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Abstract

Hájek’s basic logic BL is an extension of the substructural logic FLew,
or equivalently, Höhle’s monoidal logic. Thus, fuzzy logics can be viewed
as a special subclass of substructural logics. On the other hand, their
close connections are often overlooked, since these two classes of logics
have been motivated by different aims, and so introduced and studied
separately.

Here we attempt to bridge this gap. Several topics of substructural
logics that are closely related to fuzzy logics are selected and are surveyed
briefly. Above all, almost maximal logics, interpolation property, finite
model property and decidability are discussed.

Keywords: Basic fuzzy logic, monoidal t-norm logic, substructural log-
ics, residuated lattices, interpolation property, finite model property

1 Introduction

Substructural logics are typically presented as sequent systems, lacking some
(zero or more, as logicians are wont to say) of structural rules of the standard
Gentzen systems like LK and LJ. Since (left) structural rules concern the
existence, repetition and order of assumptions, or resources, substructural
logics have often been dubbed resource-sensitive logics. This is one side of
the coin. The other side is that from a mathematical point of view, it is
more suitable to regard substructural logics as logics of residuated structures.
Indeed, recent developments in algebraic study of substructural logics confirm
this. For a gentle introduction to these topics, we refer the reader to [29], for
a comprehensive state-of-the-art handbook, to [10].
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In this paper, we give a brief survey of some topics in substructural logics
FLe, FLew and their extensions, in relation to fuzzy logics. The bulk of the
paper was written in 2005, but most of the results, or at least their prelimi-
nary versions, were discovered in years 2000–2002 at Algebraic Logic Seminar
at JAIST organized by the authors (cf. [23]). Quite a few of these results
have only appeared in master theses of graduate students who participated
in the seminar, others circulated by word of mouth. Wherever possible and
convenient, we give the newest versions of these results. As for general infor-
mation on fuzzy logics and many-valued logics, see [13] and [6]. The paper [9]
discusses also relations of fuzzy logics to substructural logics.

Substructural logics FLew and FLe are formalized as a sequent systems
obtained from the Gentzen sequent system LJ for intuitionistic logic by delet-
ing the contraction rule (for FLew) and also the weakening rules (for FLe),
and adding rules for the logical connective fusion. Syntactic and algebraic
properties of FLew are studied comprehensively in Ono-Komori [30], in which
it is shown that this logic is characterized by the class of all commutative,
integral residuated lattices (but under a different name). The same logic is
known also as monoidal logic, introduced by U. Höhle in [14]. The monoidal
t-norm logic MTL by Esteva-Godo [8], and a fortiori Hájek’s basic logic BL

[13], are among extensions of FLew, and hence we can naturally view fuzzy
logics and  Lukasiewicz’s many-valued logics as extensions of the substructural
logic FLew.

In recent years, much work has been done on noncommutative general-
izations of fuzzy logic. These dispense with commutativity of fusion, and
(typically) also with integrality and prelinearity, but retain divisibility. This
paper takes a different route. We try to place classical fuzzy logics against a
wider, but still commutative, background.

2 Sequent systems for substructural logics

Let FLe be the sequent system obtained from LJ by deleting the following
contraction rule and weakening rules:

α, α,Γ ⇒ γ

α,Γ ⇒ γ
(contraction)

Γ ⇒ γ

α,Γ ⇒ γ
(left-weakening) Γ ⇒

Γ ⇒ α
(right-weakening)

and then adding rules for a new connective · called fusion. More precisely, the
system FLe consists of the following initial sequents;

α⇒ α ⇒ 1 0 ⇒
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weakening rules for constants 1 and 0, exchange rule and cut;

Γ ⇒ γ

1,Γ ⇒ γ
(1 weakening) Γ ⇒

Γ ⇒ 0
(0 weakening)

Γ, α, β,∆ ⇒ γ

Γ, β, α,∆ ⇒ γ
(exchange)

Γ ⇒ α α,∆ ⇒ γ

Γ,∆ ⇒ γ
(cut)

and rules for logical connectives;

α,Γ ⇒ γ β,Γ ⇒ γ

α ∨ β,Γ ⇒ γ
(∨ ⇒)

