theorem for LBB'I2, which is proved in the next section.

Lemma 5.1 For any formula A, if A is provable in BB'I, then — A is provable in
LBB'I2.

PRrOOF. By induction on the proof of A in BB'I. For (B), we have the proof

A=A B—B
ADB,A— B Cc—-C

BoC,A>BASC (5-)

(5-=)

followed by three applications of (—D). For (B'), we have the above proof followed by
one application of (e —) and three applications of (—D). For (mp), suppose that both
— A and — A D B are provable in LBB’I2. Then by the cut-elimination theorem, there
is a cut-free proof of — A D B in LBB'I2. The last applied rule of the cut-free proof
must be (—D), and so A — B is provable in LBB'I2. From this and — A, we obtain
— B using the cut rule in LBB'I2. |

For the converse of Lemma 5.1, we use the notation I' O A (Definition 4.2) and the
convention of association to the right for omitting parentheses.

Lemma 5.2 The following rules are derivable in BB'IL.

ADB I'>A ADB , .
(CDAﬁNCDB”mQ '>B (tr7)

PRroOOF. For (pref), we have the following proof.
(B)
ADB (ADB)D(CD>A)D(CDB)
(C>A)D(CD>B)

(mp)

For (tr*), we have the following proof.

ADB
: (pref)
'>A I'>A)D>('D>B)
TS5 (mp)
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Lemma 5.3 The following rule is derivable in BB'IL.

ADB T'D>(BD>C)
'>(ADC0)

ProOOF. We have the following proof.

(B')
ADB (ADB)D(BD>C)D(ADC)
I'D>(BDCO) (BDC)D(ADC)t*
I'D>(ADC) (tr")

(mp)

Lemma 5.4 The following rule is derivable in BB'IL.

AD(BD>C(C)
AD(D>B)D(DD>C)

ProOOF. We have the following proof.
(B)
AD(BDC) (BOD(C)D(DD>B)D(DDC(O) (tr%)
AD(DD>B)D(DD>C)

Lemma 5.5 The following rule is derivable in BB'IL.

AD(BD>C(O)
(D>DB)DAD(DDCO)

PrROOF. We have the following proof.
(B)
AD(BD>C) (D>B)>(B>C)D>(D>C)
(DODB)DAD(DDCO)

Lemma 5.3

Lemma 5.6 The following rule is derivable in BB'IL.

I'DADBOC
'D(ADB)DADADC

PRrROOF. We show that the formula (A D B> C) D (A D B) D A D AD C is provable
in BB'I. The rule is then derivable by (tr*). If A is empty, the formula is an instance of

(B). If A = D, A’, then we have the following proof.

(B')
(ADB)D(BDC)DADC
: Lemma 5.4
(ADB)D(A’D>DBDOC)DA'DADC

(DODA'"DBDOC)D(ADB)DDDOA'DADC

Lemma 5.5
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Lemma 5.7 The following rule is derivable in BB'IL.

I'r>C>A ADADD
pw(T,A)DC DD

where p(T, A) is any merge of T and A, i.e., any sequence consisting of the members of
' and A as multisets, in which both ' and A preserve their original orders.

PrOOF. By induction on the length of I'. If ' is empty, the rule follows from Lemma 5.3.
Let ' = Fl,Cl and A = Al,AQ and /,L(F,A) == ,ul(Fl,Al),Cl,AQ where ul(Fl,Al) is
some merge of I'y and A;. Then we have the following proof.

ADADD

[
FDﬁDA Ai;DA;DADD

DC;D(CDA) AD(CDA)DADCDD
,ul(Fl,Al)DC’IDAQDCDD

[
w(l,A)D>C DD

Lemma 5.6
(ind. hyp.)

Now we prove the key lemma, which states how a sequent of LBB’I2 is interpreted
as formulas of BB'I.

Lemma 5.8 If a sequent I',C — A is provable in LBB'I2, then o(I') D (C' D A) is
provable in BB'L for any permutation o.

PRrROOF. By induction on the proof of I'y)C' — A in LBB'I2. First note that by virtue
of the cut-elimination theorem we need not consider the cut rule. Further note that the
premisses of the last inference of the proof are also of the form A, D — B.

The only problematic case in the induction is where the last inference is of the form

r¢—A AB—D
AASBT.CSD P

The aim is to show that o(A, A D B,T') D (C D D) is provable in BB'I for any permuta-
tion 0. Let (A, A D B, T') = 1 (A1,T1), A D B, ua(Ag, I'y) where Ay, Ay = 0'(A) and
['1,Ty = o"(T) for some permutations ¢’ and ¢”, and p;(A;,T;) is some merge of A; and
[; for © = 1,2. Then we have the following proof.

(ind. hyp.)

