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Asahidai, Nomi, Ishikawa, 923-1292, Japan
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Abstract. This paper develops a comprehensive study of various types of interpolation proper-
ties and Beth definability properties for substructural logics, and their algebraic characterizations
through amalgamation properties and epimorphisms surjectivity. In general, substructural logics
are algebraizable but lack many of the basic logical properties that modal and superintuitionistic
logics enjoy (cf. [7]). In this case, careful examination is necessary to see how these logical and
algebraic properties are related. To describe these relations exactly, many variants of interpola-
tion properties and Beth definability properties, and also corresponding algebraic properties, are
introduced. Because of their generality, the results reported here hold not only for substructural
logics, but can be extended to a more general setting such as abstract algebraic logic [1], [6].

1 Introduction

This paper develops a comprehensive study of various types of interpolation properties and Beth
definability properties for substructural logics and their algebraic characterizations. Much work
has already been done in this direction for modal and superintuitionistic logics (see [7] for general
information), for abstract algebraic logic (see [1] and [6] for general information and historical
notes), and also in an abstract model-theoretic framework (see e.g. [4], [31]).

On the other hand, while the algebraization theorem holds for substructural logics, in general
they lack many basic logical properties such as the (local) deduction theorem possessed by modal
and superintuitionistic logics, and therefore we cannot expect that results for modal or superin-
tuitionistic logics hold also for substructural logics in a similar way. In fact, we can give many
examples where two equivalent conditions for modal or superintuitionistic logics are not equiva-
lent for substructural logics. Thus, a careful and close examination is necessary to see precisely
how logical and algebraic properties are related to each other. By introducing many variants of
interpolation properties, Beth definability properties and algebraic properties, we obtain sharper
results on the correspondence between these logical properties and algebraic properties. (See e.g.
Figure 10 for relationships between interpolation properties and amalgamation properties, and
Figure 12 for relationships between various Beth definability properties.)

From a close examination of the proofs of our results, we can see that only a few logical (alge-
braic) properties specific to substructural logics (FL-algebras or residuated lattices, respectively)
are required. Therefore, we expect that these results can be stated in a more general setting,
e.g. for abstract algebraic logic. We can safely say that our framework using substructural logics
is quite adequate for the study of interpolation properties and definability properties, as it can
connect the study of individual nonclassical logics in a natural way with abstract algebraic logic.

After giving preliminaries for substructural logics and residuated lattices in Section 2, in Section



3, we introduce the Craig interpolation property (CIP), deductive interpolation property (DIP) and
their strong versions SCIP and SDIP, and establish some basic syntactic results. From a technical
point of view, the Robinson property (RP) introduced there will play an essential role in Section
4, where it is shown that a logic has the (strong, super) RP if and only if the corresponding variety
has the (strong, super) AP, respectively. On the other hand, a new algebraic notion, called the
generalized amalgamation property (GAP), is introduced there to give an algebraic characteriza-
tion of the CIP and the DIP, that are weaker than the superRP and the RP, respectively. Section
5 is devoted to an algebraic characterization of the SCIP and SDIP. For this purpose, the commu-
tative homomorphism diagrams (CHD) property is introduced, which is obtained from the AP by
replacing ”embeddings” by ”homomorphisms”. Various types of the CHD are examined and their
syntactic characterizations are given. In Section 6 variants of the Beth definability property (BDP)
are introduced and their algebraic characterizations via variants of epimorphisms surjectivity are
discussed. Relationships between the strong RP, the projective BDP and the BDP are clarified.
Moreover, it is shown that the projective BDP can be expressed as a limit of a sequence of natural
extensions of the BDP. Some remarks on further research, including open problems, are given in
Section 7.

The present work was originally motivated by discussions of the authors with F. Montagna and
D. Mundici on relationships between the CIP and the DIP. Some initial results were announced in
the doctoral dissertation of the first author [15] and also in some international conferences. Some
results have also appeared in Chapter 5 of [8] but in a weaker form. Also, algebraic characterizations
of logical properties related to interpolation properties, like Halldén completeness and Maksimova’s
variable separation property are discussed in our paper [16]. We would like to express our thanks
to T. Kowalski, F. Montagna and D. Mundici for their useful discussions in the early stages of our
study, and J. Czelakowski, L. Maksimova and the anonymous referee for their helpful comments
and suggestions on earlier drafts of this paper.

2 Residuated lattices and substructural logics

In the present paper, we assume a certain familiarity with definitions and basic results introduced
in [9]. To make our paper self-contained, we will briefly describe some of these ideas below, referring
to [8] for more details.

A residuated lattice is an algebra A = 〈A,∧,∨, ·, \, /, 1〉 such that 〈A,∧,∨〉 is a lattice, 〈A, ·, 1〉
is a monoid, and the monoid operation · is residuated with respect to the order by both the left-
and right-division operations \, /, i.e., for all x, y, z ∈ A,

x · y ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z.

An FL-algebra is an algebra A = 〈A,∧,∨, ·, \, /, 1, 0〉 with a residuated lattice 〈A,∧,∨, ·, \, /, 1〉
and an arbitrary element 0 of A. An FL-algebra is an FLe-algebra if the monoid operation · is
commutative. An FL-algebra is an FLew-algebra if it is an FLe-algebra satisfying 0 ≤ x ≤ 1
for each element x. It is easy to show that in any FL-algebra the commutativity of the monoid
operation is equivalent to the condition x\y = y/x. In this case we sometimes denote x\y (and
hence y/x also) by x → y. It is easy to see that the class FL of FL-algebras forms a variety. We
denote the subvariety lattice of FL by S(FL).

We adopt the convention that the monoid operation has priority over the division operations,
which have priority over the lattice operations. So, for example, we write x/yz ∧ u\v for [x/(y ·
z)] ∧ (u\v).

The class of FL-algebras provides algebraic semantics for the substructural logic FL, called
the full Lambek calculus. For the precise definition of the sequent calculus FL, see [9]. By a
substructural logic (over FL), we mean an axiomatic extension of FL. Here, a sequent calculus is
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an axiomatic extension of FL with axioms {αj : j ∈ J} if it is obtained from FL by adding each
sequent of the form ⇒ ϕ as a new initial sequent, where ϕ is any substitution instance of some
axiom αj . When a substructural logic is obtained from L by adding axioms {βk : k ∈ K}, it is
denoted by L + {βk : k ∈ K}. As usual, we identify a given substructural logic L with the set of
formulas provable in it.

The substructural logic FLe (FLew) is usually introduced as a sequent calculus obtained from
FL by adding the exchange rule (the exchange rule, and left- and right-weakening rules, respec-
tively). It can be easily seen that both of them are in fact axiomatic extensions of FL. Obviously,
the set of all substructural logics over FL (as sets of formulas) forms a lattice SL.

For an arbitrary class K of FL-algebras, let L(K) be the set of formulas that are valid in all
FL-algebras in K. Then, we can show that L(K) is a substructural logic for any K. When K
consists of a single algebra A, we denote L(K) by L(A). Conversely, for a given substructural logic
L, let V(L) be the class of all FL-algebras in which every inequation 1 ≤ ϕ holds for ϕ ∈ L. Then
V(L) belongs to S(FL). Moreover, we have the following.

PROPOSITION 1 The maps L : S(FL) → SL and V : SL → S(FL) are mutually inverse, dual
lattice isomorphisms.

For a set of formulas Γ and a formula ψ, we say that ψ is deducible from Γ in FL (Γ ⊢FL ψ, in
symbols), when there is a proof of ⇒ ψ in the calculus FL with new initial sequents of the form
⇒ γ added for each γ ∈ Γ. Unlike the definition of an axiomatic extension, here we cannot use a
sequent ⇒ δ as an initial sequent when δ is a substitution instance of a formula in Γ, except in the
case where δ itself belongs to Γ.

The deducibility relation is naturally extended to each substructural logic L in the following
way. For a set of formulas Γ ∪ {ψ}, we write Γ ⊢L ψ when Γ ∪ L ⊢FL ψ. Then we can show that
the relation ⊢L is a finitary, substitution invariant consequence relation (in the sense of abstract
algebraic logic). See [9] for the details.

For formulas α,ϕ, the left conjugate λα(ϕ) and the right conjugate ρα(ϕ) of ϕ (with respect
to α) are formulas (α\ϕα) ∧ 1 and (αϕ/α) ∧ 1, respectively. An iterated conjugate γ of ϕ is a
composition of left and right conjugates of the form δα1

(δα2
(· · · δαm

(ϕ) · · ·)) for some formulas
α1, . . . , αm (called parameters), where each δαi

is either a left or a right conjugate. The following
result, called the parameterized local deduction theorem, is shown in [9]. Here, Π means a finite
product of formulas by the fusion.

PROPOSITION 2 If Γ ∪ Σ ∪ {ψ} is a set of formulas and L is a logic over FL then

Γ,Σ ⊢L ψ iff Γ ⊢L (Πn
i=1γi(ϕi))\ψ,

for some n, some iterated conjugates γi of a formula ϕi ∈ Σ for each i ≤ n. In particular, if L is
over FLe then

Γ,Σ ⊢L ψ iff Γ ⊢L (Πn
i=1(ϕi ∧ 1)) → ψ,

for some n and some ϕi ∈ Σ for each i ≤ n. Moreover, if L is a logic over FLew then

Γ,Σ ⊢L ψ iff Γ ⊢L (Πn
i=1ϕi) → ψ,

for some n and some ϕi ∈ Σ for each i ≤ n.

In the above, iterated conjugates, and therefore parameters do not appear in the second and
the third results. Hence, they are called simply the local deduction theorem. They are derived from
the first result using the fact that every formula ϕ follows from each left and right conjugate of ϕ
with respect to 1, and also that ϕ implies both (α\ϕα) and (αϕ/α) for any formula α in FLe.

The following proposition, called the algebraization theorem, is fundamental for considering
relationships between logic and algebra, although we omit a detailed explanation here. Note that
Proposition 1 follows from the following proposition. For further information, consult [9].
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PROPOSITION 3 For every substructural logic L over FL, the deducibility relation ⊢L is al-
gebraizable with defining equation 1 = x ∧ 1 and equivalence formula x\y ∧ y\x. An equivalent
algebraic semantics for ⊢L is the variety V(L).

Let A be an FL-algebra. Then, a subset F of A is a deductive filter or simply filter, if it satisfies
the following;

1. 1 ≤ x implies x ∈ F ,

2. x, x\y ∈ F implies y ∈ F ,

3. x ∈ F implies x ∧ 1 ∈ F ,

4. x ∈ F implies a\xa, ax/a ∈ F for any a.

For a subset S of A, let FgA(S) be the filter generated by S, i.e. the smallest filter containing
S. Because of close resemblances between the deducibility and filter generation which comes from
the algebraization theorem, we have the following lemma (cf. [9]). Here, algebraic analogues of
conjugates are used. That is, for an FL-algebra A and a, x ∈ A, the left conjugate λa(x) of x with
respect to a is the element (a\xa) ∧ 1. Right conjugates and iterated conjugates are defined in a
similar way.

LEMMA 4 Let A be an FL-algebra and S a subset of A. Then

FgA(S) = {x ∈ A : Πn
i=1γi(si) ≤ x for some n, for some si ∈ S, and some iterated

conjugates γi with parameters from A}.

In particular, if A is an FLe-algebra then

FgA(S) = {x ∈ A : Πn
i=1(si ∧ 1) ≤ x for some n and for some si ∈ S}.

Also, if A is an FLew-algebra then

FgA(S) = {x ∈ A : Πn
i=1si ≤ x for some n and for some si ∈ S}.

It is easy to show that all filters of an FL-algebra A form a lattice denoted by Fil(A). Let
Con(A) be the congruence lattice of A. Then the following holds (see [9]).

LEMMA 5 Let A be an FL-algebra. Then, for F ∈ Fil(A) and θ ∈ Con(A), the maps F 7→
ΘF = {(a, b) ∈ A2 | a\b ∧ b\a ∈ F} and θ 7→ Fθ = {a ∈ A | (a ∧ 1, 1) ∈ θ} are mutually inverse
lattice isomorphisms between Fil(A) and Con(A).

We say that an FL-algebra A has the congruence extension property (CEP) if for any subalgebra
B of A and θ ∈ Con(B) there is a ϕ ∈ Con(A) such that θ = ϕ ∩ B2. A class K of FL-algebras
has the CEP if every algebra in it has the CEP.

For any class of algebras K and a set of variables X, we denote the K-free algebra by FmK(X),
or simply Fm(X) when the context is clear. Then the following holds.

LEMMA 6 For each substructural logic L, a set of variables X and a set of formulas Γ, define a
binary relation ≡Γ on FmV(L)(X) by

α ≡Γ β iff Γ ⊢L (α\β) ∧ (β\α).

Then, ≡Γ is a congruence relation on FmV(L)(X).
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3 Interpolation properties

In this section, we discuss relationships between several types of interpolation properties for sub-
structural logics.

3.1 Craig interpolation property and the deductive interpolation prop-

erty

DEFINITION 1 A substructural logic L over FL has the Craig interpolation property (CIP), if
for all formulas ϕ,ψ, whenever ϕ\ψ is provable in L, there exists a formula δ such that

1. both ϕ\δ and δ\ψ are provable in L,

2. var(δ) ⊆ var(ϕ) ∩ var(ψ),

where var(γ) denotes the set of propositional variables in a formula γ.

Now, we introduce an extension of the CIP.

DEFINITION 2 A substructural logic L has the strong Craig interpolation property (SCIP), if
for any set of formulas Γ ∪ Σ ∪ {ϕ,ψ}, if Γ,Σ ⊢L ϕ\ψ, then there exists a formula δ such that

1. Γ ⊢L ϕ\δ and Σ ⊢L δ\ψ,

2. var(δ) ⊆ var(Γ ∪ {ϕ}) ∩ var(Σ ∪ {ψ}).

Since ⊢L is finitary and conjunctive for each substructrual logic L, the modifications of the SCIP
obtained by stipulating that each of the sets Γ and Σ is finite or a single formula, are equivalent
to the SCIP. This holds also for all of the interpolation properties discussed below.

By replacing the provability of implications in the definition of the CIP by the deducibility, we
can introduce some other interpolation properties.

DEFINITION 3 A substructural logic L has the deductive interpolation property (DIP), if for
any set of formulas Γ ∪ {ψ}, if Γ ⊢L ψ, then there exists a formula δ such that

1. Γ ⊢L δ and δ ⊢L ψ,

2. var(δ) ⊆ var(Γ) ∩ var(ψ).

The DIP 1 is called also the turnstile interpolation property by Madarász [18], and the interpolation
property for deducibility by Maksimova [25].

Next, we introduce an extension of the DIP.

DEFINITION 4 A substructural logic L has the strong deductive interpolation property (SDIP),
if for any set of formulas Γ∪Σ∪{ψ}, if Γ,Σ ⊢L ψ, then there exists a set of formulas ∆ such that

1. Γ ⊢L δ for all δ ∈ ∆, and ∆,Σ ⊢L ψ,

2. var(∆) ⊆ var(Γ) ∩ var(Σ ∪ {ψ}).

The SDIP is called the Maehara interpolation property in [6] and GINT in [31]. Again, since
⊢L is finitary and conjunctive, we can take a single formula δ for an interpolant, instead of a set
∆, in the definition of the SDIP, and thus δ is supposed to satisfy that

1. Γ ⊢L δ and δ,Σ ⊢L ψ,

1Note that the DIP is called the CIP in [6].
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2. var(δ) ⊆ var(Γ) ∩ var(Σ ∪ {ψ}).

In [36], Wroński introduced the notion of the equational interpolation property of a class of
algebras. In the present context, this is stated as follows. A subvariety V of FL has the equational
interpolation property (eqIP), if for every set of equations G∪E ∪{ε}, whenever G,E |=V ε, there
exists a set of equations D such that

1. G |=V δ for all δ ∈ D, and D,E |=V ε,

2. var(D) ⊆ var(G) ∩ var(E ∪ {ε}).

This property with the extra assumption that E is empty is introduced and discussed also in
[14] and [3]. By the algebraization theorem, the eqIP of a variety V(L) can be translated into the
SDIP of a substructural logic L. More precisely,

PROPOSITION 7 A substructural logic L has the SDIP iff the variety V(L) has the eqIP.

The following result shows some relationships between these interpolation properties.

LEMMA 8 For every substructural logic, the following hold.

(1) The SCIP implies the CIP.

(2) The SDIP implies the DIP.

(3) The SCIP implies the SDIP.

Proof. The implication (1) is clear since the CIP is a special case of the SCIP when Γ and Σ are
empty sets. Similarly, the implication (2) can be shown. To show (3), suppose that Γ,Σ ⊢L ψ
holds. Then, Γ,Σ ⊢L 1\ψ also holds. Thus, by the SCIP, there exists a formula δ with var(δ) ⊆
var(Γ) ∩ var(Σ ∩ ψ) such that Γ ⊢L 1\δ and Σ ⊢L δ\ψ. From them, both Γ ⊢L δ and δ,Σ ⊢L ψ
follow. 2

Thus we can summarize relations among these interpolation properties in Figure 1.

SCIP =⇒ CIP

⇓

SDIP =⇒ DIP

Figure 1: Relationships among interpolation properties.

On the other hand, for any logic over FLe, we have the following.

LEMMA 9 For every substructural logic over FLe, the following hold.

(1) The SCIP and the CIP are equivalent.

(2) The SDIP and the DIP are equivalent.

Thus, the CIP implies the DIP.
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Proof. To prove (1), it is sufficient to show that the CIP implies the SCIP. Let L be a substructural
logic over FLe with the CIP. To show the SCIP of L, suppose that γ, σ ⊢L ϕ → ψ by taking
single formulas γ and σ, instead of Γ and Σ. Then by the local deduction theorem a formula
((γ ∧ 1)m · ϕ) → ((σ ∧ 1)n → ψ) is provable in L for some m and n. By the CIP, there exists
a formula δ such that both ((γ ∧ 1)m · ϕ → δ) and δ → ((σ ∧ 1)m → ψ) are provable in L and
var(δ) ⊆ var((γ ∧ 1)m · ϕ) ∩ var((σ ∧ 1)n → ψ). Then, both γ ⊢L ϕ → δ and σ ⊢L δ → ψ hold
also for this formula δ. Moreover, we can show that var(δ) ⊆ var(γ, ϕ)∩var(σ, ψ) holds. Thus, the
SCIP holds for L.

Next, we show that the DIP implies the SDIP. Suppose that a logic over FLe has the DIP
and that γ, σ ⊢L ψ holds. By the local deduction theorem, we have γ ⊢L (σ ∧ 1)n → ψ for
some n. Then by the DIP, there exists a formula δ such that γ ⊢L δ, δ ⊢L (σ ∧ 1)n → ψ and
var(δ) ⊆ var(γ)∩ var((σ∧ 1)n → ψ) = var(γ)∩ var(σ, ψ). From the latter, δ, σ ⊢L ψ follows. Thus,
the SDIP holds.

Combining these two equivalences with Lemma 8, we can show that the CIP implies the DIP.
2

Thus, we have:

SCIP ⇔ CIP

SDIP ⇔ DIP

⇓

Figure 2: Relationships among interpolation properties: commutative case.

The above figure tells us that the CIP implies always the SDIP for every substructural logic
over FLe. But they are in general independent, as the following shows (see Lemma 5.49 in [8]).

PROPOSITION 10 The properties CIP and SDIP are independent.

3.2 Robinson property and Extension interpolation property

In [31], the second author introduced two properties for classes of algebras, ROB* and limited
GINT, either of which is weaker than eqIP. In view of the algebraization theorem, they are trans-
lated into the following properties RP and ExIP for logics. Both of them are discussed also in [6],
where the RP is called the ordinary interpolation property.

DEFINITION 5 A substructural logic L has the Robinson property (RP) if for every set of
formulas Γ∪Σ∪ {ψ}, Γ,Σ ⊢L ψ implies Σ ⊢L ψ, whenever Γ ⊢L σ iff Σ ⊢L σ for every formula σ
such that var(σ) ⊆ var(Γ) ∩ var(Σ ∪ {ψ}).

Now, we introduce two extensions of the RP.

DEFINITION 6 (1) A substructural logic L has the super Robinson property (superRP), pro-
vided that for every set of formulas Γ ∪ Σ ∪ {ϕ,ψ} such that Γ ⊢L σ iff Σ ⊢L σ for every
formula σ with var(σ) ⊆ var(Γ ∪ {ϕ}) ∩ var(Σ ∪ {ψ}), if Γ,Σ ⊢L ϕ\ψ then there exists a
fomula δ such that

(a) Γ ⊢L ϕ\δ and Σ ⊢L δ\ψ, and

(b) var(δ) ⊆ var(Γ ∪ {ϕ}) ∩ var(Σ ∪ {ψ}).
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(2) A substructural logic L has the strong Robinson property (strongRP), provided that for every
set of formulas Γ ∪ Σ ∪ {ϕ,ψ} such that Γ ⊢L σ iff Σ ⊢L σ for every formula σ with
var(σ) ⊆ var(Γ ∪ {ϕ}) ∩ var(Σ ∪ {ψ}), if Γ,Σ ⊢L (ϕ\ψ) ∧ (ψ\ϕ) then there exists a formula
δ such that

(a) Γ ⊢L (ϕ\δ) ∧ (δ\ϕ) and Σ ⊢L (ψ\δ) ∧ (δ\ψ), and

(b) var(δ) ⊆ var(Γ ∪ {ϕ}) ∩ var(Σ ∪ {ψ}).

Notice that the former extension was called the “strong” Robinson property in [8] and the latter
is not defined so far. But, to introduce two extensions of the RP, we call the former, “super” RP
instead. In fact, this way of naming these properties corresponds to relationships between the RP
and the amalgamation properties shown later.

LEMMA 11 For any substructural logic, the following hold.

(1) The superRP implies the strongRP, and the strongRP implies the RP.

(2) The SCIP implies the superRP, and the superRP implies the CIP.

(3) The SDIP implies the RP, and the RP implies the DIP.

Proof. Suppose that a substructural logic L has the superRP, and Γ,Σ ⊢L (ϕ\ψ) ∧ (ψ\ϕ) holds
for a set of formulas Γ ∪ Σ ∪ {ϕ,ψ} such that Γ ⊢L σ iff Σ ⊢L σ for every formula σ with
var(σ) ⊆ var(Γ∪{ϕ})∩ var(Σ∪{ψ}). Then, we have that Γ,Σ ⊢L ϕ\ψ and Γ,Σ ⊢L ψ\ϕ hold. By
the superRP, there exist some formulas δ1 and δ2 such that

• Γ ⊢L ϕ\δ1 and Σ ⊢L δ1\ψ,

• Γ ⊢L δ2\ϕ and Σ ⊢L ψ\δ2, and

• var(δ1), var(δ2) ⊆ var(Γ ∪ {ϕ}) ∩ (Σ ∪ {ψ}).

Thus, both Γ ⊢L δ2\δ1 and Σ ⊢L δ1\δ2 hold. Since var(δ1\δ2) = var(δ2\δ1) ⊆ var(Γ∪{ϕ})∩var(Σ∪
{ψ}), we have also that Γ ⊢L δ1\δ2 and Σ ⊢L δ2\δ1 hold by the assumption of Γ ∪ Σ ∪ {ϕ,ψ}.
Therefore, Γ ⊢L (ϕ\δ1) ∧ (δ1\ϕ) and Σ ⊢L (ψ\δ1) ∧ (δ1\ψ), namely the strongRP holds. Next,
suppose that a substructural logic L has the strongRP, and Γ,Σ ⊢L ψ holds for a set of formulas
Γ ∪Σ ∪ {ψ} such that Γ ⊢L σ iff Σ ⊢L σ for every formula σ with var(σ) ⊆ var(Γ) ∪ var(Σ ∪ {ψ}).
Then we have that Γ,Σ ⊢L (1\(ψ ∧ 1)) ∧ ((ψ ∧ 1)\1) holds. By the strongRP, there exists some
formula δ3 such that

1. Γ ⊢L (1\δ3) ∧ (δ3\1) and Σ ⊢L ((ψ ∧ 1)\δ3) ∧ (δ3\(ψ ∧ 1)), and

2. var(δ3) ⊆ var(Γ) ∩ var(Σ ∪ {ψ}).

Thus, Γ ⊢L δ3 and Σ ⊢L δ3\(ψ ∧ 1) hold. By the assumption of Γ ∪ Σ ∪ {ψ}, Σ ⊢L δ3 also holds,
and hence Σ ⊢L ψ, namely the RP holds.

It is clear that the SCIP implies the superRP, and the CIP is nothing but the superRP where
both Γ and Σ are empty sets.

We show next that a substructural logic L has the RP, assuming that it has the SDIP. Suppose
that Γ,Σ ⊢L ψ holds for a set of formulas Γ∪Σ∪{ψ} such that Γ ⊢L σ iff Σ ⊢L σ for every formula
σ with var(σ) ⊆ var(Γ) ∩ var(Σ ∪ {ψ}). Then by the SDIP there is some formula δ4 such that
Γ ⊢L δ4 and δ4,Σ ⊢L ψ, and var(δ4) ⊆ var(Γ) ∩ var(Σ ∪ {ψ}). By the assumption of Γ ∪ Σ ∪ {ψ},
Σ ⊢L δ4 holds, and hence Σ ⊢L ψ. Thus the RP holds. Finally, suppose that a substructural logic
L has the RP, and Γ ⊢L ψ holds. Define the set of formulas Γ† by Γ† = {γ : Γ ⊢L γ and var(γ) ⊆
var(Γ) ∩ var(ψ)}. Then it is easy to see that Γ ⊢L σ iff Γ† ⊢L σ holds for every formula σ with
var(σ) ⊆ var(Γ) ∩ var(ψ). Since var(Γ) ∩ var(Γ† ∪ {ψ}) ⊆ var(Γ) ∩ var(ψ) and Γ,Γ† ⊢L ψ hold,
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by the RP we have Γ† ⊢L ψ. Since ⊢L is finitary and conjunctive, if we take a suitable finite
conjunction δ5 of Γ†, both Γ ⊢L δ5 and δ5 ⊢L ψ hold, and moreover var(δ5) ⊆ var(Γ) ∩ var(ψ).
Thus, the DIP holds.

2

The fact that the RP implies the DIP in Lemma 11 was originally shown by Czelakowski and
Pigozzi (see Theorem 3.6 in [6]).

In Figure 3, we summarize the relationships between interpolation properties and Robinson
properties discussed so far.

