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Abstract

The connection between linear logic and Petri nets has recently been a subject of great

interest. In these researches, the propositional fragment of intuitionistic linear logic with

exponential ! was considered, and Petri nets were related to linear logic as follows: each

place of a Petri net is regarded as an atomic proposition of linear logic, and transitions

as provability relation.

Soundness and completeness of linear logic are proved for algebraic structures, called

quantales. Engberg and Winskel showed soundness of linear logic for quantales induced

from Petri nets, but for these quantales completeness was not valid. Soundness states that

all provable properties (formulas) in linear logic hold in Petri nets, while completeness

states that properties which hold in any Petri net can be proved in linear logic. When

both of soundness and completeness are valid in some quantales induced from Petri nets,

we can say that a property is provable in linear logic if and only if it is a common property

of Petri nets, i.e., it holds in any Petri net.

Recently Engberg and Winskel have also proved completeness of a t-free fragment of

linear logic and linear logic with distributivity. One of diÆculties in proving completeness

for full linear logic lies in distributivity of u over t, i.e., Au (B tC)) (AuB)t (AuC),

which does not hold in linear logic. The quantales constructed by Engberg andWinskel are

distributive lattices, i.e., distributivity is always valid. Therefore, to prove completeness

using their quantales, we have to deal with the t-free fragment or to add the distributivity

to linear logic as an axiom. However these are not what we intend to do. Although

there should be argument about which of full linear logic or a logic with distributivity

is appropriate for representing properties of Petri nets, we here concentrate on proving

completeness for full linear logic. To �nd adequate logics for which the models of Engberg

and Winskel are complete is another interesting problem.

In this thesis, we �rst construct non-distributive quantales, i.e., quantales in which

distributivity is not always valid, from Petri nets, and prove completeness of linear logic

without exponential for the quantales. In linear logic, exponential ! is added to compen-

sate the absence of the rules of weakening and contraction. For example, !A indicates

that we may extract as many data of type A as we like, i.e., a datum of type !A is a

�nite collection of data of type A. For Petri nets, we can regard a place with exponential

! as a place which can supply arbitrary many but �nite resources (tokens, in petri net

terminology) by �ring transitions. We extend the construction of the quantales to those

with exponential, and prove completeness of linear logic for the quantales. It means that

properties which hold in any Petri nets with such exponential places can be proved in

linear logic.

We also give an impression on the meaning of the logic on the proposed Petri net

model, comparing with that by Engberg and Winskel.
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Chapter 1

Introduction

Linear Logic, introduced by J. Y. Girard in 1987 [19], is interesting from a purely logical

point of view, and potentially of considerable interest for computer science [20, 24, 26,

27, 30, 45]. Linear logic (intuitionistic, classical and predicate) are obtained by deleting

the contraction and the weakening rules from standard sequent calculus formulations of

corresponding logics. Linear logic may be viewed as an example of a resource conscious

logic, where the formulas represent types of resource, and resources cannot be used ad

libitum. That is to say, asserting a sequent A;A ) B means something like: we use

two data (resources) of type A to obtain one datum of type B. In Gentzen-style sequent

calculus for intuitionistic logic, a sequent A1; : : : ; An ) A is written to mean that the

formula A is deducible from the assumption formulas A1; : : : ; An (we shall use capital

Greek letters as an abbreviation for a sequence of formulas). The calculus has the two

structural rules for adding a vacant assumption and removing of a duplicate of assumption,

�) B
�; A) B

(weakening)
;

�; A; A) B

�; A) B
(contraction)

:

In the presence of these rules the following two rules for conjunction

�) A �) B
�;�) A u B

(1)
;

�) A �) B
�) A u B

(2)

become interderivable in the sense that the �rst rule can be derived from the second by

weakening, and the second from the �rst by contraction. In intuitionistic linear logic these

rules (weakening and contraction) are deleted and the rule of (1) and (2) are no longer

interderivable. Without them, propositions cannot be introduced arbitrarily into a list of

assumption and a duplication in the list cannot be removed. It is in this sense that linear

logic is a resource conscious logic.

In the years 1960-1962, Carl Adam Petri de�ned Petri nets which is a general purpose

mathematical model for describing relations existing between conditions and events [40].

Petri nets consist of two types of elements, places and transitions. Each place models a

process in terms of types of resources, and can hold arbitrary nonnegative multiplicity.
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Each transition represents a state transition rule, i.e., how those resources are consumed

or produced by actions. They are described using the notion of multisets. A multiset over

a set P is a function, m : P �! N [9, 18, 32, 41].

The connection between linear logic and Petri nets has recently been a subject of great

interest [7, 8, 15, 16, 17, 29, 34, 35]. Girard's linear logic has a great deal of interest in

how might be useful in the theory of parallelism. In these researches, the propositional

fragment of intuitionistic linear logic with exponential ! [47] was considered, and Petri nets

were related to linear logic as follows: each place of a Petri net is regarded as an atomic

propositions of linear logic, and transitions as provability relation. In the sequel, we shall

simply use the word \linear logic" to denote the propositional fragment of intuitionistic

linear logic.

Soundness and completeness of linear logic are proved for algebraic structures, called

quantale [1, 5, 19, 21, 22, 39, 47]. Engberg and Winskel [15] showed soundness of linear

logic for quantales induced from Petri nets, but for these quantales completeness was not

valid. Soundness theorem states that all provable properties (formulas) in linear logic

hold in Petri nets, while completeness theorem states that properties which hold in any

Petri net can be proved in linear logic. When both of soundness and completeness are

valid in some quantales induced from Petri nets, we can say that a property is provable in

linear logic if and only if it is a common property of Petri nets, i.e., it holds in any Petri

net.

Recently Engberg and Winskel have also proved completeness of a t-free fragment

of linear logic and linear logic with distributivity [16, 17]. One of diÆculties in proving

completeness for full linear logic lies in distributivity of u over t. Although the following

proof shows that

(A u B) t (A u C)) A u (B t C)

is derivable in linear logic,

A) A
A u B ) A

(u1))

B ) B
B ) B t C

() t1)

A uB ) B t C
(u2))

A uB ) A u (B t C)
() u) (a)

;

A) A
A u C ) A

(u1))

C ) C
C ) B t C

() t2)

A u C ) B t C
(u2))

A u C ) A u (B t C)
() u) (b)

;

and from (a) and (b), we can get

A uB ) A u (B t C) A u C ) A u (B t C)

(A u B) t (A u C)) A u (B t C)
(t ))

;

we cannot prove the sequent

A u (B t C)) (A u B) t (A u C):

That is, the distributivity of u over t does not hold in linear logic. With the contraction

and weakening rules, we can prove this as follows:
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A) A
A;B ) A

(weakening) B ) B
A;B ) B

(weakening)

A;B ) A u B
() u)

A;B ) (A u B) t (A u C)
() t1) (a)

;

A) A
A;C ) A

(weakening) C ) C
A;C ) C

(weakening)

A;C ) A u C
() u)

A;C ) (A u B) t (A u C)
() t2) (b)

;

and from (a) and (b), we can get

A;B ) (A u B) t (A u C) A;C ) (A u B) t (A u C)

A;B t C ) (A u B) t (A u C)

A u (B t C); A u (B t C)) (A uB) t (A u C)
(u1 and u 2))

A u (B t C)) (A uB) t (A u C)
(contraction)

(t ))

:

The quantales constructed in [15, 16, 17] are distributive lattices. Therefore, to prove

completeness using their quantales, we have to deal with the t-free fragment or to add

the distributivity to linear logic as an axiom. However these are not what we intend to

do.

There is a family of substructural logics, such as relevant logics, in which distributivity

is valid. It has been pointed out that semantic considerations of substructural logics tend

toward validating distribution, and proof theoretic considerations tend toward invalidating

it (see [13]). Although there should be argument about which of full linear logic or a

logic with distributivity is appropriate for representing properties of Petri nets, we here

concentrate on proving completeness for full linear logic. To �nd adequate logics for which

the models of [15, 16, 17] are complete is another interesting problem.

The key element is the way of the construction of quantales. When we construct

the quantales, we use a closure operation. We introduce two closure operations C1 and

C2. Let X = hM;�; �; ei be a preordered commutative monoid. We de�ne two closure

operations C1 and C2 on P(X). C1 is an operation on P(X) such that

C1X := fy 2M j 9x 2 X (y � x)g;

and C2 is an operation on P(X) such that

C2X := (X!) ;

where

X! := fy 2M j 8x 2 X(x � y)g

and

X := fy 2M j 8x 2 X(y � x)g:

C1 is used in[15, 16, 17], and C2, which is called the MacNeille completion of X [23, 31], is

used in this thesis. In the quantales constructed from Petri nets using C1, distributivity

3



is always valid. But in the quantales constructed from Petri nets using C2, distributivity

is not always valid.

In this thesis, we �rst construct non-distributive quantales, i.e., quantales in which

distributivity is not always valid, from Petri nets, and prove completeness of linear logic

without exponential for the quantales.

Moreover, we extend the quantales to the quantales with exponential. In linear logic,

exponential ! is added to compensate the absence of the rules of weakening and con-

traction. For example, !A indicates that we may extract as many data of type A as we

like, i.e., a datum of type !A is a �nite collection of data of type A. For Petri nets, we

can regard a place with exponential ! as a place which can supply arbitrary many but

�nite resources (tokens, in Petri net terminology) by �ring transitions. We extend the

construction of the quantales to those with exponential, and prove completeness of linear

logic for the quantales. It means that properties which hold in any Petri nets with such

exponential places can be proved in linear logic.

There are two approaches to construct a Petri net model in which completeness of

linear logic holds; one is introducing distributivity in the logic, and the other is the

approach taken in this thesis, i.e., making a non-distributive model by using appropriate

closure operation.

From the practical point of view, the former approach may be useful in dealing with

properties of Petri net. The quantale constructed in this thesis seems strange from a Petri

net point of view, because the closure operation takes both of forwards and backwards

reachability into account. However, the motivation of this thesis is to �nd an answer to

the following problem: Is there a Petri net model which is sound and complete for full

linear logic? And the problem has been solved aÆrmatively.

Of course, the signi�cance of the result depends on the meaning of the logic in Petri

nets. For the proposed Petri net model, we give an interpretation of the logic which

may be acceptable from a Petri net point of view, comparing with that by Engberg and

Winskel [15].

The organization of this thesis is as follows.

In Chapter 2, we review basic algebraic structures and �xed point theorem. In the

discussion of this thesis, we shall often need the concepts of basic algebraic structures (for

example a multiset and ordered structures) and �xed point theorem. In these notes we

do not intend to go very deeply in to these; we limit ourselves to a brief description of

basic algebraic structures and �xed point theorem.

In Chapter 3, we review Petri nets. First we discuss Petri net simply. Then we

introduce the relation between Petri net and multiset, and reachability relation.

In Chapter 4, we discuss IL-algebras and quantales. Then we introduce two closure op-

erations C1 and C2 on the algebras, which play a crucial role in the proof of completeness.

Moreover, we discuss exponential and quantales with exponential.

In Chapter 5, we discuss linear logic without exponential (its syntax and semantics)

and then prove soundness theorem for quantales generated by Petri nets. Next we show

why we cannot prove completeness for the quantales used in [15, 16, 17]. Finally we show

how to construct quantales in which the distributivity is not always valid from Petri nets,

and then prove completeness of linear logic without exponential for the quantales.

In Chapter 6, we discuss linear logic with exponential (its syntax and semantics) and

then prove soundness theorem for the quantales generated by Petri nets. And then we

show how to construct quantales with exponential in which the distributivity is not always

4



valid from Petri nets, and then prove completeness of linear logic with exponential for the

quantales.

In Chapter 7, we give an impression on the meaning of the logic on the proposed

Petri net model, comparing with that by [15]. We consider a di�erence of interpretations

between closure operations C1 and C2, and we show a di�erent interpretation of formulas

under the closure operation C2.

In Chapter 8, we consider classical quantales for classical linear logic generated by

Petri nets.
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Chapter 2

Preliminaries

In this chapter, we review basic algebraic structures and �xed point theorem. For back-

ground material on basic algebraic structures, see [3, 6, 14, 28, 46, 48, 49] and on �xed

point theorem, see [37].

2.1 Basic Algebraic Structures

In the discussion of this thesis, we shall often need the concepts of a multiset and ordered

structures. In these notes we do not intend to go very deeply into these; we limit ourselves

to a brief description of the theory of multiset and the pure theory of ordered structures.

2.1.1 Multisets

Intuitively, a multiset is a set with (�nite) multiplicities; there may be �nitely many copies

of a single element. As a formal de�nition we use

De�nition 2.1.1 (multiset) A multiset over a set S is a mapping m : S �! N , where

m(a) = n means that a occurs with multiplicity n. If m(a) = 0, a is not an element of m

(that is to say, a occurs with multiplicity 0).

The operation + on multisets is de�ned by (m+m0)(a) = m(a) +m0(a) for all a 2 S,

and [ ] denotes the empty multiset.

We shall denote the set of all multisets over a set S by MS, and use f� � �g for a set

and [� � �] for a multiset.

Example 2.1.2 Let a and b be elements of S. Then

� fag; fbg; fa; bg; : : : are sets and

fag = fa; ag and fag [ fa; bg = fa; bg,

� [a]; [b]; [a; b]; : : : are multisets and

[a] 6= [a; a] and [a] + [a; b] = [a; a; b].

6



2.1.2 Monoids and Ordered Structures

De�nition 2.1.3 (monoid) A structure M = hX; �; ei is a monoid with the identity e

if � is a binary operation on X and e is an element of X such that for every a; b; c 2 X,

1. a � (b � c) = (a � b) � c,

2. a � e = e � a = a.

Remark 2.1.4 When the structure satis�es only 1 of De�nition 2.1.3, it is called a

semigroup.

De�nition 2.1.5 (commutative monoid) A structure M = hX; �; ei is a commutative

monoid with the identity e if

1. hX; �; ei is a monoid,

2. a � b = b � a for every a; b 2 X.

De�nition 2.1.6 (partially ordered set) A structureX= hX;�i is a partially ordered

set if � is a binary relation on X such that for every a; b; c 2 X,

1. a � a (re
exive),

2. if a � b and b � c, then a � c (transitive),

3. if a � b and b � a, then a = b (antisymmetric).

Let P be a partially ordered set and X � P . y 2 X is the greatest element of X if

and only if

if x 2 X; then x � y;

and y0 2 X is the least element of X if and only if

if x 2 X; then y0 � x:

Let P be a partially ordered set and X � P . y 2 X is the maximal element of X if

and only if

if y � x and x 2 X; then x = y;

and y0 2 X is the minimal element of X if and only if

if x � y0 and x 2 X; then x = y0:

Let P and Q be partially ordered sets. Then a function f : P �! Q is monotone if

and only if for all a; b 2 P ,

if a � b; then f(a) � f(b):

So f preserves order.

We shall think of the elements of a partially ordered set as being propositions, and

of � as meaning \)", or \entails", or \is logically stronger than". Then it is precisely

antisymmetry that says that if two propositions are logically equivalent (each entails the

other) then they are equal: we identify them.

7



Example 2.1.7 Little partially ordered sets can be drawn using diagrams as follows:

a

b
c

d

e

f

g h

Figure 2.1: Partially ordered set.

Here each line represents an inequality. For instance, b � a, because b is at the

bottom end of the line, e � b. We can deduce other inequalities, such as f � f ,

e � a, from the partially ordered set axioms, re
exive and transitive, i.e., e � b and

b � a, or e � c and c � a.

Example 2.1.8 Let X be a set and P(X ) its power set, i.e., the set of all subsets of

X. Taking � to mean �, P(X ) is a partially ordered set. Antisymmetry corresponds to

the extensional de�nition of set equality, which says that equality between sets is to be

determined entirely by what elements they have.

De�nition 2.1.9 (preordered set) A structure X = hX;�i is a preordered set if � is

a binary relation on X such that for every a; b; c 2 X,

1. a � a (re
exive),

2. if a � b and b � c, then a � c (transitive).

Proposition 2.1.10 Let P be a preordered set. We de�ne a binary relation � on P by

a � b if and only if a � b and b � a:

Then � is an equivalence relation, and the equivalence classes [a] form a partially ordered

set P= �, with

[a] � [b] if and only if a � b:

De�nition 2.1.11 (preordered commutative monoid) A structure X = hX;�; �; ei
is a preordered commutative monoid if,

1. hX; �; ei is a commutative monoid,

2. hX;�i is a preordered set,

3. if x � x0 and y � y0, then x � y � x0 � y0 for all x; x0; y; y0 2 X.

8



2.1.3 Meets and Joins

Thinking of � as meaning \)", we next wish to describe what corresponds to \and" and

\or".

First, we de�ne meets, which correspond to \and".

