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Abstract

We develop a general algebraic and proof-theoretic study of substructural logics
that may lack associativity, along with other structural rules. Our study extends
existing work on (associative) substructural logics over the full Lambek Calculus
FL (see e.g. [36, 19, 18]). We present a Gentzen-style sequent system GL that
lacks the structural rules of contraction, weakening, exchange and associativity,
and can be considered a non-associative formulation of FL. Moreover, we intro-
duce an equivalent Hilbert-style system HL and show that the logic associated
with GL and HL is algebraizable, with the variety of residuated lattice-ordered
groupoids with unit serving as its equivalent algebraic semantics.

Overcoming technical complications arising from the lack of associativity,
we introduce a generalized version of a logical matrix and apply the method of
quasicompletions to obtain an algebra and a quasiembedding from the matrix
to the algebra. By applying the general result to specific cases, we obtain
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of the variety of residuated lattice-ordered groupoids with unit.
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1. Introduction

Substructural logics are generally understood as extensions of logics obtained
by removing some structural rules from intuitionistic logic in its sequent formu-
lation LJ, and thus they are extensions of full Lambek calculus FL—the calculus
defining the basic substructural logic without the rules of exchange, weakening
and contraction. In algebraic terms, they are logics determined by subvari-
eties of the variety of FL-algebras, i.e., residuated lattices with a constant 0.
More precisely, in terms of abstract algebraic logic: the variety of FL-algebras
is an equivalent algebraic semantics for the deducibility relation determined by
FL. Substructural logics over FL and residuated lattices have been extensively
studied in recent years both from algebraic and proof-theoretic view points. For
general information, see [18].

One main purpose of the present paper is to extend the current study to
substructural logics that may lack associativity, and in particular to explore
to what extent algebraic methods—already developed for substructural logics
over FL—are applicable. Obvious modifications include, moving from monoids
to groupoids with unit, for the algebraic structures, and considering a non-
associative version of comma in sequents, for the syntactic objects. However, we
will show that although many results, requiring more involved proofs, generalize
to the non-associative setting, some facts fail in the general case.

The second, equally important, aim of the paper is to provide a setting,
consistent with the theory of abstract algebraic logic, that unifies many con-
structions in the literature. In particular, we show that logical matrices, ap-
propriately generalized, serve as a unifying object for the comprehensive study
of (non-associative) substructural logics and admit quasicompletions that yield
important logical and algebraic properties for the corresponding logics.

Throughout the paper, we assume some familiarity with substructural logics
over FL and residuated lattices (see e.g. [18]), as well as with basic notions from
universal algebra (see e.g. [9] for more information). To avoid disrupting the flow
of the paper, the proofs of some of technical results are given in the appendices.
To facilitate navigation through the paper, we give a table of contents before
the bibliography.

1.1. Main results
In Section 2.1, we introduce the Gentzen-style system GL. The rules of

the system are specified in terms of metarules (rule schemes); see Figure 1 in
Section 2.1. This presentation has the advantage that the same set of metarules,
by appropriate interpretations, can specify, for example, the system FL of full
Lambek calculus, FLe (FL with the rule of exchange), or even Gentzen’s original
system LJ for intuitionistic logic. Sequents, the main syntactic object of GL,
involve non-associative sequences of formulas, while in the cases of FL, FLe or
LJ, they involve sequences, multisets or sets, respectively. By considering these
different data types for sequents the same set of metarules serves as a definition
for all of the above systems.
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Alternatively, these systems can be defined by adding structural rules (see
Figure 2) to GL. If we add associativity we obtain (a system equivalent to)
FL; if we add all basic structural rules of associativity, exchange, weakening
and contraction we obtain (a system equivalent to) LJ.

It is easily seen that it is decidable whether a sequent is provable in cut-free
GL (GL without the cut rule). The cut elimination property states that the cut
rule does not contribute at all to the provable (without assumptions) sequents
of the system. The proof of this property (Theorem 4.8) implies the decidability
of GL. The basic structural rules are among the ones (simple structural rules)
that can be added to GL without affecting the cut elimination property (see
Section 4.3). Therefore, the property holds for all the systems mentioned above
(see Corollary 4.14), with the understanding that the rule of contraction is
formulated for sequences of formulas. In Section 4.4, we prove that GL, as well
as its extensions with simple structural rules, has the finite model property.

We introduce the Hilbert-style systems HL (Figure 6) and sHL (Figure 5),
and prove that both are equivalent (Theorems 2.1 and 2.3), in the sense of [22],
to GL; the equivalence holds also for extensions of the systems with simple
structural rules (Theorem 2.3). The strong separation property for HL (Theo-
rem 4.19) states that every proof in HL can be rewritten in a way that it only
uses the connectives already in the assumptions and conclusion of the proof plus
maybe the basic connective \ of left implication. As a consequence, the system is
a strong conservative extension of each of its fragments. [The adjective ‘strong’
here refers to the existence of assumptions in the derivation.] We prove that
HL, as well as its expansions that correspond to simple structural rules, enjoy
the strong separation property (Theorem 4.19). The system HL is not finitely
axiomatized (Theorem 2.5) while it enjoys the strong separation property. On
the other hand its equivalent version sHL is finitely axiomatized, but enjoys a
restricted version of the strong separation property for the case where the set
of basic connectives is {\,∧}. [More generally, sHL has the strong separation
property (Theorem 2.2) under the understanding that the connective ∧ needs
to be included when we include the connective ∨.] The associative version HLa

of HL (see Section 2.2.4) can be simplified to a system (HL plus associativity)
equivalent to FL that has the strong separation property with respect to the
set of basic connectives {\, /} (see Corollary 4.19 and Lemma 4.20). Given the
separation property for HL, the general algebraization theory yields axiomati-
zations for the classes of subreducts of the algebraic semantics.

Having developed the necessary algebraic background in the beginning of
Section 3, we proceed to show that the algebraic semantics (Theorem 4.23)
of GL (and HL) are residuated lattice-ordered groupoids with unit (see Sec-
tion 3.1) and they form a variety RLUG. We prove that RLUG has a decid-
able equational theory and is actually generated by its finite members (Theo-
rem 4.24). We also give a list of subvarieties, corresponding to simple structural
rules, that have the same properties (Corollary 4.23 and Theorem 4.24).

Most of Section 3 is devoted to introducing generalized logical matrices, the
main and unifying object to which the quasicompletion will be performed, and
to developing, in the non-associative setting, the necessary background theory
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for these matrices. The type of logical matrix that we consider generalizes the
notion of a matrix from abstract algebraic logic—a pair of an algebra A and a
subset F of A—to allow for A to be a partial algebra and for F to be a set of
sequents over A.

In Section 4, the quasicompletion method is applied to an arbitrary gener-
alized logical matrix A to yield a residuated lattice-ordered groupoid with unit
R(A) (Theorem 4.1) and is followed by the construction of a quasiembedding
into R(A) (Lemma 4.4). This is the main technical part of the paper and is
applied to obtain all the main results by instantiating the generalized logical
matrix according to the particular application. In particular, the cut elimina-
tion theorem for the Gentzen system GL, the strong separation theorem for
the corresponding Hilbert system HL, the finite model property and the finite
embeddability property for various systems (see Section 4.6) are all obtained by
means of the quasicompletion theorem.

We mention that the notion of a nucleus is the main tool in the quasicom-
pletion construction. A nucleus on a residuated lattice is a closure operator on
the underlying lattice that is compatible with multiplication and the division
operations. The concept has its origins in topological frames and Heyting al-
gebras (e.g., see [40]), but has been also extended in the context of quantales
[39]. Moreover, it has been used in many different and diverse applications (see
[21], [22], [20]). En route to our goal (see Appendix B), we present natural sys-
tems, which we call (residuated) action systems and which produce a residuated
lattice-ordered groupoid with unit when a nucleus is applied to them.

1.2. Background of the main idea
To place the paper in context, we review briefly some of the relevant liter-

ature. In particular, we show how our work subsumes and generalizes diverse
and seemingly unrelated results.

Okada and Terui [31]—relying on ideas of Maehara [29] and Okada [30],
who describes a method for proving cut elimination for various logics using
phase semantics for linear logic introduced by Girard [23] (and expanded by
Abrusci [1])—prove the finite model property (FMP) for certain fragments of
intuitionistic linear logic.

Blok and van Alten, in a series of papers [4, 5, 6], further extend the method
of Okada and Terui to prove stronger results like the finite embeddability prop-
erty (FEP) for various varieties and quasivarieties of residuated structures. In
particular, they describe a construction for embedding a partial subalgebra B of
an algebra A into an algebra D(A,B), which remains in the variety in certain
cases; also, if B is finite, then D is also finite, in particular situations, hence the
construction then yields the FEP. By modifying the construction of D, Kowal-
ski and Ono [28] obtain the FEP for certain fuzzy logics. Also, Buszkowski
[10, 11, 12] obtains the FMP for BCI logics and action logic.

In connection to residuated lattices (models of FL), Bernadineli, Jipsen and
Ono [2], introduce quasi-residuated lattices (essentially models of cut-free FL)
and give an algebraic proof of the cut elimination theorem for various Gentzen
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systems related to FL. More precisely, given a sequent that is not provable
in cut-free FL, and hence fails in a quasi-residuated lattice, it is shown that
the sequent also fails in a residuated lattice, obtained from the quasi-residuated
lattice via a quasi-completion construction (that resembles the constructions of
Blok and van Alten, and of Okada and Terui); thus the sequent is not provable
even when using the cut rule.

Raftery and van Alten [43] present a Hilbert-style system that has the strong
separation property and is equivalent to FLe; in other words it applies to the
associative, commutative case and its algebraic semantics is the variety of com-
mutative residuated lattices. In order to prove the strong separation property
the authors assume that a formula is not provable from a given set of assump-
tions in the appropriate fragment and they show that it is not provable in the
whole system. To achieve this, they construct a commutative residuated lat-
tice (associated with the set of assumptions) in which the formula fails. The
construction is again based on the quasi-completion idea. The result in [43]
is preceded by work of Ono and Komori [37], who obtain a (weak) separation
theorem (which refers only to proofs without assumptions) for the associative,
integral case (equivalent to FLw), for a system that may involve only one of
the division (implication) connectives. The (weak) separation property is ob-
tained from the equivalence to the corresponding Genzen system and the fact
that the latter has the subformula property. Also, K. Došen [14] discusses the
non-associative case with one division operation, and proves cut elimination us-
ing proof-theoretic arguments, but the proposed system fails even the (weak)
separation property.

As mentioned before, the constructions in the above papers make use of the
quasi-completion/quasi-embedding idea to construct a residuated lattice and
quasi-embed a certain structure to it. Nevertheless, the constructions apply to
different objects/ingredients: to a set of sequents in [31], to a partial subalgebra
of a residuated lattice in [4, 5, 6], to a quasi-residuated lattice in [2] and to a set of
formulas in [43]. We show that a logical matrix serves as a single unifying object
to which the construction applies in a way that it instantiates to the examples
above. It should be stressed that we develop this general construction in the
absence of all the basic structural rules of contraction, weakening, exchange
and associativity. At the same time these rules, as well as any other simple
structural rule, can be added in a modular way, hence the construction becomes
applicable to a wide range of situations.

2. Syntactic consequence relations

In this section, we define four consequence relations, all presented syntacti-
cally; one by a Gentzen-style system, two by Hilbert-style systems and one by
an algebraic system. They all turn out to be equivalent in the sense of [22].

Recall that a consequence relation ` on a set S is a subset of P(S)×S such
that for all X ∪ Y ∪ {x, y, z} ⊆ S, (we write X ` x for (X,x) ∈ `)

1. if x ∈ X, then X ` x, and
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2. if X ` y, for all y ∈ Y , and Y ` z, then X ` z.

2.1. The non-associative Gentzen system GL
Sequent calculi were introduced by Gentzen [24], who proved the decidability

of intuitionistic logic. This is done via a proof search algorithm in the cut-free
system (after having shown cut elimination).

A sequent, for the purposes of intuitionistic logic, is made up of formulas,
commas and the separator ⇒ . More precisely, a sequent is a (non-associative)
possibly empty sequence of formulas (separated by commas), concatenated with
the separator symbol ⇒ and concatenated with another formula. For exam-
ple,

(p, p→ (q ∧ r)), q ⇒ p ∨ r
is a sequent, where p, q, r are propositional variables; note the double role of
the parentheses in the formula and the sequent level. In the original formula-
tion the left-hand side of a sequent (what comes before ⇒) was just a set of
formulas, but it can be taken to be a multiset, or a sequence or a groupoid
word (non-associative sequence) of formulas. This freedom in the choice of the
syntactic type of a sequent is due to the fact that intuitionistic logic has all
of the structural rules; the latter are responsible for the the left-hand side of
a sequent behaving like a set, even in the case when it is formulated under a
different syntactic type.

In order to consider substructural systems one needs to identify the struc-
tural rules and separate them both from the syntax of a sequent and from the
logical rules. Depending on the degree of substructurality that one wants to
achieve there is some flexibility in the choice. We will consider the system
without any of the four structural rules (of contraction, weakening, exchange
and associativity), so the left-hand sides of the sequents will be groupoid words
(non-associative sequents). Our approach works also if we consider systems with
some structural rules, by modifying the data type of the sequents.

Another complication introduced by considering sequent calculi is related
to the rule schemes. In Hilbert style systems, one can usually consider a finite
number of axiom and rule schemes expressed over an alphabet of metavari-
ables, for which formulas can be substituted. Alternatively, the axiom and rule
schemes can be expressed over the propositional variables, and substitution can
be encoded in the definition of a proof. In the Gentzen systems we will consider,
the second approach cannot be applied and even the first one needs modifica-
tions. The rule schemes considered require more types of metavariables (one
for formulas, one for non-associative sequences of formulas, and one for non-
associative sequences of formulas with an extra place-holder). For example, we
will differentiate between rules and metarules (or rule schemes) in the deductive
systems. Therefore, we will have an alphabet P for propositional variables and
an alphabet F of metavariables (for formulas), as well as other alphabets for
sequences of formulas etc.

We start by specifying the appropriate syntax for the general substructural
case.
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2.1.1. Groupoid words and sequents
Consider a set Q and distinct symbols ε and not in Q. We define the set

Qγ of groupoid words over the set Q, relative to ε, as the smallest set such that

• Q ∪ {ε} ⊆ Qγ and

• if x, y ∈ Qγ − {ε}, then (x, y) ∈ Qγ .

Alternatively, we consider the free groupoid 〈FG(Q), ◦〉 over Q and we expand it
by a new element ε subject to the conditions x◦ε = ε◦x = x, for all x ∈ FG(Q),
in order to obtain the free groupoid with unit 〈FG(Q) ∪ {ε}, ◦, ε〉. We identify
FG(Q)∪{ε} with Qγ , and Qγ = 〈Qγ , ◦, ε〉 becomes the free groupoid with unit.
For example, if Q = {a, b, c}, then

((a, c), ((a, b), a)) = (a ◦ c) ◦ ((a ◦ b) ◦ a) ∈ Qγ ,

but ((a, c), (a, b), a) 6∈ Qγ , since it is a triple. Note that comma and ◦ are almost
interchangeable; we simply omit the external parentheses when using ◦ and note
that elements like (a, ε) do not exist. Therefore, Qγ is the set of possibly empty
(oriented) binary trees with leaves from Q, or the set of possibly-empty non-
associative sequences of elements from Q. The element ε is called the empty
groupoid word.

The set Qα of augmented groupoid words over Q, relative to , is defined to
be the set of all groupoid words over Q∪{ } with exactly one occurrence of the
element . More precisely, Qα is defined recursively by the clauses

• ∈ Qα and

• if u ∈ Qα, x ∈ Qγ , then u ◦ x, x ◦ u ∈ Qα.

For example, ((a, c), (( , b), a)) ∈ Qα, but ((a, c), (( , b), )) 6∈ Qα.
For u ∈ (Qγ − {ε}) ∪ Qα and x ∈ Qγ − {ε}, we define x ◦ u = (x, u),

u ◦ x = (u, x) and u ◦ ε = ε ◦ u = u; we use the same symbol ◦, since it extends
the operation in Qγ . For example, if x = (a, b) and u = (a, ( , a)), then x ◦ u =
((a, b), (a, ( , a))) and u ◦ x = ((a, ( , a)), (a, b)). Also, x ◦ x = ((a, b), (a, b)).

If u ∈ Qα and v ∈ Qγ∪Qα, we denote by u[v] the element ofQγ∪Qα obtained
from u by substituting v for . For example, if x = (a, b) and u = (a, ( , a)),
then

u[x] = (a, ((a, b), a)) and u[u] = (a, ((a, ( , a)), a)).

Obviously, u = u[ ] for all u ∈ Qα. Note that for v = ε, u[ε] is evaluated after
all commas in u have been replaced by ◦. So, if u = (a, ( , a)) = a ◦ ( ◦ a), then
u[ε] = a ◦ (ε ◦ a) = (a, a). We set |u| = u[ε]. Essentially, the absolute value of
an element in Qα is the same element (now in Qγ) but without . To make the
operation more explicit we allow ourselves to denote the element u[x] also by
u ? x and x ? u.

An (intuitionistic or single conclusion) sequent over Q or a Q-sequent is
an element of Qγ × Q. We write the sequent (x, a) as x⇒ a. For example,
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((a, c), ((a, b), a))⇒ c is a sequent. We usually drop the external parentheses
of a groupoid word in a sequent, so the last sequent will be usually written as
(a, c), ((a, b), a)⇒ c.

An inference rule (instance) is a pair r = (S, s), where S ∪ {s} is a set of
sequents. We usually denote r in fractional notation S

s (r), and put the name
of the rule in parentheses next to the fraction. If S = {s1, s2, . . . , sn}, then we
write

s1 s2 · · · sn
s

(r).

If S is empty, then r is called axiomatic or an axiom; in fractional notation we
leave the numerator empty.

2.1.2. Propositional formulas
By a propositional (or algebraic) language we understand a pair L = (L,α),

where L is a set of connectives and α : L → ω is the arity function. When
α is understood, we often identify L and L. Given a propositional language
L and a countable set P of propositional variables, the set FmL(P), or simply
FmL, of (propositional) formulas over L (and over P) is defined in the usual
way and will play the role of the set Q above in the sequent calculus discussed
below; the set FmL is also called the set of all terms in the context of algebra.
We will be interested in formulas over sublanguages of L = {∧,∨, ·, \, /, 1, 0}; 1
and 0 are constants and all other connectives are binary. In writing formulas,
we abbreviate a · b to ab, and assume that the priority order of the connectives
is as follows: multiplication (·) is performed first, followed by the division (or
implication) connectives (\ and /) and by the lattice connectives (∧ and ∨).
Thus, pq ∧ pr/q is short for (p · q) ∧ ((p · r)/q), if p, q, r ∈ P.

In the following, we will refer to an FmL-sequent, simply as an L-sequent.

2.1.3. Metasequents and metarules
In the presentation of our sequent calculus, we need to specify the axioms

and the rules of inference. As mentioned before, the system will have infinitely
many rules of inference organized in sets (called metarules) of rules. Alterna-
tively, a metarule is a syntactic object, of a different level than that of a rule,
that describes all the rules in the set by specifying their common form. As an
example, we mention that (\L)

x⇒ a u[b]⇒ c

u[x ◦ (a\b)]⇒ c
(\L)

in Figure 1 is a metarule for the system GL that includes all the rules of the
same ‘form’ as (\L), where a, b, c ∈ FmL, x ∈ (FmL)γ and u ∈ (FmL)α.

To formally define metarules, a necessary complication as we need to syntac-
tically manipulate metarules, we need to define metasequents and metagroupoid
words. The latter are made up from three different sorts of metavariables A (of
sort SA), X (of sort SX) and U (of sort SU), where SA ⊆ SX, the constant ε (of
sort SX) and the operators ◦ : SX × SX → SX and ? : SU × SX → SX (we denote
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u ? x simply by u[x]); we assume that the sets A, X and U are pairwise disjoint.
In our systems, we will take the elements of A to have some internal structure;
in particular, A will be the set FmL(F) of L-formulas over a set F (different
and disjoint from the set P of propositional variables). Metagroupoid words are
defined as the terms of sort SX of the above multi-sorted language. For example,
u[v[ε]◦x]◦u[a\b] is a metagroupoid word, if u, v ∈ U, x ∈ X and a, b ∈ F, but u is
not (because it is a term of sort SU) and u[v] is not even defined. Metasequents
are simply sequences of the form g⇒ a, where g is a metagroupoid word and
a ∈ A. The fact that we used the same symbols (◦, ? and ε) for the different
operators in defining metasequents and sequents should create no confusion.

A metarule is a pair r = (S, s), where S ∪ {s} is a set of metasequents. The
same fractional notation conventions used for rules, apply also to metarules. A
rule is said to be an instance of a metarule, if all metavariables from F, X and
U are instantiated to elements of FmL, (FmL)γ and (FmL)α, respectively, and
the metasequent operators ◦, ? and ε are replaced by the corresponding sequent
operators. For example, if p, q, r are propositional variables, then

p ∧ q, q⇒ p q, p ∨ r⇒ q ∨ r
q, ((p ∧ q, q), (p\(p ∨ r)))⇒ q ∨ r

is an instance of (\L) for a = p, b = p∨ r, c = q∨ r, x = (p∧ q, q) and u = (q, ).
It should be clear that to express (\L) formally, we need to allow metavari-

ables a, b in F (to be evaluated as formulas in FmL), while a\b is a formal object
in A = FmL(F) (also eventually to be evaluated in FmL).

