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Glivenko theorems revisited

Hiroakira Ono

Research Center for Integrated Science, Japan Advanced Institute of Science and
Technology, Nomi, Ishikawa, 923-1292, Japan

Abstract

Glivenko-type theorems for substructural logics (over FL) are comprehensively stud-
ied in the paper (GO06b). Arguments used there are fully algebraic, as based on the
fact that all substructural logics are algebraizable (see (GO06a) and also (GJKOO07)
for the details).

As a complementary work to the algebraic approach developed in (GO06b), we
present here a concise, proof-theoretic approach to Glivenko theorems for substruc-
tural logics. This will show different features of these two approaches.
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1 A proof-theoretic analysis of the original Glivenko’s theorem

In 1929, V. Glivenko showed the following in (Gli29). (We are concerned only
with propositional logics in the present paper.)

Proposition 1 For any formula o, « is provable in classical propositional
logic iff =—a is provable in intuitionistic propositional logic.

A standard proof-theoretic way of obtaining the above proposition is to show
the next Proposition 2. Then the above propostion follows immediately from
it, by taking the empty sequence of formulas for I and « for A. Here, LK and
LJ are sequent calculi for classical logic and intuitionistic one, respectively.
For more information, see e.g. (TS00) or (GJKOO07).
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Proposition 2 For any sequent T' = A (of LK), if it is provable in LK then
the sequent —=A,I' = s provable in LJ.

Let us explain briefly how the standard proof of Proposition 2 goes and what
are essential in it. The proof is carried out by using the induction of the length
of a proof of I' = A in LK. (It does not matter whether the proof contains
cuts or not.) Depending on the form of the last inference I of the proof, we
need to consider the following three cases.

(1) the inference I is either cut rule or one of right structural rules of LK
(e.g. the right-contraction rule),

(2) I is either one of left structural rules or one of left rules for logical con-
nectives of LK (e.g. the left rule for A),

(3) I is one of right rules for logical connectives of LK (e.g. the right rule for
N).

For the first case, let I be the cut rule, and suppose that a sequent I', IT = A X
is obtained from I' = A, «a and o, Il = X. By the hypothesis of induction,
both —a,-A,I' = and —X,«,Il = are provable in LJ. From the latter,
it follows that =X, Il = -« is also provable in it. Applying the cut to this
and the former sequent, —=A, -3, I', Il = is also provable in LJ. This is the
sequent what we want to get.

When [ is one of right structural rules of LK, the corresponding lower sequent
of LLJ is obtained by applying the left structural rule J of LJ which corresponds
to I. It means that .J denotes left-contraction rule of LJ, if I is for instance
the right-contraction rule of LK. Let us show the induction step when [ is the
right-contraction rule. Suppose that I' = A, « is obtained in LK from I' =
A, a,a by using I. Then, by the hypothesis of induction, we can assume that
—a, ~a, A, T = is provable in LJ. Then, by applying the left-contraction
rule, we can show that —a, =A,I' = is provable in LJ. Thus, the induction
step holds in this case.

For the second case, the corresponding lower sequent of LJ can be obtained
by applying the same rule I. Note that for every rule which belongs to this
case, LLJ has the same rule as LK. To show the induction step, we discuss here
the case where I is the left rule either for A or for —, for example. First, let us
considerthe case where [ is the left rule for A. We suppose that a A 3,T" = A
is obtained from a,I' = A by I. Then, by the hypothesis of induction, we can
assume that a,—A,I" = is provable in LJ. Then, by applying the left rule
for A we can show that a A 3, -A,I' = is provable in LJ.

When [ is the left rule for —, the argument becomes slightly complicated.
We suppose that the sequent @ — (,I',X = A, Il is obtained by using [
from both I' = A,« and (3, = II. Then the hypothesis of induction says
that both —a,-A,I' = and 3,-II,¥ = are provable in LJ. From these



two, we can derive both sequents —=A,I' = ——«a and ==, -1, ¥ = in LJ.
Thus, ~—a — ==, -A, =1, T, ¥ = | and hence =A, =II,T, ¥ = —=(=—a —
——/3) are provable in LJ. On the other hand, we can show that the sequent
—(=—a — —==f),a — [ = is provable in LJ. Now, by applying the cut
rule (and the exchange rule) to this sequent and the sequent —=A, —II, ', ¥ =
—(——a — =), we get the required result. That is, o — §, A, -1, T, 3 =
is provable in LJ. We note here that the sequent —(—-—a — ==4),a — =
is provable in LJ without using any of the contraction rule and the weakening
rules.

Next, we consider the third case where I is one of right rules for logical con-
nectives of LK. We need to examine how to get the required result for each
rule which belongs to this case. We consider here the cases where [ is the right
rule for — and for A. Remaining cases can be treated more easily.