De�nition 2.1.12 (meet) Let P be a partially ordered set, X � P and y 2 P . Then y

is a meet (or greatest lower bound or in�mum) for X if and only if

1. y is a lower bound for X, i.e., if x 2 X then y � x, and

2. if z is any other lower bound for X then z � y.

In symbols, we write y =
V
X.

Example 2.1.13 Let P be a partially ordered set, X � P and y 2 P . A meet, or a

greatest lower bound y and lower bounds of X can be drawn as follows:

P

meet, or greatest
lower bound

x

y

lower
bounds
of X

Figure 2.2: Meet and lower bounds.

� If x 2 X, then y � x, and then y is a lower bound for X,

� if z is any other lower bound for X, then z � y.

Proposition 2.1.14 Let P be a partially ordered set and X a subset. Then X can have

at most one meet.

Proof. Let y and y0 be two meets of X. Since y is a meet and y0 is a lower bound,

y0 � y. Similarly, y � y0. By antisymmetry, y = y0.

Next, we de�ne joins, which correspond to \or".
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De�nition 2.1.15 (join) Let P be a partially ordered set, X � P and y 2 P . Then y

is a join (or least upper bound or supremum) for X if and only if

1. y is an upper bound for X, i.e., if x 2 X then y � x and

2. if z is any other upper bound for X then z � y.

In symbols, we write y =
W
X.

Remark 2.1.16 > and ? are de�ned as follows:

� > is the greatest element,

� ? is the least element.

a _ b and a ^ b denote
W
fa; bg and

V
fa; bg, respectively.

Proposition 2.1.17 Let P be a partially ordered set. Then for all y 2 P ,

1. y is the empty meet if and only if it is a top (greatest) element and

2. y is the empty join if and only if it is a bottom (least) element.

Proof.

1. Suppose y =
V
;. Every z 2 P is a lower bound of ;: for the condition

if x 2 ; then z � x

is satis�ed vacuously. Therefore z � y, so y is greater than every other element of

P . Conversely, if y is top then it is a lower bound for ; (because everything is) and

it is greater than all the other lower bounds (because it's greater than everything),

so

y =
^
;:

2. Suppose y =
W
;. Every z 2 P is a upper bound of ;: for the condition

if x 2 ; then x � z

is satis�ed vacuously. Therefore y � z, so y is less than every other element of P .

Conversely, if y is bottom then it is an upper bound for ; (because everything is)

and it is less than all the other upper bounds (because it's less than everything), so

y =
_
;:

Empty meets and joins need not exist. We have already seen an example (see Figure

2.1) that had two minimal elements g and h, but no least element. A least element would

have to be less than everything else. Thus this example does not have an empty join,

although it does have an empty meet, namely a.

An empty meet (top) is often written as >, and an empty join (bottom) as ?.

10



Example 2.1.18 In logic, meets are conjunctions and joins are disjunctions. We are

thinking of � as meaning ).

� meets.

{ First, P uQ =
V
fP;Qg, a meet for the set fP;Qg. We check

P uQ) P and P uQ) Q

so that P uQ is a lower bound for fP;Qg.

{ Next, if R is another lower bound for fP;Qg, in other words

R) P and R) Q;

then R) P uQ.

True is easily seen to be a top element: it holds unconditionally, so anything implies

true: P ) true.

� joins.

{ First, P tQ =
W
fP;Qg, a join for the set fP;Qg. We check

P ) P tQ and Q) P tQ

so that P tQ is an upper bound for fP;Qg.

{ Next, if R is another upper bound for fP;Qg, in other words

P ) R and Q) R;

then P tQ) R.

False is bottom because of the standard logical idea that if we assume a contradiction

then we can prove anything: false) P .

Example 2.1.19 In set theory, meets are intersections and joins are unions. We work

with subsets of a \universe" U , and � is set inclusion, �.

� First, meets. Clearly if each Xi is a subset of U , then

{
T
iXi � Xi for all i.

{ If Y � Xi for all i and y 2 Y , then y 2 Xi for all i and so y 2
T
iXi. Therefore

Y �
T
iXi.

{ The empty meet is the top subset, U itself.

� Next, joins. Clearly if each Xi is a subset of U , then

{ Xi �
S
iXi for all i.

{ If Xi � Y for all i and x 2
S
iXi, then x 2 Xi for some i and so x 2 Y .

Therefore
S
iXi � Y .

{ The empty join is the bottom subset, ;.

11



To summarize, the relation of orders, logic and sets is the following Figure 2.3:

Orders Logic Sets

� ) �

= , =

top, >, true universe

empty meet,
V
;

bottom, ?, false ;

empty join,
W
;

meet,
V
, conjunction, intersection, \

greatest lower bound, glb, and, ^

in�mum, inf

join,
W
, disjunction, union, [

least upper bound, lub, or, _

supremum, sup

Figure 2.3: The relation of orders, logic and sets.

2.1.4 Lattices

De�nition 2.1.20 (lattice) A partially ordered set P is a lattice if and only if all two-

element subsets have meets and joins.

Let v be a binary relation on a lattice de�ned by

x v y if and only if x _ y = y:

Remark 2.1.21 Let a structure L = hL;vi be a lattice. Then for a; b 2 L, the following
are equivalent.

1. a v b,

2. a _ b = b and

3. a ^ b = a.

Proof.

� a v b if and only if a _ b = b.

Suppose a v b. Then b is an upper bound of fa; bg. If c is an upper bound of fa; bg,

b v c from de�nition. It means that b is the least upper bound of fa; bg, i.e., b is
the supremum. Therefore a _ b = b. Conversely suppose a _ b = b. Then

a v a _ b = b;

and hence a v b.

12



� a v b if and only if a ^ b = a.

Suppose a v b. Then a is a lower bound of fa; bg. If c is a lower bound of fa; bg,

c v a from de�nition. It means that a is the greatest lower bound of fa; bg, i.e., a

is the in�mum. Therefore a ^ b = a. Conversely suppose a ^ b = a. Then

a = a ^ b v b;

and hence a v b.

Proposition 2.1.22 Let a structure L = hL;_;^i be a lattice. Then for every a; b; c 2 L,

it satis�es the following conditions.

1. a _ a = a , a ^ a = a (idempotence),

2. a _ (b _ c) = (a _ b) _ c , a ^ (b ^ c) = (a ^ b) ^ c (associativity),

3. a _ b = b _ a , a ^ b = b ^ a (commutativity),

4. a _ (a ^ b) = a , a ^ (a _ b) = a (absorption).

Proof. 1 and 3 are immediate. We show 2 and 4.

1. (associativity).

(a) a _ (b _ c) = (a _ b) _ c.

Suppose that a_ (b_ c) = d. It suÆces to show that d is the least upper bound
of fa _ b; cg. First, since a v d and b _ c v d, a v d, b v d and c v d. From
a v d and b v d, a _ b v d, and then d is one of the upper bound of fa _ b; cg.

Next, suppose that e is an arbitrary one of the upper bound of fa_ b; cg. Then

a v e, b v e and c v e. From b v e and c v e, b_ c v e, and then e is also one

of the upper bound of fa; b_ cg. Since d is the least upper bound of fa; b_ cg,
d v e. Therefore d is the least upper bound of fa _ b; cg, and then

a _ (b _ c) = d = (a _ b) _ c:

(b) a ^ (b ^ c) = (a ^ b) ^ c.

Suppose that a ^ (b ^ c) = d. It suÆces to show that d is the greatest lower

bound of fa ^ b; cg. First, since d v a and d v b ^ c, d v a, d v b and

d v c. From d v a and d v b, d v a ^ b, and then d is one of the lower bound

of fa ^ b; cg. Next, suppose that e is an arbitrary one of the lower bound of

fa ^ b; cg. Then e v a, e v b and e v c. From e v b and e v c, e v b ^ c, and

then e is also one of the lower bound of fa; b^ cg. Since d is the greatest lower

bound of fa; b^ cg, e v d. Therefore d is the greatest lower bound of fa^ b; cg,
and then

a ^ (b ^ c) = d = (a ^ b) ^ c:

2. (absorption).

13



(a) a _ (a ^ b) = a.

a _ (a ^ b) = a means a ^ b v a, and it is trivial.

(b) a ^ (a _ b) = a.

a ^ (a _ b) = a means a v a _ b, and it is also trivial.

De�nition 2.1.23 (distributive) A lattice L is distributive if and only if for every

a; b; c 2 L we have

a ^ (b _ c) = (a ^ b) _ (a ^ c);

i.e., ^ distributes over _, in the same way as, for numbers, multiplication distributes over

addition.

Proposition 2.1.24 In a distributive lattice L, _ also distributes over ^.

Proof.

(a _ b) ^ (a _ c) = f(a _ b) ^ ag _ f(a _ b) ^ cg

= a _ fc ^ (a _ b)g

= a _ f(c ^ a) _ (c ^ b)g

= fa _ (c ^ a)g _ (b ^ c)

= a _ (b ^ c)

Remark 2.1.25 A lattice does not satisfy the distributivity of _ and ^ in general, i.e.,

� (a ^ b) _ (a ^ c) v a ^ (b _ c), but does not hold

a ^ (b _ c) v (a ^ b) _ (a ^ c)

and

� a _ (b ^ c) v (a _ b) ^ (a _ c), but does not hold

(a _ b) ^ (a _ c) v a _ (b ^ c):

Example 2.1.26 If U is a set, then we have already seen that its power set P(U ) is a

lattice (it actually has all meets and joins, not just the �nite ones). It is distributive.

Example 2.1.27 A partially ordered set P is linearly ordered if any two elements are

comparable:

if x; y 2 P then either x � y or y � x (or both, if and only if x = y):

Such a partially ordered set has all binary meets and joins, for instance

x ^ y = min(x; y) = x if x � y,

x ^ y = min(x; y) = y if y � x.

14



Example 2.1.28 Two Non-examples of distributive lattices can be drawn using diagrams

as follows:

a

b

c a b c

d

e

d

e

1

1

2

2

Figure 2.4: Distributive lattices.

1. Cconsider the left-hand example. First of all, it is a lattice. The nullary meets and

joins are d1 and e1, and we know binary meets and joins of comparable elements

always exist. All that is left to check are meets and joins for the incomparable pairs

fa; cg and fb; cg. These are as written in the diagram, i.e., d1 and e1, and they are

� d1 = a _ c = b _ c and

� e1 = a ^ c = b ^ c

respectively. However, the lattice is not distributive, because

a ^ (b _ c) = a ^ d1 = a 6= b = b _ e1 = (a ^ b) _ (a ^ c):

2. Consider the right-hand example. The nullary meets and joins are d2 and e2. Meets

and joins for the incomparable pairs fa; bg, fa; cg and fb; cg are as written in the

diagram, i.e., d2 and e2, and they are

� d2 = a _ b = a _ c = b _ c and

� e2 = a ^ b = a ^ c = b ^ c

respectively. However, the lattice is not also distributive, because

a ^ (b _ c) = a ^ d2 = a 6= e2 = e2 _ e2 = (a ^ b) _ (a ^ c):

Proposition 2.1.29 Let P be a partially ordered set in which every subset has a join.

Then every subset has a meet.

Proof. Let S � P , and let L be the set of its lower bounds. If a meet (greatest lower

bound) of S exists, then it must be
W
L. Thus all we need to show is that

W
L is a lower

bound of S. But if x 2 S and y 2 L, then y � x, so
W
L � x.
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De�nition 2.1.30 (complete lattice) A partially ordered set P is a complete lattice if

and only if every subset has a join and a meet.

Example 2.1.31 For a given set U , a structure P(U) = hP(U );[;\i forms a complete

lattice, where [ and \ are the usual set theoretic operations, union and intersection.

Remark 2.1.32 In a complete lattice hX;_i, the greatest and the least element exist:

in fact

� > :=
W
X,

� ? :=
V
X.

Remark 2.1.33 We can de�ne a mapping ^ (the in�mum) of P(X ) into X by

^
Y :=

_
fz j z v y for all y 2 Y g:

2.2 Fixed Point Theorem

In the discussion of interpretation for the exponential !, Engberg and Winskel use the

�xed point theorem. For an element a of a quantale (it is given in Chapter 4), as an

interpretation of !a, they require an element x such that it is the greatest �xed point of a

function. Therefore, we introduce the basic �xed point theorem here.

First we discuss monotone and �xed point, and then we show the least (greatest) �xed

point theorem below.

� monotone:

Given a complete lattice L, a function h : L �! L is monotone if and only if

if x v y; then h(x) v h(y) for all x; y 2 L:

� �xed point:

An element x 2 L is a �xed point of h if and only if

x = h(x):

Theorem 2.2.1 (�xed point) Let L be a complete lattice and h be a monotone mapping

on L. Then h has a �xed point.

Proof. Suppose

D = fx 2 L j h(x) v xg

and maximum of L is 1. Then D is not empty since 1 2 D is immediate, and so ^D

exists. Therefore, we may assume a = ^D, and it suÆces to show that a is a �xed point

of h. Suppose that x 2 D, then a v x. Since h is monotone,

h(a) v h(x) v x;
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and hence h(a) is a lower bound of D. Since a is the in�mum of D,

h(a) v a;

and using monotone of h, h(h(a)) v h(a). This means h(a) 2 D. Since the in�mum of D

is a,

a v h(a):

It follows that h(a) = a, and hence a (= ^D) is a �xed point of h.

Theorem 2.2.2 (least �xed point) Let L be a complete lattice and h be a monotone

mapping on L. Then h has the least �xed point:

^
fx 2 L j h(x) v xg:

Proof. Suppose

D = fx 2 L j h(x) v xg:

Since we have shown that h has at least one �xed point in Theorem 2.2.1, we show a

�xed point a in 2.2.1 is the least �xed point. Suppose that b is a �xed point of h, then

h(b) = b, and hence b 2 D. Since a is the in�mum of D, a v b, and hence a is the least

�xed point.

Theorem 2.2.3 (greatest �xed point) Let L be a complete lattice and h be a mono-

tone mapping on L. Then h has a �xed point, and especially,

_
fx 2 L j x v h(x)g

is the greatest �xed point of L.

Proof. We can prove similarly. Suppose

D = fx 2 L j x v h(x)g

and minimum of L is ?. Then D is not empty since ? 2 D is immediate, and so _D
exists. Therefore, we may assume a = _D, and it suÆces to show that a is a �xed point

of h. Suppose that x 2 D, then x v a. Since h is monotone,

x v h(x) v h(a);

and hence h(a) is an upper bound of D. Since a is the supremum of D,

a v h(a);

and using monotone of h, h(a) v h(h(a)). This means h(a) 2 D. Since the supremum of

D is a,

h(a) v a:

It follows that a = h(a), and hence a(= _D) is a �xed point of h.
Next we show a �xed point a is the greatest �xed point. Suppose that b is a �xed

point of h, then b = h(b), and hence b 2 D. Since a is the supremum of D, b v a, and

hence a is the greatest �xed point.
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Remark 2.2.4 In chapter 4, when we discuss the de�nition of the exponential on the

complete lattice L, we use the greatest �xed point theorem.

The monotone mapping h is

h : x �! a ^ 1 ^ (x � x):

Then the greatest �xed point p is de�ned as

_
fx 2 L j x v a ^ 1 ^ (x � x)g:
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Chapter 3

Petri Nets

In this chapter, we discuss Petri nets. For background material on Petri nets, see [40, 41]

and on the relation between Petri nets and multisets, see [9, 18, 32].

3.1 Petri Nets and Multisets

Petri nets is a general purpose mathematical model for describing relations existing be-

tween conditions and events.

Petri nets consist of two types of elements, places and transitions. Each place models

a process in terms of types of resources, and can hold arbitrary nonnegative multiplicity.

Each transition represents a state transition rule, i.e., how those resources are consumed

or produced by actions. They are described using the notion of multisets.

First we de�ne Petri nets, and then we discuss the relation between Petri nets and

multisets with some examples.

De�nition 3.1.1 (Petri net) A Petri net N is a quadruple hP; T;� (�); (�)�i such that

1. P is a set (of places),

2. T is a set (of transitions),

3. �(�); (�)� are mappings of T intoMP (i.e., the set of all multisets over a set P ),

where for t 2 T ,

(a) �(t) is called the pre-multiset of t and

(b) (t)� is called the post-multiset of t

respectively. Each element ofMP is called a marking, and in the sequel, we shall

use simplyM forMP.

A �ring of transitions transforms the given marking into another one; �ring a single

transition t subtracts (adds) n from (to) the mark m in place A if there is an arrow with

label n from A to t (t to A). Firing of transitions gives the result of �ring transitions in

some other.
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Graphically we can represent a Petri net by drawing the places as circles, the transi-

tions as squares, and an arrow from place A to transition t (from transition t to place A)

labeled with n 2 N n 0 if (A; t) 2� (�) ((t; A) 2 (�)�) with multiplicity n (n = 1 usually

omitted) (respectively). A marking can be indicated in a graphical representation of a

Petri net by inscribing the multiplicities in the circles.

For understanding of the relation between Petri nets and multisets, We give the fol-

lowing examples.