2.1.4. The Gentzen system GL
The sequent calculus GL over the language L = {∧,∨, ·, \, /, 1, 0} is speci-

fied by the metarules of Figure 1. Instances of the metarules are obtained by
replacing the metavariables a, b, c by formulas over L, the metavariables x, y by
groupoid words in (FmL)γ and u by an augmented groupoid word in (FmL)α;
recall that |u| = u[ε]. In what follows we will use GL to refer to both the
set of metarules specifying it and to the actual set of rules (instances of the
metarules).

With the exception of the first two rules of the system GL, every rule in-
troduces a connective to the left or right-hand side of a sequent; depending on
the side on which the connective is introduced, we distinguish between left and
right rules. Note that the left rules of GL can be simplified in the presence of
cut, but we lose the cut elimination property. For example, u[a] in (∨L) can be
replaced by groupoid words, where a is a (left or right) outermost formula; to
prove the equivalence we use (\R) and (/R).

If R is a set of metarules, not to be confused with the notation used for
right rules, then GLR denotes the expansion of GL by the metarules from R.
The system GLf

R, called cut-free GLR, is obtained from GLR by removing the
metarule (CUT).
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x⇒ a u[a]⇒ c

u[x]⇒ c
(CUT)

a⇒ a (Id)

x⇒ a u[b]⇒ c

u[x ◦ (a\b)]⇒ c
(\L) a ◦ x⇒ b

x⇒ a\b
(\R)

x⇒ a u[b]⇒ c

u[(b/a) ◦ x]⇒ c
(/L) x ◦ a⇒ b

x⇒ b/a
(/R)

u[a ◦ b]⇒ c

u[a · b]⇒ c
(·L)

x⇒ a y⇒ b

x ◦ y⇒ a · b (·R)

u[a]⇒ c

u[a ∧ b]⇒ c
(∧L`)

u[b]⇒ c

u[a ∧ b]⇒ c
(∧Lr) x⇒ a x⇒ b

x⇒ a ∧ b (∧R)

u[a]⇒ c u[b]⇒ c

u[a ∨ b]⇒ c
(∨L) x⇒ a

x⇒ a ∨ b (∨R`) x⇒ b
x⇒ a ∨ b (∨Rr)

|u| ⇒ a

u[1]⇒ a
(1L)

ε⇒ 1 (1R)

Figure 1: The system GL.

2.1.5. Proofs
We define proofs (from assumptions) in GLR, their conclusions and their

(set of) assumptions by mutual induction.

• A sequent is a proof, whose conclusion and assumption is itself.

• A rule s1 s2 ··· sn
s (r) in GLR is a proof, whose conclusion is s and whose

assumptions are s1, s2, . . . sn (more precisely, whose set of assumptions is
{s1, s2, . . . sn}).

• Let Π1,Π2, . . . ,Πn be proofs in GLR with conclusions s1, . . . sn, respec-
tively, and sets of assumptions S1, S2, . . . , Sn, respectively. If s1 s2 ··· sns (r)
is a rule in GLR, then Π1 Π2 ··· Πn

s (r) is a proof whose conclusion is s and
whose set of assumptions is S1 ∪ · · · ∪ Sn.

Metaproofs are defined in a similar way, using the obvious notion for schematic
substitution for expressions like u[x]. The following notions have analogues for
metaproofs and metasequents, as well.

We say that a sequent s is provable or derivable in GLR from a set S of
sequents, in symbols S `GLR s, if there is a proof whose conclusion is s and
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whose set of assumptions is contained in S. It is easy to see that `GLR is a
consequence relation on the set of sequents; we will call it the deducibility or
provability relation of the Gentzen system.

If s is provable in GLR from an empty set of assumptions, then we simply
say that s is provable in GLR. Proofs from assumptions that have an empty set
of assumptions are simply called proofs.

Depending on whether a, b, c are formulas (in FmL) or metavariables for
formulas (in F), the following is an example of a proof or a metaproof in GL.

a⇒ a (Id) b⇒ b
(Id)

a, b⇒ ab
(·R)

a, b⇒ ab ∨ ac (∨R`)

a⇒ a (Id) c⇒ c
(Id)

a, c⇒ ac
(·R)

a, c⇒ ab ∨ ac (∨Rr)

a, b ∨ c⇒ ab ∨ ac (∨L)

a(b ∨ c)⇒ ab ∨ ac
(·L)

2.1.6. Structural rules
The Gentzen system FL is defined in a way similar to GL. The essential

difference is that the left-hand side of an associative sequent is not a groupoid
word, but a sequence (a monoid word) of formulas. Augmented associative
sequences are associative versions of augmented groupoid words, as well, and
the operation ◦ in the definition of metasequents is taken to be associative for
associative metasequents; see [36] for more on FL. With the understanding
that they are defined over different syntactic objects (sequents), the metarules
of the systems GL and FL are the same; the difference lies in the instances of
the metarules. Obviously, GL is more expressive than FL and it can be shown
that FL is equivalent to a restricted version of GL.

u[(x ◦ y) ◦ z]⇒ a

u[x ◦ (y ◦ z)]⇒ a
(a)

u[y ◦ x]⇒ a

u[x ◦ y]⇒ a
(e)

u[x ◦ x]⇒ a

u[x]⇒ a
(c)

|u| ⇒ a

u[x]⇒ a
(i)

0⇒ a
(o) (w) = (i) + (o)

Figure 2: The basic metarules

Let GLa denote the expansion of GL by the rule (a) of Figure 2; the double
line in (a) means that the metarule can be applied in both directions. Given a
sequent, an associative sequent can be obtained by ignoring the parentheses. It
can be shown that a sequent is provable in GLa iff the corresponding associative
sequent is provable in FL. Actually, GLa is equivalent to FL in the sense of
[22].
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We refer to the rules of Figure 2 as (global) associativity, exchange, con-
traction, integrality or left weakening, and right weakening ; we also refer to the
combination of (i) and (o) as weakening and we denote it by (w). We call these
metarules basic. Note that our basic metarules are different than the ones usu-
ally considered. For example exchange is usually written with the metagroupoid
words x, y ∈ X replaced by b, c ∈ F, respectively. This means that in its appli-
cation only formulas can be commuted while commutation of groupoid words
is not assumed; we use boldface (e) for this restricted version of the ‘global’
metarule (e). These rules can also be applied to FL, yielding the systems FLe

and FLe. It can be shown that these two systems have exactly the same de-
ducibility relation; the same holds for FLf

e and FLf
e. Nevertheless, even though

FLc and FLc have the same deducibility relation, the systems FLf
c and FLf

c

do not. Therefore, it matters whether the metarules refer to groupoid words or
formula metavariables. As for the case of GLa and FL, the systems GLR∪{a}
and FLR are equivalent, for every set R of metarules. In particular, GLaecw is
equivalent to Gentzen’s original system LJ for intuitionistic logic.

Observe that the basic metarules do not involve any connectives; metarules
with this property are called structural. Basic metarules are special cases of
what we will call simple structural metarules. Recall the formal definition of a
metarule from Section 2.1.3, as well as the special meaning of the sets F,A,X,U.
A metagroupoid word (a term of sort SX) t that involves only ◦ (and not ?) and
only metavariables from X (not from A) will be called simple. In other words,
simple metagroupoid words are groupoid words over the set X of metavariables.
For example, (x◦y)◦x is such a term, for x, y ∈ X. Fix metavariables u ∈ U and
a ∈ F. If t0, t1, . . . , tn are simple metagroupoid words and t0 is linear (every
metavariable occurs once), the metarule

u[t1]⇒ a · · · u[tn]⇒ a

u[t0]⇒ a
(r)

is called simple.

2.1.7. Decidability and cut elimination
As mentioned above, a is a theorem of intuitionistic logic iff `GLaecw ε⇒ a.

Therefore, deciding theoremhood in intuitionistic logic reduces to deciding prov-
ability in GLaecw. Note that with the exception of (a), (e), (c) and (CUT), all
the rules reduce the complexity of a sequent as we search upwards for a proof.
Rules (a) and (e) rearrange the formulas in the sequent and can be responsible
for an infinite loop in the proof search, but with their careful application this
effect can be controlled without changing provability. The same can be done,
with much more care, for the rule (c) that otherwise increases the complexity
as we search upwards; see [34] for details. The rule (CUT) causes considerably
more complications as it introduces a new formula. Nevertheless, the system ob-
tained from GLaecw by removing (CUT) has the same provable sequents as the
original one (this holds only for provability without assumptions) and this is the
content of the cut-elimination property originally established by Gentzen. Cut
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elimination has been established by proof-theoretic methods for all the systems
GLR, where R is a set of basic rules, see [34], [14]; it is important that we select
the global versions of the simple structural rules, as for example FLc enjoys cut
elimination, but FLc does not. We will present a semantical (algebraic) proof
of this fact in Section 4.2.

2.1.8. The external consequence relation
If B∪{c} is a set of formulas, and R is a set of metarules, we write B `GLR c

if {ε⇒ b | b ∈ B} `GLR ε⇒ c. Note the difference in the position of GLR

(superscript or subscript) in the two relations. It is not hard to see that `GLR

is a consequence relation on FmL, called the external consequence relation of
`GLR . We will show that the consequence relations `GLR and `GLR are actually
equivalent in the sense of [22] (see Section 2.2.5 and Appendix A) thus the former
can actually be defined in terms of the latter. Moreover, in the next section
we will introduce a Hilbert system and prove that the consequence relation
associated with it is equal to `GL.

2.1.9. Solvability
Given a deductive system D (for example GL) and a sublanguage K (for

example, {∧,∨}) of the language L used in D, we can consider subsystems of
D associated with K. A natural choice for such a subsystem is the set of all
the rules of inference of S that involve connectives only from K plus possibly
a fixed set (for example {\, /}) of basic connectives. Traditionally, implication
is such a basic connective for Hilbert-style systems, since otherwise we would
not allow modus ponens. As long as the set of basic connectives contains · and
at least one of \ or /, then this notion of subsystem behaves well for GL. For
example, the external consequence relation of such a subsystem is equivalent to
the consequence relation of the subsystem. Although, such a definition works
well for FL, for a smaller set of basic connectives (just {\} or {/}), it needs
some fine tuning for GL, so as to yield the desired results (equivalence with the
external relation and the associated Hilbert system) for such a small set of basic
connectives.

To motivate the definition of a subsystem of GL, we mention the following.
In order to prove the equivalence between the deducibility relation of a subsys-
tem of GL and its external consequence relation, or the deducibility relation
of the corresponding subsystem of the Hilbert system to be introduced, it is
necessary to be able to translate (transform) a sequent into a formula. In the
presence of · and at least one of \ or /, for x 6= ε, we can translate a sequent
x⇒ a into the formula φ(x)\a or or the formula a/φ(x), where φ(x) is the for-
mula obtained from the groupoid word x by replacing all occurrences of ◦ by ·;
we translate the sequent ε ⇒ a into the formula a. This works essentially be-
cause the sequents x⇒ a, ε⇒ φ(x)\a and ε⇒ a/φ(x) are mutually derivable in
(the {·, \, /} subsystem of) GL. If we lack multiplication, the translation is still
possible in the case of FL; we simply translate the sequent a1, a2, . . . an⇒ a to
the formula an\ . . . (a2\(a1\a)); note that the order is reversed. Again this works
because the sequents a1, a2, . . . an⇒ a and ε⇒ an\ . . . (a2\(a1\a)) are mutually
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derivable in (the {\} subsystem of) FL. Unfortunately, because of the lack of
associativity, the same is not possible for GL. For example, there is no sequent
of the form ε⇒ f that is mutually derivable with the sequent (a, b), (c, d)⇒ e
in the multiplication-free subsystem of GL. It is, therefore, necessary to iden-
tify the actual subsystem of GL whose deducibility relation is equivalent to its
external consequence relation.

We define the set of solvable groupoid words inductively:

1. Every element in Q ∪ {ε} is a solvable groupoid word.
2. If x is a solvable groupoid word and a ∈ Q, then x◦a and a◦x are solvable

groupoid words.

For example the groupoid word (a, (((a, b), c), d)) is solvable, but (((a, b), c), (a, b))
is not. Thus, solvable groupoid words over formulas are exactly the ones that
can be translated into a formula, namely they are exactly the left-hand sides
of sequents that can be solved [by means of the rules (\R) and (/R)] for ε on
the left hand side without using multiplication. Note that a, (((a, b), c), d)⇒ e
is solvable into (i.e., mutually derivable in the multiplication-free subsystem of
GL with) ε⇒ ((((a\e)/d)/c)/b)/a. The ‘solution’ is not unique;

ε⇒ a\((((a\e)/d)/c)/b) and ε⇒ (a\(((a\e)/d)/c))/b

are solutions, as well, obtained by a different order of application of the rules
(\R) and (/R). Nevertheless, ε⇒ (a\(c\((a\e)/d)))/b is not a solution, as the
only freedom is given after the step a, b⇒ ((a\e)/d)/c. Note that the term tree
(the tree associated with a term) corresponding to a solvable groupoid word has
a distinct shape; there is a main branch such that only leaves stem out of it.

We define the set of solvable augmented groupoid words over a set Q induc-
tively:

1. The constant is a solvable augmented groupoid word.
2. If u is a solvable augmented groupoid word and a ∈ Q, then u◦a and a◦u

are solvable augmented groupoid words.

For example, following two the augmented groupoid words (a, ((( , a), c), d))
and (a, (((b, ), c), d)) are solvable, but (a, (((a, b), ), d)) and (((a, ), c), (a, b))
are not. Thus, solvable augmented groupoid words over formulas are exactly
the right hand-sides of (augmented) sequents that can be solved for on the
left hand side without using multiplication. Here the solution is unique; for
example the unique solution to the augmented sequent (a, (((b, ), c), d))⇒ e is
the augmented sequent ⇒ b\(((a\e)/d)/c). Here we used the term augmented
sequent for a sequent that allows on the left-hand side.

Left solvable (augmented) groupoid words are defined in a similar way, if
in (2) we allow only a ◦ x (a ◦ u) to be left solvable. A groupoid word is left
solvable iff it is completely associated to the right. For example the groupoid
word (a, (a, (a, a))) is left solvable, but ((a, (b, a)), a) is not. The augmented
groupoid word (a, (a, (b, ))) is left solvable, but (a, (a, ( , a))) is not. Note that
left solvable (augmented) groupoid words are exactly the ones that are solvable
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by using only the left division operation \. For example, (a, (a, (b, a)))⇒ c
is left-solvable into ε⇒ a\(b\(a\(a\c))) and (a, (a, (b, )))⇒ c is left-solvable
into ⇒ b\(a\(a\c)). Obviously, every left solvable groupoid word is solvable.
Likewise, we define right solvable (augmented) groupoid words.

We also define product left solvable augmented groupoid words, by modifying
condition (2) to: If u is a product left solvable augmented groupoid word and
x ∈ Qγ , then x ◦ u is product left solvable.

According to the connectives needed for solving a groupoid word, the latter
is called fit with respect to the corresponding connectives. More precisely, let K
be a sublanguage of L that contains at least one of the connectives \ and /. An
(augmented) groupoid word x is called fit for K or an (augmented) K-groupoid
word, if it involves only connectives contained in K and the following conditions
are satisfied:

1. If K does not contain ·, then x is solvable.
2. If K contains neither · nor /, then x is left solvable.
3. If K contains neither · nor \, then x is right solvable.
4. If K contains ·, but not /, then x is product left solvable.

For example, ((((p ∧ q\p, p), q ∧ p), p), q) is fit for {\,∧, /}, but not for {\,∧}.
Also, (((p ∧ q\p, p), q ∧ p), (p, q)) is fit for {\,∧, ·}, but not for {\,∧, /}.

We denote by QγK and QαK the sets of groupoid and augmented groupoid
words over Q fit for K. A sequent x⇒ a is called fit for K or a K-sequent, if x
is a K-groupoid word and a is a K-formula.

As explained above a sequent calculus can be specified by a set of metarules
together with a way to obtain their instances; to define the subsystems of GL,
we restrict the instances of the metarules of GL. If K is a sublanguage of L that
contains at least one of the connectives \ and /, then the K-subsystem KGL of
GL is specified by the metarules of GL that do not involve connectives outside
of K; the allowed instances of those metarules are ones in which all the resulting
sequents are fit for K. For example, the instance

(c, d), (a, f) ⇒ e

(c, d), (a ∧ b, f) ⇒ e

of the rule (∧L`) is not included in {∧, \, /}GL, because the sequents involved
are not solvable and multiplication is not included in the language.

The consequence relations `KGL and `KGL, for different choices of K, are
defined in the obvious way. Recall that if R is a set of metarules, then GLR

denotes the system obtained from GL by adding the set R. If K is a sublanguage
of L that contains \, the system KGLR, is obtained by adding to the rules of
KGL all rules that are instances of the metarules in R so that all the resulting
sequents are fit for K.

In the case of FL the K-subsystem KFL does not put any restrictions on
the instances of the metarules, since in all instances the resulting sequents are
fit for a sublanguage K that contains at least one of the connectives \ and /.
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(id) α→ α (identity)
(pf) (α→ β)→ [(δ → α)→ (δ → β)] (prefixing)

(per) [α→ (β → δ)]→ [β → (α→ δ)] (permutation)
(·∧) [(α ∧ 1)(β ∧ 1)]→ (α ∧ β) (fusion conjunction)

(∧ →) (α ∧ β)→ α (conjunction implication)
(∧ →) (α ∧ β)→ β (conjunction implication)
(→ ∧) [(α→ β) ∧ (α→ δ)]→ [α→ (β ∧ δ)] (implication conjunction)
(→ ∨) α→ (α ∨ β) (implication disjunction)
(→ ∨) β → (α ∨ β) (implication disjunction)
(∨ →) [(α→ δ) ∧ (β → δ)]→ [(α ∨ β)→ δ] (disjunction implication)
(→ ·) β → (α→ αβ) (implication fusion)
(· →) [β → (α→ δ)]→ (αβ → δ) (fusion implication)

(1) 1 (unit)
(1→) 1→ (α→ α) (unit implication)

α α→ β

β
(mp)

(modus ponens)

α
α ∧ 1 (adju)

(adjunction unit)

Figure 3: The system HL′
ae.

2.2. Hilbert systems
In this section we will define a Hilbert-style system HL with deducibility

relation equivalent to the relation `GL. The system contains (infinitely) many
rules (schemes) of inference, but it enjoys the strong separation property (with
respect to {\}), which states that for every proof only the rules that involve the
connectives in the assumptions and the conclusion (and possibly \) are needed in
the derivation. In Section 4.5, we present extensions of HL (to the associative,
commutative and other cases) which also enjoy the strong separation property;
see also Lemma 4.20. We first present simplified versions HL′ae (Figure 3) and
HL′a (Figure 4) of HL that correspond to FL and FLe, but do not have the
strong separation property.

2.2.1. The Hilbert system sHL
The Hilbert-style system sHL is an equivalent variant of HL with finitely

many rules. It enjoys the strong separation property for signatures that contain
∧ whenever they contain ∨ (Corollary 2.4), but does not have the property for
other signatures. We introduce the systems HL′ae, HL′a and sHL before HL,
as the latter is more complicated.

The system sHL is specified by the metarules of Figure 5. To define (Hilbert-
style) metarules formally, as before let F be the set (disjoint from the set P of
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(id`) α\α (identity)
(pf`) (α\β)\[(δ\α)\(δ\β)] (prefixing)

(as``) α\[(β/α)\β] (assertion)
(a) [(β\δ)/α]\[β\(δ/α)] (associativity)

(·\/) [(β(β\α))/β]\(α/β) (fusion divisions)
(·∧) [(α ∧ 1)(β ∧ 1)]\(α ∧ β) (fusion conjunction)
(∧\) (α ∧ β)\α (conjunction division)
(∧\) (α ∧ β)\β (conjunction division)
(\∧) [(α\β) ∧ (α\δ)]\[α\(β ∧ δ)] (division conjunction)
(\∨) α\(α ∨ β) (division disjunction)
(\∨) β\(α ∨ β) (division disjunction)
(∨\) [(α\δ) ∧ (β\δ)]\[(α ∨ β)\δ] (disjunction division)
(\·) β\(α\αβ) (division fusion)
(·\) [β\(α\δ)]\(αβ\δ) (fusion division)
(1) 1 (unit)

(1\) 1\(α\α) (unit division)
(\1) α\(1\α) (division unit)

α α\β
β

(mp`)
α

α ∧ 1
(adju)

α

β\αβ
(pn`)

α

βα/β
(pnr)

(modus ponens) (adjunction unit) (product normality)

Figure 4: The system HL′
a.
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propositional variables) of formula metavariables and let A be the set of all L-
formulas over F. A Hilbert-style metarule is a pair (S, s), where S ∪ {s} is a
subset of A. An instance of a metarule is obtained by replacing elements of F
by formulas in FmL(P ).

a\a
(I`)

a a\b
b

(MP`)
a\b

(c\a)\(c\b)
(Rd\) a\b

(b\c)\(a\c)
(Rn\)

a

(a\b)\b
(N`)

a\[(b/a)\b]
(As``)

a\(b\c)
b\(c/a)

(RAr`)
b\a
a/b

(RCr)

(a ∧ b)\a
(ME`)

(a ∧ b)\b
(MEr)

a b

a ∧ b
(RM)

[(a\b) ∧ (a\c)]\[a\(b ∧ c)]
(M\)

a\(a ∨ b)
(JI`)

b\(a ∨ b)
(JIr)

[(a\c) ∧ (b\c)]\[(a ∨ b)\c]
(J\)

[(c/a) ∧ (c/b)]\[c/(a ∨ b)]
(J/)

b\(a\ab)
(PI)

b\(a\c)
ab\c

(RPI)
1

(1)
1\(a\a)

(I1`)
a\(1\a)

(I1r)

Figure 5: The system sHL

We note that (I1`) follows from the other rules, but we include it for uni-
formity. Indeed, we have (a\a)\[1\(a\a)] by (I1`), and a\a by (I`); then (MP`)
gives 1\(a\a).

