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Abstract

Term rewriting systems are widely used in computer science as a model of computation
to relate syntax and semantics. In order to implement term rewriting system we need
to use a strategy since there are many reduction sequences from a term in general. A
strategy chooses one from such sequences. It is a function that takes a term to be rewritten
and returns a term obtained by rewriting from the input term. There are two well-
known strategies: innermost strategies (or eager evaluation) and outermost strategies (or
lazy evaluation). Innermost strategies can be implemented much more efficiently than
outermost ones, while outermost strategies often have a better termination behavior than
innermost ones. The evaluation strategy (the E-strategy), which is adopted by the family
of OBJ algebraic specification languages, is one of the compromises between them. The
E-strategy is more flexible than other fixed order of evaluation because each function
symbol can have its own local strategy.

In this thesis we investigate methods to define suitable local strategies for a given
term rewriting system. In recent year, context-sensitive rewriting has been proposed
by Lucas and studied actively by many researchers. By comparing the E-strategy with
context-sensitive rewriting we can obtain some useful properties for the E-strategy by
use of properties of context-sensitive rewriting: termination, confluence and so on. We
especially focus a shape of evaluated terms because an evaluated term is not always in
normal form in the E-strategy. We define a notion of µ-correctness for the E-strategy. An
E-strategy is µ-correct if each evaluated term is always in normal form of context-sensitive
rewriting, called µ-normal form. We analyze which arguments can be evaluated lazily
with keeping µ-correctness. From our correctness analysis we may obtain an E-strategy
with better termination behavior. We also define a notion of strictness for arguments of
function symbols. An argument is strict if eager evaluation of such argument does not
change the termination behavior of reduction of the E-strategy. We analyze behavior of
variables in rules of a term rewriting system to find strict arguments. From our strictness
analysis of we may obtain an E-strategy with more efficiency in reduction steps. Finally
we investigate an extension of the E-strategy, called the on-demand E-strategy. It is
known that true lazy evaluation cannot be defined by the ordinary E-strategy. Thus we
need a new function for realizing lazy evaluation by the E-strategy. In the on-demand
E-strategy we can appoint an argument to be not evaluated until so forced. Evaluation
may be forced when the arguments are involved in matching. We formalize the on-demand
E-strategy by a pair of an E-strategy map and an on-demand map, which stand for orders
of reduction and matching respectively. For the on-demand E-strategy order of matching
is important because a target term may be changed while doing on-demand matching. We
show some examples that we can treat well owing to an on-demand map. In conclusion we
show how to apply our results in this thesis to verification systems, such as the CafeOBJ
system.
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Chapter 1

Introduction

1.1 Term rewriting

Equational reasoning plays an important role in various areas in computer science, such as
automated theorem proving, algebraic specifications, functional programming languages
and so on. An equational system is a set of equations. We are interested in knowing
whether an equation is a logical consequence from the given set. For a set E and terms
s and t, an equation s = t is true in E if and only if the equation can be derived from E
by the following inference rules:

true
t = t

(reflexivity) s = t
t = s

(symmetry) s = t t = u
s = u (transitivity)

s = t
f(. . . , s, . . .) = f(. . . , t, . . .)

(congruence) s = t
sθ = tθ

(substitutivity)

where f is a function symbol in a signature under consideration and θ is a substitution
which instantiate variables in terms. For example, the equation s(0)+0 = 0+ s(0) is true
in the following set E:

E =

{
x + 0 = x
x + s(y) = s(x + y)

because we can write the following derivation tree:

x + 0 = x
s(0) + 0 = s(0)

(subst)

x + 0 = x
0 + 0 = 0

(subst)

0 = 0 + 0
(symm)

s(0) = s(0 + 0)
(cong)

x + s(y) = s(x + y)

0 + s(0) = s(0 + 0)
(subst)

s(0 + 0) = 0 + s(0)
(symm)

s(0) = 0 + s(0)
(trans)

s(0) + 0 = 0 + s(0)
(trans)

It is easy to see that for a given equation we can construct an infinite tree from the
equation, especially by the symmetry and transitivity rules, such as

...
s = t
t = s
s = t

...
s = v

...
v = u

s = u

...
u = w

...
w = t

u = t
s = t
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Hence, it is difficult to obtain an automatic computation to solve a given equation by
directly applying these inference rules.

Term rewriting is one of the methods to obtain flexible computing of equational rea-
soning. In term rewriting, equations are regarded as directed rules. When we want to
know whether an equation s = t is true, reduce the both side terms s and t by the rules
and check whether the results are identical with each other.

s t
↓ ↓
s′ ≡? t′

A set R of rules is called a term rewriting system (a TRS). For example, the following R
is the result of directing the equations in E.

R =

{
x + 0 → x
x + s(y) → s(x + y)

We can easily prove that the equation s(0) + 0 = 0 + s(0) is true, since s(0) + 0 and
0 + s(0) are reduced into the same term s(0) by the rules in R, such as s(0) + 0 →R s(0)
and 0 + s(0) →R s(0 + 0) →R s(0).

Rewriting is undecidable in general , i.e. it is not always that a term is rewritten
into a unique term. For example, (s(0) + 0) + s(0) is rewritten into the two terms:
(s(0) + 0) + s(0) →R s(0) + s(0) by applying the first rule to the first argument and
(s(0) + 0) + s(0) →R s((s(0) + 0) + 0) by applying the second rule to the whole term. So
if we want to implement an equational reasoning by term rewriting, we need a function
which takes a term t and returns a term s reduced from t, i.e. t →R · · · →R s (Fig. 1.1).
In this thesis we call such a function F a strategy.
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Figure 1.1: A strategy

Most of the functional languages evaluate a term by a fixed strategy, such as the
leftmost innermost strategy (or eager evaluation) for the Standard ML[MTHM97], the
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functional strategy for Haskell[HWA+90] and so on. Those strategies have each merits and
demerits. In recent year, strategies whose behaviour can be decided by a user have being
watched with interest, such as the evaluation strategy for the OBJ family and Stratego
for ELAN [Vis01, Vis99, Vis99a, Vis99b, Vis99c, Dol01]. By using such a strategy we can
define a suitable strategy for every program or specification.

1.2 One-step strategies

A strategy may be defined by a one-step strategy usually in term rewriting. A one-step
strategy is a function S which takes a term and returns a redex position to which a rule
can be applied if it exists or “no redex” if it does not. For (s(0) + 0) + s(0) a one-step
strategy must return the whole term (s(0) + 0) + s(0) or the first argument s(0) + 0
respectively. For s(s(0)) which has no redex a one-step strategy must return the word
“no redex”. We can obtain a strategy for a one-step strategy as follows:

1. Apply S to an input term t.

2. If it returns a redex position, rewrite it and go to 1 with the result term as an input
term, or if “no redex”, output the term.

There are two well-known (one-step) strategies: the innermost strategy and the outermost
strategy. They select the innermost and outermost redeces of an input term respectively.

We show an example to explain how to reduce a term by the leftmost innermost
strategy redI and the leftmost outermost strategy redO. Consider t ≡ (0 + s(0)) + s(0)
and the above TRS R. The leftmost innermost redex of t is 0 + s(0) at position 1. So the
leftmost innermost strategy first rewrites the subterm. The result term is s(0 + 0) + s(0)
and the next redex is 0+0 at position 1.1. Repeating such search and rewrite, we finally get
redI(t) = s(s(0)). On the other hand, the leftmost outermost redex of t is (0+s(0))+s(0)
at the root position. So the leftmost outermost strategy first rewrite the whole term into
s((0+s(0))+0). The next redex is (0+s(0))+0 at position 1. Repeat the same thing, we
also get redO(t) = s(s(0)). The following is the reduction sequences from (0+s(0))+s(0)
by the both strategies, where →I corresponds to the leftmost innermost strategy and →O

corresponds to the leftmost outermost strategy.

(0 + s(0)) + s(0) →I s(0 + 0) + s(0) →I s(0) + s(0) →I s(s(0) + 0)

↓O ↓I

s((0 + s(0)) + 0) →O s(0 + s(0)) →O s(s(0 + 0)) →O s(s(0))

By chance, the reduced terms are identical, however they do not always return the same
term in general. For R = {f(a) → a, a → b}, f(a) →I f(b) and f(a) →O a.

These strategies have merits and demerits, respectively. It is well-known that the
innermost strategy is more suitable for efficiently implementing TRSs than the outermost
one. We can define the more efficient implementation red′

I of the leftmost innermost
strategy than the trivial implementation redI which searches the whole term in every
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step.

red′
I(t) =

{
t if t is a variable
evalI(t, 1:2 : · · · :n :nil) if t ≡ f(t1, . . . , tn)

evalI(t, l) =




t if l = nil and t is not a redex
red′

I(rθ) if l = nil, t ≡ lθ for a rule l → r ∈ R
evalI(f(. . . , red′

I(ti), . . .), l
′) if l = i : l′ and t ≡ f(t1, . . . , tn).

In this function red′
I , many wasteful search for a redex may be avoided. Conversely it is

also well-known that the outermost strategy is more suitable for finding a normal form
than the innermost one. A set of normal forms is the set of the terms which cannot
be rewritten more and is regarded as answers of a given TRS. For rules 0 × x → 0
and ⊥ → ⊥, although reduction of 0 × ⊥ by the innermost strategy falls into a loop by
rewriting the innermost redex ⊥, the outermost strategy rewrites the whole term 0×⊥ into
0 without rewriting ⊥. For orthogonal TRSs, the parallel-outermost reduction strategy is
normalizing, i.e. reducing any term which has a normal form always returns the normal
form [O’Do77].

1.3 The evaluation strategy

The evaluation strategy (the E-strategy), adopted by OBJ languages, OBJ2[FGJM85],
OBJ3[GWMFJ00] and CafeOBJ [DF98, NSF98], is one of the compromises between the
innermost and outermost strategies. It may be regarded as a generalization of the above
implementation red′

I of the leftmost innermost strategy. The E-strategy finds a redex
position according to local strategies given to function symbols, not the structure of a
whole term. Local strategies are given to every function symbols as integer lists. Since
we can choose local strategies flexibly, the E-strategy can express various strategies. We
can specify the order of evaluating arguments and the timing of rewriting a whole term
by a local strategy.

We show an example to explain the behaviour of the E-strategy by the following TRS.

R =

{
x + 0 → x
x + s(y) → s(x + y)

For example, we give the list [1, 2, 0] to + as its local strategy, which instructs to ”(for a
given term t1+t2,) reduce t1 first, t2 second and finally rewrite the whole term if possible”.
A function red is a strategy which depends on each instruct of local strategies of function
symbols. We show the reduction sequence from (s(0) + 0) + (0 + 0) by red under this
local strategy:

(s(0) + 0) + (0 + 0) →R s(0) + (0 + 0) →R s(0) + 0 →R s(0).

The first argument s(0)+0 is evaluated first, the second argument 0+0 next and then the
whole term s0 + 0 is rewritten into s(0) because it is a redex. This is a basic instruct of
the E-strategy and then red acts like the leftmost innermost strategy. An advantageous
point of the E-strategy is that a local strategy can be given flexibly, for example, exchange
of the order of arguments (like [2, 1, 0]), abbreviation of arguments (like [2, 0]) and change
of the timing of the check whether the whole term is a redex or not (like [0, 2, 0, 1]).

Note that since the E-strategy can express various strategies, however, inappropriate
strategies can be described. red(0 + (0 + 0)) = 0 + 0 for the local strategy [1, 0, 2], but it
could be rewritten yet nevertheless.
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1.3.1 Lazy evaluation by the evaluation strategy

On the other hand, we can simulate a kind of lazy evaluation by the E-strategy if we
define local strategies well. One way of simulating lazy evaluation is giving a symbol
a local strategy specifying its arguments which we want to evaluate lazily after 0. For
example if we want to evaluate the first argument of + lazily, we may give [2, 0, 1] to it.
Another way of simulating lazy evaluation is omitting such arguments, like [2, 0].

The following is a typical example indicating that we can express a kind of lazy
evaluation by the E-strategy.

R =




hd(x :y) → x
tl(x :y) → y
inf → 0: inf

where hd returns the head element of a list, tl returns the list which is the result of
removing the head element, : is a constructor symbol of lists and inf stands for an infinite
list 0 :0 :0 : · · ·. If the local strategy of : has 2, red(inf ) does not terminates:

inf →R 0: inf →R 0:(0 : inf ) →R · · ·

If we give [1] to :, red(inf ) terminates and the result is 0 : inf because the second argument
inf of : can not be touched. Hence red(hd(tl(inf ))) also works well.

hd(tl(inf )) →R hd(tl(0 : inf ))

Since the local strategy of : does not have 2, tl(0 : inf ) is reduced next without reducing
inf and finally we obtain s(0).

hd(tl(0 : inf )) →R hd(inf ) →R hd(0 : inf ) →R 0

Reduction with the E-strategy works well or not depending on how to give local
strategies. In order to obtain meaningful strategies, we need to find a condition of local
strategies on which each evaluated term has some appropriate property, such as a normal
form. Local strategies are formalized by a map ϕ from the set of function symbols to
the set of natural number’s lists. For example, ϕ(+) = [1, 2, 0]. An E-strategy map is
called correct if each evaluated term is a normal form. Some sufficient conditions for
correctness are proposed [Nag99, NO00, Pol01]1 . However, it is trivial that correctness
is too strong to treat the above example because inf has no normal form and red(inf )
does not terminate if it is correct. In this paper we propose a new condition for the
E-strategy map. An E-strategy map is µ-correct if each evaluated term is a normal form
of context-sensitive rewriting, called a µ-normal form. Context-sensitive rewriting is a
kind of rewriting restricted by a replacement map on function symbols [Luc98]. There are
some useful properties for µ-normal forms. We also propose some sufficient conditions on
which an E-strategy map is µ-correctness. By combining our results with properties of
context-sensitive rewriting, we can obtain some useful properties for evaluated terms of
the E-strategy, e.g. for redeces, normal forms and root-stable forms.

1Although such a property is called completeness in [NO00, Pol01], we use the word ’correctness’
to refer the property because the word ’completeness’ would be usually used for the opposite property:
’s = red(t) if s is a normal form of t’ as rewritten in [Luc01b].
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1.3.2 Lazy evaluation by the on-demand evaluation strategy

Although the E-strategy the E-strategy can express various strategies, there exist strate-
gies which cannot be defined by any local strategies. For example, we cannot simulate
the outermost strategy by the E-strategy. The reason is that we only instruct an or-
der of reduction for subterms directly under function symbols. For example, consider
R = {f(f(a)) → a, c → a, f(a) → f(a)} and f(f(c)). The outermost strategy first
rewrite c into a and next rewrite the whole term: f(f(c)) →R f(f(a)) →R a. In this
sequence, the outermost strategy selects the innermost position first and the root posi-
tion next with skipping the redex f(a). We cannot describe such an instruction by the
E-strategy.

There are some examples which the E-strategy cannot treat well. Consider the follow-
ing example.

R =

{
2nd(x : (y :z)) → y
inf → 0: inf

2nd returns the second element of an input list. 2nd(inf ) has a normal form 0 since
there is the reduction sequence 2nd(inf ) →R 2nd(0 : inf ) →R 2nd(0 : (0 : inf )) →R 0.
There is no local strategy to obtain this reduction sequence. If ϕ(:) has 2, red(inf ) does
not terminates. If ϕ(:) does not have 2, red(2nd(inf )) terminates halfway as follows:
2nd(inf ) →R 2nd(0 : inf ).

For solving this problem the on-demand E-strategy has been proposed and discussed in
the literatures [NSF98, OF00, NO00]. In the on-demand E-strategy, local strategies may
have negative integers. For negative integers −i, the i-th arguments are not evaluated
until so forced. Such an argument is forced to evaluate if it is involved in matching. The
subterm inf of 0 : inf is not evaluated until so forced if ϕ(:) has −2. Trying to match
the term 2nd(0 : inf ) to the pattern 2nd(x : (y : z)), inf have to be rewritten because the
matching fails if not. On the other hand, for 2nd(0 : (0 : inf )), we do not have to rewrite
inf it is not involved in the matching. In the latter half of this thesis, we formalize the
on-demand E-strategy and propose a sufficient condition on which each evaluated term
is always a root-stable form. The on-demand E-strategy is formalized by a pair of an
E-strategy map and an on-demand map which stand for order of reduction and order
of matching respectively. For the on-demand E-strategy order of matching is important
because a term may be changed which matching it to patterns. We show some examples
that we can treat well owing to an on-demand map.

1.4 Overview

The next chapter gives the basic definition of term rewriting system and the evaluation
strategy. First we present some basic mathematical notation and the abstract reduction
system. The term rewriting systems is a kind of the abstract reduction system whose
target is a set of terms. The evaluation strategy is introduced in the last section of this
chapter. Local strategies are formalized by a map from signature Σ to the set of lists of
natural numbers, called an E-strategy map. For a given E-strategy map we define the
function red on terms, which takes a term wanted to be evaluated and returns a term
evaluated according to the local strategies.

In the chapter 3 we introduce some basic properties of the E-strategy. We define the
condition of the E-strategy, which should be satisfied at worst, called the safety condition.

7



We show that a fundamental property of the E-strategy holds if it is safe. We also
introduce the notion of evaluated flags which is used to get a reasonable implementation
of the E-strategy and prove that the safety condition justifies the use of evaluated flags.

In the chapter 4 we explain one of the main topics of this thesis: correctness and
strictness analysis of the E-strategy. We introduce the context-sensitive rewriting and
some useful properties of it. We generalize the notion of correctness to context-sensitive
rewriting, called µ-correctness. Some useful properties for context-sensitive rewriting
have been proposed. By combining those properties with our result of µ-correctness, it
can be obtained some useful properties for the E-strategy. In the latter of this chapter,
we define the notion of strictness in the E-strategy and propose some method of analyzing
the strictness. In lazy functional languages, a function is strict in a certain argument if
the eager evaluation of that argument does not change the termination behavior of the
program. Strictness analysis is a compile-time analysis of a program that is used to tell
whether or not a function is strict in its argument.

In the chapter 5, we formalize the on-demand E-strategy by the pair of maps whose
first element is the E-strategy map ϕ defined in the above section and latter element is
the on-demand map o. Although the E-strategy map defines the order of reduction, the
on-demand map defines the order of matching. We also give methods for obtaining a
suitable on-demand map. In the chapter 6, we discuss applications of the E-strategy to
the CafeOBJ system.
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Chapter 2

Preliminaries

In this chapter, we give the definitions and basic properties of term rewriting [BN98] and
the evaluation strategy [DF98, NSF98, Eke98].

2.1 Some basic notations

For a set A, the set of all subsets of A is denoted by P(A) = {B | B ⊂ A}. The set A∗

of all strings of A is defined as ε ∈ A∗, a ∈ A∗ for a ∈ A and w.w′ ∈ A∗ for w, w′ ∈ A∗,
where ε is the empty string. The set of all maps from a set A to a set B is denoted by
BA = {f | f : A → B}. The set List(A) of lists whose elements are elements of A is
defined as the smallest set satisfying the following: nil ∈ List(A) and a : l ∈ List(A) for
a ∈ A and l ∈ List(A). We sometimes write [a, b, c] instead of a : (b : (c :nil)). For a list l,
the head element is denoted by hd(l) and the remaining list obtained by removing hd(l)
is denoted by tl(l), i.e. hd(a : l) = a and tl(a : l) = l. l@l′ is the result of concatenation
of lists l and l′, for example, [a, b, c]@[d, e] = [a, b, c, d, e]. The set of all natural numbers
is denoted by N = {0, 1, 2, . . .} and the set of all positive natural numbers is denoted by
N+ = N \ {0}.