Γ ⇒ α
Γ ⇒ α ∨ β

(⇒ ∨1)
Γ ⇒ β

Γ ⇒ α ∨ β
(⇒ ∨2)

Γ ⇒ α Γ ⇒ β

Γ ⇒ α ∧ β
(⇒ ∧)

α,Γ ⇒ γ

α ∧ β,Γ ⇒ γ
(∧1 ⇒)

β,Γ ⇒ γ

α ∧ β,Γ ⇒ γ
(∧2 ⇒)

Γ ⇒ α ∆ ⇒ β

Γ,∆ ⇒ α · β
(⇒ ·)

α, β,Γ ⇒ γ

α · β,Γ ⇒ γ
(· ⇒)

α,Γ ⇒ β

Γ ⇒ α→ β
(⇒→)

Γ ⇒ α β,∆ ⇒ γ

α→ β,Γ,∆ ⇒ γ
(→⇒)

Here, the constant 1 will behave as the unit for fusion, and 0 is used for defining
the negation ¬α of a formula α by α→ 0. Sometimes, constants ⊤ and ⊥ for
the top and the bottom are introduced and the following initial sequents are
assumed:

Γ ⇒ ⊤ ⊥,Γ ⇒ γ

A sequent Γ ⇒ α is provable in FLe if it can be obtained from initial
sequents of FLe by repeated applications of the rules of FLe. A formula α
is provable in FLe, if the sequent ⇒ α is provable in it. The sequent system
FLew is obtained from FLe by adding the above left and right weakening
rules to it. Clearly, in FLew both 1- and 0-weakening rules are redundant,
since they follow from these weakening rules. Also, 1 and 0 become provably
equivalent to ⊤ and ⊥, respectively, in FLew.
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In the same way as the above, we can introduce a sequent system CFLe

(CFLew) which is obtained form the sequent system LK for classical logic
by deleting both contraction and weakening rules (only contraction rules, re-
spectively). Its alternative definition is a sequent system obtained from FLe

(FLew) by adding the law of double negation ¬¬α⇒ α as an initial sequent.
To be exact, it means that the sets of provable sequents in these two different
systems are the same. The system CFLe is term equivalent to the linear logic
MALL (without exponentials) by J.-Y. Girard and CFLew is term equivalent
to a system studied by V. Grishin in 70s.

We note here that 0 is not equal to ⊥ in FLe. To show this, let us
introduce a new negation ∼ α by defining it to be α → ⊥, and consider the
sequent system C∗FLe obtained from FLe by adding ∼∼ α⇒ α as an initial
sequent. Then, we can show that left-weakening rule is derivable in C∗FLe,
and hence the system is equivalent to CFLew. On the other hand, if 0 is
equal to ⊥ then C∗FLe must be equivalent to CFLe. Obviously, this is a
contradiction.

As we want to discuss logics over FLe (or, extensions of FLe) in general,
we need to define them precisely. A set of formulas L is a logic over FLe (or,
simply a logic) if

1. every formula provable in FLe belongs to L,

2. if both α and α→ β are in L then β is also in L,

3. if both α and β are in L then α ∧ β is also in L,

4. if α is in L then every substitution instance of α is also in L.

The following fact will tell us that our definition of logics given above is not
ad hoc. A set of formulas K is closed under substitution, if a formula α is in
K then every substitution instance of α is also in K. A set K is deductively
closed in FLe when if a formula α is provable in the sequent system obtained
from FLe by adding sequents ⇒ β as initial sequents for all β ∈ K then α is
already in K. Then we have the following.

Proposition 1 Every logic over FLe is closed under substitution and deduc-
tively closed in FLe. Conversely, if a set of formulas is deductively closed in
FLe is also closed under substitution, it is a logic over FLe.

For simplicity, we will often identify a sequent system with the set of all
formulas that are provable in it, which is obviously a logic in the above sense.
Thus, FLe and FLew will stand for both sequent systems and logics, and we
will rely on context to distinguish between them. The set of all logics over FLe

is partially ordered by set inclusion, and moreover forms a complete lattice
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since the intersection of arbitrary number of logics is always a logic. The
smallest logic is FLe, and the greatest is the set of all formulas. When a logic
L includes another logic K as a set, we say that L is an extension of K.