(ind. hyp.) Ay DAy DBDD
[DOIy,>DCD>A AID(ADB)DADADD
Nl(Alarl) D) (A D) B) D) /LZ(AZ,FQ) D) C > D
Il
oc(A,ADB,T)D>DCD>D

Lemma 5.6

Lemma 5.7

From Lemmas 5.1 and 5.8, we obtain the following.
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Theorem 5.9 For any formula A, A is provable in BB'I if and only if — A is provable
in LBB'I2.

PROOF. From left to right, we have Lemma 5.1. For the other direction, suppose that
— A is provable in LBB'I2. Then by the cut-elimination theorem, there is a cut-free
proof of — A in LBB'I2 and A is of the form A; D A,. The last applied rule of the cut-
free proof must be (—D), and so A; — A, is provable in LBB'I2. Hence by Lemma 5.8,
A; D A,, i.e., A is provable in BB'L. |

5.2 Cut-elimination theorem for LBB’I2

In the previous section we showed the correspondence between the systems BB'I and
LBB'I2, using the cut-elimination theorem for LBB'I2. The present section is devoted
to proving the cut-elimination theorem for LBB'I2 in a syntactical way. In the proof of
the cut-elimination theorem, we use global proof transformation technique analogous to
that used in the proof of the cut-elimination theorem for DK’ and LBP2.

First we introduce the notion of height of a proof in LBB'I2.

Definition 5.10 The height h(P) of a proof P in LBB'I2 is defined inductively as fol-
lows:

1. If P is an initial sequent, then h(P) = 1.

2. If P is obtained from the proof @) by applying a one-premiss rule, then h(P) =
h(Q) + 1.

3. If P is obtained from the proofs )1 and (s by applying a two-premiss rule, then
h(P) = max{h(Q1), h(Q2)} + 1.

Now we prove the cut-elimination theorem for LBB'I2.

Theorem 5.11 (Cut-elimination for LBB'I2) For any sequent I' — A, if T' — A is
provable in LBB'12, then it is provable in LBB'I2 without using the cut rule.

PRrROOF. Our strategy is that of eliminating each cut rule above which any other cut rule
does not occur. Let P be a proof with only one cut rule occurring as the last inference
whose cut formula is A. Let P and P, be the subproofs of P whose end-sequents are the
left and right premisses of the cut rule, respectively. The proof of eliminating the cut
rule in P is by induction on |A]|, with a subinduction on h(P) + h(P;). We proceed on a
case-by-case basis.

Case 1. The left premiss of the cut rule is an initial sequent A — A.

A—-A AA—D
AJA— D

(cut)

The conclusion is the same as the right premiss.
Case 2. The right premiss of the cut rule is an initial sequent A — A.

- A A— A
r—= A

(cut)
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The conclusion is the same as the left premiss.

Case 3. The left rule over the cut rule is (e —).

P1
I'A,B,>,C = D L P
FTBAsCoD ) ADSE
AT.B.ASC S E

(cut)

This is transformed into

P1 P2
A, B,S,C D A D—E
AT.ABSCo B, \out)
AT BASCoE )

where the (cut) can be eliminated by the subinduction hypothesis.
Case 4. The left rule over the cut rule is (D—).
: Py : Py

IC—A Y£,B—=D (5) . Py
S,A>B,I,C =D AD > E

AS.ASBT.CSE (cut)
This is transformed into
L Py e
P %,BoD ADSE (cut)
I,C— A AS.B— E o

AN ASBT.CoE  °7)

where the (cut) can be eliminated by the subinduction hypothesis.
Case 5. The left rule over the cut rule is (—D). We consider the following subcases.

Subcase 5.1. The right rule over the cut rule is (e —). Note in this case that the left
hand side of the left premiss of the cut rule is not empty by the condition of the cut rule.

P2
P, AABY,D—SE
rcsD ABASDSE ¢
ABAST.Co B (out)

This is transformed into

L p, L P,
IC—D AABYD-—E

AABST.Co B, (cub)

ABAST.CSE )

where the (cut) can be eliminated by the subinduction hypothesis.
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Subcase 5.2. The right rule over the cut rule is (O—). As in the previous subcase, the
left hand side of the left premiss of the cut rule is not empty.

' P, L p,

P, YDA AB—E
rcspD AASBESDSE O
AASBST.CSE (cut)

This is transformed into

P1 P2
IC—D ©.D—A L Py
>0, > A AB—>E
AASBEST,.C S E (5-)

(cut)

where the (cut) can be eliminated by the subinduction hypothesis.
Subcase 5.3. The right rule over the cut rule is (—D).