2.1.1 Abstract reduction systems

An abstract reduction system (ARS) is a pair (A,→) (or just → for short) of a set A and
a binary relation →∈ A × A, called a reduction relation, on the set A. We write a → b
instead of (a, b) ∈→ and a1 → a2 → · · · → an → · · · instead of a1 → a2, a2 → a3 and
an−1 → an, · · ·. For two binary relations → and →′ on a set A, the binary relation → ◦ →′

is defined as {(a, c) | a → b, b →′ c}. We define some binary relations and properties for
an ARS (A,→) as follows:

1. The identity relation ≡ is {(a, a) | a ∈ A}.

2. The n-steps relation, denoted by →n, is →0=≡ and →n+1=→n ◦ →.

3. The transitive-reflexive closure is →∗=
⋃

n∈N →n.

4. The transitive closure is →+=
⋃

n>0 →n.

5. An element a ∈ A is in normal form with respect to → if and only if there is no
element b ∈ A such that a → b.
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6. An element a ∈ A has a normal form with respect to → if and only if there is an
element b ∈ A such that b is in normal form and a →∗ b. We call b a normal form
of a.

7. An element a ∈ A terminates (or is terminating) if and only if there is no infinite
reduction sequences a → a1 → a2 → · · ·.

8. Elements a, b ∈ A are joinable if there is an element c such that a →∗ c and b →∗ c.

If each element a ∈ A terminates, → terminates (is terminating). It is often said to
that termination corresponds to the existence of solution when an ARS is regarded as
some computational model. This means that any element has a solution (a normal form)
and we can get it in finite times. For an ARS and an element, a normal form is not always
unique in general. Hence we need some property for the uniqueness of solutions. → has
the unique normal form property if a normal form of each term is unique, i.e. if a →∗ b,
a →∗ c and b and c are in normal form, then a ≡ b. We show useful properties for the
uniqueness of solutions. → is confluent if for any elements a, b, c ∈ A such that a →∗ b
and a →∗ c, then b, c are joinable. → is local confluent if for any elements a, b, c ∈ A such
that a → b and a → c, then b, c are joinable. You can see that any confluent ARS has
the unique normal form property. If a →∗ b, a →∗ c and b and c are in normal form for
a confluent ARS, b, c are joinable, i.e. there exists d such that b →∗ d and c →∗ d. Since
b and c are in normal form, we conclude b ≡ d ≡ c. Moreover any local confluent and
terminating ARS has the unique normal form property. When an ARS terminates, it is
decidable whether it is local confluent or not.

In general a reduction sequence from an element is not unique. So if we want to
implement an ARS, we need a function which takes an element a and returns an element
b which is a result element of reduction from a, i.e. a →∗ b. We call such a function F
a strategy of an ARS. Note that in our definition an element F (a) is not necessary to
be in normal form. We call a strategy correct If it always returns a normal form, For a
terminating ARS, we can easily to obtain a decidable correct strategy since any reduction
sequence is finite. Moreover if it has the unique normal form property, the strategy always
returns a unique normal form in finite times. A strategy plays an important role especially
for a non-terminating one because there is a case that an element has a normal form but
does not terminate. Even in such a case we may obtain a normal form if we select a
suitable strategy.

2.2 Term rewriting

Term rewriting is an ARS (T (Σ, V ),→R) where T (Σ, V ) is a set of terms and →R is a
binary relation on T (Σ, V ) defined by a given term rewriting system R. In this section
we introduce terms, term rewriting systems and some properties on term rewriting.

2.2.1 Terms

A term is a tree which has function symbols as its nodes and variables as its leafs. For
example, f(g(x), f(0, y)) is a term for a binary function symbol f , a unary function symbol
g, a constant c and variables x, y (Fig. 2.1).
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Figure 2.1: terms, positions and subterms

A signature Σ is a finite set of function symbols where every f ∈ Σ has a fixed
arity ar(f) ∈ N . A countably infinite set of variables V is defined as Σ ∩ V = ∅. A
set of terms T (Σ, V ) (or T ) is the smallest set defined as follows: V ⊂ T (Σ, V ) and
f(t1, . . . , tn) ∈ T (Σ, V ) for t1, . . . , tn ∈ T (Σ, V ) and f ∈ Σ with ar(f) = n. Note
that c ∈ Σ is called a constant if ar(c) = 0. We write just c instead of a term c().
f(g(x), f(0, y)) ∈ T (Σ, V ) for Σ = {f, g, 0} and V = {x, y, . . .} where ar(f) = 2, ar(g) = 1
and ar(c) = 0. A term having no variable is called a ground term and a set of all ground
terms are denoted by T (Σ). This means that any leaf of ground terms is a constant.
Therefore if there is no constant symbol in Σ, T (Σ) must be the empty set. The set of
positions O(t) ⊂ N ∗

+ of a term t is defined as follows:

O(t) =




{ε} if t ∈ V

{ε} ∪
n⋃

i=1

{i.p ∈ N ∗
+ | p ∈ O(ti)} if t ≡ f(t1, . . . , tn).

For example O(f(g(x), f(0, y))) = {ε, 1, 1.1, 2, 2.1, 2.2}.
We introduce some notations and properties on terms.

1. The subterm of t at a position p ∈ O(t), denoted by t|p, is defined as: t|ε ≡ t and
f(t1, . . . , tn)|i·p ≡ ti|p. If p �= ε, we call t|i a strict subterm of t.

2. The term t[s]p is obtained from t by replacing the subterm at position p by s.

3. The symbol at a position p of a term t is denoted by (t)p: (t)p = x if t|p = x ∈ V
and (t)p = f if t|p = f(. . .). Especially the symbol at the root position (t)ε of t is
called the root symbol of t.

4. The set of positions restricted by a set A ⊂ Σ∪V is denoted by OA(t) = {p ∈ O(t) |
(t)p ∈ A}.

5. The set of variables of a term t is denoted by V (t) = {(t)p | (t)p ∈ V }.

6. A term t is linear if for any positions p, q ∈ OV (t), (t)p = (t)q implies p = q.
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For example,
f(g(x), f(0, y))|2 = f(0, y),

f(g(x), f(0, y))[g(g(x))]2 = f(g(x), g(g(x))),
(f(g(x), g(g(x))))2.1 = g,
OΣ(f(g(x), f(0, y))) = {ε, 1, 2, 2.1},
OV (f(g(x), f(0, y))) = {1.1, 2.2} and
V (f(g(x), f(0, y))) = {x, y}.

f(g(x), f(0, y)) is linear but f(g(x), g(g(x))) is not linear because x occurs twice.
A map θ from variables to terms is called a substitution if θ(x) �= x for only finitely

many xs. A substitution over terms is defined as homomorphic extension. For a term t
and a substitution θ, tθ is written instead of θ(t). A term t is called an instance of a term
s if there exists θ such that t = sθ and especially an instance is called a ground instance
if it is a ground term. For example, f(g(x), f(0, y))θ = f(g(0, f(0, g(x)))) for θ(x) = 0,
θ(y) = g(x) and θ(z) = z for any z ∈ V − {x, y}.

2.2.2 Rewrite relation

Next we define a binary relation →R on terms, called a rewrite relation. A term rewriting
system (TRS) is a set R of rewrite rules. A rewrite rule is a pair of terms, denoted by
l → r, such that l �∈ V and V (r) ⊂ V (l). A rewrite relation →R is a binary relation on T
defined as follows (Fig: 2.2).:

s →R t
def⇐⇒ ∃p ∈ O(s), l → r ∈ R, θ ∈ T V .s|p ≡ lθ, t ≡ s[rθ]p.

R
l r

θθ

ps =

Figure 2.2: A rewrite relation →R

Especially a rewrite relation restricted a redex position to p ∈ O(s) is denoted by
s →p t. The condition of rewrite rules is important. If x → r ∈ R, we will be able to
rewrite any term into r. Under the condition V (r) ⊂ V (l) we should consider only finite
terms as terms which we rewrite a given term into if R is a finite set.

A subterm t = s|p is a redex of s if t is an instance of the left-hand side of a rewrite
rule. We call p a redex position of t. t is a normal form if t|p is not redex for each p ∈ O(t).
t is a root stable form if there is no redex u such that t →∗

R u.

Example 2.2.1 Consider a TRS R = {a → b, f(c) → c}. Of course normal forms
b, c, f(b) are root-stable forms and redeces a, f(c) are not root-stable forms. Although
the term f(a) is not a normal form, it is a root-stable form since the only reduction from
this term is f(a) →R f(b) and f(b) is not a redex. Although the term f(f(c)) is not a
redex, it is not a root-stable form since f(f(c)) →R f(c) and f(c) is a redex (Fig: 2.3).
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A root-stable form can be considered as a sub goal of to obtain a normal form. If there
is a procedure R which takes a term t and returns a root-stable form reduced from t, we
can define a procedure N which takes a term t and returns a normal form reduced from
t as follows:

N(t) =

{
x if R(t) = x ∈ V
f(N(t1), . . . , N(tn)) if R(t) = f(t1, . . . , tn)

terms

root-stable forms

normal forms
redeces

f(c)

a
b

f(a)

c

f(b) f(f(c))

Figure 2.3: normal forms, root-stable forms and redeces

We introduce some notations and properties on TRS R.

1. The set of left-hand sides of R is L(R) = {l ∈ T | l → r ∈ R}.

2. The set of defined symbols is defined as D(R) = {(l)ε ∈ Σ | l → r ∈ R}.

3. The set of constructor symbols is defined as C(R) = Σ − D(R).

4. R is left-linear if l is linear for each l → r ∈ R.

5. R is non-overlapping if there is no l → r ∈ R and l′ → r ∈ R such that l|pθ ≡ l′θ′

for some θ, θ′ ∈ T V and p ∈ OΣ(l).

6. R is orthogonal if R is left-linear and non-overlapping.

7. A term is constructor if there is no defined symbol in the term. R is constructor if
ti is constructor for each f(t1, . . . , tn) → r ∈ R and 1 ≤ i ≤ n.

A TRS each of whose left-hand side is f(x1, . . . , xn) is called a recursive program
scheme (RPS), where f ∈ Σ and xi �= xj for i �= j. It is easily to prove that a normal
form for a RPS does not have any defined symbol. If there is a defined symbol for a
term (t)p = f ∈ D(R) for an RPS R, the subterm t|p is a redex because there is a rule
f(x1, . . . , xn) → r ∈ R and we will be able to apply the rule to any term whose root
symbol is f . For such a rule the defined symbol can be regarded as a total function,
which means that a function is defined for any arguments.

A term is reducible if it is not in normal form. A term t is ground reducible if all
its ground instances is reducible. A reducible term is of course ground reducible. There
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is a term such that it is not reducible but ground reducible. For example, we consider
Σ = {+, s, 0} with ar(+) = 2, ar(s) = 1, ar(0) = 0 and the following TRS:

Rn1 =

{
+(x, 0) → x
+(x, s(y)) → s(+(x, y))

A term +(x, y) is ground reducible because any ground instance is reducible. We prove
that +(t, t′) is reducible for any ground terms t, t′ by induction on the structure of +(t, t′).
There are only cases that the root symbol of t′ is 0, s or +. In the case of t′ ≡ 0, +(t, 0)
is an instance of the left-hand side of the first rule and is reducible. In the case of
t′ ≡ s(t′′), +(t, s(t′′)) is reducible by the second rule. In the case of t′ ≡ +(t′′, t′′′), by
the induction hypothesis t′ is reducible. Hence the whole term +(t, t′) is also reducible.
Ground reducibility of a term f(x1, . . . , xn) can be regarded as totality of a function f on
T (Σ).

A function S : T → N ∗
+ ∪ {“no redex”} is a one-step reduction strategy if it satisfies

the follows: S(t) = p ∈ N ∗
+ if p is a redex position of t, or S(t) = “no redex” if t has

no redex, i.e. is in normal form. We can define a strategy FS of →R from a one-step
reduction strategy as follows:

FS(t) =

{
FS(rθ) if S(t) = p and t|p ≡ lθ for some θ ∈ T V , l → r ∈ R
t if S(t) = “no redex”

We can easily see that FS is a strategy of →R if S is a one-step reduction strategy, i.e.
s →∗

R t if FS(s) = t. Moreover FS is correct, i.e. t must be in normal form if FS(s) = t
because whenever FS outputs a term t, S(t) = “no redex”.

+

+

+

+

s

s

s

0 0

0

0 0

Figure 2.4: The leftmost innermost redex and the leftmost outermost redex
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There are two well-known one-step reduction strategies: the leftmost innermost one
and the leftmost outermost one. We call a position inner and outer when it is close by leafs
and the root position respectively. For a term t the leftmost innermost redex position
p ∈ O(t) is a redex position such that if q is a redex position of t, q.q′ = p for some
position q′, or p = p′.i.p′′ and q = p′.j.q′′ for some positions p′, p′′, q′′ and i < j. On the
other hand, the leftmost outermost redex position p ∈ O(t) is a redex position such that
if q is a redex position of t, q = p.p′ for some position p′, or p = p′.i.p′′ and q = p′.j.q′′ for
some positions p′, p′′, q′′ and i < j. The leftmost innermost strategy SI and the leftmost
outermost strategy SO return the leftmost innermost and the leftmost outermost redex
position respectively. We sometimes call FSI

the leftmost innermost strategy and FSO

the leftmost outermost strategy. They are often called the eager evaluation and the lazy
evaluation.

Example 2.2.2 For example, +(s(+(0, s(+(0, 0)))), +(s(0), 0)) has the following three
redeces:

+(0, s(+(0, 0))) at position 1.1,

+(0, 0) at position 1.1.2.1 and

+(s(0), 0) at position 2.

The leftmost innermost redex position is 1.1.2.1 and the leftmost outermost redex position
is 1.1 (Fig. 2.4).

2.3 The evaluation strategy

In this section, we introduce the evaluation strategy (the E-strategy)[DF98, NSF98,
Eke98]. The E-strategy finds a redex position according to local strategies given to sym-
bols, not the structure of a whole term. Since the E-strategy has to remember the redex
position rewritten directly before to find a next redex, we cannot define the E-strategy as
a one-step reduction strategy.

Local strategies are given to every symbol as integer lists. They are formalized by a
map ϕ : Σ → List(N ) called an E-strategy.

Definition 2.3.1 [Eke98] A map ϕ : Σ → List(N ) is an E-strategy map if 0 ≤ i ≤ ar(f)
for any i ∈ ϕ(f). A map ϕ is extended to Σ ∪ V with ϕ(x) = nil for any x ∈ V .

For example, if we want to give [120] to + as its local strategy, we give a replacement
map ϕ as ϕ(+) = [1, 2, 0]. This corresponds to the instruction to reduce the first and
second argument before the whole term +(s, t).

A strategy red is a strategy which depends on each instruct of local strategies of
function symbols. We sometimes call red an E-strategy. The reduction sequence from
(s(0) + 0) + (0 + 0) by red under this local strategy is that:

(s(0) + 0) + (0 + 0) →R s(0) + (0 + 0) →R s(0) + 0 →R s(0).n
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Definition 2.3.2 [Eke98] For an E-strategy map ϕ and TRS R, the E-strategy red :
T → T is defined as follows:

red(t) = eval(t, ϕ((t)ε))

eval(t, l) =




t if l = nil
eval(t[red(ti)]i, l

′) if l = i : l′, i > 0
red(s) if l = 0: l′, t →ε s
eval(t, l′) if l = 0: l′, t �∈ Red(R)

The function red is a top-level function that takes a term and returns the term which
has been evaluated according to local strategies. For an input term t a term s = red(t) is
called an evaluated term of t. A term is evaluated according to the local strategy list of
the root symbol (t)ε.

red(t) = eval(t, ϕ((t)ε))

For empty list the function eval returns the term in the first argument as an evaluated
term. eval outputs a term only if the second argument is empty.

eval(t, nil) = t

For non-empty list, there are two cases depending on the head element of the list. If it is
a positive integer i, remove i from the list and reduce the i-th argument of the term.

eval(f(t1, . . . , tn), i : l) = eval(f(t1, . . . , red(ti), . . . , tn), l)

If it is 0, there are more two cases depending on the shape of the term: a redex or not.
If it is a redex, i.e. t ≡ lθ for some l → r ∈ R and a substitution θ, rewrite the term into
the corresponding right-hand side and apply the function red again.

eval(t, 0: l) = red(rθ)

If it is not redex, remove the 0 and go on evaluating (Fig. 2.5).

eval(t, 0: l) = eval(t, l)

Example 2.3.3 Consider TRS Rn1 and ϕ(+) = [2, 0, 1], ϕ(s) = [1], ϕ(0) = []

Rn1 =

{
+(x, 0) → x
+(x, s(y)) → s(+(x, y))

We show a reduction sequence of the term +(+(+(0, 0), x), +(0, 0)) in this strategy.
First the function red hands the input term and the local strategy [2, 0, 1] of the root

symbol + to the function eval. The function eval reduce the second argument term +(0, 0)
into the term 0 according to the first element 2 of the local strategy list and remove 2
from the list.

red(+(+(+(0, 0), x), +(0, 0)))
= eval(+(+(+(0, 0), x), +(0, 0)), [2, 0, 1])
= eval(+(+(+(0, 0), x), 0), [0, 1])

Now the head element of the local strategy list is 0. The target term is checked whether
it is a redex or not. The term +(+(+(0, 0), x), 0) is a redex for the first rule +(x, 0) → x.
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Figure 2.5: Definition of function eval
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Then it is replaced with the corresponding instance of the right-hand side and again the
function red is applied to the replaced term +(+(0, 0), x).

= red(+(+(0, 0), x))
= eval(+(+(0, 0), x), [2, 0, 1])
= eval(+(+(0, 0), x), [0, 1])

This time the target term +(+(0, 0), x) is not a redex. Hence the term was not changed
and only the element 0 is removed. Since the head element is 1, the first argument +(0, 0)
is reduced into 0. Finally the list becomes empty and the term +(0, x) is outputted as an
evaluated term of +(+(+(0, 0), x), +(0, 0)).

= eval(+(+(0, 0), x), [1])
= eval(+(0, x), [])
= +(0, x)

Therefore redϕ(+(+(+(0, 0), x), +(0, 0))) = +(0, x).
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Chapter 3

Basic properties of the evaluation
strategy

Since we can define a local strategy as we like, red may behave undesirably. For example,
assuming the local strategy of a defined symbol f has not the element 0, a term f(. . .)
is not rewritten at the root position even if it is a redex. In this chapter we define a
condition of an E-strategy, which should be satisfied at worst, called the safety condition.
We show that some fundamental basic properties hold for a safe E-strategy, for example
a term which is a result of evaluating by the E-strategy cannot be reduced more, i.e.
red(t) = red(red(t)). In the literature [Eke98], the condition that local strategies are
restricted to lists which end in zero is proposed and some properties are proved on this
condition. In this chapter we prove these properties under a weaker condition which
satisfies the safety condition.

3.1 Safety condition

As a condition which should be satisfied at worst we take the following safety condition
on which a term is not a redex if it is a result of evaluating by the E-strategy.

Definition 3.1.1 An E-strategy red (or an E-strategy map ϕ) is safe if each evaluated
term is not a redex, i.e. t �∈ Red(R) if t = red(s) for some s.

For a safe E-strategy we can show the following fundamental property.

Theorem 3.1.2 If red is safe, any evaluated term is not changed any more, i.e. red(t) =
red(red(t)) for any t.

Proof. We prove the claim by induction on the structure of the evaluated term t.
It is trivial for t ∈ V . We assume t ≡ f(t1, . . . , tn) and ϕ(f) = [i1, . . . , im]. Hence
red(t) = eval(f(t1, . . . , tn), [i1, . . . , im]). If i1 �= 0, the term ti1 is a result of evaluating
some term, i.e. ti1 = red(s) for some s because t has been evaluated once by the same
local strategy ϕ(f). From the induction hypothesis ti1 = red(ti1) and

eval(t, [i1, i2, . . . , im])
= eval(f(. . . , red(ti1), . . .), [i2, . . . , im])
= eval(f(. . . , ti1, . . .), [i2, . . . , im])
= eval(t, [i2, . . . , im])

.
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Next we consider the case where i1 = 0. Since red is safe, the term t is not a re-
dex. Hence the function eval does not change the term and remove the element i1 =
0 from the list. Therefore for each element i1 we conclude eval(t, [i1, i2, . . . , im]) =
eval(t, [i2, . . . , im]). From the same reason all element ik (k = 2, . . . , m) are removed
without changing the term and the function eval returns the input term as it is. In brief,
eval(f(t1, . . . , tn), [i2, . . . , im]) = eval(f(t1, . . . , tn), []) = t. �

This property is very fundamental for the E-strategy because it is essential to obtain
the most results about the E-strategy that we will introduce after here, that are evaluated
flags, simplifying the local strategies, correctness and strictness of the E-strategy and so
on.