Example 3.1.2 Consider the following two nets, net-1 and net-2.

a

c

b

t
a

c

b

t

t

1

2

net-2net-1

Figure 3.1: Petri net - I.

� net-1:

We show a Petri net N = hP; T;� (�); (�)�i with P = fa; b; cg and T = ftg. Pre-

multiset �(t) is [a; b] and post-multiset (t)� is [c] respectively. Graphically this be-

comes like net-1.

{ Suppose that there are one token in a and in b respectively. A �ring of transition

t changes the marking from [a; b] to [c].

{ Suppose that there are two tokens in a and in b respectively, then a �ring of

transition t changes the marking from [a; a; b; b] to [a; b; c].

� net-2:

We show a Petri net N = hP; T;� (�); (�)�i with P = fa; b; cg and T = ft1; t2g.
Pre-multiset �(t1) and

�(t2) are [a] and [b], and post-multiset (t1)
� and (t2)

� are [c]

respectively. Graphically this becomes like net-2.

{ Suppose that there are one token in a and in b respectively. A �ring of transition

t1 changes the marking from [a; b] to [b; c], and a �ring of transition t2 changes

the marking from [b; c] to [c; c].

{ Suppose that there are two tokens in a and one token in b. A �ring of transition

t1 changes the marking from [a; a; b] to [a; b; c], and a �ring of transition t2
changes the marking from [a; b; c] to [a; c; c].
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Example 3.1.3 Consider the following net, net-3.

a

c

b t

t
2

1

net-3

Figure 3.2: Petri net - II.

We show a Petri net N = hP; T;� (�); (�)�i with P = fa; b; cg and T = ft1; t2g.

Pre-multiset �(t1) and
�(t2) are [a; b] and [c], and post-multiset (t1)

� and (t2)
� are

[c] and [a] respectively. Graphically this becomes like net-3.

Suppose that there are two tokens in a and one token in b. A �ring of transition t1
changes the marking from [a; a; b] to [a; c], and a �ring of transition t2 changes the
marking from [a; c] to [a; a].

3.2 Reachability Relation

Next, we discuss the reachability relation <>. It is the re
exive and transitive relation

de�ned as follows.

De�nition 3.2.1 (reachability relation) Let N = hP; T;� (�); (�)�i be a Petri net.

Then we de�ne a relation <> onM called the reachability relation of N as follows:

1. For t 2 T , let [ti be a relation onM such that

m [tim0 if and only if m = m00 +� t and t� +m00 = m0

for some m00 2 M.

2. Let <> be a relation onM such that

m<>m0 if and only if m [t1im1 [t2im2 [t3i � � � [tnimn = m0

for some t1; t2; : : : ; tn 2 T , m1; m2; : : : ; mn 2 M and n � 0.

We show the reachability relation <> using the net-3 of Figure 3.2.

Example 3.2.2 Consider the net-3 of Figure 3.2.

� Suppose that there are one token in a and in b. A �ring of transition t1 changes the
marking from [a; b] to [c], and a �ring of transition t2 changes the marking from [c]

to [a]. This means that

[a; b] [t1i [c] [t2i [a]

and we have

[a; b]<>[a]:
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� Next suppose that there are one token in a and two tokens in b. A �ring of transition

t1 changes the marking from [a; b; b] to [b; c], and a �ring of transition t2 changes the

marking from [b; c] to [a; b]. Then a �ring of transition t1 changes the marking from

[a; b] to [c], and a �ring of transition t2 changes the marking from [c] to [a]. This

means that

[a; b; b] [t1i [b; c] [t2i [a; b] [t1i [c] [t2i [a]

and we have

[a; b; b]<>[a]:

For a Petri net N, we de�ne structures MN = hM;+; [ ]i and XN = hM;<>;+; [ ]i.

Proposition 3.2.3 A structure MN = hM;+; [ ]i is a commutative monoid.

Proof. In fact, we can show that a structure de�ned as above satis�es the conditions of

De�nition 2.1.5, for every m;m0; m00 2 M,

1. m+ (m0 +m00) = (m+m0) +m00,

2. m+ [ ] = [ ] +m = m,

3. m+m0 = m0 +m.

Proposition 3.2.4 A structure XN = hM;<>;+; [ ]i is a preordered commutative monoid.

Proof. In fact, we can show that a structure de�ned as above satis�es the conditions of

De�nition 2.1.11, for every m;m0; m00 2 M,

1. hM;+; [ ]i is a commutative monoid,

2. a structure hM;<>i holds De�nition 2.1.9 since

(a) m <> m,

(b) if m <> m0 and m0 <> m00, then m <> m00,

3. if x <> x0 and y <> y0, then x+ y <> x0 + y0.

We show the conditions 2(b) and 3 of Proposition 3.2.4 with the example net-3 of

Figure 3.2.

Example 3.2.5 Consider the net-3 of Figure 3.2.

� Suppose that m = [a; a; a; b; b; b], and then m0 = [c; c; c] and m00 = [a; a; a], i.e.,

[a; a; a; b; b; b] <> [c; c; c] and [c; c; c] <> [a; a; a]:

Since m <> m0 = [a; a; a; b; b; b] <> [c; c; c] and m0 <> m00 = [c; c; c] <> [a; a; a], then

[a; a; a; b; b; b] <> [a; a; a], i.e.,

if m <> m0 and m0 <> m00; then m <> m00:
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� Suppose that x = [a; b] and y = [a; a; b; b], and then x0 = [c] and y0 = [c; c], i.e.,

[a; b] <> [c] and [a; a; b; b] <> [c; c]:

Since x + y = [a; b] + [a; a; b; b] = [a; a; a; b; b; b] and x0 + y0 = [c] + [c; c] = [c; c; c],

then [a; a; a; b; b; b] <> [c; c; c], i.e.,

x + y <> x0 + y0:
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Chapter 4

Quantales and Closure Operations

In this chapter, we discuss IL-algebras (intuitionistic linear algebras) and quantales, and

introduce closure operations on the algebras. Moreover, we discuss exponential ! and

quantales with exponential. For background material on the algebras, see [2, 4, 38, 39,

42, 43, 50].

4.1 IL-algebras and Quantales

Algebraic semantics for linear logic, as presented here, is for linear logic what Boolean-

valued models are for classical logic, and Heyting-valued models for intuitionistic logic.

4.1.1 IL-algebras

De�nition 4.1.1 (IL-algebra) A structure A = hA;^;_;?;��; �; 1i is an IL-algebra if

1. hA;^;_;?i is a lattice with the least element ?,

2. hA; �; 1i is a commutative monoid with unit 1,

3. if x v x0, y v y0, then x � y v x0 � y0 and x0��y v x��y0,

4. x � y v z if and only if x v y��z for all x; y; z 2 A.

Lemma 4.1.2 In any IL-algebra A = hA;^;_;?;��; �; 1i, for all x; y; z in A,

1. z�(x_y) = (z�x)_(z�y), and moreover, if the join
W
i2I yi exists, then x�

W
i2I yi =W

i2I(x � yi),

2. x��(y��z) = x � y��z,

3. ?��? is top of A (> := ?��?).

Proof.

1. Suppose that z�(x_y) v v. Since x_y v z��v, x v z��v and y v z��v. Therefore

x � z v v and y � z v v, and hence (z � x) _ (z � y) v v. We can prove the converse

similarly.
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2. Suppose that u v x��(y��z). Then u�x v y��z, and hence u�x�y v z. Therefore

u v x � y��z. Similarly we can prove the converse.

3. Since ? v x��?, ? � x v ?. Therefore x v ?��?, and hence > = ?��?.

Proposition 4.1.3 A de�nition of IL-algebra is obtained replacing De�nition 3 of 4.1.1

by z � (x _ y) = (z � x) _ (z � y).

Proof. Assume De�nition 1, 2 and 4 of 4.1.1 and z � (x_ y) = (z �x)_ (z � y). If x v x0,
then x _ x0 = x0. Therefore

z � (x _ x0) = (z � x) _ (z � x0)

= z � x0;

and hence z � x v z � x0. Also assume x v x0. Since z v x0��y if and only if z � x0 v y,

z � x v y. Therefore z v x��y, and so x0��y v x��y.

De�nition 4.1.4 (complete IL-algebra) A structureA= hA;��;_;^; �; 1i is a complete

IL-algebra if

1. hA;^;_i is a complete lattice,

2. hA; �; 1i is a commutative monoid with unit 1,

3. (
W
xi) � y =

W
(xi � y) for all xi; y 2 A,

4. x � y v z if and only if x v y��z for all x; y; z 2 A.

Proposition 4.1.5 Let M = hM; �; ei be a commutative monoid with the identity e, and

for each X; Y �M , de�ne sets X � Y and Y��Z of M by

1. X � Y := fx � y j x 2 X; y 2 Y g,

2. Y��Z := fx 2M j x � y 2 Z for all y 2 Y g.

Then the structure

P(M) = hP(M );��;[;\; �; fegi;

where [ and \ are the usual set-theoretic operations, is a complete IL-algebra.

Proof.

1. 1 and 2 of De�nition 4.1.4 are trivial.

2. For 3 of De�nition 4.1.4, we show that

(
[
Xi) � Y =

[
(Xi � Y ):

Suppose that x 2 (
S
Xi) � Y . Then x = y � z for some y 2

S
Xi and some z 2 Y .

Therefore y 2 Xi for some i, and so x 2 Xi � Y . Since xi � Y �
S
(Xi � Y ),

x 2
S
(xi � Y ). Conversely suppose that Xj �

S
Xi. Then Xj � Y � (

S
Xi) � Y .

Therefore
S
(Xj � Y ) � (

S
Xi) � Y .
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3. For De�nition 4 of 4.1.4, we show that

X � Y � Z if and only if X � Y��Z:

If x 2 X, then x � y 2 X � Y for all y 2 Y . Therefore x � y 2 Z, and so x 2 Y��Z.

Thus X � Y��Z. Conversely for all x 2 X and y 2 Y , since X � Y��Z, x � y 2 Z.

Therefore X � Y � Z.

Remark 4.1.6 The structure P(M) = hP(M );��;[;\; �; fegi satis�es a law not gener-

ally valid in IL-algebras: distributivity of the lattice operations.

The simplest way to see that distributivity of the lattice operations does not hold in

general, is to verify that the sequent

A u (B t C)) (A uB) t (A u C)

is not derivable, since this means that the IL-algebra constructed from Intuitionistic linear

logic or classical linear logic by means of the Lindenbaum construction does not obey

distributivity.

4.1.2 Quantales

De�nition 4.1.7 (commutative quantale) A structure Q = hQ;_; �; 1i is a commu-

tative quantale if

1. hQ;_i is a complete lattice,

2. hQ; �; 1i is a commutative monoid,

3. (
W
xi) � y =

W
(xi � y) for all xi; y 2 Q.

We shall use simply quantale for commutative quantale with unit.

Remark 4.1.8 De�ne a binary operation �� on Q by

y��z :=
_
fx j x � y v zg:

Then

x v y��z if and only if x � y v z:

Proposition 4.1.9 Let M = hM; �; ei be a commutative monoid with the identity e, and

for each X; Y �M , de�ne a subset X � Y of M by

X � Y := fx � y j x 2 X; y 2 Y g:

Then the structure

P(M) = hP(M );[; �; fegi

is a quantale.

Proof.
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1. 1 and 2 of De�nition 4.1.7 are trivial.

2. For 3 of De�nition 4.1.7, we show that

(
[
Xi) � Y =

[
(Xi � Y ):

Suppose that x 2 (
S
Xi) � Y . Then x = y � z for some y 2

S
Xi and some z 2 Y .

Therefore y 2 Xi for some i, and so x 2 Xi � Y . Since xi � Y �
S
(Xi � Y ),

x 2
S
(xi � Y ). Conversely suppose that Xj � [Xi. Then Xj � Y � (

S
Xi) � Y .

Therefore
S
(Xj � Y ) � (

S
Xi) � Y .

Remark 4.1.10 In the quantale P(M),

Y��Z :=
[
fX j X � Y � Zg

= fx 2M j x � y 2 Z for all y 2 Y g:

Remark 4.1.11 It is easy to show that a complete IL-algebra is just a quantale, in which

y��z is de�ned by

y��z :=
_
fx j x � y v zg:

Proposition 4.1.12 A structure is a complete IL-algebra if and only if it is a quantale.

Proof. It is trivial that if a structure is a complete IL-algebra, then it is a quantale.

We show that if a structure is a quantale, then it is a complete IL-algebra. De�ne

y��z :=
_
fx j x � y v zg:

Then we show that a commutative quantale is always a complete IL-algebra.

1. 1, 2 and 3 of De�nition 4.1.4 are trivial.

2. For 4 of De�nition 4.1.4, we show that

x � y v z if and only if x v y��z:

Suppose that y��z :=
W
fuju � y v zg. If x � y v z, then x 2 fu j u � y v zg, and

hence x v y��z. Conversely if x v y��z, then

x � y v (y��z) � y

= (
_
fu j u � y v zg) � y

=
_
fu � y j u � y v zg

v z;

and hence x � y v z.

The proposition shows that complete IL-algebras and quantales amount to the same

thing.

Corollary 4.1.13 A structure P(MN) := hP(M);[; �; f[ ]gi is a quantale, where

X � Y := fm+m0 j m 2 X;m0 2 Y g:

(Note that a structure MN = hM;+; [ ]i is a commutative monoid.)

Remark 4.1.14 In the quantale P(MN),

Y��Z :=
[
fX j X � Y � Zg

= fm 2 M j m +m0 2 Z for all m0 2 Y g:

27



4.2 Closure Operations on IL-algebras and Quantales

Next, we discuss closure operations on the IL-algebras and the quantales which play a

crucial role in the proof of completeness.

4.2.1 Closure Operation

De�nition 4.2.1 (closure operation) An operation C on a quantale Q = hQ;_; �; 1i

is a closure operation on Q if

1. x v Cx,

2. if x v y then Cx v Cy,

3. CCx v Cx,

4. Cx � Cy v C(x � y).

An element x of Q is C-closed if x = Cx holds. C(Q) denotes the set of all C-closed
elements of Q.

Lemma 4.2.2 C(Cx _ Cy) = C(x _ y) holds for every x; y 2 Q.

Proof. Since C(x _ y) v C(Cx _ Cy) is trivial, we show that

C(Cx _ Cy) v C(x _ y):

x v x_ y and y v x_ y, then Cx v C(x_ y) and Cy v C(x_ y). Therefore (Cx_Cy) v
C(x _ y), and hence

C(Cx _ Cy) v CC(x _ y)

= C(x _ y):

Lemma 4.2.3 C(Cx � Cy) = C(x � y) holds for every x; y 2 Q.

Proof. Since C(x � y) v C(Cx � Cy) is trivial, we show that

C(Cx � Cy) v C(x � y):

Since Cx � Cy v C(x � y) (4 of De�nition 4.2.1),

C(Cx � Cy) v CC(x � y)

= C(x � y):
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4.2.2 Closure Operation on IL-algebras

Proposition 4.2.4 If C is a closure operation on an IL-algebraA = hA;^;_;?;��; �; 1i,

then

C(A) = hC(A);^;_C ; C?;��; �C; C1i

is also an IL-algebra, where _C and �C are de�ned by

1. _Cxi := C(_xi),

2. x �C y := C(x � y).

Proof. We show that a structure hC(A);^;_C ; C?;��; �C ; C1i de�ned as above holds

De�nition 4.1.1. The proof of that if a; b 2 C(Q), then a ^ b 2 C(Q), a _C b 2 C(Q),

a �C b 2 C(Q) and a��b 2 C(Q), and 1 of de�nition will be shown later (see the proof of

Proposition 4.2.5. Now we show 2, 3 and 4 of de�nition.

1. We show that a structure hC(A);^;_C ; C?;��; �C ; C1i is a commutative monoid

with unit 1.

(a) For a�C (b�C c) = (a�C b)�C c, a�C (b�C c) = C(a�C(b�c)) = C(Ca�C(b�c)) =

C(a�(b�c)) = C((a�b)�c) = C(C(a�b)�Cc) = C(C(a�b)�c) = C((a�cb)�C) =
(a �C b) �C c.

(b) For a �C C1 = C1 �C a = a, C1 �C a = C(C1 � a) = C(C1 � Ca) = C(1 � a) =
C(a � 1) = C(Ca � C1) = C(a � C1) = a �C C1, and C(1 � a) = Ca = a.

Therefore C1 is the unit.

(c) For a �C b = b �C a, a �C b = C(a � b) = C(b � a) = b �C a.

