JAIST Repository

https://dspace.jaist.ac.jp/

K Laminar Structure of Ptolppmaic Grapl
Applications

Author(s) Uehar a, Ryuhei; Uno, Yush

Citation Di screte Applied Mat hemat| cs, 157 (7)

Issue Date 2008-10- 23

Type Journal Article

Text version aut hor

URL http://hdl . handle.net/ 101119/ 9180
NOTI CE: This is the authofy’' s versi |
accepted for publication py EI sevi r
resulting from the publishing proce:
peer review, editing, corfyections, <
formatting and other qual ty control

_ may not be reflected in this documeil

Rights . :
may have been made to thip work si nt
submitted for publication A definit
was subsequently publishefd in Ryuhei
Yushi Uno, Discrete Applipd Mat hemat
2008, 1533-1543,
http://dx.doi.org/10.1016(fj.dam. 200 ¢

Description

AIST

JAPAN

ADVANCED

INSTITUTE OF

® SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Laminar Structure of Ptolemaic Graphs with

Applications *

Ryuhei Uehara® and Yushi UnoP®
& School of Information Science, Japan Advanced Institute of Science and

Technology (JAIST), Ishikawa, Japan.

b Department of Mathematics and Information Sciences, Gradate School of
Science, Osaka Prefecture University, Osaka, Japan.

Abstract

Ptolemaic graphs are those satisfying the Ptolemaic inequality for any four ver-
tices. The graph class coincides with the intersection of chordal graphs and distance
hereditary graphs. It can also be seen as a natural generalization of block graphs
(and hence trees). In this paper, we first state a laminar structure of cliques, which
leads to its canonical tree representation. This result is a translation of ~-acyclicity
which appears in the context of relational database schemes. The tree representation
gives a simple intersection model of ptolemaic graphs, and it is constructed in lin-
ear time from a perfect elimination ordering obtained by the lexicographic breadth
first search. Hence the recognition and the graph isomorphism for ptolemaic graphs
can be solved in linear time. Using the tree representation, we also give an efficient
algorithm for the Hamiltonian cycle problem.

Key words: Algorithmic graph theory, data structures, v-acyclicity, Hamiltonian
cycle, intersection model, ptolemaic graphs.

1 Introduction

From an algorithmic point of view, a variety of graph classes have been pro-
posed and studied so far [4,17]. Among them, the class of chordal graphs is

* Preliminary version was presented at the 16th Annual International Symposium

on Algorithms and Computation (ISAAC 2005)[32].
Email addresses: uehara@jaist.ac.jp (Ryuhei Uehara),
uno@mi.s.osakafu-u.ac.jp (Yushi Uno).

Preprint submitted to Elsevier Science 12 October 2010

classic and widely investigated. One of the reasons is that the class has a nat-
ural intersection model and hence has a concise tree representation; that is,
a graph is chordal if and only if it is the intersection graph of subtrees of a
tree. The tree representation can be constructed in linear time, and the tree
is called a clique tree since each node of the tree corresponds to a maximal
clique of the chordal graph (see [29]). Another reason is that the class is char-
acterized by a vertex ordering, which is called a perfect elimination ordering.
The ordering can also be computed in linear time, and a typical way to find
it is called the lexicographic breadth first search (LBFS) introduced by Rose,
Tarjan, and Lueker [28]. The LBFS is also intensively investigated as a tool for
recognizing several graph classes (see a comprehensive survey by Corneil [9]).
Using those characterizations, many efficient algorithms have been established
for chordal graphs; to list a few of them, the maximum weighted clique prob-
lem, the maximum weighted independent set problem, the minimum coloring
problem [16], the minimum maximal independent set problem [15], and so on.
There are also parallel algorithms to solve some of these problems efficiently
[24].

In algorithmic graph theory, distance in graphs is one of the most important
topics. The class of distance hereditary graphs was characterized by Howorka
to deal with the distance property called isometric [19]. Some characteriza-
tions of distance hereditary graphs are also given by Bandelt and Mulder [1],
D’Atri and Moscarini [12], and Hammer and Maffray [18]. Especially, Bandelt
and Mulder showed that any distance hereditary graph can be obtained from
K, by a sequence of extensions called “adding a pendant vertex” and “split-
ting a vertex.” Using these characterizations, many efficient algorithms have
been found for distance hereditary graphs [3,6-8,22,23,27]. Among them, a few
linear time algorithms are known for the recognition of a distance hereditary
graph, however, they are too complicated and far from practical; Hammer
and Maffray’s algorithm [18] fails in some cases, and Damiand, Habib, and
Paul’s algorithm [11] requires to build a cotree in linear time (see [11, Chapter
4] for further details), where the cotree can be constructed in linear time by
using a classic algorithm due to Corneil, Perl, and Stewart [10], or a recent
algorithm based on multisweep LBF'S approach by Bretscher, Corneil, Habib,
and Paul [5]. Recently, Nakano, Uehara, and Uno also give another linear time
algorithm for the recognition of distance hereditary graphs, which maintains
two neighbor sets by two prefix trees [23]. However, their algorithm requires
delicate implementation to achieve linear time.

In this paper, we focus on the class of ptolemaic graphs. Ptolemaic graphs are
graphs that satisfy the Ptolemaic inequality d(z,y)d(z,w) < d(z, z)d(y, w) +
d(x,w)d(y, z) for any four vertices x,y, z, w. (The inequality is also known as
“Ptolemy” inequality which seems to be more popular. However we use “Ptole-
maic,” which is stated by Howorka [20].) Howorka showed that the class of
ptolemaic graphs coincides with the intersection of the class of chordal graphs

and the class of distance hereditary graphs [20]. Hence the results for chordal
graphs and distance hereditary graphs can be applied to ptolemaic graphs.
On the other hand, the class of ptolemaic graphs is a natural generalization
of block graphs, and hence trees (see [33] for the relationships between related
graph classes). However, there are relatively few known results specified to
ptolemaic graphs.

We first state a tree representation of ptolemaic graphs which is based on
the laminar structure of cliques of a ptolemaic graph. We here note that this
result itself is not necessarily new. In [13], D’Atri and Moscarini showed that
chordal graphs and its subclasses are strongly related to acyclicity concepts
for hypergraphs which appeared in relational database theory. Especially, a
ptolemaic graph corresponds to a ~v-acyclic hypergraph, which is introduced
by Fagin in [14]. The ~-acyclicity of hypergraph directly corresponds to the
tree structure in our paper. The tree representation also gives a natural in-
tersection model for ptolemaic graphs, which is defined over directed trees.
We show a linear time algorithm that constructs the tree representation for a
ptolemaic graph. The construction algorithm can also be modified to a recog-
nition algorithm which runs in linear time. It is worth remarking that the
algorithm is quite simple, especially, much simpler than the combination of
two recognition algorithms for chordal graphs and distance hereditary graphs.
In the tree construction and the recognition, the ordering of the vertices pro-
duced by the LBFS plays an important role. Therefore, our result adds the
class of ptolemaic graphs to the list of graph classes that can be recognized
efficiently by the LBFS. Moreover, the tree representation is canonical up to
isomorphism. Hence, using the tree representation, we can solve the graph iso-
morphism problem for ptolemaic graphs in O(|V]) time if a ptolemaic graph
is given in the tree representation. We note that a clique tree of a chordal
graph is not canonical and the graph isomorphism problem for chordal graphs
is graph isomorphism complete.