SCIP ⇒ superRP ⇒ CIP
⇓

strongRP
⇓

SDIP ⇒ RP ⇒ DIP

=
⇒

Figure 3: Relationships between interpolation propeties and Robinson properties

The above lemma tells us that the SDIP implies the RP, and the RP implies the DIP. To see
differences among them more explicitly, we introduce alternative definitions of the SDIP and the
DIP. These definitions are also used later when we discuss their algebraic characterizations.

DEFINITION 7 (1) A substructural logic L has the SDIP∗ if for every set of formulas Γ ∪
Σ ∪ {ψ}, Γ,Σ ⊢L ψ implies Σ ⊢L ψ, whenever Γ ⊢L σ implies Σ ⊢L σ for every formula σ
with var(σ) ⊆ var(Γ) ∩ var(Σ ∪ {ψ}).

(2) A substructural logic L has the DIP∗ if for every set of formulas Γ∪Σ∪{ψ}, Γ ⊢L ψ implies
Σ ⊢L ψ, whenever Γ ⊢L σ iff Σ ⊢L σ for every formula σ with var(σ) ⊆ var(Γ)∩var(Σ∪{ψ}).

LEMMA 12 (1) For each substructural logic, the SDIP holds iff the SDIP∗ holds.

(2) For each substructural logic, the DIP holds iff the DIP∗ holds.

Proof. First suppose that the SDIP holds for a logic L. We assume that Γ ⊢L σ implies Σ ⊢L σ for
every formula σ with var(σ) ⊆ X, and that Γ,Σ ⊢L ψ. Here, X is the set var(Γ) ∩ var(Σ ∪ {ψ}).
By the SDIP, there exists a formula δ with var(δ) ⊆ X such that Γ ⊢L δ, and δ,Σ ⊢L ψ. By our
assumption, Σ ⊢L δ. Thus, Σ ⊢L ψ. Hence the SDIP∗ holds. Similarly, we can show that the DIP
implies the DIP∗.

Conversely, suppose that the SDIP∗ holds for a logic L, and that Γ,Σ ⊢L ψ. Define Γ† = {γ :
Γ ⊢L γ and var(γ) ⊆ X}, where X is the set of variables defined as above. Clearly, for any formula
σ with var(σ) ⊆ X, Γ ⊢L σ implies Γ†,Σ ⊢L σ. Now, Γ,Σ ⊢L ψ implies always Γ,Γ†,Σ ⊢L ψ, from
which Γ†,Σ ⊢L ψ follows by using the SDIP∗. Since ⊢L is finitary and conjunctive, there exists
a formula δ, which is a conjunction of finitely many formulas in Γ†, such that δ,Σ ⊢L ψ. By the
definition of Γ† it is clear that Γ ⊢L δ and var(δ) ⊆ X. Thus, the SDIP holds.

To show that the DIP follows from the DIP∗, we need to modify the above proof slightly.
Suppose that the DIP∗ holds for a logic L, and that Γ ⊢L ψ. Define Γ† just in the same way as
above, but taking the set var(Γ) ∩ var(ψ) for X. Then it is obvious that Γ ⊢L σ iff Γ† ⊢L σ for
every formula σ with var(σ) ⊆ X. Thus, by applying the DIP∗, Γ† ⊢L ψ follows from Γ ⊢L ψ.
Then, by taking a suitable finite conjunction δ of Γ†, we can show that Γ ⊢L δ and δ ⊢L ψ. As
var(δ) ⊆ X, the DIP follows. Clearly, the SDIP∗ implies the RP, which in turn implies the DIP∗.
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2

The following is an immediate corollary of Lemma 9.

COROLLARY 13 For every substructural logic over FLe, the following hold.

(1) The SCIP, the superRP and the CIP are mutually equivalent.

(2) The SDIP, the RP and the DIP are mutually equivalent.

In fact, the above equivalences hold whenever a logic satisfies the local deduction property of
the following form (see [18]):

for any Γ, σ, ψ, if Γ, σ ⊢L ψ then there exists a formula ⋆(σ) with var(⋆(σ)) ⊆ var(σ)
such that Γ ⊢L ⋆(σ)\ψ and σ ⊢L ⋆(σ).

Note that the above form of the local deduction property always holds for any logic over FLe since
we can take (σ ∧ 1)n for some n ∈ ω as ⋆(σ).

DEFINITION 8 A substructural logic L has the extension interpolation property (ExIP),2 if for
every set of formulas Γ ∪ Σ ∪ {ψ}, if Γ,Σ ⊢L ψ, then there exists a formula δ such that

1. Γ ⊢L δ and δ,Σ ⊢L ψ,

2. var(δ) ⊆ var(Σ ∪ {ψ}).

Notice that in case of the ExIP, var(δ) might be unrelated to var(Γ).

The following shows relationships between the SDIP, the RP and the ExIP. (see also Theorem
3.6 in [6])

THEOREM 14 For any substructural logic L, L has the SDIP iff it has both the RP and the
ExIP iff it has both the DIP and the ExIP.

Proof. The ExIP follows immediately from the SDIP. By Lemma 11, the SDIP implies the RP, and
the RP implies the DIP. Thus, it is sufficient to show that both the DIP and the ExIP imply the
SDIP. Assume that Γ,Σ ⊢L ψ holds. Then, by the ExIP, there exists some formula δ′ such that

1. Γ ⊢L δ
′ and δ′,Σ ⊢L ψ, and

2. var(δ′) ⊆ var(Σ ∪ {ψ}).

Now, by applying the DIP to Γ ⊢L δ
′, there exists some formula δ∗ such that

3. Γ ⊢L δ
∗ and δ∗ ⊢L δ

′, and

4. var(δ∗) ⊆ var(Γ) ∩ var(δ′) ⊆ var(Γ) ∩ var(Σ ∪ {ψ}).

Thus, we have that Γ ⊢L δ
∗ and δ∗,Σ ⊢L ψ. Therefore, the SDIP holds. 2

LEMMA 15 (1) For each substructural logic L, L has the ExIP iff V(L) has the CEP.

(2) For each substructural logic over FLe, the ExIP holds always.

Proof. Here we prove only (2). For (1), see [31], where the equivalence between the equational
form of the ExIP and the CEP is shown.

Suppose that γ, σ ⊢L ϕ. By the local deduction theorem for FLe, γ ⊢L (σ ∧ 1)n → ψ for
some n. Let δ be (σ ∧ 1)n → ψ. Then, clearly both γ ⊢L δ and δ, σ ⊢L ψ hold. Moreover,
var(δ) ⊆ var(σ ∪ {ψ}). Thus, the ExIP follows. 2

2The notion of the ExIP is introduced in [6]. Note that in the definition of the limited GINT given in [31], it is
required that var(Σ ∪ {ψ}) ⊆ var(Γ). But it is easy to see that this assumption can be omitted.
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4 Algebraic characterization of the CIP and the DIP

4.1 Amalgamation property

DEFINITION 9 A variety V has the amalgamation property (AP), if for all A,B,C in V and
for all embeddings f : A → B and g : A → C, there exists an algebra D in V and embeddings
h : B → D, k : C → D such that h ◦ f = k ◦ g.

The following result was originally shown by the second author in [31], with respect to equational
calculi. Here, we give a detailed proof with respect to substructural logics since this argument is
essential for the later algebraic characterizations.

THEOREM 16 For each substructural logic L, L has the RP iff V(L) has the AP.

Proof. Suppose that L has the RP. We assume moreover that there exist embeddings f : A → B
and g : A → C for FL-algebras A,B and C in V(L). We introduce a set of variables X by
X = {xa : a ∈ A}, and a mapping η′A : X → A by η′A(xa) = a. Then, the mapping η′A is uniquely
extended to the mapping ηA : Fm(X) → A, which is in fact a surjective homomorphism. Next,
we introduce sets of variables Y and Z by Y = X ∪{yb : b ∈ B \f(A)}, Z = X ∪{zc : c ∈ C \g(A)}
so that Y ∩ Z = X, and mappings η′B : Y → B and η′C : Z → C by

η′B(y) =

{

f(a) if y = xa for some xa ∈ X
b if y = yb for some b ∈ B \ f(A)

and

η′C(z) =

{

g(a) if z = xa for some xa ∈ X
c if z = zc for some c ∈ C \ g(A).

Then η′B and η′C are extended to surjective homomorphisms ηB : Fm(Y ) → B and ηC : Fm(Z) →
C, respectively, and they satisfy ηB(α) = f(ηA(α)) and ηC(α) = g(ηA(α)) for every α ∈ Fm(X).
Define sets of formulas ΓB and ΓC by

ΓB = {ϕ ∈ Fm(Y ) : ηB(ϕ) ≥ 1B} and ΓC = {ψ ∈ Fm(Z) : ηC(ψ) ≥ 1C},

respectively. We introduce a binary relation ≡ on Fm(Y ∪ Z) by

β ≡ γ iff ΓB,ΓC ⊢ (β\γ) ∧ (γ\β),

where ⊢ denotes ⊢L. Then, by Lemma 6, ≡ is a congruence relation on Fm(Y ∪Z), and hence the
quotient algebra Fm(Y ∪ Z)/ ≡ is a member of V(L). Let us call this algebra, D. We will show
that this D is a required algebra satisfying the conditions for the AP.

To define the required embeddings h : B → D and k : C → D, we show that for each α ∈
Fm(X), ΓB ⊢ α iff ΓC ⊢ α. Suppose that ΓB ⊢ α. Then, f(1A) = 1B ≤ ηB(α) = f(ηA(α)) using
the definition of ΓB. Since f is injective, 1A ≤ ηA(α) and hence 1C = g(1A) ≤ g(ηA(α)) = ηC(α).
Thus, ΓC ⊢ α. The converse implication can be shown in the same way using the fact that g is
injective. Now define mappings h : B → D and k : C → D by

• h(b) = (ϕ/ ≡) when b = ηB(ϕ) for a formula ϕ ∈ Fm(Y ),

• k(c) = (ψ/ ≡) when c = ηC(ψ) for a formula ψ ∈ Fm(Z).

We prove that both h and k are well-defined embeddings. To show the well-definedness of h, suppose
that ηB(ϕ) = ηB(ϕ′) for ϕ,ϕ′ ∈ Fm(Y ). Then, ΓB ⊢ (ϕ\ϕ′)∧ (ϕ′\ϕ), and hence ϕ ≡ ϕ′. It is easy
to see that h is a homomorphism. To show that h is injective, suppose that h(b) = h(b′), where
b = ηB(ϕ) and b′ = ηB(ϕ′) for ϕ,ϕ′ ∈ Fm(Y ). Then, ϕ ≡ ϕ′, and thus ΓB,ΓC ⊢ (ϕ\ϕ′) ∧ (ϕ′\ϕ)

11



by the definition of ≡. From the RP, it follows that ΓB ⊢ (ϕ\ϕ′) ∧ (ϕ′\ϕ), which implies that
b = ηB(ϕ) = ηB(ϕ′) = b′. Similarly, k is shown to be a well-defined embedding. Note that in this
case it is necessary to interchange the role of ΓB and ΓC in applying the RP, as the RP is of the
symmetric form.

It remains to see that h ◦ f = k ◦ g. Take an arbitrary element a ∈ A. Then there exists a
formula α ∈ Fm(X) such that a = ηA(α). Then, (h ◦ f)(a) = h(f(ηA(α))) = h(ηB(α)) = (α/ ≡).
Similarly, (k ◦ g)(a) = (α/ ≡). Thus, h ◦ f = k ◦ g.

We show next that the AP implies the RP. Let Γ and Σ ∪ {ψ} be sets of formulas, and let us
denote sets of variables Y and Z by Y = var(Γ) and Z = var(Σ∪{ψ}). Moreover, we assume that

• Γ ⊢ α iff Σ ⊢ α for every formula α ∈ Fm(X), where X = Y ∩ Z,

• Γ,Σ ⊢ ψ.

Define ∆ = {α ∈ Fm(X) : Γ ⊢ α}, which is obviously equal to {α ∈ Fm(X) : Σ ⊢ α}. The set ∆
determines a binary relation ≡∆ on Fm(X) by

α ≡∆ β iff ∆ ⊢ (α\β) ∧ (β\α),

which is in fact a congruence relation. We denote the quotient algebra of Fm(X) determined by
this ≡∆ as Fm(X)/∆. Similarly, we can introduce quotient algebras Fm(Y )/Γ of Fm(Y ), and
Fm(Z)/Σ of Fm(Z), by taking sets of formulas Γ and Σ, respectively, in the place of ∆. It is clear
that all of these algebras Fm(X)/∆, Fm(Y )/Γ and Fm(Z)/Σ are members of V(L). We define
mappings f : Fm(X)/∆ → Fm(Y )/Γ and g : Fm(X)/∆ → Fm(Z)/Σ by

f(α/ ≡∆) = α/ ≡Γ and g(α/ ≡∆) = α/ ≡Σ.

They are shown to be well-defined embeddings, using the definition of ∆.
Since we assume that the AP holds for V(L), there exist an algebra D ∈ V(L), and two

embeddings h : Fm(Y )/Γ → D and k : Fm(Z)/Σ → D satisfying h ◦ f = k ◦ g. Now, consider a
valuation w over D for formulas in Fm(Y ∪ Z) defined as follows: For every x ∈ Y ∪ Z,

w(x) =

{

h(x/ ≡Γ) if x ∈ Y
k(x/ ≡Σ) if x ∈ Z

The mapping w is well-defined, since if x ∈ X, h(x/ ≡Γ) = (h ◦ f)(x/ ≡∆) = (k ◦ g)(x/ ≡∆) =
k(x/ ≡Σ). As usual, w is extended to a mapping from Fm(Y ∪ Z) to D, which satisfies that

w(γ) =

{

h(γ/ ≡Γ) if γ ∈ Fm(Y )
k(γ/ ≡Σ) if γ ∈ Fm(Z)

For each formula γ ∈ Γ, (γ/ ≡Γ) ≥ 1Fm(Y )/Γ and hence w(γ) = h(γ/ ≡Γ) ≥ 1D. Similarly,
w(γ) ≥ 1D for each formula γ ∈ Σ. Thus, D, w |= γ for every γ ∈ Γ ∪ Σ. Since Γ,Σ ⊢ ψ by
our assumption and D ∈ V(L), D, w |= ψ must hold. That is, k(ψ/ ≡Σ) ≥ 1D, which implies
ψ/ ≡Σ≥ 1Fm(Z)/Σ. This means that Σ ⊢ ψ. This completes our proof. 2

The following is an immediate consequence of Theorem 16, by considering Corollary 13.

COROLLARY 17 For each substructural logic L over FLe, L has the DIP iff V(L) has the AP.

DEFINITION 10 A variety V has the super-amalgamation property (superAP), if whenever
A,B,C are in V and f : A → B, g : A → C are embeddings, then there exists an algebra D
in V and embeddings h : B → D, k : C → D such that

1. h ◦ f = k ◦ g,
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2. (super) for all b ∈ B and c ∈ C, if h(b) ≤ k(c) (k(c) ≤ h(b)) then there exists a ∈ A
for which both h(b) ≤ h ◦ f(a) and k ◦ g(a) ≤ k(c) (k(c) ≤ k ◦ g(a) and h ◦ f(a) ≤ h(b),
respectively).

A variety V has the strong-amalgamation property (strongAP), if whenever A,B,C are in V and
f : A → B, g : A → C are embeddings, then there exists an algebra D in V and embeddings
h : B → D, k : C → D such that

1. h ◦ f = k ◦ g,

2. (strong) h(B) ∩ k(C) = h ◦ f(A).

It is easily seen that the superAP implies the strongAP, and the strongAP implies the AP.
In [24], it is shown that the converse implications do not hold in general for varieties of modal
algebras. On the other hand, all of them become equivalent for varieties of Heyting algebras, as
shown in [21].

Now, we extend Theorem 16 to characterization results of the superRP and the strongRP,
respectively.

THEOREM 18 For each substructural logic L, L has the superRP iff V(L) has the superAP.

Proof. We show our theorem using the proof of Theorem 16. Suppose first that L has the superRP.
Since it has the RP, we can construct an algebra D and embeddings h and k as we have done in
the proof of Theorem 16. For simplicity’s sake, we use the same symbols as in the proof of
Theorem 16 in the following. So, it remains to show that the last condition for the superAP
holds. Let b ∈ B and c ∈ C such that h(b) ≤ k(c). We need to find an element a ∈ A such that
h(b) ≤ h ◦ f(a) and k ◦ g(a) ≤ k(c) hold. Then, for some formulas ϕ ∈ Fm(Y ) and ψ ∈ Fm(Z),
b = ηB(ϕ) and c = ηC(ψ). From the definitions of h, k and ≡, we can see that the condition
h(b) ≤ k(c) is equivalent to ΓB,ΓC ⊢ ϕ\ψ. Since L has the superRP and the required condition
for applying it to ΓB,ΓC ⊢ ϕ\ψ is satisfied, as shown in the proof of Theorem 16, there exists
a formula δ ∈ Fm(X) such that ΓB ⊢ ϕ\δ and ΓC ⊢ δ\ψ. Let a = ηA(δ). Then, we have
b = ηB(ϕ) ≤ ηB(δ) = f(ηA(δ)) = f(a) and g(a) = g(ηA(δ)) = ηC(δ) ≤ ηC(ψ) = c. Thus, the
superAP holds.

Conversely, suppose that V(L) has the superAP. Let Γ ∪ {ϕ} and Σ ∪ {ψ} be sets of formulas,
and let us denote sets of variables Y and Z by Y = var(Γ∪{ϕ}) and Z = var(Σ∪{ψ}). Moreover,
we assume that

• Γ ⊢ α iff Σ ⊢ α for every formula α ∈ Fm(X), where X = Y ∩ Z,

• Γ,Σ ⊢ ϕ\ψ.

As we have shown in the proof of Theorem 16, the mappings f : Fm(X)/∆ → Fm(Y )/Γ and
g : Fm(X)/∆ → Fm(Z)/Σ introduced there are embeddings. Thus, by the superAP, there exist
an algebra D and embeddings h : Fm(Y )/Γ → D and k : Fm(Z)/Σ → D such that

1. h ◦ f = k ◦ g,

2. for all b ∈ Fm(Y )/Γ and c ∈ Fm(Z)/Σ, if h(b) ≤ k(c) (k(c) ≤ h(b)) then there exists
a ∈ Fm(X)/∆ such that h(b) ≤ h◦f(a) and k◦g(a) ≤ k(c) (k(c) ≤ k◦g(a) and h◦f(a) ≤ h(b),
respectively) hold.

Then as before, we can take such a valuation w over D that satisfies that

w(γ) =

{

h(γ/ ≡Γ) if γ ∈ Fm(Y )
k(γ/ ≡Σ) if γ ∈ Fm(Z).
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By our assumption, Γ,Σ ⊢ ϕ\ψ holds. Then, D, w |= ϕ\ψ holds, i.e., w(ϕ) ≤ w(ψ), or equivalently,
h(ϕ/ ≡Γ) ≤ k(ψ/ ≡Σ). By the second condition of the superAP, there exists an element d ∈
Fm(X)/∆ such that h(ϕ/ ≡Γ) ≤ h ◦ f(d) and k ◦ g(d) ≤ k(ψ/ ≡Σ). Then, there exists a formula
δ ∈ Fm(X) such that d = (δ/ ≡∆), and by injectiveness of h and k, these imply (ϕ/ ≡Γ) ≤ (δ/ ≡Γ)
and (δ/ ≡Σ) ≤ (ψ/ ≡Σ). This is equivalent to saying that Γ ⊢ ϕ\δ and Σ ⊢ δ\ψ for a formula
δ ∈ Fm(X). Therefore, the superRP holds. 2

Thus, we have the following as a corollary.

COROLLARY 19 For each substructural logic L over FLe, L has the CIP iff V(L) has the
superAP.

In [18], Madarász discussed how far this result can be extended and for which logics the equiv-
alence holds.

THEOREM 20 For each substructural logic L, L has the strongRP iff V(L) has the strongAP.

Proof. We show our theorem again by using the proof of Theorem 16. Suppose first that L
has the strongRP. Since it has the RP, we can construct an algebra D and embeddings h and
k as we have done in the proof of Theorem 16. So, it remains to show that the last condition
h(B)∩ k(C) = h ◦ f(A) holds. Note that h ◦ f(A) ⊆ h(B)∩ k(C) holds since f(A) ⊆ B, g(B) ⊆ C
and h ◦ f = k ◦ g. Thus, it is sufficient to show that h(B)∩ k(C) ⊆ h ◦ f(A). Let d ∈ h(B)∩ k(C),
namely for some b ∈ B and c ∈ C, d = h(b) = k(c). Then, for some formulas ϕ ∈ Fm(Y ) and
ψ ∈ Fm(Z), b = ηB(ϕ) and c = ηC(ψ). From the definitions of h, k and ≡, we can see that the
condition h(b) = k(c) is equivalent to ΓB,ΓC ⊢ (ϕ\ψ) ∧ (ψ\ϕ). Since the required condition for
applying the strongRP is satisfied by ΓB and ΓC, as shown in the proof of Theorem 16, there exists
a formula δ ∈ Fm(X) such that ΓB ⊢ (ϕ\δ)∧(δ\ψ) and ΓC ⊢ (δ\ψ)∧(ψ\δ). Let a = ηA(δ). Then,
we have b = ηB(ϕ) = ηB(δ) = f(ηA(δ)) = f(a), which implies d = h(b) = h ◦ f(a) ∈ h ◦ f(A).
Thus, the strongAP holds.

Conversely, suppose that V(L) has the strongAP. Let Γ∪ {ϕ} and Σ∪ {ψ} be sets of formulas,
and let Y = var(Γ ∪ {ϕ}) and Z = var(Σ ∪ {ψ}). Moreover, we assume that

• Γ ⊢ α iff Σ ⊢ α for every formula α ∈ Fm(X), where X = Y ∩ Z,

• Γ,Σ ⊢ (ϕ\ψ) ∧ (ψ\ϕ).

Similarly to the proof of Theorem 16, for given embeddings f : Fm(X)/∆ → Fm(Y )/Γ and
g : Fm(X)/∆ → Fm(Z)/Σ, there exist an algebra D and embeddings h : Fm(Y )/Γ → D and
k : Fm(Z)/Σ → D satisfying h ◦ f = k ◦ g and h(Fm(Y )/Γ) ∩ k(Fm(Z)/Σ) = h ◦ f(Fm(X)/∆)
by the strongAP of V(L). Then there exists such a valuation w over D that satisfies that

w(γ) =

{

h(γ/ ≡Γ) if γ ∈ Fm(Y )
k(γ/ ≡Σ) if γ ∈ Fm(Z).

By our assumption, Γ,Σ ⊢ (ϕ\ψ) ∧ (ψ\ϕ) holds. Then, D, w |= (ϕ\ψ) ∧ (ψ\ϕ) holds, i.e., w(ϕ) =
w(ψ), or equivalently, h(ϕ/ ≡Γ) = k(ψ/ ≡Σ). By the second condition of the strongAP, we have
h(ϕ/ ≡Γ) = k(ψ/ ≡Σ) ∈ h ◦ f(A). Hence there exists an element d ∈ Fm(X)/∆ such that
h(ϕ/ ≡Γ) = h ◦ f(d) = k ◦ g(d) = k(ψ/ ≡Σ), using the fact that h ◦ f = k ◦ g. Since both h and
k are injective, we have that (ϕ/ ≡Γ) = f(d) and g(d) = (ψ/ ≡Σ) hold. Let δ be a formula in
Fm(X) such that d = (δ/ ≡∆). Then, both (ϕ/ ≡Γ) = (δ/ ≡Γ) and (δ/ ≡Σ) = (ψ/ ≡Σ) hold.
Therefore, Γ ⊢ (ϕ\δ)∧ (δ\ϕ) and Σ ⊢ (ψ\δ)∧ (δ\ψ) for a formula δ ∈ Fm(X). Thus, the strongRP
holds. 2

14



4.2 Generalized amalgamation property

We give algebraic characterizations of both the CIP and the DIP. An algebraic characterization of
the DIP by the flat amalgamation property is given and discussed in [14], [32], [3] and [6]. But we
give here another kind of algebraic characterization.

The amalgamation property says that for all A,B,C in a variety V and for all embeddings
f : A → B and g : A → C, there exists an algebra D in V and embeddings h : B → D, k : C → D
satisfying some conditions. Obviously, h and k give isomorphisms between B and a subalgebra
h(B) of D, and between C and a subalgebra k(C) of D, respectively. Equivalently, this can be
expressed in such a way that there exist subalgebras D1 and D2 of D and isomorphisms from D1 to
B and from D2 to C (in fact, they are h−1 and k−1, respectively) satisfying certain conditions. By
replacing homomorphisms by isomorphisms, we have a definition of the generalized amalgamation
property as follows.

DEFINITION 11 A variety V has the generalized amalgamation property (GAP) if for all
A,B,C in V and for all embeddings f : A → B and g : A → C, there exist an algebra D in
V, subalgebras D1 and D2 of D, and surjective homomorphisms i : D1 → B and j : D2 → C such
that

1. for all a ∈ A there exists d ∈ D1 ∩D2 such that f(a) = i(d) and g(a) = j(d).

When either of i or j is injective in the GAP, we call it the generalized amalgamation property
with injections, and write it as the IGAP.

Note that the condition 1 in the GAP corresponds to the condition h ◦ f = k ◦ g in the AP.
More precisely, when both i and j are isomorphisms, we can easily show the equivalence of these
two conditions, by taking h = i−1 and k = j−1. In this case, the GAP is nothing but the AP.
Thus, the AP implies the IGAP, and the IGAP implies the GAP.

D

D2D1

B

C

A

f

g

i

j

Figure 4: The generalized amalgamation property

In the previous subsection, we have introduced two strengthened forms of the AP, i.e., superAP
and strongAP. In the same way, we introduce two strengthened forms of the GAP as follows.

DEFINITION 12 A variety V has the super generalized amalgamation property (superGAP), if
for all A,B,C in V and for all embeddings f : A → B and g : A → C, there exist an algebra D
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in V, subalgebras D1 and D2 of D, and surjective homomorphisms i : D1 → B and j : D2 → C
that satisfy the following:

1. for all a ∈ A there exists d ∈ D1 ∩D2 such that f(a) = i(d) and g(a) = j(d),

2. for all d1 ∈ D1, d2 ∈ D2 such that d1 ≤ d2 (d2 ≤ d1), there exists a ∈ A such that i(d1) ≤ f(a)
and g(a) ≤ j(d2) (j(d2) ≤ g(a) and f(a) ≤ i(d1), respectively).