2. We show z �C (x _C y) = (z �C x) _C (z �C y).

z �C (x _C y) = C(z � (x _C y))

= C(z � C(x _ y))

= C(Cz � C(x _ y))

= C(z � (x _ y))

= C((z � x) _ (z � y))

= C(C(z � x) _ C(z � y))

= (z �C x) _C (z �C y):

3. We show x �C y v z if and only if x v y��z.

x �C y = C(x � y)

= C(Cx � Cy)

v Cz;

then Cx � Cy v Cz, and hence x v y��z.
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4.2.3 Closure Operation on Quantales

Proposition 4.2.5 If C is a closure operation on a quantale Q = hQ;_; �; 1i, then

C(Q) = hC(Q);_C ; �C; C1i

is also a quantale, where _C and �C are de�ned by

1. _Cxi := C(_xi),

2. x �C y := C(x � y).

Proof. First we show that if a; b 2 C(Q), then a^b 2 C(Q), a_C b 2 C(Q), a�C b 2 C(Q)

and a��b 2 C(Q).

� For a ^ b 2 C(Q), since a ^ b v a, C(a ^ b) v Ca = a. Similarly since a ^ b v b,

C(a ^ b) v Cb = b. Therefore C(a ^ b) v a ^ b v C(a ^ b), and so a ^ b 2 C(Q).

� For a _C b 2 C(Q), C(a _C b) = C(C(a _ b)) = C(a _ b) = a _C b. Therefore

a _C b 2 C(Q).

� For a �C b 2 C(Q), C(a �C b) = C(C(a � b)) = C(a � b) = a �C b. Therefore

a �C b 2 C(Q).

� For a��b 2 C(Q),

C(a��b) �C a = C(a��b) �C Ca

= C(C(a��b) � Ca)

= C((a��b) � a)

v b

(since we can get (a��b) � a v b from a��b v a��b). Therefore

C(a��b) v a��b

v C(a��b);

and so a��b 2 C(Q).

Next we show that a structure C(Q) = hC(Q);_C ; �C ; C1i de�ned as above holds

De�nition 4.1.7.

1. hC(Q);_Ci is a complete lattice.

We show that a structure hC(Q);_Ci is a lattice and holds De�nition 2.1.30. It is

enough to prove for _C .

First we show that hC(Q);_Ci holds De�nition 2.1.20.

(a) For a _C a = a, a _C a = C(a _ a) = Ca = a.
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(b) For associative a _C (b _C c) = (a _C b) _C c,

a _C (b _C c) = C(a _ C(b _ c))

= C(Ca _ C(b _ c))

v C(C(a _ (b _ c)))

= C(a _ (b _ c))

v C(a _ C(b _ c))

= a _C (b _C c):

Therefore a _C (b _C c) = C(a _ (b _ c)) = C((a _ b) _ c) = (a _C b) _C c.

(c) For a _C b = b _C a, a _C b = C(a _ b) = C(b _ a) = b _C a.

(d) For a_C (a^b) = a, a_C (a^b) = C(a_(a^b)) = Ca = a. For a^(a_C b) = a,

a w a ^ (a _C b)

= a ^ C(a _ b)

w a ^ (a _ b)

= a:

Next we show that the maximum element : > and the minimum element : C?
exist.

(a) > 2 C(Q) since C> v > v C>.

(b) Since ? v a for all a 2 Q, C? v Ca = a.

2. hC(Q); �C; C1i is a commutative monoid.

We show that a structure hC(Q); �C ; C1i is a monoid and holds De�nition 2.1.5, for

every a; b; c 2 C(Q).

First we show that hC(Q); �C ; C1i holds De�nition 2.1.3.

(a) For a�C (b�C c) = (a�C b)�C c, a�C (b�C c) = C(a�C(b�c)) = C(Ca�C(b�c)) =
C(a�(b�c)) = C((a�b)�c) = C(C(a�b)�Cc) = C(C(a�b)�c) = C((a�cb)�C) =

(a �C b) �C c.

(b) For a �C C1 = C1 �C a = a, C1 �C a = C(C1 � a) = C(C1 � Ca) = C(1 � a) =

C(a � 1) = C(Ca � C1) = C(a � C1) = a �C C1, and C(1 � a) = Ca = a.

Therefore C1 is the unit.

Next we show that hC(Q); �C; C1i holds 2 of De�nition 2.1.5.

For a �C b = b �C a, a �C b = C(a � b) = C(b � a) = b �C a.

3. We show that �C distributes over _C .

(
_

C

S) �C b = C(C(
_
S) � b)

= C(C(
_
S) � Cb)
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= C(
_
S � b)

= C(
_

a2S

(a � b))

= C(
_

a2S

C(a � b))

=
_

a2SC

(a �C b):

Therefore for every S � C(Q) and a 2 S, (
W
C S) �C b =

_

a2SC

(a �C b).

4. We show that for every a; b; c 2 C(Q), a �C b v c if and only if a v b��c. Suppose

that a �C b v c.

a � b = Ca � Cb

v C(a � b)

= a �C b

v c;

and hence a v b��c. Conversely, suppose that a v b��c. Then a � b v c. Therefore

a�C b = C(a� b) v Cc = c, and hence a �C b v c. Therefore for every a; b; c 2 C(A),
a �C b v c if and only if a v b��c.

Lemma 4.2.6 In the quantale C(Q), x^ y and x��y are C-closed whenever x and y are

C-closed. Hence operations ^ and �� coincide with the original operations on Q.

Proof.

1. Cx��Cy v C(Cx��Cy) is trivial. We show C(Cx��Cy) v Cx��Cy).

C(Cx��Cy) v Cx��Cy if and only if C(Cx��Cy) � Cx v Cy:

But

C(Cx��Cy) � Cx v C(C(Cx��Cy) � Cx)

= C((Cx��Cy) � Cx)

v CCy

= Cy;

using (u��v) � u v v and 1, 2, 3 and 4 of De�nition 4.2.1.

2. Cx^Cy v C(Cx^Cy) is trivial. We show C(Cx^Cy) v Cx^Cy. Cx^Cy v Cx

and Cx ^ Cy v Cy, hence C(Cx ^ Cy) v Cx and C(Cx ^ Cy) v Cy, therefore

C(Cx ^ Cy) v Cx ^ Cy.
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4.2.4 Closure Operation C1 and C2

Let X = hM;�; �; ei be a preordered commutative monoid. We de�ne two closure opera-

tions C1 and C2 on P(X).

Proposition 4.2.7 Let X = hM;�; �; ei be a preordered commutative monoid and de�ne

an operation # on P(X) such that

# X := fy 2M j 9x 2 X (y � x)g:

Then it is easy to see that # is a closure operation on the quantale P(X) = hP(M);[; �; fegi

(see the proof of Proposition 4.2.10).

De�nition 4.2.8 Let X = hM;�; �; ei be a preordered commutative monoid and de�ne

an operation C1 on P(X) by

C1X :=# X:

De�nition 4.2.9 Let X = hM;�; �; ei be a preordered commutative monoid and de�ne

two operations ! and  on P(X) by

X! := fy 2M j 8x 2 X(x � y)g;

X := fy 2M j 8x 2 X(y � x)g;

and let C2 be the operation on P(X) de�ned by

C2X := (X!) :

(C2 is called the MacNeille completion of X, see [14, 23, 31, 36]).

We can easily show the following propositions (see e.g. [47]).

Proposition 4.2.10 C1 is a closure operation on the quantale

P(X) = hP(M);[; �; fegi:

Proof. We show that a function C1 de�ned as above holds De�nition 4.2.1.

1. If x 2 X, then x � x, and hence 9y 2 X (x � y). Therefore x 2 C1X, and so

X � C1X.

2. If z 2 C1X, then 9x 2 X (z � x), and since X � Y , so 9x 2 Y (z � x). Therefore
z 2 C1Y , and hence C1X � C1Y .

3. If x 2 C1C1X, then 9y 2 C1X (x � y) and 9z 2 X (y � z). Therefore x � z,

so x � C1X, and hence C1C1X � C1X. Since C1X � C1C1X (1 of de�nition),

C1C1X = C1X.

4. We show that if x 2 C1X and y 2 C1Y , then x � y 2 C1(X � Y ). Since x 2 C1X,

9x0 2 X (x � x0). Since y 2 C1Y , 9y
0 2 Y (y � y0). By de�nition, since x �y � x0 �y0,

x � y 2 X � Y . Therefore 9x0 � 9y0 2 X � Y (x � y � x0 � y0). Thus x � y 2 C1(X � Y ),

and hence C1X � C1Y � C1(X � Y ).
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Proposition 4.2.11 C2 is a closure operation on the quantale

P(X) = hP(M);[; �; fegi:

Proof. We show that a function C2 de�ned as above holds De�nition 4.2.1.

1. If x 2 X, then 8y 2 X! (x � y). Therefore x 2 (X!) = C2X, and hence

X � C2X.

2. First we show that

if X � Y; then Y! � X! � � � (1):

If z 2 Y!, then 8y 2 Y (y � z). Therefore 8x 2 X (x � z), and hence z 2 X!.

Next we show that

if X � Y; then Y � X � � � (2):

If z 2 Y  , then 8y 2 Y (z � y). Therefore 8x 2 X (z � x), and hence z 2 X . By

(1) and (2), if X � Y , then Y ! � X!. and if Y ! � X!, then (X!) � (Y!) .
Therefore if X � Y then (X!) � (Y!) , and hence C2X � C2Y .

3. X � (X!) by 1, then by 2,

((X!) )! = (C2X)! � X! � � � (1):

If x 2 X!, then by de�nition, 8y 2 (X!) (y � x). Therefore x 2 ((X!) )!, and
hence

X! � ((X!) )! = (C2X)! � � � (2):

By (1) and (2), ((X!) )! = (C2X)! = X!. Therefore C2C2X = ((C2X)!) =

(X!) = C2X, then C2C2X = C2X.

4. We show that

if x 2 C2X and y 2 C2Y; then x � y 2 C2(X � Y ):

Suppose that z 2 (X � Y )!. Then 8u 2 X and 8v 2 Y (u � v � z), and hence

8u 2 X (u � v��z). Since u 2 X is arbitrary, 8v 2 Y (v��z 2 X!). Therefore

x � v��z, and hence we have v � x = x � v � z. Thus v � x��z. Since v 2 Y is

arbitrary, we have x��z 2 Y!, and hence y � x��z. Therefore x � y = y � x � z,

and hence x � y 2 ((X � Y )!) = C2(X � Y ). Thus C2X � C2Y � C2(X � Y ).

Remark 4.2.12 C1 is the closure operation used in [15]. In the quantales constructed

from Petri nets using C1, since C1-closed sets are downwards closed, for m; m0 2 M

C1(m) � C1(m
0) if and only if m <> m0:

Therefore C1 adequates for the reachability relation of Petri nets. Similarly, since every

C2-closed set is downwards closed, C2 also adequates for the reachability relation.

34



Lemma 4.2.13 Suppose that a structure P(MN) := hP(M);[; �; f[ ]gi is a quantale con-

structed from a Petri net using C2 closure operation. Then for all x 2 M, the following

holds.

C2(fxg) = fy j y v xg:

Proof.

� First we show that if m 2 C2(fxg), then m v x. Suppose that m 2 C2(fxg). Since
v is re
exive, then x 2 fxg!, and hence m v x.

� Next we show that if m v x, then m 2 C2(fxg). Suppose that m v x. If m0 2 x!,
then x v m0. Since v is transitive, then m v m0, and hence

m 2 (fxg!) = C2(fxg):

4.3 Quantales with Exponential

We extend the quantales given above to the quantales with exponential, which correspond

to the logical connective !.

The following de�nition of quantales with exponential will naturally arise from the

syntactic properties of ! in linear logic.

4.3.1 Exponential on Quantales

De�nition 4.3.1 (exponential) Let Q = hQ;_; �; 1i be a quantale. An exponential !

on Q is an unary operator such that

1. !x v x for all x 2 Q,

2. if !x v y, then !x v!y for all x; y 2 Q,

3. 1 =!>,

4. !x�!y =!(x ^ y) for all x; y 2 Q.

Lemma 4.3.2 Clause 2 of the de�nition is equivalent to the following:

if x v y, then !x v!y and !x v!!y:

Proof. We show that if !x v y, then !x v!y. Since !x v y, !!x v!y, and since x v x,

!x v!!x. Therefore !x v!y. Next we show if x v y, then !x v!y and !x v!!y. Since x v y,
!x v y by 1 of the de�nition, and hence !x v!y and !x v!!y by 2 of the de�nition.

Lemma 4.3.3 In every quantale with exponential, the following holds:

1. !!x =!x,

2. 1 =!1.
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Proof.

1. !!x v!x by 1 of the de�nition. Since !x v!x, !x v!!x by 2 of the de�nition.

2. !1 v 1 by 1 of de�nition. Since 1 =!> and 1 v 1, !> = 1 v 1, and hence 1 v!1 by 2

of the de�nition.

Lemma 4.3.4 In every quantale with exponential, the following holds:

1. !x v 1,

2. !x v!x�!x,

3. !x�!y v!(!x�!y),

4. if x v y, then !x v!y.

Proof.

1. Since x v >, !x v > by 1 of the de�nition, and !x v!> by 2 of the de�nition, so

!x v 1 by 3 of the de�nition.

2. !x =!(x ^ x) =!x�!x by 4 of the de�nition.

3. !x�!y =!(x^ y) by 4 of the de�nition. Since !(x^ y) v!(x^ y), !(x^ y) v!!(x^ y) by

2 of the de�nition. Therefore !x�!y v!!(x ^ y) =!(!x�!y).

4. Since we have !x v y from x v y by 1 of the de�nition, !x v!y by 2 of the de�nition.

4.3.2 FS-quantales and Quantales with Exponential

Here we discuss two de�nitions of the quantale with exponential !. The former de�nition

is used in [15, 16, 17]. Using this de�nition, we could not prove the completeness of linear

logic for Petri net models with exponential. Therefore we use the latter de�nition and

prove it.

In this thesis, we call the quantale de�ned by the former de�nition \FS-quantale with

exponential", and call the quantale de�ned by the latter de�nition simply \quantale with

exponential".

1. FS-quantales with exponential

In linear logic, given a proposition a, the assertion of !a has the possibility of being

instantiated by the proposition a, 1 or !a�!a.

The de�nition of FS-quantales with exponential will naturally arise from the fol-

lowing syntactic properties of ! in linear logic, the rules of (1) and (2). The formal

de�nition of exponential ! of linear logic will be given in Chapter 6.
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� From the rules of !a) a, !a) 1 and !a)!a�!a,

!a) a u 1u!a�!a � � � (1);

� from the rule of free storage,

b) a b) 1 b) b � b
b)!a

� � � (2)
:

As an interpretation of !a, for an element a of a lattice, we require an element x
from (1) such that

x v a ^ 1 ^ (x � x):

This will not in general characterize a unique value of the lattice. For instance

taking x to be the bottom element ? of the lattice will always do. How ever from

(2) it follows that any x satisfying x v a^ 1^ (x � x) should be below !a. Therefore

!a should be the greatest �xed point of the monotone mapping

x �! a ^ 1 ^ (x � x)

in the complete lattice given together with the quantale.

(In Chapter 2, we have shown that for a complete lattice L and a monotone mapping

h on L, there exists �xed point, and especially,

_
fx 2 L j x v h(x)g

is the greatest �xed point of L.)

Such a solution ensures the soundness of the proof rules extended by those for !a.

We de�ne FS-quantale with exponential Q! = hQ;_; �; 1; !i as follows:

De�nition 4.3.5 (commutative FS-quantale with exponential) A quantale with

exponential Q! = hQ;_; �; 1; !i is a commutative FS-quantale with exponential if

b v a; b v 1 and b v b � b implies b v!a:

We shall use simply FS-quantale with exponential for commutative FS-quantale with

exponential.

Proposition 4.3.6 Let Q = hQ;_; �; 1i be a quantale, and for each a 2 Q, de�ne

an operator ! on Q by

!a :=
_
fx 2 Qjx v a ^ 1 ^ (x � x)g:

Then Q
! = hQ;_; �; 1; !i is an FS-quantale with exponential.

Proof. It is immediate from the de�nition of exponential.
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2. quantales with exponential

This de�nition of !a is di�erent from one in [15, 16, 17]. They de�ne !a for the

linear logic with the rule of free storage [47], and to be the greatest �xed point of a

mapping corresponding to the free storage rule.

We de�ne quantale with exponential Q!
F = hQ;_; �; 1; !;Fi as follows:

De�nition 4.3.7 (commutative quantale with exponential) LetQ = hQ;_; �; 1i

be a quantale, and F be a subset of Q such that

(a) if x; y 2 F, then x � y 2 F,

(b) x � x = x for all x 2 F,

(c) 1 2 F and x v 1 for all x 2 F.

Then a structure Q!
F = hQ;_; �; 1; !;Fi is a commutative quantale with exponential

!a =
_
fx 2 F j x v ag:

We shall use simply quantale with exponential for commutative quantale with expo-

nential.

Proposition 4.3.8 !a =
W
fx 2 F j x v ag de�nes an exponential over Q.

Proof. We show that !a =
W
fx 2 F j x v ag holds De�nition 4.3.1.