If (r) is a simple structural metarule involving the simple metagroupoid
words t0, t1, . . . , tn (see Section 2.1.6) then we define the axiom tFmL

0 \(tFmL
1 ∨

· · · ∨ tFmL
n ); here tFmL denotes the formula resulting from t by replacing ◦ by ·.

If R is a set of simple structural metarules, then sHLR denotes the expansion
of sHL by the axioms corresponding to R.

Given a sequent x⇒ b, we define the formula φ(x⇒ b) = φ(x)\b, where
φ(x) is the formula obtained by replacing ◦ by · in x; for x = ε, we define
φ(ε⇒ b) = b. If S is a set of sequents we define φ[S] = {φ(s) | s ∈ S}. If
a ∈ FmL, we define the sequent s(a) = (ε⇒ a) and if B is a set of formulas,
we define s[B] = {s(b) | b ∈ B}.

Theorem 2.1. Let S ∪{s} be a set of sequents, let B∪{c} be a set of formulas
and let R be a set of simple structural rules. Then
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1. S `GLR s iff φ[S] `sHLR φ(s).
2. B `sHLR c iff s[B] `GLR s(c).
3. s(φ(s)) a`GLR s.
4. φ(s(c)) a`sHLR c.

Theorem 2.2. The strong separation property holds for the system sHL, pro-
vided that if the language contains ∨, it also contains ∧.

The proofs of Theorems 2.1 and 2.2 are similar to the proofs of Theorem 2.3
(see Appendix A) and Corollary 4.19, and are left to the reader. A result related
to Theorem 2.1 on the (weak) separation property was shown in [37] for a Hilbert
system equivalent to FLw.

We mention that the rules (MP`) and (N`) are in the current forms because
of the presence of 1. The same applies to (RCr). (As``) is a non-commutative
version of the assertion axiom. Non-commutativity dictates the existence of the
rules (N`) and (RCr). (RAr`) is needed because of the absence of associativity.
(Rd\) needs to be stated in a non-axiom form because the corresponding axiom
of prefixing implies associativity.

2.2.2. Definable connectives
Since we want the strong separation property to hold (see Section 4.5) for

the Hilbert-style system HL we need enough rules for each connective. A main
difficulty is presented when a set of connectives under consideration contains
∨, but not ∧. In order for the strong separation property to work for this case
we need an infinite set of rules organized in two metarules (RJ\) and (RJ/)
(see Figure 6). To express these metarules, we need to introduce a definable
connective  K, for each set of connectives K. We will introduce the necessary
notation for the definition of HL in this section.

Recall from the discussion on the subsystems of GL that we have a choice
on representing the sequent x⇒ a by either one of the formulas φ(x)\a and
a/φ(x). In case that we have exactly one of the division connectives in our
sublanguage K together with multiplication, then there is no choice, but if
we have both connectives, then we need to be consistent which of the two
formulas to consider. Moreover, if x is a solvable groupoid word there are
multiple ‘solutions’ involving the division operations in addition to the two
formulas mentioned above. Therefore, we fix a representation φK(x⇒ b) for
the sequent x⇒ b, relative to the different sublanguages K, and this will be
exactly what we will define x K b as follows.

Let Q be the set of all L formulas over an alphabet that can be either
the set P of propositional variables, or the set F of formula metavariables; so
Q = FmL(P) or Q = FmL(F) (we will need both cases for discussing rules
and metarules). First we define the depth d(x) of a groupoid word x ∈ Qγ by
induction:

• d(ε) = −1, d(a) = 0, for a ∈ Q, and

• d(x ◦ y) = 1 +max{d(x), d(y)}, for x, y ∈ Qγ .
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Now, given a sublanguage K of L that contains \, and a (meta)sequent x⇒ b
(x ∈ Qγ and b ∈ Q) fit for K, we define x K b as follows. Here we assume that
if x⇒ b is a metasequent, then x is simple.

If K contains multiplication, then x  K b = φ(x)\b, where φ(x) is the
formula obtained from the groupoid word x by replacing all occurrences of ◦ by
·; for x = ε we define ε  K b = b. For example, ((a, (b, c)), ((d, e), f))  {\,·,∧}
g = ((a(bc))((de)f))\g.

If K does not contain multiplication (and hence x is solvable), then x K b
is defined by induction on x:

• ε K b = b;

• for a ∈ Q, a K b = a\b;

• for x, y ∈ Qγ , (x ◦ y)  K b = y  K (φ(x)\b) when d(x) ≤ d(y), and
(x ◦ y) K b = x K (b/φ(y)) otherwise.

Note that in the last case at least one of x, y is in Q. By this definition we
give preference to \ relative to /. For example, (a, ((d, e), f))  {\,/,∧} g =
e\(d\((a\g)/f)), not (d\((a\g)/f))/e.

Note that x  K b is always a ‘solution’ of the sequent x⇒ b. Also, the
outermost element of Q in x K b is the rightmost of all occurrences of subfor-
mulas of x of maximum depth. Moreover, if K contains neither multiplication
nor / (and hence x is left solvable), then x K b contains neither multiplication
nor /. In general, x K b is always a K-formula.

We further define u K b for u ∈ Q and b ∈ Q. We set  K b = b.

• If K contains · and /, u  K b is defined by the clauses (v ◦ x)  K b =
v  K (b/φ(x)) and (x ◦ v) K b = v  K (φ(x)\b).

• If K does not contain ·, but contains /, we have (v◦a) K b = v  K (b/a)
and (a ◦ v) K b = v  K (a\b).

• If K does not contain / nor ·, we have (a ◦ v) K b = v  K (a\b).

• If K does not contain /, but contains ·, then u is product left solvable and
we define (x ◦ v) K b = v  K (φ(x)\b).

2.2.3. Hilbert-style metarules
In order to introduce a new type of metarules, including (RJ\) and (RJ/),

we need to modify the definition of metarules for a Hilbert system. As before,
let F be the set (disjoint from the set P of propositional variables) of formula
metavariables and let A be the set of all L-formulas over F. Also, let A′ be the
set A together with all formal expressions of the form x  M b, where x and
 M are new symbols and b ∈ A. A Hilbert-style metarule is a pair (S, s), where
S ∪ {s} is a subset of A′. An instance of a metarule is obtained by replacing
elements of F by formulas in FmL(P), and all expressions of the form z  M b
by the formulas obtained by replacing M by a sublanguage of L that contains
\, and z by a solvable element of (FmL(P))γ that is fit for M.
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2.2.4. The Hilbert system HL
The Hilbert system HL consists of the following metarules, where a, b, c

denote formulas; for the rules (RJ\) and (RJ/),M ranges over all sublanguages
of L that contain \, and z ranges over all solvable groupoid words over formulas
fit for M.

a\a
(I`)

a a\b
b

(MP`)
a\b

(c\a)\(c\b)
(Rd\) a\b

(b\c)\(a\c)
(Rn\)

a

(a\b)\b
(N`)

a\[(b/a)\b]
(As``)

a\(b\c)
b\(c/a)

(RAr`)
b\a
a/b

(RCr)

(a ∧ b)\a
(ME`)

(a ∧ b)\b
(MEr)

a b

a ∧ b
(RM)

[(a\b) ∧ (a\c)]\[a\(b ∧ c)]
(M\)

a\(a ∨ b)
(JI`)

b\(a ∨ b)
(JIr)

z  M (a\c) z  M (b\c)
z  M [(a ∨ b)\c]

(RJ\) z  M (c/a) z  M (c/b)
z  M [c/(a ∨ b)]

(RJ/)

b\(a\ab)
(PI)

b\(a\c)
ab\c

(RPI)
1

(1)
1\(a\a)

(I1`)
a\(1\a)

(I1r)

Figure 6: The system HL

The de Morgan style axioms (J\) and (J/) of sHL are replaced in HL by the
rules (RJ\) and (RJ/), which are important to the proof of the strong separation
property (Theorem 2.3).

It is possible to replace some of the rules by the following
c

ab\a(cb)
(N1)

c

a\[(ab)c/b]
(N2)

c

[a\(ab)c]/b
(N3)

However, this simplification destroys the strong separation property, as multi-
plication is needed for these rules.

Given a sublanguage K of L that contains the connective \ , the the K-
subsystem KHL of HL is defined to be the Hilbert system containing only the
rules of HL that involve connectives over K.

The notion of a (meta)proof with assumptions in a Hilbert system is similar
to that for sequent calculi. The only difference is that instead of (meta)sequents,
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we have (meta)formulas. If a formula c is provable in KHL from assumptions
B, then we write B `KHL v.

Also, note that for every sublanguage K of L that contains the connective \
and for every formula a, a a`KHL (a\a)\a; (N`) justifies one direction, and (I`)
and (MP`) justify the other.

A simple structural metarule (r) is called fit for K, if ti is fit for K for every
i. If (r) is fit for K, then we define the Hilbert rule (for a fixed b ∈ F)

t1  K b . . . tn  K b
t0  K b

h(r)

If R is a set of simple structural metarules, then KHLR denotes the extension
of HL by the rules h(r).

2.2.5. Equivalence
Given a sublanguage K of L that contains the connective \ and a sequent

x⇒ b fit for K, we define the formula φK(x⇒ b) = x  K b. If S is a set of
sequents we set φK[S] = {φK(s) | s ∈ S}.

Recall that if a ∈ FmL, we define the sequent s(a) = (ε⇒ a) and if B is a
set of formulas, we define s[B] = {s(b) | b ∈ B}.

Theorem 2.3. Let S ∪ {s} be a set of sequents, K a sublanguage of L that
contains \, B∪{c} a set of K-formulas and R a set of simple structural metarules
fit for K. Then

1. S `KGLR s iff φK[S] `KHLR φK(s).
2. B `KHLR c iff s[B] `KGLR s(c).
3. s(φK(s)) a`KGLR s.
4. φK(s(c)) a`KHLR c.

In the terminology of [22], the theorem states that the two consequence
relations are equivalent under the above transformations.

As the proof of Theorem 2.3 is long and would interrupt the flow of the
paper we include it, together with the necessary lemmas, in Appendix A (see
Corollary A.5).

Corollary 2.4. The results of Theorem 2.3 hold also for sHL in place of HL,
for signatures K that contain ∧ whenever they contain ∨.

Proof. It suffices to show that, for signatures that contain ∧ whenever they
contain ∨, the rules (RJ\) and (RJ/) can be replaced by the axioms (J\) and
(J/).

It is clear that in the presence of ∧ in the signature the rules imply the
axioms, by instantiating z = (a\c) ∧ (b\c). For the converse, starting from the
axioms and using repeatedly (Rd\) and its companion version (Rd/), which is
shown to be derivable (Lemma A.2 in Appendix A), we can obtain

{z  K [(a\c) ∧ (b\c)]}\{z  K [(a ∨ b)\c]}.

22



Note that

{[z  K (a\c)] ∧ [z  K (b\c)]}\{z  K [(a\c) ∧ (b\c)]}

is provable by using (RM K), (ME`), (MEr) and (MP`), so by (T`) we get

{[z  K (a\c)] ∧ [z  K (b\c)]}\{z  K [(a ∨ b)\c]}.

Rules (RM K) and (T`) are derived in Lemma A.2 in Appendix A. By a
combination of (ME`), (MEr) and (MP`) we obtain (RJ\).

Theorem 2.5. There is no Hilbert-style system with finitely many rule schemes
that is equivalent to HL and has the strong separation property.

Proof. By way of contradiction assume that there is a Hilbert-style system H
with finitely many rule schemes that is equivalent to HL and has the strong sep-
aration property. Then the same holds for the extension Hi of H by the axiom
a\(b\a). Put differently, the consequence relation `Hi is finitely axiomatizable.
In particular, the {\,∨}-fragment of `Hi

is finitely axiomatizable. However,
Corollary 3.6 of [42] shows that this fragment is not finitely axiomatizable.

It is obvious that in HL the role of \ is different than that of /. Nevertheless,
if we interchange the roles of the two division operation, by interchanging all
occurrences of a\b with b/a, then we obtain rules that are derivable in HL; these
rules are called opposite. Recall that a rule is called derivable if the deducibility
relation of the system expanded by the rule is the same as the original one. If
we include these opposite rules (and axioms) we obtain an equivalent Hilbert
system that is symmetric with respect to the two division operations. All the
statements, like Theorem 2.3, that we have made for HL and \ hold for the new
system with respect to either of the division operations.

2.3. Algebraic presentations of sequent systems
Sequent systems that do not contain ◦ and do not allow an empty left hand

side (in other words the left-hand side is always a single formula) are called
algebraic. Usually, we write ≤ for ⇒ and we refer to sequents as inequalities.
These systems have the advantage that groupoid words can be avoided and they
deal only with formulas, so the syntax is much easier to handle.

In the following we introduce the algebraic systems PL (Figure 7) and ML
(Figure 8) considered in [27] and [26], respectively. Both of them are equivalent
to GL and enjoy the cut elimination property. The cut elimination property
was established semantically for PL in [27] and using proof theoretic methods
for ML in [26]. For more on these systems, see [17]. Computation in PL closely
parallels that of GL. On the other hand, ML has two bidirectional rules and is
reminiscent of display calculi. The system ML is very convenient for algebraic
calculations.

If s is a sequent, we denote by s• the sequent (inequality) resulting from s
by replacing ◦ by · and ε by 1. Also, we denote by s◦ the sequent resulting from
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a ≤ b u[b] ≤ c
u[a] ≤ c

(cut)
a ≤ a (id)

a ≤ b c ≤ d
ac ≤ bd (·r)

a ≤ b u[c] ≤ d
u[a(b\c)] ≤ d

(\l) ab ≤ c
b ≤ a\c

(\r)

a ≤ b u[c] ≤ d
u[(c/b)a] ≤ d

(/l)
ab ≤ c
a ≤ c/b

(/r)

u[a] ≤ c
u[a ∧ b] ≤ c

(∧l`)
u[b] ≤ c

u[a ∧ b] ≤ c
(∧lr) a ≤ b a ≤ c

a ≤ b ∧ c (∧r)

u[a] ≤ c u[b] ≤ c
u[a ∨ b] ≤ c

(∨l) a ≤ b
a ≤ b ∨ c (∨r`)

a ≤ c
a ≤ b ∨ c (∨rr)

|u| ≤ a
u[1] ≤ a

(1l) a ≤ b
a ≤ 1b

(1r`)
a ≤ b
a ≤ b1 (1rr)

Figure 7: The system PL.

s by replacing all external occurrences of · in the left-hand side of s by ◦; here
an occurrence of · in a formula is called external if all connectives in the formula
tree above the particular occurrence of · are also ·. For example, we replace the
inequality (p · q) · [(p · q)∨ r)] ≤ p · q by the sequent (p ◦ q) ◦ [(p · q)∨ r)]⇒ p · q.

Theorem 2.6. The systems GL and PL are equivalent. In particular, for every
set of sequents S ∪ {s}, and for every inequality ε,

• S `GL s iff S• `PL s
•.

• ε a`PL ε
◦•.

The same holds for the systems involving fragments of the language that contain
multiplication and 1, where the rule instance are restricted appropriately.

Proof. If we are given a proof of s in GL from assumptions S, we replace every
sequent t by the inequality t• and contract all applications of (·L). Also, the
axiom (1R) by an instance of (id). The resulting proof figure is obviously a
proof in PL.

Conversely, given a a proof of s in PL from assumptions S, we first replace
every inequality t by t◦ in the proof. The resulting proof figure might not be a
proof in GL. For example, if an application of the rule (\r) in the original proof
has assumption (ab)c ≤ d and conclusion c ≤ (ab)\d, then the translation will
yield a rule step with assumption (a ◦ b) ◦ c⇒ d and conclusion c⇒ (ab)\d; this
is not an instance of the rule (\R), but it is the combination of (·L), which yields
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a ≤ b b ≤ c
a ≤ c (tr)

a ≤ a (id)
a ≤ b c ≤ d
ac ≤ bd (·)

a ≤ b c ≤ d
b\c ≤ a\d

(\o)
ab ≤ c
b ≤ a\c

(\res)

a ≤ b c ≤ d
c/b ≤ d/a

(/o)
ab ≤ c
a ≤ c/b

(/res)

a ≤ c
a ∧ b ≤ c (∧lt`)

b ≤ c
a ∧ b ≤ c (∧ltr)

a ≤ b a ≤ c
a ≤ b ∧ c (∧rt)

a ≤ c b ≤ c
a ∨ b ≤ c (∨lt)

a ≤ b
a ≤ b ∨ c (∨rt`)

a ≤ c
a ≤ b ∨ c (∨rtr)

a ≤ c b ≤ 1
ab ≤ c (1rtr)

a ≤ 1 b ≤ c
ab ≤ c (1rt`)

a ≤ b 1 ≤ c
a ≤ bc (1ltr)

1 ≤ b a ≤ c
a ≤ bc (1lt`)

Figure 8: The system ML.

(a · b) ◦ c⇒ d, and of (\R). Therefore, in the proof figure, we insert applications
of (·L) before applications of the rules (\R) and (/R), so that x (in these rules)
becomes a formula. Likewise, for (1r`) and (1rr), we use (1R) and (·R). Also,
for the axioms in the original proof we provide proofs in GL from axioms of
the form (Id) applied to formulas. It is not difficult to verify that the resulting
proof figure is a proof of s◦ in GL from S◦.

Since ε = ε◦•, the second item of the theorem is clear.

Moreover, the following relation holds between the cut-free systems: `GLf s
iff `PLf s•. The idea is, by moving from bottom upward, in every occurrence of
(\r) and (/r) to replace ab with a ◦ b and propagate this change all the way up
in the proof. Moreover, we replace every occurrence of (\l) by an application
of (\L) to get u[a ◦ (b\c)]⇒ d and an application of (·L) to get u[a · (b\c)]⇒ d;
likewise, we modify the occurrences of (/l). Similarly, every application of (·r)
is replaced by an application of (·R), followed by an application of (·L). Finally,
we replace every occurrence of (1l) by an application of (1L) to get u◦[1]⇒ d
and an application of (·L) to get u[1]⇒ d; here u◦ is the same as u, except that
the · next to is replaced by ◦.
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3. Semantical consequence relations

3.1. Residuated lattice-ordered groupoids with unit
A residuated lattice-ordered groupoid with unit or r`u-groupoid, is an algebra
L = 〈L,∧,∨, ·, \, /, 1〉 such that

• 〈L,∧,∨〉 is a lattice,

• 〈L, ·, 1〉 is a groupoid with unit, and

• a · b ≤ c ⇔ a ≤ c/b ⇔ b ≤ a\c, for all a, b, c ∈ L.

We will often assume that the language contains an additional constant 0, of
which nothing is assumed. Here ≤ is the order relation associated with the
lattice 〈L,∧,∨, 〉; so, a ≤ b stands for a = a∧b. Note that x/y = max{z |zy ≤ x}
and y\x = max{z|yz ≤ x}. The class RLUG of all r`u-groupoids is an equational
class; i.e., the class of models of a set of equations. In particular, the identities

x ≈ x ∧ ((xy ∨ z)/y), x(y ∨ z) ≈ xy ∨ xz, (x/y)y ∨ x ≈ x,
y ≈ y ∧ (x\(yx ∨ z)), (y ∨ z)x ≈ yx ∨ zx, y(y\x) ∨ x ≈ x.

together with the lattice and the unit identities form an axiomatization for it.
Consequently, RLUG is a variety ; i.e., a class of algebras closed under taking
subalgebras, homomorphic images and direct products of the algebras in the
class. For basic results and terminology in universal algebra, see [9].

Lemma 3.1. If x, y, yi, where i ∈ I, are elements of a r`u-groupoid and∨
yi,

∧
yi exist, then

1. x(
∨
yi) =

∨
(xyi) and (

∨
yi)x =

∨
(yix)

2. (
∧
yi)/x =

∧
(yi/x) and x\(

∧
yi) =

∧
(x\yi)

3. x/(
∨
yi) =

∧
(x/yi) and (

∨
yi)\x =

∧
(yi\x)

4. (x/y)y ≤ x and y(y\x) ≤ x
5. x/1 = x = 1\x
6. 1 ≤ x/x and 1 ≤ x\x.

A residuated lattice, or residuated lattice-ordered monoid, is an associative
r`u-groupoid. A residuated lattice is called commutative, if its underlying
monoid is commutative. We denote by RL and CRL the varieties of residuated
lattices and commutative residuated lattices, respectively. A residuated lattice
is commutative iff x\y = y/x for all elements x, y; we denote the common value
by x→ y.

Lemma 3.2. If x, y, z are elements of a residuated lattice, then

1. x(y/z) ≤ xy/z and (z\y)x ≤ z\yx
2. (x/y)/z = x/zy and z\(y\x) = yz\x
3. x\(y/z) = x\(y/z)

For more on residuated lattices and r`u-groupoids, see [7], [27] and [18].
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3.2. Logical matrices
Logical matrices are pairs of an algebra and a set and can been used to define

logics in the setting of algebraic logic. Here we generalize the standard matrices
in two directions. We will generalize the notion of a logical matrix to allow for
pairs of a partial algebra and a set. Also, together with the algebra, we will
consider a set that is not a subset of the underlying set of the (partial) algebra,
but a set of more complex objects.