When either of i or j is injective in the superGAP, we call it the super generalized amalgamation
property with injections (superIGAP).

A variety V has the strong generalized amalgamation property (strongGAP), if for all A,B,C
in V and for all embeddings f : A → B and g : A → C, there exist an algebra D in V, subalgebras
D1 and D2 of D, and surjective homomorphisms i : D1 → B and j : D2 → C that satisfy the
following:

1. for all a ∈ A there exists d ∈ D1 ∩D2 such that f(a) = i(d) and g(a) = j(d),

2. for all d ∈ D1 ∩D2, there exists a ∈ A such that i(d) = f(a) and j(d) = g(a).

When either of i or j is injective in the strongGAP, we call it the strong generalized amalgamation
property with injections (strongIGAP).

Note that the second condition in the superGAP corresponds to the condition (super) in the
superAP, namely

2. (super) for all b ∈ B and c ∈ C, if h(b) ≤ k(c) (k(c) ≤ h(b)) then there exists a ∈ A
for which both h(b) ≤ h ◦ f(a) and k ◦ g(a) ≤ k(c) (k(c) ≤ k ◦ g(a) and h ◦ f(a) ≤ h(b),
respectively).

Similarly, the second condition in the strongGAP corresponds to the condition (strong) in the
strongAP, namely h(B)∩ k(C) = h ◦ f(A). Moreover, the superGAP implies the strongGAP. For,
if d ∈ D1 ∩ D2 then, by the condition 2 of the superGAP, there exist some a1, a2 ∈ A such that
the following two conditions follows;

1. i(d) ≤ f(a1) and g(a1) ≤ j(d), and

2. j(d) ≤ g(a2) and f(a2) ≤ i(d).

Thus, f(a2) ≤ f(a1) and g(a1) ≤ g(a2) hold. Since f and g are injective, we have that a1 = a2.
Therefore, the strongGAP holds.

We can summarize relations among the APs and the GAPs in Figure 5.

superAP ⇒ superIGAP ⇒ superGAP
⇓ ⇓ ⇓

strongAP ⇒ strongIGAP ⇒ strongGAP
⇓ ⇓ ⇓

AP ⇒ IGAP ⇒ GAP

Figure 5: Relationships between the APs and the GAPs
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4.3 Algebraic characterizations of the DIP and the CIP

Now, we give algebraic characterizations of the DIP and the CIP, respectively.

THEOREM 21 For each substructural logic L, L has the DIP iff V(L) has the IGAP.

Proof. By Lemma 12, it is enough to show that L has the DIP∗ iff V(L) has the IGAP. Once again,
the proof goes in the similar way to the proof of Theorem 16. So, we point out only places where
modifications are necessary. First, we show that V(L) has the IGAP, by assuming the DIP∗ of L.
Define ΓB and ΓC in the same way as before. But, differently from the proof of Theorem 16, we
define a binary relation ≡ on Fm(Y ∪ Z) by

β ≡ γ iff ΓB ⊢ (β\γ) ∧ (γ\β).

Now, let D be the quotient algebra Fm(Y ∪ Z)/ ≡ which is in V(L). Also, let D1 and D2 be
Fm(Y )/ ≡ and Fm(Z)/ ≡, respectively. Clearly they are subalgebras of D. Now define mappings
i : D1 → B and j : D2 → C by

• i(ϕ/ ≡) = ηB(ϕ) for a formula ϕ ∈ Fm(Y ),

• j(ψ/ ≡) = ηC(ψ) for a formula ψ ∈ Fm(Z).

For all formulas ϕ,ϕ′ ∈ Fm(Y ),

ϕ ≡ ϕ′ iff ΓB ⊢ (ϕ\ϕ′) ∧ (ϕ′\ϕ) iff ηB(ϕ) = ηB(ϕ′).

Thus, i is a well-defined isomorphism. On the other hand, since for each α ∈ Fm(X), ΓB ⊢ α iff
ΓC ⊢ α, and ΓB ⊢ β implies ΓC ⊢ β for any β ∈ Fm(Z), by the DIP∗. Therefore, for all formulas
ψ,ψ′ ∈ Fm(Z),

ψ ≡ ψ′ iff ΓB ⊢ (ψ\ψ′) ∧ (ψ′\ψ), which implies ΓC ⊢ (ψ\ψ′) ∧ (ψ′\ψ), iff ηC(ψ) = ηC(ψ′).

Thus, j is well-defined and is a surjective homomorphism. Moreover, for each a ∈ A there exists a
formula α ∈ Fm(X) such that ηA(α) = a. Take (α/ ≡) for d in the definition of the GAP. Then
it is easy to see that this d satisfies the required conditions for the GAP. Thus the IGAP holds.

Conversely, suppose that V(L) has the IGAP. Let Γ and Σ ∪ {ψ} be sets of formulas, and let
Y = var(Γ) and Z = var(Σ ∪ {ψ}). Moreover, we assume that

• Γ ⊢ α iff Σ ⊢ α for every formula α ∈ Fm(X), where X = Y ∩ Z,

• Γ ⊢ ψ.

The proof goes also similarly to the proof of Theorem 16. We introduce algebras Fm(X)/∆,
Fm(Y )/Γ and Fm(Z)/Σ, and then define mappings f : Fm(X)/∆ → Fm(Y )/Γ and g : Fm(X)/∆ →
Fm(Z)/Σ by

f(α/ ≡∆) = α/ ≡Γ and g(α/ ≡∆) = α/ ≡Σ.

As before, f and g are shown to be well-defined embeddings. By using the IGAP of V(L), we
have that there exist an algebra D ∈ V(L), subalgebras D1 and D2 of D, and an isomorphism
i : D1 → Fm(Y )/Γ and a surjective homomorphism j : D2 → Fm(Z)/Σ such that for all
a ∈ Fm(X)/∆ there exists d ∈ D1 ∩ D2 such that f(a) = i(d) and g(a) = j(d). Note that such
an element d determines uniquely since i is injective. Now, we define a valuation w over D for
formulas in Fm(Y ∪ Z) so as to satisfy the following: For every x ∈ Y ∪ Z,

w(x) =

{

i−1(x/ ≡Γ) if x ∈ Y
an element in j−1(x/ ≡Σ) if x ∈ Z \ Y .
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Then, (i◦w)(x) = (x/ ≡Γ) for x ∈ Y . Moreover, we can show that (j ◦w)(x) = (x/ ≡Σ) for x ∈ Z.
For, if x ∈ Z \ Y then this is trivial by the definition of w. Otherwise, x ∈ Z ∩ Y ⊆ Y . By the
definition of w, we have w(x) = i−1(x/ ≡Γ), namely f(x/ ≡∆) = (x/ ≡Γ) = i(w(x)) holds. On the
other hand, since x/ ≡∆∈ Fm(X)/∆, by the condition of the IGAP, there exists some d ∈ D1∩D2

such that f(x/ ≡∆) = i(d) and g(x/ ≡∆) = j(d). Thus, i(d) = f(x/ ≡∆) = i(w(x)) holds. Since
i is injective, we have d = w(x), and hence g(x/ ≡∆) = j(w(x)). Therefore, (j ◦ w)(x) = (x/ ≡Σ)
holds for x ∈ Z. Now, the mapping w is extended to a homomorphism from Fm(Y ∪ Z) to D,
which satisfies that:

• (i ◦ w)(γ) = (γ/ ≡Γ) for γ ∈ Fm(Y ),

• (j ◦ w)(β) = (β/ ≡Σ) for β ∈ Fm(Z).

For each formula γ ∈ Γ, (i ◦ w)(γ) = (γ/ ≡Γ) ≥ 1Fm(Y )/Γ and hence w(γ) ≥ 1D by the injectivity
of i. Thus, D, w |= γ for every γ ∈ Γ. So, our assumption Γ ⊢ ψ implies D, w |= ψ. Thus,
(j ◦ w)(ψ) = (ψ/ ≡Σ) ≥ 1Fm(Z)/Σ , which implies Σ ⊢ ψ. This completes our proof. 2

THEOREM 22 For each substructural logic L, L has the CIP iff V(L) has the superGAP.

Proof. The proof goes similarly to the proofs of Theorems 18 and 21. First, we show that the
superGAP holds, by assuming the CIP. This time we define a binary relation ≡ on Fm(Y ∪ Z)
simply by

β ≡ γ iff ⊢ (β\γ) ∧ (γ\β).

Then, let D be the quotient algebra Fm(Y ∪ Z)/ ≡ which is in V(L), and let D1 and D2 be
Fm(Y )/ ≡ and Fm(Z)/ ≡, respectively. We define mappings i : D1 → B and j : D2 → C by

• i(ϕ/ ≡) = ηB(ϕ) for a formula ϕ ∈ Fm(Y ),

• j(ψ/ ≡) = ηC(ψ) for a formula ψ ∈ Fm(Z).

First, we show that both i and j are well-defined and are surjective homomorphisms. For all
formulas ϕ,ϕ′ ∈ Fm(Y ),

ϕ ≡ ϕ′ iff ⊢ (ϕ\ϕ′) ∧ (ϕ\ϕ′), which implies ΓB ⊢ (ϕ\ϕ′) ∧ (ϕ′\ϕ), iff ηB(ϕ) = ηB(ϕ′).

Thus, i is a well-defined surjective homomorphism. Similarly, j is also a well-defined surjective
homomorphism. It is easily shown that they satisfy the first condition of the superGAP, in a
similar way to the proof of Theorem 21. To show the second condition, suppose that d1 ∈ D1,
d2 ∈ D2 such that d1 ≤ d2. Then, there exist formulas ϕ ∈ Fm(Y ) and ψ ∈ Fm(Z) such that
d1 = (ϕ/ ≡), d2 = (ψ/ ≡) and ⊢ ϕ\ψ. By the CIP, there exists a formula δ ∈ Fm(X) such that
both ⊢ ϕ\δ and ⊢ δ\ψ hold. Thus, (ϕ/ ≡) ≤ (δ/ ≡) holds in D1 and (δ/ ≡) ≤ (ψ/ ≡) holds in
D2. Let a = ηA(δ). Then, we have i(d1) = i(ϕ/ ≡) ≤ i(δ/ ≡) = ηB(δ) = f(ηA(δ)) = f(a), and
similarly g(a) ≤ j(d2). Thus, the superGAP holds.

Conversely, suppose that the superGAP holds for V(L), and ⊢L ϕ\ψ holds. Let’s define sets of
variables X,Y and Z by

Y = var(ϕ), Z = var(ψ) and X = Y ∩ Z.

By using the same congruence relation ≡ as in the above, define A, B and C by Fm(X)/ ≡,
Fm(Y )/ ≡ and Fm(Z)/ ≡, respectively. Then there exist inclusion maps f : A → B and
g : A → C. By the superGAP, there exist an algebra D in V(L), subalgebras D1 and D2 of D,
and surjective homomorphisms i : D1 → B and j : D2 → C that satisfy the following:

1. for all a ∈ A there exists d ∈ D1 ∩D2 such that f(a) = i(d) and g(a) = j(d),
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2. for all d1 ∈ D1, d2 ∈ D2 such that d1 ≤ d2 (d2 ≤ d1), there exists a ∈ A such that i(d1) ≤ f(a)
and g(a) ≤ j(d2) (j(d2) ≤ g(a) and f(a) ≤ i(d1), respectively).

Now, we define a valuation w over D for formulas in Fm(Y ∪ Z). By the above condition 1, for
each variable x ∈ X, there exists d ∈ D1 ∩D2 such that f(x/ ≡) = i(d) and g(x/ ≡) = j(d). Let
dx be one of such elements d. Now, define w as follows: For every x ∈ Y ∪ Z,

w(x) =







dx if x ∈ X
an element in i−1(x/ ≡) if x ∈ Y \X
an element in j−1(x/ ≡) if x ∈ Z \X.

Thus, we can show that (i◦w)(x) = (x/ ≡) for x ∈ Y and (j ◦w)(x) = (x/ ≡) for x ∈ Z. As usual,
the mapping w is extended to a mapping from Fm(Y ∪ Z) to D, for which the following holds.

• (i ◦ w)(γ) = (γ/ ≡) for γ ∈ Fm(Y ),

• (j ◦ w)(β) = (β/ ≡) for β ∈ Fm(Z).

Since ⊢ ϕ\ψ holds by our assumption, we have w(ϕ\ψ) ≥ 1D. Thus, w(ϕ) ≤ w(ψ). Since
w(ϕ) ∈ D1 and w(ψ) ∈ D2, by the second condition of the superGAP, there exists a ∈ A such that
i(w(ϕ)) ≤ f(a) = a and a = g(a) ≤ j(w(ψ)) (recall that both f and g are inclusion maps). Let
a = (δ/ ≡) for δ ∈ Fm(X). Then, (ϕ/ ≡) ≤ (δ/ ≡) and (δ/ ≡) ≤ (ψ/ ≡). That is, ⊢ ϕ\δ and
⊢ δ\ψ. Thus, the CIP holds. 2

In the rest of this subsection, we discuss what constitutes a logical propety corresponding to
each of the other GAPs. Interestingly enough, the GAP always holds. More precisely, the following
holds.

THEOREM 23 For each substructural logic L, V(L) has the GAP. In other words, every subva-
riety of FL-algebras has the GAP.

Proof. The proof goes in the same way as the first half of the proof of Theorem 22. Notice that
in the proof of the GAP of V(L), any logical property of L is not used at all. Thus, V(L) has the
GAP for each substructural logic L. 2

THEOREM 24 For each substructural logic L, the following are equivalent.

(1) For all formulas ϕ,ψ, if ⊢L (ϕ\ψ) ∧ (ψ\ϕ) then there exists some formula δ such that

(a) ⊢L (ϕ\δ) ∧ (δ\ϕ) and ⊢L (ψ\δ) ∧ (δ\ψ), and

(b) var(δ) ⊆ var(ϕ) ∩ var(ψ).

(2) V(L) has the strongGAP.

Proof. The proof goes quite similarly to the proof of Theorem 22. First, we show that V(L) has the
strongGAP, by assuming the condition (1). Take D, D1, D2, i and j as before. As shown before,
they satisfy the first conditon of the strongGAP. To show the second condition, let d ∈ D1 ∩D2.
Then, there exist formulas ϕ ∈ Fm(Y ) and ψ ∈ Fm(Z) such that d = (ϕ/ ≡) = (ψ/ ≡)
and ⊢ (ϕ\ψ) ∧ (ψ\ϕ). By our assumption (1), there exists a formula δ ∈ Fm(X) such that both
⊢ (ϕ\δ)∧(δ\ϕ) and ⊢ (ψ\δ)∧(δ\ψ) hold. Thus, (ϕ/ ≡) = (δ/ ≡) holds in D1 and (ψ/ ≡) = (δ/ ≡)
holds in D2. Let a = ηA(δ). Then, we have i(d) = i(ϕ/ ≡) = i(δ/ ≡) = ηB(δ) = f(ηA(δ)) = f(a),
and similary j(d) = g(a). Thus, the strongGAP holds.

Conversely, suppose that the strongGAP holds for V(L), and ⊢L (ϕ\ψ) ∧ (ψ\ϕ) holds. Let us
take A,B,C, f and g in the same way as the proof of Theorem 22. By the strongGAP, there exist
an algebra D in V(L), subalgebras D1 and D2 of D, and surjective homomorphisms i : D1 → B
and j : D2 → C that satisfy the following:
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1. for all a ∈ A there exists d ∈ D1 ∩D2 such that f(a) = i(d) and g(a) = j(d),

2. for all d ∈ D1 ∩D2, there exists a ∈ A such that i(d) = f(a) and j(d) = g(a).

Define a valuation w over D for formulas in Fm(Y ∪Z) in the same way as the proof of Theorem
22. Since ⊢ (ϕ\ψ) ∧ (ψ\ϕ) holds by our assumption, we have w((ϕ\ψ) ∧ (ψ\ϕ)) ≥ 1D. Thus,
w(ϕ) = w(ψ). Since w(ϕ) ∈ D1 and w(ψ) ∈ D2, by the second condition of the strongGAP,
there exists a ∈ A such that i(w(ϕ)) = f(a) = a and j(w(ψ)) = g(a) = a. Let a = (δ/ ≡)
for δ ∈ Fm(X). Then (ϕ/ ≡) = (δ/ ≡) and (ψ/ ≡) = (δ/ ≡). That is, ⊢ (ϕ\δ) ∧ (δ\ϕ) and
⊢ (ψ\δ) ∧ (δ\ψ). Thus, the condition (1) holds. 2

THEOREM 25 For each substructural logic L, the following are equivalent.

(1) For any set of formulas Γ ∪ Σ ∪ {ϕ,ψ} such that Γ ⊢L σ iff Σ ⊢L σ for every formula σ
with var(σ) ⊆ var(Γ ∪ {ϕ}) ∩ var(Σ ∪ {ψ}), if Γ ⊢L ϕ\ψ (Γ ⊢L ψ\ϕ) then there exists some
formula δ such that

(a) Γ ⊢L ϕ\δ and Σ ⊢L δ\ψ (Γ ⊢L δ\ϕ and Σ ⊢L ψ\δ, respectively), and

(b) var(δ) ⊆ var(Γ ∪ {ϕ}) ∩ var(Σ ∪ {ψ}).

(2) V(L) has the superIGAP.

Proof. First, we show that V(L) has the superIGAP, by assuming the condition (1). Notice that
the condition (1) implies the DIP∗. For, if Γ ⊢L ψ holds for a set of formulas Γ ∪ Σ ∪ {ψ} which
satisfies the assumption of the DIP∗, then Γ ⊢L 1\ψ also holds. By the condition (1), there exists
a formula δ with var(δ) ⊆ var(Γ) ∩ var(Σ ∪ {ψ}) such that both Γ ⊢L 1\δ and Σ ⊢L δ\ψ, which
imply Γ ⊢L δ and δ,Σ ⊢L ψ. By the definition of Γ ∪ Σ ∪ {ψ}, Γ ⊢L δ implies Σ ⊢L δ. Thus, we
have Σ ⊢L ψ.

Now, for all A,B,C in V(L) and embeddings f : A → B and g : A → C, define D,D1,D2, i
and j in the same way as in the proof of Theorem 21. Then, they satisfy the first condition of the
superIGAP. To show the second condition of the superIGAP, suppose that d1 ≤ d2 (d2 ≤ d1) holds
for d1 ∈ D1 and d2 ∈ D2. Then, there exist some formulas ϕ ∈ Fm(Y ) and ψ ∈ Fm(Z) such that
d1 = (ϕ/ ≡), d2 = (ψ/ ≡) and ΓB ⊢ ϕ\ψ (ΓB ⊢ ψ\ϕ, respectively). By our assumption of the
logical property (1), there is a formula δ with var(δ) ⊆ var(ΓB∪{ϕ})∩var(ΓC∪{ψ}) ⊆ Y ∩Z = X
such that ΓB ⊢ ϕ\δ and ΓC ⊢ δ\ψ (ΓB ⊢ δ\ϕ and ΓC ⊢ ψ\δ, respectively). Let a = ηA(δ) ∈ A.
Then, i(d1) = i(ϕ/ ≡) = ηB(ϕ) ≤ ηB(δ) = f(ηA(δ)) = f(a) and g(a) = g(ηA(δ)) = ηC(δ) ≤
ηC(ψ) = j(ψ/ ≡) = j(d2) (f(a) ≤ i(d1) and j(d2) ≤ g(a), respectively).

Conversely, suppose that the superIGAP holds for V(L). Let Γ∪Σ∪{ϕ,ψ} be a set of formulas,
and let Y = var(Γ ∪ {ϕ}) and Z = var(Σ ∪ {ψ}). Moreover, we assume that

• Γ ⊢ σ iff Σ ⊢ σ for every formula σ ∈ Fm(X), where X = Y ∩ Z,

• Γ ⊢ ϕ\ψ (Γ ⊢ ψ\ϕ).

Let us take Fm(X)/∆,Fm(Y )/Γ,Fm(Z)/Σ, f and g in the same way as in the proof of Theorem
21. By the superIGAP, there exist an algebra D in V(L), subalgebras D1 and D2 of D, and an
isomorphism i : D1 → Fm(Y )/Γ and a surjective homomorphism j : D2 → Fm(Z)/Σ such that

1. for all a ∈ Fm(X)/∆ there exists d ∈ D1 ∩D2 such that f(a) = i(d) and g(a) = j(d),

2. for all d1 ∈ D1, d2 ∈ D2 such that d1 ≤ d2 (d2 ≤ d1), there exists a ∈ Fm(X)/∆ such that
i(d1) ≤ f(a) and g(a) ≤ j(d2) (j(d2) ≤ g(a) and f(a) ≤ i(d1), respectively).
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Define a valuation w over D for formulas in Fm(Y ∪ Z) in the same way as in the proof of
Theorem 21. As shown before, for each formula γ ∈ Γ, we have D, w |= γ. So, our assumpiton
Γ ⊢ ϕ\ψ (Γ ⊢ ψ\ϕ) implies w(ϕ) ≤ w(ψ) (w(ψ) ≤ w(ϕ), respectively). Since w(ϕ) ∈ D1 and
w(ψ) ∈ D2, by the second condition of the superIGAP, there exists some δ/ ≡∆∈ Fm(X)/∆ such
that (ϕ/ ≡Γ) = (i◦w)(ϕ) ≤ f(δ/ ≡∆) = (δ/ ≡Γ) and (δ/ ≡Σ) = g(δ/ ≡∆) ≤ (j ◦w)(ψ) = (ψ/ ≡Σ)
((ψ/ ≡Σ) ≤ (δ/ ≡Σ) and (δ/ ≡Γ) ≤ (ϕ/ ≡Γ), respectively). That is, Γ ⊢L ϕ\δ and Σ ⊢L δ\ψ
(Γ ⊢L δ\ϕ and Σ ⊢L ψ\δ, respectively). Thus, the condition (1) holds. 2

THEOREM 26 For each substructural logic L, the following are equivalent.

(1) For any set of formulas Γ∪Σ∪ {ϕ,ψ} such that Γ ⊢L σ iff Σ ⊢L σ for every formula σ with
var(σ) ⊆ var(Γ∪ {ϕ})∩ var(Σ∪ {ψ}), if Γ ⊢L (ϕ\ψ)∧ (ψ\ϕ) then there exists some formula
δ such that

(a) Γ ⊢L (ϕ\δ) ∧ (δ\ϕ) and Σ ⊢L (ψ\δ) ∧ (δ\ψ), and

(b) var(δ) ⊆ var(Γ ∪ {ϕ}) ∩ var(Σ ∪ {ψ}).

(2) V(L) has the strongIGAP.

Proof. First, we show that V(L) has the strongIGAP, by assuming the condition (1). As with
the first condition in Theorem 25, the condition (1) also implies the DIP∗. For, if Γ ⊢L ψ holds
for a set of formulas Γ ∪ Σ ∪ {ψ} which satisfies the assumption of the DIP∗, then we have
Γ ⊢L (1\(ψ∧1))∧ ((ψ∧1)\1). By (1), there exists a formula δ with var(δ) ⊆ var(Γ)∩var(Σ∪{ψ})
such that both Γ ⊢L (1\δ) ∧ (δ\1) and Σ ⊢L ((ψ ∧ 1)\δ) ∧ (δ\(ψ ∧ 1)), which imply Γ ⊢L δ and
δ,Σ,⊢L ψ. Thus, by the definition of Γ ∪ Σ ∪ {ψ}, we have Σ ⊢L ψ. In the same way as in the
proof of Theorem 21, for any embeddings f : A → B and g : A → C, define D,D1,D2, i and j.
Of course, they satisfy the first condition of the strongIGAP. To show the second condition of the
strongIGAP, let d ∈ D1 ∩D2. Then, there exist some formulas ϕ ∈ Fm(Y ) and ψ ∈ Fm(Z) such
that d = (ϕ/ ≡) = (ψ/ ≡) and ΓB ⊢ (ϕ\ψ) ∧ (ψ\ϕ). By our assumption (1), there is a formula δ
with var(δ) ⊆ X such that ΓB ⊢ (ϕ\δ)∧ (δ\ϕ) and ΓC ⊢ (ψ\δ)∧ (δ\ψ). Let a = ηA(δ) ∈ A. Then,
i(d) = i(ϕ/ ≡) = ηB(ϕ) = ηB(δ) = f(ηA(δ)) = f(a) and g(a) = g(ηA(δ)) = ηC(δ) = ηC(ψ) =
j(ψ/ ≡) = j(d).

Conversely, suppose that the strongIGAP holds for V(L). Let Γ∪Σ∪{ϕ,ψ} be a set of formulas,
and let Y = var(Γ ∪ {ϕ}) and Z = var(Σ ∪ {ψ}). Moreover, we assume that

• Γ ⊢ σ iff Σ ⊢ σ for every formula σ ∈ Fm(X), where X = Y ∩ Z,

• Γ ⊢ (ϕ\ψ) ∧ (ψ\ϕ).

In the same way as in the proof of Theorem 21, let us take Fm(X)/∆,Fm(Y )/Γ,Fm(Z)/Σ, f and
g. By the strongIGAP, there exist an algebra D in V(L), subalgebras D1 and D2 of D, and an
isomorphism i : D1 → Fm(Y )/Γ and a surjective homomorphism j : D2 → Fm(Z)/Σ such that

1. for all a ∈ Fm(X)/∆ there exists d ∈ D1 ∩D2 such that f(a) = i(d) and g(a) = j(d),

2. for all d ∈ D1 ∩D2, there exists a ∈ Fm(X)/∆ such that i(d) = f(a) and j(d) = g(a).

Define a valuation w over D for formulas in Fm(Y ∪ Z) in the same way as in the proof of
Theorem 21. As shown before, for each formula γ ∈ Γ, we have D, w |= γ. So, our assumption
Γ ⊢ (ϕ\ψ)∧(ψ\ϕ) implies w(ϕ) = w(ψ). Since w(ϕ) ∈ D1 and w(ψ) ∈ D2, by the second condition
of the strongIGAP, there exists some δ ∈ Fm(X) such that (ϕ/ ≡Γ) = (i ◦ w)(ϕ) = f(δ/ ≡∆) =
(δ/ ≡Γ) and (ψ/ ≡Σ) = (j ◦ w)(ψ) = g(δ/ ≡∆) = (δ/ ≡Σ). That is, Γ ⊢L (ϕ\δ) ∧ (δ\ϕ) and
Σ ⊢L (ψ\δ) ∧ (δ\ψ). Thus, the condition (1) holds. 2

We summarize the algebraic characterizations of the DIP and the CIP, and relationships be-
tween GAPs in Figure 6.
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Figure 6: Algebraic characterizations of the DIP and the CIP

5 Algebraic characterizations of the SCIP and the SDIP

We give next algebraic characterizations of both the SCIP and the SDIP. An algebraic characteri-
zation of the SDIP by transferable injections is essentially given by Wroński in [36]. Here, we give
another characterization of the SDIP.