Let I be the right rule for —, and suppose that I' = a — 3 is obtained from
a, ' = 3. By the hypothesis of induction, =3, a,I' = 1is provable in LJ. Then
by using this, I' = —=—a — == is shown to be provable. On the other hand,
since ~(a — ), " — == = | or alternatively

(A1) ~(a—f)= (7 —=2p),

is provable in LJ, by the help of the left-contraction rule and the weakening
rules. In fact, both sequents —a = o — ( and (= a — (3 are provable by
using the right- and left-weakening rule, respectively. By taking the contrapo-
sition of either of them, both —(a — ) = —=—a and —(a — () = —f are
also provable. Then,

—|(04 — ﬂ) = —\ﬂ
_‘(CK — ﬁ) = —\—\ﬂ’ _\<Ck — ﬂ) =
~(0 = 0),~(@— ), ~a — 0 =

(left — c)

and thus by using this with the fact that I' = =—a — == is provable in LJ,
we get the required result, i.e. =(av — (3),[' = 1is provable in LJ.

For the case where [ is the right rule for A, it is necessary to show that

or equivalently, =(a A 3), 7~ A == = is provable in LJ. In proving the
sequent =(a A 3), m—a A== = | both the left-contraction rule and the left-
weakening rule are necessary. To see this, we note first that the sequent «, § =
a A 3 is provable by using the left-weakening rule. From this, it follows that
the sequent ~(aAf), a, = and therefore the sequent =(aA ), "o, =5 =
are provable. Hence, by continuing the proof in the following way we get our



required result.

—(a A f), 7 —a, = =
(A ), ~a =00 =
—(aAf), " maAN-=F, e\ —=—f =
—(aAf), " —aN-—p=

(left — c)

2 Is Glivenko’s result best possible?

The original Glivenko’s result says that Glivenko theorem holds for intuition-
istic logic (relative to classical logic Cl). Then it will be natural to explore
the problem for which logics Glivenko theorem holds relative to Cl. It is triv-
ial from Proposition 2 that Glivenko theorem holds also for every consistent
extension of intuitionistic logic, i.e. every superintuitionistic logic except the
inconsistent one. Can we find a logic weaker than intuitionistic logic for which
Glivenko theorem holds? A breakthrough in this question was made by Cignoli
and Torrens in (CT03), who showed that Glivenko theorem holds also for an
extension SBL of Hajek’s basic logic. Note that SBL is incomparable with
intuitionistic logic.

Now let us consider the question for which substructural logic L in general
Glivenko theorem holds (relative to Cl), i.e.

for any formula «, o is provable in Cl if and only if =—a is provable in L.

An answer is given in the paper (GOO06b) by the present author with N.
Galatos, in which algebraic methods are fully used. In the present paper we
will take another way and show how proof-theoretic approach works well in
solving the above problem. Though non-commutative cases can be treated in
the same way, we restrict our attention in the following only to substructural
logics over FLg, i.e. substructural logics which admit exchange rule, only for
the brevity’s sake. We assume here the familiarity with the sequent calculus
FL, for intuitionistic linear logic without exponentials (see e.g. (GJKOO07)).
Roughly speaking, it is the sequent calculus obtained from LJ by deleting both
weakening rules and the left-contraction rule, and then adding the following
rules for the connective -, called fusion.

F7a7/6722>’y
MNa-6,%=7v

l'=a Y=p
Y=a-06

(left-)

(right-)

For our present purpose, we will look up our proof-theoretic analysis given
in the previous section, and examine whether and where, if any, our argu-
ment fails when we take FL¢ instead of intuitionistic logic. Obviously, neither



of sequents (A1) and (A2) are provable in FL,, since we need weakening
rules and the left-contraction rule in order to derive them. Also, we meet
some difficulties in the first case (1) in the previous section where I is either
the right-weakening rule or the right-contraction rule (of LK), since FL, has
neither weakening rules nor the left-contraction rule. But, by a careful exam-
ination of the proof, we can see that our argument will still work well as long
as we have the following restricted forms of these structural rules, instead of
taking their full forms.
a,a, ' = I =
a, ' = o, ' =

Alternatively, these restricted rules can be expressed by the following sequents
(AC) and (AW), respectively.

(AC) —(a-a)= —a,
(AW) = = ~(a-5).

To sum up, we have the following theorem. Here FL,' is the logic obtained
from FL, by adding all of (A1), (A2), (AC) and (AW) as axiom schemes
(or, initial sequents). Note that each formula ¢ - 7 is understood as ¢ A ¥ in
classical logic.

Theorem 3 Glivenko theorem holds for FLg' relative to Cl.