3.2.1. Multidimensional matrices
We start by reviewing the standard notion of a logical matrix. Recall that

if L is a propositional (or algebraic) language, as considered in Section 2.1.2,
then an L-algebra is a structure A = 〈A, (fA)f∈L〉, where A is a set and for
every f ∈ L of arity α(f), fA is an operation on A of arity α(f); we also
write LA or LA for (fA)f∈L, and A = 〈A,LA〉. Sometimes, we omit the
superscript A from fA and write A = 〈A,L〉. If L = {f1, . . . , fn}, we usually
write A = 〈A, f1, . . . , fn〉. Also, recall that if A and B are L-algebras, then a
homomorphism from A to B, in symbols h : A → B, is a map h : A → B,
such that for every f ∈ L and a ∈ Aα(f), h(fA(a)) = fB(h(a)), where f(a) =
(f(ai))1≤i≤α(f) and h(a) = (h(ai))1≤i≤α(f), for a = (ai)1≤i≤α(f).

If P is the set of propositional variables, usually taken to be infinitely count-
able, then FmL(P) = 〈FmL(P), L〉 is an L-algebra, called the absolutely free L-
algebra over P or the L-formula algebra over P; we often write simply FmL. An
assignment (from FmL(P)) to an L-algebra A is an arbitrary map f : P → A.
Such a map extends uniquely to a homomorphism f : FmL → A.

A (1-dimensional) L-matrix is a pair A = (A, S), where A is an L-algebra
and S ⊆ A. The elements of S are called designated or true elements of A.
For every subset B ∪ {c} of FmL, we write B |=〈A,S〉 c (or (B, c) ∈ |=〈A,S〉)
if, for every homomorphism h : FmL → A, h[B] ⊆ S implies h(c) ∈ S, where
h[B] = {h(b) | b ∈ B}. If M is a class of L-matrices, then |=M is defined to be
the intersection of all relations |=A, over all A ∈M. It is easy to see that |=M

is a consequence relation on FmL.
The L-matrix A = 〈A, S〉, is called a matrix model of a consequence relation

` on FmL, if ` ⊆ |=A; in this case S is called a deductive filter for ` (or a `-
filter) of A. A class M of matrices is called a matrix semantics for a consequence
relation `, if ` = |=M. For example, if B is a Boolean algebra and `CPL is
the deducibility relation of Classical Propositional Logic, then 〈B, {1B}〉 is a
matrix model of `CPL. It is well known that `CPL = |=〈2,{}〉, where 2 is the
two-element Boolean algebra. So, {〈2, {1}〉} and {〈B, {1B}〉 | b ∈ BA}, where
BA is the class of all Boolean algebras, are matrix semantics for `CPL. See [16]
for more on matrices.

Generalizations of 1-dimensional matrices include n-dimensional ones. An
n-dimensional L-matrix is a pair A = 〈A, S〉, where A is an L-algebra and
S⊆An. For every subset B ∪ {c} of (FmL)n, we define B |=A c iff, for every
homomorphism h : FmL → A, h[B]⊆S implies h(c)∈S; here h(c) is defined
coordinatewise. It is clear that the 1-dimensional L-matrix 〈An, S〉 has exactly
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the same information content with A. If M is a class of n-dimensional L-
matrices, the relation |=M is defined in the obvious way. Clearly, |=M is a
consequence relation on (FmL)n, or an n-dimensional consequence relation on
FmL.

If A is an L-algebra, then the 2-dimensional L-matrix 〈A,=A〉, where =A

denotes the equality relation on A, plays a special role and we simply write |=A

for |=〈A,=A〉; we refer to elements of (FmL)2 as L-equations and to the elements
of =A as true equalities. In detail, if A is an L-algebra and E ∪ {ε0} is a set of
L-equations, then we write E |=A ε0 iff for every homomorphism f : FmL → A,
if f(ε) is true for all ε ∈ E, then f(ε0) is true, as well. Similarly, if K is a class
of L-algebras, we write |=K for the relation defined relative to the corresponding
class of matrices.

Another example of 2-dimensional L-matrices are ordered algebras 〈A,≤A〉.
The elements of ≤A are called true inequalities.

3.2.2. Sequent matrices
We, now, want to capture the notion of a true sequent over an algebra. The

way to do this is to define as a sequent matrix a pair of an algebra A and
a set of sequents over A, namely a subset of Aγ × A, designated as true se-
quents. We mention that this notion of a matrix does not fit into the definition
of an n-dimensional matrix, because we have an unbounded number of differ-
ent dimensions and because n-dimensional matrices presuppose the presence of
associativity.

Although this definition completely captures the intended meaning of the
terms, we will need it to be more general for technical reasons. For example, we
will want to concentrate on only some of all possible sequents, when we discuss
a K-subsystem of GL; in this case we will allow only sequents fit for K to be
considered. In a different direction, to prove the strong separation property
for HL, which will be discussed in Section 4.5, we will need to considerer the
set of subformulas of a set of formulas and view it as a partial subalgebra of
FmL. The notion of partial subalgebra also appears naturally, when we consider
the application of our results to the finite embeddability property, which will
be discussed in Section 4.6.2. Therefore, our definition will need to allow for
partial algebras.

Recall that a partial L-algebra is a structure A = 〈A, (fA)f∈L〉, where A is
a set and for every f ∈ L of arity α(f), fA is a partial operation on A of arity
α(f). A partial map from A to B is a relation f ⊆ A × B, that is functional,
i.e. if (x, y), (x, z) ∈ f , then y = z. As usual we write f(x) = y for (x, y) ∈ f ;
when there exists a y ∈ B such that (x, y) ∈ f , we say that f(x) is defined and
write f(x) ∈ B or x ∈ f−1[B]; if f(x) is not defined, we say that it is undefined.
Also, we write f : A ⇀ B for a partial map from A to B. A partial operation
on A is partial map from a power of A to A.

Let K be a sublanguage of L. A (partial) assignment from FmK to a partial
K-algebra A is a map f : Y → A, where Y is a subset of the set P of propositional
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variables. We extend such a map as much as possible to a partial map f :
FmK ⇀ A, also called a (partial) assignment. In detail, f is extended by the
following clause:

• if ti ∈ FmK(Y ), where 1 ≤ i ≤ n, t ∈ FmK(P ) has arity n and all of
f(t1), . . . , f(tn), tA(f(t1), . . . , f(tn)) are elements of A, then we define
f(t(t1, . . . , tn)) = tA(f(t1), . . . , f(tn)). Else, f(t(t1, . . . , tn)) is undefined.

Moreover, f extends to a partial map from the set of groupoid and augmented
groupoid words fit for K, by the clauses:

• f(ε) = ε and f( ) = ;

• if x1, x2 ∈ FmγK
K ∪ Fm

αK
K and all of f(x1), f(x2), f(x1) ◦ f(x2) are in

AγK ∪ AαK , then f(x1 ◦ x2) = f(x1) ◦ f(x2). Otherwise, f(x1 ◦ x2) is
undefined.

Finally, f naturally extends to a partial map from the set FmγK
K × FmK of K-

sequents to the set AγK ×A of A-sequents (fit for K), by f(x, a) = (f(x), f(a))
whenever a ∈ f−1[A] and x ∈ f−1[AγK ].

For every sublanguage K of L, a sequent K-matrix is a pair A = 〈A,�〉,
where A is a partial K-algebra and � is a set of A-sequents fit for K. We often
write x � a for (x, a) ∈ � and say that the A-sequent x⇒ a is true. The set �
is called the set of true (or designated) A-sequents of A.

If A = 〈A,�〉 is a sequent K-matrix, for every set of K-sequents S ∪ {s},
we define S |=〈A,�〉 s iff, for every partial assignment f : FmL ⇀ A such that
S ∪ {s} ⊆ f−1[Aγ ×A], f [S] ⊆ � implies f(s) ∈ �; namely, if all A-sequents in
f [S] are true, then the A-sequent f [s] is true.

We say that an L-sequent s holds or that it is valid in A, if |=A s. A sequent
K-matrix A = 〈A,�〉 is a matrix model of a K-sequent consequence relation `,
if ` ⊆ |=A. We define a K-sequent consequence relation to be a consequence
relation on the set of K-sequents. A sequent K-matrix can be a matrix model of
a sequent consequence relation ` in a trivial way; for example if all operations
in the underlying algebra are nowhere-defined. Note that, unless all operations
in A are full, |=A may fail to be a sequent consequence relation. The relation
|=M associated with a class M of sequent matrices is defined in the usual way.
The class M is called a matrix semantics for a sequent consequence relation `,
if ` = |=M.

3.2.3. Algebraic semantics
A class of L-algebras K is called an algebraic semantics (in the sense of Blok

and Pigozzi [3]) for an (1-dimensional) L-consequence relation `, if there are L-
equations εi(p), where 1 ≤ i ≤ n, on one variable such that for allB∪{c} ⊆ FmL
and for all 1 ≤ j ≤ n,

B ` c iff {εi(b) | 1 ≤ i ≤ n, b ∈ B} |=K εj(c).
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If K is a class of L-algebras and E is set of L-equations on one variable, define
M(K, E) as the class of all 1-dimensional L-matrices of the form (A, EA), where
A ∈ K and EA = {a ∈ A | ε(a) is true in A}. It is easy to observe that K is
an algebraic semantics for ` iff there exists a finite set E of equations on one
variable such that M(K, E) is a matrix semantics for `. Therefore, algebraic
semantics can be thought of as a special case of matrix semantics.

The class K is called an equivalent algebraic semantics for `, if it is an
algebraic semantics for ` and there are binary terms ∆j(p, q), where 1 ≤ j ≤ m,
such that

u ≈ v =| |=K {εi(∆j(u, v)) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

The equations εi are called the defining equations and ∆j are called the equiv-
alence formulas.

The class BA is an equivalent algebraic semantics for `CPL, for ε(p) = (p ≈
1) and ∆(p, q) = (p↔ q).

The notion of (equivalent) algebraic semantics is also defined for sequent con-
sequence relations in a natural way. The definition given in [38] for associative-
sequent consequence relations does not apply to our case, as we work in the
non-associative setting. The definition we give here as well as the previous two
are a special case of the definition of (finitary) equivalence between two conse-
quence relations given in [22], which also instantiates to the equivalence of the
syntactic consequence relations of the previous section.

To specialize the definition in [22] to our case we need to enter into techni-
calities. We fix an enumeration p1, p2, . . . of the set P of propositional variables.
For every Q-sequent s (Q is any set) we define its type tp(s) to be the sequent
obtained from s by replacing (all occurrences of) the elements of Q in s from
left to right by the variables from P in order. In detail, we start by defining the
n-type tpn(x) for every x ∈ Qγ inductively:

• tpn(ε) = ε; tpn(a) = pn, for every a ∈ Q;

• if pm is the first variable not in tpn(x) with m ≥ n, then tpn(x ◦ y) =
(tpn(x), tpm(y)).

We define the type tp(x⇒ a) of a sequent x⇒ a to be the sequent (tp1(x)⇒ pm),
where pm is the first variable not in tp1(x). For example, tp((a, b), (b, a)⇒ b) =
((p1, p2), (p3, p4)⇒ p5). We denote by Tp the set of all types. It is clear that
given a sequent s of type t, there exists a map σs from Tp to Qγ ×Q such that
σs(t) = s; note that σs is not unique. If Q is the set FmL, then σs is essentially
an L-substitution.

An L-equation of type t ∈ Tp is an equation on the variables appearing in t.
Obviously, an equation may have many types: p1 ∧p2 ≈ p1 ∨ (p3 ∨p4) has types
((p1, p2), p3⇒ p4), (p1, (p2, p3)⇒ p4), (p2, (p4, p3)⇒ p1) etc. If ε is an equation
(here we use the same symbol as for the the empty groupoid word, as ε is also
traditional for equations) and s a sequent of the same type, then we define the
equation ε(s) = σs(ε); i.e., the equation obtained by replacing the variables in
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ε by the corresponding formulas in s. For example, if s is (a, b)⇒ b and ε is
(x · y) ∨ y = y, then σs(ε) = (a · b) ∨ b = b. A typed equation is a pair (ε, t),
where ε is an equation of type t. If E is a set of typed equations and S a set
of sequents, we define E[S] = {ε(s) | (ε, tp(s)) ∈ E, s ∈ S}; note that even if
ε and s are of the same type, ε(s) will not be in E[S] if (ε, tp(s)) 6∈ E. For
example, the equation (x · y) ∨ y = y, call it ε, has both type (p1, p2)⇒ p2 and
type (p1, p2)⇒ p1, call these types t1 and t2, but maybe only the typed equation
(ε, t1) is in the set E. Considering typed equation is a way of knowing which
variables of ε to replace by which variables of s in the expression ε(s).

A class of L-algebras K is called an algebraic semantics for a sequent conse-
quence relation `, if there exists a finite set E of typed L-equations, such that
for all sets S ∪ {s} of L-sequents

S ` s iff E[S] |=K E(s).

The class K is called an equivalent algebraic semantics for `, if it is an
algebraic semantics for ` and there is a finite set S(p, q) of L-sequents in two
variables, such that

u ≈ v =| |=K E[S(u, v)].

The class HA of Heyting algebras is an equivalent algebraic semantics for
Gentzen’s original system LJ, for E(x⇒ a) = (xFmL ≤ a) and S(p, q) =
{(p⇒ q), (q⇒ p)}.

3.3. Matrix models of GL.
The class KGL (KGLf) is defined to contain all sequent K-matrices A =

〈A,�〉, that are models of KGL (KGLf, respectively). If R is a set of structural
metarules, we denote the matrix models of KGLR by KGLR and of KGLf

R by
KGLf

R. We will provide a condition for checking if a matrix is in KGLR or
KGLf

R.
Given a sequent K-matrix A = 〈A,�〉 and a non-structural metarule (r) of

KGL that involves metavariables among {a, b, c, x, u} and concerns the connec-
tive • ∈ K, we define the interpretation (r)A of (r) in A to be the following
statement:

∀a, b, c ∈ A, x ∈ AγK , u ∈ AαK , if a•A b is defined, then the conjunc-
tion of the assumptions of the metarule (with the metavariables eval-
uated and ⇒ replaced by �) implies the conclusion of the metarule.

For example, (\L)A is

∀a, b, c ∈ A, x ∈ AγK , u ∈ AαK , if a\Ab is defined, then
x � a and u[b] � c implies u[x ◦ (a\b)] � c.

If (r) is a structural metarule, then (r)A is defined by a clause like the above
but without any mention to a connective.
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Lemma 3.3. For a sublanguage K that contains \ and for a set R of struc-
tural metarules, a K-sequent matrix A = 〈A,�〉 is in KGLR (KGLf

R) iff the
interpretation (r)A of every metarule (r) of KGLR (KGLf

R, respectively) holds.

Proof. We first mention that if the metavariables {a′, b′, c′, x′, u′} of (r) are
evaluated appropriately in the sets A, AγK and AαK , and a •A b is defined,
then the assignments of the expressions in (r) are in the appropriate sets, for
the different possibilities for K. For example, for (∨L), if u is in AαK and
K = {∨, \, /}, then u is a solvable augmented groupoid word over A, since A
is a sequent K-matrix. Also, if a, b ∈ A, then a, b, a ∨ b are in A. It is easy to
see that then u[a], u[b] and u[a ∨ b] are all solvable groupoid words over A and
are, therefore, in AγK . As another example, we consider the case of (\L) for
K = {∨, \}. If a, b, a\b ∈ A, x ∈ AγK and u ∈ AαK , then x is a left-solvable
groupoid word over A and u is a left-solvable augmented groupoid word over A,
since A is a sequent K-matrix. It is easy to observe that then u[x ◦ (a\b)] is a
left-solvable groupoid word over A and is therefore in AγK .

Assume that A ∈ KGL and (r) is a metarule of KGL; we will show that
(r)A holds. We proceed in the proof by considering the representative case
where (r) is (\L). To show that (\L)A holds, let a, b, c ∈ A, x ∈ AγK , u ∈ AαK
and assume that a\Ab is defined, x � a and u[b] � c. We want to show that
u[x ◦ (a\b)] � c. Assume that x is a groupoid word on the elements d1, . . . , dn
of A, x = x(d1, . . . , dn) in short, and that u = u(e1, . . . , em). Pick propositional
variables a′, b′, c′, d′1, . . . , d

′
n, e
′
1, . . . , e

′
m in P and define a partial assignment f

into A that maps the propositional variables to the corresponding elements in
A. There exist a groupoid word x′ = x′(d′1, . . . , d

′
n) in FmγK

K and an augmented
groupoid word u′ = u′(e′1, . . . , e

′
m) in FmαK

K such that f(x′) = x and f(u′) = u
under the associated partial assignment. Now, we have (f(x′), f(a′)) ∈ � and
(f(u′[b′]), f(c′)) ∈ �, so (f(u′[x′ ◦ (a′\b′)]), f(c′)) ∈ �, since A ∈ KGL. Hence
u[x ◦ (a\b)] � c holds.

Conversely, assume that the interpretation (r)A of every metarule (r) of
KGL holds for a sequent K-matrix A = 〈A,�〉; we will prove that A is in KGL.
Consider a metarule (r) of KGL that involves (possibly) the connective • ∈ K
and an instance (r′) = (S, s) of it; we will show that S |=〈A,�〉 s. To this end,
consider a partial assignment f : FmK ⇀ A such that S ∪ {s} ⊆ f−1[AγK ×A]
and f [S] ⊆ �; we need to verify that f(s) ∈ �. For the sake of concreteness, let
(r) be the metarule (∨L) and (r′) = ({u′[a′]⇒ c′, u′[b′]⇒ c′}, u′[a′ ∨ b′]⇒ c′),
where a′, b′, c′ ∈ FmK and u′ ∈ FmαK

K . Also, let a = f(a′), b = f(b′), c = f(c′)
be the elements of A and u = f(u′) be the element of AαK , in the image of f .
From f [S] ∈ �, we obtain u[a] � c and u[b] � c. Also, from s ∈ f−1[AγK × A]
we have that the join a∨A b is defined in A. Therefore, (r)A yields u[a∨ b] � c;
i.e., f(s) ∈ �.

The argument for structural metarules is similar.

Lemma 3.4. KGLR (KGLf
R) is a matrix semantics for KGLR (KGLf

R, respec-
tively); i.e. |=KGLR = `KGLR and |=KGLf

R
= `KGLf

R
.
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Proof. Let S be a set of K-sequents. By definition, for every sequent s, S `KGLR

s implies S |=KGLR s, and S `KGLf
R
s implies S |=KGLf

R
s. To show the converse

implications (we will do only the first one) assume that S 6`KGLR s. We define
the sequent K-matrix A = 〈FmK,�〉, where s ∈ � iff S `KGLR s. The set � is
called the sequent-theory generated by S.

Obviously, S 6|=A s (for the identity partial assignment) and it can be easily
checked that A ∈ KGLR, by using Lemma 3.3. As an example, we check that
(\L)A holds. Let a, b, c ∈ FmK, x ∈ FmγK

K and u ∈ FmαK
K . Since K contains

\, the formula a\b is in FmγK
K . If x � a and u[b] � c, then S `KGLR x⇒ a and

S `KGLR u[b]⇒ c; note that x⇒ a is both a K-sequent and an FmK-sequent.
If Π1 is a proof of x⇒ a from S and Π2 is a proof of u[b]⇒ c from S, then

Π1 Π2

u[x ◦ (a\b)]⇒ c
(\L)

is a proof of u[x◦(a\b)] from S. Consequently, we have S `KGLR u[x◦(a\b)]⇒ c,
so u[x ◦ (a\b)] � c. As a second example consider (∨L)A for the case where K
does not contain ∨. If a, b ∈ FmK, then the formula a∨ b is not in FmK, hence
(∨L)A is vacuously true.

If A is an r`u-groupoid, we define the sequent K-matrix AK = 〈A,�AK〉,
where x �AK a iff xA ≤A a; here xA denotes the element of A obtained from
x by replacing ◦ by ·A. We say that an A-sequent is true in A, if it is true in
AL. Also, a K-sequent is valid (or holds) in A, if it is valid in AK. If x⇒ a is
a K-sequent, we define the equation ε(x⇒ a) = (xFmL ≤ a). The next lemma
implies that the sequent s is valid in AK iff the equation ε(s) is valid in A.

Lemma 3.5. If S ∪ {s} is a set of K-sequents and A is an r`u-groupoid, then
S |=AK s iff ε[S] |=A ε(s).

Proof. The proof follows from the definitions. In detail, S |=AK s iff for all
partial assignments f : FmK ⇀ A, f [S] ∈ �AK implies f(s) ∈ �AK . Let s =
(x⇒ a) and x = x(a1, . . . , an). Then f(s) = (f(x)⇒ f(a)). Now, f(s) ∈ �AK

iff f(x)�AKf(a) iff x(f(a1), . . . , f(an))�AKf(a) iff xA(f(a1), . . . , f(an)) ≤A

f(a) iff (xFmL)A(f(a1), . . . , f(an)) ≤A f(a) iff εA(f(a1), . . . , f(an), f(a)) holds
iff εA(a1(f(p̄)), . . . , an(f(p̄)), a(f(p̄))), where p̄ is the list of all propositional
variables from P that appear in S ∪ {s}. We will abbreviate the last expression
by εA(s(f(p̄))). Therefore, we obtain the equivalent statement:

for all maps f : Y → A, where Y is a subset of the set P of proposi-
tional variables containing p̄, εA[S(f(p̄))] holds implies εA(s(f(p̄)))
holds.

It is clear that in this statement the range of the set Y can be replaced by
just p̄ or by just P. For the latter choice, in the resulting statement the map
f : P → A extends uniquely to a homomorphism f : FmL → A, since A is a
total L-algebra, and the expression εA(s(f(p̄))) can be replaced by f(ε(s(p̄)))
or simply f(ε(s)). This is precisely the definition of ε[S] |=A ε(s).
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Theorem 3.6. If A is an r`u-groupoid, then AK is a matrix model of KGL.