(a) !x v x is immediate from condition of de�nition. Since !x =
W
fy 2 F j y v xg,

then !x v x.

(b) We show that if !x v y, then !x v!y. Suppose that !x v y. From de�nition

!x =
_
fz 2 F j z v xg and

!y =
_
fz 2 F j z v yg:

Since !x =
W
fz 2 F j z v xg v y, if z v x, then z v y, for all z 2 F . Therefore

we have !x v!y.

(c) We show 1 =!>. Since

!> =
_
fx 2 F j x v >g;

and from condition of the de�nition, it is immediate. Because since 1 2 F and

x v 1 for all x 2 F , !> v 1, and since 1 v > and 1 2 F , 1 v!>.

(d) We show that !x�!x =!(x ^ y) for all x; y 2 Q.

� First we show that !x�!y v!(x ^ y). Since !y v!> = 1,

!x�!y v !x�!>

= !x � 1

= !x:

38



Therefore !x�!y v!x, and similarly !x�!y v!y. Since !x v x and !y v y

from 1 of de�nition, !x�!y v x and !x�!y v y, and then !x�!y v x^y. Also

!x�!y =
_

z;z02F

fz � z0 j z v x; z0 v yg

(by distributivity of _ over �)

v
_

z;z02F

fz � z0 j z v!x; z0 v!yg

(since z 2 F and z v u implies z v!u)

v
_
fz 2 F j z v!x�!yg

= !(!x�!y);

hence !x�!y v!(!x�!y) v!(x ^ y).

� Next we show the converse, !(x ^ y) v!x�!y. On the other hand,

!(x ^ y) =
_
fz 2 F j z v x ^ yg:

For all z 2 Q, if z v x ^ y, then z v x and z v y, which in turn implies

z v!x and z v!y, and hence z = z � z v!x�!y. Therefore !(x ^ y) v!x�!y.
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Chapter 5

Intuitionistic Linear Logic without

Exponential

In this chapter, we will �rst describe syntax and semantics of linear logic without expo-

nential, and prove soundness theorem for quantales. Then we will prove completeness of

linear logic without exponential for quantales induced from Petri nets by using the closure

operation C2.

In this thesis, we follow notation of linear logic in [47]. Therefore we have kept Girard's

symbols 1;>, and replaced 
;�;& by �;t;u respectively, and interchanged ? and 0. For

technical background on linear logic, see [19, 21, 22].

5.1 Syntax

5.1.1 Formulas

The language of linear logic without exponential has an alphabet consisting of

propositional variables: a; b; c; : : :,

propositional constants: 1,>;?,

connectives: �;t;u;�Æ and

auxiliary symbols: ( , ).

The connectives carry traditional names:

�: multiplicative conjunction (times),

t: disjunction (or),

u: additive conjunction (and) and

�Æ: linear implication.

Formulas are inductively de�ned by

the propositional variables and constants are formulas and

if A and B are formulas, then (A �B); (A t B); (A u B) and (A�ÆB) are formulas.

We shall use A � B as an abbreviation for (A�ÆB) u (B�ÆA), and denote the set of all

formulas by �.
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5.1.2 Sequents

A sequent of linear logic without exponential is an expression of the form

�) C;

where � is a �nite sequence of formulas and C is a formula. Both � and C may be

empty. In the sequel, capital Greek letters will denote �nite (possibly empty) sequences

of formulas.

5.1.3 Axioms (initial sequents) and Rules

The calculus is given by specifying axioms and rules as following.

De�nition 5.1.1 (axioms and rules of inference) The axioms of linear logic without

exponential are the instances of the following four axiom-schemes:

A) A;

) 1;

�) >;

�;?;�) A:

The rules of inference of linear logic without exponential are the following structural

rules:

�;�) A

�; 1;�) A
(1 - weakening)

;

�; A; B;�) C

�; B; A;�) C
(exchange)

;

�) A �; A;�) C

�;�;�) C
(cut)

;

and the following logical rules:

�; A;�) C �; B;�) C

�; A t B;�) C
(t ))

;

�) A
�) A tB

() t1)
;

�) B
�) A tB

() t2)
;

�; A;�) C

�; A uB;�) C
(u1))

;

�; B;�) C

�; A u B;�) C
(u2))

;
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�) A �) B
�) A u B

() u)
;

�; A; B;�) C

�; A �B;�) C
(� ))

;
�) A �) B
�;�) A �B

() �)
;

�) A �; B;�) C

�; A�ÆB;�;�) C
(�Æ ))

;

�; A) B

�) A�ÆB
() �Æ)

:

Note that in the absence of contraction and weakening in linear logic,

�; A; A) B

�; A) B
(contraction)

;
�) B

�; A) B
(weakening)

;

the choice of rules for conjunction leads to distinct connective u and �, and the distribu-

tivity of u over t becomes not to hold in general.

Linear logic may be viewed as an example of a \resource-conscious" logic, where the

formulas represent types of resource, and resources cannot be used ad libitum.

Example 5.1.2 The following two simple examples show why linear logic is called resource-

conscious logic.

� Asserting a sequent

A;A) B

means something like: we use two data (resources) of type A to obtain one datum

of type B.

� The following logical rules:

A) B A) C
A;A) B � C

() �)

means that we can derive lower sequent A;A) B �C from upper sequents A) B

and A) C, i.e., if we use one datum of type A to obtain one datum of type B, and

we use one datum of type A to obtain one datum of type C, respectively, then we

use two data of type A to obtain one datum of type B and one datum of type C.

5.1.4 Examples of Proofs

For understanding of the rules described above, we give the following examples.

Example 5.1.3 We can derive the rule

�) A�ÆB
�; A) B

from (�Æ )) as follows:

�) A�ÆB
A) A B ) B
A�ÆB;A) B

(�Æ ))

�; A) B
(cut)

:
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Example 5.1.4 We can derive that (A � B) ) C � A ) B�ÆC, i.e., if (A � B) ) C,

then A) B�ÆC and if A) B�ÆC, then (A �B)) C.

� First we show that if (A �B)) C, then A) B�ÆC:

A) A B ) B
A;B ) A �B

() �)
A �B ) C

A;B ) C

A) B�ÆC
() �Æ)

(cut)

:

� Next we show that if A) B�ÆC, then (A �B)) C:

A) B�ÆC
B ) B C ) C
B�ÆC;B ) C

(�Æ ))

A;B ) C

A �B ) C
(� ))

(cut)

:

Example 5.1.5 We can derive that (A t B) � C � (A � C) t (B � C) as follows:

� For (A tB) � C ) (A � C) t (B � C),

A) A C ) C
A;C ) A � C

() �)

A;C ) A � C tB � C
() t1)

B ) B C ) C
B;C ) B � C

() �)

B;C ) A � C t B � C
() t2)

A t B;C ) A � C t B � C

(A t B) � C ) A � C t B � C
(� ))

(t ))

:

� For (A � C) t (B � C)) (A tB) � C,

A) A
A) A tB

() t1)
C ) C

A;C ) (A tB) � C
() �)

A � C ) (A t B) � C
(� ))

B ) B
B ) A t B

() t2)
C ) C

B;C ) (A t B) � C
() �)

B � C ) (A t B) � C
(� ))

A � C t B � C ) (A t B) � C
(t ))

:

Remark 5.1.6 Although the distributivity of u over t does not hold in general, the dis-

tributivity of t over � holds in linear logic.

Remark 5.1.7 With the constraction and weakening rules, we can prove A �B � AuB
as follows:

� For A �B ) A u B, we have

A) A
A;B ) A

(weakening) B ) B
A;B ) B

(weakening)

A;B ) A u B

A �B ) A u B
(� ))

() u)

:

� For A u B ) A �B, we have
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A) A
A uB ) A

(u )) B ) B
A uB ) B

(u ))

A uB;A uB ) A �B

A u B ) A �B
(constraction)

() �)

:

Remark 5.1.8 The distributivity of u over t does not hold in general. Although the

following proof shows that (A u B) t (A u C)) A u (B t C) is derivable in linear logic,

A) A
A u B ) A

(u1))

B ) B
B ) B t C

() t1)

A uB ) B t C
(u2))

A uB ) A u (B t C)
() u) (a)

;

A) A
A u C ) A

(u1))

C ) C
C ) B t C

() t2)

A u C ) B t C
(u2))

A u C ) A u (B t C)
() u) (b)

;

and from (a) and (b), we can get

A uB ) A u (B t C) A u C ) A u (B t C)

(A u B) t (A u C)) A u (B t C)
(t ))

;

we cannot prove the sequent A u (B t C)) (A u B) t (A u C).

With the contraction and weakening rules, we can prove this as follows:

A) A
A;B ) A

(weakening) B ) B
A;B ) B

(weakening)

A;B ) A u B
() u)

A;B ) (A uB) t (A u C)
() t1) (a)

;

A) A
A;C ) A

(weakening) C ) C
A;C ) C

(weakening)

A;C ) A u C
() u)

A;C ) (A u B) t (A u C)
() t2) (b)

;

and from (a) and (b), we can get

A;B ) (A u B) t (A u C) A;C ) (A uB) t (A u C)

A;B t C ) (A u B) t (A u C)

A u (B t C); A u (B t C)) (A uB) t (A u C)
(u1 and u 2))

A u (B t C)) (A uB) t (A u C)
(contraction)

(t ))

:

5.1.5 Relation between Linear Logic and Petri Nets

We explain the relation between linear logic and Petri nets, and we show that linear logic is

useful in the theory of parallelism and resource conscious of Petri nets. For understanding,

we give the following simple examples.
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Example 5.1.9 Consider the following nets, net-1 and net-2.

t

1

2

t

t

net-1 net-2

a

b

c

a

d

b

c

Figure 5.1: Relation between linear logic and Petri net

We show the theory of parallelism with net-1, and the theory of resource conscious

with net-2.

1. Consider net-1 with P = fa; b; cg and T = ft1; t2g. Pre-multiset
�(t1) and

�(t2) are

[a], and post-multiset (t1)
� and (t2)

� are [b] and [c] respectively. We consider two

cases, one is the net which has one token, and the other is the net which has two

tokens, in the place a, respectively.

(a) Suppose that there is one token in a. A �ring of transition t1 changes the

marking from [a] to [b], and a �ring of transition t2 changes the marking from

[a] to [c]. So the �rings of transitions t1 or t2 transforms one token in a into b

or into c, but not both.

(b) Suppose that there are two tokens in a. A �ring of transition t1 changes the
marking from [a; a] to [a; b], and a �ring of transition t2 changes the marking

from [a; a] to [a; c]. So the �rings of transitions t1 and t2 transform two tokens

in a into b and into c both.

In linear logic, we can represent these as following:

a) b a) c
a) b u c

() u) (a)
;

a) b a) c
a � a) b � c

(� );) �) (b)
:

2. Consider net-2 with P = fa; b; c; dg and T = ftg. We consider two cases, one is the

net which has not an arc, and the other is the net which has an arc, from the place

d to the transition t.

Suppose that there is one token in a, b and d.

(a) Since there is no arc from the place d to the transition t, Pre-multiset �(t) is
[a; b], and post-multiset (t)� is [c]. A �ring of transition t changes the marking

from [a; b] to [c].
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(b) Since there is an arc from the place d to the transition t, Pre-multiset �(t)

is [a; d; b], and post-multiset (t)� is [c]. A �ring of transition t changes the

marking from [a; d; b] to [c].

In linear logic, we can represent these as following:

a; d; b) c

a u d; b) c
(u )) (a)

;

a; d; b) c

a � d; b) c
(� )) (b)

:

Parallelism and Resource-consciousness of linear logic seem useful to research the

connection between linear logic and the theory of Petri nets.

5.2 Semantics

5.2.1 Valuation on Quantale

De�nition 5.2.1 (valuation) A valuation v on a quantaleQ = hQ;_; �; 1i is a mapping

of � into Q satisfying the following conditions: for every A;B 2 �,

1. v(A uB) = v(A) ^ v(B),

2. v(A tB) = v(A) _ v(B),

3. v(A �B) = v(A) � v(B),

4. v(A�ÆB) = v(A)��v(B),

5. v(>) = >,

6. v(?) = ?,

7. v(1) = 1.

5.2.2 Validity

De�nition 5.2.2 (valid) A formula A is said to be

1. true in a valuation v on a quantale Q if

1 v v(A)

holds, which will be denoted by

Q; v j= A;

2. valid with respect to a class Q of quantales if for each quantale Q 2 Q and each

valuation v on Q,

Q; v j= A

holds, which will be denoted by

Q j= A;
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and a sequent �) A is said to be valid with respect to Q if and only if

Q j= ���ÆA;

where �� is a formula de�ned by ;� := 1 and (�; A)� := �� � A.

5.2.3 Soundness

The soundness theorem can be shown as usual (see e.g. [47]).

Theorem 5.2.3 (soundness) If a sequent � ) A is provable in linear logic, then it is

valid with respect to the class of all quantales.

Proof. Soundness is proved by a straightforward induction on hight of proof.

� Initial sequents are valid,

� for the rules of inference (structural rules and logical rules), if upper sequent(s) is

valid, then lower sequent is valid.

We show that initial sequents, structural rules and logical rules are valid. For structural

rules and logical rules, we show that if upper sequent(s) is valid, then lower sequent is

valid.

1. We show that initial sequents are valid.

(a) j= A) A.
We show that j= A�ÆA. By the de�nition, it suÆces to show that

1 v v(A�ÆA):

Since v(A) v v(A), 1 � v(A) v v(A), and hence 1 v v(A)��v(A). Therefore

1 v v(A�ÆA).

(b) j=) 1.

We show that j= 1. It suÆces to show that

1 v v(1):

Since 1 v 1 and v(1) = 1, 1 v v(1).

(c) j= �) >.

We show that j= ���Æ>. It suÆces to show that

1 v v(���Æ>):

Since > is the greatest element, v(��) v >. Therefore 1 � v(��) v v(>), and

hence 1 v v(��)��v(>), and so 1 v v(���Æ>).

(d) j= �;?;�) A.

We show that j= �� � ? ����ÆA. It suÆces to show that

1 v v(�� � ? ����ÆA):

Since ? is the least element, v(?) v v(��)� v(��)��v(A). Then v(?)� v(��)�
v(��) v v(A), and hence v(��) � v(?) � v(��) v v(A). Therefore 1 v (v(��) �

v(?) � v(��))��v(A), and so 1 v v(�� � ? ���)��v(A). Thus 1 v v(�� � ? �

���ÆA).
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2. We show that structural rules are valid.

(a) 1-weakening.

� Since j= �;� ) A, j= �� � ���ÆA. Then 1 v v(�� � ���ÆA), and hence

1 v v(�� ���)��v(A). Therefore 1 v v(��) � v(��)��v(A), and so

v(��) � v(��) v v(A):

� We show that if j= �;� ) A, then j= �; 1;� ) A. By the de�nition, it

suÆces to show that

j= �� � 1 ����ÆA:

Since v(��) � v(��) v v(A), v(��) � v(1) � v(��) v v(A), and hence 1 v

v(��) � v(1) � v(��)��v(A). Thus 1 v v(�� � 1 ����ÆA), and so j= �� � 1 �

���ÆA.

(b) exchange.

� Since j= �; A; B;�) C, j= �� �A �B ����ÆC. Then 1 v v(�� �A �B �

���ÆC), and hence 1 v v(��) � v(A) � v(B) � v(��)��v(C). Thus

v(��) � v(A) � v(B) � v(��) v v(C):

� We show that if j= �; A; B;� ) C, then j= �; B; A;� ) C. By the

de�nition, it suÆces to show that

j= �� �B � A ����ÆC:

Since v(��)�v(A)�v(B)�v(��) v v(C), v(��)�v(B)�v(A)�v(��) v v(C),
and hence 1 v v(��) � v(B) � v(A) � v(��)��v(C). Therefore 1 v v(�� �

A � b ����ÆC), and hence j= �� �B � A ����ÆC.

(c) cut.

� Since j= � ) A, j= ���ÆA. Then 1 v v(���ÆA), and hence 1 v

v(��)��v(A). Thus

v(��) v v(A) � � � (1):

� Since j= �; A;�) C, j= ���A����ÆC. Then 1 v v(���A����ÆC), and

hence 1 v v(��) � v(A) � v(��)��v(C). Therefore v(��) � v(A) � v(��) v
v(C), and so

v(A) v v(��) � v(��)��v(C) � � � (2):

� We show that if j= �) A and j= �; A;�) C, then j= �;�;�) C. By

the de�nition, it suÆces to show that

j= �� � �� � ���ÆC:

Since v(��) v v(��) � v(��)��v(C) from (1) and (2),

v(��) � v(��) � v(��) v v(C):

Therefore 1 v v(��) � v(��) � v(��)��v(C), and hence 1 v v(�� � �� �

��)��v(C). Thus 1 v v(�� � �� � ���ÆC), and so j= �� � �� � ���ÆC.
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3. We show that logical rules are valid.