The tree representation enables us to use the dynamic programming tech-
nique for some problems on ptolemaic graphs G = (V, E). It is sure that the
Hamiltonian cycle problem is one of most well known NP-hard problem, and
it is still NP-hard even for a chordal graph, and that an O(|V| 4+ |E|) time
algorithm is known for distance hereditary graphs [21,22]. In this paper, we
show that the Hamiltonian cycle problem can be solved in O(|V|) time by
using the technique if a ptolemaic graph is given in the tree representation.

As we mentioned, the tree structure of a ptolemaic graph is known as -
acyclicity for corresponding hypergraph in relational database theory, and it
produces loop-free Bachman diagram (see [2,14] for more details). In a 7-
acyclic hypergraph, hyperedges correspond to maximal cliques in ptolemaic
graph. In [14], Fagin mentioned that the hypergraph can be recognized in
polynomial time. Hence, we can say that our algorithm can also be used as a

more efficient substitution to recognize the hypergraphs in relational database
theory.

2 Preliminaries

The neighborhood of a vertex v in a graph G = (V, E) is the set Ng(v) =
{u eV |{u,v} € E}, and the degree of a vertex v is |Ng(v)| and is denoted
by degq(v). For a subset U of V, we denote by Ng(U) the set {v € V |
v € N(u) for some v € U}. If no confusion can arise we will omit the index
G. Given a graph G = (V,E) and a subset U of V, the induced subgraph
by U, denoted by G[U], is the graph (U, E’), where E' = {{u,v} | u,v €
U and {u,v} € E}. Given a graph G = (V, E), its complement, denoted by
G = (V,E), is defined by £ = {{u,v} | {u,v} € E}. A vertex set I is an
independent set if G[I] contains no edges, and then the graph G[I] is said to
be a clique.

Given a graph G = (V, E), a sequence of the distinct vertices vy, vy, ..., v; i8
a path, denoted by (v1,vs,...,v), if {v;,v;41} € E for each 1 < j < [. The
length of a path is the number of edges in the path. For two vertices u and v,
the distance of the vertices, denoted by d(u,v), is the minimum length of the
paths joining u and v. A cycle is a path beginning and ending at the same
vertex. A cycle is said to be Hamiltonian if it visits every vertex in a graph
exactly once.

An edge which joins two vertices of a cycle but is not itself an edge of the
cycle is a chord of that cycle. A graph is chordal if each cycle of length at
least 4 has a chord. Given a graph G = (V, E), a vertex v € V is simplicial
in G if G[N(v)] is a clique in G. An ordering vy, ...,v, of the vertices of
V' is a perfect elimination ordering (PEO) of G if the vertex v; is simplicial
in Gl{vi,vit1,...,v,} for alli =1,... n. Once a vertex ordering is fixed, we
denote N(vj)N{vit1,..., v} by Ns;(v;). We also use the notations “min” and
“max” to denote the first and the last vertices in an ordered set of vertices,
respectively. It is known that a graph is chordal if and only if it has a PEO
(see [4, Section 1.2] for further details). A typical way of finding a perfect
elimination ordering of a chordal graph in linear time is the lexicographic
breadth first search (LBFS), which is introduced by Rose, Tarjan, and Lueker
[28], and a comprehensive survey is presented by Corneil [9].

It is also known that a graph G = (V, E) is chordal if and only if it is the
intersection graph of subtrees of a tree T (see [4, Section 1.2] for further
details). Let T, denote the subtree of T' corresponding to the vertex v in G.
Then we can assume that each node ¢ in T corresponds to a maximal clique
C of G such that C' contains v on G if and only if T}, contains ¢ on 7. Such

o

6121

Fig. 1. (a) Laminar tree; (b) its labels

a tree T is called a clique tree of G. From a perfect elimination ordering of a
chordal graph G, we can construct a clique tree of G in linear time [29]. We
sometimes identify a node ¢ of a clique tree T" with a maximal clique (or a
vertex set) C' of G.

Given a graph G = (V, E') and a subset U of V', an induced connected subgraph
G[U] is isometric if the distances in G[U] are the same as in G. A graph G is
distance hereditary if G is connected and every induced path in G is isometric.

A connected graph G is ptolemaic if for any four vertices w,v,w,z of G,
d(u,v)d(w,z) < d(u, w)d(v, z)+d(u, z)d(v, w). We will use the following char-
acterization of ptolemaic graphs due to Howorka [20]:

Theorem 1 The following conditions are equivalent: (1) G is ptolemaic; (2)
G s distance hereditary and chordal; (3) for all distinct nondisjoint mazximal

cliques P and Q of G, PN Q separates P\ Q and Q \ P.

Let V be a set of n vertices. Two sets X and Y are said to be overlapping if
XNY £0, X\Y #0,and Y\ X # 0. A family F C 2V \ {{0}} is said to
be laminar if F contains no overlapping sets; that is, any pair of two distinct
sets X and Y in F satisfies either X NY =0, X C Y, or Y C X. Given a
laminar family F, we define laminar digraph ?(F)= (.7-" E 7) as follows; Er
contains an arc (Y, X) if and only if X C Y and there are no other subset Z
of F such that X C Z C Y, for any sets X and Y. In this case, Y is said to be
parent of X, and X is said to be child of Y. We denote the underlying graph
of T(F) by T(F) = (F, Ex). The following lemma for the laminar digraph is
known (see, e.g., [26, Chapter 2.2]);

Lemma 2 If a family F C 2V \ {{0}} is laminar, (1) T(F) is a forest, and
(2) |F| <2|V] - 1.