Proof. It is routine to check that ε[S] |=A ε(s), for all the rules (S, s) in KGL.

Without further discussion we mention that we can define (partial) two-
dimensional L-matrix models A = 〈A,≤〉 of PL.

4. Quasicompletion and applications

After developing the main theorem of the paper, we will apply it to various
cases. The logical property of cut elimination, the finite model property and
the strong separation property will follow as particular applications of the main
result.

4.1. Quasicompletion
We will first develop the main tools for the quasicompletion method, which

we will apply in the following sections.

4.1.1. The r`u-groupoid of a sequent matrix
Given a sequent matrix, we will construct a residuated lattice associated

with it that will play a key role in the proofs in this section.
Let K be a sublanguage of L that contains \ and let 〈A,�〉 be a sequent

K-matrix. We define the algebra

R(A) = 〈P(AγK)g,∩,∨g, ·g, \, /, εg〉,

where for X ⊆ AγK ,

g(X) = {y ∈ AγK | for all u ∈ AαK and a ∈ A,
if u[x] � a, for all x ∈ X, then u[y] � a},

P(AγK)g = g[P(AγK)] is the image of the powerset P(AγK) under the map g,
εg = g({ε}) and for X,Y ⊆ AγK , (we set X ◦ Y = {x ◦ y | x ∈ X, y ∈ Y }; x ◦ y
is not always defined)

X ∨g Y = g(X ∪ Y ), X ·g Y = g(X ◦ Y ),

X\Y = {z ∈ AγK |X ◦ {z} ⊆ Y }, Y/X = {z ∈ AγK | {z} ◦X ⊆ Y }.

We note that g(X) is the set of all groupoid words that fit in the same contexts
that all elements of X fit; here by x fits in the context (u, a) we mean u[x] � a.
It is easy to see that g is a closure operator on P(AγK).

Theorem 4.1. If 〈A,�〉 is a sequent K-matrix, then R(A) is a residuated
`-groupoid with unit.
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Theorem 4.1 can be proved directly, but its proof relies on many fundamental
notions and constructions, including that of a nucleus. Since a discussion on
these topics would disrupt the flow of the paper, we include the background and
the proof of the theorem in Appendix B; see Corollary B.7.

For every a ∈ A and u ∈ AαK , we define

[u, a] = {x ∈ AγK | u[x] � a}

and ↓ a = [ , a] = {x ∈ AγK | x � a}. Using this notation, for X ⊆ AγK , we can
express g(X) as follows:

g(X) =
⋂
{[u, a] | a ∈ A, u ∈ AαK and X ⊆ [u, a]}.

In particular, we have [u, a] ∈ R(A), so the assignment q(a) = ↓ a defines a map
q : A→ R(A). The following lemma follows directly form the above expression
for g.

Lemma 4.2. If k ∈ R(A) and x ∈ AγK , then x ∈ k iff x ∈ [u, a], for all
u ∈ AαK and a ∈ A such that k ⊆ [u, a].

The following lemma follows from Corollary B.6 in Appendix B (see also
Lemma B.2).

Lemma 4.3. Let A be a sequent K-matrix. Then the map g is a {∨, ·, 1}
homomorphism from P(Aγ) = 〈P(Aγ),∩,∪, ◦, \, /, {ε}〉 to R(A).

4.1.2. Quasiembedding
We are now ready to present the main technical result of the paper.

Lemma 4.4. Assume that K is a subset of L that contains the connective \,
A = 〈A,�〉 is a sequent matrix in KGLf, a, b ∈ A and k, l ∈ R(A). Also,
assume that • is one of the connectives in K, a •A b is defined, a ∈ k ⊆ ↓ a and
b ∈ l ⊆ ↓ b. Then

1. 1A ∈ εg ⊆ ↓ 1A (1A is defined, for • = 1) and
2. a •A b ∈ k •R(A) l ⊆ ↓(a •A b).
3. In particular, a •A b ∈ ↓ a •R(A) ↓ b ⊆ ↓(a •A b).
4. If, additionally, A is in KGL, then k = ↓ a and ↓ a •R(A) ↓ b = ↓(a •A b).

Proof. (1) By (1R)A, we have εAγK ∈ ↓ 1A, so εg = g(εAγK ) ⊆ ↓ 1A. On the
other hand, if εg = g(εAγK ) ⊆ [u, c], then ε ∈ [u, c] and |u| = u[ε] � c; so
u[1A] � c, by (1L)A, hence 1A ∈ [u, c]. Thus, 1A ∈ εg, by Lemma 4.3.

(2) We will give the proof for the connectives ∨, · and \. The proof for the
remaining two connectives follows the same ideas.

Let • = ∨. If x ∈ k, then x ∈ ↓ a; so x � a and x � a ∨ b, by (∨R`)A (see
Lemma 3.3); hence x ∈ ↓(a∨b). Consequently, k ⊆ ↓(a∨b). Similarly, we obtain
l ⊆ ↓(a ∨ b) using (∨Rr)A; so k ∪ l ⊆ ↓(a ∨ b), hence k ∨ l = g(k ∪ l) ⊆ ↓(a ∨ b).
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On the other hand, let k ∨ l ⊆ [u, c], for some u ∈ AαK and c ∈ A. Then,
a ∈ k ⊆ k ∨ l ⊆ [u, c], so u[a] � c. Similarly, u[b] � c, so u[a ∨ b] � c, by (∨L)A,
hence a ∨ b ∈ [u, c]. Thus, a ∨ b ∈ k ∨ l, by Lemma 4.2.

Let • = ·. If x ∈ k and y ∈ l, then x ∈ ↓ a and y ∈ ↓ b; i.e. x � a and y � b.
So x ◦ y � a · b, by (·R)A; hence x ◦ y ∈ ↓(a · b). Consequently, k ◦ l ⊆ ↓(a · b)
and k ·R(A) l = g(k ◦ l) ⊆ ↓(a · b).

On the other hand, let k ·R(A) l ⊆ [u, c], for some u ∈ AαK and c ∈ A.
Since a ◦ b ∈ k ◦ l ⊆ g(k ◦ l) = k ·R(A) l, we have a ◦ b ∈ [u, c], so u[a ◦ b] � c.
Consequently, u[a · b] � c, by (·L)A, hence a · b ∈ [u, b]. Thus, a · b ∈ k · l.

Let • = \. If x ∈ k\R(A)l then k ◦ {x} ⊆ l. Since a ∈ k and l ⊆ ↓ b, we have
a ◦ x ∈ ↓ b; i.e., a ◦ x � b. By (\R)A we obtain x � a\b; hence x ∈ ↓(a\b).

On the other hand, if l ⊆ [u, c], then b ∈ [u, c], so u[b] � c. For all x ∈ ↓ a,
x � a, so u[x ◦ (a\b)] � c, by (\L)A; i.e., x ◦ (a\b) ∈ [u, c], for all x ∈ ↓ a.
Consequently, ↓ a ◦ {a\b} ⊆ [u, c], for all [u, c] that contain l, so ↓ a ◦ {a\b} ⊆ l.
Since k ⊆ ↓ a, we have k ◦ {a\b} ∈ l, so a\b ∈ k\R(A)l.

Statement (3) is a direct consequence of (2) for k = ↓ a and l = ↓ b.
(4) We will show that ↓ a ⊆ k. If x ∈ ↓ a, then x � a. To show that x ∈ k,

let k ⊆ [u, c], for some u ∈ AαK and c ∈ A. Since a ∈ k, by assumption, we get
a ∈ [u, c], that is u[a] � c. By (CUT) we obtain u[x] � c, namely x ∈ [u, c].
Consequently, x ∈ k, by Lemma 4.2.

In the last paragraph, we have shown that if c ∈ m ⊆ ↓ c, for some c ∈ A
and m ∈ R(A), then m = ↓ c. For c = a • b and m = ↓ a • ↓ b, we obtain
↓ a • ↓ b = ↓(a • b) from (2).

It follows from Lemma 4.4(2) that if A ∈ KGL, then the map q : A→ R(A)
is a homomorphism from the partial L-algebra A into the r`u-groupoid R(A).
In certain cases, q is actually an embedding. If A ∈ KGLf, then q comes close
to being a homomorphism, but it is not in general. Therefore, we call it a
quasi-homomorphism.

For every partial assignment f : FmK ⇀ A, we let H(f) be the set of all
L-homomorphisms f̄ : FmL → R(A) that extend the assignment f̄(p) = ↓ f(p),
for all variables p of FmL in f−1[A].

Lemma 4.5. If A = 〈A,�〉 is a sequent matrix in KGLf , then for every partial
assignment f : FmK ⇀ A, we have f(a) ∈ f̄(a) ⊆ ↓ f(a), for every a ∈ f−1[A]
and every f̄ ∈ H(f). If A is in KGL, then f̄(a) = ↓ f(a).

Proof. Let f : FmL ⇀ A be a partial assignment and f̄ ∈ H(f). By definition
of H(f) and (id)A, the statement holds for the propositional variables in f−1[A].
For a = 1, by Lemma 4.4(1), we have f(1) = 1A ∈ εg = 1R(A) ⊆ ↓ 1A = ↓ f(1),
if 1A is defined. We proceed by induction; this is possible because f−1[A] is
closed under subformulas. Let a, b ∈ f−1[A]. Also, assume that f(a) ∈ f̄(a) ⊆
↓ f(a), f(b) ∈ f̄(b) ⊆ ↓ f(b), • ∈ K and a • b ∈ f−1[A]. By Lemma 4.4(2),
we have f(a) •A f(b) ∈ f̄(a) •R(A) f̄(b) ⊆ ↓(f(a) •A f(b)). Since f and f̄ are
homomorphisms, we have f(a • b) ∈ f̄(a • b) ⊆ ↓ f(a • b). Finally, if A is in
KGL, then f̄(a) = ↓ f(a), by Lemma 4.4(4).
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We will use Lemma 4.5 to transform a failure of a property in sequent ma-
trices to a failure of the property in r`u-groupoids.

4.2. Cut elimination
Here we prove the cut elimination property for GL and its subsystems. Re-

call the definition of validity of a sequent in a r`u-groupoid preceding Lemma 3.5.

Theorem 4.6. Assume that K is a subset of L that contains the connective \,
s is a sequent fit for K and A ∈ KGLf. If s is valid in R(A) then it is valid in
A.

Proof. Assume that s is (x⇒ a) and that it holds in R(A). Also, let f : FmK ⇀
A be a partial assignment such that f(s) ∈ AγK×A. We will show that f(x) �A
f(a). Since s is valid in R(A), for every homomorphism f̄ : FmL → R(A)
(which is a total assignment) with f̄ ∈ H(f), we have (f̄(x))R(A) ⊆ f̄(a). If x =
xFmγ

L(b1, . . . , bn), then f̄(x) = f̄(xFmγ
L(b1, . . . , bn)) = xR(A)γ (f̄(b1), . . . , f̄(bn))

and (f̄(x))R(A) = xR(A)(f̄(b1), . . . , f̄(bn)), since f̄ is an assignment. We as-
sumed that f(s) ∈ AγK × A, so a, b1, . . . , bn ∈ f−1[A] and, by Lemma 4.5,
f̄(a) ⊆ ↓ f(a) and f(b) ∈ f̄(b), for all subformulas b of x. So,

f(x) = f(xFmγ
L(b1, . . . , bn))

= xAγK (f(b1), . . . , f(bn)) (f is a partial assignment)
∈ xP(AγK )(f̄(b1), . . . , f̄(bn)) (◦ in P(AγK) is element-wise)
⊆ xR(A)(f̄(b1), . . . , f̄(bn)) (g is a closure operator)
= (f̄(x))R(A)

Consequently, f(x) ∈ (f̄(x))R(A) ⊆ f̄(a) ⊆ ↓ f(a). Thus, f(x) ∈ ↓ f(a) and
f(x) �A f(a).

Theorem 4.7. For every subset K of L that contains the connective \ and for
every sequent s fit for K, s is valid in KGLf iff s (equivalently, ε(s)) is valid in
RLUG iff s is valid in KGL.

Proof. If s is valid in KGLf, then it is valid in KGL, since KGL ⊆ KGLf, by
Lemma 3.3. Conversely, if s is valid in KGL, then it is valid in R(A), for all
A ∈ KGLf, by Lemma 3.5 and Theorem 4.1. By Theorem 4.6, s is valid in
all sequent matrices A in KGLf, so it is valid in KGLf. Finally, the validity in
RLUG of s is equivalent to the validity of ε(s), by Lemma 3.5.

The following result was proved in [14], using syntactical methods, in the
special case where K is the full language L.

Corollary 4.8. The Gentzen system KGL enjoys the cut elimination property,
for all sublanguages K of L that include the connective \.

Proof. The corollary is a direct consequence of Theorem 4.7 and Lemma 3.4.
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Corollary 4.8 states that every sequent provable in GL without assumptions
can be proved without the use of (CUT). The corresponding statement about
sequents provable from assumptions is, however, not true. For example, (CUT)
itself is not a derivable rule in GLf. This can be shown either syntactically, by
performing a proof search, or semantically by exhibiting a matrix in KGL but
not in KGLf.

A sequent calculus is said to have the subformula property if in any proof
without assumptions all the formulas in the numerator of a rule are subformulas
of formulas appearing in the denominator.

Corollary 4.9. The system GL enjoys the subformula property.

4.3. Adding structural rules
It is well known that for example FL and FLe also enjoy the cut elimination

property (see [32, 33]). As discussed in Section 2.1.6, these systems are equiva-
lent to GLa and GLae, respectively. Using our previous results, we show in this
section that, among others, the basic systems GLR, where R ⊆ {a, e, c, i, o},
have the cut elimination property. (The result for (o) follows by an easy modi-
fication to the right-hand sides of the sequents.

Recall that a simple metarule is of the form

u[t1]⇒ a · · · u[tn]⇒ a

u[t0]⇒ a
(r)

for fixed elements u ∈ U and a ∈ F, where t0, t1, . . . , tn are simple metagroupoid
words and t0 is linear. For example the rules of exchange, weakening, contraction
and associativity are simple. If t is a simple metagroupoid word, we write tFmL

for the formula obtained from t by replacing ◦ with · and the metavariables from
X with propositional variables from P; we assume that there is a fixed bijection
between X and P. Clearly, t and tFmL are interdefinable. Clearly, the metarule
(r) and the inequality ε = (tFmL

0 ≤ tFmL
1 ∨ · · · ∨ tFmL

n ) are interdefinable, as
well. We denote by ε(r) the inequality corresponding to the above rule and by
R(ε) the rule corresponding to the above inequality.

Recall that if R is a set of metarules, then GLR denotes the system obtained
from GL by adding the set R. If K is a sublanguage of L that contains \, the
metarule (r) is called fit for K if the metagroupoid words ti are fit for K, for all
i. The system KGLR, is obtained by adding to the rules of KGL all rules that
are instances of the metarules in R and u, a evaluate so that all the resulting
sequents are fit for K. We denote the matrix models of KGLR by KGLR.

In RLUG, every equation ε over {∨, ·, 1} is equivalent to a conjunction of
inequalities of the form above. To do this we distribute all products over all
joins to reach a form s1∨· · ·∨sm ≈ t1∨· · ·∨ tn, where si, tj are groupoid words
with unit terms. Such an equation is in turn equivalent to the conjunction of the
two inequalities s1∨· · ·∨sm ≤ t1∨· · ·∨tn and t1∨· · ·∨tn ≤ s1∨· · ·∨sm. Finally,
the first one is equivalent to the conjunctions of the inequalities sj ≤ t1∨· · ·∨tn;
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likewise, the second inequality is written as a conjunction, as well. If ε is an
equation, by R(ε) we understand the set of rules associated with each of the
conjuncts (inequalities) associated with ε.

Lemma 4.10. Every equation ε over {∨, ·, 1} is equivalent, relative to RLUG,
to R(ε). More precisely, for every A ∈ RLUG, A satisfies ε iff AL satisfies
R(ε).

Proof. It suffices to show the lemma for the case where ε is of the form tFmL
0 ≤

tFmL
1 ∨ · · · ∨ tFmL

n . Clearly, AL satisfies R(ε) iff A satisfies the following im-
plication: if u[tFmL

i ] ≤ a for all i ∈ {1, . . . , n}, then u[tFmL
0 ] ≤ a, for all

propositional variables a and all augmented groupoid words u over the set of
propositional variables where ◦ is replaced by ·. Now, u[tFmL

i ] ≤ a is equiv-
alent to ti ≤ u  L a, for all i, so the implication becomes: if tFmL

i ≤ b for
all i ∈ {1, . . . , n}, then tFmL

0 ≤ b, for all propositional variables b. By lattice-
theoretic considerations this is equivalent to ε.

Theorem 4.11. Let A be a matrix in KGLf and let ε be an equation over
{∨, ·, 1} such that all rules in R(ε) are fit for K. Then, A satisfies R(ε) iff
R(A) satisfies ε.

Proof. Clearly, it suffices to show the lemma for the case where ε is of the form
tFmL
0 ≤ tFmL

1 ∨ · · · ∨ tFmL
n .

Assume that A satisfies R(ε). Let k̄ = (kj)j∈J be a sequence of elements
in R(A). We will show that εR(A)(k̄) holds; i.e., tR(A)

0 (k̄) ⊆ t
R(A)
1 (k̄) ∨ · · · ∨

t
R(A)
n (k̄). Assume that tR(A)

1 (k̄) ∨ · · · ∨ tR(A)
n (k̄) ⊆ [u, a], for some a ∈ A, u ∈

AαK ; we will show that tR(A)
0 (k̄) ⊆ [u, a]. We have tR(A)

1 (k̄) ∪ · · · ∪ tR(A)
n (k̄) ⊆

t
R(A)
1 (k̄) ∨ · · · ∨ tR(A)

n (k̄), so for every i ∈ {1, . . . n}, we have tR(A)
i (k̄) ⊆ [u, a].

If xj ∈ kj , for all j ∈ J , (we abbreviate this by x̄ ∈ k̄) and x̄ = (xj)j∈J , then

tA
γK

i (x̄) = tA
γK

i ((xj)j∈J)
∈ tP(AγK )

i (({xj})j∈J) (by the definition of ◦ in P(AγK))
⊆ tP(AγK )

i (k̄) (operations are elementwise)
⊆ g(tP(AγK )

i (k̄)) (g is a closure operator)
= t

R(A)
i (k̄) ⊆ [u, a] (Lemma 4.3)

So, u[tA
γK

i (x̄)] � a, for all i ∈ {1, . . . n}; hence u[tA
γK

0 (x̄)] � a, by r(ε)A, and
tA

γK
0 (x̄) ∈ [u, a], for all x̄ ∈ k̄. Since t0 is a linear term and since the variables

of t0 are among the ones in {t1, . . . tn}, we obtain tP(AγK )
0 (k̄) ⊆ [u, a]; hence, by

Lemma 4.3, tR(A)
0 (k̄) = g(tP(AγK )

0 (k̄)) ⊆ [u, a].
Conversely, assume that R(A) satisfies ε. For every sequence k̄ = (kj)j∈J of

elements in R(A), we have tR(A)
0 (k̄) ⊆ tR(A)

1 (k̄)∨ · · · ∨ tR(A)
n (k̄). In particular,

for kj = g({xj}), where xj ∈ AγK , we have

t
R(A)
0 ((g({xj}))j∈J) ⊆ tR(A)

1 ((g({xj}))j∈J) ∨ · · · ∨ tR(A)
n ((g({xj}))j∈J).
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By Lemma 4.3

g(tP(AγK )
0 (({xj})j∈J)) ⊆ g(tP(AγK )

1 (({xj})j∈J) ∪ · · · ∪ tP(AγK )
n (({xj})j∈J)),

hence
g({tA

γK
0 (x̄)}) ⊆ g({tA

γK
1 (x̄), . . . , tA

γK
n (x̄)}).

Therefore, for all [u, a], where a ∈ A and u ∈ Aα, g({tAγK
1 (x̄), . . . , tA

γK
n (x̄)}) ⊆

[u, a] implies g({tAγK
0 (x̄)}) ⊆ [u, a]; i.e., {tAγK

1 (x̄), . . . , tA
γK

n (x̄)} ⊆ [u, a] implies
tA

γK
0 (x̄) ∈ [u, a]. Consequently, (u[tA

γK
1 (x̄)] � a and . . . u[tA

γK
n (x̄)] � a) implies

u[tA
γK

0 (x̄)] � a; i.e., r(ε)A holds.

It follows from Lemma 4.10 and Theorem 4.11 that if A is a sequent K-
matrix, then R(A) satisfies ε iff R(A)K satisfies R(ε). Recall that we have
agreed to say that in this case R(A) satisfies R(ε).

We say that a set R of metarules is preserved by R with respect to K, if
for every sequent matrix A in KGLf, if A satisfies R then R(A) satisfies R; we
naturally extend this definition for sets of metarules. The following corollary
follows directly from Theorem 4.11.

Corollary 4.12. All simple metarules are preserved by R. In particular, the
metarules of exchange, weakening, contraction and associativity are preserved
by R.

The following theorem, for the case where K = L and R contains at least
associativity (a), was obtained independently in [41]. (Delays in the submission
of the current paper are responsible for the time discrepancy.) Extensions of
this result to other sequent calculi appear in [17]. Also, extensions to classes
of structural rules that extend simple rules, as well as to hypersequent calculi
appear in [13].

Theorem 4.13. If R is a set of metarules that are preserved by R with respect
to K, then KGLR enjoys the cut elimination property. In particular, for every
equation ε over {∨, ·, 1} such that all rules in R(ε) are simple, KGLR(ε) enjoys
the cut elimination property.