(a) t ).

� Since j= �; A;�) C, j= ���A����ÆC. Then 1 v v(���A����ÆC), and

hence 1 v v(��) � v(A) � v(��)��v(C). Therefore v(��) � v(A) � v(��) v

v(C), and so

v(A) v v(��) � v(��)��v(C) � � � (1):

� Since j= �; B;�) C, j= ���B����ÆC. Then 1 v v(���B����ÆC), and
hence 1 v v(��) � v(B) � v(��)��v(C). Therefore v(��) � v(B) � v(��) v

v(C), and so

v(B) v v(��) � v(��)��v(C) � � � (2):

� We show that if j= �; A;�) C and j= �; B;�) C, then j= �; AtB;�)

C. By the de�nition, it suÆces to show that

j= �� � A tB ����ÆC:

Since v(A) _ v(B) v v(��) � v(��)��v(C) from (1) and (2),

v(��) � v(A t B) � v(��) v v(C):

Therefore 1 v v(��) � v(A t B) � v(��)��v(C), and hence 1 v v(�� �

(A t B) � ��)��v(C). Thus 1 v v(�� � (A t B) � ���ÆC), and so j=

�� � (A tB) ����ÆC.

(b) ) t1.

� Since j= �) A, v(��) v v(A) by cut � � � (1).

� We show that if j= � ) A, then j= � ) A t B. By the de�nition, it

suÆces to show that

j= ���Æ(A tB):

Since v(��) v v(A), v(��) v v(A)_v(B). Therefore v(��) v v(AtB), and
hence 1 v v(��)��v(AtB). Thus 1 v v(���ÆAtB), and so j= ���Æ(AtB).

(c) The proof is similar for () t2).

(d) u1).

� Since j= �; A;�) C, v(A) v v(��) � v(��)��v(C) by cut � � � (2).

� We show that if j= �; A;� ) C, then j= �; A u B;� ) C. By the

de�nition, it suÆces to show that

j= �� � (A uB) ����ÆC:

Since v(A) v v(��) � v(��)��v(C), v(A) ^ v(B) v v(��) � v(��)��v(C),

and then

v(A u B) v v(��) � v(��)��v(C):

Therefore v(��)� v(AuB)� v(��) v v(C), and hence 1 v v(�� � (AuB)�

��)��v(C). Thus 1 v v(�� � (A u B) ����ÆC), and so j= �� � (A u B) �
���ÆC.

(e) The proof is similar for u2).
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(f) ) u.

� By cut � � � (1), since j= �) A, v(��) v v(A) � � � (1) and

� since j= �) B, v(��) v v(B) � � � (2).

� We show that if j= � ) A and j= � ) B, then j= � ) A u B. By the

de�nition, it suÆces to show that

j= ���Æ(A uB):

Since v(��) v v(A) ^ v(B) from (1) and (2),

v(��) v v(A uB):

Therefore 1 v v(��)��v(A u B), and so 1 v v(���Æ(A u B)). Thus j=

���Æ(A u B).

(g) � ).

� Since j= �; A; B;�) C, j= �� �A �B ����ÆC. Therefore 1 v v(�� �A �

B ���)��v(C), and hence 1 v v(��) � v(A) � v(B) � v(��)��v(C). Thus

v(��) � v(A) � v(B) � v(��) v v(C):

� We show that if j= �; A; B;� ) C, then j= �; A � B;� ) C. By the

de�nition, it suÆces to show that

j= �� � (A �B) ����ÆC:

Since v(��) � v(A) � v(B) � v(��) v v(C), v(��) � v(A �B) � v(��) v v(C).

Therefore 1 v v(��) � v(A �B) � v(��)��v(C), and so 1 v v(�� � (A �B) �

���ÆC). Thus j= �� � (A �B) ����ÆC.

(h) ) �.

� By cut � � � (1), since j= �) A, v(��) v v(A) and

� since j= �) B, v(��) � v(B).

� We show that if j= �) A and j= �) B, then j= �;�) A �B. By the

de�nition, it suÆces to show that

j= �� ����ÆA �B:

Since v(��)�v(��) v v(A)�v(B), 1 v v(��)�v(��)��v(A)�v(B). There-

fore 1 v v(�� � ��)��v(A � B), and so 1 v v(�� � ���ÆA � B). Thus

j= �� ����ÆA �B.

(i) �Æ ).

First we show that if a v a0 and b v b0, then a0��b v a��b0. Since a0��b v a0��b,

a0 � (a0��b) v b, and since a v a0 and b v b0,

a � (a0��b) v a0 � (a0��b)

v b

v b0;

and hence

a0��b v a��b0:
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� Since j= �) A, v(��) v v(A) by cut � � � (1).

� Since j= �; B;�) C, v(B) v v(��) � v(��)��v(C) by cut � � � (2).

� We show that if j= �) A and j= �; B;�) C, then j= �; A�ÆB;�;�)

C. By the de�nition, it suÆces to show that

j= �� � (A�ÆB) � �� � ���ÆC:

Since v(A)��v(B) v v(��)��(v(��) � v(��)��v(C)) by the results above,

(v(A)��v(B))�v(��) v v(��)�v(��)��v(C). Then (v(A)��v(B))�v(��)�

v(��) � v(��) v v(C), and so

v(��) � (v(A)��v(B)) � v(��) � v(��) v v(C):

Therefore 1 v (v(��) � (v(A)��v(B)) � v(��) � v(��))��v(C), and hence

1 v v(��) � v(A�ÆB) � v(��) � v(��)��v(C). Thus 1 v v(�� � (A�ÆB) �
�� � ���ÆC), and so j= �� � (A�ÆB) � �� � ���ÆC.

(j) ) �Æ.

� Since j= �; A ) B, j= �� � A�ÆB. Then 1 v v(�� � A�ÆB), and hence

1 v v(�� � A)��v(B). Therefore 1 v v(��) � v(A)��v(B), and so

v(��) � v(A) v v(B):

� We show that if j= �; A ) B, then j= � ) A�ÆB. By the de�nition, it

suÆces to show that

j= ���Æ(A�ÆB):

Since v(��) � v(A) v v(B), v(��) v v(A)��v(B). Therefore

1 v v(��)��(v(A)��v(B));

and hence 1 v v(��)��v(A�ÆB). Thus 1 v v(���Æ(A�ÆB)), and so j=

���Æ(A�ÆB).

5.3 Completeness

First we discuss the classes of quantales. Then we show how to construct the quan-

tales from Petri nets, and prove completeness of linear logic without exponential for our

quantales.

Let Q0, Q1 and Q2 be the classes of quantales de�ned by

Q0 := fP(XN) j N is a Petri netg,

Q1 := fC1(P(XN)) j N is a Petri netg,

Q2 := fC2(P(XN)) j N is a Petri netg.
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Then P(XN), C1(P(XN)) and C2(P(XN)) are quantales obtained from the preordered

commutative monoid XN using closure operations C1 and C2.

We say that linear logic without exponential is complete for a class Q of quantales,

if � ) A is provable in linear logic without exponential whenever � ) A is valid with

respect to Q.

Q1 is the class of quantales used in Engberg and Winskel [15]. In any quantale in

Q0 or Q1, the distributivity is always valid: in fact, in Q0 and Q1, the lattice operations

meet and join correspond to usual set operations intersection and union, respectively, and

hence the distributivity automatically holds. As mentioned in Chapter 1, any logic which

is complete for Q0 or Q1, must have the distributivity as a theorem. Here we consider the

class Q2, and prove completeness for Q2 in which the distributivity is not always valid.

In order to prove completeness, we have constructed quantales from a Petri net as

follows (see Figure 5.2):

First we construct a Petri net N = hP; T;� (�); (�)�i. For constructing N, we take

formulas as places and sequents (provability) as transitions. Then from N, we construct a

preordered commutative monoid XN = hM;<>;+; [ ]i, and from the powerset P(XN) =

hP(M);[; �; f[ ]gi of the preordered commutative monoid, we construct a quantale Q2 =

hC2(P(M));[C2
; �C2

; C2(f[ ]g)i by closure operation C2. Finally we prove completeness

using the quantales.

Petri net N

+ Proposition 3:2:4

preordered commutative monoid XN

+ Proposition 4:1:9

quantale P(XN)

+ Proposition 4:2:11

quantale by closure operation C2 Q2

Figure 5.2: The construction of the quantales Q2.

In the sequel, we shall prove completeness for Q2
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Theorem 5.3.1 (completeness) If a sequent �) A is valid in Q2, then it is provable

in linear logic without exponential.

Proof. First we construct the Petri net N = hP; T; �(�); (�)�i as follows:

1. P := � (the set of all formulas),

2. T := f(�;�) j �) �� is provable in linear logic without exponentialg

(in intuitionistic linear logic, the formulas on right hand side of the sequent are

restricted at most one formula occurrence, so the formulas in � are connected with

�),

3. for each t = (�;�) 2 T ,

(a) �t := [�],

(b) t� := [�].

Then we de�ne a mapping v of � into the quantale Q2 by

v(C) := C2(f[C]g):

Note that in the preordered commutative monoid XN = hM;<>;+; [ ]i, for a sequence �,
since [�] is a multiset consisting of places in �,

[�]<>[�] if and only if �) �� is provable

in linear logic without exponential, and hence

C2(f[�]g) � C2(f[�]g) if and only if �) �� is provable

in linear logic without exponential.

We can show by induction on the complexity of C that v is a valuation on Q2.

Case 1 . C � A u B. By the de�nition of v, it suÆces to show that

C2(f[A uB]g) = C2(f[A]g) \ C2(f[B]g):

Suppose that [�] 2 C2(f[A u B]g). Then [�]<>[A u B], and since A u B ) A is

provable in linear logic without exponential, [AuB]<>[A]. Therefore [�]<>[A], and

so [�] 2 C2(f[A]g). Similarly we have [�] 2 C2(f[B]g). Thus [�] 2 C2(f[A]g) \
C2(f[B]g). Conversely suppose that [�] 2 C2(f[A]g) \C2(f[B]g). Then �) A and

�) B are provable in linear logic without exponential, and hence we have

�) A �) B
�) A u B

() u)
:

Therefore [�] 2 C2(f[A uB]g).
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Case 2 . C � A t B. Since

v(A) [C2
v(B) = C2(f[A]g) [C2

C2(f[B]g)

= C2(C2(f[A]g) [ C2(f[B]g))

= C2(f[A]g [ f[B]g);

it suÆces to show that

C2(f[A t B]g) = C2(f[A]g [ f[B]g):

Suppose that [�] 2 C2(f[AtB]g) and [�] 2 (f[A]g[f[B]g)!. Then since [A]<>[�]

and [B]<>[�], we see that �) AtB, A) �� and B ) �� are provable in linear

logic without exponential, and hence

�) A t B
A) �� B ) ��

A tB ) ��
(t ))

�) ��
(cut)

:

Thus [�]<>[�]. Since [�] is arbitrary, we have [�] 2 C2(f[A]g [ f[B]g). Conversely

suppose that [�] 2 C2(f[A]g[f[B]g). Since A) AtB and B ) AtB are provable

in linear logic without exponential, we have [A]<>[A t B] and [B]<>[A t B], and

hence [AtB] 2 (f[A]g[f[B]g)!. Therefore [�]<>[AtB], and so [�] 2 C2(f[AtB]g).

Case 3 . C � A �B. Since

v(A) �C2
v(B) = C2(f[A]g) �C2

C2(f[B]g)

= C2(C2(f[A]g) � C2(f[B]g))

= C2(f[A]g � f[B]g)

= C2(f[A] + [B]g)

= C2(f[A;B]g);

it suÆces to show that

C2(f[A �B]g) = C2(f[A;B]g):

Suppose that [�] 2 C2(f[A�B]g). Then �) A�B is provable in linear logic without

exponential, and hence

�) A �B

) 1 A) A
A) 1 � A

() �)
B ) B

A;B ) (1 � A) �B
() �)

A �B ) (A;B)�
(� ))

�) (A;B)�
(cut)

:

Thus [�] 2 C2(f[A;B]g). Conversely suppose that [�] 2 C2(f[A;B]g). Then

[�]<>[A;B]. Since A;B ) A �B is provable in linear logic without exponential, we

have [A;B]<>[A �B] and hence [�]<>[A �B]. Therefore [�] 2 C2(f[A �B]g).
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Case 4 . C � A�ÆB. We show that

C2(f[A�ÆB]g) = C2(f[A]g)��C2(f[B]g):

Suppose that [�] 2 C2(f[A�ÆB]g) and [�] 2 C2(f[A]g). Then � ) A�ÆB and

�) A are provable in linear logic without exponential, and hence

�) A�ÆB
A) A B ) B
A�ÆB;A) B

(�Æ ))

�) A �; A) B

�;�) B
(cut)

(cut)

:

Therefore [�;�] 2 C2(f[B]g). Since [�;�] = [�] + [�] and [�] is arbitrary, we have

[�] 2 C2(f[A]g)��C2(f[B]g) by Remark 4.1.10 and 4.2.6. Conversely suppose that

[�] 2 C2(f[A]g)��C2(f[B]g). Then [�] + [A] 2 C2(f[B]g) as [A] 2 C2(f[A]g). Hence

[�] + [A]<>[B], and so [�; A]<>[B]. Thus �; A) B, and hence

�; A) B

�) A�ÆB
() �Æ)

:

Therefore [�] 2 C2(f[A�ÆB]g).

Case 5 . C � >. For any [�] 2 M, since � ) > is provable in linear logic without

exponential, we have [�] 2 C2(f[>]g). Hence

M� C2(f[>]g) �M:

Case 6 . C � ?. It suÆces to show that

C2(f[?]g) = C2;:

Suppose that [�] 2 C2(f[?]g) and [�] 2 ;! = M. Then � ) ? is provable in

linear logic without exponential, and since ? ) �� is the axiom-scheme of linear

logic without exponential, we have

�) ? ? ) ��

�) ��
(cut)

:

Thus [�]<>[�], and hence [�] 2 C2;. Conversely suppose that [�] 2 C2; and [�] 2

f[?]g!. Then since [�] 2 (;!) and [?] 2 M = ;!, � ) ? is provable in linear

logic without exponential. Therefore we have �) ��, and hence [�] 2 C2(f[?]g).

Case 7 . C � 1. Since v(1) = C2(f[1]g), it suÆces to show that

C2(f[1]g) = C2(f[ ]g):

Suppose that [�] 2 C2(f[1]g). Then [�]<>[1] = [;�], and hence

[�] 2 C2(f[ ]g):

Conversely suppose that [�] 2 C2(f[ ]g). Then [�]<>[;�] = [1], and hence

[�] 2 C2(f[1]g):
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Finally we prove that ) A is provable in linear logic without exponential whenever

1 v v(A). To this end, suppose that 1 v v(A). Then C2(f[ ]g) � C2(f[A]g), and hence

[ ]<>[A] in the original preordered commutative monoid XN. Thus ) A is provable in

linear logic without exponential. Therefore if ���ÆA is true in Q2 with v, then

) ���ÆA
�) �� A) A
���ÆA;�) A

(�Æ ))

�) A
(cut)

;

and hence �) A is provable in linear logic without exponential.

The semantics looks like traditional, so called phase space semantics for linear logic

and also like traditional Routley-Meyer semantics for relevant logics (see e.g. [10, 11, 12,

33, 44]). Note that these quantales do generate a phase space in the traditional manner,

and that this result can then be viewed as a tighter completeness result.
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Chapter 6

Intuitionistic Linear Logic

In this chapter, we will extend linear logic without exponential to linear logic with expo-

nential. In linear logic, exponential ! is added to compensate the absence of the rules of

weakening and contraction. For example, !A indicates that we may extract as many data

of type A as we like, i.e., a datum of type !A is a �nite collection of data of type A.
First, we discuss intuitionistic linear logic with exponential (its syntax and semantics),

and then prove soundness theorem for quantales with exponential. Then we extend the

construction of the quantales to those with exponential. And we also prove completeness

for quantales with exponential generated from Petri nets by using similar construction in

Chapter 5.

In this thesis, we follow notation of linear logic in [47]. Therefore we have kept Girard's

symbols 1;>; !, and replaced 
;�;& by �;t;u respectively, and interchanged ? and 0.

For technical background on linear logic, see [19, 21, 22].

6.1 Syntax

6.1.1 Formulas

The language of linear logic has an alphabet consisting of

propositional variables: a; b; c; : : :,

propositional constants: 1,>;?,

connectives: �;t;u;�Æ,

an unary connective: ! and

auxiliary symbols: ( , ).

The connectives carry traditional names:

�: multiplicative conjunction (times),

t: disjunction (or),

u: additive conjunction (and),

�Æ: linear implication and
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!: exponential (storage or of course).

Note that storage operator is super�cially similar to the modal operators 2;3 in the

usual modal logics. The role of ! is to introduce weakening and contraction in a controlled

way for individual formulas. By inspection of the rules we see immediately that if we add

weakening and contraction, then we may interpret ! by identity, i.e., !A := A validates all

the rules.