Hence, hereafter, we call T'(F) (T)(]:)) a (directed) laminar forest. On a di-
rected laminar forest T)(]:), we abuse some notations for trees as follows; we
call a node leaf if it has outdegree 0, and root if it has indegree 0. Hence, a

leaf can have two or more parents if it has indegree two or more. To have
a compact representation, we define a label of each node Sy in F of T)(]:),
denoted by ¢(S)), as follows: If Sy is a leaf, ¢(Sy) = Sp. If Sy is not a leaf and
has children Sy, Sy, ..., Sk, £(Sy) = So\ (S1US2U---USy). That is, each vertex
v in V appears in ¢(S) where S is the minimal set containing v. Since F is
laminar, each vertex in V' appears exactly once in ¢(.S) for some S C V', and its
corresponding node is uniquely determined. An example is shown in Fig. 1. In
the figure, each double rectangle represents a root, and each rounded rectangle
represents a leaf. In a directed laminar tree in Fig. 1(a), we remove redundant
items, which can be found in its descendants, and obtain the compact tree in
Fig. 1(b) that consists of nodes with its labels. We note that an internal node
in ?(}") has a label () when it is partitioned completely by its subsets in F
(the node corresponding to {14, 15} has empty label in Fig. 1(b)).

3 A Tree Representation of Ptolemaic Graphs

In this section, we show that ptolemaic graphs have a canonical tree repre-
sentation, and it can be constructed in linear time. Hereafter, we assume that
G = (V,E) is a given (ptolemaic) graph with n = |V| vertices and m = |E|
edges.

3.1 A Tree Representation

For a ptolemaic graph G = (V, E), let M(G) be the set of all maximal cliques,
ie.,

M(G) :={M | M is a maximal clique in G},

and C(G) be the set of nonempty vertex sets defined below:

C(G) = U {O|OZQM65M,C7§@}.
SCM(G)

Each vertex set C' € C(G) is a nonempty intersection of some maximal cliques.
Hence, C(G) contains all maximal cliques, and each C' in C(G) induces a
clique. We also denote by £(G) the set C(G) \ M(G). That is, each vertex set
L € £(G) is an intersection of two or more maximal cliques, and hence L is a
non-maximal clique.

We note that the set M(G) of maximal cliques corresponds to the set of
hyperedges in the hypergraph model discussed in [13,14]. Theorem 3, Lemma

4, and Theorem 5 are not necessarily new, which could be found in [14] in
the context of database. However, we state here since we would like to make
this paper be self-contained, and it is worth proving in the context of graph
theory.

Theorem 3 Let G = (V, E) be a ptolemaic graph. Let F be a family of sets
in L(G) such that UperL C M for some mazimal clique M € M(G). Then
F 1s laminar.

PROOQOF. To derive a contradiction, we assume that F is not laminar. Then
we have two overlapping vertex sets L; and Ly which are properly contained in
the maximal clique M. Let v, vy, vy be vertices in Ly N Ly, Ly \ Lo, and Ls \ Ly,
respectively. By definition, there are sets of maximal cliques M}, M2, ... M,
Mg,Mg,...,Mg such that Ly = M{ N M N---NM{ and Ly = My N M3 N

ﬂMb Here, if every M{ with 1 < < a contains vy, we have vy € L;. Thus,
there is a maximal clique M7 ! with vy & M{. Similarly, there is a maximal
clique MJ with vy & M] Let L be MinN Mj Then we have vy,vy € L and
v € L (hence L # (}). Therefore v; € M} \ L and vy, € M \ L. Moreover, since
vy, vy are in M, {vy,v,} € E. Thus, L = Mi N Mj does not separate M \ L
and Mj \ L, which contradicts Theorem 1(3). O

Lemma 4 Let C1,Cy be any overlapping sets in C(G) for a ptolemaic graph
G = (V,E). Then C, N Cy separates Cy \ Cy and Cy \ C}.

PROOF. Let C := C; N Cy. By definition of C(G), C' € C(G). Let C! be the
sets in C(G) such that C' C C! C C; and there is no other ¢’ with C' C C' C C!
for i = 1,2. We first observe that C] and C) are overlapping: If C] = C}, we
have C] = C§ C C; N Cy which contradicts that C' = C; N Cy and C' C Cf.
On the other hand, if C] C C%, we have C' C C] C C) which contradicts the
definition of Cj.

We show that C separates C] and C. Let M; be maximal cliques that contains
C! for i = 1,2 such that M, is overlapping to C) and M, is overlapping to
Ch. Let C. := M; N M,. By definition, C' C C.. It is sufficient to show that
C = C.. To derive contradictions, we assume that v € C.\ C'. We first assume
that v € C] \ C%. In the case, since My and C] are overlapping, C contains a
set C” with (C1NCY) C ((C1NCE)U{v}) C C" C (1, which is a contradiction.
Thus, we have v ¢ C] and v ¢ CY.

By definition of (], there are maximal cliques M}, M2, ... MF such that] =
NE_ Mi. Since v ¢ C}, there is at least one maximal chque M} with v & M;.

Similarly, there is at least one maximal clique MJ with C, C MJ and v ¢ Ms. j
However, C! C M?, C}, C MJ, and v ¢ M} U MJ imply that M! \ Mj and

M\ M are connected by v. This is a contradiction to Theorem 1(3). Hence
MiN M) =MNM,=C;NC)=C,NCy and it is a separator. O

Now we define a directed graph T)(C (G)) = (C(G), A(Q)) for a given ptolemaic
graph G = (V, E) as follows: two nodes C1,Cy € C(G) are joined by an arc
(C4, Cy) if and only if Cy C Cy and there is no other C' in C(G) such that
Cy C C C C}. We denote by T(C(G)) the underlying graph of T(C(G))

Theorem 5 A graph G is ptolemaic if and only if the graph T(C(G)) is a
tree.

PROOF. We first assume that G is ptolemaic and show that 7'(C(G)) is a
tree. It is clear that T(C(G)) is connected. Thus, to derive contradictions, we
assume that T (C(G)) contains a cycle (Cy,Cy, ..., Cg, C1), which is a minimal
cycle without chords on 7'(C(G)). Since Cy, C Cy—y C --- C Cy C Cy, (or vice
versa) is impossible, there is a node C, with C,_y D C, C Cyyq for some a.
Without loss of generality, we assume that |C,| is the smallest among such
vertex sets on the cycle. Let C, and C, be the nodes on the cycle such that
Co1 CCr D011 D--DC,1 D0, CCug C---CCy1 CCyDCpyr. It
is not difficult to see that C,_; and Cy41, and hence C,, and C,, are overlapping.
Thus, by Lemma 4, C, separates C,, \ C,, and C,, \ C,. Since C, is a separator,
we let G, and G, be the connected components that contain C, \ C, and
Cy\ Cy on G[V \ C,], respectively.

Now we consider the path P = (C,, Cy—1,Cy_a, . .., Cyi2, Cyi1, Cy) which does
not contain C,. However, since C|, is a separator, P contains at least one vertex
set Cp in C with C, N Cy # 0. If (C, N Cy) \ Co # 0 and (C, N Cy) \ C, # 0,
C;\C, and C,\ C, are connected on G[V \ C,] since C} is a clique. Hence each
Cy with C, N Cy, # 0 satisfies (C, N Cy) \ C, =0 or (C, NCy) \ C, = 0. Since
P connects G, and G, through the separator C,, we have at least two vertex
sets Cj, and C} such that (C,NC,)\ C, = 0 and (C, N C})\ C,, = (0. Moreover,
since C, separates G, and G,, we have C, N C) C C,. If C, N Cy C C,, P
contains smaller separator than C,. Thus C, NCj = C,. Then P has to contain
C\, between Cj, and C}, which contradicts the minimality of the cycle.