Proof. If `KGLR s, for a sequent s, then |=KGLR s. Let A be a matrix in KGLf
R.

Then A ∈ KGLf and A satisfies R. So, R(A)K satisfies R, since R is preserved
by R with respect to K, and R(A)K ∈ KGL by Theorem 4.1 and Theorem 3.6.
Therefore, R(A)K ∈ KGLR, so |=R(A)K s. By Theorem 4.6, |=A s. Hence
|=KGLf

R
s and `KGLf

R
s, by Lemma 3.4.

Corollary 4.14. The basic systems GLR, where R is a subset of {a, e, c, i,o}
have the cut elimination property.

We should clarify that FLc, unlike FLc (boldface), does not enjoy the cut
elimination property. Note that contraction for formulas (c) is not a simple
metarule, so our results do not apply. In general, if a rule is formulated for for-
mulas as opposed to groupoid words then the corresponding equation mentioned
in Theorem 4.11 is properly stronger than the rule.
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4.4. The finite model property
Let K be a sublanguage of L that contains the connective \ and let R be a

set of structural rules.
If s is a K-sequent, we define s← to be the smallest set of K-sequents such

that

• s← contains s

• if t ∈ s← and ({t1, . . . , tn}, t) is an instance of a metarule in KGLf
R, for

n ∈ {0, 1, 2}, then t1, . . . , tn ∈ s←.

Let K be a sublanguage of L and let s be a K-sequent. Consider the partial
subalgebra AK(s) = AK of the algebra FmK of all subformulas of s. Consider
the sequent K-matrix AK(s) = AK = 〈AK,�〉, where x �AK a iff `KGLf

R

x⇒ a. Also, consider the sequent K-matrix A′K(s) = A′K = 〈AK,�A′
K
〉, where

�A′
K

= �AK ∪ (s←)c. Here Xc denotes the complement of the set X.

Lemma 4.15. Let K be a sublanguage of L and let s be a K-sequent. Then,
AK(s) and A′K(s) are matrix models of KGLf

R.

Proof. For AK, it suffices to check the interpretations (r)AK of every metarule
(r) of KGLf

R in AK(s). Recall that (r)AK is of the form (see Section 3.3):

∀a, b, c ∈ AK, x ∈ AγKK , u ∈ AαKK , (if a •AK b is defined,) then t1 ∈
�AK and t2 ∈ �AK implies t ∈ �AK .

Assume that a •AK b is defined and both t1 ∈ �AK and t2 ∈ �AK ; we need to
show that t ∈ �AK . We have `KGLf

R
t1 and `KGLf

R
t2, so `KGLf

R
t, because

({t1, t2}, t) is an instance of (r). Consequently, t ∈ �AK , since a•AK b is defined.
Likewise, for A′K, we assume that a •AK b is defined, t1 ∈ �A′

K
and t2 ∈

�A′
K

. Recall that �A′
K

= �AK ∪ (s←)c. If t1 ∈ �AK and t2 ∈ �AK , then
t ∈ �AK ⊆ �A′

K
, by the argument above. Otherwise, without loss of generality,

t1 ∈ (s←)c. Since ({t1, t2}, t) is an instance of (r), t ∈ s← would imply t1 ∈ s←,
a contradiction. So, t ∈ (s←)c ⊆ �A′

K
.

Lemma 4.16. Let X,Y be sets, Z a subset of Y such that Zc = Y −Z is finite
and F a set of 1-1 maps from X to Y such that F−1(y) = {f−1(y) | f ∈ F} is
finite for all y ∈ Y . Then, F−1[Z] = {f−1[Z] | f ∈ F} is finite.

Proof. We first show that F−1[W ] = {f−1[W ] | f ∈ F} is finite, for every
finite subset W of Y . Since f−1[W ] ⊆

⋃
g∈F g

−1[W ], it suffices to show that⋃
g∈F g

−1[W ] is finite. We have⋃
g∈F g

−1[W ] =
⋃
g∈F

⋃
w∈W g−1(w) =

⋃
w∈W

⋃
g∈F g

−1(w) =
⋃
w∈W F−1(w).

Since both W and F−1(w) are finite,
⋃
g∈F g

−1[W ] is finite. Thus, F−1[W ] is
finite, if W is finite.

For all f ∈ F , and x ∈ X, we have x ∈ f−1[Z] iff f(x) 6∈ Zc iff x 6∈ f−1[Zc]
iff x ∈ (f−1[Zc])c. Consequently, for all f ∈ F , f−1[Z] = (f−1[Zc])c; so
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F−1[Z] = {(f−1[Zc])c | f ∈ F}. Thus, F−1[Z] is bijective, under the bijection
U 7→ U c, with the set F−1[Zc] = {f−1[Zc] | f ∈ F}, which is finite since Zc is
finite.

A set R of simple structural metarules is called reducing if for every sequent
s, s← is finite. Note that the empty set of metarules is reducing.

Theorem 4.17. The system KGLf
R has the finite model property for all subsets

K of L and for all reducing sets R of metarules.

Proof. Consider the matrix A′K(s). Let s be a sequent such that 6`KGLf s.
Then, s 6∈ �AK , so s 6∈ �A′

K
, since s ∈ s←. So, 6|=A′

K(s) s and 6|=R(A′
K(s))

s, by Theorem 4.6. We will show that R(A′K(s)) is finite. It follows from
Lemma 4.16 for X = AγK

K , Y = AγK
K (s) × AK(s), Z = �A′

K
and F =

{f(u,a) | (u, a) ∈ AαK
K ×AK(s)}, where f(u,a) = ((u, a) ? x) = (u[x]⇒ a), that

F−1[�A′
K

] = {[u, a]A′
K(s) | u ∈ AαK

K , a ∈ AK} is finite; the fact that Y − Z

is finite follows from the fact that s← is finite. Every set in R(A′K(s)) is an
intersection of elements of F−1[�A′

K
], so R(A′K(s)) is finite.

Given a sequent s not provable in GLf, using the method described in the
proof of Theorem 4.17 we can construct a finite r`u-groupoid in which s fails.
We will present a very simple example of this.

It is easy to see that the sequent p⇒ p · p is not provable in GLf, if p is a
propositional variable. Actually, the only rule that can be applied in a proof
search is (·R) and we obtain the only (up to permutation of the assumptions)
incomplete proof:

p⇒ p ε⇒ p
p⇒ p · p (·R)

So, (p⇒ p · p)← = {(ε⇒ p), (p⇒ p), (p⇒ p · p)}. In order to construct R(A′),
we need to consider all subsets of Aγ of the form [u, a], for u ∈ Aα and a ∈ A,
and their intersections. Recall that A = {p, p · p} is the set of all subformulas
of p⇒ p · p and Aγ is the free groupoid over A. Also recall that [u, a] = {x ∈
AγK | u[x]�A′a} and a sequent is in �A′ iff it is provable in GLf or it is not
in (p⇒ p · p)←. So the only way that [u, a] is not all of Aγ is that for some x,
u[x]⇒ a is in (p⇒ p · p)← and u[x]⇒ a is not provable. Therefore, [u, a] = Aγ

except possibly for [ , p], [ ◦p, p], [p◦ , p], [ , p ·p], [ ◦p, p ·p] and [p◦ , p ·p]. Note
that x⇒ p is not in (p⇒ p · p)←, unless x is ε or p; also, p⇒ p is provable and
ε⇒ p is not. Therefore, x�A′p iff x 6= ε, and [ , p] = {ε}c. Similarly, we can see
that [ ◦p, p] = [p◦ , p] = Aγ , [ , p ·p] = {p}c and [ ◦p, p ·p] = [p◦ , p ·p] = {ε}c.
Consequently,

R(A′) = {Aγ , ↓ p = {ε}c, ↓(p · p) = {p}c, {ε, p}c},

since it contains all intersections of the sets [u, a]. The order relation is set
inclusion. Also, we have {ε}c ◦ {ε}c = (A ∪ {ε})c; so (↓ p) · (↓ p) = {ε}c · {ε}c =
g({ε}c ◦ {ε}c) = g((A ∪ {ε})c) = {ε, p}c, since (A ∪ {ε})c ⊆ {ε, p}c and g is a
closure operator. Therefore, ↓ p 6⊆ (↓ p)2 and p⇒ p · p is not valid in R(A′).
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Obviously, the construction in the proof of Theorem 4.17 did not produce
the smallest counterexample to the equation p ≤ p2, since a three-element chain
would also work. We present an alternative proof of Theorem 4.17 that produces
smaller counterexamples. The proof is along the same lines as the proof in [31].

First for every K-sequent s, we define s⇐ as the smallest set of K-sequents
that satisfies the conditions in the definition of s← plus the condition

• If (u[x]⇒ a) ∈ s⇐, then (|u| ⇒ a) ∈ s⇐.

It is easy to see that if s← is finite, then s⇐ is also finite. Also, we define the
sequent K-matrix BK(s) = BK = 〈AK,�BK〉, where �BK = �AK ∪ (s⇐)c. It
can be easily shown, as in Lemma 4.15, that BK is a matrix model of KGLf.
We can now prove Theorem 4.17 using the matrix BK.

Proof. Let s be a sequent such that 6`KGLf s. Then, s 6∈ �AK , so s 6∈ �BK , since
s ∈ s⇐. So, 6|=BK(s) s and 6|=R(BK(s)) s, by Theorem 4.6. We will show that
R(BK(s)) is finite. If (|u| ⇒ a) 6∈ s⇐, then (u[x]⇒ a) 6∈ s⇐, for all x ∈ AγK

K ,
hence (u[x]⇒ a) ∈ �BK , for all x ∈ AγK

K and [u, a]BK(s) = AγK
K . Since there are

only finitely many sequents in s⇐, the set D = {[u, a]BK(s) | u ∈ AαK
K , a ∈ AK}

is finite. Every set in R(BK(s)) is an intersection of elements of D, so R(BK(s))
is finite.

We revisit the same example of p⇒ p · p and describe the r`u-groupoid
R(B). According to the last proof we need only consider sets [u, a] such that
(|u| ⇒ a) ∈ (p⇒ p · p)⇐ = {(ε⇒ p), (p⇒ p), (p⇒ p · p), (ε⇒ p · p)}, since all
other such sets are equal to Aγ ; note that (p⇒ p·p)⇐ is bigger than (p⇒ p·p)←.
Also, note that x �B p · p iff x is ε or p, since (ε⇒ p · p) ∈ (p⇒ p · p)⇐, even
though (ε⇒ p · p) 6∈ (p⇒ p · p)←. So, [ , p · p] is equal to {ε, p}c and not to {p},
as in the previous construction. It can be easily verified that [ , p] = [ ◦p, p ·p] =
[p ◦ , p · p] = {ε}c and [ ◦ p, p] = [p ◦ , p] = Aγ . Consequently,

R(B) = {Aγ , ↓ p = {ε}c, ↓(p · p) = {ε, p}c}.

Also, (↓ p) ◦ (↓ p) = {ε}c ◦ {ε}c = (A ∪ {ε})c and (↓ p) · (↓ p) = g((A ∪ {ε})c) =
{ε, p}c; hence ↓ p 6⊆ (↓ p)2. Observe that R(B) is a smaller counterexample than
R(A′); actually it is the smallest counterexample to p⇒ p · p. Nevertheless,
for the sequent p⇒ 1 the construction does not produce a counterexample of
minimum cardinality. We mention, without details, that for p⇒ 1, R(B) =
{AγK , [p ◦ , 1] = {ε}c, ↓ p = {p}c, {ε, p}c}, but the smallest counterexample has
3 elements.

4.5. Strong separation
Let K be a sublanguage of L that contains the connective \. The strong

separation property for HL states that B `HL c iff B `KHL c, for all sets of
formulas B∪{c} over K. Also, the separation property for HL states that `HL c
iff `KHL c, for all formulas c over K.
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The separation property for HL follows from the cut elimination property
of KGL and the equivalence of the systems KHL and KGL. In detail, if `HL c,
then `GL ε⇒ c, by Theorem 2.3, and `GLf ε⇒ c, by Corollary 4.8. Since ε⇒ c
is provable without (CUT), then we can obtain a proof of it by a proof search.
It is not hard to see that resulting proof will involve only the rules in KGL.
Since `KGL ε⇒ c, we get `KHL c, by Theorem 2.3. The converse direction is
obvious.

A proof of the strong separation property cannot be obtained by a similar
argument, since the systems KGL and KGLf are not equivalent. Nevertheless,
HL has the strong separation property, as we prove below.

Let K be a sublanguage of L that contains the connective \ and let B ∪ {c}
be a set of formulas over K; also, let R be a set of simple structural metarules
fit for K. We denote by AK = AK(B, c) the partial subalgebra of FmK of all
subformulas of B ∪ {c}. Consider the sequent K-matrix AK(B, c) = AK =
〈AK,�〉, where x �AK a iff B `KHLR φK(x⇒ a).

Corollary 4.18. Let K be a sublanguage of L that contains the connective \, let
B ∪{c} be a set of K-formulas and let R be a set of simple structural metarules
fit for K. The sequent matrix AK(B, c) is in KGLR.

Proof. Let (r) be a metarule of KGLR that may involve the connective • ∈ K.
Recall that (r)AK is of the form (see Section 3.3):

∀a, b, c ∈ AK, x ∈ AγKK , u ∈ AαKK , if a •AK b is defined, then s1 ∈�AK

and . . . and sn ∈�AK implies s ∈�AK .

By Lemma 3.3, we need to show that (r)AK holds, so assume that a •AK b is
defined and si ∈�AK , for all i. By definition, we get B `KHLR φK(si), for all
i. Since (r) is a metarule of KGLR, its instance (r′) = ({s1, . . . , sn}, s) holds in
KGLR; i.e. {s1, . . . , sn} `KGLR s. We get {φK(s1), . . . , φK(sn)} `KHLR φK(s),
by Theorem 2.3; let Π be a proof in KHLR of this deduction. Let Πi be a proof
of φK(si) from B in KHLR for all i. Then

Π1 Π2 · · · Πn

Π

is a proof of φK(s) in KHLR from B. Hence s ∈ �AK .

Corollary 4.19. If B∪{c} is a set of formulas over a sublanguage K of L that
contains \ and and let R is a set of simple structural metarules fit for K, then
B `HLR c iff {1 ≤ b | b ∈ B} |=RLUGR 1 ≤ c iff B `KHLR c. In particular, the
Hilbert system HL enjoys the strong separation property.

Proof. If B `HLR c, then s[B] `GLR s(c) by Theorem 2.3. If AK = AK(B, b)
then AK(B, c) ∈ KGLR by Corollary 4.18, so R(AK) ∈ RLUGR, by Theorem 4.1
and Theorem 4.11. So R(AK)L ∈ GLR by Lemma 4.10, and s[B] `R(AK)L s(c).
Consequently, {1 ≤ b | b ∈ B} |=R(AK) 1 ≤ c, in view of Lemma 3.5 and the fact
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that ε(s(c)) = (1 ≤ c). Consider the identity partial map f : FmK ⇀ AK on
the subformulas of B ∪ {c} and let f̄ : FmL → R(AK) be a homomorphism in
H(f) (recall the definition of H(f) preceding Lemma 4.5). So,

if f̄(1) ⊆R(AK) f̄(b), for all b ∈ B, then f̄(1) ⊆R(AK) f̄(c).

Since f̄ is an L-homomorphism we have f̄(1) = εg = g�({ε}). Moreover, since
AK ∈ KGLR, for every subformula d of B ∪ {c}, f̄(d) = ↓ f(d) = ↓ d, by
Lemma 4.5. Consequently, f̄(1) ⊆R(AK) f̄(d) iff g�({ε}) ⊆R(AK) ↓ d iff ε ∈ ↓ d
iff ε �AK d. This is in turn equivalent to B `KHLR d by definition, so we have
that B `KHLR b, for all b ∈ B implies B `KHLR c. Consequently, we obtain
B `KHLR c.

Note that u ≈ v = | |=RLUG 1 ≤ u\v ∧ v\u, for all pairs of terms u, v.
Consequently, RLUG is the equivalent algebraic semantics of `HL for ε(p) =
(p ∧ 1 ≈ 1) and ∆(p, q) = p\q ∧ q\p.

Note that the terms x ◦ (y ◦ z) and (x ◦ y) ◦ z are fit for any language that
contains \ and at least one of / and multiplication. It follows from Corollary 4.19
that for such a languages K, the system KHLa enjoys the strong separation
property. Recall that the (bidirectional) Hilbert-style rule that corresponds to
the simple Gentzen-style rule of associativity is

x ◦ (y ◦ z) K d
(x ◦ y) ◦ z  K d

h(a)

The next result simplifies this rule to an axiom.

Lemma 4.20. Let K be a set of connectives that contains \.
1. If K contains multiplication, then h(a) is equivalent to the combination of

the axioms [(ab)c]\[a(bc)] and [a(bc)]\[(ab)c].
2. If K contains /, then h(a) is equivalent to the combination of the axioms

[(a\d)/c]\[a\(d/c)] and [a\(d/c)]\[(a\d)/c].

Proof. (1) K contains multiplication, so (x◦y)◦z  K d = [φK(x)φK(y)]φK(z)\d
and x ◦ (y ◦ z) K d = φK(x)[φK(y)φK(z)]\d. Therefore, h(a) is equivalent to

[(ab)c]\d
[a(bc)]\d

(·h(a))

This implies the two axioms, by instantiating d to a(bc) and (ab)c. The converse
is also true by (T`), a rule that is shown to be derivable in Lemma A.2.

(2) We first consider the case where K contains /, but not multiplication;
clearly both x◦(y◦z) and (x◦y)◦z need to be solvable. The only case where the
rule does not trivialize is when x and z are formulas; for example, if x consists
of more than one formula then at least one of y and z need to be empty.

If y is also a single formula, then h(a) is equivalent to the instance

c\[b\(a\d)]

b\[a\(d/c)]
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Instantiating this for b = (a\d)/c, yields the target formula [(a\d)/c]\[a\(d/c)]
in the denominator and c\{[(a\d)/c]\(a\d)} in the numerator, which is just an
instance of (As``). Likewise, h(a) implies [a\(d/c)]\[(a\d)/c].

Conversely, starting from c\[b\(a\d)] we first obtain b\[(a\d)/c], by (RAr`).
Using the first axiom and (Rd\) we obtain {b\[(a\d)/c]}\{b\[a\(d/c)]}. Hence
by (MP`), we have b\[a\(d/c)], which completes the derivation of the downward
direction of h(a). Likewise, we obtain the upward direction.

If y consists of at least two formulas, then h(a) is equivalent to the instance

y  K a\(d/c)
y  K (a\d)/c

which, by similar arguments, is equivalent to the combination of the two axioms.
We will show that if K contains both / and multiplication, then the two

sets of axioms are equivalent, and invoke (1). We saw that the two axioms in
(1) are equivalent to the bidirectional rule (·h(a)). Likewise, by instantiating b
appropriately, it is easy to see that the two axioms in (2) are equivalent to the
bidirectional rule

b\[(a\d)/c]

b\[a\(d/c)]
(/h(a))

We claim that the rules (·h(a)) and (/h(a)) are equivalent. As an example, we
demonstrate one of the four directions.

c\[b\(bc)]
(PI)

(bc)\[a\(a(bc))]
(PI)

[a(bc)]\d
(bc)\(a\d)

(T`  K)

c\[b\(a\d)]
(T`  K)

b\[(a\d)/c]
(RAr`)

where the rule (T`  K) is shown to be derivable in Lemma A.2.

Lemma 4.20(2) provides a Hilbert-style system that is equivalent to FL
and has the strong separation property with respect to the set {\, /} of basic
connectives.

4.6. Further results
We conclude the section by presenting two more applications of the quasiem-

bedding result.

4.6.1. Algebraic semantics
The next theorem is a strengthening of Theorem 4.6 for matrices in A ∈

KGL.

Theorem 4.21. Assume that K is a subset of L that contains the connective
\, S ∪ {s0} is a set of sequents fit for K and A ∈ KGL. If S |=R(A) s0 then
S |=A s0.
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Proof. Let f : FmK ⇀ A be a partial assignment such that f [S ∪ {s0}] ⊆
AγK ×A. We will show that f [S] ⊆ �A implies f(s0) ∈ �A. Since S |=R(A) s0,
for every homomorphism f̄ : FmL → R(A) with f̄ ∈ H(f) (see definition
before Lemma 4.5), we have that f̄ [S] ⊆ �R(A) implies f̄(s0) ∈ �R(A).

It suffices to show that f̄(s) ∈ �R(A) iff f(s) ∈ �A, for all s ∈ S ∪{s0}. Let
s = (x⇒ a0) and x = xFm

γK
K (a1, . . . , an). We have f(s) ∈ �A iff f(x) �A f(a0)

iff f(x) ∈ ↓ f(a0). On the other hand, f̄(s) ∈ �R(A) iff (f̄(x))R(A) ⊆ f̄(a0) iff
↓ f(x) ⊆ ↓ f(a0) iff f(x) ∈ ↓ f(a0).

Above we used the fact that (f̄(x))R(A) = ↓ f(x). Indeed, we have f̄(x) =
f̄(xFm

γK
K (a1, . . . , an)) = xR(A)γK (f̄(a1), . . . , f̄(an)) and, since f̄ is an assign-

ment, (f̄(x))R(A) = xR(A)(f̄(a1), . . . , f̄(an)); also, f̄(ai) = ↓ ai, for all i, by
Lemma 4.5. Moreover, xR(A)(↓ f(a1), . . . , ↓ f(an)) = ↓xAγK (f(a1), . . . , f(an))
= ↓ f(xFm

γK
K (a1, . . . , an)) = ↓ f(x), by Lemma 4.4(4) and the fact that f is a

assignment.

