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PAPER

Approximate Algorithm for Hybrid Model Predictive Control with
Time-Varying Reference

Koichi KOBAYASHI†a), Kunihiko HIRAISHI†, Members, and Nguyen Van TANG†, Nonmember

SUMMARY In this paper, we propose a new approximate algorithm for
the model predictive control (MPC) problem with a time-varying reference
of hybrid systems. The proposed algorithm consists of an offline computa-
tion and an online computation. In the offline computation, candidates of
mode sequences are derived. In the online computation, after the mode se-
quence is uniquely decided among candidates, the finite-time optimal con-
trol problem, i.e., the quadratic programming problem, is solved. So by
applying the proposed algorithm, the computational amount of the online
computation is decreased. First, the MPC problem with a time-varying ref-
erence is formulated. Next, the proposed algorithm is explained, and the
accuracy of the obtained approximate solution is discussed. Finally, the
effectiveness of the proposed method is shown by a numerical example.
key words: offline/online computations, time-varying reference, approxi-
mate algorithm, model predictive control, hybrid systems

1. Introduction

The model predictive control (MPC) problem of hybrid sys-
tems is reduced to a mixed integer quadratic programming
(MIQP) problem, which is a kind of combinatorial opti-
mization problems. For solving the MPC problem of hy-
brid systems, there are two approaches: online approach and
offline approach. In the online approach, the MIQP prob-
lem is solved at each time step. In the offline approach, the
MPC problem is rewritten as a multi-parametric MIQP (mp-
MIQP) problem. In both approaches, the computation time
to solve the problem is too long for practical applications.
So it is one of the significant works to decrease the com-
putation time to solve the MPC problem of hybrid systems.
Then it will be desirable to use both online and offline com-
putations from the computational viewpoint. The algorithms
using both online and offline computations have been pro-
posed in [8], [9], but to our knowledge, there are only few
results.

On the other hand, in order to overcome the above tech-
nical difficulty, it will be important to develop an approx-
imate algorithm of the MPC problem of hybrid systems.
Some approximate algorithms for the MPC problem have
been proposed in [1], [2], [5]. However, these methods are
based on only the online computation or the offline compu-
tation.

In this paper, a new approximate algorithm with guar-
anteed accuracy for the MPC problem of hybrid systems is
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proposed. The proposed algorithm consists of the offline
computation and the online computation. In the offline com-
putation, candidates of mode sequences such that the MPC
problem is feasible are derived, and some parameters are
computed to derive the upper bound of the optimal value
of a given cost function. In the online computation, after
a mode sequence is decided by simple calculations using
candidates of mode sequences and some parameters derived
by the offline computation, the control input is obtained by
solving the quadratic programming (QP) problem. So the
computational amount of the online computation is similar
to that of the QP problem, and the accuracy of the obtained
solution can be guaranteed in the sense that the worst value
of the optimal cost is given. Furthermore, in this paper, the
MPC problem with a time-varying reference (offset) is con-
sidered. Since such an MPC problem appears in many prac-
tical applications, the problem formulation in this paper is
practical. Thus the proposed method is effective from both
computational and practical viewpoints.

This paper is organized as follows. In Sect. 2, the finite-
time optimal control problem and the MPC problem are
formulated. In Sect. 3, as the proposed algorithm, the of-
fline computation algorithm and the online computation al-
gorithm are explained respectively. Also the accuracy of
approximate solutions is discussed. In Sect. 4, we illustrate
the proposed algorithm by using a numerical example. In
Sect. 5, we conclude this paper.

Notation: Let R denote the set of real numbers, re-
spectively. Let In express the n × n identity matrix. For a
given matrix M, let MT denote the transpose matrix of M.

