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Abstract. This chapter surveys recent progress in constant-working-
space algorithms for problems related to image processing. An extreme
case is when an input image is given as read-only memory in which
reading an array element is allowed but writing any value at any array
element is prohibited, and also the number of working storage cells avail-
able for algorithms is at most some constant. This chapter shows how
a number of important fundamental problems can be solved in such a
highly constrained situation.

1 Introduction

Recent progress in image related technologies is remarkable. High-resolution dig-
ital camera and digital movie camera are now widely used. The image size is
monotonically increasing and it is time now to restart the design of various
image-processing algorithms from a view point of memory consumption. In this
chapter we propose a new model of computation in this direction and survey
some new attempts to reduce working space, especially, how to design constant-
working space algorithms in image processing.

Another requirement of limited working storage comes from applications to
built-in or embedded software in intelligent hardwares. Digital cameras and scan-
ners are good examples of intelligent hardware. We measure the space efficiency
of an algorithm by the number of working storage cells (or the amount of working
space) used by the algorithm. Ultimate efficiency is achieved when only constant
number of variables are used in addition to input array(s). We call such an algo-
rithm a constant working space algorithm. Strictly speaking, there are two types
of such algorithms. One should be rather referred to as an in-place algorithm.
In this type of algorithms, input data are given by some constant number of
arrays. Those arrays can be used as working space although there must be some
upper limit on values to be stored in those arrays. Heapsort is a typical in-place
algorithm. Ordinary implementation of mergesort requires a working array of
the same size as the input array and thus it is not in-place. Recently there are
some attempts to design in-place versions of the mergesort [17,18,20,22,25].
Quicksort does not require any array, but it is not in-place since its recursion
depth depends on input size (O(logn) in average) which should be included in
the working storage.



The other type of constant-working-space algorithm satisfies that condition
in a more strict sense. That is, it should not use any working space of size
dependent on input size and an array storing input data is given as read-only
memory so that no value in the array can be changed. Constant-working-space
algorithms for image processing in [1, 3,4] are in-place algorithms in this sense.
The algorithm for image scan with arbitrary angle [2] is a constant-working-
space algorithm with input in read-only memory. The same framework has been
studied in complexity theory. A typical problem is a so-called “st-connectivity”
problem: given an undirected graph G with n vertices in read-only memory, and
two vertices s and t in G, determine whether they are connected or not using
only a constant number of variables of O(logn) bits. Reingold [38] succeeded for
the first time in proving that the problem can be solved in polynomial time. It
is a great break-through in this direction.

One of the most fundamental problems in image processing is Connected
Components Labeling in which we are requested to label each pixel in a given
binary image by a component number (index) to which the pixel belongs [5,
13,29, 30, 36,39, 41]. Its simplified version is Connected Components Counting,
which just requires to count the number of connected components in an input
binary image. These problems are well studied in the image processing literature
(see [27,40] for survey). Figure 1 shows an example of connected components
labeling. An input binary image shown in the left contains four connected com-
ponents. Each white pixel is replaced by its component number (index), which
is shown in the right.

00000000000000000000000
01111000000000111000110
00111000000000011100110
00011101111000000111000
00000111011000000000000
00000110001000000000000
00000110001000000000000
00001111111111111000000
00000000000000011000000
01111111111000000000000
00111000001111100000000
00001111111100000000000
00000000000000000000000

00000000000000000000000
01111000000000222000330
00111000000000022200330
00011101111000000222000
00000111011000000000000
00000110001000000000000
00000110001000000000000
00001111111111111000000
00000000000000011000000
04444444444000000000000
00444000004444400000000
00004444444400000000000
00000000000000000000000

Fig. 1. Connected Components Labeling. An input binary image (left) and a result of
connected components labeling.

In Connected Components Labeling each white pixel(one of value 1) is labeled
by some positive integer assigned to a component to which the pixel belongs.
Thus, it seems impossible to have a constant-working-space algorithm with input
image in read-only memory. If we could put some information on the input
array, we could label each pixel without using any extra array. More formally,
there is an in-place algorithm for the problem [4] which runs in linear time.



The same algorithm can be extended to Connected Components Counting on
read-only memory. An unpublished algorithm by the author finds the number
of components in O(N log N) time where N is the total number of pixels in the
binary image.