5.1 Commutative homomorphisms diagrams

DEFINITION 13 A variety V has the transferable injections property (TI), if for all A,B,C in
V and for any embedding f : A → B and any homomorphism g : A → C, there exists an algebra
D in V, a homomorphism h : B → D, and an embedding k : C → D such that h ◦ f = k ◦ g.

Notice that the difference between the TI and the AP is that the mappings g and h are
homomorphisms in the case of the TI.

The following result is well-known. In fact, Bacsich showed in [2] that the TI is equivalent to
the AP with the CEP (congruence extension property). For the completeness of the present paper,
we give here a proof.

LEMMA 27 For any variety V, if V has the TI then it has the AP.

Proof. Suppose that V has the TI, and let f : A → B and g : A → C be embeddings for
A,B,C ∈ V. Then, by the TI, there exist D1,D2 ∈ V, and homomorphisms h1 : B → D1 and
k2 : C → D2 and embeddings k1 : C → D1 and h2 : B → D2 such that h1 ◦ f = k1 ◦ g and
h2 ◦ f = k2 ◦ g. Let D = D1 × D2 and define h : B → D and k : C → D by h(b) = (h1(b), h2(b))
and k(c) = (k1(c), k2(c)). Then, it is easy to see that both h and k are embeddings satisfying
h ◦ f = k ◦ g. Thus, V has the AP. 2

Now, we can introduce the most general algebraic property of this kind by replacing all em-
beddings by homomorphisms in the definition of the TI.

DEFINITION 14 A variety V has the commutative homomorphisms diagrams property (or sim-
ply, V has the CHD), if for all A,B,C in V and for all homomorphisms f : A → B and g : A → C,
there exist an algebra D in V, and homomorphisms h : B → D and k : C → D such that h◦f = k◦g,
i.e. every commutaive homomorphisms diagram is completed in V.
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We can regard both the AP and the TI as special cases of the CHD. Besides the AP and the
TI, we can introduce several algebraic properties which can be regarded as special cases of the
CHD, by replacing some of the homomorphisms by embeddings in the definition. It is easy to see
that relationships between these algebraic properties can be shown in the following Figure 7. Here,
“→” and “→֒” denote a homomorphism and an embedding, respectively, and the arrow ⇒ means
the implication between two properties.

(1) A →B→֒
→

C →֒
D ⇒ (2) A →֒B→֒

→
C →֒

D ⇒⇒

(3) A →֒B→֒
→

C →
D

(TI) A →֒B→
→

C →֒
D

⇒

⇒
(AP)A →֒B→֒

→֒
C →֒

D

⇓ ⇓ ⇓

(CHD) A →B→
→

C →
D =⇒ (4) A →֒B→

→
C →

D ⇒ (5) A →֒B→
→֒

C →
D

Figure 7: Relationships between the AP, the TI and the CHD

Then the following holds.

LEMMA 28 The algebraic properties (1), (2) and (3) in Figure 7 are mutually equivalent. In
fact, the only trivial variety satisfies them.

Proof. It is sufficient to show that the only trivial variety satisfies the algebraic property (3).
Suppose that a non-trivial variety V has the algebaric property (3). Then, there exists a non-
trivial algebra A ∈ V. Take A for B and the trivial algebra consisting of the single element 1C

for C, respectively, and define f : A → B and g : A → C by f(a) = a and g(a) = 1C for
each a ∈ A. Clearly, B,C ∈ V, f is an embedding and g is a homomorphism. By the algebraic
property (3), there exist an algebra D ∈ V, an embedding h : B → D and a homomorphism
k : C → D such that h ◦ f = k ◦ g. Since A is a non-trivial algebra, there exist some a1, a2 ∈ A
such that a1 6= a2. Then, h ◦ f(a1) 6= h ◦ f(a2) holds. But, by the condition h ◦ f = k ◦ g, we have
h ◦ f(a1) = k ◦ g(a1) = k(1C) = k ◦ g(a2) = h ◦ f(a2). This is a contradiction. Thus, the only
trivial variety satisfies (3). 2

LEMMA 29 The CHD, the algebraic properties (4) and (5) in Figure 7 are mutually equivalent.
In fact, all varieties satisfy them.3

Proof. It is enough to show that every variety satisfies the CHD. In fact, this is shown simply by
taking the one-element algebra for D, when algebras A,B,C ∈ V and homomorphisms f : A → B
and g : A → C are given for an arbitrary variety V. To make a comparison with algebraic
characterizations of related properties introduced later, we give an alternative proof of our lemma
below.

Let V be a variety, and both f : A → B and g : A → C be homomorphisms for A,B,C ∈ V.
In the same way as in the proof of Theorem 16, define sets of variables X,Y,Z and sets of formulas
ΓB,ΓC. Again, we introduce a binary relation ≡ on Fm(Y ∪ Z) by

β ≡ γ iff ΓB,ΓC ⊢L(V) (β\γ) ∧ (γ\β),

3Note that RAP introduced by Maksimova is the property (5) but with the condition that h ◦ f and hence also
k ◦ g are isomorphisms (see e.g. [28]).
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where L(V) denotes the substructural logic determined by V. Then, it is easily seen that ≡ is a
congruence relation on Fm(Y ∪ Z) and the quotient algebra Fm(Y ∪ Z)/ ≡ is a member of V.
Define mappings h : B → Fm(Y ∪ Z)/ ≡ and k : C → Fm(Y ∪ Z)/ ≡ by

• h(b) = (ϕ/ ≡) when b = ηB(ϕ) for a formula ϕ ∈ Fm(Y ),

• k(c) = (ψ/ ≡) when c = ηC(ψ) for a formula ψ ∈ Fm(Z).

First, we prove that both h and k are well-defined homomorphisms. To show the well-definedness
of h, let b = b′, namely there exist some ϕ,ϕ′ ∈ Fm(Y ) such that b = ηB(ϕ) = ηB(ϕ′) = b′. Then,
ΓB ⊢L(L) (ϕ\ϕ′) ∧ (ϕ′\ϕ), and hence h(b) = (ϕ/ ≡) = (ϕ′/ ≡) = h(b′). It is easy to see that h
is a homomorphism. Similarly, k is also a well-defined homomorphism. It remains to show that
h ◦ f = k ◦ g. Take an arbitrary element a ∈ A. Then there exists a formula α ∈ Fm(X) such that
a = ηA(α). Then, (h ◦ f)(a) = h(f(ηA(α))) = h(ηB(α)) = (α/ ≡) = k(ηC(α)) = k(g(ηA(α))) =
(k ◦ g)(a). Thus, every variety has the CHD, by taking this Fm(Y ∪ Z)/ ≡ for D. 2

The above two lemmas say that there are only four cases of the CHD for varieties.

(1) A →B→֒
→

C →֒
D ⇒ (TI) A →֒B→

→
C →֒

D ⇒ (AP)A →֒B→֒
→֒

C →֒
D ⇒ (CHD) A →B→

→
C →

D

Figure 8: The CHDs for varieties

Now, we strengthen the CHD.

DEFINITION 15 A variety V has the commutative homomorphisms diagrams with the condition
(α) (CHD(α)), if for all A,B,C in V and for all homomorphisms f : A → B and g : A → C,
there exist an algebra D in V and homomorphisms h : B → D and k : C → D such that

1. h ◦ f = k ◦ g,

2. (α) for all b ∈ B and a ∈ A, if h(b) = k ◦ g(a) then there exists some a′ ∈ A such that
b = f(a′) and g(a) = g(a′),

for all c ∈ C and a ∈ A, if k(c) = h ◦ f(a) then there exists some a′ ∈ A such that c = g(a′)
and f(a) = f(a′).

A variety V has the commutative homomorphisms diagrams with the condition (β) (CHD(β)),
if for all A,B,C in V and for all homomorphisms f : A → B and g : A → C, there exist an
algebra D in V and homomorphisms h : B → D and k : C → D such that

1. h ◦ f = k ◦ g,

2. (β) for all b ∈ B and c ∈ C, if 1D ≤ h(b) (1D ≤ k(c)) then there exists some a ∈ A such
that f(a) ≤ b and 1C ≤ g(a) (g(a) ≤ c and 1B ≤ f(a), respectively).

A variety V has the commutative homomorphisms diagrams with the condition (γ) (CHD(γ)),
if for all A,B,C in V and for all homomorphisms f : A → B and g : A → C, there exist an
algebra D in V and homomorphisms h : B → D and k : C → D such that

1. h ◦ f = k ◦ g,
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2. (γ) for all b ∈ B and c ∈ C, if 1D ≤ h(b) (1D ≤ k(c)) then there exists some a ∈ A such that
b ∈ FgB(f(a)) and 1C ≤ g(a) (c ∈ FgC(g(a)) and 1B ≤ f(a), respectivley),

where FgE(x) denotes the deductive filter generated by x in an algebra E.

It is not hard to see that the condition (α) is stronger than (β). For, if 1D ≤ h(b) holds for
b ∈ B then h(b ∧ 1B) = 1D = k ◦ g(1A) also holds. Thus, by the condition (α), there exists some
a ∈ A such that b ∧ 1B = f(a) and g(1A) = g(a), which imply f(a) ≤ b and 1C ≤ g(a). Also, the
condition (β) is stronger than (γ) since x ≤ y implies y ∈ Fg(x).

On the other hand, the CHD(γ) always implies the AP. For, if both f and g are embeddings
then, by the condition of (γ), for each b ∈ B and c ∈ C with 1D ≤ h(b) and 1D ≤ k(c), there exist
a1, a2 ∈ A such that b ∈ FgB(f(a1)) and 1C ≤ g(a1), and c ∈ FgC(g(a2)) and 1B ≤ f(a2). Since
g is injective, 1C ≤ g(a1) implies 1A ≤ a1, and hence 1B ≤ f(a1) holds also. As b ∈ FgB(f(a1)),
1B ≤ b. Thus, h is an embedding. Similarly, from 1B ≤ f(a2), 1C ≤ c follows. Thus, k is also an
embedding.

Consequently, the injectivity of k (and h) follows from that of f (and g, respectively) if the
condition (γ) (a forteriori, (α) or (β)) is supposed.

Corresponding to either the superAP or strongAP, we can introduce a stronger form of the
CHD(α), CHD(β) and CHD(γ).

DEFINITION 16 A variety V has the super commutative homomorphisms diagrams with (α)
(superCHD(α)), if for all A,B,C in V and for all homomorphisms f : A → B and g : A → C,
there exist an algebra D in V and homomorphims h : B → D and k : C → D such that

1. h ◦ f = k ◦ g

2. (α) for all b ∈ B and a ∈ A, if h(b) = k ◦ g(a) then there exists some a′ ∈ A such that
b = f(a′) and g(a) = g(a′),

for all c ∈ C and a ∈ A, if k(c) = h ◦ f(a) then there exists some a′ ∈ A such that c = g(a′)
and f(a) = f(a′).

3. (super) for all b ∈ B and c ∈ C if h(b) ≤ k(c) (k(c) ≤ h(b)) then there exists a ∈ A for which
both h(b) ≤ h ◦ f(a) and k ◦ g(a) ≤ k(c) (k(c) ≤ k ◦ g(a) and h ◦ f(a) ≤ h(b), respectively)
hold.

A variety V has the strong commutative homomorphisms diagrams with (α) (strongCHD(α)),
if for all A,B,C in V and for all homomorphisms f : A → B and g : A → C, there exist an
algebra D in V and homomorphisms h : B → D and k : C → D such that

1. h ◦ f = k ◦ g

2. (α) for all b ∈ B and a ∈ A, if h(b) = k ◦ g(a) then there exists some a′ ∈ A such that
b = f(a′) and g(a) = g(a′),

for all c ∈ C and a ∈ A, if k(c) = h ◦ f(a) then there exists some a′ ∈ A such that c = g(a′)
and f(a) = f(a′).

3. (strong) h(B) ∩ k(C) = h ◦ f(A).

Similarly, we define the super commutaive homomorphisms diagrams with (β) or (γ) (shortly,
superCHD(β) or superCHD(γ)) and strong commutative homomorphisms diagrams with (β) or (γ)
(shortly, strongCHD(β) or strongCHD(γ)), respectively.

We summarize the relationships between the APs, the CHD(α)s, the CHD(β)s and the CHD(γ)s
in Figure 9.
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superCHD(α) ⇒ superCHD(β) ⇒ superCHD(γ) ⇒ superAP
⇓ ⇓ ⇓ ⇓

strongCHD(α) ⇒ strongCHD(β) ⇒ strongCHD(γ) ⇒ strongAP
⇓ ⇓ ⇓ ⇓

CHD(α) ⇒ CHD(β) ⇒ CHD(γ) ⇒ AP

Figure 9: Relationships between the APs, the CHD(α)s, the CHD(β)s and the CHD(γ)s

5.2 Strong deductive and strong Craig interpolation proprety

First, we give an algebraic characterization of the SDIP.

THEOREM 30 For each substructural logic L, L has the SDIP iff V(L) has the CHD(γ).

Proof. The proof proceeds similarly to the proof of Theorem 16. Suppose first that L has the
SDIP, and let f : A → B and g : A → C be homomorphisms for A,B,C in V(L). Define
D = Fm(Y ∪ Z)/ ≡, and mappings h : B → D and k : C → D in the same way. Then, we
can show that both h and k are well-defined homomorphisms and h ◦ f = k ◦ g holds (see the
proof of Lemma 29). To show that the condition (γ) holds, suppose that 1D ≤ h(b) for b ∈ B.
Then, there exists some formula ϕ ∈ Fm(Y ) such that b = ηB(ϕ). By the definitions of h
and ≡, 1D ≤ h(b) implies ΓB,ΓC ⊢L ϕ. Thus, by the SDIP, there exists some formula δ with
var(δ) ⊆ var(ΓB ∪ {ϕ}) ∩ var(ΓC) ⊆ Y ∩ Z = X such that δ,ΓB ⊢L ϕ and ΓC ⊢L δ hold. Let
a = ηA(δ) ∈ A. Then, ΓC ⊢L δ implies 1C ≤ ηC(δ) = g(ηA(δ)) = g(a). We show that δ,ΓB ⊢L ϕ
implies b ∈ FgB(f(a)). Construct the filter FgB(f(a)) of B generated by f(a), and determine
the quotient algebra B/FgB(f(a)) of B. Since ηB(δ) = f(ηA(δ)) = f(a) ∈ FgB(f(a)), we have
1
B/Fg

B
(f(a)) ≤ ηB(δ)/FgB(f(a)). Define a valuation u on B/FgB(f(a)) for formulas in Fm(Y )

by u(α) = ηB(α)/FgB(f(a)). Then, δ,ΓB ⊢L ϕ implies 1
B/Fg

B
(f(a)) ≤ u(ϕ) = ηB(ϕ)/FgB(f(a)),

and hence b = ηB(ϕ) ∈ FgB(f(a)). Similarly, if 1D ≤ k(c) holds for c ∈ C then there exists some
a′ ∈ A such that c ∈ FgC(g(a′)) and 1B ≤ f(a′) hold. Thus, V(L) has the CHD(γ).

Conversely, suppose that V(L) has the CHD(γ). Moreover, we assume that Γ,Σ ⊢L ψ holds for
a set of formulas Γ∪Σ∪ {ψ}, and let Y = var(Γ), Z = var(Σ∪ {ψ}) and X = Y ∩Z. In the same
way as the proof of Theorem 16, we introduce quotient algebras Fm(Y )/Γ and Fm(Z)/Σ. But,
differently to the proof of Theorem 16, we define a set of fromulas ∆ by

∆ = {α ∈ Fm(X) : ⊢L α}.

Then, a binary relation ≡∆ on Fm(X) determined by ∆ is defined by

α ≡∆ β iff ∆ ⊢L (α\β) ∧ (β\α) iff ⊢L (α\β) ∧ (β\α),

which is a congruence relation. We denote the quotient algebra of Fm(X) determined by this
≡∆ as Fm(X)/∆. Again, we define mappings f : Fm(X)/∆ → Fm(Y )/Γ and g : Fm(X)/∆ →
Fm(Z)/Σ in the same way as before by

f(α/ ≡∆) = α/ ≡Γ and g(α/ ≡∆) = α/ ≡Σ .

It is easy to see that both f and g are well-defined homomorphisms. By the CHD(γ), there exist
an algebra D in V(L) and homomorphisms h : Fm(Y )/Γ → D and k : Fm(Z)/Σ → D such
that h ◦ f = k ◦ g and the condition (γ) hold. In the same way as the proof of Theorem 16, we
construct a valuation w over D for formulas in Fm(Y ∪Z). By our assumption Γ,Σ ⊢L ψ, we have
D, w |= ψ, namely 1D ≤ k(ψ/ ≡Σ) holds. Since ψ/ ≡Σ∈ Fm(Z)/Σ, by the condition (γ), there
exists some δ/ ≡∆∈ Fm(X)/∆ such that ψ/ ≡Σ∈ FgFm(Z)/Σ(g(δ/ ≡∆)) = FgFm(Z)/Σ(δ/ ≡Σ)
and 1Fm(Y )/Γ ≤ f(δ/ ≡∆) = (δ/ ≡Γ). Clearly, the latter implies Γ ⊢L δ. We show that the
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former implies δ,Σ ⊢L ψ. By ψ/ ≡Σ∈ FgFm(Z)/Σ(δ/ ≡Σ), there exist some n ∈ ω and iterated
conjugates γi with 1 ≤ i ≤ n on Fm(Z) such that 1Fm(Z)/≡Σ

≤ ((Πn
i=1γi(δ)\ψ)/ ≡Σ). Thus, we

have Σ ⊢L Πn
i=1γi(δ)\ψ, namely, δ,Σ ⊢L ψ holds. Therefore, the SDIP holds on L. 2

In [36], Wroński showed that the TI is equivalent to the eqIP with respect to equational theories.
As shown in Proposition 7, the eqIP is equivalent to the SDIP. Thus, we have the following.

COROLLARY 31 For any variety V, V has the CHD(γ) if and only if it has the TI.

Before showing an algebraic characterization of the SCIP, we give a logical property corre-
sponding to the CHD(β).

DEFINITION 17 A substructural logic L has the implicational strong deductive interpolation
property (ISDIP), if for any set of formulas Γ ∪ Σ ∪ {ψ}, if Γ,Σ ⊢L ψ then there exists a formula
δ such that

1. Γ ⊢L δ and Σ ⊢L δ\ψ, and

2. var(δ) ⊆ var(Γ) ∩ var(Σ ∪ {ψ}).

Clearly, the ISDIP implies the SDIP since Σ ⊢L δ\ψ implies δ,Σ ⊢L ψ. On the other hand, it
is easily seen that the SCIP implies the ISDIP. Then, we have the following.

THEOREM 32 For each substructural logic L, L has the ISDIP iff V(L) has the CHD(β).

Proof. As in Theorem 30, the proof proceeds similarly to the proof of Theorem 16. Suppose first
that L has the ISDIP, and let f : A → B and g : A → C be homomorphisms for A,B,C in V(L).
Define D = Fm(Y ∪ Z)/ ≡, and mappings h : B → D and k : C → D in the same way as before.
Then, they satisfy the conditions of the CHD. To show that the condition (β) holds, suppose that
1D ≤ h(b) for b ∈ B. Then, there exists some formula ϕ ∈ Fm(Y ) such that b = ηB(ϕ). By
the definitions of h and ≡, 1D ≤ h(b) implies ΓB,ΓC ⊢L ϕ. Thus, by the ISDIP, there exists
some formula δ with var(δ) ⊆ var(ΓB ∪ {ϕ}) ∩ var(ΓC) ⊆ X such that ΓB ⊢L δ\ϕ and ΓC ⊢L δ
hold. Let a = ηA(δ) ∈ A. Then, we have that f(a) = f(ηA(δ)) = ηB(δ) ≤ ηB(ϕ) = b and
1C ≤ ηC(δ) = g(ηA(δ)) = g(a). Similarly, if 1D ≤ k(c) holds for c ∈ C then there exists some
a′ ∈ A such that g(a′) ≤ c and 1B ≤ f(a′) hold. Thus, V(L) has the CHD(β).

Conversely, suppose that V(L) has the CHD(β). Moreover, we assume that Γ,Σ ⊢L ψ holds for a
set of formulas Γ∪Σ∪{ψ}, and let Y = var(Γ), Z = var(Σ∪{ψ}) andX = Y ∩Z. In the same way as
the proof of Theorem 30, we introduce quotient algebras Fm(X)/∆,Fm(Y )/Γ and Fm(Z)/Σ, and
homomorphisms f : Fm(X)/∆ → Fm(Y )/Γ and g : Fm(X)/∆ → Fm(Z)/Σ. By the CHD(β),
there exist an algebra D in V(L) and homomorphisms h : Fm(Y )/Γ → D and k : Fm(Z)/Σ → D
such that h ◦ f = k ◦ g and the condition (β) hold. Again, we construct a valuation w over D
for formulas in Fm(Y ∪ Z) in the same way as the proof of Theorem 16. By our assumption
Γ,Σ ⊢L ψ, we have D, w |= ψ, namely 1D ≤ k(ψ/ ≡Σ) holds. Since ψ/ ≡Σ∈ Fm(Z)/Σ, by the
condition (β), there exists some δ/ ≡∆∈ Fm(X)/∆ such that (δ/ ≡Σ) = g(δ/ ≡∆) ≤ (ψ/ ≡Σ)
and 1Fm(Y )/Γ ≤ f(δ/ ≡∆) = (δ/ ≡Γ). Thus, both Γ ⊢L δ and Σ ⊢L δ\ψ hold. Therefore, L has
the ISDIP. 2

Next, we give an algebraic property which is equivalent to the superCHD(β).

LEMMA 33 For any variety V, the following are equivalent.

(1) V has the superCHD(β).

(2) V has the CHD, and also it satisfies the following:
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(*) for all b ∈ B and c ∈ C, if h(b) ≤ k(c) (k(c) ≤ h(b)) then there exists some a ∈ A such
that b ≤ f(a) and g(a) ≤ c (c ≤ g(a) and f(a) ≤ b, respectively).

Proof. Suppose that a variety V has the superCHD(β). Clearly, it has the CHD. Assume that
h(b) ≤ k(c) holds for b ∈ B and c ∈ C. Then, by the third condition of the superCHD(β),
there exists some a1 ∈ A such that both h(b) ≤ h ◦ f(a1) and k ◦ g(a1) ≤ k(c) hold, and hence
1D ≤ h(b\f(a1)) and 1D ≤ k(g(a1)\c) hold. Since b\f(a1) ∈ B and g(a1)\c ∈ C, by the condition
(β), there exist some a2, a3 ∈ A such that







f(a2) ≤ b\f(a1)
and

1C ≤ g(a2)
and







g(a3) ≤ g(a1)\c
and

1B ≤ f(a3),

and hence






b · f(a2) ≤ f(a1)
and

1C ≤ g(a2)
and







g(a1) · g(a3) ≤ c
and

1B ≤ f(a3)

hold. Let a = a2\(a1 · a3) ∈ A. Then, by b · f(a2) ≤ f(a1) and 1B ≤ f(a3), we have b · f(a2) ≤
f(a1) ·f(a3), and hence b ≤ f(a2)\(f(a1) ·f(a3)) = f(a). Also, by 1C ≤ g(a2) and g(a1) ·g(a3) ≤ c,
we have g(a) = g(a2)\(g(a1) · g(a3)) ≤ 1C\(g(a1) · g(a3)) = g(a1) · g(a3) ≤ c. Similarly, we can
show the converse inequality. Therefore, the condition (2) holds.

Conversely, we assume that the condition (2) holds. Since b ≤ f(a) and g(a) ≤ c imply
h(b) ≤ h ◦ f(a) and k ◦ g(a) ≤ k(c), the third condition of the superCHD(β) hold. Thus, it is
enough to show that the condition (β) holds. Suppose that 1D ≤ h(b) holds for some b ∈ B.
Then, k(1C) = 1D ≤ h(b) also holds. By our assumption (2), there exists some a ∈ A such that
1C ≤ g(a) and f(a) ≤ b hold. Hence, V has the superCHD(β). 2

Note that in the case of the AP or where both h and k are injective, the condition (*) in the
above Lemma 33 is equivalent to the condition (super) of the superAP. But, to show the same
equivalence in the case of CHD, we need also the condition (β).

DEFINITION 18 A substructural logic L has the nonseparable strong Craig interpolation prop-
erty (nonsepSCIP), if for any set of formulas Γ ∪ Σ ∪ {ϕ,ψ}, if Γ,Σ ⊢L ϕ\ψ then there exists a
formula δ such that

1. Γ,Σ ⊢L ϕ\δ and Γ,Σ ⊢L δ\ψ,

2. var(δ) ⊆ var(Γ ∪ {ϕ}) ∩ var(Σ ∪ {ψ}).

It is easily seen that the SCIP implies the nonsepSCIP since Γ ⊢L ϕ\δ and Σ ⊢L δ\ψ imply
Γ,Σ ⊢L ϕ\δ and Γ,Σ ⊢L δ\ψ, respectively.

Now, we give an algebraic characterization of the SCIP.

THEOREM 34 For each substructural logic L, the following are equivalent.

(1) L has the SCIP.

(2) L has both the ISDIP and the nonsepSCIP.

(3) V(L) has the superCHD(β).
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Proof. (1) ⇒ (2) Obvious.
(2) ⇒ (3) Suppose that L satisfies the condition (2), and let f : A → B and A → C be

homomorphsims for A,B,C in V(L). Since L has the ISDIP, we can construct an algebra D and
homomorphisms h : B → D and k : C → D satisfying the CHD(β) in the same way as the proof
of Theorem 32. Thus, it is sufficient to show that they satisfy also the third condition of the
superCHD(β), namely,

for all b ∈ B and c ∈ C, if h(b) ≤ k(c) (k(c) ≤ h(b)) then there exists a ∈ A such that
h(b) ≤ h ◦ f(a) and k ◦ g(a) ≤ k(c) (k(c) ≤ k ◦ g(a) and h ◦ f(a) ≤ h(b), respectively).