2. Problem Formulation

Consider the following discrete-time piecewise affine (DT-
PWA) system{

x(k + 1) = AI(k)x(k) + BI(k)u(k) + aI(k),
I(k + 1) = I+ if x(k + 1) ∈ SI+

(1)

where x(k) ∈ X ⊂ Rn and u(k) ∈ U ⊂ Rm are the state
and the input, respectively. X andU are given as closed and
bounded convex sets. I(k) ∈ M := {1, 2, . . . ,M} is the mode
of system, and suppose that mode transition constraints are
given by a finite automaton (directed graph). In addition,
I+ ∈ M is the mode corresponding to the region, which
includes x(k + 1). Furthermore, in order to guarantee the
well-posedness of the DT-PWA system (1), we assume that
SI is the bounded convex polyhedron satisfying

⋃
I∈M SI =

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers
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X and SI
⋂SJ = ∅ for all I � J ∈ M.

For this DT-PWA system, the following finite-time op-
timal control problem with a time-varying reference, which
is a kind of tracking problems, is considered.

Problem 1: Suppose that the DT-PWA system (1), the cur-
rent time t, the current state x(t) = xt ∈ Rn and the current
mode I(t) = It ∈ M are given. Then for the DT-PWA system
(1), find u(k), k = t, t + 1, . . . , t + N − 1 minimizing the cost
function

J(xt, u, xd) =
t+N−1∑

i=t

{
x̄T (i)Qx̄(i) + uT (i)Ru(i)

}

+x̄T (t + N)Qf x̄(t + N) (2)

under the state constraints

x(L) ∈ SIr
d
, x(t + N) ∈ SIr+1

d
(3)

where Q ≥ 0, R > 0, Qf ≥ 0, x̄(i) := x(i) − xd(i), and xd(i)
is the reference (offset) vector given by

xd(k) = xr
d ∈ SIr

d
, k = t, t + 1, . . . , L,

xd(k) = xr+1
d ∈ SIr+1

d
, k = L + 1, L + 2, . . . , t + N.

xr
d, x

r+1
d ∈ Rn are given as constant vectors, and Ir

d, I
r+1
d ∈ M

are the modes corresponding to the regions, which include
xr

d, xr+1
d , respectively.

In the standard formulation, the reference vector xd(k),
k = t, t + 1, . . . , t + N is some constant vector. On the other
hand, in this paper, we consider the case that the reference
vector is switched between xr

d and xr+1
d . This case is called

here a “switching case.” This formulation is frequently ap-
peared in practical plants such as steel plants [6] and chem-
ical plants [10]. Note here that the state constraints (3) are
a kind of mode transition constraints, and are not the fixed
point constraints. Furthermore, for simplicity of discussion,
the following assumption is made:

Assumption 1: The switching number of the reference
vector is given by 0 or 1.

In the case that there is no switching of the reference
vector, xr

d = xr+1
d holds, and the switching time L is given by

a suitable positive integer in the interval [1,N]. This case is
called a “non-switching case.”

Next, consider the model predictive control (MPC)
problem of the DT-PWA system (1). In the online opti-
mization of the MPC problem, Problem 1 must be solved
repeatedly at each time step. Then suppose that the refer-
ence vector is given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xd(k) = x1
d, k = t, t + 1, . . . , L1,

xd(k) = x2
d, k = L1 + 1, L1 + 1, . . . , L2,

...

xd(k) = xs
d, k = Ls−1 + 1, Ls−1 + 1, . . . , Ls

(4)

where Li is a positive integer satisfying Assumption 1, and

Fig. 1 Illustration of MPC with a time-varying reference.

s is a suitably large positive integer. So xr
d, x

r+1
d of Problem

1 at each time step are given from (4). We remark that de-
pending on Li and N, it is determined whether Problem 1 at
each time step is the switching case or not, and the reference
vector is given in offline.

Next, we explain the problem formulation by using
a simple example of Fig. 1, where the prediction horizon
length is given as N = 4. For example, suppose that the
current time is t. Then, in the time interval between t and
t + 4, the reference vector is switched only once, and the
controlled state trajectory is close to the reference vector.
In the MPC problem, after the current time is shifted from
t to t + 1, and the reference vector is updated, Problem 1 is
solved again. Thus by using the above problem formulation,
we can realize the MPC law such that the state trajectory is
close to the time-varying reference vector.