Space-efficient algorithms have been rigorously investigated in computational
geometry [8,10,14,11,15]. The read-only memory model is not so popular in
the community, but the author believes that there is a considerable number of
interesting problems in this direction.

2 New Computation Models

In this section we describe our computation model. Our model is based on a
popular RAM (Random Access Machine) Model:

(Polynomially-bounded) RAM model

Input size: Input size is denoted by n.

Storage Size: The total size of working storage (or the total number of working
storage cells) available must be bounded by some polynomial in n. Each
cell or element (variable or array element) in the working space used in an
algorithm has O(logn) bits.

Recursive Call: Implicit storage consumption required by recursive calls is
also considered as a part of working space. In other words, if the maximum
depth of recursive calls is k, then they contribute to the working space by
O(k).

Memory Access: Any memory cell can be accessed in constant time indepen-
dently of n. Further, any basic arithmetic operation is done in constant time.

Basic Assumption on Image Array

Image Size: We assume an intensity image (without color, for simplicity). The
total number of pixels in an input image is denoted by N. An image is given
as a rectangular array of size h x w, where h and w are the numbers of rows
and columns, respectively, and hence we have N = h x w. We assume that
both of h and w are O(v/N).

Intensity Levels: Each pixel has some nonnegative intensity level, which is
assumed to be an integer between 0 and L. That is, an intensity level is
expressed in log, L bits. We implicitly assume L < N.

Our goal here is to develop space-efficient algorithms for image processing,
which require only small amount of working storage in addition to an input
image array. An extreme situation is to allow only constant number of variables
in algorithms. Throughout this chapter we implicitly assume that each variable
in any algorithm has O(log N) bits, sometimes, exactly log, NV bits. Such an
algorithm is commonly referred to as an log-space algorithm in the complexity
theory since the total number of bits in working space is bounded by O(logn)



for an algorithm with input of size n. In this chapter we use the term ”constant-
working-space algorithm” instead of log-space algorithm since it is more intuitive
for image processing.

Here is a classification of algorithms from space efficiency. Algorithms for
image processing are usually allowed to use a constant number of arrays of the
same size as that of an input image array. We are sometimes allowed to use
only a one-dimensional array to keep some rows or columns in an image. In an
extreme case we are allowed to use only constant number of variables in addition
to the image array.

Variation on Space-Efficiency

Linear Working Space: A constant number of arrays of the same size as that
of an input image array are allowed as working storage cells.

O(v/'N) Working Space: A constant number of one-dimensional arrays of size
O(V/'N) are allowed as working storage cells. Each such array is as large as
a row or a column of the input image.

Constant Working Space: Only a constant number of variables are allowed
as working storage cells.

Our polynomially-bounded RAM model assumes that every memory element
can be accessed in constant time. More precisely, given an index in an array, we
can read and write the element of the index in constant time. Note that the
content of the element is of O(log N) bits. We could also consider a model in
which an image array can be accessed in a read-only manner. That is, we can
read any pixel value in constant time, but we are not allowed to modify any pixel
value. In this chapter we distinguish the two models by read-write and read-only
models.

Accessibility to Image Array

Random-Access Model: Any pixel value can be altered to any value of O(log V)
bits.

Read-Only Model: We can read any pixel value in constant time, but we are
not allowed to alter any pixel value.

3 Hardware Assistance

Suppose we have a range sensor which can measure its distance from the sensor
to the closest obstacle in any direction. Whenever a direction is specified, we can
measure the corresponding distance in constant time. In this situation there is
no need to store distance values at all possible directions in a two-dimensional
array. Whenever we need a distance in some direction, we can measure it at
constant time.

We have a similar situation for object embedding. Suppose a set of n objects
is given and for each pair of objects (i,7) their dissimilarity is denoted by J; ;.
Using the dissimilarity information, we want to map objects into points in a low



dimensional space while dissimilarities are preserved as the distances between the
corresponding points. We often encounter this situation in practice. Converting
distance information into coordinate information is helpful for human perception
because we can see how close two objects are. Because of its practical importance,
this topic has been widely studied under the name of dimension reduction [7].