Cut elimination for a given sequent system means that every sequent which
is provable in it is also provable in the system without using cut rule.

Theorem 2 Cut elimination holds for any of FLe, FLew, CFLe and CFLew.

We can prove this in a syntactic way. In the usual syntactic proof of cut
elimination theorem for LK and LJ, we first replace cut rules by mix rules
and then eliminate these mix rules. On the other hand, this replacement is
not necessary for the above four systems, since none of them has contraction
rules. In fact, the proof becomes much simpler than the standard proof for
LK or LJ. For the details, see [30, 28]. Also, for an algebraic proof, see [2].

From cut elimination theorem for a given system S, we can derive many
important logical properties of the logic determined by it. (See e.g. [28].) Here
are some examples. We say that a logic L has Craig’s interpolation property
(CIP) if for all formulas α and β, if α → β is provable in L then there exists
a formula γ such that

1. both α→ γ and γ → β are provable in L,

2. every propositional variable in γ appears in both α and β.

We say that a logic L has the disjunction property if for all formulas α and
β, if α ∨ β is provable in L then either α or β is provable in L. By using
the standard proof-theoretic arguments, we can show the following results as
consequences of cut elimination theorem. The disjunction property of these
logics follows from the fact that none of them have right-contraction rule (see
[28] for the details).

Theorem 3 Logics FLe, FLew, CFLe and CFLew are all decidable, and
also all have both Craig’s interpolation property and the disjunction property.

Proof-theoretic methods are quite powerful in deriving various logical prop-
erties, once a given logic is formalized in a sequent system for which cut elimi-
nation theorem holds. Actually, we can see this in the case of some particular
fuzzy logics that are successfully formalized as hypersequent systems, exten-
sions of original sequent systems. On the other hand, we cannot expect always
to find such a sequent system. So, when we focus on general logical properties
of fuzzy logics, semantical approach will be more helpful.
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3 Residuated lattices and substructural logics

We introduce here algebraic structures for extensions of FLe. A lattice ordered
monoid is an algebra A of the form 〈A;∨,∧, ·, 1〉 such that

1. 〈A;∨,∧〉 is a lattice,

2. 〈A; ·, 1〉 is a monoid with the unit 1,

3. x ≤ y implies both x · z ≤ y · z and z · x ≤ z · y for all x, y, z ∈ A.

Sometimes, x ·y is written as xy. A lattice ordered monoid A is commutative,
if the monoid 〈A; ·, 1〉 is commutative. A commutative lattice ordered monoid
A is residuated, if for all elements y, z ∈ A there exists an element y → z ∈ A
such that

x · y ≤ z if and only if x ≤ y → z holds for all x, y, z ∈ A.

This equivalence is called the law of residuation. Commutative, residuated
lattice ordered monoids are usually called commutative residuated lattices
(CRLs). We note here that the third condition (monotonicity) in the above
follows from the law of residuation. The law of residuation can be expressed
by equations, and hence all the conditions for CRLs are expressed by equa-
tions. Thus, the class of all CRLs forms a variety. For general information on
residuated lattices, including non-commutative case, see [10]. We note here
the following.

Lemma 4 In each CRL A, if the join
∨

i xi exists for xi ∈ A then
∨

i(xi · y)
exists and is equal to (

∨
i xi) · y for every y ∈ A.

By an FLe-algebra we mean a CRL A with an (arbitrary) element 0 ∈ A. A
CRL A is integral if the unit 1 is also the greatest element ⊤ of A. An integral
FLe-algebra is called an FLew-algebra if 0 is the smallest element ⊥. Thus,
FLew-algebras are nothing but bounded CRLs such that 1 = ⊤ and 0 = ⊥.
From syntactical point of view, integrality corresponds to left-weakening rule,
and the assumption that 0 = ⊥ corresponds to right-weakening rule. It is easy
to see that a FLew-algebra A is a Heyting algebra if and only if x·y = x∧y for
all x, y ∈ A. Thus, all of classes of FLe-algebras, FLew-algebras, and Heyting
algebras are varieties, that are denoted by FLe,FLew and HA, respectively. It
can be shown that subvarieties of FLe form a complete lattice.