As a matter of fact, FL.  is the weakest substructural logic over FL, for which
Glivenko theorem holds relative to Cl, as the next Theorem 5 says. (In the
present paper, by a substructural logic over FLe we mean an axiomatic exten-
sion of FLg, i.e. a sequent calculus obtained from FL, by adding some axiom
schemes as initial sequents. More precisely, we identify one logical calculus
with another one, as long as the set of formulas provable in the first calculus
coincides with that of the second. For, only the set of formulas provable in a
given calculus does matter to Glivenko’s theorem. So, in the present paper the
word " logics” is used slightly in an ambiguous way, which denote sometimes
calculi and sometimes sets of formulas, as long as no confusions may occur.)
We can show the following.

Lemma 4 For all formulas ¢ and ¢, =—(¢ — ¥) = b — —p is provable
i FLe.

Theorem 5 For each (consistent) substructural logic L over FLe, Glivenko
theorem holds for L relative to Cl if and only if L is an extension of FLg'.

Proof. It is enough to assure that each of (A1), (A2), (AC) and (AW)
is provable in L, whenever Glivenko theorem holds for L. For (A1), it is
obvious that (——a — ——=f3) — (a — () is provable in LK, and hence by our
assumption =—((—-—a — ——fF) — (o — [3)) is provable in L. Then, we have
(A1) by using Lemma 4, since L contains FL,. Others can be shown similarly.



The above theorem says that FL,' is the weakest logic among substructural
logics (over FL,) for which Glivenko theorem holds relative to Cl. Thus, it is
uniquely determined by Cl. So we denote it as G(Cl).

We have shown that the converse arrow of (A1) is provable in FL.. Similarly,
the converse arrow of (A2) is also provable in FL.. Note that the following
two sequents

(1) =(e- f) = ~(=-a - ==p)
(2) ~(aVp) = =(~maV-op)

and their converses are also provable in FL,. From these facts, we can derive
the following algebraic consequence. Let us take any substructural logic which
is an extension of FL, satisfying both (A1) and (A2). Consider an arbitrary
FLc-algebra A for this logic. Then, the following equation holds always in A (if
we use the same symbols for both logical connectives and algebraic operations,
by the abuse of language): for all z,y € A

—(xxy) = ~(-—x * —y) for each x € {— A, -, V}.

Define a binary relation ~ on A by =z ~ y iff -2 = —y. Then, by our
assumption, ~ is shown to be a congruence relation on A which moreover
satisfies =—x ~ x. Thus, we can get the quotient algebra (A/ ~) which is
involutive. For further discussions on the present topic, see Section 4.4 of

(GOO6b).

3 Glivenko theorems for substructural logics

Until now, we consider only Glivenko theorems for a substructural logic L
relative to Cl. It is interesting when Glivenko-type theorems hold in general
for substructural logics. For substructural logics L and K, we say that Glivenko
theorem holds for L relative to K if

for any formula o, « is provable in K iff ==« is provable in L.

We say that a logic K is involutive whenever ——a — « is provable in it
for every formula «. Let us consider two examples of involutive substructural
logics, InFL, and InFLey,. They are obtained from FL, and FLe, (FLe
with weakening rules), respectively, by adding the axiom scheme of involution
== — . Obviously, InFL, is the weakest involutive logic which contains
FL.. Alternatively, they are formulated by sequent calculi obtained from LK
(but with rules for fusion) by deleting both contraction rules and weakening
rules (i.e. MALL), and by deleting only contraction rules (i.e. Grishin’s logic),
respectively.



Theorem 6 For each substructural logic L over FLe, Glivenko theorem holds
for L relative to InFL, (InFLey) if and only if L is an extension of the

calculus obtained from FLg with axiom schemes (A1), (A2) (and (AW)) and
is included by InFLe (InFLey,, respectively).

The above theorem is shown similarly to Theorem 5. We note that L must be
included by InFL, when Glivenko theorem holds for L relative to InFLe. In
fact, if a formula [ is provable in L then ——( is also provable in it. By the
assumption that Glivenko theorem holds for L relative to InFLe, § must be
provable in InFL.

By using the notation introduced in the previous section, we can express the
calculus obtained from FL, by adding both (A1) and (A2) as G(InFL,).
Our result can be extended easily to every involutive substructural logic over
FL. (and thus, it is over InFL,).

Theorem 7 Suppose that a substructural logic K is axiomatized by axiom
schemes {c; : i € I} over InFLg. Then, for each substructural logic L over
FL., Glivenko theorem holds for L relative to K if and only if L is an extension
of the calculus obtained from G(InFL,) with ariom schemes {——c; : i € I}
and s included by K.