Multi-Dimensional Scaling (MDS) [16] is a generic name for a family of algo-
rithms for dimensionality reduction. Although MDS is powerful, it has a serious
drawback for practical use, that is, its high space complexity. The input to MDS
is an n X n matrix specifying pairwise dissimilarities (or distances). Asano et. [6]
proposes an approach for dimensionality reduction that avoids this high space
complexity if the dissimilarity information is given by a function that can be
evaluated in constant time.

A key idea in this linear-space algorithm for the distance preserving graph
embedding problem is to use clustering. They propose a simple algorithm for
finding a size-constrained clustering and show that their solution achieves the
largest inter-cluster distance, or maximizes the smallest distance between objects
from different clusters. That is, given a set of n objects, with a function evalu-
ating dissimilarities for pairs of objects, we embed those objects into points in a
low-dimensional space so that pairwise distances are as close to their dissimilar-
ities as possible. Then, the point set is partitioned into O(y/n) disjoint subsets,
called clusters, where each cluster contains O(y/n) points (objects). Formally,
using a positive integer ¢ the set is partitioned into k subsets C1,Cs,...,Cf in
such a way that each cluster contains at most 2¢ objects except possibly one
cluster which has at most ¢ elements. For ¢ = O(y/n) the number £ of clusters
and also the largest cluster size bounded by 2c¢ are both O(y/n). Since, each
cluster has a relatively small number of objects, and thus performing MDS with
a distance matrix for each cluster separately requires only O(n) working space.
Using this they devise linear space algorithms for embedding all the objects in
the plane.

4 Thresholding Intensity Images

Thresholding an intensity image into a binary image is one of the most impor-
tant and fundamental problems in image processing and a number of algorithms
have been proposed (see [27,34,36]). A simple algorithm is to use a histogram
which expresses frequencies of intensity levels. If there are two obvious peaks,
then any level separating them may work as a good threshold. Ohtsu’s thresh-
olding algorithm [34] is mathematically beautiful in the sense that the problem
is defined as a combinatorial optimization problem based on discriminant anal-
ysis. That is, it computes a threshold that maximizes the inter-cluster distance
between two clusters defined by the threshold. Once we have a histogram, we
can find an optimal threshold in linear time in the number of intensity levels,
i.e., O(L) time. To implement the algorithm we need O(L) working space for
the histogram. What happens if we have only constant working space?



Thresholding technique is applied in a wide range of applications. One of
them is fingerprint identification. Given a fingerprint image, the first step is to
convert it into a binary image. Our experience tells us that a threshold is good
for succeeding the fingerprint identification if ridges and valleys are of almost
equal widths. Statistics on those widths can be computed using a technique called
Euclidean Distance Transform, EDT [9, 26,30, 35,12]. Given a binary image, the
EDT computes the Euclidean distance from each pixel p to the pixel of opposite
value that is closest to p. Two linear-time algorithms are known for the EDT [9,
21]. An algorithm by Liang et al. [28] computes a threshold at which the average
width of ridges is closest to that of valleys based on binary search and Euclidean
distance transform. What happens if only constant working space is available?

4.1 Ohtsu’s Thresholding Algorithm

The Ohtsu’s thresholding algorithm is described as follows. Suppose we have
L intensity levels. Let h; be the number of pixels with intensity level ¢. Given
a threshold 7', we have two clusters, Cy and C; with Cy for intensity levels
0,1,...,7—1and Cy for T, T +1,...,L— 1. If the average intensity levels in Cy
and C; are po and p, respectively, then the intercluster-distance 6(7") between
Co and C is defined by

(1o(T) — i (T))?

"= e W

where

T-1 L-1
Col =D hiy [C1] =D hi,
i=0 =T

r-1 L—1
po(T) = (D ihi)/|Col,and iy (T) = (D ihi)/|C1-
i=0 i=T

Observation 1 [34] Let N be the number of pizels in a given image and L be
the number of intensity levels. Given such an image, we can find in O(N + L)
time using O(L) space in addition to the image array an optimal threshold that
mazximizes the intercluster distance.

We can find an optimal threshold using binary search. A key is to decide
whether a given threshold T is greater than an optimal threshold. For that
purpose we need to calculate the average intensity levels for two classes. First
of all we can easily compute the size |Cy| and |C4]| since it suffices to count
the number of pixels in the class Cp. It is done in O(N) time by scanning all
the pixels. Then, we evaluate the sums Zz:ol th; just by taking the sum of all
intensity levels that is less than 7', which is again done in O(N) time. Hence,
one step of the binary search is done in O(N) time. Since we need O(log L)
iterations, the total time required is O(N log L).