Lemma 4.22. The variety RLUGR of all r`u-groupoids that satisfy a set of
simple rules R is an algebraic semantics for GLR; i.e., for all sets of sequents
S ∪ {s}, we have S `GLR s iff ε[S] |=RLUGR ε(s).

Proof. In view of Theorem 3.4, it suffices to show that S |=KGLR s iff ε[S] |=RLUGR

ε(s).
If ε[S] |=RLUGR ε(s), then ε[S] |=R(A) ε(s) for all A ∈ KGLR, by Corol-

lary 4.12. In view of Lemma 3.5 and Theorem 4.1, S |=R(A)K s, for all
A ∈ KGLR. By Theorem 4.21, S |=A s for all A ∈ KGLR, so S |=KGLR s.

Conversely, if S |=KGLR s, then S |=AK s, for all A ∈ RLUGR. By
Lemma 3.5, we have ε[S] |=A ε(s), for all A ∈ RLUGR; hence ε[S] |=RLUGR

ε(s).

For an equation u ≈ v, we define s(u ≈ v) = {u⇒ v, v⇒ u}. Note that
ε[s(u ≈ v] = {u ≤ v, v ≤ u} It is obvious that u ≈ v =| |=RLUG ε(s(u ≈ v)).
If we combine this fact with Lemma 4.22 and the equivalence of GL and HL
given in Theorem 2.3, we obtain the following theorem.

Theorem 4.23. The variety RLUGR of all r`u-groupoids that satisfy a set of
simple rules R is an equivalent algebraic semantics for both GLR and HLR.
The same holds for the K reduct of RLUGR and KGLR and KHLR, where K
contains \ for the statement about KHLR.

Corollary 4.24. The variety RLUG is generated by its finite members; hence
its equational theory is decidable. The same holds for RLUGR, where R is a set
of reducing simple rules.

Proof. Generation by finite members follows from Theorems 4.17 and 4.23. De-
cidability follows by the generation by finite members. Alternatively, an equa-
tion ε is valid in RLUGR iff the sequent s(ε) is provable in GLR, by Theo-
rem 4.23, iff s(ε) is provable in GLf

R, by Theorem 4.8. Now, by performing an
exhaustive proof search for s(ε), we can decide if it is provable in GLf.

47



4.6.2. Remarks on the FEP
Let A be in KRLUGR, for a simple set of rules R and for a sublanguage K

that contains multiplication, and B a partial subalgebra of A. We define the
K-matrix BA = 〈BK,�〉, where x � b iff xA ≤A b.

Lemma 4.25. If A is in KRLUGR, for a simple set of rules R and for a
sublanguage K that contains multiplication, and B a partial subalgebra of A,
then BA ∈ GL and the map q : B → R(BA), defined by q(b) = ↓ b, is an
embedding.

Proof. In view of Corollary 4.12 and Lemma 3.3, to show that BA ∈ KGLR, it
suffices to check the interpretations (r)BA , for all metarules (r) of KGL. As
an example, we check (\L)A. Let a, b, c ∈ B, x ∈ Bγ , u ∈ Bα, and assume that
a\Bb is defined, x �BA

a and u[b] �BA
c. Then xA ≤A a and (u[b])A ≤A c,

so x �AM a and u[b] �AM c. Since AM ∈ GL, we have u[x ◦ (a\b)] �AM c or
(u[x ◦ (a\b)])A ≤A c. Since a\Bb is defined, we have u[x ◦ (a\b)] �BA

c.

A class of algebras is said to have the finite embeddability property if every
partial subalgebra of an algebra in the class can be (partially) embedded in a
finite algebra in the class.

Corollary 4.26. If for every A in RLUGR, where R is a simple set of rules,
and for every partial subalgebra B of A, R(BA) is finite, then RLUGR has the
finite embeddability property.

The following lemma is shown in [4], under a different terminology.

Theorem 4.27. [4] If A is an integral residuated lattice and B a partial subal-
gebra of A, then R(BA) is finite. Thus, the variety RLUGai of integral residuated
lattices has the finite embeddability property.

A. Equivalence between GL and HL

Lemma A.1. For all a, b, c ∈ FmL, x ∈ (FmL)γ and u ∈ (FmL)α, we have

1. u[a ◦ b]⇒ c a`GL u[a · b]⇒ c.
2. u[x]⇒ a a`GL u[φ(x)]⇒ a.
3. u[x]⇒ a a`GL x⇒ u a.

Proof. (1) The left-to-right deduction is just (·L). For the converse, we have

a⇒ a b⇒ b
a ◦ b⇒ a · b (·R)

u[a · b]⇒ c

u[a ◦ b]⇒ c
(CUT)

(2) For x ∈ FmL, the statement is obvious. We proceed by induction. Assume
that the statement is true for x, y ∈ (FmL)γ and for all a ∈ FmL, u ∈ (FmL)α;

48



we will show it is true for x ◦ y. We have, for ux[y] = uy[x] = u[x ◦ y],

u[x ◦ y]⇒ a

ux[y]⇒ a
(=)

ux[φ(y)]⇒ a
(ind)

u[x ◦ φ(y)]⇒ a
(=)

and

u[x ◦ φ(y)]⇒ a

uφ(y)[x]⇒ a
(=)

uφ(y)[φ(x)]⇒ a
(ind)

u[φ(x) ◦ φ(y)]⇒ a
(=)

u[φ(x) · φ(y)]⇒ a
(1)

u[φ(x ◦ y)]⇒ a
(=)

All of the above deductions hold upwards as well, so we obtain the converse.
(3) We will use induction on the complexity of u. The statement is obvious

for u = . Assume that the statement holds for u. We have

(y ◦ u)[x]⇒ a

y ◦ u[x]⇒ a
(=)

φ(y) ◦ u[x]⇒ a
(2)

u[x]⇒ φ(y)\a
(\R)

x⇒ u (φ(y)\a)
(ind)

x⇒ (y ◦ u) a
(=)

and x⇒ a\b
a⇒ a (Id) b⇒ b

(Id)

a ◦ (a\b)⇒ b
(\L)

a ◦ x⇒ b
(CUT)

The first sequence of deductions establishes the forward direction. The converse
follows from noting that all the deductions except for (\R) hold upwards. The
converse of the rule (\R) is given by the second sequence of deductions. Simi-
larly, we obtain (y ◦ u)[x]⇒ a a`GL x⇒ (y ◦ u) a, a fact that completes the
induction.

A.1. Derivable rules
We will show that the following rules and rule schemes are derivable in HL.

As before, a, b, c denote atomic formulas and K ranges over all sublanguages of
L that contain \ and are such that the rule scheme connectives are contained
in K. The variable x ranges over all groupoid words fit for K.

a\b b\c
a\c

(T`)
a b\(a\c)

b\c
(NP`)

a\b c\d
(b\c)\(a\d)

(R\)

a\b
(c/b)\(c/a)

(Rn/)
a\b

(a/c)\(b/c)
(Rd/)

b/a

a\b
(RC`)

a\[b/(a\b)]
(As`r) [b/(a\b)]/a

(Asrr) [(b/a)\b]/a
(Asr`)

a\(b/c)
c\(a\b)

(RA`r)
(b\c)/a
b\(c/a)

(RA`)
b\(c/a)
(b\c)/a

(RAr)
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a b/a

b
(MPr)

a

b/(b/a)
(Nr)

a (c/a)/b
c/b

(NPr)

a\b
(c ∧ a)\(c ∧ b)

(R`∧)
a\b

(a ∧ c)\(b ∧ c)
(Rr∧)

c\a c\b
c\(a ∧ b)

(RM1)

a\b
(c ∨ a)\(c ∨ b)

(R`∨)
a\b

(a ∨ c)\(b ∨ c)
(Rr∨)

a\b
ca\cb

(R`·) a\b
ac\bc

(Rr·) a\b c\d
ac\bd

(R·)

x K a a\b
x K b

(T` K)
x K a x K b
x K (a ∧ b)

(RM K)

x K a b\c
x K [c/(a\b)]

(R\ K)
x K a b\c
x K [(b/a)\c]

(R/ K)

Lemma A.2.

1. The above rules are derivable in HL. In particular, every rule is derivable
from rules of HL that involve only the connectives of the given rule.

2. The rule (RAr`) is equivalent to the combination of (As`r) and (Rn/),
in the presence of (I`), (As``) and (T`) [or of (I`), (RA`r), (Rd\) and
(MP`)].

3. The rule (RA`r) is equivalent to the combination of (As``) and (Rn\),
in the presence of (I`), (As`r) and (T`) [or of (I`), (RAr`), (Rd\) and
(MP`)].

4. The rules (Rd/) and (Rd\) are equivalent, in the presence of (As``),
(As`r), (Rn\) and (T`)/(MP`) [or of (I`), (RAr`), (RA`r) and (T`)].

5. Finally, the rules (N`), (NP`) and (RC`) are equivalent, in the presence
of (As`r), (As``), (Rd\) and (MP`) [or of (I`), (RAr`), (RA`r), (Rd\)
and (MP`)].

Proof. The statements follow from the deductions below.

(T`) = a\b
b\c

(a\b)\(a\c)
(Rd\)

a\c
(MP`)

= b\c
a\b

(b\c)\(a\c)
(Rn\)

a\c
(MP`)

(Rn/) =
a\b b\[(c/b)\c)]

(As``)

a\[(c/b)\c)]
(T`)

(c/b)\(c/a)
(RAr`)

(RAr`) = b\[c/(b\c)]
(As`r)

a\(b\c)
[c/(b\c)]\(c/a)

(Rn/)

b\(c/a)
(T`)
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(Rn\) =
a\b b\[c/(b\c)]

(As`r)

a\[c/(b\c)]
(T`)

(b\c)\(a\c)
(RA`r)

(RA`r) = c\[(b/c)\b]
(As``)

a\(b/c)

[(b/c)\b]\(a\b)
(Rn\)

c\(a\b)
(T`)

(As``) = (b/a)\(b/a)
(I`)

a\[(b\a)\b]
(RA`r) (Rd/) =

c\[(a/c)\a]
(As``)

a\b
[(a/c)\a]\[(a/c)\b]

(Rd\)

c\[(a/c)\b]
(T`)

(a/c)\(b/c)
(RAr`)

(As`r) = (a\b)\(a\b)
(I`)

a\[b/(a\b)]
(RAr`)

(Rd\) =
c\[a/(c\a)]

(As`r)
a\b

[a/(c\a)]\[b/(c\a)]
(Rd/)

c\[b/(c\a)]
(T`)

(c\a)\(c\b)
(RA`r)

(R\) =

c\d
(b\c)\(b\d)

(Rd\)
a\b

(b\d)\(a\d)
(Rn\)

(b\c)\(a\d)
(T`)

(NP`) = b\(a\c)

a
(a\c)\c

(N`)

[b\(a\c)]\(b\c)
(Rd\)

b\c
(MP`)

(RC`) = b/a a\[(b/a)\b]
(As``)

a\b
(NP`)

, (N`) =
a a\[b/(a\b)]

(As`r)

b/(a\b)
(MP`)

(a\b)\b
(RC`)

(MPr) =
b/a

a a\[(b/a)\b]
(As``)

(b/a)\b
(MP`)

b
(MP`)

(MP`) =
a\b

a
1\a

(R1a`)

1\b
(T`)

b
(R1b`)

(R`·) =
a\b b\(c\cb)

(PI)

a\(c\cb)
(T`)

ca\cb
(RPI)

(Rr·) =
c\(b\bc)

(PI)
a\b

(b\bc)\(a\bc)
(Rn\)

c\(a\bc)
(T`)

ac\bc
(RPI)

(R·) =
a\b
ac\bc

(Rr·)
c\d
bc\bd

(R`·)

ac\bd
(T`)

(R`∧) = (c ∧ a)\c
(ME`)

a\b (c ∧ a)\a
(MEr)

(c ∧ a)\b
(T`)

(c ∧ a)\(c ∧ b)
(RM1)
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(R`∨) = c\(c ∨ b)
(JI`)

a\b b\(c ∨ b)
(JIr)

a\(c ∨ b)
(T`)

(c ∨ a)\(c ∨ b)
(RJ\)

(RA`) =
(b\c)/a
a\(b\c)

(RC`)

b\(c/a)
(RAr`)

(RAr) =
b\(c/a)
a\(b\c)

(RA`r)

(b\c)/a
(RCr)

The proofs of (Rr∧) and (Rr∨) are similar to (R`∧) and (R`∨), respectively.
Using (RCr), one can show that (Asrr), (Asr`), (MPr), (Nr) and (NPr) follow
from the corresponding rules, obtained by interchanging the letters r and ` in
their names.

Assume that x, y are groupoid words, a, b, c are formulas.
For (T` K), if K contains ·, then x  K a = φ(x)\a and (T` K) is just

(T`). Assume now that K does not contain ·, in which case x is solvable. If x
is equal to a formula or ε, then (T` K) is just (T`) or (MP`). If x = c ◦ y, y is
solvable and (T` K) holds for y, we have

(c ◦ y) K a
y  K (c\a)

(=)
a\b

(c\a)\(c\b)
(Rd\)

y  K (c\b)
(Ind)

(c ◦ y) K b
(=)

Note that if K does not contain /, this is the only case. If x = y ◦ c, y is a
solvable groupoid word not equal to a formula or ε, and (T` K) holds for y,
then we have

(y ◦ c) K a
y  K (a/c)

(=)
a\b

(a/c)\(b/c)
(Rd/)

y  K (b/c)
(Ind)

(y ◦ c) K b
(=)

For (RM K), if · is not contained in K, then x is solvable. If x = c ◦ y, y is
solvable and (RM K) holds for y, we have

(c ◦ y) K a
y  K (c\a)

(=)
(c ◦ y) K b
y  K (c\b)

(=)

y  K [(c\a) ∧ (c\b)]
(Ind)

[(c\a) ∧ (c\b)]\[c\(a ∧ b)]
(M\)

y  K (c\(a ∧ b))
(T` K)

(c ◦ y) K (a ∧ b)
(=)

Note that for y = and y = d we obtain

c\a c\b
c\(a ∧ b)

(RM1) and
d\[c\(a ∧ b)] d\[c\(a ∧ b)]

d\[c\(a ∧ b)]
(RM2)
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The proof for the case where x = y ◦ c, y is a solvable groupoid word not equal
to a formula or ε, and (RM K) holds for y is analogous to the previous case, if
instead of (M\) we use (M/), which we prove now. We obtain the axiom

c\[(a/c)\a]
(A``)

(a/c ∧ b/c)\(a/c)
(ME`)

{c\[(a/c)\a]}\[{c\[(a/c ∧ b/c)\a]}]
(Rn\), (Rd\)

c\[(a/c ∧ b/c)\a]
(MP`)

which we call (Aux`) and similarly, using (MEr), we obtain the axiom

c\[(a/c ∧ b/c)\b]
(Auxr)

Consequently, we have (M/)

c\[(a/c ∧ b/c)\a]
(Aux`)

c\[(a/c ∧ b/c)\b]
(Auxr)

c\[(a/c ∧ b/c)\(a ∧ b)]
(RM2)

(a/c ∧ b/c)\[(a ∧ b)/c]
(RAr`)

If x is a formula or ε, then (RM K) is just (RM1). The same holds for the case
where · is contained in K, since x K a = φ(x)\a.

For (R\ K) we have

x K a

a\[b/(a\b)]
(As`r)

b\c
[b/(a\b)]\[c/(a\b)]

(Rd/)

a\[c/(a\b)]
(T`)

x K [c/(a\b)]
(T` K)

For (R/ K) we use (As``) and (Rd\), and work as before.
For (RPI ), we work by induction on x. If x is a formula, then x  a =

φ(x)\a. We assume that there are groupoid words y, z such that x = z ◦ y or
x = y ◦ z, and y contains the right-most among the occurrences of subformulas
or ε of maximal depth. For the two cases, we have respectively

(z ◦ y) a

y  (φ(z)\a)
(=)

φ(y)\(φ(z)\a)
(=)

φ(z)φ(y)\a
(RPI)

φ(z ◦ y)\a
(=)

and

(y ◦ z) a

y  (a/φ(z))
(=)

φ(y)\(a/φ(z))
(=)

φ(z)\(φ(y)\a)
(RA`r)

φ(y)φ(z)\a
(RPI)

φ(y ◦ z)\a
(=)

We apply the same reasoning for (PI ). If x is a formula, then (PI ) follows
from (I`). We assume that there are groupoid words y, z such that x = z ◦ y
or x = y ◦ z, the rule holds for y and y contains the right-most among the
occurrences of subformulas or ε of maximal depth. For the two cases, we have
respectively
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y  φ(y) φ(y)\[φ(z)\φ(z)φ(y)]
(PI)

y  [φ(z)\φ(z)φ(y)]
(T` )

z ◦ y  φ(z ◦ y)
(=)

and

y  φ(y)
φ(z)\[φ(y)\φ(y)φ(z)]

(PI)

φ(y)\[φ(y)φ(z)/φ(z)]
(RAr`)

y  [φ(y)φ(z)/φ(z)]
(T` )

y ◦ z  φ(y ◦ z)
(=)

(RPE ) follows directly from (PI ) and (T` ).

A.2. Translations between HL and GL

If (R)= (S, s) is a rule of KGL, we set (HR) to be rule scheme (φK[S], φK(s)).

Theorem A.3. For every set S ∪ {s} of sequents and every sublanguage K of
L that contains \, if S `KGL s then φK(S) `KHL φK(s).

Proof. Given a rule (R) of KGLs, we will verify that the rule scheme (HR) is
a derivable rule scheme of KHL.

Assume that K does not contain the connective ·, and consider (K∧L`).
Since u[a] is solvable, there is a solvable groupoid word x and an augmented
solvable groupoid word v such that u[a] equals v[a ◦ x] or v[x ◦ a]. If K does
not contain /, then in the first case the terms x and v can be taken to be left
solvable, while in the second case x needs to be a formula. In the first case the
rule scheme (HK∧L`) is equal to the following deduction tree.

u[a] K c
(v[a ◦ x]) K c

(=)

x K (a\(v  K c))
(=)

(a ∧ b)\a
(ME`)

[a\(v  K c)]\[(a ∧ b)\(v  K c)]
(Rn\)

x K [(a ∧ b)\(v  K c)]
(T` K)

u[a ∧ b] K c
(=)

The second case uses the rule (Rn/) and the proof is analogous. If K contains
the connective ·, then u[a]  K c = φ(u[a])\c. Moreover, φ(u[a]) = φ(v[a ◦ x]),
for some left solvable groupoid word x and an augmented left solvable groupoid
word v. So,

u[a] K c
φ(u[a])\c

(=)

φ(v[a ◦ x])\c
(=)

v[a ◦ x] c
(RPE )

and

v[a ◦ x] c

(v[(a ∧ b) ◦ x] c
(*)

φ(v[(a ∧ b) ◦ x])\c
(RPI )

φ(u[a ∧ b])\c
(=)

u[a ∧ b] K c
(=)
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where (*) follows from the deduction tree for the first case, since v[a ◦ x] is
left solvable. Likewise, we obtain (HK∧Lr). The rule (HK∧R) is equal to
(RM K).

For (HK∨R`), we have

x K a a\(a ∨ b)
(JI`)

x K (a ∨ b)
(T` K)

and for (HK∨Rr) we use (JIr). For (HK∨L), we use the same reasoning as in
(HK∧L`); in the key deduction we use (RJ\) and (RJ/) instead of (T` K).

Note that in case that K does not contain · and x 6= ε, the augmented word
u is solvable, since u[x ◦ (a\b)] is solvable. We consider the two cases, where
x 6= ε and / is contained in K or not. Note that in the second case x has to be
equal to a formula d in order for x ◦ (a\b) to be left solvable. For the two cases
we have respectively

x K a

u[b] K c
b\(u K c)

(=)

x K [(u K c)/(a\b)]
(R\ K)

u[x ◦ (a\b)] K c
(=)

and

d K a
d\a

(=)
u[b] K c
b\(u K c)

(=)

(a\b)\[d\(u K c)]
(R\)

u[d ◦ (a\b)] K c
(=)

If x = ε, then we use (N`). Finally, if K contains ·, then we reduce the proof
to the case where K contains neither · or /, as we did for the rule (HK∧L`).
Likewise we obtain the proof of (HK/L`), by using (R/ K) instead of (R\ K).
Of course, in this case K contains /.

For (HK\R), we have a ◦ x  K b = x  K a\b, if K does not contain ·,
because then x is solvable. If K contains ·, then we have

(a ◦ x) K b
φ(a ◦ x)\b

(=)

aφ(x)\b
(=)

φ(x)\(a\b)
(RPE )

x K a\b
(=)

Note that in the case of (HK/R), K contains /. Assume first that K does not
contain ·. If x is not equal to a formula or ε, then we have x◦a K b = x K b/a,
because x has to be solvable. For the case where x is equal to c, where c is either
a formula or ε, and for the case where K contains ·, we have respectively (here
ĉ = c, if c is a formula, while ε̂ = 1)

c ◦ a K b
a\(ĉ\b)

(=)

ĉ\(b/a)
(RAr`)

c K b/a
(=)

and

x ◦ a K b
(φ(x) · a)\b

(=)

a\(φ(x)\b)
(RPE )

φ(x)\(b/a)
(RAr`)

x K b/a
(=)
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The rule (HK·R) follows directly from (R·) and the fact that x  K a =
φ(x)\a, y  K b = φ(y)\b and x ◦ y  K ab = φ(x)φ(y)\ab. Moreover, the rule
(HK·L) holds trivially since both u[a ◦ b]  K c and u[a · b]  K c are equal to
φ(u[a ◦ b])\c. Also, (HK1R) follows from (1).