We can prove this theorem almost in the same way as the proof of Theorem 6,
but adding the following simple observation to it. That is, for each initial
sequent of K of the form = «; the corresponding sequent —«; = is provable
in L. In fact, this is so since = ——q; is an initial sequent of L by our
assumption.

Let G(K) be the extension obtained from G(InFL,) by adding axiom schemes
{=—a; : i € I}. As a consequence of the above Theorem 7, we have that
when K is finitely axiomatized over InFL, then so is G(K) over G(InFL,)
(and hence over InFL,). Here, we give some comments on the form of axiom
schemes of G(K) in Theorem 7. It is obvious that LK is obtained from InFL,
by adding the following axiom schemes (C) and (W) for contraction and
weakening:

(C)  a—(a-a)
(W) (a-8) =5

Thus by Theorem 7, G(Cl) (i.e. G(LK)) must be axiomatized by the following

axiom schemes over G(InFL,):

(ACT)  —=(a— (a-a)),
(AWT)  —=((a-8) = 0).



Then, what are relations between these schemes (ACT) and (AWT) and se-
quents (AC) and (AW) in Theorems 57 By Lemma 4 we know that the
formers implies the latters, respectively. Also, the converse implication holds
as long as (A1) is assumed, as shown in the following.

Lemma 8 For all formulas ¢ and ¢, - — = = —==(1p — @) is provable
in FLe with (A1).

Proof. It is easy to derive the sequent =(=—¢p — =), ) — =p = in FL,.
By the cut rule applying to this with the sequent —(p — ) = =(-—¢p —
——1)) which is an instance of (A1), the sequent =(¢ — ), ") — —=p = is
derived. Thus, we have the required result.

Our final remark is on the involutiveness. As mentioned before, a logic K is
said to be involutive when —=—a — « is provable in it for every formula «.
According to the definitions in Section 4 of (GOO06b), K is weakly involutive
when ——a Fk «a for every formula «, and is Glivenko involutive when for every
formula « if =—a is provable in K then « is provable in it. Here, the deducibility
relation I bk ¢ (with a set of formulas IT) means that the sequent = ¢ can
be provable in the system obtained from K by adding =- ¢ as new initial
sequents for each § € II. Note that Theorem 7 is shown under the assumption
that K is involutive. But, by a close examination of the proof of Theorem 5,
it holds still under a weaker assumption that K is Glivenko involutive. That

is, Theorem 7 holds even if K is a Glivenko involutive substructural logic over
FL.. (See Corollary 4.7 of (GO06D).)

For substructural logics L and K, we say that deductive Glivenko theorem
holds for L relative to K if

for any set TTU {a} of formulas, 11 Fx « if and only if 11 Fr, ~—av.

Then, by modifying slightly the proof of Theorem 7, we have the following.
(See also Corollary 4.7 of (GOO06b).)

Theorem 9 Suppose that K is a weakly involutive substructural logic over
FL.. Then, for each substructural logic L over FL,, deductive Glivenko theo-
rem holds for L relative to K if and only if L is an extension of G(K) and is
included by K.

In fact, to show this it is enough to consider moreover the case where a sequent
of the form = v for v € Il appears as an initial sequent in the derivation
of Il Fk «. Similarly to the proof of Theorem 7, we can get a derivation of
——II kg, ==a. But each sequent of the form = —=—~ follows from = ~. Thus,
IT Fy, ==« holds. The assumption that K is a weakly involutive is necessary
when we show that deductive Glivenko theorem holds for L relative to K, if
L is an extension of G(K) and is included by K. In fact, if IT F, ==« then



IT g ——a, as K includes L. Then, since K is a weakly involutive, we have
II |_K .

We say that equational Glivenko theorem holds for L relative to K if

for all formulas o and B, o — (3 is provable in K if and only if =0 — -«
1s provable in L.

Note that the above condition can be replaced by the following:

for all formulas o and B, a <= (3 is provable in K if and only if =0 < -«
s provable in L.

We remark that our proof of Theorem 5 is essentially a proof of equational
Glivenko theorem relative to Cl, if we make a minor change of the last part
of the proof, i.e. using the definition of equational Glivenko theorem and not
applying Lemma 4. We can show the following similarly to Theorem 7, using
Lemmas 4 and 8.

Theorem 10 Suppose that K is an involutive substructural logic over FL,.
Then, for each substructural logic L over FLe, equational Glivenko theorem
holds for L relative to K if and only if L is an extension of G(K) and is
included by K.

When we show that equational Glivenko theorem holds for L relative to K if
L is an extension of G(K) and is included by K, the assumption that K is
involutive is used in the following way. Suppose that =3 — —« is provable in
L. Since K includes L, -—a — ——( and hence o« — ——3 are provable in K.
Since K is involutive, == — [ is also provable in it, and hence o — [ is
provable in K.
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