Another important class of CRLs is the class of commutative unital quan-
tales. An algebra A = 〈A;

∨
, ·〉 is a commutative quantale if

1. 〈A;
∨
〉 forms a complete lattice (and hence is bounded),
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2. 〈A; ·〉 is a commutative semigroup,

3. (
∨

i xi) · y =
∨

i(xi · y) for xi, y ∈ A.

For more information on quantales, see [31]. A commutative quantale A is
unital if 〈A, ·〉 has the unit element. Thus, each commutative unital quantale
is a commutative, complete lattice ordered monoid satisfying the above third
condition on distributivity of infinite joins, and vice versa. Introducing → by
y → z =

∨
{x : x · y ≤ z}, we can show the following.

Lemma 5 Each commutative unital quantale is residuated.

From these two lemmas, it follows that:

Theorem 6 For each commutative, complete lattice ordered monoid A, A is
residuated if and only if the equation (

∨
i xi) · y =

∨
i(xi · y) holds always for

xi, y ∈ A.

Let us consider triangular norms (or, simply, t-norms) in fuzzy logic in
this context. A t-norm T is a map from [0, 1]2 to [0, 1], where [0, 1] is the unit
interval of reals, which satisfies the following conditions:

1. T (x, T (y, z)) = T (T (x, y), z),

2. T (x, y) = T (y, x),

3. T (x, 1) = x,

4. x ≤ y implies T (x, z) ≤ T (y, z).

Define ∗T by x∗T y = T (x, y). It is obvious that 〈[0, 1]; max,min〉 forms a com-
plete lattice. Thus, the above condition means that CT = 〈[0, 1]; max,min, ∗T , 1〉
is a commutative, complete lattice ordered monoid. We note here that for the
unit interval, the condition (

∨
i xi) ∗T y =

∨
i(xi ∗T y) can be expressed as

T (x, y) = lim
zրx

T (z, y),

which means that T is left-continuous. Now, the next corollary is an immediate
consequence of Theorem 6. See e.g. [8].

Corollary 7 For each t-norm T , T is left-continuous if and only if CT is a
CRL.

Let L be a logic over FLe. We will introduce a relation ⊢L between sets
of formulas and formulas, called the deducibility relation of L as follows. For
a set of formulas Σ and a formula β,
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Σ ⊢L β if and only if β belongs to the deductive closure of the set
L ∪ Σ in FLe.

Because of compactness, we can always assume that Σ is finite. Sometimes,
we write Σ, α ⊢L β (Σ,Γ ⊢L β) instead of Σ ∪ {α} ⊢L β (Σ ∪ Γ ⊢L β) for a
formula α (and a set of formulas Γ, respectively). Each deducibility relation
is a consequence relation in the sense of abstract algebraic logic. We can show
that the the deducibility relation ⊢FLe

is algebraizable and that its equivalent
algebraic semantics is the variety FLe. We can show moreover the following
(see [11] for the details). The first statement says that the local deduction
theorem holds for all logics over FLe.

Theorem 8 Let L be a logic over FLe.
1. Γ, α ⊢L β if and only if Γ ⊢L (α ∧ 1)n → β for some n ≥ 0.
2. Γ ⊢L β if and only if 1 ≤ v(γ) holds for all γ ∈ Γ implies 1 ≤ v(β) holds
for every valuation v on every FLe-algebra A which validates L.

Suppose that V is a subvariety of FLe. Then, the set of formulas L(V),
defined by L(V) = {α : 1 ≤ v(α) holds for each A in V and each valuation v
of A} is a logic over FLe. Conversely, for each logic L over FLe let V(L) be
the class of FLe-algebras A such that the inequation 1 ≤ α holds for every
α ∈ L. Let A be a FLe-algebra and VA be the subvariety of FLe generated
by A. If a logic L is equal to L(VA) then it is said to be characterized by A.
The above L can be regarded as a map from the lattice of subvarieties of FLe

to the lattice of logics over FLe, and also V is a map of the opposite direction.