Therefore, T(C(G)) is a tree.

It is easy to see that G is ptolemaic if T'(C(G)) is a tree; for each pair of distinct
nondisjoint maximal cliques M; and Ms, (M; N Ms) separates T'(C(G)), and
hence G. O

Hereafter, for a given ptolemaic graph G = (V| E), we call T(C(G)) (T(C(G)))

a (directed) clique laminar tree of G. We note that for each vertex in G its

{1,13} {714

{21213} {8,14,15}
{3,11,12,13} {9,14,15}
{4,6,12,13} {10,15}
{5,11,12,13} {11,12,13,14,15,16}

Fig. 2. A ptolemaic graph G which produce the directed laminar tree in Fig. 1

corresponding node in T'(C(G)) is uniquely determined by maximal cliques.
Therefore, we can define a mapping from each vertex to the vertex set in C
in T(C(G)): We denote by C(v) the clique C with v € ¢(C'). When we know
whether C'(v) is in M or L, we specify it by writing Cp(v) or Cr(v). An
example is given in Fig. 2 (all maximal cliques are also depicted); for the
graph G in the figure, T(C(G)) is given in Fig. 1. We also note that from
?(C (G)) with labels, we can reconstruct the original ptolemaic graph uniquely
up to isomorphism. That is, two ptolemaic graphs GG; and G4 are isomorphic
if and only if labeled T (C(G1)) is isomorphic to labeled T (C(Gy)).

Intuitively, a clique laminar tree subdivides a clique tree of a chordal graph.
For a chordal graph, maximal cliques are joined in a looser way in the sense
that a clique tree for a chordal graph is not always uniquely determined up
to isomorphism. The clique laminar tree subdivides the relationships between
maximal cliques by using their laminar structure.

We can easily see the following properties of ?(C (G)), and they are useful
from the algorithmic point of view:

Corollary 6 If G is a ptolemaic graph, we have the following: (1) For each
mazimal clique M in M(G), £(M) consists of simplicial vertices in M. (2) The
vertices in a mazimal clique M in M(G) induce a mazimal directed subtree
of T)(C(G)) rooted at the node M. (3) Each leaf in T(C(G)) corresponds to a
mazximal clique in M(G).

It is well known that a graph is chordal if and only if it is the intersection
graph of subtrees of a tree. By Theorem 5, we obtain an intersection model
for ptolemaic graphs as follows:

Corollary 7 Let T be any directed graph such that its underlying graph T
. — = .

1s a tree. Let T be any set of subtrees T, such that T, consists of a node C
and all vertices reachable to C' in T . Then the intersection graph over T s
ptolemaic. On the other hand, for any ptolemaic graph, there exists such an
intersection model.

PROOF. The directed clique laminar tree ?(C(G)) is the base directed
graph of the intersection model. For each v € V| we define the node C such
that v € ¢(C). By definition, a clique C” contains v if and only if there is a
directed path from the corresponding node C” to the node C on T)(C(G)) O

3.2 A Linear Time Construction of Clique Laminar Trees

The main theorem in this section is the following:

Theorem 8 Given a ptolemaic graph G = (V, E), the directed clique laminar
tree T)(C(G)) can be constructed in O(n +m) time.

We will make the directed clique laminar tree T)(C (G)) by separating the
vertices in G into the vertex sets in C(G) = M(G) U L(G).

We first compute (and fix) a perfect elimination ordering vy, vs, ..., v, by the
LBFS. The outline of our algorithm is similar to the algorithm for constructing
a clique tree for a given chordal graph due to Spinrad in [29]. For each vertex
U,y Un_1, ..., 02,01, Wwe add it into the tree and update the tree. For the current
vertex v;, let v; := min{N;(v;)}. Then, in Spinrad’s algorithm [29], there are
two cases to be considered: N-;(v;) = C(v;) or Ns;(v;) C C(v;). The first
case is simple; just add v; into C'(v;). In the second case, Spinrad’s algorithm
adds a new maximal clique C(v;) that consists of N-;(v;) U {v;}. However, in
our algorithm, involved case analysis is required. For example, in the latter
case, the algorithm has to handle three vertex sets; two maximal cliques {v;}U
N-;(v;) and C(v;) together with one vertex set N-;(v;) shared by them. In this
case, intuitively, our algorithm makes three distinct sets Cyy with £(Cyy) =
{v;}, Cp with £(CL) = N=i(v;), and C with ¢(C') = C(v;) \ N>;(v;), and adds
two arcs (Cyr, Cr) and (C, Cp); this means that v; is in Cpy = N+;(v;) U {w;},
C' is a clique C(v;), and C}, is the vertex set shared by C); and C. However,
our algorithm has to handle more complicated cases since the set C'(v;) (and
hence N-;(v;)) can already be partitioned into some vertex sets.

In T)(C(G)), each node C stores its label ¢(C'). Hence each vertex in G' ap-
pears exactly once in the tree. To represent it, each vertex v has a pointer
to the node C(v) in C(G) = M(G) U L(G). The detail of the algorithm
is described as CLIQUELAMINARTREE shown in Fig. 3, and an example of
the construction is depicted in Fig. 4. In Fig. 4, the left-hand graph gives a
ptolemaic graph (as same as Fig. 2), and the right-hand trees are clique lam-
inar trees constructed (a) after adding the vertices 16, 15,14, 13,12, 11, (b)
after adding the vertices 16, 15,14, 13,12, 11,10, (c) after adding the vertices
16,15,14,13,12,11,10,9,8, and (d) after adding all the vertices. We show the
correctness and a complexity analysis of the algorithm.