Suppose that h(b) ≤ k(c) holds for b ∈ B and c ∈ C. Then, there exist some formulas ϕ ∈ Fm(Y )
and ψ ∈ Fm(Z) such that b = ηB(ϕ) and c = ηC(ψ). By the definitions of h, k and ≡, we can
see that h(b) ≤ k(c) is equivalent to ΓB,ΓC ⊢L ϕ\ψ. Then, by the nonsepSCIP, there exists
some formula δ with var(δ) ⊆ var(ΓB ∪ {ϕ}) ∩ var(ΓC ∪ {ψ}) ⊆ Y ∩ Z = X such that both
ΓB,ΓC ⊢L ϕ\δ and ΓB,ΓC ⊢L δ\ψ hold. Let a = ηA(δ) ∈ A. Then, ΓB,ΓC ⊢L ϕ\δ implies
h(b) = h(ηB(ϕ)) = (ϕ/ ≡) ≤ (δ/ ≡) = h(ηB(δ)) = h ◦ f(ηA(δ)) = h ◦ f(a). In the same way,
ΓB,ΓC ⊢L δ\ψ implies k ◦ g(a) ≤ k(c). Similarly, if k(c′) ≤ h(b′) holds for b′ ∈ B and c′ ∈ C then
there exists some a′ ∈ A such that k(c′) ≤ k ◦ g(a′) and h ◦ f(a′) ≤ h(b′) hold. Therefore, V(L)
has the superCHD(β).

(3) ⇒ (1) Suppose that V(L) has the superCHD(β). Moreover, we assume that Γ,Σ ⊢L ϕ\ψ
holds for a set of formulas Γ∪Σ∪{ϕ,ψ}, and let Y = var(Γ∪{ϕ}), Z = var(Σ∪{ψ}) andX = Y ∩Z.
In the same way as the proof of Theorem 30, we introduce quotient algebras Fm(X)/∆,Fm(Y )/Γ
and Fm(Z)/Σ, and homomorphisms f : Fm(X)/∆ → Fm(Y )/Γ and g : Fm(X)/∆ → Fm(Z)/Σ.
By the superCHD(β) and Lemma 33, there exist an algebra D in V(L) and homomorphisms
h : Fm(Y )/Γ → D and k : Fm(Z)/Σ → D such that h ◦ f = k ◦ g and the following hold;

(*) for all b ∈ Fm(Y )/Γ and c ∈ Fm(Z)/Σ, if h(b) ≤ k(c) (k(c) ≤ h(b)) then there exists
a ∈ Fm(X)/∆ such that b ≤ f(a) and g(a) ≤ c (c ≤ g(a) and f(a) ≤ b, respectively).

We construct a valuation w over D for formulas from Fm(Y ∪ Z) in the same way as the proof
of Theorem 16. Then, our assumption Γ,Σ ⊢L ϕ\ψ implies D, w |= ϕ\ψ, and hence h(ϕ/ ≡Γ)
≤ k(ψ/ ≡Σ) holds. Since ϕ/ ≡Γ∈ Fm(Y )/Γ and ψ/ ≡Σ∈ Fm(Z)/Σ, by the above condition
(*), there exists some δ/ ≡∆∈ Fm(X)/∆ such that both (ϕ/ ≡Γ) ≤ f(δ/ ≡∆) = (δ/ ≡Γ) and
(δ/ ≡Σ) = g(δ/ ≡∆) ≤ (ψ/ ≡Σ) hold. Thus, both Γ ⊢L ϕ\δ and Σ ⊢L δ\ψ hold. Therefore, L has
the SCIP. 2

5.3 Syntactic characterization of other CHDs

In the rest of this section, we give logical properties which correspond to other CHDs.

DEFINITION 19 A substructural logic L has the equivalential strong deductive interpolation
property (EqSDIP), if for any set of formulas Γ∪Σ∪{ψ} and a formula σ with var(σ) ⊆ var(Γ)∩
var(Σ ∪ {ψ}), if Γ,Σ ⊢L (σ\ψ) ∧ (ψ\σ) then there exists some formula δ such that

1. Γ ⊢L (σ\δ) ∧ (δ\σ) and Σ ⊢L (ψ\δ) ∧ (δ\ψ), and

2. var(δ) ⊆ var(Γ) ∩ var(Σ ∪ {ψ}).

A substructural logic L has the equivalential strong Craig interpolation property (EqSCIP), if
for any set of formulas Γ ∪ Σ ∪ {ϕ,ψ}, if Γ,Σ ⊢L (ϕ\ψ) ∧ (ψ\ϕ) then there exists some formula δ
such that

1. Γ ⊢L (ϕ\δ) ∧ (δ\ϕ) and Σ ⊢L (ψ\δ) ∧ (δ\ψ), and

2. var(δ) ⊆ var(Γ ∪ {ϕ}) ∩ var(Σ ∪ {ψ}).
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A substructural logic L has the nonseparable equivalential strong Craig interpolation property
(nonsepEqSCIP), if for any set of formulas Γ ∪ Σ ∪ {ϕ,ψ}, if Γ,Σ ⊢L (ϕ\ψ) ∧ (ψ\ϕ) then there
exists some formula δ such that

1. Γ,Σ ⊢L (ϕ\δ) ∧ (δ\ϕ) and Γ,Σ ⊢L (ψ\δ) ∧ (δ\ψ), and

2. var(δ) ⊆ var(Γ ∪ {ϕ}) ∩ var(Σ ∪ {ψ}).

Clearly, the EqSCIP implies both the EqSDIP and the nonsepEqSCIP. Also, the EqSDIP
implies the ISDIP. For, if Γ,Σ ⊢L ψ holds for a set of formulas Γ ∪ Σ ∪ {ψ} then Γ,Σ ⊢L (1\(ψ ∧
1))∧((ψ∧1)\1) also holds. Since var(1) ⊆ var(Γ)∩var(Σ∪{ψ}), by the EqSDIP, there exists some
δ with var(δ) ⊆ var(Γ)∩var(Σ∪{ψ}) such that Γ ⊢L (1\δ)∧(δ\1) and Σ ⊢L ((ψ∧1)\δ)∧(δ\(ψ∧1)),
which imply Γ ⊢L δ and Σ ⊢L δ\ψ.

THEOREM 35 For each substructural logic L, L has the EqSDIP iff V(L) has the CHD(α).

Proof. As in Theorem 30, the proof proceeds similarly to the proof of Theorem 16. Suppose first
that L has the EqSDIP, and let f : A → B and g : A → C be homomorphisms for A,B,C in
V(L). Define D = Fm(Y ∪ Z)/ ≡, and mappings h : B → D and k : C → D in the same way
as before. Then, they satisfy the conditions of the CHD. To show that the condition (α) holds,
suppose that h(b) = k ◦ g(a) for b ∈ B and a ∈ A. Then, there exist some formulas ϕ ∈ Fm(Y )
and σ ∈ Fm(X) such that b = ηB(ϕ) and a = ηA(σ). By the definitions of h, k, g and ≡,
h(b) = k ◦ g(a) implies ΓB,ΓC ⊢L (σ\ϕ)∧ (ϕ\σ). Thus, by the EqSDIP, there exists some formula
δ with var(δ) ⊆ var(ΓB∪{ϕ})∩var(ΓC) ⊆ X such that ΓB ⊢L (ϕ\δ)∧(δ\ϕ) and ΓC ⊢L (σ\δ)∧(δ\σ)
hold. Let a′ = ηA(δ) ∈ A. Then, we have that b = ηB(ϕ) = ηB(δ) = f(ηA(δ)) = f(a′) and
g(a) = g(ηA(σ)) = ηC(σ) = ηC(δ) = g(ηA(δ)) = g(a′). Similarly, if k(c) = h ◦ f(a) holds for c ∈ C
and a ∈ A then there exists some a′ ∈ A such that c = g(a′) and f(a) = f(a′) hold. Thus, V(L)
has the CHD(α).

Conversely, suppose that V(L) has the CHD(α). Moreover, we assume that Γ,Σ ⊢L (σ\ψ) ∧
(ψ\σ) holds for a set of formulas Γ∪Σ∪{ψ} and a formula σ with var(σ) ⊆ var(Γ)∩var(Σ∪{ψ}).
Let Y = var(Γ), Z = var(Σ ∪ {ψ}) and X = Y ∩ Z. In the same way as the proof of Theorem
30, we introduce quotient algebras Fm(X)/∆,Fm(Y )/Γ and Fm(Z)/Σ, and homomorphisms
f : Fm(X)/∆ → Fm(Y )/Γ and g : Fm(X)/∆ → Fm(Z)/Σ. By the CHD(α), there exist an
algebra D in V(L) and homomorphisms h : Fm(Y )/Γ → D and k : Fm(Z)/Σ → D such that
h ◦ f = k ◦ g and the condition (α) hold. Again, we construct a valuation w over D for formulas in
Fm(Y ∪Z) in the same way as the proof of Theorem 16. By our assumption Γ,Σ ⊢L (σ\ψ)∧(ψ\σ),
we have D, w |= (σ\ψ)∧ (ψ\σ), namely k(ψ/ ≡Σ) = h ◦ f(σ/ ≡∆) holds. Since ψ/ ≡Σ∈ Fm(Z)/Σ
and σ/ ≡∆∈ Fm(X)/∆, by the condition (α), there exists some δ/ ≡∆∈ Fm(X)/∆ such that
(ψ/ ≡Σ) = g(δ/ ≡∆) = (δ/ ≡Σ) and (σ/ ≡Γ) = f(σ/ ≡∆) = f(δ/ ≡∆) = (δ/ ≡Γ). Thus, both
Γ ⊢L (σ\δ) ∧ (δ\σ) and Σ ⊢L (ψ\δ) ∧ (δ\ψ) hold. Therefore, L has the EqSDIP. 2

Before giving an algebraic characterization of the EqSCIP, we give an algebraic property which
is equivalent to the strongCHD(α).

LEMMA 36 For any variety V, the following are equivalent.

(1) V has the strongCHD(α).

(2) V has the CHD, and also it satisfies the following:

(**) for all b ∈ B and c ∈ C, if h(b) = k(c) then there exists some a ∈ A such that b = f(a)
and c = g(a).
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Proof. Suppose that a variety V has the strongCHD(α). Clearly, it has the CHD. Assume that
h(b) = k(c) holds for b ∈ B and c ∈ C. Then, by the first and third conditions of the strongCHD(α),
there exists some a1 ∈ A such that both h(b) = h◦f(a1) = k◦g(a1) and k(c) = k◦g(a1) hold. Now,
by applying the condition (α) to h(b) = k ◦ g(a1), there exists some a2 ∈ A such that b = f(a2)
and g(a1) = g(a2) hold. Then, we have k(c) = k ◦g(a1) = k ◦g(a2) = h◦f(a2). Again, by applying
(α) to k(c) = h◦f(a2), there exists some a′ ∈ A such that f(a2) = f(a′) and c = g(a′) hold. Thus,
b = f(a′) and c = g(a′), namely, the condition (**) holds.

The converse direction is shown easily. 2

Note that in the case of the AP or where both h and k are injective, the condition (**) in
the above Lemma 36 is equivalent to the condition (strong) of the strongAP. But, as with the
case of the condition (super) (see Lemma 33), we need also the condition (α) to show the same
equivalence in the case of CHD.

THEOREM 37 For each substructural logic L, the following are equivalent.

(1) L has the EqSCIP.

(2) L has both the EqSDIP and the nonsepEqSCIP.

(3) V(L) has the strongCHD(α).

Proof. (1) ⇒ (2) Obvious.
(2) ⇒ (3) Suppose first that L has the condition (2), and let f : A → B and g : A → C

be homomorphisms for A,B,C in V(L). Since L has the EqSDIP, we can construct an algebra
D in V(L) and homomorphisms h : B → D and k : C → D satisfying the CHD(α) in the same
way as the proof of Theorem 35. Thus, it is sufficient to show that they satisfy also the third
condition of the strongCHD(α), namely, h(B)∩ k(C) = h ◦ f(A). Clearly, h ◦ f(A) ⊆ h(B)∩ k(C)
holds since f(A) ⊆ B, g(A) ⊆ C and h ◦ f = k ◦ g. We show that h(B) ∩ k(C) ⊆ h ◦ f(A). Let
d ∈ h(B) ∩ k(C), namely for some b ∈ B and c ∈ C, d = h(b) = k(c). Then, there exist some
formulas ϕ ∈ Fm(Y ) and ψ ∈ Fm(Z) such that b = ηB(ϕ) and c = ηC(ψ). From the definitions
of h, k and ≡, we can see that the condition h(b) = k(c) is equivalent to ΓB,ΓC ⊢L (ϕ\ψ)∧ (ψ\ϕ).
By the nonsepEqSCIP, there is a formula δ with var(δ) ⊆ X such that ΓB,ΓC ⊢L (ϕ\δ) ∧ (δ\ϕ)
and ΓB,ΓC ⊢L (ψ\δ) ∧ (δ\ψ). Let a = ηA(δ) ∈ A. Then, d = h(b) = h(ηB(ϕ)) = (ϕ/ ≡) =
(δ/ ≡) = h(ηB(δ)) = h ◦ f(ηA(δ)) = h ◦ f(a), which implies d ∈ h ◦ f(A). Thus, V(L) has the
strongCHD(α).

(3) ⇒ (1) Suppose that V(L) has the strong∗CHD. Moreover, we assume that Γ,Σ ⊢L (ϕ\ψ)∧
(ψ\ϕ) holds for a set of formulas Γ ∪ Σ ∪ {ϕ,ψ}, and let Y = var(Γ ∪ {ϕ}) Z = var(Σ ∪ {ψ})
and X = Y ∩ Z. In the same way as the proof of Theorem 30, we introduce quotient algebras
Fm(X)/∆,Fm(Y )/Γ and Fm(Z)/Σ, and homomorphisms f : Fm(X)/∆ → Fm(Y )/Γ and g :
Fm(X)/∆ → Fm(Z)/Σ. By the strongCHD(α) and Lemma 36 there exist an algebra D in V(L)
and homomorphsims h : Fm(Y )/Γ → D and k : Fm(Z)/Σ → D such that h ◦ f = k ◦ g and the
following hold;

(**) for all b ∈ Fm(Y )/Γ and c ∈ Fm(Z)/Σ, if h(b) = k(c) then there exists some a ∈ Fm(X)/∆
such that b = f(a) and c = g(a).

We construct a valuation w over D for formulas from Fm(Y ∪ Z) in the same way as the proof
of Theorem 16. Then, our assumption Γ,Σ ⊢L (ϕ\ψ) ∧ (ψ\ϕ) implies D, w |= (ϕ\ψ) ∧ (ψ\ϕ), and
hence h(ϕ/ ≡Γ) = k(ψ/ ≡Σ) holds. Since ϕ/ ≡Γ∈ Fm(Y )/Γ and ψ/ ≡Σ∈ Fm(Z)/Σ, by the above
condition (**), there exists some δ/ ≡∆∈ Fm(X)/∆ such that (ϕ/ ≡Γ) = f(δ/ ≡∆) = (δ/ ≡Γ)
and (ψ/ ≡Σ) = g(δ/ ≡∆) = (δ/ ≡Σ), which imply Γ ⊢L (ϕ\δ) ∧ (δ\ϕ) and Σ ⊢L (ψ\δ) ∧ (δ\ψ).
Therefore, L satisfies the EqSCIP. 2
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THEOREM 38 For each substructural logic L, the following are equivalent.

(1) L has both the SCIP and the EqSCIP.

(2) L has both the EqSDIP and the nonsepSCIP.

(3) V(L) has the superCHD(α).

Proof. (1) ⇒ (2) Obvious.
(2) ⇒ (3) Suppose first that L has the condition (2), and let f : A → B and g : A → C be

homomorphisms for A,B,C in V(L). Since L has the EqSDIP, we can construct an algebra D in
V(L) and homomorphisms h : B → D and k : C → D satisfying the CHD(α) in the same way as
the proof of Theorem 35. Thus, it is sufficient to show that they satisfy also the third condition of
the superCHD(α), namely,

for all b ∈ B and c ∈ C, if h(b) ≤ k(c) (k(c) ≤ h(b)) then there exists a ∈ A such that
h(b) ≤ h ◦ f(a) and k ◦ g(a) ≤ k(c) (k(c) ≤ k ◦ g(a) and h ◦ f(a) ≤ h(b), respectively).

Suppose that h(b) ≤ k(c) holds for b ∈ B and c ∈ C. Then, there exist some formulas ϕ ∈ Fm(Y )
and ψ ∈ Fm(Z) such that b = ηB(ϕ) and c = ηC(ψ). By the definitions of h, k and ≡, we can
see that h(b) ≤ k(c) is equivalent to ΓB,ΓC ⊢L ϕ\ψ. Then, by the nonsepSCIP, there exists
some formula δ with var(δ) ⊆ var(ΓB ∪ {ϕ}) ∩ var(ΓC ∪ {ψ}) ⊆ Y ∩ Z = X such that both
ΓB,ΓC ⊢L ϕ\δ and ΓB,ΓC ⊢L δ\ψ hold. Let a = ηA(δ) ∈ A. Then, ΓB,ΓC ⊢L ϕ\δ implies
h(b) = h(ηB(ϕ)) = (ϕ/ ≡) ≤ (δ/ ≡) = h(ηB(δ)) = h ◦ f(ηA(δ)) = h ◦ f(a). In the same way,
ΓB,ΓC ⊢L δ\ψ implies k ◦ g(a) ≤ k(c). Similarly, if k(c′) ≤ h(b′) holds for b′ ∈ B and c′ ∈ C then
there exists some a′ ∈ A such that k(c′) ≤ k ◦ g(a′) and h ◦ f(a′) ≤ h(b′) hold. Therefore, V(L)
has the superCHD(α).

(3) ⇒ (1) Suppose that V(L) has the superCHD(α). Then, it is easily shown that the
superCHD(α) implies both the superCHD(β) and the strongCHD(α). Thus, by Theorem 34 and
37, L has both the SCIP and the EqSCIP. 2

THEOREM 39 For each substructural logic L, L has both the ISDIP and the nonsepEqSCIP iff
V(L) has the strongCHD(β).

Proof. Suppose that L has both the ISDIP and the nonsepEqSCIP, and let f : A → B and
g : A → C be homomorphisms for A,B,C in V(L). Then, by the ISDIP, we can construct an
algebra D and homomorphisms h : B → D and k : C → D satisfying the CHD(β) as we have
done in the proof of Theorem 32. Thus, it is sufficent to show that they satisfy also the third
condition of the strongCHD(β), namely, h(B)∩ k(C) = h ◦ f(A). Clearly, h ◦ f(A) ⊆ h(B)∩ k(C)
holds since f(A) ⊆ B, g(A) ⊆ C and h ◦ f = k ◦ g. We show that h(B) ∩ k(C) ⊆ h ◦ f(A). Let
d ∈ h(B) ∩ k(C), namely for some b ∈ B and c ∈ C, d = h(b) = k(c). Then, there exist some
formulas ϕ ∈ Fm(Y ) and ψ ∈ Fm(Z) such that b = ηB(ϕ) and c = ηC(ψ). From the definitions
of h, k and ≡, we can see that the condition h(b) = k(c) is equivalent to ΓB,ΓC ⊢L (ϕ\ψ)∧ (ψ\ϕ).
By the nonsepEqSCIP, there is a formula δ with var(δ) ⊆ X such that ΓB,ΓC ⊢L (ϕ\δ) ∧ (δ\ϕ)
and ΓB,ΓC ⊢L (ψ\δ) ∧ (δ\ψ). Let a = ηA(δ) ∈ A. Then, d = h(b) = h(ηB(ϕ)) = (ϕ/ ≡) =
(δ/ ≡) = h(ηB(δ)) = h ◦ f(ηA(δ)) = h ◦ f(a), which implies d ∈ h ◦ f(A). Thus, V(L) has the
strongCHD(β).

Conversely, suppose that V(L) has the strongCHD(β). Clearly, by Theorem 32, L has the
ISDIP. We assume that Γ,Σ ⊢L (ϕ\ψ) ∧ (ψ\ϕ) holds for a set of formulas Γ ∪ Σ ∪ {ϕ,ψ} and let
Y = var(Γ ∪ {ϕ}), Z = var(Σ ∪ {ψ}) and X = Y ∩ Z. In the same way as the proof of Theorem
30, we introduce quotient algebras Fm(X)/∆,Fm(Y )/Γ and Fm(Z)/Σ, and homomorphisms
f : Fm(X)/∆ → Fm(Y )/Γ and g : Fm(X)/∆ → Fm(Z)/Σ. By the strongCHD(β), there exist
an algebra D in V(L) and homomorphisms h : Fm(Y )/Γ → D and k : Fm(Z)/Σ → D such that
all of three conditions h ◦ f = k ◦ g, (β) and h(Fm(Y )/Γ) ∩ k(Fm(Z)/Σ) = h ◦ f(Fm(X)/∆)

32



hold. We construct a valuation w over D for formulas from Fm(Y ∪ Z) in the same way as the
proof of Theorem 16. Then, our assumption Γ,Σ ⊢L (ϕ\ψ)∧ (ψ\ϕ) implies D, w |= (ϕ\ψ)∧ (ψ\ϕ),
and hence h(ϕ/ ≡Γ) = k(ψ/ ≡Σ) holds. Since ϕ/ ≡Γ∈ Fm(Y )/Γ and ψ/ ≡Σ∈ Fm(Z)/Σ, the
conditions h ◦ f = k ◦ g and h(Fm(Y )/Γ) ∩ k(Fm(Z)/Σ) = h ◦ f(Fm(X)/∆) imply that there
exists some δ/ ≡∆∈ Fm(X)/∆ such that h(ϕ/ ≡Γ) = h ◦ f(δ/ ≡∆) = h(δ/ ≡Γ) and k(ψ/ ≡Σ) =
k ◦ g(δ/ ≡∆) = k(δ/ ≡Σ). We show that h(ϕ/ ≡Γ) = h(δ/ ≡Γ) implies Γ,Σ ⊢L (ϕ\δ) ∧ (δ\ϕ).
So, suppose that h(ϕ/ ≡Γ) = h(δ/ ≡Γ). Then we have 1D ≤ h(((ϕ\δ) ∧ (δ\ϕ))/ ≡Γ). Since
((ϕ\δ) ∧ (δ\ϕ))/ ≡Γ∈ Fm(Y )/Γ, by the condition (β) there exists some δ′/ ≡∆∈ Fm(X)/∆ such
that







(δ′/ ≡Γ) = f(δ′/ ≡∆) ≤ (((ϕ\δ) ∧ (δ\ϕ))/ ≡Γ)
and

1Fm(Z)/Σ ≤ g(δ′/ ≡∆) = (δ′/ ≡Σ).

Hence Γ ⊢L δ′\((ϕ\δ) ∧ (δ\ϕ)) and Σ ⊢L δ′ follow from them, respectively. Therefore, Γ,Σ ⊢L

(ϕ\δ) ∧ (δ\ϕ) holds. Similarly, we can show that k(ψ/ ≡Σ) = k(δ/ ≡Σ) implies Γ,Σ ⊢L (ψ\δ) ∧
(δ\ψ). Thus, L has both the ISDIP and the nonsepEqSCIP. 2

THEOREM 40 For each substructural logic L, L has both the SDIP and the nonsepSCIP iff
V(L) has the superCHD(γ).

Proof. Suppose that L has both the SDIP and the nonsepSCIP, and let f : A → B and g : A →
C be homomorphisms for A,B,C in V(L). By the SDIP, we can construct an algebra D and
homomorphisms h : B → D and k : C → D satisfying the CHD(γ) as we have done in the proof
fo Theorem 30. It suffices to show that they satisfy also the third condition of the superCHD(γ),
namely,

for all b ∈ B and c ∈ C, if h(b) ≤ k(c) (k(c) ≤ h(b)) then there exists a ∈ A such that
h(b) ≤ h ◦ f(a) and k ◦ g(a) ≤ k(c) (k(c) ≤ k ◦ g(a) and h ◦ f(a) ≤ h(b), respectively).

Suppose that h(b) ≤ k(c) holds for b ∈ B and c ∈ C. Then, there exist some formulas ϕ ∈ Fm(Y )
and ψ ∈ Fm(Z) such that b = ηB(ϕ) and c = ηC(ψ). From the definition of h, k and ≡, we
can see that h(b) ≤ k(c) is equivalent to ΓB,ΓC ⊢L ϕ\ψ. Then, by the nonsepSCIP, there exists
some formula δ with var(δ) ⊆ var(ΓB ∪ {ϕ}) ∩ var(ΓC ∪ {ψ}) ⊆ Y ∩ Z = X such that both
ΓB,ΓC ⊢L ϕ\δ and ΓB,ΓC ⊢L δ\ψ hold. Let a = ηA(δ) ∈ A. Then, ΓB,ΓC ⊢L ϕ\δ implies
h(b) = h(ηB(ϕ)) = (ϕ/ ≡) ≤ (δ/ ≡) = h(ηB(δ)) = h ◦ f(ηA(δ)) = h ◦ f(a). In the same way,
ΓB,ΓC ⊢L δ\ψ implies k ◦ g(a) ≤ k(c). Similarly, if k(c′) ≤ h(b′) holds for b′ ∈ B and c′ ∈ C then
there exists some a′ ∈ A such that k(c′) ≤ k ◦ g(a′) and h ◦ f(a′) ≤ h(b′) hold. Therefore, V(L)
has the superCHD(γ).

Conversely, suppose that V(L) has the superCHD(γ). Clearly, by Theorem 30, L has the SDIP.
We assume that Γ,Σ ⊢L ϕ\ψ holds for a set of formulas Γ∪Σ∪{ϕ,ψ} and let Y = var(Γ∪{ϕ}), Z =
var(Σ∪ {ψ}) and X = Y ∩Z. In the same way as the proof of Theorem 30, we introduce quotient
algebras Fm(X)/∆,Fm(Y )/Γ and Fm(Z)/Σ, and homomorphisms f : Fm(X)/∆ → Fm(Y )/Γ
and g : Fm(X)/∆ → Fm(Z)/Σ. By the superCHD(γ), there exist an algebra D in V(L) and
homomorphisms h : Fm(Y )/Γ → D and k : Fm(Z)/Σ → D such that h ◦ f = k ◦ g, (γ) and the
following hold;

for all b ∈ Fm(Y )/Γ and c ∈ Fm(Z)/Σ, if h(b) ≤ k(c) (k(c) ≤ h(b)) then there exists
a ∈ Fm(X)/∆ such that h(b) ≤ h ◦ f(a) and k ◦ g(a) ≤ k(c) (k(c) ≤ k ◦ g(a) and
h ◦ f(a) ≤ h(b), respectively).