3.2 The evaluated flags

Theorem 3.1.2 justifies the use of evaluated flags (or reduced flags)[NMOF98] for a safe
E-strategy. The evaluated flags are marked on terms that have been evaluated so that
the terms cannot be evaluated more than once. The use of the evaluated flags gives us
an efficient implementation of rewriting with the E-strategy[OF97].

Definition 3.2.1 [NMOF98] Let Σ∗ be a set of marked function symbols from Σ, i.e.
Σ∗ = {f ∗ | f ∈ Σ}, such that ar(f) = ar(f ∗) and Σ ∩ Σ∗ = ∅. Let T ∗ = T (Σ ∪ Σ∗, V )
be a set of marked and unmarked terms and T = T (Σ, V ) a set of unmarked terms. The
function mark : T ∗ → T ∗ marks the root symbol of an input term and erase : T ∗ → T
eliminates all marks.

mark(t) =

{
t if t ∈ V

f ∗(�ti) if t ≡ f(�ti) or t ≡ f ∗(�ti)

erase(t) =

{
t if t ∈ V

f(
−−−−−→
erase(ti)) if t ≡ f(�ti) or t ≡ f ∗(�ti)

We define the rewrite relation →R∗⊂ T ∗×T ∗, which is a marked version of the rewrite
relation, as follows:

s →R∗ t
def⇐⇒ ∃p ∈ O(s), l → r ∈ R, θ : V → T ∗, l′ ∈ T ∗.

erase(l′) ≡ l, s|p ≡ l′θ, t ≡ s[rθ]p.

Note that when a marked term is rewritten by this rewrite relation →R∗ , the marks in
substituted subterms are preserved. For example +(s∗(s∗(0∗)), 0∗) → s(+(s∗(0∗), 0∗) by
the rule +(s(x), y) → s(+(x, y)). Especially →ε∗⊂ T ∗ × T ∗ is the marked version of the
rewrite relation at the root position.

Now we introduce the E-strategy reduction with the evaluated flags.

Definition 3.2.2 [NMOF98] For an E-strategy map ϕ and TRS R, the function red∗ :
T ∗ → T ∗ is defined as follows:

red∗(t) =

{
t if (t)ε ∈ Σ∗

eval∗(t, ϕ((t)ε)) o.w.

eval∗(t, l) =




mark(t) if l = nil
eval∗(t[red∗(ti)]i, l′) if l = i : l′, i > 0
red∗(s) if l = 0: l′, t →ε∗ s
eval∗(t, l′) if l = 0: l′, erase(t) �∈ Red(R)
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Main differences between the E-strategy with and without the evaluated flags are
behaviors of the function red∗ when the root symbol of an input term is marked and the
function eval∗ when it returns the evaluated term, i.e. the list is empty. In this definition
a marked term stands for an evaluated term and we do not reduce it again. The function
red∗ checks whether the root symbol is marked or not.

red∗(t) =

{
t if (t)ε ∈ Σ∗

eval∗(t, ϕ((t)ε)) o.w.

If it is marked, red∗ returns an input term immediately because the mark of the root
symbol means that the term is already evaluated. The function eval∗ marks the term
when the list is empty.

eval∗(t, nil) = mark(t)

The E-strategy returns a term only when consuming all elements of the local strategy list.
Hence we can say that each evaluated term is marked in this definition.

By use of the evaluated flags we can obtain more efficient implementation than the
original definition of the E-strategy because red∗ avoids wasteful pattern matching with
the left-hand sides of rules.

Example 3.2.3 Consider TRS Rn1 again

Rn1 =

{
+(x, 0) → x
+(s(x), y) → s(+(x, y))

Let ϕ be an E-strategy map where ϕ(+) = [1, 2, 0], ϕ(s) = [1], ϕ(0) = [].
We show a reduction sequence of the term +(+(0, s(0)), 0) by the E-strategy with the

evaluated flags.

red∗(+(+(0, s(0)), 0)) = eval∗(+(+(0, s(0)), 0), [1, 2, 0])
= eval∗(+(red∗(+(0, s(0))), 0), [2, 0])

Now the first argument of the input term is reduced by the function red∗. Then the result
term is marked at the root symbol (and all symbols also are marked since they are results
of red∗ too). The second argument is also marked similarly.

= eval∗(+(+∗(0∗, s∗(0∗)), 0), [2, 0])
= eval∗(+(+∗(0∗, s∗(0∗)), 0∗), [0])

For the term +(+∗(0∗, s∗(0∗)), 0∗) the result of erasing marks is a redex. Then the term
is rewritten into +∗(0∗, s∗(0∗)) by the rewrite relation →ε∗ and apply red∗ again. Note
that the root symbol of the result term is marked. Hence the function red∗ returns the
term immediately without wasteful matching.

= red∗(+∗(0∗, s∗(0∗)))
= +∗(0∗, s∗(0∗))

Although the use of evaluated flags gives us an efficient implementation of the E-
strategy, there are some cases such that evaluated terms of the E-strategy function red
are different from that of red∗ with evaluated flags for a same E-strategy map ϕ.
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Example 3.2.4 [NMOF98] Consider the following TRS R.

R =




f(x) → x
g(b) → c
a → b

Let ϕ be an E-strategy map such that ϕ(f) = [1, 0], ϕ(g) = [0, 1] and ϕ(a) = ϕ(b) =
ϕ(c) = [0]. We compare reduction sequences from the term f(g(a)) by the E-strategy
with and without evaluated flags.

For the function red in the original definition of the E-strategy without evaluated
flags, it is reduced as follows:

red(f(g(a)))
= eval(f(g(a)), [1, 0])
= eval(f(red(g(a))), [0])
= eval(f(g(b)), [0])
= red(g(b))
= eval(g(b), [0, 1])
= red(c) = · · · = c

where red(g(a)) = eval(g(a), [0, 1]) = eval(g(a), [1]) = eval(g(b), []) = g(b). On the other
hand, for the function red in the definition of the E-strategy with evaluated flags, the
term f(g(a)) is reduced as follows:

red∗(f(g(a)))
= eval∗(f(g(a)), [1, 0])
= eval∗(f(red∗(g(a))), [0])
= eval∗(f(g∗(b∗)), [0])
= red∗(g∗(b∗))
= g∗(b∗)

Since the term g(b) is marked, the term cannot be reduced in the last step of the above
reduction sequence.

It is desired that evaluated terms by the E-strategies with and without evaluated flags
are same, i.e. red(t) = erase(red∗(t)). We show that it holds if red is safe.

Theorem 3.2.5 If red is safe, red(t) = erase(red∗(t)) for each t ∈ T .

Proof. We only show a proof sketch. The complete proof is similar to that of the literature
[NMOF98]. The main difference between the E-strategy with and without evaluated flags
is the treatment of evaluated term. For the E-strategy with evaluated flags, red∗(t) = t
if t = red∗(s) for some term s ∈ T ∗ because the root symbol of t is marked from the
definition of red∗. On the other hand the same thing holds for a safe E-strategy, i.e.
red(t) = t if t = red(s) for some term s ∈ T from Theorem 3.1.2. Hence we can say that
in the two definition of the E-strategies each term is evaluated into the same term if red
is safe. �
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3.3 Simplifying local strategies

There are infinitely many local strategies for a function symbol because the definition
of local strategy does not restrict duplication of an element in a list. However for safe
E-strategy map we can decrease the number of local strategies finitely. In this section we
show how to simplify local strategies.

Theorem 3.3.1 Let ϕ be a safe E-strategy map. A local strategy ϕ(f) = [i1, . . . , in] where
ij = ik �= 0 and j < k can be replaced by a local strategy [i1, . . . , ik−1, ik+1, . . . , in] with no
effect on the sequence of rewrites.

Proof. When eval(f(t1, . . . tm), [ik, . . . , in]), the term tik is already evaluated because ij =
ik and j < k. Since red(tik) = tik from Theorem 3.1.2, eval(f(t1, . . . tm), [ik+1, . . . , in]).
Hence removing the element ik has no effect on the sequence of rewrites. �

This property enables us to delete a non-zero element if the same element also occurs
before it.

Theorem 3.3.2 Let ϕ be a safe E-strategy map. ϕ(f) = [. . . , 0] for each f ∈ Σ.
A local strategy ϕ(f) = [i1, . . . , ij , 0, 0, ij+3 . . . , in] can be replaced by a local strategy
[i1, . . . , ij, 0, ij+3 . . . , in] with no effect on the sequence of rewrites.

Proof. Trivial. �

This property enables us to delete 0 if the immediately before element is also 0.

Example 3.3.3 Consider TRS Rn1 and ϕ where ϕ(+) = [2, 0, 2, 0, 1], ϕ(s) = [1], ϕ(0) = []

Rn1 =

{
+(x, 0) → x
+(x, s(y)) → s(+(x, y))

Since ϕ is safe (we will be able to prove it by a result of the next section), we can simplify
the local strategy ϕ(+) = [2, 0, 2, 0, 1] to ϕ(+) = [2, 0, 0, 1] from Theorem 3.3.1 and do
further to ϕ(+) = [2, 0, 1] from Theorem 3.3.2 with no effect on the sequence of rewrites.

3.4 Defining safe local strategies

In this section we give a method for obtaining local strategies which satisfies the safety
condition. It is trivial that an E-strategy is safe if each local strategy list ends in 0. The
properties in the above sections about the evaluated flags and simplifying local strategies
had been proved on this condition in the literatures [NMOF98, Eke98]. We can give a
weaker condition on which an E-strategy is safe by analyzing the occurrence of variables
in the left-hand sides of the rules of a given TRS.

Definition 3.4.1 For a TRS R a map VR : Σ → P(N) is defined as follows:

LV (t)
def
= {(t)p ∈ V (t) | ∀q ∈ OV (t), (t)p = (t)q ⇒ p = q.}

VR(f)
def
=

{
i ∈ {1, . . . , ar(f)} | ∀f(�li) → r ∈ R.li ∈ LV (f(�li))

}
where LV (t) is the set of linear variables in t. We call an argument in VR(f) a variable
argument of f .
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By the following property about variable arguments, we can obtain another method
for simplifying local strategies.

Lemma 3.4.2 [NO00] Let t = f(�tk) and i ∈ VR(f). If a term t is redex, the term
t′ = f(. . . , ti−1, s, ti+1, . . .) is also redex for any term s.

Theorem 3.4.3 Let ϕ be an E-strategy map. A local strategy ϕ(f) = [. . . , 0, i1 . . . , in, 0]
where ik ∈ VR(f) for 1 ≤ k ≤ n can be replaced by a local strategy ϕ(f) = [. . . , 0, i1 . . . , in]
with no effect on the sequence of rewrites.

Proof. When eval(t, [i1, . . . , in, 0]) where (t)ε = f , the term t is not a redex because 0
was removed from the list. And when eval(t′, [0]), the term t′ is also not a redex because
each ik is a variable argument and Lemma 3.4.2 holds. Hence eval(t′, [0]) = eval(t′, []) = t′

and removing the last element 0 has no effect on the sequence of rewrites. �

We prove that an E-strategy map is also safe even if any variable argument i is eval-
uated after the whole term, i.e. ϕ(f) = [. . . , 0, i].

Theorem 3.4.4 Let R be a TRS and ϕ an E-strategy map. ϕ is safe if it satisfies the
following condition,

Condition: ∀f ∈ D(R).ϕ(f) = [i1, . . . in] such that ∃j.ij = 0, ∀k > j.ik ∈ VR(f).

Proof. We prove that a term t is not a redex if t = red(s) by induction on the structure
of t. It is trivial if t is a variable or the root symbol of t is a constructor symbol, i.e.
(t)ε �∈ D(R). Now we assume t ≡ f(�ti) and f ∈ D(R). From the definition of red, there
are terms �si such that

eval(f(�si), ϕ(f)) = · · · = eval(t, []) = t.

From the assumption, ϕ(f) must have 0 such that all elements after the 0 are variable
arguments. Thus,

eval(f(�si), ϕ(f)) = · · · = eval(f(�ui), [0, ij+1, . . . , in]) = · · · = eval(t, []).

Eliminating 0 from the list means that matching f(�ui) with left-hand sides fails. Hence,
f(�ui) is not a redex. From ij+1, . . . , in ∈ VR(f) and Lemma 3.4.2, we conclude that t is
not a redex. �

It is easy to check whether the condition of this theorem holds or not. The condition
that each local strategy list ends in 0 is of course stronger than the condition of Theorem
3.4.4. Hence we can generalize some properties proposed in the literatures [NMOF98,
Eke98] as follows.

Corollary 3.4.5 Let ϕ be an E-strategy map satisfying the condition of Theorem 3.4.4.
For each term t ∈ T , red(t) = erase(red∗(t)).

Corollary 3.4.6 Let ϕ be an E-strategy map satisfying the condition of Theorem 3.4.4.
Any evaluated term cannot be further rewritten, i.e. red(red(t)) = red(t) for any t.
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Corollary 3.4.7 Let ϕ be an E-strategy map satisfying the condition of Theorem 3.4.4.
A local strategy ϕ(f) = [i1, . . . , in] where ij = ik �= 0 and j < k, can be replaced by a local
strategy [i1, . . . , ik−1, ik+1, . . . , in] with no effect on the sequence of rewrites.

Corollary 3.4.8 Let ϕ be an E-strategy map satisfying the condition of Theorem 3.4.4.
A local strategy ϕ(f) = [i1, . . . , ij , 0, 0, ij+3 . . . , in] can be replaced by a local strategy
[i1, . . . , ij, 0, ij+3 . . . , in] with no effect on the sequence of rewrites.

From these properties we can conclude that although there are infinitely many E-
strategies map for a signature Σ, we consider essentially only finite cases if an E-strategy
is safe.

Example 3.4.9 Consider the binary function symbol + in TRS Rn1 , all local strategies
we should consider are following:

(0, 1), (2, 0), (0, 2, 0),

( 1, 0, 2, 0 ), ( 2, 0, 1 ),
( 1, 2, 0 ), ( 2, 1 ),
( 0, 1, 0, 2, 0 ), ( 0, 2, 0, 1 ),
( 0, 1, 2, 0 ), ( 0, 2, 1 )

Note that the first argument of + is a variable argument for TRS Rn1 .

3.5 Normalizability

The literature [Nag99] discussed the normalizability of the E-strategy. For an ARS (A,→),
a relation →s is a reduction strategy for → if →s⊆→+ and each normal form of →s is
also a normal form of →. A reduction strategy →s is normalizing if for each a ∈ A having
a normal form, there is no infinite sequence a →s a1 →s a2 →s · · ·. In the literature
[Nag99] the E-strategy is formalized by an ARS (T × N∗,→ϕ), in which an element is a
pair of a term t and a position p, which means that the subterm t|p has to be evaluated
next. The definition of the E-strategy in [Nag99] is following:

Definition 3.5.1 [Nag99] We define ΣL, VL and TL as ΣL = {fl | f ∈ Σ, l ∈ List(N )},
VL = {xnil | x ∈ V } and TL = T (ΣL, VL). We extend the E-strategy map from T to TL as

ϕ(f(t1, . . . tn)) ≡ fϕ(f)(ϕ(t1), . . . , ϕ(tn)).

The map e : TL → T erases all lists of function symbols and variables in a term defined
as follows:

e(fl(t
′
1, . . . t

′
n)) ≡ f(e(t′1), . . . , e(t′n)).

Definition 3.5.2 [Nag99] Let R be a TRS and ϕ an E-strategy map. An E-strategy
rewrite relation (or ϕ-rewrite relation) →ϕ is a binary relation on TL × N ∗ defined as
follows: 〈t, p〉 →ϕ 〈s, q〉 if and only if p ∈ O(t) and one of the following conditions is
satisfied:

1. (t)p = enil, s ≡ t and p = q · i for some i,
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2. (t)p = e0::l, t|p ≡ l′θ, e(l′) ≡ l, s ≡ t[ϕ(r)θ]p for some θ and l → r ∈ R, and q = p.

3. t|p ≡ e0::l(t1, . . . , tn), e(t|p) is not a redex, s ≡ t[el(t1, . . . , tn)]p, q = p,

4. t|p ≡ ei::l(t1, . . . , tn) with i > 0, s ≡ t[el(t1, . . . , tn)]p and q = p · i,

The normalizability of →ϕ has been discussed in [Nag99]. In order for an E-strategy
to become a normalizing strategy, it is necessary to introduce some notions for a TRS and
an E-strategy. For a fresh symbol Ω, an element of a set T (Σ ∪ Ω, V ) (or TΩ for short)
is called an Ω-term. A position p of a term t ∈ T is an index if there is no s ∈ T such
that t[Ω]p →∗

R s and s is a normal form. The set of indices of t is defined by I(t). We
define the index reduction →I as follows: s →I t if and only if s →p t and p ∈ I(s). The
following property holds.

Theorem 3.5.3 [HL91] Let R be an orthogonal TRS. The index reduction →I is a nor-
malizing strategy for →R.

Here we introduce only needed notations for obtaining a normalizing strategy by the
E-strategy. More details are shown in [HL91, Nag99].

Definition 3.5.4 [Nag99] A TRS R is index-transitive if for every term t ∈ T , p ∈ I(t)
and q ∈ I(t|p) imply p.q ∈ I(t).

Next we introduce the condition of an E-strategy map which is called the carefulness.
In the above section, we analyze variable arguments for obtaining a safe E-strategy. A
variable argument is a variable for all left-hand sides of R and we define non-variable
arguments before 0 and variable arguments after 0. For the carefulness, we analyze
variable occurrences of a defined symbol for each left-hand side one by one.

Definition 3.5.5 [Nag99] Let R be a TRS. An E-strategy map ϕ is careful if it satisfies
the following condition: for each f ∈ Σ

i. ϕ(f) contains 1, . . . , ar(f),
ii. the last element of ϕ(f) is 0 if f ∈ D(f),

and for each l → r ∈ R such that (l)ε = f and ϕ(f) = [i1, . . . , in], there exists k such
that

1. ik = 0,
2. 1 ≤ ∀j ≤ k, ij = 0 or ij ∈ I(l),
3. k < ∀j ≤ n, ij = 0 or l|ij ∈ V.

For an index-transitively TRS and a careful E-strategy map, the following property
holds.

Proposition 3.5.6 [Nag99] Let R be an index-transitive orthogonal TRS and ϕ a careful
E-strategy map. Then →ϕ is normalizing.
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Example 3.5.7 Consider the following TRS.

R =




f(x, a, b) → x
f(x, b, y) → x
g(x) → a
c → g(c)

If we define local strategies as ϕ(f) = [2, 0, 3, 0, 1, 0], ϕ(g) = [0, 1, 0], ϕ(c) = [0] and
ϕ(a) = ϕ(b) = nil. Since R is orthogonal and index-transitive and ϕ is careful (Proof
:See [Nag99]), then →ϕ is normalizing from Proposition 3.5.6.

It is easy to say that if →ϕ is normalizing, red(t) terminates for each t having a normal
form. In the previous section we define the safety condition to generalize the condition (i)
and (ii), which is occurred in the first half of the definition of the carefulness. Even if the
condition (i) and (ii) is replaced with the safety condition, we can also show the above
normalizing property straightforwardly. For the above example we can remove the last 0
from the local strategy ϕ(f) = [2, 0, 3, 0, 1, 0] with no effect on the sequence of rewrites
from Theorem 3.4.3.
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Chapter 4

Correctness and strictness analysis

In this chapter we consider one of the main topics of this thesis: correctness and strictness
analysis of the E-strategy.