Theorem 9 The maps L and V are mutually inverse, dual isomorphisms be-
tween the lattice of subvarieties of FLe and the lattice of logics over FLe.

4 Almost maximal logics — logics just below clas-

sical logic

It is easy to see that classical logic CL is the maximum among consistent
logics over FLew. A natural question is what logics (over FLew) will come
just below CL and how many? We say that a logic L over FLew is almost
maximal if L is strictly weaker than CL and consistent logic which is strictly
stronger than L is only CL. In other words, L is almost maximal if and
only if the corresponding variety of FLew-algebras is almost minimal in the
subvariety lattice of FLew.

Among logics over intuitionistic logic there exists a single almost maximal
logic, which corresponds to the variety generated by the three-element Heyting
algebra H3. Also, Y. Komori [19] gave a complete list of almost maximal logics
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over  Lukasiewicz’s infinitely-many valued logic  L, which are countably many.
Another interesting example of almost maximal logics is product logic Π (see
[7]).

Let us consider the n-potency axiom scheme αn → αn+1. Note that the
1-potency axiom scheme is no other than the axiom of contraction. In 2000,
M. Ueda with the first author showed the following. Note that the basic fuzzy
logic BL is obtained from MTL by adding the following axiom scheme, called
divisibility (α ∧ β) → (α · (α→ β)).

Theorem 10 There exist exactly six almost maximal extensions of MTL sat-
isfying the 2-potent axiom scheme, and there exist uncountably many almost
maximal extensions of MTL satisfying the 3-potent axiom scheme.

In contrast with this, Y. Katou with the first author proved the following
in 2001.

Theorem 11 Almost maximal logics over BL consist of H3, Π and almost
maximal logics over  L.

For detailed proofs of related results including the above theorems, see [15].
The situation changes when we shift our attention to logics over FLe. It can
be easily observed that there exists maximal consistent logic other than CL.
In fact, the following is shown by H. Kihara in 2003.

Theorem 12 There exist uncountably many maximal logics over FLe.

5 Algebraic characterization of logical properties

In the following, we will discuss algebraic characterization of some of logical
properties. Such a characterization has its own interest, and is at the same
time useful for showing that a logical property holds for a given logic.

Since the logic MTL is obtained from FLew by adding the prelinearity
axiom scheme (α→ β)∨(β → α), none of extensions of MTL has the disjunc-
tion property. Let us consider a weaker property, called Halldén completeness.
We say that a logic L is Halldén complete, if for all formulas α and β which
have no variables in common, if α ∨ β is provable in L then either α or β is
provable in L.

H. Kihara has showed that a characterization of Halldén complete super-
intuitionistic logics given by A. Wroński [33] holds also for logics over FLew.
More precisely, the following holds.

Theorem 13 The following three conditions are mutually equivalent for any
logic L over FLew.
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1. L is Halldén complete,

2. L cannot be represented as the intersection of two incomparable logics,

3. L is characterized by a single well-connected FLew-algebra.

Here, an FLew-algebra A is well-connected if for all x, y ∈ A if x∨ y = 1 then
either x = 1 or y = 1. It is clear that every linearly-ordered FLew-algebra is
well-connected. Thus, we have immediately the following.

Corollary 14 Basic logic BL,  Lukasiewicz logic  L, Gödel logic G and product
logic Π are all Halldén complete.

In [33], it is shown that for superintuitionistic logics the third condition in
Theorem 13 can be replaced by the following.

L can be characterized by a single subdirectly irreducible Heyting-
algebra.

It seems that the similar equivalence does not hold between logics over FLew

and FLew-algebras. On the other hand, if n-potent axiom scheme holds in
a given logic L for some n, the following condition (∗) is also equivalent to
any of conditions in Theorem 13. This follows from the fact that under this
assumption, the subdirect irreducibility becomes first-order definable and thus
it is preserved under ultraproducts. For the details, see [16].

L can be characterized by a single subdirectly irreducible FLew-
algebra. (∗)

Note that an algebraic approach to the disjunction property of substructural
logics is given in [32].