We construct a valuation w over D for formulas from Fm(Y ∪ Z) in the same way as the proof
of Theorem 16. Then, Γ,Σ ⊢L ϕ\ψ implies D, w |= ϕ\ψ, and hence h(ϕ/ ≡Γ) ≤ k(ψ/ ≡Σ) holds.
Since ϕ/ ≡Γ∈ Fm(Y )/Γ and ψ/ ≡Σ∈ Fm(Z)/Σ, by the third condition of the superCHD(γ), there
exists some δ/ ≡∆ in Fm(X)/∆ such that h(ϕ/ ≡Γ) ≤ h ◦ f(δ/ ≡∆) = h(δ/ ≡Γ) and k(δ/ ≡Σ) =
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k ◦ g(δ/ ≡∆) ≤ k(ψ/ ≡Σ). We show that h(ϕ/ ≡Γ) ≤ h(δ/ ≡Γ) implies Γ,Σ ⊢L ϕ\δ. Suppose that
h(ϕ/ ≡Γ) ≤ h(δ/ ≡Γ). Then we have 1D ≤ h((ϕ\δ)/ ≡Γ). Since (ϕ\δ)/ ≡Γ∈ Fm(Y )/Γ, by the
condition (γ) there exists some δ′/ ≡∆∈ Fm(X)/∆ such that







(ϕ\δ)/ ≡Γ∈ FgFm(Y )/Γ(f(δ′/ ≡∆)) = FgFm(Y )/Γ(δ′/ ≡Γ)

and
1Fm(Z)/Σ ≤ g(δ′/ ≡∆) = (δ′/ ≡Σ).

Hence δ′,Γ ⊢L ϕ\δ and Σ ⊢L δ′ follow from them, respectively. Therefore, Γ,Σ ⊢L ϕ\δ holds.
Similarly, we can show that k(δ/ ≡Σ) ≤ k(ψ/ ≡Σ) implies Γ,Σ ⊢L δ\ψ. Thus, L has both the
SDIP and the nonsepSCIP. 2

THEOREM 41 For each substructural logic L, L has both the SDIP and the nonsepEqSCIP iff
V(L) has the strongCHD(γ).

Proof. Suppose that L has both the SDIP and the nonsepEqSCIP, and let f : A → B and
g : A → C be homomorphisms for A,B,C in V(L). By the SDIP, we can construct an algebra D
and homomorphisms h : B → D and k : C → D satisfying the CHD(γ) as we have done in the proof
of Theorem 30. We show that they satisfy also the third condition of the strongCHD(γ), namely,
h(B) ∩ k(C) = h ◦ f(A). Clearly, h ◦ f(A) ⊆ h(B) ∩ k(C) holds since f(A) ⊆ B, g(A) ⊆ C and
h◦f = k◦g. Conversely, to show that h(B)∩k(C) ⊆ h◦f(A), let d ∈ h(B)∩k(C), namely for some
b ∈ B and c ∈ C, d = h(b) = k(c). Then, there exist some formulas ϕ ∈ Fm(Y ) and ψ ∈ Fm(Z)
such that b = ηB(ϕ) and c = ηC(ψ). From the definitions of h, k and ≡ in the proof of Theorem
30 (in fact, the proof of Theorem 16), we can see that the condition h(b) = k(c) is equivalent
to ΓB,ΓC ⊢L (ϕ\ψ) ∧ (ψ\ϕ). By the nonsepEqSCIP, there is a formula δ with var(δ) ⊆ X such
that ΓB,ΓC ⊢L (ϕ\δ) ∧ (δ\ϕ) and ΓB,ΓC ⊢L (ψ\δ) ∧ (δ\ψ). Let a = ηA(δ) ∈ A. Then, we have
d = h(b) = h(ηB(ϕ)) = (ϕ/ ≡) = (δ/ ≡) = h(ηB(δ)) = h ◦ f(ηA(δ)) = h ◦ f(a), which implies
d ∈ h ◦ f(A). Thus, V(L) has the strongCHD(γ).

Conversely, suppose that V(L) has the strongCHD(γ). Clearly, by Theorem 30, L has the
SDIP. We assume that Γ,Σ ⊢L (ϕ\ψ) ∧ (ψ\ϕ) holds for a set of formulas Γ ∪ Σ ∪ {ϕ,ψ} and let
Y = var(Γ ∪ {ϕ}), Z = var(Σ ∪ {ψ}) and X = Y ∩ Z. In the same way as the proof of Theorem
30, we introduce quotient algebras Fm(X)/∆,Fm(Y )/Γ and Fm(Z)/Σ, and homomorphisms
f : Fm(X)/∆ → Fm(Y )/Γ and g : Fm(X)/∆ → Fm(Z)/Σ. By the strongCHD(γ), there exist
an algebra D in V(L) and homomorphisms h : Fm(Y )/Γ → D and k : Fm(Z)/Σ → D satisfying
h ◦ f = k ◦ g, (γ) and h(Fm(Y )/Γ)∩ k(Fm(Z)/Σ) = h ◦ f(Fm(X)/∆). We construct a valuation
w over D for formulas from Fm(Y ∪ Z) in the same way as the proof of Theorem 16. Then,
our assumption Γ,Σ ⊢L (ϕ\ψ) ∧ (ψ\ϕ) implies D, w |= (ϕ\ψ) ∧ (ψ\ϕ), and hence h(ϕ/ ≡Γ) =
k(ψ/ ≡Σ) holds. Since ϕ/ ≡Γ∈ Fm(Y )/Γ and ψ/ ≡Σ∈ Fm(Z)/Σ, the conditions h◦ f = k ◦ g and
h(Fm(Y )/Γ)∩ k(Fm(Z)/Σ) = h ◦ f(Fm(X)/∆) imply that there exists some δ/ ≡∆∈ Fm(X)/∆
such that h(ϕ/ ≡Γ) = h◦f(δ/ ≡∆) = h(δ/ ≡Γ) and k(ψ/ ≡Σ) = k◦g(δ/ ≡∆) = k(δ/ ≡Σ). We show
that h(ϕ/ ≡Γ) = h(δ/ ≡Γ) implies Γ,Σ ⊢L (ϕ\δ)∧(δ\ϕ). So, supppose that h(ϕ/ ≡Γ) = h(δ/ ≡Γ).
Then we have 1D ≤ h(((ϕ\δ) ∧ (δ\ϕ))/ ≡Γ). Since ((ϕ\δ) ∧ (δ\ϕ))/ ≡Γ∈ Fm(Y )/Γ, by the
condition (γ) there exists some δ′/ ≡∆∈ Fm(X)/∆ such that







((ϕ\δ) ∧ (δ\ϕ))/ ≡Γ∈ FgFm(Y )/Γ(f(δ′/ ≡∆)) = FgFm(Y )/Γ(δ′/ ≡Γ)

and
1Fm(Z)/Σ ≤ g(δ′/ ≡∆) = (δ′/ ≡Σ).

Hence δ′,Γ ⊢L (ϕ\δ)∧(δ\ϕ) and Σ ⊢L δ
′ follow from them, respectively. Therefore, Γ,Σ ⊢L (ϕ\δ)∧

(δ\ϕ) holds. Similarly, we can show that k(ψ/ ≡Σ) = k(δ/ ≡Σ) implies Γ,Σ ⊢L (ψ\δ) ∧ (δ\ψ).
Thus, L has both the SDIP and the nonsepEqSCIP. 2
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We summarize the algebraic characterizations of several types of interpolation properties in
Figure 10.

SCIP + EqSCIP
m

superCHD(α)
⇒

SCIP
m

superCHD(β)
⇒

superCHD(γ)
(Theorem 40)

=⇒

⇓ ⇓ ⇓
EqSCIP

m
strongCHD(α)

⇒
strongCHD(β)
(Theorem 39)

⇒
strongCHD(γ)
(Theorem 41)

=⇒

⇓ ⇓ ⇓
EqSDIP

m
CHD(α)

⇒
ISDIP

m
CHD(β)

⇒
SDIP
m

CHD(γ)
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=⇒
superRP

m
superAP

⇒
superIGAP

(Theorem 25)
⇒

CIP
m

superGAP
⇓ ⇓ ⇓

=⇒
strongRP

m
strongAP

⇒
strongIGAP

(Theorem 26)
⇒

strongGAP
(Theorem 24)

⇓ ⇓ ⇓

=⇒
RP
m

AP
⇒

DIP
m

IGAP
⇒

GAP
(Theorem 23)

Figure 10: Algebraic characterizations of interpolation properties

6 Beth definability property

Relationships between the interpolation properties and the Beth definability properties have been
discussed in many papers. See e.g. [1], [12], [30] and [33] for algebraizable logics and for abstract
algebraic logic, [4] within a model-theoretic framework, and [7], [23], [24], [26] and [28] for specific
classes of nonclassical logics, e.g. modal logics and superintuitionistic logics.

In this section, we discuss an algebraic characterization of the Beth definability property for
substructural logics. Moreover, we clarify relationships between the Beth definability property and
the strongRP.

6.1 Algebraic characterization of Beth definability property

The Beth definability property was originally defined for predicate logics. Here, we formulate
its analog for propositional substructural logics. In the following, x̄ denotes a list of distinct
propositional variables, and α(x̄), β(x̄) etc. mean such formulas that variables occurring in them
are among x̄. Note that, different from the notation var(α), some variables in x̄ may not appear
in α(x̄).
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DEFINITION 20 A substructural logic L has the Beth definability property (BDP) if for any
formula α(x̄, x′) and distinct propositional variables y and z, neither of which appear in x̄, if
α(x̄, y), α(x̄, z) ⊢L (y\z) ∧ (z\y) then there exists some formula δ(x̄) such that

• α(x̄, y) ⊢L (y\δ(x̄)) ∧ (δ(x̄)\y).

The BDP is called B2 in Maksimova [24]. Obviously, the logical property EqSCIP introduced
in the previous section implies the BDP. Later we show a sharper connection of the BDP with
interpolation properties in Figure 10. We give here another logical property which is equivalent to
the BDP. In the following, Γ(x̄) denotes a set of formulas such that every formulas in it is of the
form α(x̄), i.e., a set of formulas whose variables are among x̄.

LEMMA 42 For each substructural logic L, the following are equivalent.

(1) L has the BDP.

(2) L has the BDP∗; for any set of formulas Γ(x̄, x′) and distinct propositional variables y and
z, neither of which appear in x̄, if Γ(x̄, y),Γ(x̄, z) ⊢L (y\z)∧(z\y) then there exists a formula
δ(x̄) such that

• Γ(x̄, y) ⊢L (y\δ(x̄)) ∧ (δ(x̄)\y).

Proof. It is easily shown using the fact that ⊢L is finitary and conjunctive. 2

For classical logic, and in general for modal logics, the CIP is equivalent to the BDP (Craig
[5] showed that the CIP implies the BDP and the converse was shown by Maksimova in [23] and
[24]). But this is not always the case. In fact, all superintuitionistic logics have the BDP, due
to Kreisel [17], while there are only seven consistent superintuitionistic logics with the CIP, due
to Maksimova in [20] and [21]. (See also [22] for modal logics.) 4 On the other hand, Montagna
showed in [29] that not many substructural logics over Hájek’s basic logic BL have the BDP. In
fact, those logics over BL having the BDP are exactly superintuitionistic logics over Gödel logic.
For more information on the BDP for modal and predicate logics, see [7].

DEFINITION 21 A variety V has the ES∗15 if for all A,B in V, for all embedding f : A → B
and for all b0 ∈ B \f(A), there exist an algebra C in V and embeddings h : SgB(f(A)∪{b0}) → C
and k : SgB(f(A) ∪ {b0}) → C such that h ◦ f = k ◦ f and h(b0) 6= k(b0), where SgD(X) is the
subalgebra of D generated by X.

For algebraizable logics, an algebraic characterization of the BDP was given by Németi [30] and
Hoogland [12]. See also Henkin, Monk and Tarski [10], Theorem 5.6.10 and Andréka, Németi and
Sain [1] Theorem 58, p.213. For further study in this direction, consult also Sain [34], Hoogland
[11] and [13] 6. In [24], Maksimova gave an alternative characterization of it for modal logics.
The following theorem shows that the result due to Maksimova can be extended to those for
substructural logics.

THEOREM 43 For each substructural logic L, L has the BDP iff V(L) has the ES∗1.

4In [23] and [24], the BDP is defined in the implicational form, not in the deductive one as we do. But they are
of course equivalent in any logic for which deduction theorem holds, e.g. in any superintuitionistic logic. Note that
it is shown in [35] that the BDP fails in a wide variety of relevant logics.

5In [24], ES∗1 is called simply ES∗ (epimorphisms surjectivity). Here, for the sake of correspondence between
stronger forms of the BDP and the ES∗ shown later, the ES∗ is numbered.

6In [34] and [11], algebraic characterizations of a weak form of the BDP, called the weak BDP, are discussed. At
this moment, it is not clear for us how to incorporate the weak BDP into our present framework.
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Proof. First, we show that V(L) has the ES∗1, by assuming the BDP of L. By Lemma 42, it is
enough to show that the BDP∗ implies the ES∗1. Let f : A → B be an embedding for A,B in
V(L), b0 ∈ B \ f(A) and SgB(f(A) ∪ {b0}) be the subalgebra of B generated by f(A) ∪ {b0}. We
define a set of variables X by X = {xa : a ∈ A}, and a mapping η′A : X → A by η′A(xa) = a.
Then, the mapping η′A is uniquely extended to a surjective homomorphism ηA : Fm(X) → A.
Next, by introducing distinct new variables yb0 and zb0 , we define sets of variables Y and Z by
Y = X ∪ {yb0} and Z = X ∪ {zb0}, and define also mapping η′B1 : Y → SgB(f(A) ∪ {b0}) and
η′B2 : Z → SgB(f(A) ∪ {b0}) by

η′B1(y) =

{

f(a) if y = xa for some xa ∈ X
b0 if y = yb0

and

η′B2(z) =

{

f(a) if z = xa for some xa ∈ X
b0 if z = zb0 .

Then η′B1 and η′B2 are naturally extended to surjective homomorphisms ηB1 : Fm(Y ) → SgB(f(A)∪
{b0}) and ηB2 : Fm(Z) → SgB(f(A) ∪ {b0}), respectively, which satisfy ηB1(σ) = ηB2(σ) =
f(ηA(σ)) for every σ ∈ Fm(X). Define sets of formulas Γ1(x̄, yb0) and Γ2(x̄, zb0) by

Γ1(x̄, yb0) = {ϕ ∈ Fm(Y ) : ηB1(ϕ) ≥ 1Sg
B

(f(A)∪{b0})},
Γ2(x̄, zb0) = {ψ ∈ Fm(Z) : ηB2(ψ) ≥ 1Sg

B
(f(A)∪{b0})},

where x̄ is the list of variables in X which are used in constructions of either ϕ or ψ. Note that it is
easily shown that both Γ1(x̄, zb0) = Γ2(x̄, zb0) and Γ2(x̄, yb0) = Γ1(x̄, yb0) hold. Thus, we can write
Γ1(x̄, yb0) and Γ2(x̄, zb0) as Γ(x̄, yb0) and Γ(x̄, zb0), respectively. We introduce a binary relation ≡
on Fm(Y ∪ Z) by

β ≡ γ iff Γ(x̄, yb0),Γ(x̄, zb0) ⊢L (β\γ) ∧ (γ\β).

Then, it is easily seen that ≡ is a congruence relation on Fm(Y ∪Z) and that the quotient algebra
Fm(Y ∪ Z)/ ≡ is a member of V(L). Let us call this algebra, C. We will show that this C is a
required algebra satisfying the conditions for ES∗1.

Now define mappings h : SgB(f(A) ∪ {b0}) → C and k : SgB(f(A) ∪ {b0}) → C by

• h(b) = (ϕ/ ≡) when b = ηB1(ϕ) for a formula ϕ ∈ Fm(Y ),

• k(b′) = (ψ/ ≡) when b′ = ηB2(ψ) for a formula ψ ∈ Fm(Z).

We prove that both h and k are well-defined embeddings. To show the well-definedness of h,
suppose that ηB1(ϕ) = ηB1(ϕ

′) for ϕ,ϕ′ ∈ Fm(Y ). Then, Γ(x̄, yb0) ⊢L (ϕ\ϕ′) ∧ (ϕ′\ϕ), and
hence ϕ ≡ ϕ′. It is easy to see that h is a homomorphism. To show that h is injective, sup-
pose that h(b) = h(b′), where b = ηB1(ϕ) and b′ = ηB1(ϕ

′) for ϕ,ϕ′ ∈ Fm(Y ). Then, ϕ ≡ ϕ′,
and thus Γ(x̄, yb0),Γ(x̄, zb0) ⊢L (ϕ\ϕ′) ∧ (ϕ′\ϕ) by the definition of ≡. Let s1 be a substitu-
tion such that s1(x) = x for each x ∈ X, s1(yb0) = yb0 and s1(zb0) = yb0 . Then, we have
s1(Γ(x̄, yb0)), s1(Γ(x̄, zb0)) ⊢L s1((ϕ\ϕ′) ∧ (ϕ′\ϕ)), namely Γ(x̄, yb0) ⊢L (ϕ\ϕ′) ∧ (ϕ′\ϕ). Since
ηB1(ϕ

∗) ≥ 1Sg
B

(f(A)∪{b0}) holds for each ϕ∗ ∈ Γ(x̄, yb0), we have that ηB1((ϕ\ϕ′) ∧ (ϕ′\ϕ)) ≥
1Sg

B
(f(A)∪{b0}), namely b = ηB1(ϕ) = ηB1(ϕ

′) = b′. Thus, h is an embedding. Similarly, k
is shown to be a well-defined embedding. Next, we show that h ◦ f = k ◦ f . Take an arbi-
trary element a ∈ A. Then there exists a formula σ ∈ Fm(X) such that a = ηA(σ). Then,
(h ◦ f)(a) = h(f(ηA(σ))) = h(ηB1(σ)) = (σ/ ≡) = k(ηB2(σ)) = k(f(ηA(σ))) = (k ◦ f)(a).
Thus, h ◦ f = k ◦ f . It remains to show that h(b0) 6= k(b0). Assume that h(b0) = k(b0) holds.
Then, we have (yb0/ ≡) = h(ηB1(yb0)) = h(b0) = k(b0) = k(ηB2(zb0)) = (zb0/ ≡), and hence
Γ(x̄, yb0),Γ(x̄, zb0) ⊢L (yb0\zb0) ∧ (zb0\yb0) holds. By the BDP∗, there exists some δ(x̄) such that
Γ(x̄, yb0) ⊢L (yb0\δ(x̄)) ∧ (δ(x̄)\yb0). Note that since δ(x̄) ∈ Fm(X), we have ηA(δ(x̄)) ∈ A.
Let a = ηA(δ(x̄)). Since ηB1(ϕ

∗) ≥ 1Sg
B

(f(A)∪{b0}) holds for each ϕ∗ ∈ Γ(x̄, yb0), we have
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that ηB1((yb0\δ(x̄)) ∧ (δ(x̄)\yb0)) ≥ 1Sg
B

(f(A)∪{b0}), which implies b0 = ηB1(yb0) = ηB1(δ(x̄)) =
f(ηA(δ(x̄))) = f(a). Hence b0 ∈ f(A) holds. But, this contradicts the choice of b0. Thus,
h(b0) 6= k(b0). Therefore, V(L) has the ES∗1.

We show next that the ES∗1 implies the BDP by taking the contraposition. Assume that L does
not satisfy the BDP, namely there exist some formula α(x̄, x′) and distinct propositional variables
y and z, neither of which appear in x̄, such that α(x̄, y), α(x̄, z) ⊢L (y\z)∧ (z\y) holds but there is
no formula δ(x̄) satisfying α(x̄, y) ⊢L (y\δ(x̄)) ∧ (δ(x̄)\y). Let X be a set of all variables occuring
in the list x̄ and denote sets of variables Y and Z by Y = X ∪ {y} and Z = X ∪ {z}. Define
∆ = {σ ∈ Fm(X) : α(x̄, y) ⊢L σ}, which is obviously equal to {σ ∈ Fm(X) : α(x̄, z) ⊢L σ}. The
set ∆ determines a binary relation ≡∆ on Fm(X) by

β ≡∆ γ iff ∆ ⊢L (β\γ) ∧ (γ\β),

which is in fact a congruence relation. We denote the quotient algebra of Fm(X) determined by this
≡∆ as Fm(X)/∆. Similarly, we can introduce quotient algebras 7 Fm(Y )/α(x̄, y) of Fm(Y ), and
Fm(Z)/α(x̄, z) of Fm(Z), by taking formulas α(x̄, y) and α(x̄, z), respectively, in the place of ∆.
It is clear that all of these algebras Fm(X)/∆, Fm(Y )/α(x̄, y) and Fm(Z)/α(x̄, z) are members of
V(L). We define mappings f : Fm(X)/∆ → Fm(Y )/α(x̄, y) and g : Fm(X)/∆ → Fm(Z)/α(x̄, z)
by

f(σ/∆) = σ/α(x̄, y) and g(σ/∆) = σ/α(x̄, z).

They are shown to be well-defined embeddings, by the definition of ∆. Let s2 be a substi-
tution such that s2(x) = x for x ∈ X, s2(y) = y and s2(z) = y. Define a mapping w :
Fm(Z)/α(x̄, z) → Fm(Y )/α(x̄, y) by w(ψ/α(x̄, z)) = s2(ψ)/α(x̄, y). Then, it is easy to show
that w is an isomorphism. We prove that f = w◦g holds. For any σ ∈ Fm(X), we have f(σ/∆) =
(σ/α(x̄, y)) = (s2(σ)/α(x̄, y)) = w(σ/α(x̄, z)) = w ◦ g(σ/∆). Note that Fm(Y )/α(x̄, y) is gener-
ated by f(Fm(X)/∆)∪{y/α(x̄, y)}. We show that y/α(x̄, y) 6∈ f(Fm(X)/∆). If not, there is some
δ/∆ ∈ Fm(X)/∆ such that y/α(x̄, y) = f(δ/∆) = δ/α(x̄, y). Hence, α(x̄, y) ⊢L (y\δ) ∧ (δ\y),
namely α(x̄, y) ⊢L (y\δ(x̄)) ∧ (δ(x̄)\y) holds since δ can be written as δ(x̄). But this contradicts
our assumption. Thus y/α(x̄, y) 6∈ f(Fm(X)/∆).

Assume that V(L) has the ES∗1. Then there exist some C in V(L) and embeddings h :
Fm(Y )/α(x̄, y) → C and k : Fm(Y )/α(x̄, y) → C such that h ◦ f = k ◦ f and h(y/α(x̄, y)) 6=
k(y/α(x̄, y)). Now, consider a valuation u over C for formulas in Fm(Y ∪ Z) defined as follows:
For every x ∈ Y ∪ Z

u(x) =

{

h(x/α(x̄, y)) if x ∈ Y
k ◦ w(x/α(x̄, z)) if x ∈ Z.

The mapping u is well-defined, since if x ∈ X then h(x/α(x̄, y)) = h ◦ f(x/∆) = k ◦ f(x/∆) =
k ◦ w ◦ g(x/∆) = k ◦ w(x/α(x̄, z)). As usual, u is extended to a mapping from Fm(Y ∪ Z) to C,
which satisfies that

u(θ) =

{

h(θ/α(x̄, y)) if θ ∈ Fm(Y )
k ◦ w(θ/α(x̄, z)) if θ ∈ Fm(Z).

Since α(x̄, y) ⊢L α(x̄, y) holds, we have α(x̄, y)/α(x̄, y) ≥ 1Fm(Y )/α(x̄,y). Hence both u(α(x̄, y)) =
h(α(x̄, y)/α(x̄, y)) ≥ 1C and u(α(x̄, z)) = k ◦ w(α(x̄, z)/α(x̄, z)) = k(α(x̄, y)/α(x̄, y)) ≥ 1C hold.
By our assumption α(x̄, y), α(x̄, z) ⊢L (y\z)∧ (z\y), we have u((y\z)∧ (z\y)) ≥ 1C, which implies
h(y/α(x̄, y)) = u(y) = u(z) = k ◦ w(z/α(x̄, z)) = k(y/α(x̄, y)). But, this contradicts the condition
of the ES∗1, and thus V(L) does not satisfy the ES∗1. Therefore, the ES∗1 implies the BDP. 2

7Note that hereafter, the symbol “/” denotes a quotient, not a right-division. In other words, “β(x̄, y)/α(x̄, y)”
means not the element of Fm(Y ) but the congruence class of β(x̄, y) with respect to ≡α(x̄,y).
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6.2 Strong Robinson property and Beth definability property

To clarify relationships between the strongRP and the BDP, we introduce extensions of the BDP
as follows. In the following, x̄n denotes a list of distinct n-elements propositional variables, namely
x̄n = x1, . . . , xn.

DEFINITION 22 For each n ∈ ω, a substructural logic L has the n-Beth definability property
(n-BDP) if for every formula α(x̄, x̄′n), every pair of lists of variables ȳn and z̄n such that for
each 1 ≤ i, j ≤ n, yi and zj are distinct and none of them appear in x̄, and every m ≤ n, if
α(x̄, ȳn), α(x̄, z̄n) ⊢L (ym\zm) ∧ (zm\ym) holds then there exists a formula δm(x̄) such that

• α(x̄, ȳn) ⊢L (ym\δm(x̄)) ∧ (δm(x̄)\ym).

A substructural logic L has the projective Beth definability property 8 (PBDP) if it has the n-BDP
for all n ∈ ω.

For each n ∈ ω, a substructural logic L has the n-BDP+ if for every formula α(x̄, x̄′n), every
pair of lists of variables ȳn and z̄n such that for each 1 ≤ i, j ≤ n, yi and zj are distinct and none
of them appear in x̄, and every m ≤ n, if α(x̄, ȳn), α(x̄, z̄n) ⊢L (ym\zl) ∧ (zl\ym) holds for some
1 ≤ l ≤ n then there exists a formula δm(x̄) such that

• α(x̄, ȳn) ⊢L (ym\δm(x̄)) ∧ (δm(x̄)\ym).

A substructural logic L has the projective BDP+ (written as PBDP+) if it has the n-BDP+ for
all n ∈ ω.