10

Fig. 3. Algorithm: CLIQUELAMINARTREE
Input: A ptolemaic graph G = (V, E) with a PEO vy, v,...,v, by the LBFS.
Output: A clique laminar tree 7.
1: initialize T" by the clique Cy/(v,,) := {v,} and set the pointer from v,, to Cy(vy,);
2: for i :=n —1 down to 1 do

3: let v; == min{N5;(v;)};
4: switch condition of N-;(v;) do
5: case (1) N>i<vi> = OM(’Uj)
6: update K(OM(U])) = E(OM(UJ)) U {Ul} and |OM(U])| = |CM(’U])| + 1;
7 set Car(v;) == Cpr(vy);
8: case (2) Ns;(v;) = Cp(v;)
9: make a new maximal clique Cj(v;) with £(Cps(v;)) = {v;}
and |Cy(v;)| = |Cr(vy)| + 1;
10: add an arc (C(v;), Cr(vy));
11: case (3) Nxi(v;) C C(vy) and [£(C(v)))] = |C(v))]
12: update £(C(v;)) :=€(C(v;)) \ Nsi(v;)
and [£(C(v)))| = [L(C(v))] = [Nsi(wi)l;
13: make a new vertex set L := N;(v;) with ¢(L) := N;(v;)
and |L] = |No(vy)]
14: make a new maximal clique Cy(v;) with £(Ch(v;)) = {v; }
and |Cy(v)| := |L| + 1;
15: add arcs (C(v;), L) and (Cp(v;), L);
16: case (4) Ns;(v;) C C(v;) and [€(C(vy))] < |C(v;)]
17: make a new vertex set L := Ns;(v;) with ((L) := Nx;(v;) N €(C(vy))
and |L] = |Nou(vy)]
18 update ((C(1y) — ((C(u3)\ L and [((C(0))] = [0(C(0)] — |L]
19: make a new maximal clique Cy(v;) with £(Cy(v;)) = {v; }
and |Cy(vy)| = |L| +1;
20: remove the arc (C(v;), L") with L' C L and add an arc (L, L');
21: add arcs (C(v;), L) and (Cp(v;), L);
22: set the pointer from v; to C(v;);
23: return 7.

Fig. 4. A ptolemaic graph and its clique laminar tree.

11

We will use the following property of a PEO found by the LBFS of a chordal
graph:

Lemma 9 ([9, Theorem 1]) Let vy, vs,...,v, be a PEO found by the LBFS.
Then i < j implies max{N (v;)} < max{N(v;)}.

This property is one of basic properties of LBFS, and hence the proof is
omitted here. See Theorem 1 in [9], for example.

We assume that Algorithm CLIQUELAMINARTREE is going to add v;, and let
v; = min{Ns;(v;)}. We will show that all possible cases are listed, and in
each case, CLIQUELAMINARTREE correctly manages the nodes in C(G) and
their labels in O(deg(v;)) time. The following lemma drastically decreases the
number of possible cases and simplifies the algorithm.

Lemma 10 Let v, be max{N~;(v;)}. In addition, assume that the set N~;(v;)
has already been divided into some distinct vertex sets Ly, Lo, ..., Ly. Then,
there is an ordering of the sets such that v, € Ly C Ly C -+ C Ly,

PROOF. We first observe that G[{v;, v;i11,...,v,}] is ptolemaic if G is ptole-
maic since any vertex induced subgraph of a chordal graph is chordal, and any
vertex induced subgraph of a distance hereditary graph is distance hereditary.

We assume that there is a vertex set L C N-;(v;) such that L does not con-
tain vg. Then, there is a vertex vy with i > ¢ that makes the vertex set L
before v;. Since {vy, v} &€ E, by Lemma 9, vy has another neighbor vy with
k' > k. By the property of the LBFS, it is easy to see that G[{v,...,v,}] is
connected. Let M; be a maximal clique {v;} U N5;(v;), and M; be a maximal
clique that contains {vy} U L. Then, M; N M; = L which contains no vertex
in G[{vg,...,v,}]. On the other hand, we have {v;, v}, {vy, vp} € E. Hence,
M;NM; does not separate M;\ M and My \ M;. Therefore G[{v;, viy1, ..., 0n}]
is not ptolemaic by Theorem 1(3), which is a contradiction. Thus we have

v € L, and hence, all the vertex sets Li, Ls,..., L, contain vg. The ver-
tex set Ns;(v;) is contained in a maximal clique in the ptolemaic graph
G[{vi,vis1,...,v,}]. Hence by Theorem 3, Ly, Lo, ..., Lj, are laminar. There-

fore, we have vy € L1 C Ly C --- C L;, for some appropriate ordering. O

Proof of Theorem 8. Since the graph G is chordal and the vertices are
ordered in a perfect elimination ordering, N;(v;) induces a clique. By Lemma
10, we have three possible cases; (a) Ns;(v;) = C(v;), (b) Ns;(v;) C C(v;)
and there are no vertex sets in N;(v;), and (¢) Ns;(v;) C C(v;) and there are
vertex sets Ly C Ly C -+ C L C N+;(v;). In the last case, we note that L;, #
N-;(v;); otherwise, we have v; € Ly, or consequently, L, = C(v;) = Nxi(v;),
which is case (a).

12

(a) Nsi(v;)) = C(vj): We have two subcases; C(v;) is a maximal clique
(i.e. Nui(v;) = Cum(v;)) or C(v;) is a non-maximal clique (i.e. Ns;(v;) =
CL(v;)). In the former case, we just update Cy(v;) by Cur(vj) U {v;}. This
is case (1) in CLIQUELAMINARTREE. In the latter case, there is another ver-
tex set that contains C(v;) as a subset. Thus we add a new maximal clique
C'r(v;)U{v; }. More precisely, we add a new node Cy(v;) with £(Cs(v;)) = {v;}
and |Cy(v;)| = |Cp(vj)| + 1, and a new arc (Cy(v;), Cp(v;)). This is done
in case (2) of CLIQUELAMINARTREE. We can check if N.;(v;) = C(v;) by
checking if |Ns;(v;)| = |C(v;)| in O(1) time. Thus the time complexity is
O(1) in both cases.

(b) N-i(v;) C C(vj) and there are no vertex sets in N-;(v;): We re-
move N-;(v;) from C(v;) and make a new vertex set N-;(v;) shared by C(v;)
and Cy(v;) = {v;} U N5;(vj). We can observe that Ns,(v;) C C(v;) and
there are no vertex sets in N-;(v;) if and only if |Ns;(v;)| < |C(v;)| and
[((C(vj))| = |C(v;)|. Thus, CLIQUELAMINARTREE recognizes this case in
O(1) time, and handles it in case (3). It is easy to see that case (3) can be
done in O(|Ns;(v;)|) = O(deg(v;)) time. We note that, in this case, we do not
mind if C(v;) is maximal or not. In any case, the property does not change
for C(v;).

(¢) Nsi(v;) C C(v;) and there are vertex sets Ly C Ly C --- C L, C
N-;(v;): We first observe that the nodes Ly, Lj,_1, ..., Ly, Ly with C(v;) form
a directed path (C(v;), Ly, ..., L1) in T in the case. (Hence we can recognize
this case in O(|Ns;(v;)|) = O(deg(v;)) time, which will be used in Theorem
11.) Thus we make a new vertex set L := N-;(v;) with ¢(L) = N;(v;) \ Lp.
The set N-;(v;)\ Ly, is given by N+, (v;)N€(C(v;)). Then we update £(C(v;)) by
0(C(v;))\ Nsi(v;). It is easy to add a maximal clique Cys(v;) = {v; } U N5, (v;).
Next, we have to update arcs around C(v;). By Lemma 10, this process is
simple; we can find L, in O(deg(v;)) time, and there is no other vertex set L’
that has an arc (C'(v;), L") which has to be updated. We note that there can
be some vertex set L' with an arc (C'(v;),L'). But L’ is independent from L
in this case, and hence we do not have to mind it. Finally, we change the arc
(C(vy;), Lp) to (L, Ly), and add the arcs (C(v;), L) and (Ca(v;), L). Therefore
the time complexity in the last case is O(deg(v;)) time.