Observation 2 Let N be the number of pizels in a given image and L be the
number of intensity levels. Given such an image, we can find in O(N log L) time
using only constant working space in addition to the image array an optimal
threshold that mazimizes the intercluster distance.

Note that the binary search described above works only if each pixel has an
integral intensity level. If pixels have real values then it is impossible to find the
middle value in each iteration of the binary search. What can we do in this case?
Of course, randomization is one possible way, but is there any deterministic way?

One way is to use the median intensity level instead of one maximizing the
intercluster distance. What is the median intensity level? It is the median of
all intensity levels in a given intensity image. The assumption that each pixel
has some real value as its intensity level implies that the number of intensity
levels, L, is equal to the number of pixels, V. That is, we have L = N. How can
we compute the median of N such values using only constant working space?
Fortunately, there is an efficient algorithm [31]:

In the literature [31] the authors first present an efficient randomized algo-
rithm for selection, which looks quite efficient in practice.

Observation 3 [31] The k-th smallest from a list of n elements residing in a
read-only memory can be found using O(1) indexing operations and O(nlogn)
comparisons on the average.

They extend the result above further into the following observation:

Observation 4 [31] The k-th smallest from a list of n elements residing in a
read-only memory can be found using O(1) indices and O(nloglogn) compar-
isons on the average, if all the permutations of the given input are equally likely.

A key observation for their deterministic algorithm for selection is the following:

Observation 5 [31] The k-th smallest from a list of n elements residing in a
read-only memory can be found using O(in*T'/?) comparisons and O(i) indices
in the worst case, where i is any fived value (parameter) such that 1 < i <

\/logn/loglogn.

Using this observation, they obtain the following result.

Observation 6 [31] Given a read-only array of size n and a positive small
constant €, there is an algorithm which finds the median of the n elements in
O(n**¢) time using O(1/€) working space.

An important idea behind their algorithm is a controlled recursion. Recursion
is, of course, one of the most powerful algorithmic techniques, but recursion on
problems of size n may have O(logn) depth in the worst case, which requires
that much working space. In our case we must be careful so that the recursion
depth does not exceed some constant. In the above observation, the parameter
1 specifies the largest possible depth. The larger the value ¢ is the faster the
algorithm becomes, but at the same time it requires larger working space.
A number of related results are known [17-20,22-25,31-33, 37].



5 In-Place Algorithm for Rotated Image Restoration

Demand for high-performance scanners is growing as we are moving toward
paper-less society. There are a number of problems to be resolved in the current
scanner technology. One of such problems is correction of rotated documents.
An efficient in-place algorithm is presented in [1,2], which assumes that rotation
angle is detected by some hardware.

Once the rotation angle is obtained, it is easy to rotate the image if sufficient
working space is provided. Suppose input intensity values are stored in a two-
dimensional array a.,.] and another array b[.,.] of the same size is available.
Then, at each lattice point (pixel) in the rotated coordinate system we compute
an intensity value using appropriate interpolation (linear or cubic) using intensity
values around the lattice point (pixel) in the input array and then store the
computed interpolation value at the corresponding element in the array o[ ].
More precisely, for each pixel (z,y) in the rotated image we use 2d x 2d pixels
around the corresponding point in the input image for interpolation. The set of
pixels is denoted by N4(z,y). The window Ny(z,y) for interpolation is defined
by

Na(z,y) = {(',y') € G%, |
lz] —d+1<2' < [z] +d,
ly] —d+1<y' <l|y|+d}.

Finally, we output intensity values stored in the array b[ ].

This method, however, requires too much working storage. Is it possible to
implement the interpolations without using any extra working storage?