For each n ∈ ω, a substructural logic L has the n-Beth definability property by formulas (n-
BDPF) if for all formulas α(x̄, x̄′n), ϕ(x̄, ȳn) and ψ(x̄, z̄n) such that for each 1 ≤ i, j ≤ n, yi

and zj are distinct and neither of them appear in x̄, if α(x̄, ȳn), α(x̄, z̄n) ⊢L (ϕ(x̄, ȳn)\ψ(x̄, z̄n)) ∧
(ψ(x̄, z̄n)\ϕ(x̄, ȳn)) then there exists a formula δ(x̄) such that

• α(x̄, ȳn) ⊢L (ϕ(x̄, ȳn)\δ(x̄)) ∧ (δ(x̄)\ϕ(x̄, ȳn)).

A substructural logic L has the projective Beth definability property by formulas (PBDPF) if it has
the n-BDPF for all n ∈ ω.

Similar to Lemma 42, we can introduce general forms of the BDPs in Definition 22 by replacing
fomulas α(x̄, ȳ) and α(x̄, z̄) by sets of formulas Γ(x̄, ȳ) and Γ(x̄, z̄), respectively, that are in fact
equivalent to them.

Obviously, the 1-BDP and the 1-BDP+ are nothing but the BDP. Also, for any n ∈ ω, the
n-BDPF always implies the n-BDP+, which in turn always implies the n-BDP. Similarly, the
PBDPF always implies the PBDP+, which in turn always implies the PBDP. Note also that for any
n,m ∈ ω, ifm ≤ n then the n-BDP implies them-BDP. For if α(x̄, ȳm), α(x̄, z̄m) ⊢L (yl\zl)∧(zl\yl)
holds for some 1 ≤ l ≤ m then take arbitrary lists of variables ȳn−m and z̄n−m such that for each
1 ≤ i, j ≤ n−m, yi and zj are distinct and none of them appear in x̄, ȳm and z̄m. Then, α(x̄, ȳm)
and α(x̄, z̄m) are expressed also as α(x̄, ȳm, ȳn−m) and α(x̄, z̄m, z̄n−m), respectively. Thus, by the
n-BDP, there exists some δl(x̄) such that α(x̄, ȳm, ȳn−m) ⊢L (yl\δl(x̄)) ∧ (δl(x̄)\yl) holds. Since
α(x̄, ȳm, ȳn−m) = α(x̄, ȳm), the m-BDP follows. This holds also for both n-BDP+ and n-BDPF.

LEMMA 44 For each substructural logic L, if L has the strongRP then it has the PBDPF.

Proof. It is sufficient to show that the n-BDPF holds for all n ∈ ω by assuming the stron-
gRP. Suppose that α(x̄, ȳn), α(x̄, z̄n) ⊢L (ϕ(x̄, ȳn)\ψ(x̄, z̄n))∧(ψ(x̄, z̄n)\ϕ(x̄, ȳn)) holds for formulas
α,ϕ and ψ satisfying the assumption on variables of the n-BDPF. Clearly, α(x̄, ȳn) ⊢L σ(x̄) iff
α(x̄, z̄n) ⊢L σ(x̄) holds for each formula σ(x̄). Now, by using the strongRP, we can show that there
exists a formula δ(x̄) such that α(x̄, ȳn) ⊢L (ϕ(x̄, ȳn)\δ(x̄)) ∧ (δ(x̄)\ϕ(x̄, ȳn)) holds. Therefore, L

8The notion of the PBDP is introduced by Maksimova. In [26], the PBDP is called the PB2.
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has the n-BDPF. 2

Thus, the relationships among the strongRP and various forms of extensions of the BDP in Def-
inition 22 are as shown in the following Figure 11. In particular, for superintuitionistic logics the
following figure says that the CIP implies the PBDPF and hence implies the PBDP, which implies
the BDP. Recall that only seven consistent superintuitionistic logics have the CIP while all super-
intuitionistic logics have the BDP. Maksimova proved in [27] that exactly 16 superintuitionistic
logics have the PBDP.

strongRP
⇓

PBDPF ⇒ · · · ⇒ n-BDPF ⇒ · · · ⇒ 2-BDPF ⇒ 1-BDPF
⇓ ⇓ ⇓ ⇓

PBDP+ ⇒ · · · ⇒ n-BDP+ ⇒ · · · ⇒ 2-BDP+ ⇒ 1-BDP+

⇓ ⇓ ⇓ m
PBDP ⇒ · · · ⇒ n-BDP ⇒ · · · ⇒ 2-BDP ⇒ BDP

Figure 11: Relations among the strongRP and the BDPs

To give algebraic characterizations of variants of the BDPs in Definition 22, we strengthen the
ES∗1 as follows.

DEFINITION 23 For each n ∈ ω, a variety V has the ES∗n if for each A,B ∈ V, each embed-
ding f : A → B and each b0, . . . , bn−1 ∈ B \ f(A), there exist an algebra C in V and embeddings
h : B′ → C and k : B′ → C such that h ◦ f = k ◦ f and h(bi) 6= k(bi) for all i < n, where B′ is the
subalgebra of B generated by f(A) ∪ {b0, . . . , bn−1}.

A variety V has the SES 9 if for each A,B ∈ V and each embedding f : A → B, there exist an
algebra C in V and embeddings h : B → C and k : B → C such that h ◦ f = k ◦ f and h(b) 6= k(b)
for all b ∈ B \ f(A).

For each n ∈ ω, a variety V has the ES∗∗n if for each A,B ∈ V, each embedding f : A → B
and each b0, . . . , bn−1 ∈ B \ f(A), there exist an algebra C in V and embeddings h : B′ → C and
k : B′ → C such that h ◦ f = k ◦ f and h(bi) 6= k(bj) for all i, j < n, where B′ is the subalgebra of
B generated by f(A) ∪ {b0, . . . , bn−1}.10

For each n ∈ ω, a variety V has the ES∗∗∗n if for each A,B ∈ V, each embedding f : A → B
and each b0, . . . , bn−1 ∈ B \ f(A), there exist an algebra C in V and embeddings h : B′ → C and
k : B′ → C such that h ◦ f = k ◦ f and h(B′) ∩ k(B′) = h ◦ f(A), where B′ is the subalgebra of B
generated by f(A) ∪ {b0, . . . , bn−1}.

A variety V has the ES † if for each A,B ∈ V and each embedding f : A → B, there exist
an algebra C in V and embeddings h : B → C and k : B → C such that h ◦ f = k ◦ f and
h(B) ∩ k(B) = h ◦ f(A).

Obiviously, for each n ∈ ω, the ES∗∗∗n always implies the ES∗∗n, which in turn always implies
the ES∗n. Similarly, the ES† always implies the SES. Also, for all n,m ∈ ω, if m ≤ n then the
ES∗n implies the ES∗m. This holds also for the ES∗∗n and ES∗∗∗n. Note also that when B = C
and f = g in the definition of the strongAP, it is nothing but the ES†. Thus, ES† is a special case
of the strongAP.

9The notion of the SES is introduced in [26]
10Our ES∗∗n is different from ES∗∗ by Maksimova in [24]. In that paper, the ES∗∗ is defined by replacing

“embedding f” with “homomorphism f” in the definition of ES∗ (i.e. our ES∗1). It was proved there that in
varieties of modal algebras, the ES∗∗ is equivalent to the ES∗1. Recall that this is not the case for the AP. As
shown Lemma 28, if either f or g (or both) in the definition of the AP is replaced by “homomorphism” then the
only trivial variety satisfies them.
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Now, we give algebraic characterizations of the n-BDP, the n-BDP+ and the n-BDPF, respec-
tively.

THEOREM 45 For each n ∈ ω and substructural logic L, L has the n-BDP iff V(L) has the
ES∗n.

Proof. We show our theorem using the proof of Theorem 43. First, we show that V(L) has
the ES∗n, by assuming the n-BDP of L. Let f : A → B be an embedding for A,B ∈ V(L),
b0, . . . , bn−1 ∈ B \ f(A) and B′ be the subalgebra of B generated by f(A)∪ {b0, . . . , bn−1}. Define
a set of variables X and a surjective homomorphisms ηA : Fm(X) → A in the same way as
before. Different from the proof of Theorem 43, we need to introduce distinct new variables ybi

and zbi
with 0 ≤ i ≤ n− 1. We define sets of variables Y and Z by Y = X ∪ {yb0 , . . . , ybn−1

} and
Z = X ∪ {zb0 , . . . , zbn−1

}, respectively, so that Y ∩Z = X, and define also mapping η′B1 : Y → B′

and η′B2 : Z → B′ by

η′B1(y) =

{

f(a) if y = xa for some xa ∈ X
bi if y = ybi

and

η′B2(z) =

{

f(a) if z = xa for some xa ∈ X
bi if z = zbi

,

respectively. As usual, the mappings η′B1 and η′B2 can be extended to surjective homomorphisms
ηB1 : Fm(Y ) → B′ and ηB2 : Fm(Z) → B′, respectively, such that they satisfy ηB1(σ) = ηB2(σ) =
f(ηA(σ)) for every σ ∈ Fm(X). Define sets of formulas Γ1(x̄, ȳn) and Γ2(x̄, z̄n) by

Γ1(x̄, ȳn) = {ϕ ∈ Fm(Y ) : ηB1(ϕ) ≥ 1B′},
Γ2(x̄, z̄n) = {ψ ∈ Fm(Z) : ηB2(ψ) ≥ 1B′},

where x̄ is a list of variables in X which are used in constructions of either ϕ or ψ, and ȳn and
z̄n are lists such that ȳn = yb0 , . . . , ybn−1

and z̄n = zb0 , . . . , zbn−1
. Note that it is easily shown

that both Γ1(x̄, z̄n) = Γ2(x̄, z̄n) and Γ2(x̄, ȳn) = Γ1(x̄, ȳn) holds. Thus, we can write Γ1(x̄, ȳn) and
Γ2(x̄, z̄n) as Γ(x̄, ȳn) and Γ(x̄, z̄n), respectively. We introduce a binary relation ≡ on Fm(Y ∪ Z)
by

β ≡ γ iff Γ(x̄, ȳn),Γ(x̄, z̄n) ⊢L (β\γ) ∧ (γ\β).

Then, it is easily seen that ≡ is a congruence relation on Fm(Y ∪Z) and that the quotient algebra
Fm(Y ∪ Z)/ ≡ is a member of V(L). Let us call this algebra, C. We will show that this C is the
required algebra satisfying the conditions for ES∗n.

Define mappings h : B′ → C and k : B′ → C by

• h(b) = (ϕ/ ≡) when b = ηB1(ϕ) for a formula ϕ ∈ Fm(Y ),

• k(b′) = (ψ/ ≡) when b′ = ηB2(ψ) for a formula ψ ∈ Fm(Z).

We prove that both h and k are well-defined embeddings. To show the well-definedness of h,
suppose that ηB1(ϕ) = ηB1(ϕ

′) for ϕ,ϕ′ ∈ Fm(Y ). Then, Γ(x̄, ȳn) ⊢L (ϕ\ϕ′) ∧ (ϕ′\ϕ), and
hence ϕ ≡ ϕ′. It is easy to see that h is a homomorphism. To show that h is injective, sup-
pose that h(b) = h(b′), where b = ηB1(ϕ) and b′ = ηB1(ϕ

′) for ϕ,ϕ′ ∈ Fm(Y ). Then, ϕ ≡ ϕ′,
and thus Γ(x̄, ȳn),Γ(x̄, z̄n) ⊢L (ϕ\ϕ′) ∧ (ϕ′\ϕ) by the definition of ≡. Let s1 be a substitu-
tion such that s1(x) = x for each x ∈ X, s1(ybi

) = ybi
and s1(zbi

) = ybi
. Then, we have

s1(Γ(x̄, ȳn)), s1(Γ(x̄, z̄n)) ⊢L s1((ϕ\ϕ′) ∧ (ϕ′\ϕ)), namely Γ(x̄, ȳn) ⊢L (ϕ\ϕ′) ∧ (ϕ′\ϕ). Since
ηB1(ϕ

∗) ≥ 1B′ holds for each ϕ∗ ∈ Γ(x̄, ȳn), we have that ηB1((ϕ\ϕ′) ∧ (ϕ′\ϕ)) ≥ 1B′ . Thus
b = ηB1(ϕ) = ηB1(ϕ

′) = b′. Hence h is an embedding. Similarly, k is shown to be a well-defined
embedding.
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The condition h ◦ f = k ◦ f is shown in the same way as the proof of Theorem 43. It remains
to show that h(bi) 6= k(bi) for all 0 ≤ i ≤ n − 1. Assume that h(bm) = k(bm) holds for some
0 ≤ m ≤ n − 1. Then, we have (ybm

/ ≡) = h(ηB1(ybm
)) = h(bm) = k(bm) = k(ηB2(zbm

)) =
(zbm

/ ≡), and hence Γ(x̄, ȳn),Γ(x̄, z̄n) ⊢L (ym\zm) ∧ (zm\ym) holds. By the (general form of)
n-BDP, there exists some δm(x̄) such that Γ(x̄, ȳn) ⊢L (ym\δm(x̄)) ∧ (δm(x̄)\ym). Note that since
δm(x̄) ∈ Fm(X), we have ηA(δm(x̄)) ∈ A. Let a = ηA(δm(x̄)). Since ηB1(ϕ

∗) ≥ 1B′ holds
for each ϕ∗ ∈ Γ(x̄, ȳn), we have that ηB1((ybm

\δm(x̄)) ∧ (δm(x̄)\ybm
)) ≥ 1B′ , which implies that

bm = ηB1(ybm
) = ηB1(δm(x̄)) = f(ηA(δm(x̄))) = f(a). Hence bm ∈ f(A) holds. But, this

contradicts the way of choosing bm. Therefore, V(L) has the ES∗n.

We show next that the ES∗n implies the n-BDP by taking the contraposition. Assume that L
does not satisfy the n-BDP, namely there exist a formula α(x̄, x̄′n) and lists ȳn and z̄n where for each
1 ≤ i, j ≤ n, yi and zj are distinct and none of them appear in x̄, such that α(x̄, ȳn), α(x̄, z̄n) ⊢L

(ym\zm) ∧ (zm\ym) holds but there is no formulas δm(x̄) satisfying α(x̄, ȳn) ⊢L (ym\δm(x̄)) ∧
(δm(x̄)\ym) for some 1 ≤ m ≤ n. Let X be a set of all variables occuring in the list x̄, namely
X = {x̄}, and denote sets of variables Y and Z by Y = X∪{ȳn} and Z = X∪{z̄n}, respectively, so
that Y ∩ Z = X. We define quotient algebras Fm(X)/∆,Fm(Y )/α(x̄, ȳn) and Fm(Z)/α(x̄, z̄n),
and mappings f : Fm(X)/∆ → Fm(Y )/α(x̄, ȳn) and g : Fm(X)/∆ → Fm(Z)/α(x̄, z̄n) in the
similar way to the proof of Theorem 43. Then, these algebras are members of V(L), and both f
and g are well-defined embeddings. Let s2 be a substitution such that s2(x) = x for all x ∈ X,
s2(yi) = yi for yi ∈ Y \ X and s2(zj) = yj for zj ∈ Z \ X (note that every member of Y \ X
and Z \ X is already numbered). Define a mapping w : Fm(Z)/α(x̄, z̄n) → Fm(Y )/α(x̄, ȳn) by
w(ψ/α(x̄, z̄n)) = s2(ψ)/α(x̄, ȳn). Then, in the same way as the proof of Theorem 43, we can show
that w is an isomorphism and f = w ◦ g holds.

Note that Fm(X)/α(x̄, ȳn) is generated by f(Fm(X)/∆) ∪ {y1/α(x̄, ȳn), . . . , yn/α(x̄, ȳn)}.
Now, for each 1 ≤ i ≤ n, either of yi/α(x̄, ȳn) ∈ f(Fm(X)/∆) or yi/α(x̄, ȳn) 6∈ f(Fm(X)/∆)
holds. Let us pick up all elements in {y1/α(x̄, ȳn), . . . , yn/α(x̄, ȳn)}, each of which does not
belong to f(Fm(X)/∆), and enumerate them as y′1/α(x̄, ȳn), . . . , y′k/α(x̄, ȳn). Then, obviously,
Fm(Y )/α(x̄, ȳn) is generated by f(Fm(X)/∆)∪{y′1/α(x̄, ȳn), . . . , y′k/α(x̄, ȳn)}. Note that y′s/α(x̄, ȳn) =
ym/α(x̄, ȳn) holds for some 1 ≤ s ≤ k. For, if it is not the case, ym/α(x̄, ȳn) ∈ f(Fm(X)/∆).
Then, there is some δ(x̄)/∆ ∈ Fm(X)/∆ such that ym/α(x̄, ȳn) = f(δ(x̄)/∆) = δ(x̄)/α(x̄, ȳn).
Hence α(x̄, ȳn) ⊢L (ym\δ(x̄)) ∧ (δ(x̄)\ym) holds. But, this contradicts our assumption.

Now, let us assume that V(L) has the ES∗n. Since k ≤ n, V(L) has also the ES∗k. Then there
exist some C in V(L) and embeddings h : Fm(Y )/α(x̄, ȳn) → C and k : Fm(Y )/α(x̄, ȳn) → C
such that h ◦ f = k ◦ f and h(y′t/α(x̄, ȳn)) 6= k(y′t/α(x̄, ȳn)) for all 1 ≤ t ≤ k. Now, consider a
valuation u over C for formulas in Fm(Y ∪ Z) defined as follows: For every x ∈ Y ∪ Z,

u(x) =

{

h(x/α(x̄, ȳn)) if x ∈ Y
k ◦ w(x/α(x̄, z̄n)) if x ∈ Z.

The mapping u is well-defined, since if x ∈ X then h(x/α(x̄, ȳn)) = h ◦ f(x/∆) = k ◦ f(x/∆) =
k ◦w ◦ g(x/∆) = k ◦w(x/α(x̄, z̄n)). As usual, u is extended to a mapping from Fm(Y ∪ Z) to C,
which satisfies that

u(θ) =

{

h(θ/α(x̄, ȳn)) if θ ∈ Fm(Y )
k ◦ w(θ/α(x̄, z̄n)) if θ ∈ Fm(Z).

Since α(x̄, ȳn) ⊢L α(x̄, ȳn) holds, we have α(x̄, ȳn)/α(x̄, ȳn) ≥ 1Fm(Y )/α(x̄,ȳn). Hence, both

u(α(x̄, ȳn)) = h(α(x̄, ȳn)/α(x̄, ȳn)) ≥ 1C and
u(α(x̄, z̄n)) = k ◦ w(α(x̄, z̄n)/α(x̄, z̄n)) = k(α(x̄, ȳn)/α(x̄, ȳn)) ≥ 1C
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hold. By our assumption α(x̄, ȳn), α(x̄, z̄n) ⊢L (ym\zm)∧(zm\ym), we have u((ym\zm)∧(zm\ym)) ≥
1C. Hence u(ym) = u(zm). This implies that

h(y′s/α(x̄, ȳn)) = h(ym/α(x̄, ȳn))
= u(ym)
= u(zm)
= k ◦ w(zm/α(x̄, z̄n))
= k(ym/α(x̄, ȳn))
= k(y′s/α(x̄, ȳn)).

But, this contradicts the condition of the ES∗k, and thus V(L) does not satisfy the ES∗k, and
hence V(L) does not have the ES∗n. Therefore, the ES∗n implies the n-BDP. 2

THEOREM 46 For each n ∈ ω and substructural logic L, L has the n-BDP+ iff V(L) has the
ES∗∗n.

Proof. The proof proceeds in a similar way to the proofs of Theorems 43 and 45. First, we show
that V(L) has the ES∗∗n, by assuming the n-BDP+ of L. Let f : A → B be an embedding
for A,B ∈ V(L), b0, . . . , bn−1 ∈ B \ f(A) and B′ be the subalgebra of B generated by f(A) ∪
{b0, . . . , bn−1}. Define an algebra C and mappings h : B′ → C and k : B′ → C in the same
way as the proof of Theorem 45. Then, we can show that C is in V(L), and both h and k are
well-defined embeddings satisfying h ◦ f = k ◦ f in the same way as before. It remains to show
that h(bi) 6= k(bj) for all 0 ≤ i, j < n. Assume that h(bm) = k(bl) holds for some 0 ≤ m, l < n.
Then, we have (ybm

/ ≡) = h(ηB1(ybm
)) = h(bm) = k(bl) = k(ηB2(zbl

)) = (zbl
/ ≡), and hence

Γ(x̄, ȳn),Γ(x̄, z̄n) ⊢L (ym\zl)∧ (zl\ym) holds. By the (general form of) n-BDP+, there exists some
δm(x̄) such that Γ(x̄, ȳn) ⊢L (ym\δm(x̄)) ∧ (δm(x̄)\ym). Note that since δm(x̄) ∈ Fm(X), we have
ηA(δm(x̄)) ∈ A. Let a = ηA(δm(x̄)). Since ηB1(ϕ

∗) ≥ 1B′ holds for each ϕ∗ ∈ Γ(x̄, ȳn), we have
that ηB1((ybm

\δm(x̄)) ∧ (δm(x̄)\ybm
)) ≥ 1B′ , which implies that bm = ηB1(ybm

) = ηB1(δm(x̄)) =
f(ηA(δm(x̄))) = f(a). Hence bm ∈ f(A) holds. But, this contradicts the way of choosing bm.
Therefore, V(L) has the ES∗∗n.

We show next that the ES∗∗n implies the n-BDP+ by taking the contraposition. Assume
that L does not satisfy the n-BDP+, namely there exist a formula α(x̄, x̄′n) and lists ȳn and z̄n,
where for each 1 ≤ i, j ≤ n, yi and zj are distinct and none of them appear in x̄, such that
α(x̄, ȳn), α(x̄, z̄n) ⊢L (ym\zl)∧ (zl\ym) holds but there is no formulas δm(x̄) satisfying α(x̄, ȳn) ⊢L

(ym\δm(x̄)) ∧ (δm(x̄)\ym) for some 1 ≤ m, l ≤ n. In the same way as the proof of Theorem
45, define quotient algebras Fm(X)/∆,Fm(Y )/α(x̄, ȳn) and Fm(Z)/α(x̄, z̄n), and mappings f :
Fm(X)/∆ → Fm(Y )/α(x̄, ȳn) and g : Fm(X)/∆ → Fm(Z)/α(x̄, z̄n). Then, these algebras
are members of V(L), and both f and g are well-defined embeddings. Also, define a mapping
w : Fm(Z)/α(x̄, z̄n) → Fm(Y )/α(x̄, ȳn) in the same way. Then, w is an isomorphism and f = w◦g
holds.

Let us pick up all elements in {y1/α(x̄, ȳn), . . . , yn/α(x̄, ȳn)}, each of which does not belong
to f(Fm(X)/∆), and enumerate them as y′1/α(x̄, ȳn), . . . , y′k/α(x̄, ȳn). Then, in the same way
as the proof of Theorem 45, we can show that Fm(Y )/α(x̄, ȳn) is generated by f(Fm(X)/∆) ∪
{y′1/α(x̄, ȳn), . . . , y′k/α(x̄, ȳn)} and y′s/α(x̄, ȳn) = ym/α(x̄, ȳn) holds for some 1 ≤ s ≤ k.

Assume that V(L) has the ES∗∗n. Since k ≤ n, V(L) has also the ES∗∗k. Then there exist some
C in V(L) and embeddings h : Fm(Y )/α(x̄, ȳn) → C and k : Fm(Y )/α(x̄, ȳn) → C such that
h ◦ f = k ◦ f and h(y′t1/α(x̄, ȳn)) 6= k(y′t2/α(x̄, ȳn)) for all 1 ≤ t1, t2 ≤ k. Construct a valuation u
over C for formulas in Fm(Y ∪Z) in the same way as the proof of Theorem 45. By our assumption
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α(x̄, ȳn), α(x̄, z̄n) ⊢L (ym\zl) ∧ (zl\ym), we have u((ym\zl) ∧ (zl\ym)) ≥ 1C, which implies that

h(y′s/α(x̄, ȳn)) = h(ym/α(x̄, ȳn))
= u(ym)
= u(zl)
= k ◦ w(zl/α(x̄, z̄n))
= k(yl/α(x̄, ȳn)).

Case 1: yl/α(x̄, ȳn) ∈ f(Fm(X)/∆)
In this case, k(yl/α(x̄, ȳn)) = h(yl/α(x̄, ȳn)) holds since h ◦ f = k ◦ f . Hence, we have

h(y′s/α(x̄, ȳn)) = h(yl/α(x̄, ȳn)). Since h is injective, we have y′s/α(x̄, ȳn) = yl/α(x̄, ȳn) ∈ f(Fm(X)/∆).
But, this is a contradiction.

Case 2: yl/α(x̄, ȳn) 6∈ f(Fm(X)/∆)
In this case, there is some 1 ≤ t ≤ k such that yl/α(x̄, ȳn) = y′t/α(x̄, ȳn). Then, we have

h(y′s/α(x̄, ȳn)) = k(yl/α(x̄, ȳn)) = k(y′t/α(x̄, ȳn)). But, this contradicts to the condition for the
ES∗∗k.

Thus, in both cases, V(L) does not satisfy the ES∗∗k, and hence V(L) does not have the ES∗∗n.
Therefore, the ES∗∗n implies the n-BDP+. 2

THEOREM 47 For each n ∈ ω and substructural logic L, L has the n-BDPF iff V(L) has the
ES∗∗∗n.