In §2, Craig’s interpolation property (CIP) of a logic L is defined. Also, we
say L has the deductive interpolation property (DIP), if for all formulas ϕ,ψ,
if ϕ ⊢L ψ, there exists a formula σ such that

1. ϕ ⊢L σ and σ ⊢L ψ,

2. every propositional variable in σ appears in both ϕ and ψ.

A subvariety V of FLe has the amalgamation property (AP), if for all
A,B,C in V and for all embeddings f : A → B, g : A → C, there exists
an algebra D in V and embeddings f ′ : B → D, g′ : C → D such that
f ′ ◦ f = g′ ◦ g. Then the following can be shown (see e.g. [11]). A com-
prehensive study of interpolation properties and amalgamation properties is
developed in a recent paper [17].
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Theorem 15 1. CIP implies DIP for every logic over FLe.
2. L has the DIP iff V(L) has the AP.

Both CIP and DIP of logics over BL and AP of corresponding subvarieties
of FLew are extensively studied in the paper [26] by F. Montagna. Next,
consider another property which is closely related to DIP. A logic L has the
pseudo-relevance property (PRP), if for all formulas ϕ and ψ which have no
variables in common, ϕ ⊢L ψ implies either ϕ ⊢L ⊥ or ⊢L ψ. (Since ⊥ is used
in the definition of PRP, in the rest of this section we assume that our language
contains the constant ⊥, and consider bounded FLe-algebras.) Two algebras
B,C are jointly embeddable into an algebra D, if there exists embeddings
h : B → D and j : C → D. Then, we have the following (cf. Maksimova [25]).

Theorem 16 1. A logic L over FLe has the PRP iff every pair of subdirectly
irreducible algebras in V(L) are jointly embeddable into an algebra in V(L).
2. If a subvariety V of FLew has the AP, then all pairs of s.i. algebras in V

are jointly embeddable into an algebra in V. Thus, the DIP implies the PRP
for every logic over FLew.

Note that the converse of the consequence of the second statement in the
above does not hold always. For instance, FLe has the CIP and hence the
DIP, but it does not have the PRP. We can show the following in the same
way as a result by Komori [18], by using an extension of Glivenko’s theorem
in [12].

Theorem 17 Every extension of the logic FLew with the axiom scheme ¬(α∧
¬α), called pseudo complementation, has the PRP. Thus, the joint embeddabil-
ity of subdirectly irreducible algebras holds for each of corresponding variety.

These results on PRP were obtained by H. Kihara in his PhD thesis in
2006. See also Chapter 5 of [10] for the proofs..

6 Finite model property and finite embeddability

property

A useful semantical method of showing decidability of a logic L is to prove
the finite model property (FMP), i.e. to prove that L is characterized by a
class of finite algebras. In other words, L has the FMP iff the variety V(L)
is generated by its finite members. By Harrop’s result, L is decidable if it is
finitely axiomatizable and has the FMP. While showing the FMP via Kripke
frames is a standard and powerful technique in proving decidability of modal
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logics, we do not know much about the FMP of substructural logics. For
instance, whether FLe and FLew have the FMP or not remained an open
question until the middle of 90s while their decidability was shown already in
80s as an easy consequence of cut elimination. Strangely enough, Lafont [24]
and Okada-Terui [27], who have solved the problem affirmatively, used cut
elimination results in their proofs. See also [2].

In the following, we discuss the finite embeddability property (FEP) which
is a promising algebraic method of proving the FMP of substructural logics.
After the early works in 40s, the FEP has not been paid much attention until
recent works by Blok-Ferreirim [3, 4], Blok-van Alten [5] and also [1]. A class
K of FLe-algebras has the FEP, if every finite partial algebra B of a member
A of K can be embedded into some finite member D of K. The FMP of L

follows from the FEP of V(L). In fact the FEP is stronger than the FMP.
Namely, if a class K has the FEP then every universal sentence that fails in K

fails also in a finite member of K. So, moreover if K is finitely axiomatizable,
then the universal theory is decidable. In [5], the following is shown.

Theorem 18 The variety FLew has the FEP, while the variety FLe does not
have it.