By the above case analysis, Theorem 8 is settled. O

13

4 Applications of Clique Laminar Trees
4.1 The Recognition Problem

Theorem 11 The recognition problem for ptolemaic graphs can be solved in
linear time.

PROOF. Using the LBFS, we can obtain a perfect elimination ordering of GG
in linear time if G is chordal (and reject it if G is not chordal). For a chordal
graph, we run modified CLIQUELAMINARTREE. It is not difficult to modify
CLIQUELAMINARTREE to reject it if G is not distance hereditary. The key
fact is that, if G is ptolemaic, N-;(v;) corresponds to a maximal directed path
in T)(C(G)) as follows; suppose that we have vertex sets L; C Ly C -+ C
L, C N-;(v;) C C(v;) in case (c) in the proof of Theorem 8. In this case, (1)
the nodes form a connected directed path (C(v;), Ly, ..., L2, L1) in ?(C(G)),
(2) there are no other set L with L C Ly, (3) all vertices in L; (and hence
LyULyU---ULy) belong to Ns;(v;), and (4) some vertices in C(v;) may not
be in Nx;(v;). Checking them can be done in O(|N=;(v;)|) = O(deg(v;)) time
for each 7, and otherwise, the vertex sets in the tree are not laminar, and hence
they would be rejected. Cases (a) and (b) can be seen as special cases of case
(¢). Therefore, the total running time of the modified CLIQUELAMINARTREE
is still O(n +m). O

We note that the result in Theorem 11 is not necessarily new. Since a graph
is ptolemaic if and only if it is chordal and distance-hereditary [20], distance
hereditary graphs are recognized in linear time [5,10,11,18], and chordal graphs
are also recognized in linear time [28,31], we have Theorem 11 by combining
them. We dare to state Theorem 11 to show that we can recognize if a graph
is ptolemaic and then construct its clique laminar tree at the same time in
linear time, and the algorithm is much simpler and more straightforward than
the combination of known algorithms. (As noted in Introduction, the linear
time algorithm for recognition of distance hereditary graphs is not so simple.)

4.2 The Graph Isomorphism Problem

Theorem 12 The graph isomorphism problem for ptolemaic graphs can be
solved in linear time.

14

PROOF. Given a ptolemaic graph G = (V, E), the labeled clique laminar
tree T(C(G)) is uniquely determined up to isomorphism: Maximal cliques
are uniquely determined, and so are M(G) and C(G). By Theorem 3, they
form a laminar structure, and hence ?(C (G)) is the unique tree structure
for given ptolemaic graph G by Lemma 2. Each vertex in V' appears once in
T)(C(G)), and the number of nodes in ?(C(G)) is at most 2|V| —1 by Lemma
2(2). Thus the representation of T)(C (GQ)) requires O(|V|) space. The graph
isomorphism problem for labeled trees can be done in linear time (see, e.g.,
[25]), which completes the proof. O

It is worth mentioning that the graph isomorphism problem can be solved in
O(n) time if a ptolemaic graph is given in the tree representation.

4.3 The Hamiltonian Cycle Problem

We assume that a ptolemaic graph G = (V, E) is given by a directed clique
laminar tree T(C (@) = (C(G), A(@)). Then the main theorem in this section

is the following:

Theorem 13 The Hamiltonian cycle problem for ptolemaic graphs can be
solved in O(n) time.

We remind that ?(C (G)) takes O(n) space. We then remind that each clique
C in C is a separator of GG; removing C' makes G disconnected. Hence, if
T)(C(G)) contains a vertex set C with |C| = 1, G does not have a Hamiltonian
cycle. This condition can be checked in O(n) time over T(C (@)). Therefore,
hereafter, we assume that any vertex set C' in C satisfies |C] > 1.

Let L be a vertex set in C(G). We remind that the notions in ordinary trees are
slightly abused on ?(C (G)): A root has indegree 0, and a leaf has outdegree
0. That is, each maximal clique corresponds to a root. Note that a vertex set
can have two or more parents when it is shared by some maximal cliques. We
define ancestors and descendants as in ordinary trees. We regard any node L as
an ancestor and descendant of itself. We denote by ¢(L) and p(L) the number
of children of L and the number of parents of L in T(C(G)), respectively.
Hence p(M) = 0 for each maximal clique M, and ¢(L) = 0 for each minimal
vertex set L.

The basic idea to construct a Hamiltonian cycle is as follows. By Lemma 4,
each clique L in ?(C(G)) is a separator of its parents P, ..., P;. Hence, to
visit all vertices, at least k edges in L has to be used to join the parents. More
precisely, each edge will replaced by a path which visits all vertices in a parent

15

Fig. 6. Connection of children and par-

Fig. 5. Assignment of an edge to a path. ents.

and its ancestors. If L has enough vertices (and edges) in ¢(L), they can be
used. However, if /(L) does not have enough resources, L has to use some edges
which are in ¢(C') where C' is a child or descendants of L. This observation
also means that some parents may require two or more edges from ¢(L) to join
their ancestors, and hence L and its descendants may have to provide more
than k edges. Thus, we will say margin of L which is the number of edges in
L that ancestors can use. For an arc (P, L), a distribution is that the number
of edges L provides to P and its ancestors. In other words, we will consider
assignment of a path in L to each parent. We will say that L has feasible
distribution if the total distribution of arcs to L is less than or equal to the
margin of L; that is, L and its descendants have enough edges to join their
parents and ancestors. We give more detailed discussion below.

(i) We first consider a minimal vertex set L with ¢(L) = 0. By Lemma 4,
each L in L(G) is a separator of G. We can see that if we remove L from G,
we have p(L) connected components. Hence, if |L| < p(L), G cannot have a
Hamiltonian cycle. On the other hand, when |L| = p(L), any Hamiltonian
cycle uses all vertices in L to connect each connected components. This fact
can be seen as follows (Figure 5); we first make a cycle of length |L| in L,
and next replace each edge by a path through the vertices in one vertex set
corresponding to a child of the node L. We then assign each edge to distinct
parent of L. (When |L| = 2, we temporarily assign two (multi)edges.) If
|L| > p(L), we can construct a Hamiltonian cycle that uses |L| — p(L) edges
in G[L]. In this case, we need to assign p(L) edges in L to construct a cycle, and
we also have |L| —p(L) edges which can be assigned in some other ancestors.
We then define the margin m(L) by |L| —p(L) = |¢(L)| — p(L). That is, if
m(L) < 0, G has no Hamiltonian cycle, and if m(L) > 0, we have extra m(L)
edges in L which can be assigned in some ancestors. We note that a margin
can be inherited only from a descendant to an ancestor.