We first introduce the notion of context-sensitive rewriting [Luc98], which is a restric-
tion of rewriting formalized by a replacement map on function symbols. Although in
the E-strategy a local strategy describes order of evaluation for each function symbol, in
context-sensitive rewriting a replacement set describes which arguments can be evaluated
or not for each function symbol. They are formalized by a list and a set respectively.
Context-sensitive rewriting is not a strategy. Although a strategy chooses a redex for a
term, context-sensitive rewriting chooses a subset of redeces for a term. It is easy for
context-sensitive rewriting to analyze theoretical properties, which are termination, con-
fluence and so on, rather than the E-strategy and many useful properties are proposed
in [Luc96, Luc98, Luc00, Luc01a, Luc01b, GM99, Zan97, FR99]. We clarify a relation
between the E-strategy and context-sensitive rewriting to obtain useful properties of the
E-strategy through those of context-sensitive rewriting.

We consider a method for obtaining a replacement map µ of context-sensitive rewriting
from a given E-strategy map ϕ. It is easy to obtain a transformation from an E-strategy
map to a replacement map because a set is simpler than a list. We show some relation
between a given E-strategy map ϕ and the corresponding replacement map, denoted by
µϕ.

Next we investigate µ-correctness of E-strategies. We discussed in the previous chapter
what conditions are needed for evaluated terms for holding some basic properties of the
E-strategy and did not discuss the meaning of evaluated terms as an answer. Hence we
need to discuss more strong condition for evaluated terms. The literatures [Nag99, NO00,
Pol01] proposed such conditions, on which an E-strategy is correct, i.e. each evaluated
term is always a normal form. Although a normal form leaves nothing to be desired as
an answer, it is too strong to deal with the example of the infinite list:

Rl1 =




inf → 0: inf
hd(x :y) → x
tl(x :y) → y

because there is a term which has no normal form, like a term inf . If red is correct,
reduction does not terminate not only for inf but also for hd(tl(inf )) which has a normal
form 0. Normal forms of context-sensitive rewriting, called µ-normal forms, may be
considered as a suitable compromise because we can choose a replacement map for a
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given TRS flexibly and there are some useful properties about µ-normal forms proposed
in [Luc98, Luc00, NF01] and the following section.

We also investigate strictness of E-strategies. In lazy functional languages, a function
is strict in a certain argument if the eager evaluation of that argument does not change
the termination behavior of the program. We define the notion of strictness for term
rewriting systems and propose a method for analyzing strict arguments. If we find that
a function symbol is strict in an argument by our method of strictness analysis, we can
evaluate it eagerly with no effect on termination. By evaluating an argument eagerly we
gain some efficiency in rewrite steps.

By correctness and strictness analyses, we give methods to obtain a suitable E-strategy
for a given context-sensitive rewriting. Our analyses proposed in this chapter can apply
any TRS and it is easy to implement them. Hence we can use these methods for computing
a default strategy, which the system (such as CafeOBJ) gives us automatically when we
omit to write local strategies.

4.1 Context-sensitive rewriting

In this section we introduce context-sensitive rewriting, which is an ARS (T (Σ, V ),→µ)
where T (Σ, V ) is a set of terms and →µ is a binary relation on T (Σ, V ) defined by a term
rewriting system R and a replacement map µ. First we introduce some definitions of
context-sensitive rewriting: a replacement map, an active position and a context-sensitive
rewrite relation.

In context-sensitive rewriting we decide which argument can be replaced and only re-
deces under such arguments are permitted to be reduced. For example if we select the first
argument of + and s as replacement arguments. For +(s(+(0, s(+(0, 0)))), +(s(0), 0)),
only the redex +(0, s(+(0, 0))) can be reduced because the other redeces are under second
arguments of +. Replacement arguments are formalized by a map which takes a function
symbol and returns a set of replacement arguments.

Definition 4.1.1 A replacement map µ is a map from Σ to P(N ) such that µ(f) ⊆
{1, . . . , ar(f)} for each f ∈ Σ.

Definition 4.1.2 Let µ be a replacement map and t a term. A set of active positions
Oµ(t) ⊂ N ∗

+ of a term t is defined as follows:

Oµ(t) =




{ε} if t ∈ V

{ε} ∪
⋃

i∈µ(f)

{i.p ∈ N ∗
+ | p ∈ Oµ(ti)} if t ≡ f(t1, . . . , tn).

The context-sensitive rewrite relation, denoted by →µ, (µ-rewrite relation) is a rewrite
relation whose redex positions is restricted to active positions (Fig. 4.1).

Definition 4.1.3 Let R be a TRS and µ a replacement map.

s →µ t
def⇐⇒ ∃p ∈ Oµ(s), s →p t.

The trivial replacement map µ� is defined as µ�(f) = {1, . . . , ar(f)} for each f ∈ Σ.
Note that →µ�=→R . A normal form of µ-rewrite relation →µ is called a µ-normal form.
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µ

cons

cons0

0 inf

O (cons(0,cons(0,inf)))

µ

µ

Figure 4.1: Active positions for µ(cons) = {1}

Example 4.1.4 We consider the following TRS Rl1 of an infinite list.

Rl1 =




inf → 0: inf
hd(x :y) → x
tl(x :y) → y

where : is a binary symbol and we write t1 : t2 : t3 · · · instead of : (t1, : (t2, : (t3, · · ·)))
for a simple view. Of course Rl1 is not terminating, i.e. there is an infinite reduction
sequence, e.g. hd(tl(inf )) →Rl1

hd(tl(0 : inf )) →Rl1
hd(tl(0 : 0 : inf )) →Rl1

· · ·. We can
avoid such an infinite reduction sequence by defining a replacement map µ as µ(:) =
µ(hd) = µ(tl) = {1}. Since each position under the second argument of : is not active,
the redex inf in hd(tl(0 : inf )) cannot be rewritten. The following is an example showing
that context-sensitive rewriting can avoid such an infinite reduction sequence.

hd(tl(inf )) →µ hd(tl(0 : inf )) �→µ hd(tl(0 :0 : inf ))

↓µ

hd(inf ) →µ hd(0 : inf ) �→µ hd(0 :0 : inf )

↓µ

0

4.2 Termination of the E-strategy

The definition of E-strategy maps is very similar to that of replacement maps. The
differences are the range of the map and whether the element 0 is included or not.

The E-strategy map The replacement map
ϕ : Σ → List(N ) µ : Σ → P(N )

∀i ∈ ϕ(f).0 ≤ i ≤ ar(f) ∀i ∈ µ(f).1 ≤ i ≤ ar(f).

It is easy to obtain the corresponding replacement map for a given E-strategy map by
forgetting the order of elements and removing 0.
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Definition 4.2.1 [Luc00] For an E-strategy map ϕ, the replacement map µϕ is defined
as follows: µϕ(f) = {i1, . . . , in} \ {0} for each function symbol f with ϕ(f) = [i1, . . . , in].

Trivially, any E-strategy is covered with term rewriting, i.e. if t = red(s), there is a
reduction sequence s →∗

R t. We can also say that if R terminates, so does red(t) for any
t. In this section we show that some E-strategies are also covered with context-sensitive
rewriting.

Lemma 4.2.2 Let µ be a replacement map. f(t1, . . . , tn) →∗
µ f(t′1, . . . , t

′
n) if ti →∗

µ t′i for
i ∈ µ(f) and ti ≡ t′i for i �∈ µ(f).

Proof. We prove that f(t1, . . . , tn) →µ f(t′1, . . . , t
′
n) if ti →µ t′i for a i ∈ µ(f) and tj ≡ t′j

for each j �= i. There is a position p ∈ Oµ(t) such that ti →p t′i from the definition of →µ.
i.p ∈ Oµ(f(t1, . . . , tn)) because i ∈ µ(f). Hence f(t1, . . . , tn) →µ f(t′1, . . . , t

′
n). �

Theorem 4.2.3 [Luc00] Let ϕ be an E-strategy map and µ a replacement map such that
µϕ � µ. If t = red(s), there is a reduction sequence s →∗

µ t.

Proof. We prove the claim by induction and the number of calls of red at the root
position in the reduction sequence red(s) = red(t1) = red(t2) = · · · = red(tn) = t.

(Base case) We assume that applying the function red at the root symbol is only
once, i.e. n = 0 for the above sequence. We prove the claim by induction on the
structure of s. If s ∈ V , red(s) = s and trivially s →∗

µ s. We assume that s ≡ f(�si).
If ϕ(f) = [], red(s) = eval(s, []) = s. If ϕ(f) = [i1, . . . , im] �= [], there should be the
following reduction sequence:

red(s) = eval(f(s1, . . . , sn), [i1, i2, . . . , im])
= eval(f(s1, . . . , red(si1), . . . , sn), [i2, . . . , im]).
= eval(f(s1, . . . , s

′
i1
, . . . , sn), [i2, . . . , im])

= · · · =
= eval(f(s′1, . . . , s

′
n), [])

= f(s′1, . . . , s
′
n)

where s′ik = red(sik) for each ik and si ≡ s′i for i �= ik for any k. From the induction
hypothesis, sik →∗

µ s′ik . Hence we obtain s →∗
µ f(s′1, . . . , s

′
n) ≡ t from Lemma 4.2.2.

(I.S.) We assume that red(s) = red(t1) = · · · = red(tn) = t for n �= 0. Again
we prove the claim by induction on the structure of s. If s ∈ V , red(s) = s and
trivially s →∗

µ s. We assume that s ≡ f(�si). There should be the following reduction
sequence:

red(s) = eval(f(s′1, . . . , s
′
n), [ik, ik+1, . . . , im])

= red(s′) = · · · = t

where ik = 0, si →∗
µ s′i if i = ij for some j < k and si ≡ s′i if i �= ij for any

j < k. s →∗
µ f(s′1, . . . , s

′
n) from the same reason as above, f(s′1, . . . , s

′
n) →∗

µ s′ from
→ε⊂→µ and s′ →∗

µ t from the induction hypothesis. Therefore we conclude that
s →∗

µ t if t = red(s).�
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One of the most useful property of the replacement map µϕ is about termination. For
an E-strategy map ϕ, we can prove that red is terminating if the context-sensitive rewrite
relation →µϕ is terminating

Theorem 4.2.4 [Luc01b] Let ϕ be an E-strategy map and µ a replacement map such that
µϕ � µ. If →µ terminates, red(t) also terminates for each t ∈ T .

Proof. We prove the claim by induction of the structure of a term t. If t ∈ V , it is trivial
that red(t) terminates and returns t immediately. We assume that t ≡ f(t1, . . . , tn).
From the induction hypothesis, red(ti) terminates for each i. There are two cases of the
reduction sequence of red(t).

Case 1.)

red(t) = eval(f(t1, . . . , tn), [i1, i2, . . . , im])
= eval(f(t1, . . . , red(ti1), . . . , tn), [i2, . . . , im])
= · · · =
= eval(f(t′1, . . . , t

′
n), [])

= f(t′1, . . . , t
′
n)

In this case it is trivial that red(t) terminates.

Case 2.)
red(t) = eval(f(t1, . . . , tn), [i1, i2, . . . , im])

= · · · =
= eval(f(t′1, . . . , t

′
n), [0, ik, . . .])

= red(t′)

In this case, we prove the claim by induction of the context-sensitive rewrite sequence
from t. If t is a µ-normal form, it is inconsistent with the fact that f(t′1, . . . , t

′
n) is

a redex in the last step eval(f(t′1, . . . , t
′
n), [0, ik, . . .]) = red(t′). If t is not a µ-

normal form, t →+
µ t′ from Theorem 4.2.3. From the induction hypothesis, red(t′)

terminates.�

Example 4.2.5 Consider TRS Rl1 .

Rl1 =




inf → 0: inf
hd(x :y) → x
tl(x :y) → y

Let ϕ(:) = [1] and ϕ(hd) = ϕ(tl) = [1, 0]. Then, µϕ(:) = µϕ(hd) = µϕ(tl) = {1}. By
methods for proving termination of context-sensitive rewriting in the literatures [Luc96,
Zan97, GM99], we can prove that →µϕ is terminating. Hence red(t) is terminating from
Theorem 4.2.4.

Since we showed the property about termination, it is natural that the question about
confluence is occurred. Unfortunately, the fact that µ-rewriting is confluent does not
imply the fact that an evaluated term of a term is unique even if µϕ � µ. The reason is
that an evaluated term may be a term on the half way of µ-rewriting, i.e. may not be a
µ-normal form. In the next section we propose the conditions on which each evaluated
term is always a µ-normal form.
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Example 4.2.6 Consider TRS R = {a → b, a → f(a), f(b) → b} and ϕ(a) = [0],
ϕ(b) = nil and ϕ(f) = [0, 1]. The corresponding replacement map µϕ is trivial. Al-
though →µϕ is confluent, an evaluated term is not unique, such as red(a) = eval(a, [0]) =
red(b) = eval(b, nil) = b and red(a) = eval(a, [0]) = red(f(a)) = eval(f(a), [0, 1]) =
eval(f(a), [1]) = eval(f(b), nil) = f(b).

4.3 Correctness

An E-strategy map ϕ is called correct if red is a correct strategy, i.e. each evaluated term
is a normal form. If ϕ(f) = [1, . . . , ar(f), 0] for each f ∈ Σ, the E-strategy is trivially
correct and identical with the leftmost innermost strategy. The literature [Nag99] gives a
condition on which an E-strategy is correct.

Proposition 4.3.1 [Nag99] An E-strategy map ϕ is correct if the following conditions
are satisfied:

• ϕ(f) contains 1, . . . , ar(f) for any f ∈ Σ,

• the last element of ϕ(f) is 0 for any f ∈ D(R).

From Proposition 4.3.1 we can give a proof of correctness of the above leftmost innermost
E-strategy since [1, . . . , ar(f), 0] satisfies the conditions in Proposition 4.3.1. There are
other studies about the correctness of E-strategy [NO00][NF01][Pol01].

Although the correctness is quite satisfactory for shapes of evaluated terms, the condi-
tion may be too strong for some TRSs. Now we assume that for a TRS R a term t has not
a normal form, i.e. there is no normal form s such that t →R s. For any correct E-strategy
the evaluation of t does not terminate because if red(t) terminates, the result must be a
normal form and it is a reduced term from t. In order to deal with such TRSs we need to
propose a condition which is weaker than the correctness but has some meaning. In this
section, as such a condition we propose the notion of the µ-correctness for the E-strategy
where µ is a replacement map in context-sensitive rewriting.

Definition 4.3.2 An E-strategy map ϕ is µ-correct if each evaluated term is a µ-normal
form.

Before giving a method of defining a µ-correct E-strategy map, we show the following
useful properties for µ-correct E-strategies.

Theorem 4.3.3 Let ϕ be an E-strategy map and µ a replacement map such that µϕ � µ.
If ϕ is µ-correct and →µ has the unique normal form property, an evaluated term is unique
if it exists.

Proof. We assume that t = red(s) and t′ = red(s) for some term s. From Theorem 4.2.3
s →∗

µ t and s →∗
µ t′. Since →µ has the unique normal form property, t ≡ u ≡ t′ because

ϕ is µ-correct, i.e. t and t′ are in µ-normal form. �

Theorem 4.3.4 Let ϕ be an E-strategy map and µ a replacement map such that µϕ � µ.
If ϕ is µ-correct and →µ has the unique normal form property and is terminating, there
exist a unique evaluated term for any term.
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Proof. From Theorem 4.2.4 and 4.3.3. �

Corollary 4.3.5 Let ϕ be an E-strategy map and µ a replacement map such that µϕ � µ.
If ϕ is µ-correct and →µ is confluent, an evaluated term is unique if it exists.

Corollary 4.3.6 Let ϕ be an E-strategy map and µ a replacement map such that µϕ � µ.
If ϕ is µ-correct and →µ is confluent and is terminating, there exist a unique evaluated
term for any term.

4.3.1 µ-correct E-strategies

If a local strategy ϕ(f) is defined as [i1, . . . , in, 0] for each µ(f) = {i1, . . . , in} (where
i1 < · · · < in), the E-strategy map ϕ is µ-correct and red is identical with the leftmost
innermost strategy of the context-sensitive rewriting →µ. Hereafter we analyze which
arguments can be evaluate lazily with keeping µ-correctness. We prove that an E-strategy
map is µ-correct even if a variable argument i evaluates after the whole term, i.e. ϕ(f) =
[. . . , 0, i].

Definition 4.3.7 Let ϕ be an E-strategy map and µ a replacement map. The function
Φ : P(N )Σ → P(List(N )Σ), which takes a replacement map and returns a set of E-
strategy maps, is defined as follows: ϕ ∈ Φ(µ) if and only if for any f ∈ Σ, ϕ(f) =
[i1, . . . , in], (1) µ(f) ⊂ {i1, . . . , in} and (2) ik = 0 and {ik+1, . . . , in} − {0} ⊂ VR(f) for
some k if f ∈ D(R).

The condition of (1) means that each replacement argument i ∈ µ(f) must be reduced
in the E-strategy. That of (2) guarantees ϕ to be safe. For proving the µ-correctness of
ϕ ∈ Φ(µ), we prepare the following lemma about µ-normal forms.

Lemma 4.3.8 Let µ be a replacement map. A term t ≡ f(t1, . . . tn) is a µ-normal form
if t is not a redex and ti is a µ-normal form for any i ∈ µ(f).

Proof. We assume that t is not a µ-normal form. There is a position p ∈ O(t) such that
p is active and t|p is a redex. Since t is not a redex, p is not empty, i.e. p �= ε. From
Definition 4.1.2 we can break p to i.q where i ∈ µ(f) and q ∈ Oµ(ti). Hence ti has a redex
subterm ti|q ≡ t|p. It is inconsistent. �

Theorem 4.3.9 If ϕ ∈ Φ(µ), ϕ is µ-correct.

Proof. We prove that a term t is a µ-normal form if t = red(s) by induction on the
structure of t. It is trivial for t ∈ V . We assume t ≡ f(�ti). From the definition of red,
there exist terms �si such that

red(s) = · · · = red(f(�si)) = evalϕ(f(�si), ϕ(f)) = · · · = evalϕ(t, []) = t.

From the assumption 2 and Theorem 3.4.4, ϕ is safe, i.e. the evaluated term t is not a
redex. From the assumption 1, ti = red(si) if i ∈ µ(f) and from the induction hypothesis
ti is a µ-normal form. From Lemma 4.3.8 the term t is a µ-normal form. �
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Example 4.3.10 Consider TRS Rl1 .

Rl1 =




inf → 0: inf
hd(x :y) → x
tl(x :y) → y

Let µ(:) = µ(hd) = µ(tl) = {1}. We define an E-strategy map ϕ as an element of Φ(µ).
For example, ϕ(:) = [1], ϕ(hd) = ϕ(tl) = [1, 0]. From Theorem 4.3.9, each evaluated term
is a µ-normal form.

4.3.2 Properties for µ-normal form

Although a normal form is of course in µ-normal form, the reverse is not always true.
Like as the term 0 : inf in the above example there exists a term which is in µ-normal
form but not in normal form (Fig. 4.2). Hence, it is important to analyze what properties
µ-normal forms have in context-sensitive rewriting. In this section we analyze relations
between µ-normal forms and each of redeces, root-stable forms and normal forms. By
combining these analyses with Theorem 4.3.9, we can obtain useful properties about
evaluated terms of the E-strategy.

Terms

 -normal forms

Normal forms

µ

0 : inf

Figure 4.2: µ-normal form and normal form

Redex

We first show a trivial property of µ-normal form. For any replacement map µ we cannot
give the context-sensitive rewriting which has not the root position of a given term as an
active position. A position which is above an active position is also active, i.e. p is active
in t if p.q is active for some q. This implies that if the root position is not active, no active
position can exist. Since such a restriction is meaningless, context-sensitive rewriting is
defined as always being able to rewrite the root position (Fig. 4.3) .