Thus, FLe is an example of a logic with the FMP, whose corresponding
variety does not have the FEP. Now, let us discuss the FEP of subvarieties of
FLew that correspond to some fuzzy logics. A simple example is the variety G

of Gödel algebras, i.e. Heyting algebras satisfying the equation (x→ y)∨(y →
x) = 1. In this case, it is easily seen that every Gödel algebra is locally finite,
i.e. any subalgebra generated by a finite subset is always finite. So, it suffices
for us to take the subalgebra of A generated by B for D. Therefore, it has
obviously the FEP. An important result on the variety V(BL) of basic algebras
is shown in [1].

Theorem 19 The variety V(BL) has the FEP, and hence its universal theory
is decidable.

In the following, by a slight modification of the proof of the FEP of FLew

by Blok and van Alten [5], we show that each of subvarieties of FLew defined
by any one of equations for the prelinearity (x→ y)∨(y → x) = 1, the pseudo-
complementation x∧¬x = 0 and the involution ¬¬x = x, has the FEP. In fact,
every subvariety defined by any combination of these three equations has it.
(Note that the variety FLew is denoted by RL in [5].) The result was obtained
in 2001, and the note [22] was privately circulated.

In the rest of this section, we assume the familiarity with notations and
terminology of [5], in particular of its Section 5, which is briefly described here.
In our setting, we suppose that A is a FLew-algebra, B is a finite partial
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subalgebra of A, and M is the partially ordered submonoid of the pocrim
reduct of A generated by the pocrim reduct of B. For each a ∈M and b ∈ B,
(a b] is a downward closed subset of M defined by (a b] = {c ∈M : ac ≤
b} (pocrim is the acronym for partially ordered commutative residuated integral
monoid). Moreover, D is the set of all such downward closed subsets of M ,
D = {

⋂
χ : χ ⊆ D}, and C is the closure operator on ℘(M) associated with

D. Then the algebra D with the universe D forms a finite FLew-algebra, and
the map ι from B to D defined by ι(a) = {x ∈ M : x ≤ a} for a ∈ B is an
embedding.

We note the following result in [4]. Here, Vsi denotes the class of all sub-
directly irreducible members of a variety V.

Lemma 20 If a class Vsi has the FEP for a variety V, then so does V.

Theorem 21 The subvariety V1 of FLew defined by the equation (x → y) ∨
(y → x) = 1 has the FEP.

Proof. By the above lemma, it is enough to show that the class (V1)si has
the FEP. So, we take an arbitrary algebra A in (V1)si. Then A is linearly
ordered. Since each member of D is a downward closed subset of A, the set
D is also linearly ordered by set inclusion. Since D is finite, each member of
D is a finite intersection of members of D. Hence D is equal to D. Now, take
arbitrary members X and Y of D(= D). Then, either X ⊆ Y or Y ⊆ X holds.
Thus, D satisfies (x→ y) ∨ (y → x) = 1.

Theorem 22 The subvariety of FLew defined by the equation x ∧ ¬x = 0 has
the FEP.

Proof. We note first that the condition x∧¬x = 0 is equivalent to ¬x2 = ¬x
in every FLew-algebra. From the discussion in [5], 0D = {0}, and hence
¬DX = {y ∈ M ;X · y = {0}} for every X ⊆ M . Now, suppose that the
equation x ∧ ¬x = 0 holds in the original algebra A. Let X be an arbitrary
element of D. Obviously, 0 ∈ X ∩ ¬DX. Take any element x ∈ M such that
x ∈ X ∩ ¬DX. Since both x ∈ X and X · x = {0} hold, x2 = 0. Hence,
¬x = ¬x2 = 1. Thus, x = x ∧ 1 = x ∧ ¬x = 0, and therefore X ∩ ¬DX = 0D.
This means that the equation x ∧ ¬x = 0 holds also in D.

Theorem 23 The subvariety of FLew defined by the equation ¬¬x = x has
the FEP.