In the standard methods, there are two approaches to
solve the MPC problem: online optimization and offline op-
timization. In the online optimization, Problem 1 is rewrit-
ten as a mixed integer quadratic programming (MIQP) prob-
lem, and the MIQP problem is solved at each time step.
Note here that since the current state and the reference vec-
tor are different at each time step, the MIQP problem at each
time step is different. However, the MIQP problem has seri-
ous weakness, i.e., the computation time to solve the MIQP
problem is too long for practical applications. On the other
hand, in the offline optimization, Problem 1 is rewritten as
a multi-parametric MIQP (mp-MIQP) problem. In this ap-
proach, it is not necessary to solve some optimization prob-
lem at each time step. However, for the reference vector of
Problem 1 at each time step, the mp-MIQP problem must
be solved, and this computation is costly. Thus these stan-
dard methods have many drawbacks. In this paper, in order
to overcome these difficulties, we give up to exactly solve
Problem 1, and we propose a new approximate algorithm
consisting of the online computation and the offline com-
putation. By using the proposed algorithm, reducing the
computation cost of both online and offline computations
is achieved.

3. Proposed Algorithm

In this section, a new approximate algorithm to solve the
MPC problem is proposed. First, the offline computation al-
gorithm is explained. Next, by using the result of the offline
computation algorithm, the accuracy of approximate solu-
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tions is discussed. Finally, based on these results, the online
computation algorithm is explained.

3.1 Offline Computation Algorithm

In the offline computation algorithm, mode sequences such
that Problem 1 in the non-switching cases is feasible are
enumerated, and for evaluating the difference in the cost
function between the non-switching cases and the switch-
ing cases, some parameters are derived.

Consider the following cost function of the non-
switching case

J j(xt, u) =
t+N−1∑

i=t

{
x̄T

j (i)Qx̄ j(i) + uT (i)Ru(i)
}

+x̄T
j (N)Qf x̄ j(N), j = 1, 2, . . . , s (5)

where x̄ j(i) := x(i) − x j
d. For all combinations of all mode

sequences and j, we compute the upper bound of (5), i.e.,

J
It

j (i) = max
xt∈SIt

min
u

J j(xt, u) s.t. (1), (6)

i = 1, 2, . . . , θIt
j , j = 1, 2, . . . , s,

It = 1, 2, . . . ,M

where It is the current mode of each mode sequence, and θIt
j

is the number of mode sequences such that (6) is feasible
for the current mode It. Note here that the current state xt

is not given, and is a continuous variable selected among
SIt . Hereafter, for given j and It, let ΘIt

j (i) express mode

sequences such that (6) is feasible. We remark that θIt

j is in
general obtained as a large value. Then by imposing further
constraints such as mode transition constraints and temporal
logic constraints, the value of θIt

j is reduced. See [4] for
further details.

Next, consider Problem 1 in the switching case. For
given j = r, the difference between J of (2) and Jr of (5) is
obtained as

J − Jr =

t+N−1∑
i=L+1

{
x̄T

r+1(i)Qx̄r+1(i) − x̄T
r (i)Qx̄r(i)

}

+
{
x̄T

r+1(t + N)Qf x̄r+1(t + N)

−x̄T
r (t + N)Qf x̄r(t + N)

}

=

t+N−1∑
i=L+1

{
−2(xr+1

d − xr
d)T Qx(i)

}

−2(xr+1
d − xr

d)T Qf x(t + N) + η (7)

where xr
d � xr+1

d and

η = (t + N − L)
{
(xr+1

d )T Qxr+1
d − (xr

d)T Qxr
d

}
+
{
(xr+1

d )T Qf xr+1
d − (xr

d)T Qf xr
d

}
. (8)

Since from (7), J − Jr is expressed as a linear function with
respect to x(i), i = L, L + 1, . . . , t + N, it is easy to evaluate

J − Jr approximately. Noting that η is a constant, we can
compute the upper bound of −2(xr+1

d − xr
d)T Qx(i), i = t, t +

1, . . . , t + N − 1 and −2(xr+1
d − xr

d)T Qf x(t + N), i.e.,

αl
I = max

x∈SI

{
−2(xl+1

d − xl
d)T Qx

}
, (9)

β
l
I = max

x∈SI

{
−2(xl+1

d − xl
d)T Qf x

}
, (10)

l = 1, 2, . . . , s − 1, I = 1, 2, . . . ,M.