Formulas are inductively de�ned by

the propositional variables and constants are formulas,

if A and B are formulas, then (A � B); (A t B); (A u B) and (A�ÆB) are formulas

and

if A is formula, then !A is formula.

We shall use A � B as an abbreviation for (A�ÆB) u (B�ÆA), and denote the set of all

formulas by �.

6.1.2 Sequents

A sequent of linear logic is an expression of the form

�) C;

where � is a �nite sequence of formulas and C is a formula. Both � and C may be

empty. In the sequel, capital Greek letters will denote �nite (possibly empty) sequences

of formulas.

6.1.3 Axioms (initial sequents) and Rules

De�nition 6.1.1 (axioms and rules of inference) The axioms of linear logic are the

instances of the following four axiom-schemes:

A) A;

) 1;

�) >;

�;?;�) A:

The rules of inference of linear logic are the following structural rules:

�;�) A

�; 1;�) A
(1 - weakening)

;

�; A; B;�) C

�; B; A;�) C
(exchange)

;
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�) A �; A;�) C

�;�;�) C
(cut)

;

and the following logical rules:

�; A;�) C �; B;�) C

�; A t B;�) C
(t ))

;

�) A
�) A tB

() t1)
;

�) B
�) A tB

() t2)
;

�; A;�) C

�; A uB;�) C
(u1))

;

�; B;�) C

�; A u B;�) C
(u2))

;

�) A �) B
�) A u B

() u)
;

�; A; B;�) C

�; A �B;�) C
(� ))

;
�) A �) B
�;�) A �B

() �)
;

�) A �; B;�) C

�; A�ÆB;�;�) C
(�Æ ))

;

�; A) B

�) A�ÆB
() �Æ)

;

and the following exponential rules:

�; A) B

�; !A) B
(! ))

;

�) B
�; !A) B

(! - weakening)
;

�; !A; !A) B

�; !A) B
(! - contraction)

;

!�) B
!�)!B

() !)
;

where !� is a shorthand for !A1; : : : ; !An where � = A1; : : : ; An.
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De�nition 6.1.2 The addition of free storage to linear logic corresponds to a rule of free

storage

B ) A B ) 1 B ) B �B
B )!A

(FS)
:

The three exponential rules (! ), ! - weakening and ! - contraction) and FS may also

be formulated as follows (see Remark 6.1.7):

!A) A � � � (1);

!A) 1 � � � (2);

!A)!A�!A � � � (3);

B ) A u 1 u B �B
B )!A

(FS')
:

In this thesis, we call linear logic with FS \FS-linear logic".

Given a proposition A, the assertion of !A has the possibility of being instantiated by

the proposition A, the unit 1 or !A�!A, and thus of arbitrarily many assertions of !A.

6.1.4 Examples of Proofs

For understanding of the rules described above, we give the following examples.

Example 6.1.3 We can derive that !A) A�!A and !A)!(A � A).

� For !A) A�!A, we have

A) A !A)!A
A; !A) A�!A

() �)

!A; !A) A�!A

!A) A�!A
(! - contruction)

(!))

:

� For !A)!(A � A), we have

A) A A) A
A;A) A � A

() �)

!A; !A) A � A
(!))

!A) A � A
!A)!(A � A)

()!)
(! - contruction)

:

Example 6.1.4 We can derive that !(A u B) �!A�!B.

� For !(A uB))!A�!B, we have

A) A
A uB ) A

(u1))

!(A u B)) A
(!))

!(A u B))!A
()!)

B ) B
A uB ) B

(u2))

!(A u B)) B
(!))

!(A u B))!B
()!)

!(A u B); !(A u B))!A�!B

!(A u B))!A�!B
(! - contraction)

() �)

:

60



� For !A�!B )!(A uB), we have

A) A
!A) A

(! ))

!A; !B ) A
(! - weakening)

B ) B
!B ) B

(! ))

!A; !B ) B
(! - weakening)

!A; !B ) A uB

!A; !B )!(A u B)

!A�!B )!(A u B)
(� ))

() !)

() u)

:

Example 6.1.5 We can derive that !(A u B))!Au!B and !(!Au!B) �!(A uB).

� First we show that !(A u B))!Au!B.

A) A
A u B ) A

(u1))

!(A u B)) A
(!))

!(A u B))!A
()!)

B ) B
A u B ) B

(u2))

!(A u B)) B
(!))

!(A u B))!B
()!)

!(A u B))!Au!B
() u)

:

� Next we show that !(!Au!B) �!(A u B).

{ For !(!Au!B))!(A uB), we have

A) A
!A) A

(!))

!Au!B ) A
(u1))

B ) B
!B ) B

(!))

!Au!B ) B
(u2))

!Au!B ) A u B
() u)

!(!Au!B)) A uB
(!))

!(!Au!B))!(A u B)
()!)

:

{ For !(A uB))!(!Au!B), we have

A) A
A uB ) A

(u1))

!(A u B)) A
(!))

!(A uB))!A
()!)

B ) B
A uB ) B

(u2))

!(A u B)) B
(!))

!(A uB))!B
()!)

!(A u B))!Au!B
() u)

!(A uB))!(!Au!B)
()!)

:

Example 6.1.6 We can derive that 1 �!>.

� For 1)!>, we have
) >
)!>

()!)

1)!>
(1 - weakening)

:

� For !> ) 1, we have
) 1

!> ) 1
(! - weakening)

:

Therefore if there is !, then 1 is expressed by >.
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Remark 6.1.7 The rules of (1), (2) and (3) of De�nition 6.1.2 are derivable from the

above original rules as follows:

A) A
!A) A

(! ))
;

) 1
!A) 1

(! - weakening)
;

!A)!A !A)!A
!A; !A)!A�!A

() �)

!A)!A�!A
(! - contraction)

:

Proposition 6.1.8 The rule of (1), (2) and (3) of De�nition 6.1.2 are interderivable

with the following single rule:

!A) A u 1 u (!A�!A):

Proof.

!A) A !A) 1
!A) A u 1

() u)
!A)!A�!A

!A) A u 1 u (!A�!A)
() u)

:

And if !A) A u 1 u (!A�!A), then !A) A, !A) 1 and !A)!A�!A immediately.

Proposition 6.1.9 Using the rule of (FS), we can derive the following rule:

A u 1 u (!A�!A))!A:

Proof. De�ne B := A u 1 u (!A�!A).

B )!A�!A

!A) A !A) 1
!A) A u 1

() u)
!A)!A�!A

!A) B
() u)

!A) B
!A; !A) B �B

() �)

!A�!A) B �B
(� ))

B ) A B ) 1 B ) B �B
B )!A

(2)
(cut)

:

Therefore in FS-linear logic,

!A � A u 1 u (!A�!A):

6.1.5 Relation between the exponential and Petri Nets

We explain the relation between exponential ! and Petri nets, and we show that expo-

nential is useful to represent a place which can supply arbitrary many but �nite tokens

by �ring transitions. For understanding, we give the following simple example.
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Example 6.1.10 Consider the following net, with P = f!a; ag and T = ft1; t2; t3g. Pre-

multisets �(t1),
�(t2) and

�(t3) are [!a], and post-multisets (t1)
�, (t2)

� and (t3)
� are [!a; !a],

[ ] and [a], respectively.

t

t

1

2

3
t

a

!a

Figure 6.1: Relation between the exponential ! and Petri net:

Suppose that there is one token in !a.

1. A �ring of transition t1 changes the marking from [!a] to [!a; !a],

2. a �ring of transition t2 changes the marking from [!a] to [ ] and

3. a �ring of transition t3 changes the marking from [!a] to [a].

The �ring of the transition t1 transforms one token in !a into two tokens in !a. Then

we can supply arbitrary many but �nite tokens by �ring transition t1. By the �ring of

the transition t2, the token in !a vanishes. The �ring of the transition t3 transforms one

token in !a into one token in a.
In linear logic, we can represent these as following:

1. !a)!a�!a,

2. !a) 1,

3. !a) a.

6.2 Semantics

6.2.1 Valuation on Quantale

De�nition 6.2.1 (valuation) A valuation v on a quantaleQ = hQ;_; �; 1i is a mapping

of � into Q satisfying the following conditions: for every A;B 2 �,

1. v(A uB) = v(A) ^ v(B),

2. v(A tB) = v(A) _ v(B),

3. v(A �B) = v(A) � v(B),

4. v(A�ÆB) = v(A)��v(B),
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5. v(>) = >,

6. v(?) = ?,

7. v(1) = 1,

8. v(!A) =!v(A).

6.2.2 Validity

De�nition 6.2.2 (valid) A formula A is said to be

1. true in a valuation v on a quantale Q if

1 v v(A)

holds, which will be denoted by

Q; v j= A;

2. valid with respect to a class Q of quantales if for each quantale Q 2 Q and each

valuation v on Q,

Q; v j= A

holds, which will be denoted by

Q j= A;

and a sequent �) A is said to be valid with respect to Q if and only if

Q j= ���ÆA;

where �� is a formula de�ned by ;� := 1 and (�; A)� := �� � A.

6.2.3 Soundness

The soundness theorem can be shown as usual (see e.g. [47]).

Theorem 6.2.3 (soundness) If a sequent � ) A is provable in linear logic, then it is

valid with respect to the class of all quantales with exponential.

Proof. Soundness is proved by a straightforward induction on hight of proof.

� Initial sequents are valid,

� for the rules of inference (structural rules and logical rules), if upper sequent(s) is

valid, then lower sequent is valid.

We show that initial sequents, structural rules and logical rules are valid. For structural

rules and logical rules, we show that if upper sequent(s) is valid, then lower sequent is

valid. In this section we show only four structural rules for exponential which are added

to linear logic without exponential in Chapter 5.

We show that structural rules are valid.
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(a) !).

� Since j= �; A ) B, j= �� � A�ÆB. Then 1 v v(�� � A�ÆB), and hence

1 v v(�� � A)��v(B). Therefore 1 v v(��) � v(A)��v(B), and so v(��) �

v(A) v v(B). Thus

v(A) v v(��)��v(B):

� We show that if j= �; A ) B, then j= �; !A ) B. By the de�nition, it

suÆces to show that

j= ���!A�ÆB:

Since v(A) v v(��)��v(B), v(!A) v v(��)��v(B) by !v(A) v v(A). There-

fore

v(��)�!v(A) = v(��) � v(!A)

v v(B);

and hence 1 v v(��) � v(!A)��v(B). Thus 1 v v(���!A�ÆB), and so

j= ���!A�ÆB.

(b) !� weakening.

� Since j= �) B, j= ���ÆB. Then 1 v v(���ÆB), and hence

1 v v(��)��v(B):

� We show that if j= �) B, then j= �; !A) B. By the de�nition, it suÆces

to show that

j= ���!A�ÆB:

Since 1 v v(��)��v(B) and !v(A) v 1, !v(A) v v(��)��v(B), and then

!v(A) = v(!A) v v(��)��v(B). Therefore v(��) � v(!A) v v(B), and hence

1 v v(��) � v(!A)��v(B). Thus 1 v v(���!A�ÆB), and so j= ���!A�ÆB.

(c) !� contraction.

� Since j= �; !A; !A) B, j= ���!A�!A�ÆB. Then 1 v v(���!A�!A�ÆB), and

hence 1 v v(��) � v(!A) � v(!A)��v(B). Therefore v(��) � v(!A) � v(!A) v

v(B), and so v(!A) � v(!A) v v(��)��v(B). Thus

!v(A)�!v(A) v v(��)��v(B):

� We show that if j= �; !A; !A) B, then j= �; !A) B. By the de�nition, it

suÆces to show that

j= ���!A�ÆB:

Since !v(A)�!v(A) v v(��)��v(B) and !v(A) v!v(A)�!v(A),

!v(A) v v(��)��v(B);

and then v(!A) v v(��)��v(B). Therefore v(��)�v(!A) v v(B), and hence

1 v v(��) � v(!A)��v(B). Thus 1 v v(���!A�ÆB), and so j= ���!A�ÆB.

(d) )!.
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� Since j=!� ) B, j= (!�)��ÆB. Then 1 v v((!�)��ÆB), and hence 1 v

v((!�)�)��v(B). Thus

v((!�)�) v v(B):

� We show that if j=!� ) B, then j=!� )!B. By the de�nition, it suÆces

to show that

j= (!�)��Æ!B:

Suppose that j= (!�)��Æ!B. Then 1 v v((!�)��Æ!B), and hence 1 v

v((!�)�)��v(!B). Therefore we show that

v((!�)�) v v(!B):

Since v((!�)�) v v(B) and if v(A) v v(B), then !v(A) v!v(B), !v((!�)�) v
!v(B). Therefor v(!(!�)�) v v(!B), and hence v((!!�)�) v v(!B). Since

v((!�)�) v v((!!�)�), v((!�)�) v v(!B). (Note that !� is a shorthand for

!A1; : : : ; !An where � = A1; : : : ; An.)

Theorem 6.2.4 (soundness) If a sequent �) A is provable in FS-linear logic, then it

is valid with respect to the class of all FS-quantales with exponential.

Proof. We only show that additional one rule, FS, is valid.

FS.

(a) Suppose that B ) A, B ) 1 and B ) B � B are true. Then j= B ) A,

j= B ) 1 and j= B ) B �B, and hence j= B�ÆA, j= B�Æ1 and j= B�ÆB �B.

Then 1 v v(B�ÆA), 1 v v(B�Æ1) and 1 v v(B�ÆB � B), and hence 1 v

v(B)��v(A), 1 v v(B)��v(1) and 1 v v(B)��v(B) � v(B). Therefore

v(B) v v(A);

v(B) v v(1) = 1;

v(B) v v(B) � v(B):

(b) We show that if j= B ) A, j= B ) 1 and j= B ) B � B, then j= B )!A. By

the de�nition, it suÆces to show that

j= B�Æ!A:

By De�nition 4.3.7, on the FS-quantale with exponential, if v(B) v v(A),

v(B) v 1 and v(B) v v(B) � v(B), then v(B) v!v(A) = v(!A). Therefore

1 v v(B)��v(!A), and so 1 v v(B�Æ!A). Thus B )!A is true.
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6.3 Completeness

First we discuss the classes of quantales. Then we show how to construct the quantales

with exponential from Petri nets, and prove completeness of linear logic for our quantales.

Let Q0, Q1, Q2 and Q
!
2 be the classes of quantales de�ned by

Q0 := fP(XN) j N is a Petri netg,

Q1 := fC1(P(XN)) j N is a Petri netg,

Q2 := fC2(P(XN)) j N is a Petri netg,

Q!
2 := fC2(P(XN))

! j N is a Petri netg.

Then P(XN), C1(P(XN)), C2(P(XN)) and C2(P(XN))
! are quantales obtained from the

preordered commutative monoid XN using closure operations C1 and C2.

We say that linear logic is complete for a class Q of quantales, if �) A is provable in

linear logic whenever �) A is valid with respect to Q.

Q1 is the class of quantales used in Engberg and Winskel [15]. In any quantale in

Q0 or Q1, the distributivity is always valid: in fact, in Q0 and Q1, the lattice operations

meet and join correspond to usual set operations intersection and union, respectively, and

hence the distributivity automatically holds. As mentioned in Chapter 1, any logic which

is complete forQ0 orQ1, must have the distributivity as a theorem. In Chapter 5, we have

considered the class Q2, and have proved completeness for Q2 in which the distributivity

is not always valid. Here we consider the class Q!
2, and prove completeness for Q!

2 in

which the Petri nets have the place with exponential !.

In order to prove completeness, we have constructed quantales with exponential from

a Petri net as follows (see Figure 6.2):

First we construct a Petri net N = hP; T;� (�); (�)�i. For constructing N, we take

formulas as places and sequents (provability) as transitions. Then from N, we construct a

preordered commutative monoid XN = hM;<>;+; [ ]i, and from the powerset P(XN) =

hP(M);[; �; f[ ]gi of the preordered commutative monoid, we construct a quantale Q2 =

hC2(P(M));[C2
; �C2

; C2(f[ ]g)i by closure operation C2. Finally we construct a quantale

Q
!
2 = hC2(P(M));[C2

; �C2
; C2(f[ ]g); !i or Q

!
F
= hC2(P(M));[C2

; �C2
; C2(f[ ]g); !;Fi from

Q2.

Petri net N

+ Proposition 3:2:4

preordered commutative monoid XN

+ Proposition 4:1:9

quantale P(XN)
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+ Proposition 4:2:11

quantale by closure operation C2 Q2

+ Proposition 4:3:6 or 4:3:8

quantale Q2 with exponential Q
!
2 or Q

!
F

Figure 6.2: The construction of the quantales with exponential Q!
2 or Q

!
F
.