Lemma 4.3.11 Each redex is not a µ-normal form.
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Terms

 -normal formsµ

Redeces

Figure 4.3: µ-normal form and redex

Proof. For any replacement map µ and term t, from Definition 4.1.2 the root position is
always active. Hence any redex can be rewritten by context-sensitive rewriting. �

Root-stable form

In the paper [Luc98], an important replacement map whose name is the canonical re-
placement map µR is proposed. In the canonical replacement map, arguments where only
variables occur in each left-hand side are restricted to non replacement arguments.

Definition 4.3.12 [Luc98] The canonical replacement map µR is defined as µR(f) =
{i ∈ {1, . . . , ar(f)} | ∃l → r ∈ R, ∃p ∈ T V .(l)p = f and p.i �∈ OV (l).}.

Example 4.3.13 Note that both VR and µR analyze occurrences of variables in left-hand
sides, however VR(f) is not always the same as µR(f) = {1, . . . , ar(f)} − µR(f). The
definition of VR is depend on the only root position of the left-hand sides. That of µR is
depend on all positions of the left-hand sides. For the TRS R = {f(x, f(0, y)) → f(x, y)},
µR(f) = ∅ �= {1} = VR(f).

When an argument is not in the canonical replacement set, i.e. i �∈ µR(f), for any
subterm f(t1, . . . , tn) of any left-hand side, ti is a variable. It can be said that such an
argument is not necessary for a redex for a left-linear TRS. Hence if all subterms except
such arguments are reduced, the result whole term cannot become a redex (Fig. 4.4) .

Definition 4.3.14 [Luc98] The quasi ordering � on replacement maps is defined as µ �
µ′ if and only if µ(f) ⊆ µ′(f) for each f ∈ Σ.

Proposition 4.3.15 [Luc98] Let R be a left-linear TRS and µ a replacement map such
that µ � µR. Each µ-normal form is a root-stable form.

From Proposition 4.3.15 we can obtain the following useful property about evaluated
terms of the E-strategy.
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Corollary 4.3.16 Let R be a left-linear TRS and ϕ ∈ Φ(µR). Each evaluated term is a
root-stable form.

Proof. From Theorem 4.3.9 and Proposition 4.3.15. �

Example 4.3.17 Again consider Rl1 and ϕ(:) = [1], ϕ(hd) = ϕ(tl) = [1, 0].

Rl1 =




inf → 0: inf
hd(x :y) → x
tl(x :y) → y

Corollary 4.3.16 guarantees each evaluated term to be a root-stable form.

Terms

  -normal formsµ

Root-stable forms

R

Figure 4.4: µR-normal form and root-stable form

Normal form

Moreover we propose a condition of a replacement map µ for normal forms. A mathe-
matical function is called total on D when the function is defined for all elements of D.
We introduce the totality of function symbols for TRSs. For a function symbol f ∈ Σ,
we call f a total function symbol if and only if a term f(. . .) is a redex if each argument
is in normal form.

Definition 4.3.18 A function symbol f is total if and only if f(t1, . . . , tn) is a redex
whenever each ti is a normal form.

Since a variable is always a normal form, f(x1, . . . , xn) must be a redex if f is total.
Moreover in order for f(x1, . . . , xn) to be a redex, there must be a rule f(x1, . . . , xn) → r
in a given TRS since only a variable or f(x1, . . . , xn) is a term of which f(x1, . . . , xn) is
an instance.
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Lemma 4.3.19 If f is total, there is a rule f(x1, . . . , xn) → r ∈ R where each xi is a
variable.

Proof. Trivial. �
For a total function symbol f there is not problem if we remove all its argument from

its replacement set.

Lemma 4.3.20 [NF01] Let µ be a replacement map satisfying the following condition:

µ(f) = {1, . . . , ar(f)} if there is no rule f(�xi) → r ∈ R

where each xi is a variable and xi �= xj for i �= j. Each µ-normal form is a normal form.

Proof. Suppose that a µ-normal form has one or more f ∈ Σ such that f(�xi) → r ∈ R,
f occurring at the outermost position is at an active position as well as a redex position.
It contradicts the definition of a µ-normal form. Thus, each µ-normal form does not
have such a symbol f . From the assumption, all positions of a term are active and each
µ-normal form has no redex. �

Theorem 4.3.21 Let µ be a replacement map satisfying the following condition:

µ(f) = {1, . . . , ar(f)} if f is not total.

Each µ-normal form is a normal form.

Proof. From Lemma 4.3.19 and 4.3.20. �

Example 4.3.22 For the TRS R = {f(x, y) → x, g(0, x) → x}. The canonical re-
placement map µR is that µR(f) = ∅, µR(g) = {1}, µR(0) = ∅. A µR-normal form is a
root-stable form because of the left-linearity of R and Proposition 4.3.15. If we define a
replacement map µ as µ(f) = ∅, µ(g) = {1, 2}, µ(0) = ∅, a µ-normal form is a normal
form from Lemma 4.3.20.

Corollary 4.3.23 Let R be TRS and ϕ an E-strategy map such that ϕ(f) has 0 if there
is a rule f(x1, . . . , xn) → r ∈ R, and ϕ(f) has all i ∈ {1, . . . , ar(f)} for f �∈ D(R). ϕ is
correct, i.e. each evaluated term is a normal form.

Proof. From Theorem 4.3.9 and Theorem 4.3.21. �

Corollary 4.3.24 Let R be RPS and ϕ an E-strategy map such that ϕ(f) has 0 for
f ∈ D(R) and ϕ(f) has all i ∈ {1, . . . , ar(f)} for f �∈ D(R). ϕ is correct, i.e. each
evaluated term is a normal form.

Proof. Trivial. �

Example 4.3.25 For a RPS, in which each left-hand side is f(x1, . . . , xn), we define an
E-strategy map ϕ as ϕ(f) = [0] if f ∈ D(R) and ϕ(f) = [1, . . . , ar(f)] if f �∈ D(R). From
Theorem 4.3.21 and Theorem 4.3.9, each evaluated term is a normal form.
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4.3.3 Ground totality

We showed that evaluation of variable arguments of f ∈ Σ is not necessary for any term
f(. . .) to be a redex. We conversely analyze which arguments of f ∈ Σ are sufficient for
any term f(. . .) to be a redex. In this subsection we restrict an evaluated term to be a
ground term and propose another condition for the correctness of the E-strategy. Note
that we assume that the signature Σ is all function symbols occurred in a given TRS R.

A term t is ground reducible with respect to a TRS R if all its ground instances
contain a redex [JK86]. Ground reducibility is decidable for ordinary TRSs [KNZ97]. For
example, we consider TRS Rn1 again.

Rn1 =

{
+(x, 0) → x
+(x, s(y)) → s(+(x, y))

A reducible term (i.e. not a normal form) is of course ground reducible. There is a term
such that it is not reducible but ground reducible. A term +(x, y) is ground reducible
because any ground instance is reducible, that are +(t, 0), +(t, s(t′)) and +(t, +(t′, t′′))
(where +(t′, t′′) is reducible by the induction hypothesis). Ground reducibility of a term
f(x1, . . . , xn) can be regarded as totality of a function f .

Observing the above example of the ground reducible term +(x, y), only the second
argument of + is essential to be a redex, i.e. a term +(s, t) is a redex for any term s and
any ground term t. In this example it may be sufficient to evaluate the second argument
for the term to be a redex. Then we call + a ground total function symbol on {2}.

Definition 4.3.26 A function symbol f is ground total on I if and only if f(t1, . . . , tn)
is a redex whenever ti is a ground normal form for each i ∈ I. A replacement map µ is
ground total if and only if µ(f) = I such that (1) I = {1, . . . , ar(f)}, or (2) f is ground
total on I.

We show that for a ground total replacement map µ each µ-normal form is a normal
form if it is a ground term.

Theorem 4.3.27 Let µ be a replacement map. If µ is ground total, each ground µ-normal
form is a normal form.

Proof. We assume that t ≡ f(t1, . . . , tn) is a ground µ-normal form. I is a set of
arguments satisfying the condition of the definition of the ground total replacement map
in Definition 4.3.26. For i ∈ I, ti is a µ-normal form. From the induction hypothesis the
ti is a normal form. In the case of (1), since all ti are normal form and t is not redex from
Lemma 4.3.11, t is a normal form. In the case of (2), t is a redex from the definition of
ground totality. It is inconsistent. Hence, we can say that for a ground total replacement
map a ground µ-normal form has not any function symbol which is ground total on some
I. �

We redefine the (µ-)correctness for ground terms and propose a condition on which
the E-strategy is µ-correct for ground terms.

Definition 4.3.28 An E-strategy map ϕ is ground (µ-)correct if each ground evaluated
term is a (µ-)normal form.
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Theorem 4.3.29 Let µ be a replacement map and ϕ an E-strategy map. If µ is ground
total and ϕ ∈ Φ(µ), ϕ is ground correct.

Proof. From Theorem 4.3.9 and 4.3.27. �

Corollary 4.3.30 Let µ be a replacement map, ϕ an E-strategy map and s a ground
term. If µ is ground total, ϕ ∈ Φ(µ) and t = red(s), t is a µ-normal form.

Proof. A term reduced from a ground term is also a ground term. �

Example 4.3.31 Consider the following TRS Rb1 :

Rb1 =




∧(1, x) → x
∧(0, x) → 0
∧(x, 1) → x
∧(x, 0) → 0

Since there is no variable argument for a function symbol ∧, we cannot evaluate any
argument lazily with keeping µ-correctness. On the other hand, under the assumption
that an input term is a ground term, we can stop evaluating either first or second argument
of ∧ with keeping µ-correctness. Since ∧ is ground total on both {1} and {2}, both E-
strategy maps ϕ(∧) = [1, 0] and ϕ′(∧) = [2, 0] are ground µ-correct.

For a TRS, a function symbol f and a set I of arguments it is decidable whether f is
ground total on I. For a left-linear TRS, it is easy to see that whether a term is a redex
or not is decidable because it is sufficient to check terms at most deep as the same depth
of the largest left-hand side of a given TRS. Even if a TRS is not left-linear, we can see
that in finite times.

Example 4.3.32 Consider Rn1 again.

Rn1 =

{
+(x, 0) → x
+(x, s(y)) → s(+(x, y))

To prove that + is ground total on I = {2} we must show that +(x, t) is a redex for
any ground normal form t. It is enough to consider only terms which are smaller than or
equal to +(x, s(y)), that are +(x, 0) and +(x, s(0)). Since they are redeces, + is ground
total on I. This does not hold for a non-linear TRS.

R =




f(x, 0, y) → 0
f(x, y, 0) → 0
f(x, y, y) → s(0)

We now check whether f is ground total on I = {2, 3} or not, like the above. So we will
show that f(x, t, t′) is a redex for any ground normal form t. If we only consider terms
which are smaller than or equal to f(x, y, y), t and t′ should become 0 and s(0). So we
conclude that f is ground total on I since all f(x, 0, 0), f(x, s(0), 0), f(x, 0, s(0)) and
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f(x, s(0), s(0)) are redeces. Of course it is not correct, for example f(x, s(0), s(s(0))) is
not a redex.

In such a case, we add terms which have variables to ground terms to be considered,
for example s(x1), s(x2), s(x3), . . . Then there is a term which is not a redex, such as
f(x, s(x1), s(x2)). Is it a guarantee to exist a “ground” term which is not a redex? The
answer is yes because we can substitute ground terms ti for xi where each ti differs from
each other. There are such ground terms, for example t1 = 0, t2 = sk(0), t3 = s2k(0) . . .
where k is a maximal height of left-hand sides of rules.

4.3.4 Order-sorted terms

For a TRS with the order-sort, we can obtain weaker condition on which each µ-normal
form is a normal form.

Definitions

An order-sorted signature is formalized as a triple (S,≤, Σ) where S is a set of sorts, Σ
is an S∗ × S-sorted family {Σw,s | w ∈ S∗ and s ∈ S} and ≤∈ S × S is a partial order
[DF98, GM92].

We write f : w → s for f ∈ Σw,s and call w its arity, s its value (or result or coarity or
sort). Especially c : s is written instead of c : ε → s. A variable V is an S-sorted family
{Vs | s ∈ S} of countably infinite sets.

A set of order-sorted terms T (Σ, V ) (or T ) is constructed as the least family {T (Σ, V )s |
s ∈ S} (or Ts) of sets of S-sorted terms satisfying the following conditions: Vs ⊂ Ts and
f(t1, . . . , tn) ∈ Ts for ti ∈ Ts′i, s′i ≤ si, s′ ≤ s and f : s1 . . . sn → s′. We write t : s for
t ∈ Ts and call s a sort of t. A rewrite rule is a pair of terms l : s → r : s′ where s ≤ s′

or s′ ≤ s. Other subjects are defined straightforwardly, term rewriting, context-sensitive
rewriting and so on. More details are found in the literatures [DF98, GM92].

Hierarchical order

For order-sorted TRS, we propose a method for obtaining suitable context-sensitive rewrit-
ing in which some waste search for a redex can be eliminated.

Definition 4.3.33 Let (S,≤, Σ) be an order-sorted signature. We define a hierarchical
order �Σ as the least quasi order on S satisfying following condition:

si �Σ s if ∃f : s1 . . . sn → s,
s�Σ s′ if s ≤ s′ or s′ ≤ s.

We write s�Σ s′ if s�Σ s′ but s′ � �Σs.

Example 4.3.34 Let (S,≤, Σ) be an order-sorted signature such that S = {s1, s2, s3},
Σ = {f : s1 s2 → s3, g : s1 s1 → s2, 0 : s1} and s1 ≤ s2. Then the hierarchical order �Σ

is that s1 �Σ s3, s2 �Σ s3 from f : s1, s2 → s3, s1 �Σ s2 from g : s1 s1 → s2 and s2 �Σ s1

from s1 ≤ s2. Hence we get s1 ∼ s2 �Σ s3.

The hierarchical order �Σ preserves subterm relations of order-sorted terms (Fig. 4.5).

Lemma 4.3.35 s�Σ s′ if t : s is a subterm of a term t′ : s′.
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Figure 4.5: �Σ preserves subterm relations

Proof. We prove the claim by the induction on the structure of the term t′. It is trivial if
t ≡ t′. If t is a strict subterm of t′, we can write t′ = f(t1, . . . , tn) where f : s1 . . . sn → s′

and t is a subterm of ti for some i. From the induction hypothesis, s �Σ si for some i.
From the definition of �Σ, si �Σ s′ for any i. Hence s�Σ s′. �

Definition 4.3.36 Let (S,≤, Σ) be an order-sorted signature and R a TRS. We define
the set of least sorts SR of the TRS R as the least sorts among the all rules of R with
respect to the hierarchical order, i.e.

SR = {s ∈ S | l → r : s ∈ R and there is no l → r : s′ ∈ R such that s′ �Σ s}

where we write l → r : s ∈ R if l : s, r : s′ (or l : s′, r : s) and s ≥ s′.

Example 4.3.37 Let (S,≤, Σ) be the same as the above example and R = {f(x, y) →
c, g(x) → c}. Then SR = {C, D}.

For an order-sorted term, it is unnecessary to search a redex in a term having a sort
which is less than a sort of the least sort set SR

Lemma 4.3.38 Let R be a TRS. If a term t : s has a redex, there is a sort s′ ∈ SR such
that s′ �Σ s.

Proof. First we prove the claim for the case that t : s is a redex itself. From the
assumption there is a rule l → r : s ∈ R. If s ∈ SR, s′ = s exists. If s �∈ SR, there is a
l → r : s′ ∈ R such that s′ �Σ s. Of course �Σ terminates. There exists a least sort s′

such that l → r : s′ ∈ R and s′ �Σ s. From Definition 4.3.36 the sort s′ is a member of
SR.

Now we assume a term t : s has a redex u : s′′, which means that u is a subterm of
t. From the above proof there is a sort s′ ∈ SR such that s′ �Σ s′′. From Lemma 4.3.35
s′′ �Σ s and finally we obtain s′ �Σ s. �

From the above properties of the hierarchical order and the least sort set, we obtain a
suitable replacement map for a TRS with order-sorted signatures.

Theorem 4.3.39 Let (S,≤, Σ) be an order-sorted signature, R a TRS and µ a replace-
ment map satisfying the following condition:

i ∈ µ(f) if f : s1 . . . sn → s, there is an s′ ∈ SR such that s′ �Σ si.

The context-sensitive rewrite relation →µ is identical with the rewrite relation →R.
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Proof. It is sufficient that p ∈ Oµ(t) if t|p is a redex for any term t. If p �∈ Oµ(t), there
is a f ∈ Σ such that t|p′ = f(t1, . . . , tn), i �∈ µ(f) and t|p is a subterm of ti. From the
condition there is no s′ ∈ SR such that s′ �Σ si. From Lemma 4.3.38 the term ti : si has
no redex. �

Consider the following example which is the result of adding the some equations to the
above specification. S = {Zero, NzNat,Nat,Bool}, NzNat < Nat, Σ = {0 : Zero, s :
Nat → NzNat, t : Bool, f : Bool, eq : NatNat → Bool} and

Re =




eq(0, 0) → t
eq(0, sN) → f
eq(s(x), 0) → f
eq(s(x), s(y)) → eq(x, y)

A function eq replies whether arguments are equal or not. Since Nat�Σ Bool, we let µ a
replacement map such that µ(0) = µ(s) = · · · = µ(eq) = ∅. The context-sensitive rewrite
relation →µ is identical with the rewrite relation →R from Theorem 4.3.39.

Corollary 4.3.40 Let ϕ be an E-strategy map. Let (S,≤, Σ) be an order-sorted signature,
R a TRS and µ a replacement map satisfying the condition of Theorem 4.3.39. If ϕ ∈
Φ(µ), ϕ is correct.

Proof. From Theorems 4.3.39 and 4.3.9. �

4.4 Strictness

In the above section, we discussed which arguments could be evaluated later with keeping
(µ-)correctness. On the other hand, it is not always that such lazy evaluation is most
efficient. Consider the following TRS for example: R = {f(x) → x}. Since the argument
of the symbol f is a variable argument, we can move it after 0 in the local strategy of f :
ϕ(f) = [0, 1]. However, even if the whole term is rewritten before the argument term, the
argument must be rewritten because f(t) →R t. In such a case it is not meaningful to
move such arguments after 0. We call such an argument a strict argument.

Example 4.4.1 Consider TRS Rn2 and ϕ such that ϕ(+) = [1, 0, 2], ϕ(×) = [1, 0, 2].

Rn2 =




+(0, x) → x
+(s(x), y) → s(+(x, y))
×(0, x) → 0
×(s(x), y) → +(×(x, y), y)

For any term t ≡ +(t1, t2), if evaluating t2 does not terminate, trivially the whole term
t does not terminate too. For example,

red(+(s(s(· · · (s(0)))), t2)) = s(red(+(s(· · · (s(0))), t2))))
· · ·
= s(s(· · · (red(+(0, t2)))))
= s(s(· · · (red(t2))))

Thus, the function symbol + is strict in the second argument. On the other side, the
function symbol × is not strict in the second argument because red(×(0, t)) = 0 for any
term t even if red(t) does not terminate.
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4.4.1 Strictness function

In lazy functional languages, a function is strict in a certain argument if the eager eval-
uation of that argument does not change the termination behavior of the program. This
can be defined as follows: a function f of arity n is strict in its i-th argument if and only
if

fx1 . . . xi−1⊥xi+1 . . . xn = ⊥

for all possible values xj(j �= i) where ⊥ stands for any non-terminating expression.
Strictness analysis is a compile-time analysis of a program that is used to tell whether or
not a function is strict in its argument [PE93]. If it restates, for a strategy F , a function
f of arity n is strict in its i-th argument if and only if F (f(t1, . . . , tn)) does not terminates
for each terms tk where F (ti) does not terminates.