Finally, the procedure of the proposed offline computation
algorithm is shown as follows.

Procedure of offline computation algorithm:

Step 1: Compute (6) for all combination of all mode se-
quences and j. Then mode sequencesΘIt

j (i) and correspond-

ing upper bounds J
It

j (i), i = 1, 2, . . . , θIt
j are obtained.

Step 2: Compute αl
I of (9) and β

l
I of (10).

Remark 1: Feasibility of the optimal control problem us-
ing one of mode sequences ΘIt

j (i) is in general guaranteed
in only a subregion of SIt . Then by suitably decomposing
SIt to some regions, i.e., adding new modes, feasibility is
guaranteed in the region corresponding to each mode. To
decompose SIt , the bisimulation technique [4] can be used.
In this paper, for simplicity of discussion, we assume that
there is no region of the state such that feasible mode se-
quences do not exist.

3.2 Accuracy of Approximate Solutions

In the MPC problem, Problem 1 is solved at each time step.
By selecting a mode sequence satisfying (3) among ΘIt

j (i),
we obtain the approximate solution. Then Problem 1 is
rewritten as a quadratic programming (QP) problem, and
can be easily solved. If there exist multiple mode sequences
satisfying (3), then we must select one mode sequence. In
this subsection, by using the computation result of the of-
fline computation algorithm, the accuracy of approximate
solutions is discussed, and the upper bound of the optimal
value of Problem 1 is derived. The derived upper bound is
used in the online computation algorithm. Here, let Jopt de-
note the optimal value of the cost function (2) of Problem 1.
Also let Japp denote the suboptimal value of the cost func-
tion (2) using one mode sequence satisfying (3). In other
words, Japp is the approximate value of Jopt.

3.2.1 Non-switching Case

First, we consider the non-switching cases of the reference
vector. Then we derive the following theorem.

Theorem 1: Assume that there exists no switching of the
reference vector in Problem 1. Then the following relation
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holds:

Jopt ≤ Japp ≤ J
It

r . (11)

Proof: It is clear that Jopt ≤ Japp holds. Since J
It

r is the up-
per bound of the cost function in Problem 1, (11) is derived
straightforwardly. �

From Theorem 1, we see that in the non-switching
case, the accuracy of approximate solutions is guaranteed
in the sense of (11).

3.2.2 Switching Case

Next, we consider the switching cases of a reference vector.
Although the switching cases are more complicated than the
non-switching cases, we can prove the following theorem
by using some parameters derived by the proposed offline
computation algorithm.

Theorem 2: Assume that there exists a switching of the
reference vector in Problem 1. Then the following relation
holds:

Jopt ≤ Japp ≤ J, (12)

J := J
It

r +

t+N−1∑
i=L

αr
I∗(i) + β

r
I∗(t+N) + η (13)

where I∗(k) is the mode at time k in a mode sequence, which
satisfies (3) and is selected among ΘIt

j (i).

Proof: First, the upper bound of J − Jr of (7) is derived.
From (9), the upper bound of the first term of the right side
in (7) is obtained as

t+N−1∑
i=L

{
−2(xr+1

d − xr
d)T Qx(i)

}
≤

t+N−1∑
i=L

αr
I∗(i). (14)

Furthermore, the upper bound of the second term of the right
side in (7) is also obtained as

−2(xr+1
d − xr

d)T Qf x(t + N) ≤ βr
I∗(t+N). (15)

From (14) and (15), the upper bound of J − Jr is given as

J − Jr ≤
t+N−1∑

i=L

αr
I∗(i) + β

r
I∗(t+N) + η. (16)

Next, consider the upper bound of Jopt. Since the upper
bound of Jr is given by (11), we obtain (12). This com-
pletes the proof. �

From Theorem 2, we see that in the switching case, the
accuracy of approximate solutions is guaranteed in the sense
of (12).

3.3 Onine Computation Algorithm

In this subsection, we explain the online computation algo-
rithm. In the proposed algorithm, after a mode sequence

is uniquely decided, the control input is derived by solving
the QP problem. Furthermore, this procedure is repeated at
each time step. First, the proposed online computation algo-
rithm for the MPC problem of the DT-PWA system is given
as follows.