We here define a distribution 6((C;, C;)) of the margin, which is a function

assigned to each arc (C},C;) € T(C(G)) Let Py,..., Py be the parents of
L. Thenfori=1,2,...,p(L) each arc (P;, L) has a distribution §((P;, L)) with

16

?iLl)é((Pi,L)) = m(L). That is, each parent P; inherits 6((P;, L)) margins
from L, and some ancestors of P; will consume §((P;, L)) margins from L. The
way to compute the distribution will be discussed later.

(ii)) We next consider a vertex set L with ¢(L) > 0 and p(L) > 0, that is, L
is a vertex set which is not minimal. Let C4,C5, ..., C}, be children of L and
Py, P, ..., P, parents of L in T(C(G)) That is, we have C; C L C P; for each
itand jwithl <i<h=c¢(L)and 1 <j<k=p(L) (k=p(L) =0 when L is
a maximal clique). We assume that m(C;) and 6((L, C;)) are already defined
for each C;, and m(C;) > 0 (otherwise G does not have any Hamiltonian
cycle). As in the first case, we have to assign p(L) edges in L. In this case,
each child C; can be used as a single vertex if §((L, C;)) = 0 (Figure 6); we first
cut (remove) the assigned edge in C; for L, and replace it by the path through
all vertices in L and its parents. If 6((L, C;)) > 0 for some C;, we can use the
additional vertices to connect parents P;. Hence the margin m(L) is defined
by [((L)| +h+ 300 6((L,C) —k = [((L)] + Ty (8((L, C)) + 1) — k. The
distribution of the margin is defined as the same as in the first case; §((P;, L))
is a function such that >, §((P;, L)) = m(L).

The above discussion leads us to the following theorem:

Theorem 14 Let G = (V, E) be a ptolemaic graph. Then G has a Hamilto-
nian cycle if and only if there exist feasible distributions of margins, that is,
each vertex set L in C satisfies m(L) > 0.

We can see that the margin m(M) for any maximal clique M is positive in
case (2) since k = 0. In other words, every maximal clique M does not require
any distribution of margins from its parents.

Our linear time algorithm, say A, runs on T'(G); A collects the leaves in T'(G),
computes the margins, and repeats this process by computing the margin of L
such that all neighbors of L have been processed except exactly one neighbor.
The precise procedure for each vertex set L is described as follows:

(1) When the vertex set L is a leaf of T'(G), L is a maximal clique in G, and
hence §((L,C)) is set to 0, where C' is the unique child of L.

(2) When L is not a leaf of T(G), let Cy,Cy,...,Cy be children of L in
?(C(G)), Py, Py, ..., P, parents of L in ?(C(G)), and X be the only neigh-
bor which is not processed. Without loss of generality, we assume that either
X = Cy or X = P,. To simplify the notation, we define ¥ =h—1 and k' =k
if X =Cp,and Y =h and ¥ =k — 1 if X = P,. We have three subcases.

(a) If L is a maximal clique in G, or k = 0, L requires no distribution of
margins. Hence, A assigns 0((L, X)) = 0 (since X C L).

17

Fig. 7. Definition of margins.

(b) If L is a minimal vertex set with & > 0, h = 0, we have X = P;. Then A
first computes m(L) = [¢(L)| — k’. Then, for each ¢ with i« = 1,2,... K,
each parent P; has been processed, and it requires distribution §((P;, L))
to L. Hence A computes &'((X,L)) = m(L) — X5, 6((P, L)) = [¢(L)] —

M (6((P;, L) +1). If &((X, L)) < 0, G has no Hamiltonian cycles. Other-
wise, A sets 0((X, L)) :=0'((X, L)).

(¢) When L is not a maximal clique with & > 0 and A > 0, A first com-
putes the margin m(L) = [¢(L)| + X1, (5((L,Cy)) + 1) — K. Next, A dis-
tributes the margin m(L) to the parents Pi,..., Py by computing §' :=
m(L) =Y 6((Py, L)) = [((L)] + 2, (6((L, Gi)) +1) = S (5((F;, L)) +1).
The value ¢ indicates the margin that will be exchanged between L and X.

If X = P, that is, (X, L) is the arc in ?(C(G)), A distributes all margins
d" to X, or sets 0((X, L)) = §. The margin can be inherited from a child to
a parent. Thus, in this case, if ' < 0, G has no Hamiltonian cycles. When
0" >0, A will use the margin ¢’ when it processes the vertex set X.

On the other hand, if X = (Y, that is, (L, X) is the arc in T)(C(G)), the
margin will be distributed from X to L. Hence, if 0’ < 0, the vertex L borrows
margin ¢’ from X which will be adjusted when the vertex X is chosen by A.
Thus A sets §((L, X)) = —¢' in this case. If ' > 0, the margin is useless since
the child X only counts the number of its parents L, and does not use their
margins. Therefore, 6((L, X)) will not be used, and hence A does nothing.

(3) When L is the last node of the process; that is, every value of 6((L, L"))
for each neighbor L’ of L has been computed. Let Cy,Cs, ..., C}, be children
of L in ?(C(G)), and P, P, ..., P, be parents of L in T)(C(G)) In this case,
A computes m(L) = [((L)] + S, (5((L, C)) + 1) — S5, (8((P, L)) + 1), If
m(L) < 0, L does not have enough margin. Hence G has no Hamiltonian cycle.
Otherwise, every node has enough margin, and hence G has a Hamiltonian
cycle.

A simple example is depicted in Figure 7, where {1,2,...,7} induces a clique;
the node L with ¢(L) = {1, 2,3} has margin 1, and the arc from L’ to L with

18

L' ={1,2,3,4,5} has distribution 1. The other nodes have margin 0, and the
other arcs have distribution 0. Hence the graph in Figure 7 has a Hamiltonian
cycle, e.g., (1,8,2,9,3,10,4,11,5,14,16,15,7,12,6, 13, 1).

The correctness of A can be proved by a simple induction for the number of
nodes in ?(C (G)) with Theorem 14. On the other hand, since T'(G) contains
O(n) nodes, the algorithm runs in O(n) time and space, which completes the
proof of Theorem 13. We note that the construction of a Hamiltonian cycle
can be done simultaneously in O(n) time and space.