Proof. In this case, a small nonessential modification is necessary. Let B be
a finite partial subalgebra of a FLew-algebra in which the equation ¬¬x = x
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holds. Let B− = {¬b : b ∈ B}, and consider a finite partial subalgebra B∗

of A with the underlying set B ∪ B−. It is clear that c ∈ B∗ if and only if
¬c ∈ B∗ for each c ∈ A. Let D be a finite FLew-algebra constructed by B∗,
instead of B. Since B ⊆ B∗ and B∗ is embedded into D, B is also embedded
into D. It remains to show that ¬¬x = x holds in D.

Take an arbitrary element X ∈ D. Suppose that X =
⋂

i(ui  ci] where
ui ∈ M and ci ∈ B∗ for each i. (Of course, this M is constructed from B∗.)
Now, assume that x ∈ ¬D¬DX. That is,

for all w ∈M , X · w = {0} implies x · w = 0.

Take any element z ∈ X. Then for each j, z·uj ≤ cj , and hence z·(uj ·¬cj) = 0.
Since uj ∈ M and ¬cj ∈ B∗, uj · ¬cj ∈ M . Thus, X · (uj · ¬cj) = 0 holds for
uj ·¬cj ∈M . Then, by our assumption, x·(uj ·¬cj) = 0, i.e. x·uj ≤ ¬¬cj ≤ cj .
Hence x ∈ (uj  cj ] for all j. Therefore, x ∈ X. So, ¬D¬DX = X holds.

We met n-potency axiom, a weak form of contraction, in Section 4. Now,
we will introduce a weak form of excluded middle principle, namely, the axiom
α ∨ ¬αn. Algebraically, it is expressed by the inequality x ∨ ¬xn ≥ 1. Over
FLew, this inequality characterizes exactly the semisimple subvarieties, which
by a result from [20], are precisely the discriminator subvarieties of FLew.
This equivalence of semisimplicity and discriminator was extended to FLe, and
beyond, by H. Takamura. The theorem below is new, but its proof is obtained
by combining the construction from [5] with some observations from [21].

Theorem 24 Any subvariety of FLew defined by the equation x ∨ ¬xn = 1,
for some positive integer n, has the FEP.

Proof. By Lemma 20, it suffices to prove FEP for a subdirectly irreducible
algebra A. By semisimplicity, all such algebras are simple, and therefore for
any element a < 1, we have an = 0. We will show that this property carries
over to D. Let X be an element of D with X 6= 1D. Since X is downward
closed, we get that 1 /∈ X. By properties of the construction in [5], it also
follows that Xn is the downward closure of the set

{x1 · · ·xn : xi ∈ X, for 1 ≤ i ≤ n}.

Take any z ∈ Xn. We will show that z = 0. To this end, observe that
z ≤ x1 · · ·xn, for some members of X, and if xi = 1 for some i, then 1 ∈ X,
contradicting the assumptions, so we have xi 6= 1 for 1 ≤ i ≤ n. Now, since A

is simple, we get that x1∨· · ·∨xn 6= 1, and therefore (x1∨· · ·∨xn)n = 0. But,
distributing fusion over join, we see that (x1∨· · ·∨xn)n develops into a join of
the form J1 ∨ x1x2 · · ·xn ∨ J2. Therefore, z ≤ x1 · · ·xn ≤ (x1 ∨ · · · ∨ xn)n = 0,
and thus z = 0 as claimed. Since X < 1D and z ∈ X were arbitrary, we have
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Xn = {0}, for any non-unit element X of D. Thus, D is simple, and satisfies
x ∨ ¬xn = 1.

In the proofs of the above results, the construction of D we used is es-
sentially the same as that in [5]. This implies that the same argument works
well also for any subvariety of FLew defined by a combination of the equations
above. In particular, we have the FMP of MTL, IMTL and SMTL (cf. [9]).

Corollary 25 Every subvariety of FLew defined by any combination of prelin-
earity (x→ y)∨ (y → x) = 1, pseudo-complementation x∧¬x = 0, involution
¬¬x = x, and weak excluded-middle x ∨ ¬nx, for some positive integer n, has
the FEP. Thus, every logic over FLew obtained by adding any combination
of the prelinearity axiom scheme, the pseudo-complementation axiom scheme
¬(α ∧ ¬α), the law of double negation, and weak excluded middle principle
α ∨ ¬αn, has the FMP, and hence is decidable.
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