We define a function Sµ : Σ → P(N ) to analyze strict arguments of a function symbol.
An object of this analysis is a variable argument because it is regarded as evaluating lazily.

Definition 4.4.2 For a replacement map µ, functions Si : Σ → N (i ∈ N) is defined as
follows: for f �∈ D(R), Si(f) = µ(f) for all i ∈ N and for f ∈ D(R),

S0(f) = µ(f) ∩ VR(f)

Si+1(f) =
{
i ∈ Si(f) ∀f(�lj) → r ∈ R, ∃q ∈ OSi

(r).r|q ≡ li ∈ V.
}

,

where OSi
(t) is similarly defined as Oµ(t) (Si can be regarded as a replacement map). We

define Sµ = Si for a first Si such that Si = Si+1.

Since Si � Si+1, we can compute Sµ in finite times. For a function symbol f an
argument in the set Sµ(f) is called a strict argument of f or the function is strict in the
argument.

Example 4.4.3 Consider TRS Rn2 and µ = µ�.

Rn2 =




+(0, x) → x
+(s(x), y) → s(+(x, y))
×(0, x) → 0
×(s(x), y) → +(×(x, y), y)

We can get the map Sµ as follows.

S0(+) = {2}
S0(×) = {2}
S0(s) = {1}

⇒
S1(+) = {2}
S1(×) = ∅
S1(s) = {1}

⇒
S2(+) = {2}
S2(×) = ∅
S2(s) = {1}

S1 = S2,

Sµ(+) = {2}
Sµ(×) = ∅
Sµ(s) = {1}

In the above example, the second argument of + is a strict argument because 2 ∈
Sµ(+). In our definition a strict argument means that it does not disappear by any
reduction unless the argument itself is reduced. So × is not strict in 2 because it disappears
by applying rule ×(0, x) → 0.
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4.4.2 Preserving termination

In the previous section, we showed which arguments may be evaluated later with keeping
µ-correctness. However, in the view of efficiency, it is not always the best choice that all
such arguments are evaluated later. If it is known that a variable argument is strict, it
is better to evaluate the argument eagerly. We show that the eager evaluation of a strict
argument does not change the termination behavior.

Of course the eager evaluation of some argument has no effect on the correctness.

Lemma 4.4.4 Let µ be a replacement map and ϕ and ϕ′ E-strategy maps such that
ϕ′(f) = [k, i1, . . . , in] for some function symbol f ∈ Σ and k ∈ µ(f) where ϕ(f) =
[i1, . . . , in], and ϕ′(g) = ϕ(g) for any other function symbol g ∈ Σ. Then, if ϕ is µ-
correct, ϕ′ is also µ-correct.

Proof. Trivial. �

We show some lemmata for proving that the eager evaluation of a strict argument
preserves termination.

Lemma 4.4.5 Let R be a TRS, t a term and t′ ≡ t|p a strict subterm under some strict
argument, i.e. p ∈ OSµ(t) and p �= ε. If a term t is rewritten into a term s at the root
position, i.e. t →ε s, then the term t′ is also a subterm of s under some strict argument,
i.e. t′ ≡ s|p′ for some p′ ∈ OSµ(s).

Proof. We assume that t ≡ lθ →ε rθ ≡ s, t ≡ f(t1, . . . , tn), l ≡ f(l1, . . . , ln) and
p = i.p′′. It is trivial from the definition of the function Sµ that a strict argument is a
variable argument for a defined symbol, i.e. Sµ(f) ⊂ VR(f) for f ∈ D(R). So li is a
variable because i is a variable argument of f and the term t′ is under the substitution,
i.e. t′ ≡ θ(li)|p′′. From the definition of Sµ, a variable li also occurs in the right-hand side
r at the position q. It is trivial that active positions are transitive. Hence we conclude
that t′ ≡ s|p′ for p′ = q.p′′ ∈ OSµ(s). �

Lemma 4.4.6 Let R be a TRS and ⊥ a fresh variable. If a function symbol f is strict
in an argument i, i.e. i ∈ Sµ(f), a variable ⊥ does not disappear by any reduction from
a term t ≡ f(t1, . . . , ti−1,⊥, ti−1, . . . , tn) for any terms tj(j �= i), i.e. t →∗

µ s ⇒ ∃p ∈
Oµ(s).(s)p = ⊥.

Proof. We prove the claim by the induction of the number of the reduction steps t →∗
µ s.

It is trivial for t ≡ s because ⊥ = (t)i and i ∈ OSµ(t) ⊂ Oµ(t). We assume that
t →∗

µ s →µ s′ and (s)p = ⊥ for some p ∈ Oµ(s). If s →p′ s′ for a disjoint position p′ of p,
(s′)p = ⊥ for same p ∈ Oµ(s). If s →p′ s′ for a position p′ above p, i.e. p = p′.p′′ for some
p′′, the variable ⊥ occurs in s′ from Lemma 4.4.5. �

Theorem 4.4.7 Let µ be a replacement map and ϕ and ϕ′ E-strategy maps such that
ϕ′(f) = [k, i1, . . . , in] for some function symbol f ∈ Σ and k ∈ Sµ(f) where ϕ(f) =
[i1, . . . , in], and ϕ′(g) = ϕ(g) for any g �= f . Then, if redϕ(t) terminates, redϕ′(t) also
terminates for each term t (where redϕ is a function red defined by ϕ).
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Proof sketch. Let t be a term f(t1, . . . , tn) and k ∈ Sµ(f). We prove that if red(t)
terminates, red(tk) also terminates. From Lemmata 4.4.5 and 4.4.6 the term tk does not
disappear until reducing itself. From Lemma 4.4.4 the term must be reduced because it
is in an active position. So if red(tk) does not terminate, red(t) also does not terminate.
Because of this, we can evaluate a strict argument eagerly with no effect on termination
(Fig. 4.6). �

t1 tntk

f

φ
∗

tk

t1 tn

f

φ
∗

ti

’

red(tk) red(tk)

Figure 4.6: Preserving termination

Example 4.4.8 Consider TRS Rn3.

Rn3 = Rn2 ∪ {double(x) → x + x}

Although the argument of double is trivially in VRn3
(double), evaluation under ϕ(double) =

[0, 1] spends more rewrite steps than that under [1, 0].

ϕ : double(+(0, 0)) → +(+(0, 0), +(0, 0)) → +(0, +(0, 0)) → +(0, 0) → 0
ϕ′ : double(+(0, 0)) → double(0) → +(0, 0) → 0

One of popular solution of this problem is sharing variables. But we can give another
solution by a strictness analysis. The argument of double is a strict argument, i.e. 1 ∈
Sµ(double). So we can evaluate it eagerly with no effect on termination.

46



Chapter 5

The on-demand evaluation strategy

In this chapter we show one of the main topics in this thesis: the on-demand evaluation
strategy. In the above chapter, we gave a method of defining local strategies to obtain
root-stable forms, Corollary 4.3.5. However there are some cases such that we cannot
define suitable local strategies. Consider the TRS Rl2 .

Rl2 =

{
inf → cons(0, inf )
2nd(cons(x, cons(y, z))) → y

2nd returns the second element of an input list. 2nd(inf ) has a normal form 0 since
there is the reduction sequence

2nd(inf ) →R 2nd(cons(0, inf )) →R 2nd(cons(0, cons(0, inf ))) →R 0.

Unfortunately there is no local strategy to obtain this reduction sequence. If ϕ(cons) has
2, red(inf ) does not terminates. If ϕ(cons) does not have 2, red(2nd(inf )) terminates
halfway as follows: 2nd(inf ) →R 2nd(cons(0, inf )). One of the reasons why it does
not work well is that we cannot decide whether the second argument of cons should be
reduced or not. The need to reduce an argument depends on the shape of rules. For a
term whose root symbol is a defined symbol, it can be said that its goal is to be a redex
of the corresponding rules. Consider the rule 2nd(cons(x, cons(y, z))) → y ∈ R. For
2nd(cons(t, t′)) we need to reduce t′, but 2nd(cons(t, cons(t′, t′′))) we need not to reduce
any subterm because it is already a redex. In the ordinary E-strategy there are only
two kinds of instructions for an argument: “reduce” or “do not reduce”. For solving this
problem we need to define a new indication, which stands for “reduce on demand”.

In this section we define a function match : T → T as a function to do on-demand
matching. match is a strategy which reduces subterms with the necessity to be reduced.
For example, consider the TRS R = {f(s(x), p(y)) → 0} and the term f(t, p(t′)) where t
and t′ are redeces. match reduces a term t.

5.1 Definition

We formalize the on-demand E-strategy by the pair of maps that are the E-strategy map
ϕ defined in the above section and the on-demand map o defined as follows. If the E-
strategy map is regarded as defining the order of reduction, the on-demand map can be
regarded as defining the order of matching. An E-strategy map is the same as the ordinary
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E-strategy which stands for the order in which a term is reduced. An on-demand map
is defined newly in this section. We can control the order in which a term is matched
to left-hand sides of a TRS by an on-demand map. For the on-demand E-strategy the
order of matching is very important because a target term may be changed while it is
being matched to left-hand sides of a TRS in reduction with the on-demand E-strategy.
We show some example which can be treated well by our on-demand E-strategy. We also
show a useful property of the on-demand E-strategy about the shape of evaluated terms.

Definition 5.1.1 A map o : Σ → List(N ) is an on-demand map if and only if 1 ≤ i ≤
ar(f) for any i ∈ o(f). We call o(f) an on-demand list. Note that an on-demand list
has not the element 0. For an E-strategy map ϕ and an on-demand map o we call (ϕ, o)
on-demand E-strategy maps.

Definition 5.1.2 Let o be an on-demand map. The priority function pro : T → List(N∗)
is defined as follows:

pro(t) =




ε if t ∈ V

ε :: (add(i1, l1)@ · · ·@add(in, ln)) if
t ≡ f(�ti), o(f) = [�ij ]
and pro(tij ) = lj

where the function add : N∗×List(N∗) → List(N∗) is defined as follows: add(p, nil) = nil
and add(p, p′ : ps) = p.p′ : add(p, ps), and @ is the concatenation of lists. We also define
the function cut : N∗ × List(N∗) → List(N∗) where cut(p, l) returns the list obtained by
cutting off all the consecutive head elements under position p from the list l.

cut(p, l) =

{
cut(p, tl(l)) if hd(l) = p.p′ for some p′

l o.w.

The priority function takes a term and returns the priority list for traversing an input
term for matching. In the on-demand matching which will be defined as the function
match after, we compare a term t to the left-hand sides of a given TRS in the order of
pro(t).

Example 5.1.3 Let o(f) = [2, 3], o(g) = [2, 1], o(0) = []. The priority list of the term
f(x, g(0, y), z) is obtained as follows (Fig. 5.1):

pro(g(0, y)) = ε :: (add(2, pro(y))@add(1, pr0(y)))
= ε :: (add(2, [ε])@add(1, [ε]))
= ε :: ([2]@[1])
= [ε, 2, 1]

pro(f(x, g(0, y), z)) = ε :: (add(2, pro(g(0, y)))@add(3, pr0(z)))
= ε :: (add(2, [ε, 2, 1])@add(3, [ε]))
= ε :: ([2, 2.2, 2.1]@[3])
= [ε, 2, 2.2, 2.1, 3]

If a symbol of a term which is different from all the corresponding ones of the left-
hand sides is found at a position while the term is being compared to the left-hand sides,
the on-demand matching reduces the subterm at the position. The cut function is used
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Figure 5.1: The priority function

when such a subterm is reduced. If such a subterm is reduced, we must redefine the
priority list of the term depending on the result of reducing the subterm. Suppose that
we are comparing the term f(x, g(0, y), z) to the left hand sides of a TRS according to the
priority list shown in Fig. 5.1 and find g at position 2 different from all the symbols of
the left-hand sides at the same position and the subterm g(0, y) at position 2 is reduced
into a term f(0, 0, 0). In order to continue the on-demand matching, we have to calculate
a new priority list for f(x, f(0, 0, 0), z). First we eliminate the positions of g(0, y) from
the list by the cut function (Fig. 5.2).

cut(2, [2, 2.2, 2.1, 3]) = [3]

Next we add the priority list [2, 2.2, 2.3] of f(0, 0, 0) obtained by reducing g(0, y) to the
whole priority list [3], and continue the on-demand matching according to [2, 2.2, 2.3, 3]
(Fig. 5.3). This operation will be occurred the following the definition of the on-demand
matching.

add(2, pro(f(0, 0, 0)))@[3] = add(2, [ε, 2, 3])@[3]
= add([2, 2.3, 2.3])@[3]
= [2, 2.2, 2.3, 3]

ll

We define the on-demand E-strategy by adding the function match : T → T to
Definition 2.3.2 of the ordinal E-strategy.

Definition 5.1.4 Let (ϕ, o) be on-demand E-strategy maps and R a TRS. The functions
red : T → T , eval : T × List(N ) → T and match : T → T are defined simultaneously as
follows:

red(t) = eval(t, ϕ((t)ε))

eval(t, l) =




t if l = nil
eval(t[red(ti)]i, l

′) if l = i : l′, i > 0
red(s) if l = 0: l′, t′ = match(t), t′ →ε s
eval(t, l′) if l = 0: l′, t′ = match(t), t′ �∈ Red(R)
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match(t) = match2(t, pro(t), L(R))

match2(t, l, T ) =




t if l = nil
match2(t, tl(l), T ′) if filter(T, t, hd(l)) = T ′ �= ∅

match3(t[t′]p, l′, T ) if
filter(T, t, hd(l)) = ∅,
t′ = red(t|p) and
l′ = add(p, pro(t

′))@cut(p, l)

match3(t, l, T ) =

{
match2(t, tl(l), T ′) if filter(T, t, hd(l)) = T ′ �= ∅
t if filter(T, t, hd(l)) = ∅

filter(T, t, p) = {s ∈ T | (t)p = (s)p or (s)p ∈ V or p �∈ O(s)}

red and eval are the same as that of Definition 2.3.2 except the last cases of eval. In
the original definition eval(t, 0 : l) checks whether t is a redex or not. In this definition
it checks whether t′ is a redex or not where t′ is obtained by on-demand matching, i.e.
t′ = match(t).

The function match is a top-level of the on-demand matching which hands an input
term, its priority list and the set of all left-hand sides of a TRS R to the function match2.

match(t) = match2(t, pro(t), L(R))

For on-demand matching, a term is compared to all left-hand sides at the same time.
match2(t, l, T ) compares t to all terms in T in order of l. T is a set of left-hand sides to
which it is still possible to match the term t. match2 finds a position which is a cause
of failure as a redex in order of l. When l is empty, the on-demand matching is over and
match2 replies t immediately.

match2(t, nil, T ) = t

When l is not empty, there are two cases whether the set obtained by filtering T is empty
or not.

filter(T, t, p) removes terms l from T such that (l)p is different from (t)p.

filter(T, t, p) = {s ∈ T | (t)p = (s)p or (s)p ∈ V }

filter is a function to filter T through a check whether the symbol at p is same as that
of t. Consider the following example:

filter({f(0, x), f(0, s(0)), f(0, 0), f(0, s(s(0)))}, f(0, s(0)), 2.2).

This returns a T ’s subset whose elements have not the symbols differing from that of t at p.
filter compares the symbol at 2.2 of f(0, s(0)) ((f(0, s(0)))2.2 = 0) to the symbols at 2.2 of
terms T = {f(0, x), f(0, s(0)), f(0, 0), f(0, s(s(0)))}. It removes f(0, s(s(0))) because the
corresponding symbol is s and f(0, 0) because there is no corresponding symbol and there
is no variable above p. Thus, f(0, x) and f(0, s(0)) remain. Note that it is impossible for
f(0, s(0)) to be instances of the removed terms (Fig. 5.4).
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Figure 5.4: The filter function

If T ′ = filter(T, t, hd(l)) is not empty which means that there still exist left-hand sides
to match the term t, the head element is removed from l and the on-demand matching
are continued.

match2(t, l, T ) = match2(t, tl(l), T ′)
if filter(T, t, hd(l)) = T ′ �= ∅

If T ′ is empty which means that there is no left-hand side to match the term t at position
p, the subterm t|p is reduced for succeeding in matching. After the reduction, on-demand
matching is tried again. In this case the list l is refreshed, i.e. the positions for t|p is
removed from l and a new priority list of a reduced term t′ is added.

match2(t, l, T ) = match3(t[t′]p, l′, T )
if filter(T, t, hd(l)) = ∅, t′ = red(t|p) and l′ = add(p, pro(t

′))@cut(p, l)

A role of the function match3 is checking only after on-demand reduction. If the on-
demand reduction is succeed, i.e. filter(T, t, p) is not empty, the on-demand matching
are continued. Unfortunately it is still impossible to be a redex, i.e. filter(T, t, p) = ∅.
Then it is considered that the on-demand matching is completely failed and match3
returns t.

match3(t, l, T ) =

{
match2(t, tl(l), T ′) if filter(T, t, hd(l)) = T ′ �= ∅
t if filter(T, t, hd(l)) = ∅.

By using the on-demand E-strategy we can treat TRS Rl2 of infinite lists with 2nd
well.

Example 5.1.5 Again consider TRS Rl2 .

Rl2 =

{
inf → cons(0, inf )
2nd(cons(x, cons(y, z))) → y
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Let(ϕ, o) be on-demand E-strategy maps such that ϕ(inf ) = ϕ(2nd) = [0] and ϕ(cons) =
ϕ(0) = []. and o(inf ) = [1], o(2nd) = [1], o(cons) = [2], o(0) = []. We show an example of
reduction from 2nd(inf ).

red(2nd(inf )) = eval(2nd(inf ), [0])

Since the head element of the list is 0, the on-demand E-strategy begins the on-demand
matching.

match(2nd(inf ))
= match2(2nd(inf ), [ε, 1], {inf , 2nd(cons(x, cons(y, z)))})

First, the root position is checked according to the list [ε, 1]. Because the root symbol
of the left-hand side inf of the first rule is different from that of the term 2nd(inf ), it is
removed from the set. On the other hand, because 2nd(cons(x, cons(y, z))) is identical
with 2nd(inf ) at the root position, it remains.

= match2(2nd(inf ), [1], {2nd(cons(x, cons(y, z)))})

Hereafter we write L instead of {2nd(cons(x, cons(y, z)))}. Next, the symbol at position
1 is checked according to the list [1]. Since the symbol of (2nd(inf )) at position 1 differs
form that of (2nd(cons(x, cons(y, z)))) (inf �= cons), inf is reduced into cons(0, inf ). The
priority list of cons(0, inf ) is [ε, 2].

= match3(2nd(cons(0, inf )), [1, 1.2], L)

Again the symbol at position 1 is checked and it succeeds. The on-demand matching is
continued.

= match2(2nd(cons(0, inf )), [1.2], L)

The same action is done at position 1.2.

= match2(2nd(cons(0, inf )), [1.2], L)
= match3(2nd(cons(0, cons(0, inf ))), [1.2, 1.2.2], L)
= match2(2nd(cons(0, cons(0, inf ))), [1.2.2], L)

Finally, the position 1.2.2 is checked. Since the symbol of 2nd(cons(x, cons(y, z))) at posi-
tion 1.2.2 is a variable, matching may succeed with a substitution θ(z) = 0. Therefore the
list become empty and match2 returns the first argument term 2nd(cons(0, cons(0, inf ))).

= match2(2nd(cons(0, cons(0, inf ))), [], L)
= 2nd(cons(0, cons(0, inf )))

It can be easily seen that more than one occurrences of an element in an on-demand
list are meaningless, i.e. we can change a list [i1, . . . , in] into [i1, . . . , ij−1, ij+1, . . . , in] with
no effect in reduction if ik = ij for some k < j. Hereafter we assume that there is no
element which occurs more than once in an on-demand list.

5.2 On-demand strategies for the root-stable form

The order of elements of an on-demand list is very important. The action of o(f) = [1, 2]
may be different from that of o(f) = [2, 1]. We explain this fact by the following example.
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Example 5.2.1 Consider the following TRS Rb2 of Boolean with conjunction.