5 Concluding Remarks

In this paper, we present a new tree representation (data structure) for ptole-
maic graphs. The result enables us to use the dynamic programming technique
to solve some basic problems on this graph class. We presented a linear time
algorithm for the Hamiltonian cycle problem, as one of such typical examples.
To develop such efficient algorithms based on the dynamic programming for
other problems are future works.

We note that, recently, one of the authors and his colleagues extend the al-
gorithm for the Hamiltonian cycle problem, and obtain a polynomial time
algorithm for finding a longest cycle and path in a ptolemaic graph [30].

Acknowledgment

The authors are grateful to anonymous referees, who give numerous sugges-
tions, and tell us the relationship between our results and those in relational
database theory.

References

[1] H.-J. Bandelt and H.M. Mulder. Distance-Hereditary Graphs. Journal of
Combinatorial Theory, Series B, 41:182—-208, 1986.

[2] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database schemes. Journal of the ACM, 30(3):479-513, 1983.

[3] A. Brandstddt and F.F. Dragan. A Linear-Time Algorithm for Connected
r-Domination and Steiner Tree on Distance-Hereditary Graphs. Networks,
31:177-182, 1998.

19

[4] A. Brandstddt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. SIAM
Monographs on Discrete Math. and Appl., Vol. 3, 1999.

[5] A. Bretscher, D. Corneil, M. Habib, and C. Paul. A Simple Linear Time
LexBFS Cograph Recognition Algorithm. In Graph-Theoretic Concepts in
Computer Science (WG 2003), pages 119-130. Lecture Notes in Computer
Science Vol. 2880, Springer-Verlag, 2003.

[6] H.J. Broersma, E. Dahlhaus, and T. Kloks. A linear time algorithm for
minimum fill-in and treewidth for distance hereditary graphs. Discrete Applied
Mathematics, 99:367-400, 2000.

[7] M.-S. Chang, S.-Y. Hsieh, and G.-H. Chen. Dynamic Programming on
Distance-Hereditary Graphs. In Proceedings of 8th International Symposium
on Algorithms and Computation (ISAAC ’97), pages 344-353. Lecture Notes in
Computer Science Vol. 1350, Springer-Verlag, 1997.

[8] M.-S. Chang, S.-C. Wu, G.J. Chang, and H.-G. Yeh. Domination in distance-
hereditary graphs. Discrete Applied Mathematics, 116:103-113, 2002.

9] D.G. Corneil. Lexicographic Breadth First Search — A Survey. In Graph-
Theoretic Concepts in Computer Science (WG 2004), pages 1-19. Lecture Notes
in Computer Science Vol. 3353, Springer-Verlag, 2004.

[10] D.G. Corneil, Y. Perl, and L.K. Stewart. A Linear Recognition Algorithm for
Cographs. SIAM Journal on Computing, 14(4):926-934, 1985.

[11] G. Damiand, M. Habib, and C. Paul. A Simple Paradigm for Graph
Recognition: Application to Cographs and Distance Hereditary Graphs.
Theoretical Computer Science, 263:99-111, 2001.

[12] A. D’Atri and M. Moscarini. Distance-Hereditary Graphs, Steiner Trees, and
Connected Domination. SIAM Journal on Computing, 17(3):521-538, 1988.

[13] A. D’Atri and M. Moscarini. On Hypergraph Acyclicity and Graph Chordality.
Information Processing Letters, 29:271-274, 1988.

[14] R. Fagin. Degrees of Acyclicity for Hypergraphs and Relational Database
Schemes. Journal of the ACM, 30(3):514-550, 1983.

[15] M. Farber. Independent Domination in Chordal Graphs. Operations Research
Letters, 1(4):134-138, 1982.

[16] F. Gavril. Algorithms for Minimum Coloring, Maximum Clique, Minimum
Covering by Cliques, and Maximum Independent Set of a Chordal Graph. SIAM
Journal on Computing, 1(2):180-187, 1972.

[17] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of
Discrete Mathematics 57. Elsevier, 2nd edition, 2004.

[18] P.L. Hammer and F. Maffray. Completely Separable Graphs. Discrete Applied
Mathematics, 27:85-99, 1990.

20

[19] E. Howorka. A Characterization of Distance-Hereditary Graphs. Quart. J.
Math. Ozford (2), 28:417-420, 1977.

[20] E. Howorka. A Characterization of Ptolemaic Graphs. Journal of Graph Theory,
5:323-331, 1981.

[21] S.-Y. Hsieh, C.-W. Ho, T.-S. Hsu, and M.-T. Ko. The Hamiltonian Problem on
distance-hereditary graphs. Discrete Applied Mathematics, 154:508-524, 2006.

[22] R.-W. Hung and M.-S. Chang. Linear-time algorithms for the Hamiltonian
problems on distance-hereditary graphs. Theoretical Computer Science,
341:411-440, 2005.

[23] S. i. Nakano, R. Uehara, and T. Uno. A New Approach to Graph Recognition
and Applications to Distance Hereditary Graphs. In 4th Annual Conference on
Theory and Applications of Models of Computation (TAMC 07), pages 115-127.
Lecture Notes in Computer Science Vol. 4484, Springer-Verlag, 2007.

[24] P.N. Klein. Efficient Parallel Algorithms for Chordal Graphs. SIAM Journal
on Computing, 25(4):797-827, 1996.

[25] J. Kobler, U. Schoning, and J. Toran. The Graph Isomorphism Problem: Its
Structural Complezity. Birkh&user, 1993.

[26] B. Korte and J. Vygen. Combinatorial Optimization, volume 21 of Algorithms
and Combinatorics. Springer, 2000.

[27] F. Nicolai and T. Szymczak. Homogeneous Sets and Domination: A Linear Time
Algorithm for Distance-Hereditary Graphs. Networks, 37(3):117-128, 2001.

[28] D.J. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic Aspects of Vertex
Elimination on Graphs. SIAM Journal on Computing, 5(2):266-283, 1976.

[29] J.P. Spinrad. Efficient Graph Representations. American Mathematical Society,
2003.

[30] Y. Takahara, S. Teramoto, and R. Uehara. Longest Path Problems on Ptolemaic
Graphs. IEICE Transactions, E91-D(2):170-177, 2008.

[31] R.E. Tarjan and M. Yannakakis. Simple Linear-Time Algorithms to Test
Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce
Acyclic Hypergraphs. SIAM Journal on Computing, 13(3):566-579, 1984.

[32] R. Uehara and Y. Uno. Laminar Structure of Ptolemaic Graphs and Its
Applications. In 16th Annual International Symposium on Algorithms and
Computation (ISAAC 2005), pages 186-195. Lecture Notes in Computer Science
Vol. 3827, Springer-Verlag, 2005.

[33] H.-G. Yeh and G.J. Chang. Centers and medians of distance-hereditary graphs.
Discrete Mathematics, 265:297-310, 2003.

21