A space-efficient algorithm [1, 2] is presented for correcting rotation of a doc-
ument without using any extra working storage. A simple way of doing this is to
compute an interpolation value at each pixel in the rotated coordinate system
and store the computed value somewhere in the input array a[ | near the point
in the original coordinate system. Once we store an interpolation value at some
element of the array, the original intensity value at the element is lost and it
is replaced by the interpolation value. Thus, if the neighborhood of the pixel in
the rotated coordinate system includes interpolated values then the interpola-
tion at that point is not correct or reliable. One of the key observations is that
there is an easily-computable condition to determine whether interpolation at a
given pixel is reliable or not, that is, whether any interpolated value is included
in the neighborhood or not. Using the condition, we first classify pixels in the
rotated coordinate system into reliable and unreliable ones. In the first phase
we compute interpolation at each unreliable pixel and keep the interpolation
value in a queue, which consists of array elements outside the rotated subimage.
Then, in the second phase we compute interpolation at every pixel (z,y) in the
rotated coordinate system and store the computed value at the (z,y)-element in
the array. Finally, in the third phase for each unreliable pixel (z,y) we move its
interpolation value stored in the queue back to the (z,y)-element in the array.



5.1 Input image and rotated subimages

The input image G consists of h x w pixels. Each pixel (z,y) is associated with an
intensity level. The set of all those pixels (or lattice points in the zy-coordinate
system) is denoted by Gﬁh and its bounding rectangle by G-

The rotated subimage R consists of H x W pixels, which form a set R#V o
of pixels (or lattice points in the XY-coordinate system). An intensity level
at each pixel (X,Y) is calculated by interpolation using intensity levels in the
neighborhood.

We have two coordinate systems, one for the original input and the other
for the rotated document. They are denoted by zy and XY, respectively. The
rectangle corresponding to the input image is denoted by G, where w and h
are horizontal and vertical dimensions of the rectangle, respectively. By Gﬁh we
denote a set of lattice points in the rectangle. More precisely, they are defined
by

Gur ={(z,y) |0 <z <wand 0 <y < h}, and
G ={(x,y) |z =0,1,...,w—1, and y=0,1,...,h—1}.

We implicitly assume that intensity values are stored at array elements corre-
sponding to lattice points in the set Gﬁh. Now, we have another rectangle, which
is a bounding box of a rotated image. We denote it by Rw g, where W and H
are width and height of the rectangle, respectively. The set of lattice points in
Ry g is denoted by R#V - More precise definitions are given by

Rwuy ={(X,)Y)|0<X <Wand 0<Y < H}, and

R#VH ={(X, V)| X=0,1,...,W—-1, and Y =0,1,...,H — 1}.

Figure 2 illustrates two rectangles, G5 as ABCD and Rypg as PQRS.

5.2 Output image and location function

An interpolation value calculated at a pixel (X,Y) € R#V 7 in a rotated subimage
is stored (or overwritten) at some pixel s(X,Y) € Gﬁh in the original input
image. The function s( ) determining the location is referred to as a location
function. A simple function is s(X,Y) = (X,Y) which maps a pixel (X,Y) in
R#VH to a pixel (X,Y) in Gﬁh. We may use different location functions, but
this simple function seems best for row-major and column-major raster scans.
So, we implicitly fix the function.

5.3 Correspondence between two coordinate systems

Let (z9,y0) be the zy-coordinates of the lower left corner of a rotated document
(more exactly, the lower left corner of the bounding box of the rotated subimage).

Now, a pixel (X,Y) in Rﬁ,H is a point (z,y) in the rectangle G, with
r=x9+ Xcosf —Ysinf, and
Yy =1yo+ Xsinf + Y coséb.

The corresponding point (z,y) defined above is denoted by p(X,Y).
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Fig. 2. Two rectangles G, and Rwg.

5.4 Basic interpolation algorithm

The following is a basic algorithm for interpolation with a scan order ¢ and
location function s( ).

Basic interpolation algorithm
Phase 1:Scan rotated subimage
for each (X,Y) € Rﬁ,H in a scan order o do
- Calculate a location p(X,Y) = (z,y) in the zy-coordinate system.
- Execute interpolation at (z,y) using intensity levels in the window Ny(z,y).
- Store the interpolation value at a pixel s(X,Y) € Gﬁh.
Phase 2: Clear the margin
for each (z,y) € Gﬁh do
if no interpolation value is stored at (z,y)
then the intensity level at (z,y) is set to white.