Rb2 =




∧(x, 0) → 0
∧(0, 1) → 0
∧(1, 1) → 1

For ϕ(∧) = [0] and o(∧) = [1, 2], reduction of ∧(∧(0, 0), 1) does not work well.

match(∧(∧(0, 0), 1))
= match2(∧(∧(0, 0), 1), [ε, 1, 1.1, 1.2, 2], {∧(x, 0),∧(0, 1),∧(1, 1)})

The root symbol ∧ of ∧(∧(0, 0), 1) is the same as that of each left-hand side.

= match2(∧(∧(0, 0), 1), [1, 1.1, 1.2, 2], {∧(x, 0),∧(0, 1),∧(1, 1)})

∧ at position 1 is different from each of the left-hand sides ∧(0, 1) and ∧(1, 1), which are
0 and 1. Hence they are removed from the set. Only ∧(x, 0) remains because the symbol
at position 1 is a variable.

= match2(∧(∧(0, 0), 1), [1.1, 1.2, 2], {∧(x, 0)})

Since the positions 1.1 and 1.2 are under a variable, they are removed from the list.

= match2(∧(∧(0, 0), 1), [2], {∧(x, 0)})

The symbol 1 at position 2 is different from the symbol 0 of the left-hand side. So 1 is
reduced. However 1 is not changed, i.e. red(1) = 1, the on-demand matching is failed.

= match3(∧(∧(0, 0), 1), [2], {∧(x, 0)})
= ∧(∧(0, 0), 1).

A cause of this failure is that the left-hand sides ∧(0, 1) and ∧(1, 1) are removed in the
step of checking at position 1. These may be matched to the target term under another
strategy. Indeed, if there is no rule ∧(x, 1) → 1 in this TRS, the subterm ∧(0, 0) at
position 1 should be reduced because there is no left-hand sides whose symbol at position
1 is ∧ or a variable. However, there is a rule ∧(x, 1) → 1 and the left-hand side ∧(x, 1)
remains in the set because it has possibility of succeeding in matching at the time when
position 1 is checked but the position 2 is not yet.

On the other hand, reduction works well for o(∧) = [2, 1].

match(∧(∧(0, 0), 1))
= match2(∧(∧(0, 0), 1), [ε, 2, 1, 1.1, 1.2], {∧(x, 0),∧(0, 1),∧(1, 1)})
= match2(∧(∧(0, 0), 1), [2, 1, 1.1, 1.2], {∧(x, 0),∧(0, 1),∧(1, 1)})

The symbol of ∧(∧(0, 0), 1) at position 2 is 1. Hence the left-hand side ∧(x, 0) is removed
from the set because the symbol at this position is 0 �= 1.

= match2(∧(∧(0, 0), 1), [1, 1.1, 1.2], {∧(0, 1),∧(1, 1)})

Here, there is no left-hand side which may be matched at position 1 because ∧(x, 1) is
already removed. The subterm ∧(0, 0) is reduced into the term 0 and the target term
becomes a redex.
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= match3(∧(0, 1), [1, 1.1, 1.2], {∧(0, 1),∧(1, 1)})
= match2(∧(0, 1), [1], {∧(0, 1),∧(1, 1)})
= match2(∧(0, 1), [], {∧(0, 1)})
= ∧(0, 1).

A term is left-normal if no variable occurs before a function symbol. For example,
f(g(0, x), y) is left-normal but f(s(x), s(y)) is not left-normal because x occurs before s.
A TRS R is left-normal if each left-hand side is left-normal. It seems that the problem
in the above example may not be caused for a left-normal TRS and an on-demand map
such that o(f) = [1, 2, . . . , ar(f)]. We generalize the notion of left-normal terms, called
o-normal term, in order to obtain a suitable on-demand map o for a given TRS even if it
is not left-normal.

Definition 5.2.2 Let o be an on-demand E-strategy map such that o(f) = [i1, . . . , in]
has all arguments of f ∈ Σ, i.e. {i1, . . . , in} = {1, . . . , ar(f)}, and ij �= ik for any j �= k. a
term t is o-normal if and only if pro(t) = [p1, . . . , pn] and there is a pi such that (t)pj

∈ Σ
for each j < i and (t)pk

∈ V for each k > i. A TRS is called o-normal if each left-hand
side is o-normal.

Example 5.2.3 Let o be an on-demand E-strategy map such that o(inf) = nil, o(0) =
nil, o(2nd) = [1] and o(cons) = [2, 1]. t ≡ 2nd(cons(x, cons(y, z))) is o-normal because
pro(t) = [ε, 1, 1.2, 1.2.2, 1.2.1, 1.1] and (t)ε, (t)1, (t)1.2 ∈ Σ, (t)1.2.2, (t)1.2.1, (t)1.1 ∈ V . Since
inf is of course o-normal too, Rl2 is an o-normal TRS (Fig. 5.5).

Rl2 =

{
inf → cons(0, inf )
2nd(cons(x, cons(y, z))) → y.

2nd

x cons

y

1

2

3

4z

cons

5

6

Figure 5.5: o-normal
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It is easy to see that an o-normal term is left-normal if o(f) = [1, . . . , ar(f)]. A function
tro : T → T is defined as follows: tro(x) = x, tro(f(t1, . . . , tm)) = f(tro(ti1), . . . , tro(tin))
for o(f) = [i1, . . . , in]. Then t is an o-normal if and only if tro(t) is left-normal.

We show a useful property of the on-demand E-strategy about the shape of evaluated
terms: each evaluated term is always a root-stable form. We need some restrictions for a
TRS : left-linear, constructor and o-normal.

Even if a symbol of l at each position of OΣ(l) is equivalent to that of t, i.e. (l)p = (t)p

for any p ∈ OΣ(l), t is not always an instance of l thanks to the non-linear variable. For
example, f(a, b) is not an instance of f(x, x), but (l)1 = f = (t)1 where {1} ∈ OΣ(l). If
there is only linear variable in l, t is an instance of l.

Lemma 5.2.4 Let l be a linear term and t a term. If (l)p = (t)p for any p ∈ OΣ(l), t is
an instance of l.

Proof. Trivial. �

Lemma 5.2.5 Let t and l be terms and R a constructor TRS. If there is a position
p ∈ OΣ(l) such that t|p is a root-stable form, (l)p �= (t)p and (l)q = (t)q for any q ∈ OΣ(l)
such that p = q.q′ for some q′, then there is no reduction sequence t →∗

R lθ for any theta.

Proof. All symbols (l)q = (t)q except the root symbol are not defined symbols. So we
cannot modify the symbol of (t)p and cannot reduce it into an instance of l. �

Lemma 5.2.6 Let o be an on-demand map, t a term and l a linear o-normal term where
pro(l) = [p1, . . . , pn]. If (l)pi

∈ V and (l)pj
= (t)pj

for each j < i, then t is an instance of
l.

Proof. From the definition of o-normal term (l)pk
∈ V for each k ≥ i because (l)pi

∈ V .
So (l)p = (t)p for any p ∈ OΣ(l) and t is an instance of l from Lemma 5.2.4. �

Lemma 5.2.7 If a term t is a root-stable form, any term reduced from the term is a
root-stable term, i.e. t →∗

R s ⇒ s is a root-stable form.

Proof. If s is not a root-stable form, there exists a redex u such that s →∗
R u. It is

inconsistent with the root-stability of t because t →∗
R s →∗

R u. �

Theorem 5.2.8 Let R be a left-linear constructor TRS and (ϕ, o) E-strategy maps. If R
is o-normal and ϕ(f) has 0 for any f ∈ D(R), each evaluated term is a root-stable form.

Proof. We prove this claim by the induction of the structure of an evaluated term t. t
is trivially in head normal form if the root symbol is a variable or a constructor symbol.
We assume t ≡ f(t1, . . . , tn) and f ∈ D(R). From the assumption the local strategy ϕ(f)
has 0. Since the list ϕ(f) gets empty, the element 0 is removed which means that there
is a term s = match(u) for some u, s �∈ Red(R) and s →∗

R t where there is no rewrite
step at the root position in this sequence. Any term reduced from a root-stable form
is a root-stable form Lemma 5.2.7. So it is sufficient to be prove that the term s is a
root-stable form.

We prove this claim by the induction of the structure of a term s. Hereafter we
use the notation of Definition 5.1.4 of the on-demand E-strategy. match returns a term
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only if l or T becomes empty. If l becomes empty, there is a left-hand side l′ such that
(l′)p = (t)p for each p inOΣ(l′). s is a redex from Lemma 5.2.4. It is inconsistent with
the fact s �∈ Red(R). Hence T should become empty. If for some left-hand side l′, the
condition of Lemma 5.2.6 holds, i.e. (l′)pi

∈ V and (l′)pj
= (s)pj

for each j < i, on-demand
matching should be succeed and the list become empty. So there is no such a case. Since
T becomes empty, we can say that for each left-hand side l′, the condition of Lemma 5.2.6
holds, i.e. there is a position p ∈ OΣ(l′) such that s|p is a root-stable form, (l′)p �= (s)p

and (l′)q = (s)q for any q ∈ OΣ(l′) such that p = q.q′ for some q′. Therefore s can not
be reduced into an instance l′θ for any l′ → r′ ∈ R, which means that s is a root-stable
form. �

Example 5.2.9 Again consider TRS Rb2 .

Rb2 =




∧(x, 0) → 0
∧(0, 1) → 0
∧(1, 1) → 1

Let ϕ(∧) = [0] and o(∧) = [2, 1]. Rb2 is left-linear, constructor and o-normal. Then each
evaluated term is guaranteed to be a root-stable form from Theorem 5.2.8.

Because the multiple occurrences make no sense for an on-demand strategy list, a
number of on-demand maps we should consider are finite. Hence we can easily obtain
a suitable on-demand strategy if it exists. Note that a TRS does not always have an
on-demand map such that the TRS is o-normal.

Example 5.2.10 Consider TRS Rb3 which is another definition of conjunction.

Rb3 =




∧(x, 0) → 0
∧(0, x) → 0
∧(1, 1) → 1

The left-hand side ∧(x, 0) is not o-normal for o(∧) = [1, 2] and the left-hand side ∧(0, x)
is not o-normal for o(∧) = [2, 1]. Hence there is no on-demand map such that Rb3 is
o-normal.

Without the restriction of the left-linear and constructor TRS, Theorem 5.2.8 does
not hold. We show two counterexamples.

Example 5.2.11 Let R = {f(x, x) → a, a → b}, o(f) = [1, 2], o(a) = o(b) = nil and
ϕ(f) = ϕ(a) = [0], ϕ(b) = nil. Although f(a, b) = red(f(a, b)), the term f(a, b) is not a
root-stable form since f(a, b) →R f(b, b).

Example 5.2.12 Let R = {f(f(a)) → a, f(b) → f(a)}, ϕ(f) = [0], ϕ(a) = ϕ(b) = nil
and o(f) = [1], o(a) = o(b) = nil. Although f(f(b)) = red(f(f(b))), f(f(b)) is not a root-
stable form since f(f(b)) →R f(f(a)). Note that the subterm f(b) cannot be evaluated
because (f(f(b)))1 = f = (f(f(a)))1.

57



5.3 Conclusive remarks

If each evaluated term is always a root-stable form for an (on-demand) E-strategy, we
can construct a correct (on-demand) E-strategy, such that ϕ′(f) = ϕ(f)@[1, . . . , ar(f)]
for each f ∈ Σ. However, this construction is not good for an example of an infinite list.
If the second argument of : is in the list ϕ(:), we can not avoid an infinite sequence.

red(inf ) = eval(inf , [0])
= red(0 : inf )
= eval(0 : inf , [1, 2])
= eval(red(0) : inf , [2])
= eval(0 :red(inf ), [])
= · · · .

So we cannot reduce a term having inf into a normal form without an infinite sequence.

red(hd(inf )) = eval(hd(inf ), [1, 0]) = eval(hd(red(inf )), [0]) = · · · .

Hence, in order to get a normal form by the on-demand E-strategy, we need to define a
meta function RED : T → T as follows:

RED(t) =

{
t′ if t′ = red(t) and t′ ∈ V
EV AL(t′, o(f)) if t′ = red(t) and (t′)ε = f ∈ Σ

EV AL(t, l) =

{
t if l = nil
EV AL(t[RED(t|i)]i, l′) if l = i : l′

We can easily prove that this function RED is correct, i.e. an evaluated term is always
a normal form, if each evaluated term by the function red is always a root-stable form.
Since t′ = red(t) is a root-stable form, the term f(t′1, . . . , t

′
n) is also a root-stable form by

Lemma 5.2.7 if t′ ≡ f(t1, . . . , tn). From the induction hypothesis, each t′i = RED(ti) is a
normal form. A root-stable form is not a redex itself. So f(t′1, . . . t

′
n) has no redex and is

a normal form.
The behavior of the function RED is very similar to the functional strategy [PE93]

if ϕ(f) = [0] for f ∈ D(R), ϕ(g) = [] for g �∈ D(R) and o(f) = [1, 2, . . . , ar(f)] for
f ∈ Σ. The main difference between them is the timing of reduction of a subterm. The
on-demand E-strategy reduces a subterm when the symbol differs from that of each left-
hand side of rules. The functional strategy does when the root symbol of the subterm is
a defined symbol. It can be said that the functional strategy is more eager than the on-
demand E-strategy with the above operation. If we restrict a TRS to a constructor one,
both strategies are almost the same, i.e. t = red(s) if and only if the function strategy
reduces s into t. It is known that the functional strategy is normalizing for a left-normal
orthogonal TRS. We can easily show that for E-strategy maps (ϕ, o) where t = red(s) if
and only if tro(t) = red(tro(s)) for a TRS tro(R) = {tro(l) → tro(r) | l → r ∈ R} and
(ϕ′, o′) such that o′(f) = [1, 2, . . . , ar(f)] for f ∈ Σ and ϕ′ defined properly. Therefore the
function RED is normalizing for orthogonal constructor and o-normal TRS if ϕ(f) = [0]
for f ∈ D(R) and ϕ(g) = [] for g �∈ D(R).
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Chapter 6

Application to CafeOBJ

The OBJ languages, OBJ2[FGJM85], OBJ3[GWMFJ00], CafeOBJ[DF98, NSF98] etc,
are broad spectrum algebraic programming and specification languages, based on order-
sorted equational logic, possibly enriched with other logics, such as rewriting logic, hidden
equational logic, or first order logic. All the OBJ languages are rigorously based upon a
logical system; more precisely, they are logical languages, in the sense that their programs
are sets of sentences in some logical system, and their operational semantics is given
by deduction in that logical system. They have been successfully used for research and
teaching in software design and specification, rapid prototyping, theorem proving, user in-
terface design, and hardware verification, among other things[GM97, GWMFJ00, DF98].
In this chapter, we introduce how to do verification in CafeOBJ system and show some
applications of the E-strategy.

6.1 CafeOBJ module

We show an example of a CafeOBJ module specifying an addition on natural numbers.

mod! NAT+ {

[ Nat ]

op 0 : -> Nat {strat: ()}

op s_ : Nat -> Nat {strat: (1)}

op _+_ : Nat Nat -> Nat {strat: (1 2 0)}

vars N M : Nat

eq N + 0 = N .

eq N + s M = s(N + M) .

}

The operator symbols are 0, s and + declared after op. An operator symbol may contain
under-bars “_”. Under-bars reserve the places where arguments are inserted. Equations
are pairs of terms declared after eq where N and M are variables. When the system tries
to reduce a given term, equations are regarded as left-to-right rewrite rules. So it can be
said that NAT+ corresponds to Rn1 .

Rn1 =

{
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
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Local strategies are operator attributes declared after strat:. For example, the local
strategy of the operation symbol + is (1 2 0)}, which instructs CafeOBJ system to ”(for
a given term t1 + t2,) reduce the term t1 first, t2 second and finally rewrite the whole
term if possible”. This corresponds to ϕ(+) = [1, 2, 0].

redece is the command to reduce an input term. We show the trace of the reduction
of the term (s 0 + 0) + (0 + 0) in the context of NAT+.

NAT+> reduce (s 0 + 0) + (0 + 0) .

s 0: Nat

[1], [2] and [3] are rewrite steps from the input term (s 0 + 0) + (0 + 0) to the
output term s 0. Since the root symbol of the term is +, the evaluation first follows the
local strategy (1 2 0). The first argument s 0 + 0 is evaluated first ([1]), the second
argument 0 + 0 next ([2]) and then the whole term s 0 + 0 is rewritten into the
term s 0 ([3]).

6.2 Proof by CafeOBJ

In CafeOBJ system, there is a special symbol _==_ which is a predicate to verify that
two terms are equivalent to each other. When we input reduce s == t, CafeOBJ system
reduce the both side terms s, t and check whether the results terms are equivalent or
not. If it so, the whole term s == t is reduced into true: Bool. If not so, it is reduced
into false: Bool. When we want to verify whether an equation s = t is true in a
specification, open the specification and reduce s==t. For example, the following is a
proof score of CafeOBJ to prove 1 + 2 = 2 + 1:

open NAT+

reduce s 0 + s s 0 == s s 0 + s 0 .

close

where open and close are commands for opening or closing a module. When we input
the above lines, CafeOBJ system outputs the following:

-- opening module NAT+.. done.

-- reduce in NAT+ : s 0 + s (s 0) == s (s 0) + s 0

true : Bool

NAT+>

The effects of declarations supplied in between open and close commands are temporary.
An open command creates a new module. This module contains a copy of declarations
in the given module. Until the module is closed, all the declared sorts, equations, etc.
are added to the new module. This open/closing mechanism is an ecological tool to (1)
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make hypotheses, (2) prove, by evaluation, your favorite theorems upon the hypotheses,
(3) finish the proof, and delete the hypotheses, (1’) start again with new hypotheses. For
example, consider the module NAT+ again.

mod! NAT+ {

[ Nat ]

op 0 : -> Nat {strat: ()}

op s_ : Nat -> Nat {strat: (1)}

op _+_ : Nat Nat -> Nat {strat: (1 2 0)}

vars N M : Nat

eq N + 0 = N .

eq N + s M = s(N + M) .

}

Suppose you want to show that 0 is a left identity of + which means that N + 0 is also
equal to N for any term N in Nat. Using the standard structural induction, you can prove it
easily, by showing (1) 0 + 0 = 0, and (2) for any N: Nat, if 0 + N = N, 0 + s N = s N.
A score of this proof may be written as

open NAT+

op n : -> Nat .

reduce 0 + 0 == 0 .

eq 0 + n = n .

reduce 0 + s n == s n .

close

Then CafeOBJ system outputs as follows:

-- reduce in NAT+ : 0 + 0 == 0

true : Bool

-- reduce in NAT+ : 0 + s n == s n

true : Bool

After opening, module elements and various commands can be input. The above score
adds a new constant n (to represent “any” natural number) and an equation (for induction
hypothesis), and invokes reduction commands (base case and induction step). The system
evaluates both 0 + 0 == 0 and 0 + s n == s n into true.

Although this proof can be shown by induction straightforwardly, there are examples
which cannot be proven easily like this. We show an example which we need to some
lemmata to prove it, that is the commutativity of +: “N + M == M + N for any terms
N, M: Nat”. Now we write a proof score for this statement straightforwardly as follows:

open NAT+

ops n m : -> Nat .
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reduce 0 + m == m + 0 .

eq n + m = m + n .

reduce s n + m == m + s n .

close

where we prove it by induction on N. Then CafeOBJ system outputs as follows:

-- reduce in NAT+ : 0 + m == m + 0

false : Bool

-- reduce in NAT+ : s n + m == m + s n

false : Bool

Here both equations we want to prove were not proven. Note that although an equation
is true if CafeOBJ system answers true, it is not always false that if the system answers
false. it can be seen that they coincide with each other for a terminating and confluence
TRS. So if the system returns false, we have to check what cause went wrong by reducing
both sides of the equation 0 + m == m + 0.