For (HK1L), if u = then u[1] = 1 and | | = ε, so we have
a

1\a , which
follows from (I1r) and (MP`). If K does not contain ·, then u[1] is solvable, so
there exist a solvable groupoid word x and a solvable augmented groupoid word
v such that u[1] equals v[1 ◦ x] or v[x ◦ 1]; in both cases |u| = v[x]. If K does
not contain /, then the terms can be taken to be left solvable. We have the
following for the two cases

|u| K c
x K (v  K c)

(=)
(v  K c)\[1\(v  K c)]

(I1r)

x K (1\(v  K c))
(T` K)

(v[1 ◦ x]) K c
(=)

u[1] K c
(=)

|u| K c
x K (v  K c)

(=)
1\[(v  K c)\(v  K c)]

(I1`)

(v  K c)\[(v  K c)/1]
(RAr`)

x K ((v  K c)/1)
(T` K)

(v[x ◦ 1]) K c
(=)

u[1] K c
(=)

If K contains ·, then we reduce the problem to the case where K does not contain
/ as in the proof of (HK∧L`). (HKId) is equal to (I`). Finally, for (HKCUT),
if K does not contain · and x is not a formula or ε, then

x K a a\(u K c)
x K (u K c)

(T` K)

u[x] K c
(=)

If x = d, where d is a formula or ε, then u[a] is equal to v[a ◦ y] or v[y ◦ a], for
some solvable groupoid word x and a solvable augmented term v. We have

y  K a\(v  K c)
d\a

(a\v  K c)\(d\v  K c)
(Rn\)

y  K d\(v  K c)
(T` K)

v[d ◦ y] K c
(=)

for the first case. Likewise we handle the second case. If K contains ·, then we
reduce the proof to the case where neither · nor / is in K, as in the proof of
(HK∧L`).

Given a rule R =
a1 · · · an

a0
, we denote by (GR) the rule

ε⇒ a1 · · · ε⇒ an
ε⇒ a0

.
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Theorem A.4. For every set B ∪ {c} of formulas and every sublanguage K of
L that contains the connective \, if B `KHL c then s[B] `KGL s(c).

Proof. First note that by (\R) and

x⇒ a\b
a⇒ a (Id) b⇒ b

(Id)

a ◦ (a\b)⇒ b
(\L)

a ◦ x⇒ b
(CUT)

we obtain the bidirectional rule

a ◦ x⇒ b

x⇒ a\b
(\R)l

In particular, for x = ε we have ε⇒ a\b a`KGL a⇒ b; we will be using this
fact without explicit reference. For every rule (R) of HL, we will verify that
the rule (GR) is derivable in GL. (GI`) follows from (Id) and (GMP`) follows
from (CUT). For (GRd\) and (GRn\), we have

c⇒ c (Id) a⇒ b
c ◦ (c\a)⇒ b

(\L)

c\a⇒ c\b
(\R)

and
a⇒ b c⇒ c (Id)

a ◦ (b\c)⇒ c
(\L)

b\c⇒ a\c
(\R)

(GME`), (GMEr) and (GRM) follow easily from (∧L`), (∧Lr) and (∧R), re-
spectively. (GM\) follows from

a⇒ a (Id) b⇒ b
(Id)

a ◦ (a\b)⇒ b
(\L)

a ◦ [(a\b) ∧ (a\c)]⇒ b
(∧L`)

a⇒ a (Id) c⇒ c (Id)

a ◦ (a\c)⇒ c
(\L)

a ◦ [(a\b) ∧ (a\c)]⇒ c
(∧Lr)

a ◦ [(a\b) ∧ (a\c)]⇒ b ∧ c
(∧R)

(a\b) ∧ (a\c)⇒ a\(b ∧ c)
(\R)

(GJI`) and (GJIr) follow easily from (∨R`) and (∨Rr), respectively.
For (GN`) and (GAs``) we have

ε⇒ a b⇒ b
(Id)

ε ◦ (a\b)⇒ b
(\L)

ε⇒ (a\b)\b
(\R)

and
a⇒ a (Id) b⇒ b

(Id)

(b/a) ◦ a⇒ b
(\L)

a⇒ (b/a)\b
(\R)

For (GPI), (GRAr`) and (GRPI) we have

a⇒ a (Id) b⇒ b
(Id)

a ◦ b⇒ ab
(·R)

b⇒ a\ab
(\R)

,

a⇒ b\c
b ◦ a⇒ c

(\R)↑

b⇒ c/a
(/R) and

b⇒ a\c
a ◦ b⇒ c

(\R)↑

ab⇒ c
(·L)
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For (GRCr), (GI1`) and (GI1r) we have

b⇒ a
ε⇒ a/b

(/R),
a⇒ a (Id)

ε⇒ a\a
(\R)

1⇒ a\a
(1`)

and
ε ◦ a⇒ a (Id)
1 ◦ a⇒ a

(1L)

a⇒ 1\a
(\R)

(G1) follows from (1R). For (GRJ\), if K does not contain ·, we have

b ◦ z⇒ c
ε⇒ z  K (a\c)

a ◦ z⇒ c (\R)↑, (/R)↑
(a ∨ b) ◦ z⇒ c

(∨L)

ε⇒ z  K (a\c)
(\R), (/R)

Note that (/R) and (/R)↑ are not needed if K does not contain /. If · is contained
in K, the only modification needed in the proof is the replacement of z by φ(z).
Likewise, we obtain (GRJ/).

Corollary A.5. The systems KHL and KGL are mutually translatable via the
maps φK and s.

B. Action systems

In this section we define and study the notion of an action, which will be
used as a tool in the investigation of matrices appropriate for Gentzen systems.

B.1. Nuclei
A partially-ordered groupoid (or po-groupoid, for brevity) is a structure K =

〈K,≤, ·〉 such that · is a binary operation on K, ≤ is a partial order on K and
multiplication is order preserving (p ≤ q implies pr ≤ qr and rp ≤ rq).

A residuated partially-ordered groupoid or residuated po-groupoid is a struc-
ture K = 〈K,≤, ·, \, /〉 such that 〈K,≤, ·〉 is a po-groupoid and for all x, y, z ∈ K,

xy ≤ z ⇔ y ≤ x\z ⇔ x ≤ z/y. (res)

A residuated lattice-ordered groupoid or residuated `-groupoid is an algebra K =
〈K,∧,∨, ·, \, /〉 such that 〈K,∧,∨〉 is a lattice and 〈K,≤, ·, \, /〉 is a residuated
po-groupoid, where ≤ is the lattice order.

If K is one of the above structures, we say that K has a unit, if there is
an element 1 ∈ K such that 1x = x1 = 1, for all x ∈ K. In this case we
add in the type a constant 1 that is interpreted as the unit element. We will
refer to a residuated lattice-ordered groupoid with unit as an rlu-groupoid. A
po-groupoid with unit is called integral, if the unit is the greatest element; it is
called associative or commutative, if its monoid reduct is. It is called integral if
x ≤ 1, for all x ∈ K, and it is called contracting if x ≤ x2, for all x ∈ K.

Lemma B.1. If K = 〈K,≤, ·1〉 is a po-groupoid with unit, then the algebra
P(K) = 〈P(K),∩,∪, ·, \, /, {1}〉 is a rlu-groupoid, where for X,Y ⊆ K, X ·Y =
{xy | x ∈ X, y ∈ Y }, X\Y = {z |X · {z} ⊆ Y } and Y/X = {z | {z} ·X ⊆ Y }.
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Recall that a closure operator c on a poset P = 〈P,≤〉 is a map c : P → P
that is extensive (p ≤ c(p), for all p ∈ P ), monotone (if p ≤ q, then c(p) ≤ c(q),
for all p, q ∈ P ) and idempotent (c(c(p)) = c(p), for all p, q ∈ P ).

A nucleus on a po-groupoid K is a map g : K → K such that g is a closure
operator on 〈K,≤〉 and for all x, y ∈ K,

g(x)g(y) ≤ g(xy). (nuc)

A nucleus on a residuated po-groupoid or `-groupoid is a nucleus on its po-
groupoid reduct. We denote by g[K] or Kg the image of K under g.

The following lemma essentially generalizes known facts (see [8], [40], [35],
[21]). Its proofs can be found in [18].

Lemma B.2.

1. If K is a residuated po-groupoid, then g is a nucleus on K iff for all
x, y ∈ K, g(x)/y, y\g(x) ∈ Kg iff for all x, y ∈ K, g(g(x)g(y)) = g(xy).

2. If K = 〈K,≤, ·〉 is a po-groupoid and g is a nucleus on K, then Kg =
〈g[K],≤, ·g〉, where g[K] = {g(k) | k ∈ K} and x ·g y = g(xy), is a po-
groupoid.

3. If K = 〈K,≤, ·, \, /〉 is a residuated po-groupoid and g is a nucleus on K,
then Kg = 〈g[K],≤, ·g, \, /〉 is a residuated po-groupoid.

4. If K = 〈K,∧,∨, ·, \, /〉 is a residuated `-groupoid and g is a nucleus on K,
then Kg = 〈g[K],∧,∨g, ·g, \, /, 〉, where x ∨g y = g(x ∨ y), is a residuated
`-groupoid.

5. In all of the above cases, if K has a unit 1, then 1g = g(1) is a unit of
Kg.

6. In any of the above cases, g is a {·,∨, 1}-homomorphism from K to Kg (if
∨ and 1 exist); also it is order preserving. In particular, if t is a {·,∨, 1}-
formula, then g(tK(x̄)) = tKg (g(x̄)), for all appropriate sequences x̄ of
elements in K.

7. If K is associative, commutative, integral or contracting, then so is Kg.
8. If K = 〈K,∧,∨, ·, \, /, 1〉 is an rlu-groupoid and s ∈ K, then the map
gs : K → K defined by gs(x) = (s/x)\s is a closure operator on K. If K
is associative and commutative, then gs is a nucleus on K.

Note that for item (6), existing (infinite) meets are preserved and if
∨
X

exists then
∨
gX = g(

∨
X).

B.2. Action systems
B.2.1. More on groupoid words.

Recall the definition of the set Qγ of groupoid words and the set Qα of
augmented groupoid words over a set Q. For u ∈ Qα and x ∈ Qγ define x ∗u =
u[x ◦ ] and u ∗ x = u[ ◦ x]. For example, if x = (a, b) and u = (a, ( , a)), then
x∗u = (a, (( , (a, b)), a)) and u∗x = (a, (((a, b), ), a)). Note that u∗ε = ε∗u = u.
Recall that we have allowed ourselves to denote the element u[x] also by u ? x
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and x ? u. Note that u ? x = |u ∗ x| and x ? u = |x ∗ u|, for all x ∈ Qγ and
u ∈ Qα. For all x, y ∈ Qγ and u ∈ Qα, we have

(x ∗ u) ? y = (u ∗ y) ? x = u ? (x ◦ y).

Indeed, for all x, y ∈ Qγ and u ∈ Qα, we have

(x ∗ u) ? y = u[x ◦ ] ? y = u[x ◦ y]

(u ∗ y) ? x = u[ ◦ y] ? x = u[x ◦ y]

u ? (x ◦ y) = u[x ◦ y]

The set SubG(x) of subterms of a groupoid word x over Q is defined in-
ductively by SubG(x) = {x}, for x ∈ Q ∪ {ε} and SubG((x, y)) = {(x, y)} ∪
SubG(x) ∪ SubG(x).

B.2.2. Actions
A multi-sorted structure A = 〈KA, LA,K ′A, ∗, | |〉 is called a partial action

system if

• KA = 〈KA, ◦, e〉 is a partial groupoid with unit,

• LA and K ′A are sets,

• | | : K ′A → LA is an onto map,

• ∗ : KA × K ′A → K ′A, ∗ : K ′A × KA → K ′A are partial maps which we
denote both by the same symbol,

• the partial maps ? : KA ×K ′A → LA and ? : K ′A ×KA → LA are defined
by x ? u = |x ∗ u| and u ? x = |u ∗ x|, and,

• for all x ∈ KA, y ∈ KA and u ∈ K ′A, we have

(x ∗ u) ? y = (u ∗ y) ? x, (act)

u ? (x ◦ y) = (x ∗ u) ? y and (g-act)

u ∗ e = e ∗ u = u. (u-act)

in the sense: if one of the sides of an equation is defined, then the other side is
also defined and they are equal. If u ? x = x ? u, for all x ∈ KA and u ∈ K ′A,
then we denote the common value by u[x]. An action system is a partial action
system, where all partial maps in the definition are full.

If Q is a set and ε, 6∈ Q, then Q = 〈Qγ , Qγ , Qα, ∗, | |〉 is an action sys-
tem. We also obtain an action system if instead of groupoid words we consider
sequences, multisets or sets of elements of Q. In the last two cases (multisets
and sets) we can actually eliminate , take ∗ and ◦ to be union and ε to be the
empty (multi)set.
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Also, if K = 〈K, ◦, e〉 is a commutative monoid, then 〈K,K,K, ◦, | |〉 is an
action system, where |k| = k, for all k ∈ K. Note that the assumptions of
associativity and commutativity are essential.

In both of the examples given above we have KA = LA. We allow the two
sets to be different in the definition so that partial action systems are closed
under the following construction.

IfA = 〈KA, LA,K ′A, ∗, | |〉, is a partial action system andQ any set, consider
the structure A×Q = 〈KA, LA×Q,K ′A×Q, ∗, | |〉, where k∗(k′, q) = (k∗k′, q),
(k′, q) ∗ k = (k ∗ k′, q) and |(k′, q)| = (|k′|, q).

Lemma B.3. If A is a partial action system and Q any set, then A × Q is a
partial action system, as well.

A multi-sorted structure A = 〈KA,LA,K′A, ∗, | |, \∗, /∗〉 is called a residu-
ated action system if

• KA = 〈KA,≤, ◦, e〉 is a po-groupoid with unit,

• K′A = 〈K ′A,≤′〉 and LA = 〈LA,≤′′〉 are posets,

• 〈〈KA, ◦, e〉, LA,K ′A, ∗, | |〉, is an action system and

• \∗ : K ′A × LA → KA, /∗ : LA × KA → K ′A are maps such that, for all
u ∈ K ′, x ∈ K and y ∈ L,

u ? x ≤′′ y ⇔ x ≤ u\∗y ⇔ u ≤′ y/∗x. (r-act)

A residuated action system A is called lattice-ordered, if KA is lattice-ordered.

If 〈K,≤, ◦, \, /, e〉 is a commutative residuated po-monoid, then the structure
〈K,K′,K′, ◦, | |, \, /〉 is a residuated action system, where K = 〈K,≤, ◦, e〉,
K′ = 〈K,≤〉 and |k| = k, for all k ∈ K.

If K is lattice ordered, then so is the residuated action system. In this
sense, lattice-ordered residuated action systems are generalizations of commu-
tative residuated `-monoids.

Assume that A = 〈KA, LA,K ′A, ∗, | |〉, where KA = 〈KA, ·, e〉, is a partial
action system and consider the powersets

MA = P(KA), NA = P(LA) and M ′A = P(K ′A).

For m1,m2,m ∈MA m′ ∈M ′A and n ∈ NA define

m1 ◦m2 = {k1 ◦ k2 | k1 ∈ m1, k2 ∈ m2},

m ∗m′ = {k ∗ k′ | k ∈ m, k′ ∈ m′},

m′ ∗m = {k′ ∗ k | k′ ∈ m′, k ∈ m},
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|m′| = {|k′| | k′ ∈ m′},

m′\∗n = {k ∈ K |m′ ? {k} ⊆ n}

n/∗m = {k′ ∈ K ′ | {k′} ? m ⊆ n}.

Consider the structure P(A) = 〈MA,NA,M′A, ∗, | |, \∗, /∗〉, where MA =
〈MA,⊆, ◦, {e}〉, NA = 〈NA,⊆〉 and M′A = 〈M ′A,⊆〉.

Lemma B.4. If A is a partial action system, then P(A) is a residuated action
system

B.2.3. Nuclei and action systems
Lemma B.5. Let A = 〈KA,LA,K′A, ∗, | |, \∗, /∗〉 be a residuated action system
and s an element of LA. Then the map gs : KA → KA defined by gs(x) =
(s/∗x)\∗s is a nucleus on KA.

Proof. The pair (x 7→ s/∗x, x 7→ x\∗s) forms a Galois connection between
〈KA,≤〉 and 〈K ′A,≤〉; the two maps are the polarities of the Galois connection.
So gs and gs, where gs(x) = (s/∗x)\∗s and gs(u) = s/∗(u\∗s), are closure
operators on 〈KA,≤〉 and 〈K ′A,≤〉, respectively. (For more information on
Galois connections, see Section 3.1 in [18].)

In detail, we have s/∗x ≤′ s/∗x, so (s/∗x) ? x ≤′′ s; hence x ≤ (s/∗x)\∗s =
gs(x), for all x ∈ K. Based on the extensivity of gs we can get that /∗ is order re-
versing in its denominator as follows. If x ≤ y, then x ≤ y ≤ gs(y) = (s/∗y)\∗s;
so (s/∗y) ? x ≤′′ s, hence s/∗y ≤′ s/∗x. Similarly, we can prove that for every
u ∈ K ′, u ≤′ gs(u), where gs(u) = s/∗(u\∗s), and that \∗ is order revers-
ing in its denominator. Combining these two facts we obtain the monotonicity
of gs. Finally, to show that gs(gs(x)) ≤ g(x), note that s/∗x ≤′ gs(s/∗x) =
s/∗((s/∗x)\∗s) = s/∗gs(x), so gs(gs(x)) = (s/∗gs(x))\∗s ≤ (s/∗x)\∗s = gs(x).
Thus, gs is a closure operator on 〈K,≤〉.

Moreover, for all x, y ∈ K, we have the following implications

s/∗(x ◦ y) ≤′ s/∗(x ◦ y)
⇒ (s/∗(x ◦ y)) ? (x ◦ y) ≤′′ s (r-act)
⇒ [x ∗ (s/∗(x ◦ y))] ? y ≤′′ s (g-act)
⇒ x ∗ (s/∗(x ◦ y)) ≤′ s/∗y (r-act)
⇒ x ∗ (s/∗(x ◦ y)) ≤′ s/∗((s/∗y)\∗s) (u ≤′ gs(u))
⇒ [x ∗ (s/∗(x ◦ y))] ? gs(y) ≤′′ s (r-act)
⇒ [(s/∗(x ◦ y)) ∗ gs(y)] ? x ≤′′ s (act)
⇒ (s/∗(x ◦ y)) ∗ gs(y) ≤′ s/∗x (r-act)
⇒ (s/∗(x ◦ y)) ∗ gs(y) ≤′ s/∗((s/∗x)\∗s) (u ≤′ gs(u))
⇒ [(s/∗(x ◦ y)) ∗ gs(y)] ? gs(x) ≤′′ s (r-act)
⇒ (s/∗(x ◦ y)) ? (gs(x) ◦ gs(y)) ≤′′ s (g-act), (act)
⇒ gs(x) ◦ gs(y) ≤ (s/∗(x ◦ y))\∗s (r-act)
⇒ gs(x) ◦ gs(y) ≤ gs(x ◦ y)

Consequently, gs is a nucleus on K.
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Corollary B.6. If A = 〈KA,K′A, ∗, | |, \∗, /∗〉 is a lattice-ordered residuated
action system and s ∈ LA, then Rs(A) = (KA)gs—see Lemmas B.2 and B.5—
is a residuated `-groupoid with unit. If KA satisfies a given groupoid identity (in
particular if it is associative, commutative or idempotent) then so does Rs(A);
more explicitly, for every groupoid word t, t(KA)gs (x̄) = gs(tKA(gs(x̄))). If e is
the unit of KA, then gs(e) is the unit of Rs(A). If KA is integral, then Rs(A)
is integral and gs(e) = e.

B.2.4. The r`u-groupoid of a G-matrix
Let A = 〈A,�〉 be a sequent K-matrix. It is easy to see that the structure

A = 〈Aγ , Aγ , Aα, ∗, | |〉 is a partial action system. It follows from Lemmas B.3
and B.4 that I(A) = P(A × A) is a lattice-ordered residuated action system.
Therefore, by Corollary B.6, we obtain the following result.

Corollary B.7. Let A = 〈A,�〉 be a sequent K-matrix. Then, R(A) =
R�(I(A)) is a residuated `-groupoid with unit g�({ε})

The algebra R(A) is called the residuated `-groupoid of A.

For every a ∈ A and u ∈ Aα, set

[u, a] ={(u, a)}\∗� = {x ∈ Aγ | u[x] � a}

and ↓ a = [ , a] = {x ∈ Aγ |x � a}. Note that, [u, a] ∈ R(A), so the assignment
q(a) = ↓ a defines a map q : A→ R(A).

Lemma B.8. If k ∈ R(A) and x ∈ Aγ , then x ∈ k iff x ∈ [u, a], for all u ∈ Aα
and a ∈ A such that k ⊆ [u, a].

Proof. Since k ∈ R(A), we have k = g�(k) = (�/∗k)\∗�. So x ∈ k iff x ∈
(�/∗k)\∗� iff (�/∗k) ? {x} ⊆ � iff

(u, a) ? x ∈ �, for all u ∈ Aα and a ∈ A such that (u, a) ∈ �/∗k.

Observe that (u, a) ? x ∈ � is equivalent to {(u, a)} ? {x} ⊆ � and {x} ⊆
{(u, a)}\∗� = [u, a]. Moreover, (u, a) ∈ �/∗k is equivalent to {(u, a)} ⊆ �/∗k
and k ⊆ {(u, a)}\∗� = [u, a].
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