P ' Py
IA— B AADB,C =D
r—-ADB AJADB—-CD>DD

AT SCoD (cut)

(—D) (—D)

In this case, the A D B in the sequent A; A D B,C — D must be introduced by (D—)
in the proof P,.
o iQ
ILE—-A ¥,B—F
S ASBIESFE )

: P
AADRC%D(%m
AADB—CDD

Now we construct the following proof.

o . Py
ILE— A RA%B(t) D Qo
T ILE — B o XB%F(Q
S T.ILE > F o
P

AT, C > D 5
ArScoD (2

where the two (cut)’s can be eliminated by the induction hypothesis, and Pj is obtained
from P, by replacing the (A D B)’s by I'’s appropriately.
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5.3 Notes

Merge formulation of BB’ A sequent calculus for BB'I is usually defined as a merge
formulation (Section 7 of [3], [30]). Here we give the definition of the system LBB'T ([8],
[30], [32]), a version using guarded merge. In the definition below, A o I' denotes any
sequence consisting of the members of A and I" as multisets, in which A and T" preserve
their original orders and in which the rightmost formula is the rightmost formula of T
Initial sequents of LBB'I are of the following form:

p —p  for any propositional variable p.

Rules of inference of LBB'I are the following.

Cut rule:
r-A4A AAY—>C ¢
AoTy 5o (eut)
where A is empty if [' is empty.
Rules for the logical connective:
'—-A ABY—>C (5-) ¥,A— B
Ao(ADBol),x —C S-A58 ()

where I' is not empty.

In [30], the correspondence between the systems BB'T and LBB'I is shown as well as the
cut-elimination theorem for LBB'I. Our proofs of Lemmas 5.3-5.8 are mainly based on
the proofs of Lemmas 3.3-3.6 of [30].

LBB'I2 and dual-context sequent calculus The system LBB'I2 was suggested by
consideration of deleting structural rules from the dual-context sequent calculus LBP2,
according to the observation that BB'T is a subsystem of BPC (cf. Section 4.3). Here a
sequent I, C' — A of LBB'I2 is read as a dual-context sequent I'; C' — A. Then the cut-
elimination theorem for LBB'I2 is proved using global proof transformation technique
analogous to that used in the proof of the cut-elimination theorem for DK’ and LBP2.

Other noncommutative substructural logics A concise survey of noncommutative
substructural logics is found in [35], where noncommutative substructural logics are de-
fined as substructural logics that have neither exchange rules nor axioms for exchange,
in general. If we take the system LBB'I with merge operation as a sequent calculus for
BB'I, this logic is considered as one of noncommutative substructural logics. Since our
sequent calculus LBB'I2 is obtained from the system LBP2 by deleting structural rules,
further studies of the series of logics between BB'I and BPC may serve to reveal some
properties of noncommutative substructural logics.
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Chapter 6

Conclusion and further work

In this chapter we summarize the results of the thesis and indicate directions of further
studies raised by our work.

The first goal of this thesis was to provide sequent calculi for subintuitionistic logics
that are suitable to compare with systems for substructural logics, intending to develop
the resource-conscious aspects of subintuitionistic logics. It has been achieved with the
following results:

e In Chapter 3 we presented sequent calculi for subintuitionistic logics using dual-
context style sequents which have been popular in the field of linear logic.

e [n Chapter 5 we presented a sequent calculus for a noncommutative substructural
logic BB’I. The system was obtained from a dual-context sequent calculus in Chap-
ter 3 by deleting structural rules, according to the observation in Chapter 4.

Additionally, by virtue of the interpretation of dual-context sequents in Kripke models,
we have seen possibilities for applying dual-context sequent calculi to formalizing modal
logics (cf. Section 3.9).

Many further studies are derived from our observations both in the logic side and in
the computational side. Below we will list some of them. In the logic side, the following
problems are to be considered.

e Adding other connectives

It is not so obvious to extend our sequent calculi to systems for meaningful predicate
logics. A predicate logic extending BPC is discussed in [38]. Adding multiplicative
connectives to our sequent calculi is also to be investigated.

e Dual-context sequent calculi for other modal logics

In [42], Sato gives a cut-free system for the modal logic S5 based on sequents of the
form I';II — X; A, which are considered as an extension of dual-context sequents.
These kinds of sequents may be effective in formalizing various other modal logics.

e BB'T as a minimal logic

The logic BB'I, or equivalently called T_,—W, is considered as a minimal logic in [3].
Our sequent calculus LBB’I2 supports this view, and further work on extensions
of LBB'I2 may be important to the study of noncommutative substructural logics.
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In the computational side, we have the following interesting subjects.

e Curry—Howard correspondence for dual-context sequent calculi

Proof terms for dual-context sequent calculi and computational contents of global
proof transformation in cut-elimination for the calculi are to be investigated on
comparison with ones in, e.g. [22], [16], [48], [33].

e Applying LBB'I2 to substantial work on linear logic

Considering LBB'I2 as a system for a noncommutative version of linear logic, we
may apply LBB'I2 or its extensions with other connectives to substantial work on
linear logic, such as proof nets.
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of LJ~, 49

of LK, 8
soundness

of B*IK, 53

of DK, 31

of GK', 25

of LBP, 28
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