NAT+> op m : -> Nat .

NAT+> reduce 0 + m .

-- reduce in NAT+ : 0 + m

0 + m : Nat

NAT+> reduce m + 0 .

-- reduce in NAT+ : m + 0

m : Nat

NAT+>

Here they were reduced into 0 + m and m. So we can see that it is necessary to show
“0 + M = M for any M: Nat” as a lemma. The equation is true as we already showed
above. Next we reduce both sides of s n + m == m + s n and get the lemma “(s N) +

M = s(N + M) for any N, M: Nat” to prove. This can be shown straightforwardly. Hence
we can use these two lemmata to prove the commutativity of +.

open NAT+

vars N M : Nat .

eq 0 + N = N .

eq (s N) + M = s(N + M) .

ops n m : -> Nat .

reduce 0 + m == m + 0 .

eq n + m = m + n .

reduce s n + m == m + s n .

close
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The system returns true for the both reduction.

-- reduce in NAT+ : 0 + m == m + 0

true : Bool

-- reduce in NAT+ : s n + m == m + s n

true : Bool

6.3 Proof on infinite lists

To find out necessary lemmata, it is important that reduction terminates. The specifica-
tion in the above section is terminating in the view of TRSs. So any reduction terminates
and we can see result terms to find out lemmata. In a specification which is not termi-
nating, the E-strategy may play an important role. The following is the CafeOBJ module
which specifies natural numbers lists with infinite elements.

mod! LIST { protecting(NAT+)

[ List ]

op hd : List -> Nat {strat: (1 0)}

op tl : List -> List {strat: (1 0)}

op _::_ : Nat List -> List {strat: (1)}

op inf : Nat -> List {strat: (0)}

var N : Nat

var L : List

eq hd(N :: L) = N .

eq tl(N :: L) = L .

eq inf(N) = N :: (inf (s N)).

}

nth returns the n-th element of a list for the first argument n. :: is a constructor
symbol of lists. inf stands for an infinite list 0 :: 0 :: 0 ::· · ·. Note that the local
strategy of the constructor symbol :: is (1) which does not have 2 standing for the second
argument. It can be seen that each evaluate term is guaranteed to be a root-stable form
from theorems in the above chapters. Under this E-strategy we can show some equation
where inf must be reduced, for example, (hd(inf(N)) :: tl(inf(N))) == inf(N) .

-- reduce in %LIST : hd(inf(N)) :: tl(inf(N)) == inf(N)

false : Bool

Since we could not prove it straightforwardly, we check what the both sides are reduced
into.

-- reduce in LIST : hd(inf(N)) :: tl(inf(N))
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N :: tl(inf(N)) : List

-- reduce in LIST : inf(N)

N :: inf(s N) : List

We prove the equation tl(inf(N)) == inf(s N).

-- reduce in LIST : tl(inf(N)) == inf(s N)

true : Bool

So we can use the lemma M :: tl(inf(N)) = M :: inf(s N) to prove the goal equation.

eq M :: tl(inf(N)) = M :: inf(s N) .

reduce hd(inf(N)) :: tl(inf(N)) == inf(N) .

Then CafeOBJ system outputs the following:

-- reduce in LIST : hd(inf(N)) :: tl(inf(N)) == inf(N)

true : Bool

6.4 Order-sorted terms

In CafeOBJ specifications, signatures have sorts and constructing terms is restricted to
the sort information. Consider the following example of a CafeOBJ specification.

mod! A {

[ Zero NzNat < Nat, Bool ]

op 0 : -> Zero

op s_ : Nat -> NzNat

op true : -> Bool

op false : -> Bool

op eqn : Nat Nat -> Bool

vars N M : Nat .

eq eqn(0, 0 ) = true .

eq eqn(s N, 0 ) = false .

eq eqn(0, s M) = false .

eq eqn(s N, s M) = eqn(N, M) .

}
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The module A has sorts Zero, NzNat, Nat and Bool which is written in brackets [...].
The signature eq has the string of sorts Nat Nat as the arity and the sort Bool as the
value, which means that for a term eq(t1, t2), the argument terms t1 and t2 must
have the sort Nat and the whole term has the sort Bool. A term which ignore sorts is
not permitted, like eq(true, 0). The sorts Zero and NzNat are subsorts of the sort Nat,
which means that Nat includes Zero and NzNat if sorts are regarded as sets. A term
having the sort Zero or NzNat also has the sort Nat. Hence the term eq(0, s 0) is
allowed to be an order-sorted term.

We let µ a replacement map satisfying the condition of Theorem 4.3.39 such that
µ(f) = ∅ for each symbol f ∈ Σ. If an E-strategy map is defined as ϕ(f) = [0] for each
defined symbol f ∈ D(R) and ϕ(g) = [] for each non-defined symbol f �∈ D(R), the
E-strategy map ϕ is correct because ϕ ∈ Φ(µ). This means that each evaluated term is
normal form under the following local strategies:

mod! A {

[ Zero NzNat < Nat, Bool ]

op 0 : -> Zero {strat: ()}

op s_ : Nat -> NzNat {strat: ()}

op true : -> Bool {strat: ()}

op false : -> Bool {strat: ()}

op eq : Nat Nat -> Bool {strat: (0)}

}

6.5 Ground totality

The sort information may help us to analyze which set of arguments a function symbol
is ground total on more efficiently. Consider the following example.

mod! NATLIST {

[ Nat, List ]

op 0 : -> Nat

op s_ : Nat -> Nat

op _+_ : Nat Nat -> Nat

op nil : -> List

op _::_ : Nat List -> List

op hd : List -> Nat

op tl : List -> List

vars M N : Nat

var L : List

eq N + 0 = N .

eq N + s M = s(N + M) .

eq hd(N :: L) = N .

eq tl(N :: L) = L .

}
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For the pure TRS, without sort information, abstracted from the above, + is not ground
total on {2} because ill-formed terms may occur with no restriction of sorts. 0 + nil is
not a redex even although nil is a ground normal term. This term is not well-formed in
the above specification. So it is sufficient to check the ground term whose sort is Nat for
the arguments of +, and we can show that + is ground total on {2}, considering the sort
information. This means that for each ground term the evaluated term is normal form
under the following local strategies:

mod! NATLIST {

[ Nat, List ]

op 0 : -> Nat {strat: ()}

op s_ : Nat -> Nat {strat: (1)}

op _+_ : Nat Nat -> Nat {strat: (2 0)}

op nil : -> List {strat: ()}

op _::_ : Nat List -> List {strat: (1 2 0)}

op hd : List -> Nat {strat: (1 0)}

op tl : List -> List {strat: (1 0)}

}

6.6 Defining suitable local strategies

By the results of Chapter 4, we can get a following method to define suitable local strate-
gies for a given replacement map.

1. Define ϕ(f) = [1, 2, . . . , ar(f), 0] for each f ∈ D(R) and
define ϕ(f) = [1, 2, . . . , ar(f)] for each f �∈ D(R)

2. Analyze VR(f) = {�ki} and move them after 0.

ϕ(f) = [�ji, 0, �ki]

3. Analyze Sµ(f) = {�k′
i} and put them on the head of the list.

ϕ(f) = [�k′
i, �ji, 0, �ki]

4. Simplify the local strategies.

First, define all local strategies as the leftmost innermost one. Next, Analyze variable
arguments and move the arguments after 0. Finally, Analyze strict arguments and move
the arguments before 0. We can easily get the variable arguments and the strict arguments
for a term rewriting system and a replacement map. The following is an example of
applying this method to Rn3 .

Rn3 =




+(0, x) → x
+(s(x), y) → s(+(x, y))
×(0, x) → 0
×(s(x), y) → +(×(x, y), y)
double(x) → x + x

For easy understanding we assume the trivial replacement map.

1.




ϕ(+) = [1, 2, 0]
ϕ(×) = [1, 2, 0]
ϕ(s) = [1]
ϕ(double) = [1, 0]

⇒ 2.




ϕ(+) = [1, 0, 2]
ϕ(×) = [1, 0, 2]
ϕ(s) = [1]
ϕ(double) = [0, 1]

⇒ 3.




ϕ(+) = [2, 1, 0, 2]
ϕ(×) = [1, 0, 2]
ϕ(s) = [1]
ϕ(double) = [1, 0, 1]
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⇒ 4.




ϕ(+) = [2, 1, 0]
ϕ(×) = [1, 0, 2]
ϕ(s) = [1]
ϕ(double) = [1, 0]

The E-strategy 1 is of course correct and it is the leftmost innermost strategy. The
E-strategy 2 is also correct because the arguments moved after 0 are variable arguments
and the Theorem 4.3.9 holds. The E-strategy 3 is correct from the Theorem 4.4.4 and
preserves the termination behavior, i.e. for each term t if red(t) terminates for the E-
strategy 2, it also terminates for the E-strategy 3 from the Theorem 4.4.7. For the final
E-strategy 4, reduction is identical with that of the E-strategy 3 because of the Theorem
3.3.1.

When we restrict a target term to a ground term, the method is improved a little. We
add analyzing whether a function symbol is ground total on a set of arguments or not.

1. Define ϕ(f) = [1, 2, . . . , ar(f), 0] for each f ∈ D(R) and
define ϕ(f) = [1, 2, . . . , ar(f)] for each f �∈ D(R)

2′. Analyze inductively complete arguments and if I = {�ik} is so,

ϕ(f) = [�ik, 0]

If it does not exist, analyze VR(f) = {�ki} and move them after 0.

ϕ(f) = [�ji, 0, �ki]

3. Analyze Sµ(f) = {�k′
i} and put them on the head of the list.

ϕ(f) = [�k′
i, �ji, 0, �ki]

4. Simplify the local strategies.

1.




ϕ(+) = [1, 2, 0]
ϕ(×) = [1, 2, 0]
ϕ(s) = [1]
ϕ(double) = [1, 0]

⇒ 2.




ϕ(+) = [1, 0]
ϕ(×) = [1, 0]
ϕ(s) = [1]
ϕ(double) = [0]

⇒ 3.




ϕ(+) = [2, 1, 0]
ϕ(×) = [1, 0]
ϕ(s) = [1]
ϕ(double) = [1, 0]

⇒ 4.




ϕ(+) = [2, 1, 0]
ϕ(×) = [1, 0]
ϕ(s) = [1]
ϕ(double) = [1, 0]

Since the above methods can be easily implemented, we propose that we adopt local
strategies obtained by each of these methods as default strategies. A default strategy is a
local strategy which the system defines automatically when a user omits writing it. It is
easier to define a replacement set than a local strategy list. So we define a new function
symbol’s attribute replacement. We write after a replacement set of the function symbol
replacement. For example, we consider the following module NATLIST:

mod! LIST {

[ Nat List ]

op 0 : -> Nat {replacement: {} }

op s_ : Nat -> Nat {replacement: {1} }

op _+_ : Nat Nat -> Nat {replacement: {1, 2}}

op _*_ : Nat Nat -> Nat {replacement: {1, 2}}
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op 2*_ : Nat -> Nat {replacement: {1} }

op hd : List -> Nat {replacement: {1} }

op tl : List -> List {replacement: {1} }

op _::_ : Nat List -> List {replacement: {1} }

op inf : Nat -> List {replacement: {1} }

vars N M : Nat

var L : List

eq N + 0 = N .

eq N + s M = s(N + M) .

eq N * 0 = 0 .

eq N * s M = s(N + M) .

eq hd(N :: L) = N .

eq tl(N :: L) = L .

eq inf(N) = N :: (inf (s N)).

}

Sets after replacement correspond to replacement sets. When we try to reduce a
term in this module, the reduce command reduce the term according to the following
local strategies:

op 0 : -> Nat {strat: () }

op s_ : Nat -> Nat {strat: (1) }

op _+_ : Nat Nat -> Nat {strat: (2 1 0)}

op _*_ : Nat Nat -> Nat {strat: (1 0 2)}

op 2*_ : Nat -> Nat {strat: (1 0) }

op hd : List -> Nat {strat: (1 0) }

op tl : List -> List {strat: (1 0) }

op _::_ : Nat List -> List {strat: (1) }

op inf : Nat -> List {strat: (0 1) }

These local strategies are computed by the above first methods. If we assume input terms
are always ground, we adopt the second method to compute local strategies.

op 0 : -> Nat {strat: () }

op s_ : Nat -> Nat {strat: (1) }

op _+_ : Nat Nat -> Nat {strat: (2 1 0)}

op _*_ : Nat Nat -> Nat {strat: (1 0) }

op 2*_ : Nat -> Nat {strat: (1 0) }

op hd : List -> Nat {strat: (1 0) }

op tl : List -> List {strat: (1 0) }

op _::_ : Nat List -> List {strat: (1) }

op inf : Nat -> List {strat: (0) }
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6.7 On-demand E-strategy

In CafeOBJ, the on-demand E-strategy is defined by local strategies with negative inte-
gers. For negative integers −i, the i-th arguments are not evaluated until so forced. Such
an argument is forced to evaluate if it is involved in matching. The subterm inf(s 0) of
the term 0 :: inf(s 0) is not evaluated until so forced if {strat: (-1 -2)} is given to
::. Trying to match the term 2nd(0 :: inf(s 0)) to the pattern 2nd(N :: (M :: L))

to rewrite the term, inf(s 0) must be rewritten and otherwise the matching fails. On the
other hand, on the term 2nd(0 :: s 0 :: inf(s s 0)), the term inf(s s 0) does not
have to be rewritten because it is not involved in the matching. The matching succeeds
and the whole term 2nd(0 :: s 0 :: inf (s s 0)) is rewritten into 0. In the above
chapter, we formalized the on-demand E-strategy by a pair of an E-strategy map and an
on-demand map which stand for order of reduction and order of matching respectively.
Hence we must prepare a new attribute for declare an on-demand E-strategy maps. For
example, we write {strats: l1 l2} as ϕ(f) = l1 and o(f) = l2.

mod! LIST2 { protecting(NAT+)

[ List ]

op hd : List -> Nat {strats: (1 0) (1)}

op tl : List -> List {strats: (1 0) (1)}

op 2nd : List -> Nat {strats: (1 0) (1)}

op _::_ : Nat List -> List {strats: (1) (2)}

op inf : -> List {strats: (0) () }

vars N M : Nat

var L : List

eq hd(N :: L) = N .

eq tl(N :: L) = L .

eq 2nd(N :: (M :: L)) = M .

eq inf(N) = N :: (inf (s N)).

}

The symbol 2nd returns the second element of an input list. Under this E-strategy we
can also show some equation where inf must be reduced, for example, hd(tl(inf(N)))
== 2nd(inf(N)). Unfortunately, there is no implementation with the on-demand E-

strategy. If it is implemented according to our formalization, the system will output the
following:

-- reduce in LIST : hd(tl(inf(N))) == 2nd(inf(N)) .

true : Bool
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Chapter 7

Conclusion

In this thesis we investigated evaluation strategies for term rewriting systems.

Safety condition We generalized the condition, called the safety condition, on which
some existing research results of the E-strategy holds. We showed that on the condition
the E-strategy satisfied the fundamental property: if a term is a result of evaluating by
the E-strategy, it cannot be reduced more, i.e. red(t) = red(red(t)) (Theorem 3.1.2).
In the latter of this chapter, we proposed how to define local strategies with the safety
condition. It is trivial that an E-strategy is safe if the condition proposed in the existing
researches holds: each local strategy list ends in 0. We gave a weaker condition which is
sufficient for the safety condition by analyzing occurrences of variables in the left-hand
sides of the rules of a given TRS (Theorem 3.4.4). Since the condition is weaker than
that of some existing results of the E-strategy, it means that we had extended the scopes
of the existing research results depending on it, such as evaluated flags (Theorem 3.2.5),
simplifying local strategies (Theorem 3.3.1 and Theorem 3.3.2) and the normalizability
of the E-strategy [Nag99].

Relation with context-sensitive rewriting In Section 4.2 we showed that context-
sensitive rewriting suited for analyzing some properties of the E-strategy. We first showed
the method to obtain context-sensitive rewriting from a given E-strategy. The definition
of this method is a very simple because a local strategy is given as a natural numbers list
and a replacement set is given as a positive numbers set. We just forget the order and the
element 0 of a given list to obtain the corresponding replacement set. We showed that
reduction of an E-strategy is covered with the corresponding context-sensitive rewriting
(Theorem 4.2.3) and reduction of an E-strategy terminates if so does the context-sensitive
rewriting (Theorem 4.2.4).

Correctness However some literatures had proposed conditions on which each evalu-
ated term are always in normal form, i.e. the E-strategy is correct, these conditions are
too strong to treat some example, such as the specification of infinite lists. If we take
a suitable context-sensitive rewriting, we can treat such examples by the corresponding
E-strategy obtained by our method. In Section 4.3, we generalized the correctness of the
E-strategy. We proposed the µ-correctness of the E-strategy as each evaluated term are
always a µ-normal form. In order to obtain µ-correct E-strategies, we analyzed which
arguments are unnecessary for a redex. We proved that such a variable argument can be
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evaluated later with keeping µ-correctness (Theorem 4.3.9). The latter of this section we
introduced and proposed some conditions about the shape of µ-normal forms for a redex
(Lemma 4.3.11), a root-stable form (Proposition 4.3.15) and a normal from (Theorem
4.3.21). By combining these conditions with the condition of the µ-correctness we can
obtain conditions on which evaluated terms are in sets of terms which have some useful
properties. Moreover we proposed two useful conditions especially for a normal form.
One was for order-sorted terms. In the CafeOBJ specification language, signatures have
sorts with an order and constructing terms is restricted by the sort information. We
proposed a hierarchical order on terms for a given order-sorted TRS and showed a useful
property that ignoring arguments having some sorts has no effect for rewriting (Theorem
4.3.39). This means that such arguments can be ignored with keeping the correctness of
the E-strategy. The other was for ground terms. We proposed ground totality of function
symbols and of replacement maps. We showed that if a replacement map is ground total,
a set of µ-normal forms coincides with that of normal forms Hence we also showed that
the E-strategy is correct even if only such arguments are evaluated (Theorem 4.3.29).

Strictness In Section 4.4, we analyzed an argument such that eager evaluation of the
argument does not change the termination behavior, called a strict argument. In order to
obtain strict arguments of a function symbol, we analyzed behavior of variable arguments:
which variable arguments disappear by applying rewrite rules, and defined a function
which takes a function symbol and returns strict arguments. We proved that an argument
obtained by our strictness analysis function is strict, i.e. does not change the termination
behavior (Theorem 4.4.7). By the result of correctness and strictness analyses, we gave
methods to obtain a suitable E-strategy for a given context-sensitive rewriting in Section
6.6. Note that analyzing variable arguments, ground totality and strict arguments by our
methods is very easy to implement and the above theorems hold for any TRS. Hence the
methods we proposed in Section 6.6 can be used to compute a default strategy, which the
system (such as CafeOBJ) gives us automatically when we omit to write local strategies.

On-demand E-strategy Finally we discussed the on-demand E-strategy in Chapter
5. The on-demand E-strategy has been proposed to express true lazy evaluation [NSF98],
since we cannot do it with the ordinary E-strategy. In this paper we formalized the on-
demand E-strategy by a pair of an E-strategy map and an on-demand map, which stand
for an order of reduction and an order of matching. We defined a reduction function of
the on-demand E-strategy as an extension of the definition of the ordinary E-strategy
by adding new function match. For the on-demand E-strategy an order of matching is
important because a target term may be changed while doing on-demand matching. We
showed some examples that we can treat well owing to an on-demand map. Moreover
we showed a useful property of the on-demand E-strategy about the shape of evaluated
terms: each evaluated term is always a root-stable form. For obtain this property we
defined an o-normal term for an on-demand map o by generalizing a left-normal term.
We also defined a meta function RED to obtain a correctness E-strategy by the on-
demand E-strategy. We compared the on-demand E-strategy to the functional strategy
which is adopted by some lazy functional languages.
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