The basic algorithm above is simple and efficient. Unfortunately, it may lead
to incorrect interpolations since when we calculate an interpolation value at some
pixel we may reuse intensity levels resulting from past interpolations. A more
precise description follows:

Suppose we scan pixels in a rotated subimage Rﬁ,H and an interpolation
value computed at each point (X,Y") is stored at the pixel specified by the lo-
cation function s(X,Y’). We say interpolation at (X,Y) € R#VH is reliable if



and only if none of the pixels in the window Ny(z,y) keeps interpolation value.
Otherwise, the interpolation is unreliable. ” Unreliable” does not mean that the
interpolation value at the point is incorrect. Consider an image with only one
intensity level. Then, interpolation does not cause any change in the intensity
value anywhere. Otherwise, if we use interpolated values for interpolation, the
computed value may be different from the true interpolation value. We use the
terminology "unreliable” in this sense. A pixel (X,Y) is called reliable if inter-
polation at (X,Y) is reliable and unreliable otherwise.

5.5 Lazy Interpolation and Local Reliability Test

An idea to avoid such incorrect interpolation is to find all unreliable pixels and
keep their interpolation values somewhere in a region which is not used for output
image. In the following algorithm we use a queue to keep such interpolation
values.

[Lazy Interpolation]
Q@: a queue to keep interpolation values at unreliable pixels.
for each pixel (X,Y) € R#VH in a scan order ¢ do
if (X,Y) is unreliable
then push the interpolation value at (X,Y) into the queue Q.
for each pixel (X,Y) € Rﬁ, 5 in the order o do
if (X,Y) is unreliable
then pop a value up from the queue @) and
store the value at the pixel s(X,Y).
else calculate the interpolation value at (X,Y)
and store the value at the pixel s(X,Y) € Gﬁh.

Here are two problems. One is how to implement the queue. The other is
how to check unreliability of a pixel. It should be remarked that both of them
must be done without using any extra working storage.

Suppose we scan pixels in a rotated subimage R#VH according to a scan
order o and interpolation using a window of size d around each point (X,Y)
is calculated and stored at an array element s(X,Y’) specified by the location
function. Now we can define another sequence 7 to determine an order of all
pixels in Gﬁh to receive interpolated values. That is, the function 7 is defined
so that

T(s(X,Y)) =0(X,Y)

holds for any (X,Y) € Rﬁ, g~ Since a rotated subimage is smaller than the
original image, some pixels in the original image are not used for output image.
That is, there are pixels (z,y) in Gﬁh such that there is no (X,Y) in R#VH with
(z,y) = s(X,Y). For such pixels (z,y) we define 7(x,y) = W H. More precisely,
7 is a mapping from Gﬁh to {0,1,...,WH} such that

7(z,y) =i < WH if i-th computed interpolation value is stored at (z,y) in Gﬁh,
7(z,y) = WH if no interpolation value is stored at (z,y).



Then, interpolation at (X,Y") is reliable in the sense defined in the previous

section if none of the pixels in its associated window keeps interpolated value,
that is,

T(z,y) > 0(X,Y) for each (z,y) € Nq(p(X,Y)).

This condition is referred to as the reliability condition.

Lemma 7. [Local Reliability Condition] Assuming a row-magjor raster or-
der for o and T, pizel (X,Y) € R#VH is unreliable if and only if

(1) zo+ Xcosf —Ysind —d+1< X and yo + Xsinf+Ycosf —d<Y, or
(2) o+ X cos@ —Ysin0 —d+1<W and yo+ Xsinf+Ycosd —d+1<Y.

By Lemma 7, a pixel (X,Y) is unreliable if and only if

(1) Y > _17(:050X_|_ zOSi—nd;-1 and Y > sin 0 X+ yo—d

sin 0 1—cosf 1—cos 0 or
cos 0 _ W—ag+d—1 sin 6 yo—d+1
(2) Y > sin9X sin 0 and Y > 1—c050X + 1—cosf *

By L, L, L3 and Ly we denote the four lines associated with the unreliability
condition above. They are defined by

L13Y:—1_COSSX+zO_d+1, LQZY: sin 0 X‘l‘ yo—d

sin 0 sin 0 1—cos 0 l1—cos 0’
R _ cos@ _ W—ap+d—1 R ___sinf yo—d+1
L3' Y= sin@X sin 0 ’ L4' Y= 17cos9X + 1—cosf "

Then, a pixel (X,Y) is unreliable if and only if the point (X,Y") is above the
two lines L; and Ly or above the two lines L3 and Ly4.