Procedure of online computation algorithm:

Step 1: Suppose that the initial state x0 and the initial mode
I0 are given. Set t = 0, x(t) = x0 and I(t) = I0.

Step 2: From the current time t and the switching time Li of
(4), check whether Problem 1 at time t is the switching case
or the non-switching case. If Problem 1 is the switching
case, then go to Step 3. If Problem 1 is the non-switching
case, then go to Step 5.

Step 3: From (4), decide the switching time L and the refer-
ence vectors xr

d, xr+1
d of Problem 1, and go to Step 4.

Step 4: Decide a mode sequence by using the following
procedure:

Step 4-1: Select the mode sequences satisfying
xr

d ∈ SI(t+L) and xr+1
d ∈ SI(t+N) among ΘI(t)

r (i), i =

1, 2, . . . , θI(t)
r .

Step 4-2: Compute J of (13) for each mode se-
quence selected by Step 4-1.
Step 4-3: Select a mode sequence such that J is
minimum, and go to Step 6.

Step 5: Decide the reference vector xr
d = xr+1

d from (4), and

select a mode sequence such that J
I(t)
r is minimum among

Θ
I(t)
r (i). Furthermore, go to Step 6.

Step 6: Solve Problem 1, i.e., the QP problem using the
mode sequence obtained by Step 4 or Step 5, the current
state x(t) and the current mode I(t). Thus the suboptimal
control input sequence u(k), k = t, t + 1, . . . , t + N − 1 is
obtained.

Step 7: Apply u(t) to the plant.

Step 8: Set t = t + 1, and update x(t) and I(t). Finally, go to
Step 2.

In Step 4 or Step 5, if θI(t)
r = 0 holds, then the MPC

problem is infeasible. Also in Step 4-1, if there exists no
mode sequence satisfying xr

d ∈ SI(t+L) and xr+1
d ∈ SI(t+N),

then the MPC problem is infeasible. These conditions can
be checked in the offline computation, because the reference
vector is given in offline.

Furthermore, in the non-switching cases, based on The-

orem 1, we select a mode sequence by using J
I(t)
r . In the

switching cases, based on Theorem 2, we select a mode se-
quence by using J. Thus, from Step 6, we obtain an approx-
imate solution that guarantees the accuracy in the sense of
Theorem 1 or Theorem 2.

In addition, note here that the computation time of Step
4 is very small comparing to that of the QP problem in Step
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6, because Step 4 consists of simple calculations. So the
computation time of the proposed online computation algo-
rithm at each time step is similar to that of the QP problem.
Furthermore, though it is difficult to estimate the computa-
tion time of the MIQP problem, the computation time of the
QP problem can be estimated. Thus the proposed algorithm
is effective from the computational viewpoint.

Remark 2: In the proposed algorithm, a mode sequence is
decided using the upper bound of the cost function. On the
other hand, we can also consider to use the lower bound of
the cost function. In this paper, in order to guarantee the
worst case, the upper bound is used.

Remark 3: As for the QP problem, many algorithms have
been proposed. So we may select a suitable algorithm de-
pending on the computer environment. For example, from
the viewpoint that the computation time is decreased, the
ILOG CPLEX solver [11] is one of the powerful solvers.
On the other hand, from the viewpoint that the computation
time can be estimated, the algorithm proposed in [7] is con-
ventional.

4. Numerical Example

As a numerical example, consider the 2nd-order and 6-mode
DT-PWA system where

A1 =
[

1.0254 0.8109
0.2169 1.6021

]
, A2 =

[
0.1239 2.7306
0.0998 0.8010

]
,

A3 =
[

0.6462 0.9246
−0.4168 1.6046

]
, A4 =

[
1.0105 0.4241
0.1083 0.7903

]
,

A5 =
[ −1.0502 0.4840

0.1854 1.3514

]
, A6 =

[
0.8487 0.2641
0.1084 1.5251

]
and

BI =

[
0
1

]
, aI =

[
0
0

]
, I = 1, 2, . . . , 6.