Proof. Once again, the proof proceeds in a similar way to the proofs of Theorems 43 and 45.
First, we show that V(L) has the ES∗∗∗n, by assuming the n-BDPF of L. Let f : A → B be an
embedding for A,B ∈ V(L), b0, . . . , bn−1 ∈ B \ f(A) and B′ be the subalgebra of B generated by
f(A)∪{b0, . . . , bn−1}. Define an algebra C and mappings h : B′ → C and k : B′ → C in the same
way as the proof of Theorem 45. Then, we can show that C is in V(L), and both h and k are
well-defined embeddings satisfying h◦f = k ◦f in the same way as before. It remains to show that
h(B′) ∩ k(B′) = h ◦ f(A) holds. Note that h ◦ f(A) ⊆ h(B′) ∩ k(B′) holds since f(A) ⊆ B′ and
h ◦ f = k ◦ f . To show the converse inclusion, let c ∈ h(B′) ∩ k(B′), namely c = h(b) = k(b′) for
some b, b′ ∈ B′. Then, there exist some formulas ϕ(x̄, ȳn) and ψ(x̄, z̄n) such that b = ηB1(ϕ(x̄, ȳn))
and b′ = ηB2(ψ(x̄, z̄n)). By the definitions of h, k and ≡, we can see that the condition h(b) = k(b′)
is equivalent to Γ(x̄, ȳn),Γ(x̄, z̄n) ⊢L (ϕ(x̄, ȳn)\ψ(x̄, z̄n)) ∧ (ψ(x̄, z̄n)\ϕ(x̄, ȳn)). By the (general
form of) n-BDPF, there exists some δ(x̄) such that Γ(x̄, ȳn) ⊢L (ϕ(x̄, ȳn)\δ(x̄)) ∧ (δ(x̄)\ϕ(x̄, ȳn)).
Let a = ηA(δ(x̄)) ∈ A. Then, we have c = h(b) = h(ηB1(ϕ(x̄, ȳn))) = (ϕ(x̄, ȳn)/ ≡) = (δ(x̄)/ ≡) =
h(ηB1(δ(x̄))) = (h ◦ f)(ηA(δ(x̄))) = h ◦ f(a) ∈ h ◦ f(A). Therefore, V(L) has the ES∗∗∗n.

Conversely, suppose that V(L) has the ES∗∗∗n, and α(x̄, ȳn), α(x̄, z̄n) ⊢L (ϕ(x̄, ȳn)\ψ(x̄, z̄n)) ∧
(ψ(x̄, z̄n)\ϕ(x̄, ȳn)) holds for formulas α,ϕ and ψ, where for each 1 ≤ i, j ≤ n, yi and zj are
distinct and none of them appear in x̄. In the same way as the proof of Theorem 45, define quo-
tient algebras Fm(X)/∆,Fm(Y )/α(x̄, ȳn) and Fm(Z)/α(x̄, z̄n), and mappings f : Fm(X)/∆ →
Fm(Y )/α(x̄, ȳn) and g : Fm(X)/∆ → Fm(Z)/α(x̄, z̄n). Then, these algebras are members of
V(L), and both f and g are well-defined embeddings. Also, define a mapping w : Fm(Z)/α(x̄, z̄n) →
Fm(Y )/α(x̄, ȳn) in the same way. Then, w is an isomorphism and f = w ◦ g holds. Note that
Fm(Y )/α(x̄, ȳn) is generated by f(Fm(X)/∆) ∪ {y1/α(x̄, ȳn), . . . , yn/α(x̄, ȳn)}.

Case 1: yi/α(x̄, ȳn) ∈ f(Fm(X)/∆) for all 1 ≤ i ≤ n
In this case, there exist some σi/∆ ∈ Fm(X)/∆ such that yi/α(x̄, ȳn) = f(σi/∆) = σi/α(x̄, ȳn)

holds for all 1 ≤ i ≤ n. Thus, α(x̄, ȳn) ⊢L (yi\σi) ∧ (σi\yi) holds for all 1 ≤ i ≤ n. By the
replacement theorem, we have α(x̄, ȳn) ⊢L (ϕ(x̄, ȳn)\ϕ(x̄, σ1, . . . , σn))∧(ϕ(x̄, σ1, . . . , σn)\ϕ(x̄, ȳn)).
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Note that all variables occurring in ϕ(x̄, σ1, . . . , σn) are in x̄ since σi ∈ Fm(X) for all 1 ≤ i ≤ n.
Let us denote ϕ(x̄, σ1, . . . , σn) by δ(x̄). Then, α(x̄, ȳn) ⊢L (ϕ(x̄, ȳn)\δ(x̄)) ∧ (δ(x̄)\ϕ(x̄, ȳn)) holds,
and hence L has the n-BDPF.

Case 2: yi/α(x̄, ȳn) 6∈ f(Fm(X)/∆) for some 1 ≤ i ≤ n
Let us pick up all elements in {y1/α(x̄, ȳn), . . . , yn/α(x̄, ȳn)}, each of which does not belong to

f(Fm(X)/∆), and enumerate them as y′1/α(x̄, ȳn), . . . , y′k/α(x̄, ȳn). Then, clearly, Fm(Y )/α(x̄, ȳn)
is generated by f(Fm(X)/∆) ∪ {y′1/α(x̄, ȳn), . . . , y′k/α(x̄, ȳn)}. By the ES∗∗∗n, V(L) has also the
ES∗∗∗k since k ≤ n. Thus, there exist some C in V(L) and embeddings h : Fm(Y )/α(x̄, ȳn) →
C and k : Fm(Y )/α(x̄, ȳn) → C such that both h ◦ f = k ◦ f and h(Fm(Y )/α(x̄, ȳn)) ∩
k(Fm(Y )/α(x̄, ȳn)) = h ◦ f(Fm(X)/∆) hold. Construct a valuation u over C for formulas in
Fm(Y ∪Z) in the same way as the proof of Theorem 45. By our assumption α(x̄, ȳn), α(x̄, z̄n) ⊢L

(ϕ(x̄, ȳn)\ψ(x̄, z̄n))∧(ψ(x̄, ȳn)\ϕ(x̄, ȳn)), we have that u((ϕ(x̄, ȳn)\ψ(x̄, z̄n))∧(ψ(x̄, z̄n)\ϕ(x̄, ȳn))) ≥
1C holds. Thus,

h(ϕ(x̄, ȳn)/α(x̄, ȳn)) = k ◦ w(ψ(x̄, z̄n)/α(x̄, z̄n)) = k(ψ(x̄, ȳn)/α(x̄, ȳn))

holds. By the condition of the ES∗∗∗k, there exists some δ(x̄)/∆ ∈ Fm(X)/∆ such that

h(ϕ(x̄, ȳn)/α(x̄, ȳn)) = (h ◦ f)(δ(x̄)/∆) = h(δ(x̄)/α(x̄, ȳn)).

Since h is injective, we have that ϕ(x̄, ȳn)/α(x̄, ȳn) = δ(x̄)/α(x̄, ȳn), which implies α(x̄, ȳn) ⊢L

(ϕ(x̄, ȳn)\δ(x̄)) ∧ (δ(x̄)\ϕ(x̄, ȳn)). Therefore, L has the n-BDPF. 2

Next, we give an algebraic characterization of the PBDP. The following theorem is an extension
of the result due to Maksimova [26]. In the setting of algebraic logic, Hoogland proved this for
algebraizable logics in [12].

THEOREM 48 For each substructural logic L, L has the PBDP iff V(L) has the SES.

Proof. We show our theorem using the proofs of Theorems 43 and 45. First, we show that V(L)
has the SES, by assuming the PBDP of L. Let f : A → B be an embedding for A,B in V(L).
Define a set of variables X and a surjective homomorphism ηA : Fm(X) → A in the same way
as before. Differently to the proof of Theorem 45, we need to define sets of variables Y and Z by
Y = X ∪ {yb : b ∈ B \ f(A)} and Z = X ∪ {zb : b ∈ B \ f(A)}, respectively, so that Y ∩ Z = X,
and mappings η′B1 : Y → B and η′B2 : Z → B by

η′B1(y) =

{

f(a) if y = xa for some xa ∈ X
b′ if y = yb′ for some b′ ∈ B \ f(A)

and

η′B2(z) =

{

f(a) if z = xa for some xa ∈ X
b′ if z = zb′ for some b′ ∈ B \ f(A),

respectively. As usual, the mappings η′B1 and η′B2 can be extended to surjective homomorphisms
ηB1 : Fm(Y ) → B and ηB2 : Fm(Z) → B, respectively, such that they satisfy ηB1(σ) = ηB2(σ) =
f(ηA(σ)) for every σ ∈ Fm(X). Define sets of formulas Γ and Σ by

Γ = {ϕ ∈ Fm(Y ) : ηB1(ϕ) ≥ 1B},
Σ = {ψ ∈ Fm(Z) : ηB2(ψ) ≥ 1B}.

We introduce a binary relation ≡ on Fm(Y ∪ Z) by

β ≡ γ iff Γ,Σ ⊢L (β\γ) ∧ (γ\β).

Then, it is easily seen that ≡ is a congruence relation on Fm(Y ∪Z) and that the quotient algebra
Fm(Y ∪ Z)/ ≡ is a member of V(L). Let us call this algebra, C. We will show that this C is a
required algebra satisfying the conditions for the SES.

Define mappings h : B → C and k : B → C by
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• h(b) = (ϕ/ ≡) when b = ηB1(ϕ) for a formula ϕ ∈ Fm(Y ),

• k(b′) = (ψ/ ≡) when b′ = ηB2(ψ) for a formula ψ ∈ Fm(Z).

We prove that both h and k are well-defined embeddings. To show the well-definedness of h,
suppose that ηB1(ϕ) = ηB1(ϕ

′) for ϕ,ϕ′ ∈ Fm(Y ). Then, Γ ⊢L (ϕ\ϕ′) ∧ (ϕ′\ϕ), and hence
ϕ ≡ ϕ′. It is easy to see that h is a homomorphism. To show that h is injective, suppose that
h(b) = h(b′), where b = ηB1(ϕ) and b′ = ηB1(ϕ

′) for ϕ,ϕ′ ∈ Fm(Y ). Then, ϕ ≡ ϕ′, and thus
Γ,Σ ⊢L (ϕ\ϕ′) ∧ (ϕ′\ϕ) by the definition of ≡. Let s1 be a substitution such that s1(x) = x for
x ∈ X, s1(yb) = yb for yb ∈ Y \ X and s1(zb′) = yb′ for zb′ ∈ Z \ X. Note that for any ψ ∈ Σ,
s1(ψ) ∈ Γ holds. Then, Γ,Σ ⊢L (ϕ\ϕ′) ∧ (ϕ′\ϕ) implies s1(Γ), s1(Σ) ⊢L s1((ϕ\ϕ′) ∧ (ϕ′\ϕ)), and
hence Γ ⊢L (ϕ\ϕ′) ∧ (ϕ′\ϕ) holds. Thus, we have b = ηB1(ϕ) = ηB1(ϕ

′) = b′, and hence h is an
embedding. Similarly, k is shown to be a well-defined embedding.

The condition h◦f = k ◦f is shown in the same way as the proof of Theorem 45. It remains to
show that h(b) 6= k(b) for every b ∈ B\f(A). Assume that there exists some b0 ∈ B\f(A) such that
h(b0) = k(b0). Then, we have (yb0/ ≡) = h(ηB1(yb0)) = h(b0) = k(b0) = k(ηB2(zb0)) = (zb0/ ≡),
and hence Γ,Σ ⊢L (yb0\zb0)∧(zb0\yb0). Since ⊢L is finitary and conjunctive, there exist some ϕi ∈ Γ
with 1 ≤ i ≤ n and ψj ∈ Σ with 1 ≤ j ≤ m such that

∧n
i=1 ϕi,

∧m
j=1 ψj ⊢L (yb0\zb0) ∧ (zb0\yb0)

holds. Let x̄ be a list of variables from X, each of which appears in either of
∧n

i=1 ϕi or
∧m

j=1 ψj .
Also, let ȳl be a list of variables from Y \ X, each of which either is equal to yb0 or appears in
∧n

i=1 ϕi. Similarly, let z̄g be a list of variables from Z \X, each of which is equal to zb0 or appears
to

∧m
j=1 ψj . Then

∧n
i=1 ϕi,

∧m
j=1 ψj ⊢L (yb0\zb0) ∧ (zb0\yb0) is expressed also as

(*)
∧n

i=1 ϕi(x̄, ȳl),
∧m

j=1 ψj(x̄, z̄g) ⊢L (yb0\zb0) ∧ (zb0\yb0).

Define a formula α(x̄, ȳt) by α(x̄, ȳt) =
∧n

i=1 ϕi(x̄, ȳl) ∧
∧m

j=1 ψj(x̄, s1(z̄g)), where ȳt is a list of
variables in either of ȳl or s1(z̄g). Let s2 be a substitution such that s2(x) = x for x ∈ X,
s2(yb) = zb for yb ∈ Y \X and s2(zb′) = zb′ for zb′ ∈ Z \X. We define α(x̄, z̄t) by α(x̄, s2(ȳt)), i.e.
∧n

i=1 ϕi(x̄, s2(ȳl)) ∧
∧m

j=1 ψj(x̄, s2 ◦ s1(z̄g)), which is equal to
∧n

i=1 ϕi(x̄, s2(ȳl)) ∧
∧m

j=1 ψj(x̄, z̄g).
Then, the condition (*) implies α(x̄, ȳt), α(x̄, z̄t) ⊢L (yb0\zb0) ∧ (zb0\yb0).

By the PBDP, there exists a formula δ(x̄) such that α(x̄, ȳt) ⊢L (yb0\δ(x̄)) ∧ (δ(x̄)\yb0) holds.
Note that Γ ⊢L α(x̄, ȳt) holds. For, ϕi(x̄, ȳl) ∈ Γ for each 1 ≤ i ≤ n, and also ψj(x̄, s1(z̄g)) ∈ Γ for
each 1 ≤ j ≤ m as ηB1(ψj(x̄, s1(z̄g))) = ηB2(ψj(x̄, z̄g)) ≥ 1B. Thus, Γ ⊢L (yb0\δ(x̄)) ∧ (δ(x̄)\yb0),
which implies that b0 = ηB1(yb0) = ηB1(δ(x̄)) = f(ηA(δ(x̄))). Since ηA(δ(x̄)) ∈ A, we have
b0 ∈ f(A). But, this contradicts to the choice of b0. Therefore, V(L) has the SES.

Conversely, suppose that V(L) has the SES. It is easily shown that V(L) has also the ES∗n for
all n ∈ ω. By Theorem 45, L has the n-BDP for all n ∈ ω. Therefore, L has the PBDP. 2

The following result gives an algebraic characterization of the PBDPF. Moreover, it is shown
that the PBDPF is equivalent to the PBDP+.

THEOREM 49 For each substructural logic L, the following are equivalent.

(1) L has the PBDPF.

(2) L has the PBDP+.

(3) V(L) has the ES †.

Proof. (3) ⇒ (1). Suppose that V(L) has the ES†. Then, it is easily seen that V(L) has also the
ES∗∗∗n for all n ∈ ω. By Theorem 47, L has the n-BDPF for all n ∈ ω. Therefore, L has the
PBDPF.
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(1) ⇒ (2). Obvious.

(2) ⇒ (3). We show this direction using the proof of Theorem 48. Let f : A → B be an
embedding for A,B in V(L). Define an algebra C and mapping h : B → C and k : B → C in the
same way as the proof of Theorem 48. Then, we can show that C is in V(L), and both h and k
are well-defined embeddings satifying h ◦ f = k ◦ f in the same way as before. It remains to show
that h(B) ∩ k(B) = h ◦ f(A) holds. Note that h ◦ f(A) ⊆ h(B) ∩ k(B) holds since f(A) ⊆ B and
h◦f = k◦f . To show the converse inclusion, let c ∈ h(B)∩k(B), namely c = h(b1) = k(b2) for some
b1, b2 ∈ B. Note that both b1 = ηB1(yb1) and b2 = ηB2(zb2) hold. From the definitions of h, k and
≡, we can see that the condition h(b1) = k(b2) is equivalent to Γ,Σ ⊢L (yb1\zb2)∧ (zb2\yb1). Since
⊢L is finitary and conjunctive, there exist some ϕi ∈ Γ with 1 ≤ i ≤ n and ψj ∈ Σ with 1 ≤ j ≤ m
such that

∧n
i=1 ϕi,

∧m
j=1 ψj ⊢L (yb1\zb2)∧ (zb2\yb1) holds. Let x̄ be a list of variables from X, each

of which appears in either of
∧n

i=1 ϕi or
∧m

j=1 ψj . Also, let ȳl be a list of variables from Y \X, each

of which is equal to yb1 or appears in
∧n

i=1 ϕi. Similarly, let z̄g be a list of variables from Z \X,
each of which is equal to zb2 or appears to

∧m
j=1 ψj . Then

∧n
i=1 ϕi,

∧m
j=1 ψj ⊢L (yb1\zb2)∧ (zb2\yb1)

is expressed also as

(**)
∧n

i=1 ϕi(x̄, ȳl),
∧m

j=1 ψj(x̄, z̄g) ⊢L (yb1\zb2) ∧ (zb2\yb1).

Define formulas α(x̄, ȳt) and α(x̄, z̄t) in the same way as before. Then, the condition (**) implies
α(x̄, ȳt), α(x̄, z̄t) ⊢L (yb1\zb2) ∧ (zb2\yb1).

By the PBDP+, there exists some formula δ(x̄) such that α(x̄, ȳt) ⊢L (yb1\δ(x̄)) ∧ (δ(x̄)\yb1).
Then, in the same way as before, we can show that c ∈ h ◦ f(A). Therefore, V(L) has the ES†. 2

We summarize the algebraic characterizations of BDPs and their relationships in Figure 12. It
is shown in [28] that only sixteen superintuitionistic logics have the PBDP. Since every superintu-
itionistic logic has the BDP (in [17]), the BDP does not imply the PBDPF, in general.

PBDPF
m

PBDP+

m
ES†

⇓

PBDP
m

SES

⇒ · · · ⇒
n-BDPF

m
ES∗∗∗n

⇒ · · · ⇒
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m
ES∗∗∗2

⇒
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m
ES∗∗n

⇒ · · · ⇒
2-BDP+

m
ES∗∗2

⇓ ⇓

⇒ · · · ⇒
n-BDP
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⇒ · · · ⇒
2-BDP

m
ES∗2

⇒

1-BDPF
m

ES∗∗∗1

⇓

1-BDP+

m
BDP
m

ES∗1

Figure 12: Algebraic characterizations of BDPs

In the following, we show a relationship between the strongRP, the RP and the PBDPF. We
employ here the method due to Maksimova. 11

11Theorem 4 in [24] shows the corresponding algebraic result, i.e, the strongAP is equivalent to AP with ES∗

for varieties of modal logics. But the proof of the implication of the strongAP from AP with ES∗ given there
contains a gap. But the theorem stands as it is, as a corrected proof is given recently by Maksimova (by a private
communication). We owe the proof of Theorem 50 to her revised proof. Our study of various extensions of the BDP
and ES∗1 in the present Section 6.2 was started initially in order to fill a gap in Maksimova’s proof.
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THEOREM 50 For each substructural logic L, L has the strongRP iff it has both the RP and
the BDP.

Proof. It is easily seen that the strongRP implies both the RP and the BDP. Thus, we show only
the converse direction. By Theorems 16, 20, and 43, it is enough to show that if V(L) has both
the AP and the ES∗1 then it has also the the strongAP.

First, we show that if V(L) has both the AP and the ES∗1 then it has also the following;

(*) for any A,B ∈ V(L), each embedding f : A → B and b ∈ B \ f(A), there exist an E ∈ V(L)
and embeddings i : B → E and j : B → E such that i ◦ f = j ◦ f and i(b) 6= j(b).

Let f : A → B be an embedding for A,B ∈ V(L) and b ∈ B \ f(A). Denote by B′ a subalgebra of
B generated by f(A) ∪ {b}. Then, by ES∗1, there exist some algebra B1 in V(L) and embeddings
α1 : B′ → B1 and α2 : B′ → B1 such that α1 ◦ f = α2 ◦ f and α1(b) 6= α2(b). Let e : B′ → B be
the identity embedding. Since α1 : B′ → B1 and e : B′ → B are embeddings, by the AP, there
exist some C1 in V(L) and embeddings β1 : B1 → C1 and γ1 : B → C1 such that β1 ◦α1 = γ1 ◦ e.
Similarly, from α2 : B′ → B1, e : B′ → B and the AP, there exist some C2 in V(L) and embeddings
β2 : B1 → C2 and γ2 : B → C2 such that β2 ◦ α2 = γ2 ◦ e. Now β1 : B1 → C1 and β2 : B1 → C2

are embeddings, by the AP again, there exist some E in V(L) and embeddings δ1 : C1 → E and
δ2 : C2 → E such that δ1 ◦ β1 = δ2 ◦ β2. Then, δ1 ◦ γ1 and δ2 ◦ γ2 are embeddings from B into E.
Let i = δ1 ◦ γ1 and j = δ2 ◦ γ2. We show that i ◦ f = j ◦ f but i(b) 6= j(b). For any a ∈ A,

i ◦ f(a) = δ1 ◦ γ1 ◦ f(a)
= δ1 ◦ γ1 ◦ e ◦ f(a)
= δ1 ◦ β1 ◦ α1 ◦ f(a)
= δ1 ◦ β1 ◦ α2 ◦ f(a)
= δ2 ◦ β2 ◦ α2 ◦ f(a)
= δ2 ◦ γ2 ◦ e ◦ f(a)
= δ2 ◦ γ2 ◦ f(a)
= j ◦ f(a).

Thus, i ◦ f = j ◦ f holds. On the other hand,

i(b) = δ1 ◦ γ1(b) = δ1 ◦ γ1 ◦ e(b) = δ1 ◦ β1 ◦ α1(b) = δ2 ◦ β2 ◦ α1(b) and
j(b) = δ2 ◦ γ2(b) = δ2 ◦ γ2 ◦ e(b) = δ2 ◦ β2 ◦ α2(b)

hold. Since δ2 ◦ β2 is an embedding and α1(b) 6= α2(b), we have i(b) 6= j(b). Hence, V(L) satisfies
the condition (*).

Now, we show that V(L) has the strongAP. Let f : A → B and g : A → C be embeddings,
b ∈ B \ f(A) and c ∈ C \ g(A) for A,B and C in V(L). Then, by the above argument, there
exist some E in V(L) and embeddings i : B → E and j : B → E such that i ◦ f = j ◦ f and
i(b) 6= j(b). Since i ◦ f is an embedding from A to E, by the AP, there exist some D(b,c) in V(L)
and embeddings l(b,c) : E → D(b,c) and k(b,c) : C → D(b,c) such that l(b,c) ◦ i ◦ f = k(b,c) ◦ g.
Since i(b) 6= j(b), we have l(b,c) ◦ i(b) 6= l(b,c) ◦ j(b) by the injectivity of l. Therefore, either
l(b,c) ◦ i(b) 6= k(b,c)(c) or l(b,c) ◦ j(b) 6= k(b,c)(c) holds. If the former holds then define an embedding
h(b,c) : B → D(b,c) by h(b,c) = l(b,c) ◦ i. Otherwise, let h(b,c) by h(b,c) = l(b,c) ◦ j. Then, it is easily
seen that h(b,c)◦f = k(b,c)◦g holds, but h(b,c)(b) 6= k(b,c)(c). Thus, in general for every b′ ∈ B\f(A)
and c′ ∈ C \ g(A), we can get some D(b′,c′) in V(L) and embeddings h(b′,c′) : B → D(b′,c′) and
k(b′,c′) : C → D(b′,c′) such that h(b′,c′) ◦ f = k(b′,c′) ◦ g and h(b′,c′)(b

′) 6= k(b′,c′)(c
′). Let D be the

direct product Π(b,c)∈B\f(A)×C\f(A)D(b,c) for all possible pairs (b, c) ∈ B\f(A)×C \f(A). Clearly,
D is in V(L) since V(L) is a variety. We define mappings h : B → D by h(x)〈(b, c)〉 = h(b,c)(x),
namely the (b, c)-th coordinate of h(x) is h(b,c)(x) which is in D(b,c). Similarly, define k : C → D
by k(y)〈(b, c)〉 = k(b,c)(y). Then, both h and k are embeddings. For any a ∈ A, h(f(a))〈(b, c)〉 =
h(b,c) ◦ f(a), which is equal either to l(b,c) ◦ i ◦ f(a) or to l(b,c) ◦ j ◦ f(a). Since i ◦ f = j ◦ f and
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l(b,c) ◦ i◦f = k(b,c) ◦g, we have that h(b,c) ◦f(a) = k(b,c) ◦g(a) = k(g(a))〈(b, c)〉. Hence, h◦f = k ◦g
holds. It remains to show that h(B) ∩ k(C) = h ◦ f(A). Note that h ◦ f(A) ⊆ h(B) ∩ k(C) holds
since f(A) ⊆ B, g(A) ⊆ C and h ◦ f = k ◦ g. To show converse inclusion, let b∗ ∈ B \ f(A) and
c∗ ∈ C \ g(A). Then, we have h(b∗)〈(b∗, c∗)〉 = h(b∗,c∗)(b

∗) 6= k(b∗,c∗)(c
∗) = k(c∗)〈(b∗, c∗)〉, and

hence h(b∗) 6= k(c∗). Thus, h(B) ∩ k(C) = h ◦ f(A). Therefore, V(L) has the strongAP. 2

Intuitively, Theorem 50 means that the condition (strong) of the definition of the strongAP
is equivalent to the ES∗1. Note that since the strongAP implies the ES†, all ESs (therefore, all
BDPs) in Figure 12 are mutually equivalent whenever a variety has the AP. Note also that the
strongAP is equivalent to the AP for every variety of Heyting algebras. Hence, in this case, the AP
implies the ES†. In other words, the RP implies the PBDPF for every superintuitionistic logics.

strongRP
m

strongAP
⇔

RP + BDP
m

AP + ES∗1

Figure 13: Relation among the strongRP, the RP and the BDP

7 Future work

A lot of work must be done in future to solve many of the important problems put forward in
this paper. The most important is to show whether implications among these algebraic/logical
properties introduced in this paper are proper or not. Of course, their answers depend on what
kind of logics we are concerned with. For example, some non-implicational and non-equivalence
results are obtained for modal and superintuitionistic logics in e.g. [24], [28], and for the abstract
model-theoretic setting in [4] and [31]. Even if we restrict our attention only to substructural
logics, the following would be challenging questions.

• Does the CIP imply the DIP? If not, find a substructural logic which has the CIP but not
the DIP. Note that the CIP always implies the DIP for commutative cases, and also that the
CIP does not always imply the SDIP (see Proposition 10).

• Does the CIP imply the strongRP or the superRP? See Figure 10. (The same question is
put for multi-modal logics in [19].)

• Is SDIP (ISDIP, EqSDIP) + BDP equivalent to SDIP (ISDIP, EqSDIP) + nonsepEqSCIP?
(cf. Theorem 50) More strongly, is the BDP equivalent to the nonsepEqSCIP?

Another direction for future work is to show how far our results can be generalized. As a
matter of fact, as only a few properties specific to FL-algebras or residuated lattices are used in
our discussion, it is quite likely that results in the present paper can be extended to those in a
more general setting of many other varieties and also of abstract algebraic logic.
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