Figures 3 (a) and (b) depict the four lines and the region of unreliable pixels
bounded by them for each of the row-major and column-major raster orders.

U n

R

«

L4 L2 L3
t I X

Fig. 3. Regions of unreliable pixels, for row-major raster order.



5.6 Lazy interpolation for d =1

Now we know how to decide if a pixel is reliable or not each in constant time.
If each pixel is reliable, we just perform interpolation. Actually, if the bottom
margin yo is large enough, then the location s(X,Y") keeping interpolation value
is far from a point (X,Y") and thus it does not affect interpolation around the
point. Of course, if the window size d is large, then interpolations become more
frequently unreliable.

Here is an in-place algorithm for correcting rotation for the case of d = 1.
A key to the algorithm is the local test on reliability. In the algorithm we scan
R, twice. In the first scan, it checks whether (X,Y) is a reliable pixel or not
each in constant time. If it is not reliable, we calculate an interpolation value
and store it somewhere in Gﬁh using a pixel outside the rectangle determining
the output image. We call such a region a refuge.

In-place algorithm for correcting rotation

Phase 1: For each (X,Y) € R#VH check whether a pixel (X,Y) is reliable or
not. If it is not, then calculate interpolation there and store the value in the
refuge F'.

Phase 2: For each (X,Y) € R#VH check whether a pixel (X,Y") is reliable or
not. If it is not, then update the value at (X,Y) € Gﬁh by the interpolation
value stored in the refuge F'.

Otherwise calculate interpolation there and store the value at (X,Y) € Gﬁh.

The algorithm above works correctly when d = 1. The most important is
that the total area of refuge available is always greater than the total number of
unreliable pixels.

Theorem 8. The algorithm above correctly computes interpolations for row-

magor and column-major raster scans with the location function s(X,Y) =
(X,Y).

The above result is based on raster scan, which scans pixels from left to
right while going up from the bottom to the top of an image. However, by our
experience a rotated raster scan sensitive to rotation angle is more desirable. As
an extension or generalization of the raster scan we can consider a rotated raster
scan in which pixels are enumerated along lines of a given angle. We assume that
the angle of those lines is given as a slope a instead of angle and we call the line
y = ax the guide line for the rotated scan.

We start from the pixel (0,0). The next pixel or point is either (0,1) or (1,0)
depending on which is closer to the line y = ax of slope a passing through the
origin (0,0). In this way we output pixels in the increasing order of the vertical
distances to the line y = ax. Therefore, we can describe the rotated raster scan
using a priority queue PQ.

Rotated Raster Scan with Slope a



PQ: priority queue keeping pixels with vertical distances to the line y = az
as keys.
forr =0ton—1
Put a pixel (z,0) into PQ with key = —ax.
repeatq{
Extract a pixel (z,y) of the smallest key from PQ.
Output the pixel (z,y).
if (z,y) = (n — 1,n — 1) then exit from the loop.
if (y <n —1) then put a pixel (z,y + 1) into PQ with key = y + 1 — ax.

It is easy to see that the algorithm is correct and runs in O(N log N) time
using O(v/N) working space. Correctness of the algorithm is based on the ob-
servation that in each column (of the same x coordinate) pixels are enumerated
from bottom to top one at a time. Thus, whenever we output a pixel (z,y), we
remove the pixel from the priority queue and insert the pixel just above it, i.e.,
(z,y + 1) into the priority queue if it is still in the image area G.

A question here is whether we can design a constant-working-space algorithm
for rotated scan in a read-only model. Fortunately, the author presented such an
algorithm [3]. Surprisingly, it also reduces the time complexity of the algorithm.

Lemma 9. Given an intensity image consisting of N pixels and a rational slope
a = —q/p, there is an algorithm for enumerating all pizels in the order deter-
mined by the slope which runs in O(N) time using constant extra memory in
addition to a read-only memory for the input image.

It is also shown in the same paper that we can remove the constraint that a given
slope must be a rational number. Once we find a rational number approximating
the given slope by that of a line passing through two pixels in the given image,
we can use that rational number as the slope.

6 Concluding Remarks

We have surveyed recent progress on constant-working-space algorithms espe-
cially for image processing. There is a rich source of problems in this direction in
image processing and other areas in computer science. The author is currently
working on constant-working-space algorithms for geometric problems.
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