The partition of the state space and the mode transition con-
straints are given by Fig. 2 and Fig. 3, respectively. Also, the
input constraint is given by −1 ≤ u(k) ≤ +1. For this DT-
PWA system, let us consider the finite-time optimal control
problem (Problem 1). The initial state, the reference vec-
tors, the switching time and the prediction horizon are given
by

xt =

[ −19.7
+5

]
, xr

d =

[
+15
+5

]
, xr+1

d =

[ −15
−5

]

and L = 5, N = 10, respectively. The weighting matrices
are given by Q = Qf = 1000I2 and R = 1.

First, the proposed offline computation algorithm is ex-
plained. From Step 1, we obtain mode sequences Θ1

r (i),
i = 1, 2, . . . , 50 of Table A· 1 (see Appendix). In Step 2,
we obtain

αr
1 = −0.2 × 106, αr

2 = +1.0 × 106,

αr
3 = +1.6 × 106, αr

4 = −0.6 × 106,

αr
5 = +0.6 × 106, αr

6 = +1.2 × 106.

Fig. 2 Partition of the state space.

Fig. 3 Mode transition constraints expressed by the directed graph.

From Q = Qf = 1000I2, αr
I = β

r
I holds.

Next, Step 4 of the proposed online computation algo-
rithm is explained. In Step 4-1, noting that t = 0, L = 5,
N = 10, xr

d ∈ S3, xr+1
d ∈ S4 hold, mode sequences

i = 11, 16, 21, 24, 31 are selected among mode sequences
of Table A· 1. In Step 4-2, J is computed for each mode
sequence selected by Step 4-1. Then we obtain

i = 11 : J = 1.13 × 107, i = 16 : J = 1.02 × 107,

i = 21 : J = 1.13 × 107, i = 24 : J = 1.36 × 107,

i = 31 : J = 1.04 × 107.

Finally, in Step 4-3, mode sequence i = 16 is selected. Thus
we obtain one mode sequence among mode sequences of
Table A· 1. By solving the MIQP problem, we see that mode
sequence i = 16 is the optimal mode sequence. Note here
that a mode sequence derived by the proposed algorithm is
not optimal in general.

The controlled state trajectories are shown in Fig. 4. In
Fig. 4, for simplicity, the finite-time optimal control problem
(Problem 1) is solved only once. We see that the obtained
state trajectory satisfies x(5) ∈ S3 and x(10) ∈ S4.

Finally, we comment about the computation time to
solve the proposed computation algorithms. First, the com-
putation time to derive Table A· 1 was 6.66 [sec], where we
used KCLP-HS [3] on the computer with the Intel Pentium
M 1.60 GHz processor and the 756 MB memory. Next, the
computation time of the online computation algorithm was
0.01 [sec], where we used MATLAB and ILOG CPLEX
11.0 [11] on the computer with the Intel Core 2 Duo 3.0 GHz
processor and the 4 GB memory. In such a simple example,
the difference in the computation time between the MIQP
problem and the QP problem will be small. For reference,
the computation time to solve the MIQP problem in this ex-
ample was 0.22 [sec], where we also used CPLEX. How-
ever, we stress that it is hard to estimate the computation
time of the MIQP problem. Meanwhile, the computation
time of the proposed online computation algorithm can be
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Fig. 4 Controlled state trajectories.

estimated. Furthermore, for large-scale systems, the pro-
posed method will be more effective than the standard ap-
proach.

5. Conclusion

In this paper, we have proposed a new approximate algo-
rithm for model predictive control with a time-varying refer-
ence of hybrid systems. The proposed algorithm consists of
two phases: offline computation algorithm and online com-
putation algorithm. In particular, since the computation time
of the online computation algorithm is similar to that of the
QP problem, the proposed algorithm will be useful in the
practical applications. On the other hand, the evaluation
of the accuracy of the approximate solution will be rough.
However, for the MPC problem with state/input constraints
and mode transition constraints, the proposed method will
be effective. This is because candidates of mode sequences
are limited.

Finally, in the proposed framework, it will be impor-
tant to guarantee the stability. In addition, it will be one of
future topics to consider the case that the reference vector is
generated in online. Then it will be important to clarify the
relation between feasibility, the reference vector and plants.
Furthermore, it will be also one of future topics to apply the
proposed algorithm to practical applications.

This work was supported by Grant-in-Aid for Young
Scientists (B) 20760278.
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Appendix: Mode Sequences Obtained in Numerical
Example

As the result of the proposed offline computation algorithm
in a numerical example, Table A· 1 shows enumerated mode
sequences Θ1

r (i).

Table A· 1 Enumerated mode sequences Θ1
r (i).

Time

i 0 1 2 3 4 5 6 7 8 9 10 J
1
r [×106]

1 1 2 3 6 3 2 5 2 5 2 5 4.78
2 1 2 3 3 2 5 2 5 2 5 2 5.05
3 1 2 3 3 6 5 4 4 4 4 4 5.05
4 1 2 3 2 5 2 5 2 5 2 5 5.31
5 1 1 2 3 6 3 2 5 2 5 2 5.47
6 1 2 3 6 3 6 5 4 4 4 4 5.58
7 1 1 2 3 3 6 5 4 4 4 4 5.74
8 1 1 4 4 4 4 4 4 4 4 4 5.85
9 1 1 2 3 3 2 5 2 5 2 5 5.87

10 1 1 2 3 2 5 2 5 2 5 2 6.14
11 1 1 2 3 6 3 6 5 4 4 4 6.27
12 1 1 1 2 3 6 3 2 5 2 5 6.30
13 1 2 5 2 5 2 5 2 5 2 5 6.38
14 1 1 1 4 4 4 4 4 4 4 4 6.54
15 1 1 1 2 3 3 2 5 2 5 2 6.56
16 1 1 1 2 3 3 6 5 4 4 4 6.56
17 1 1 1 2 3 2 5 2 5 2 5 6.83
18 1 1 1 1 2 3 6 3 2 5 2 6.99
19 1 1 2 3 6 5 4 4 4 4 4 7.07
20 1 1 1 2 3 6 3 6 5 4 4 7.10
21 1 1 1 1 2 3 3 6 5 4 4 7.26
22 1 1 1 1 4 4 4 4 4 4 4 7.36
23 1 1 1 1 2 3 3 2 5 2 5 7.66
24 1 1 1 1 2 3 6 3 6 5 4 7.79
25 1 1 1 2 3 6 5 4 4 4 4 7.90
26 1 1 1 1 2 3 6 3 6 5 2 7.95
27 1 1 1 1 2 3 2 5 2 5 2 8.06
28 1 1 1 2 3 6 3 6 5 2 5 8.08
29 1 1 2 3 6 3 6 5 2 5 2 8.21
30 1 2 3 6 3 6 5 2 5 2 5 8.35
31 1 1 1 1 2 3 6 5 4 4 4 8.59
32 1 1 1 1 1 2 3 2 5 2 5 8.88
33 1 1 1 2 3 3 6 5 2 5 2 9.31
34 1 1 1 1 1 2 5 2 5 2 5 9.41
35 1 1 2 3 3 6 5 2 5 2 5 9.44
36 1 2 3 3 6 5 2 5 2 5 2 9.57
37 1 1 1 1 1 1 2 5 2 5 2 10.11
38 1 1 1 1 2 3 6 5 2 5 2 10.53
39 1 1 1 2 3 6 5 2 5 2 5 10.66
40 1 1 2 3 6 5 2 5 2 5 2 10.80
41 1 2 3 6 5 2 5 2 5 2 5 10.93
42 1 2 3 6 5 4 4 4 4 4 4 10.93
43 1 1 1 1 1 1 1 4 4 4 4 14.50
44 1 1 1 1 1 1 4 4 4 4 4 14.63
45 1 1 1 1 1 4 4 4 4 4 4 14.76
46 1 1 1 1 2 5 2 5 2 5 2 14.90
47 1 1 1 2 5 2 5 2 5 2 5 15.03
48 1 1 2 5 2 5 2 5 2 5 2 15.16
49 1 4 4 4 4 4 4 4 4 4 4 15.30
50 1 1 1 1 2 3 3 6 5 2 5 91.72
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