The Petri net N = hP; T; �(�); (�)�i is constructed as follows:

1. P := � (the set of all formulas),

2. T := f(�;�) j �) �� is provable in linear logicg

(in intuitionistic linear logic, the formulas on right hand side of the sequent are

restricted at most one formula occurrence, so the formulas in � are connected with

�),

3. for each t = (�;�) 2 T ,

(a) �t := [�],

(b) t� := [�].

Then we de�ne a mapping v of � into the quantale Q2 by

v(C) := C2(f[C]g):

Next we construct the FS-quantale with exponential Q!
2 or the quantale with expo-

nential Q!
F
.

Note that in the preordered commutative monoid XN = hM;<>;+; [ ]i, for a sequence

�, since [�] is a multiset consisting of places in �,

[�]<>[�] if and only if �) �� is provable

in linear logic, and hence

C2(f[�]g) � C2(f[�]g) if and only if �) �� is provable

in linear logic.

We could not prove completeness for Q!
2, but we could for Q!

F
. In the sequel, we shall

prove completeness for Q!
F
. First we explain why we could not prove completeness using

Q
!
2, and then we show how to prove completeness using Q!

F
.
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6.3.1 Completeness for FS-Linear Logic

We had shown in Chapter 4, as an interpretation of !a, for an element a of a quantale, we

require an element x such that

x v a ^ 1 ^ (x � x):

Although this will not in general characterize a unique value of the quantale, since from

FS it follows that any x satisfying x v a^ 1^ (x �x) should be below !a, !a should be the

greatest �xed point of the monotone mapping

x �! a ^ 1 ^ (x � x)

in the complete lattice given together with the quantale.

Note that by de�nition, a quantale with exponential Q! = hQ;_; �; 1; !i is an FS-

quantale with exponential if

b v a; b v 1 and b v b � b implies b v!a:

Moreover by proposition, let Q = hQ;_; �; 1i be a quantale, and for each a 2 Q, de�ne

an operator ! on Q by

!a :=
_
fx 2 Qjx v a ^ 1 ^ (x � x)g;

then Q! = hQ;_; �; 1; !i is an FS-quantale with exponential.

Proposition 6.3.1 Let

Q2 = hC2(P(M));[C2
; �C2

; C2(f[ ]g)i

be a quantale. For each A 2 C2(P(M)), de�ne an operator ! on C2(P(M)) by

!A :=
[

C2

fX 2 C2(P(M))jX � A \ C2(f[ ]g) \ (X �C2
X)g:

Then

Q
!

2 = hC2(P(M));[C2
; �C2

; C2(f[ ]g); !i

is an FS-quantale with exponential.

Proof. It is immediate from the de�nition of exponential.

Remark 6.3.2 Using Lemma 4.3.3, we can show that

v((!�)�) �!v((!�)�)

by induction on the length of �.

Proof. !v(A) v v(!A) from de�nition, then !!v(A) v!v(!A) by 4 of Lemma 4.3.4, and

hence

!!v(A) = !v(A) (by 1 of Lemma 4.3.3)

= v(!A)

v !v(!A):

Therefore v(!A) v!v(!A), and so v((!�)�) v!v((!�)�).

Let Q!
2 be the class of FS-quantales with exponential de�ned by
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Q!
2 := fQ

!
2 j Q2 2 Q2; !A :=

S
C2
fXjX = A \ C2(f[ ]g) \ (X �C2

X)g,

A;X 2 C2(P(M))g,

where Q2 := fC2(P(XN)) j N is a Petri netg, and C2(P(XN)) are commutative quantales

de�ned from a preordered commutative monoid XN and closure operations C2.

We say that FS-linear logic is complete for a class Q!
2 of commutative quantales, if

�) A is provable in FS-linear logic whenever �) A is valid with respect to Q!
2.

Here we consider the class Q!
2, and prove completeness for Q!

2, since the distributivity

is not always valid in FS-quantales with exponential from Q!
2.

In the sequel, we shall prove completeness for Q!
2.

Theorem 6.3.3 (completeness) If a sequent �) A is valid in Q!
2, then it is provable

in FS-linear logic.

Proof.

We can show by induction on the complexity of C that v is a valuation on Q!
2.

Since the completeness proof of the quantales automatically extends to the FS-quantales

with exponential, it suÆces to show that

v(!A) =!v(A):

Note that, by the de�nition of v,

� v(!A) = C2(f[!A]g),

� !v(A) =!C2(f[A]g)

=
S
C2
fC2XjC2X = C2(f[A]g) \ C2(f[ ]g) \ (C2X �C2

C2X)g,

where C2X denotes the set of C2-closed elements of a set X.

Here it suÆces to show that

C2(f[!A]g =!C2(f[A]g):

We could prove C2(f[!A]g �!C2(f[A]g), but we could not the inverse.

1. First we show C2(f[!A]g) �!C2(f[A]g).

Suppose that [�] 2 C2(f[!A]g). By the de�nition of exponential !, since

!C2(f[A]g) =
[

C2

fC2XjC2X = C2(f[A]g) \ C2(f[ ]g) \ (C2X �C2
C2X)g;

[�] 2!C2(f[A]g) if and only if there exists C2X such that

C2(f[A]g) \ C2(f[ ]g) \ (C2X �C2
C2X) = C2X and [�] 2 C2X:

Then it suÆces to show that

C2(f[!A]g) = C2(f[A]g) \ C2(f[ ]g) \ (C2(f[!A]g) �C2
C2(f[!A]g)):
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� For

C2(f[!A]g) � C2(f[A]g) \ C2(f[ ]g) \ (C2(f[!A]g) �C2
C2(f[!A]g));

suppose that [�] 2 C2(f[!A]g). Then since [�] <> [!A], we see that �)!A is

provable in FS-linear logic. Since !A) Au1u (!A�!A) is provable in FS-linear

logic, we have
�)!A !A) A u 1 u (!A�!A)

�) A u 1 u (!A�!A)
(cut)

:

Therefore

[�] <> A[u1 u (!A�!A)];

and hence

[�] 2 C2(f[A u 1 u (!A�!A)]g):

Thus

[�] 2 C2(f[A]g) \ C2(f[ ]g) \ (C2(f[!A]g) �C2
C2(f[!A]g)):

(Remark C2(f[!A]g) �C2
C2(f[!A]g) = C2(f[!A�!A]g). Because

C2(f[!A]g) �C2
C2(f[!A]g) = C2(C2(f[!A]g) � C2(f[!A]g))

= C2(f[!A]g � f[!A]g)

= C2(f[!A] + [!A]g)

= C2(f[!A; !A]g);

and C2(f[!A�!A]g) = C2(f[!A; !A]g).)

� For

C2(f[A]g) \ C2(f[ ]g) \ (C2(f[!A]g) �C2
C2(f[!A]g)) � C2(f[!A]g);

suppose that

[�] 2 C2(f[A]g) \ C2(f[ ]g) \ (C2(f[!A]g) �C2
C2(f[!A]g)):

Then since [�] <> [A u 1 u (!A�!A)], we see that

�) A u 1 u (!A�!A)

is provable in FS-linear logic. Since Au1u(!A�!A))!A is provable in FS-linear

logic, we have

�) A u 1 u (!A�!A) A u 1 u (!A�!A))!A

�)!A
(cut)

:

Therefore [�] <> [!A], and hence [�] 2 C2(f[!A]g).

2. Next we show !C2(f[A]g) � C2(f[!A]g).

Since !C2(f[A]g) =
S
C2
fC2XjC2X = C2(f[A]g) \ C2(f[ ]g) \ (C2X �C2

C2X)g, it

suÆces to show that if

C2X = C2(f[A]g) \ C2(f[ ]g) \ (C2X �C2
C2X);

then

C2X � C2(f[!A]g):

We could not prove this.
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Remark 6.3.4 Consider the following rule:

B ) An for all n
B )!A

(FS")

where A0 := 1; An+1 := A � An.

By the addition of FS" rule to linear logic, we can derive FS as follows:

B ) A B ) 1
B ) B �B

B ) A B ) A
B;B ) A � A

() �)

B �B ) A � A
(� ))

B ) A � A
(cut)

B )!A
(FS")

:

6.3.2 Completeness for Linear Logic

We will show how to prove completeness of linear logic for the class of quantales with

exponential.

First we show the construction of our quantale with exponential.

Proposition 6.3.5 Let Q2 = hC2(P(M));[C2
; �C2

; C2(f[ ]g)i be a quantale. De�ne F �

C2(P(M)) by

F := fC2(f[!A]g) j A 2 �g:

Then

Q
!

F = hC2(P(M));[C2
; �C2

; C2(f[ ]g); !;Fi

is a quantale with exponential.

Proof. We can prove that F de�ned as above satis�es the conditions 1 to 3 of De�nition

4.3.7.

1. If X; Y 2 F , then X � Y 2 F . It suÆces to show that for C2(f[!A]g) 2 F and

C2(f[!B]g) 2 F,

C2(f[!A]g) �C2
C2(f[!B]g) 2 F:

Since

C2(f[!A]g) �C2
C2(f[!B]g) = C2(C2(f[!A]g) � C2(f[!B]g))

= C2(f[!A]g � f[!B]g)

= C2(f[!A] + [!B]g)

= C2(f[!A; !B]g)

= C2(f[!A�!B]g);

we show

C2(f[!A�!B]g) 2 F:

By Example 6.1.4, !A�!B �!(A uB), and hence

C2(f[!A�!B]g) = C2(f[!(A uB)]g) 2 F:
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2. X �X = X �r all X 2 F . It suÆces to show that

C2(f[!A]g) �C2
C2(f[!A]g) = C2(f[!A]g):

Since C2(f[!A]g) �C2
C2(f[!A]g) = C2(f[!A�!A]g), we show

C2(f[!A�!A]g) = C2(f[!A]g):

Since !A�!A �!(A u A) �!A,

C2(f[!A�!A]g) = C2(f[!(A u A)]g)

= C2(f[!A]g)

2 F:

3. 1 2 F and X v 1 for all X 2 F . It suÆces to show that

C2(f[ ]g) 2 F

and

C2(f[!A]g) � C2(f[ ]g)

for all C2(f[!A]g) 2 F. Note that

C2(f[ ]g) = C2(f[1]g)

= C2(f[!1]g)

2 F:

Therefore C2(f[ ]g) 2 F. For C2(f[!A]g) � C2(f[ ]g), suppose that [�] 2 C2(f[!A]g).
Then [�]<>[!A], and hence � )!A is provable in linear logic. Since !A ) 1 is also

provable in linear logic, we have

�)!A !A) 1
�) 1

(cut)
;

and then [�]<>[1]. Therefore [�] 2 C2(f[ ]g), and so C2(f[!A]g) � C2(f[ ]g).

Note that F consists of C2-closures of multisets which have a token in a place with

exponential !, that is the place can supply arbitrary but �nite tokens. For the FS-quantales

with exponential which the de�nition of exponential ! is the one in [15, 16, 17], we could

prove soundness but could not prove completeness. Because we could not show that v
de�ned above was a valuation on the FS-quantales with exponential, i.e., we could prove

v(!A) �!v(A);

but could not prove the converse. So we use the other de�nition of exponential !. Since

in the quantales with exponential of our de�nition, we can also show !v(A) � v(!A), then

we can prove completeness.

Let Q!
2 be the class of quantales with exponential de�ned by

Q!

2 := fQ
!

F j Q2 2 Q2;F � C2(P(M)) with 1 to 3 of De�nition 4:3:7g;
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where Q2 := fC2(P(XN)) j N is a Petri netg, and C2(P(XN)) are commutative quantales

de�ned from a preordered commutative monoid XN and closure operations C2.

We say that linear logic is complete for the class Q!
2 of quantales with exponential,

if � ) A is provable in linear logic whenever � ) A is valid with respect to Q!
2. Here

we consider the class Q!
2, and prove completeness for Q!

2, since the distributivity is not

always valid in quantales with exponential from Q!
2.

In the sequel, we shall prove completeness for Q!
2.

Theorem 6.3.6 (completeness) If a sequent �) A is valid in Q!
2, then it is provable

in linear logic.

Proof.

Since the completeness proof of the quantales automatically extends to the quantales

with exponential, it suÆces to show that

v(!A) =!v(A):

Note that, by the de�nition of v,

� v(!A) = C2(f[!A]g),

� !v(A) =!C2(f[A]g)

=
S
C2
fC2X 2 F j C2X � C2(f[A]g)g,

where C2X denotes the set of C2-closed elements in the set F de�ned in Propo-

sition 6.3.5.

Here we show that

C2(f[!A]g) =!C2(f[A]g):

1. For C2(f[!A]g) �!C2(f[A]g), since the closure operation C2 is order preserving

and !A) A by the de�nition, we see that

C2(f[!A]g) � C2(f[A]g):

On the other hand C2(f[!A]g) 2 F, hence

C2(f[!A]g) �!C2(f[A]g):

2. For !C2(f[A]g) � C2(f[!A]g), suppose that C2(f[!B]g) 2 F with C2(f[!B]g) �

C2(f[A]g). Then [!B]<>[A], and hence !B ) A is provable in linear logic.

Therefore !B )!A, and so [!B]<>[!A]. Thus

C2(f[!B]g) � C2(f[!A]g);

hence

!C2(f[A]g) =
[

C2

fC2X 2 F j C2X � C2(f[A]g)g

� C2(f[!A]g):
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Finally we prove that ) A is provable in linear logic whenever 1 v v(A). To this

end, suppose that 1 v v(A). Then C2(f[ ]g) � C2(f[A]g), and hence [ ]<>[A] in the

original preordered monoid MN. Thus ) A is provable in linear logic. Therefore if

���ÆA is true in Q!
2 with v, then

) ���ÆA
�) �� A) A
���ÆA;�) A

(�Æ ))

�) A
(cut)

;

and hence �) A is provable in linear logic.
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Chapter 7

Interpretation on Petri Nets

In this chapter, we give an impression on the meaning of the logic on the proposed Petri

net model, comparing with that by [15].

First, using some examples, we consider a di�erence of interpretations between C1

and C2, and then we show that the distributivity is not always valid for the quantales

constructed with C2. We give also the interpretation of exponential ! for a Petri net

using an example. Moreover we try to give a di�erent interpretation of formulas under

our closure operation.

7.1 Interpretation of C1 and C2

The markings forward reachable from m form the set

" m = fm0 2 M j m! m0g:

Similarly, the markings downward reachable to m form the set

# m = fm0 2 M j m0 ! mg:

In this thesis, for a marking m, we consider the set of downward reachable to m, and

generally call the set the downward closure of m.

In [15, 16, 17], this notation is extended from the marking m to the set M of markings

as following:

#M := fm0 2 M j 9m 2 M(m0 ! m)g;

and we call this downward closure #M C1.

In this thesis, this notation is extended as following:

M! := fm0 2 M j 8m 2M(m! m0)g;

M := fm0 2 M j 8m 2M(m0 ! m)g;

and we call this downward closure (M!) C2.

In [15], C1 is used as a closure operation when the class of quantales is de�ned, while

the closure operation used in this thesis is C2. First, we describe an informal di�erence

of interpretations between C1 and C2. The formal de�nition of j= and valuation were

given in Chapter 5 and Chapter 6, but here for intuitive understanding, let us agree with

j= A�ÆB means that A�ÆB holds in the quantales created with C1 or C2.
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For a single marking m 2 M, it is easy to see that

# fmg = (fmg!) ;

and therefore

C1(fmg) = C2(fmg)

holds. Hence, for m;m0 2 M,

Ci(fmg) � Ci(fm
0g) if and only if m<>m0 (i = 1; 2);

i.e., inclusion between two C1-closed markings inM coincides with the reachability rela-

tion between them, and also for two C2-closed markings.

We will identify a marking with the formula representing it. Since

j= A�ÆB if and only if v(A) � v(B);

the following holds for both of quantales C1(P(XN)) and C2(P(XN)):

j= m�Æm0 if and only if m<>m0:

Hence we can read j= m�Æm0 as `m0 is reachable from m'. For a subset of markings, C1

and C2 may give di�erent results.

7.2 Di�erence between C1 and C2

First we give some interpretations of linear logic on the Petri net models created using

C1 and C2.

Example 7.2.1 Consider the following net:

d a

b

e

c

Figure 7.1: Petri net - I.

Here we have

C1(f[a]g) = C2(f[a]g)

= f[a]g;
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C1(f[b]g) = C2(f[b]g)

= f[a]; [b]; [d]g;

C1(f[c]g) = C2(f[c]g)

= f[a]; [c]g:

In this example, with interpretations of connectives �, t and u, the following holds:

1. j= a � a�Æa � b and j= a � a�Æb � c. Because

C1(f[a � a]g) = C1(f[a]g) �C1
C1(f[a]g)

= C1(C1(f[a]g) � C1(f[a]g))

= C1(f[a]g � f[a]g)

= C1(fm+m0 j m 2 f[a]g; m0 2 f[a]gg)

= C1(f[a] + [a]g)

= C1(f[a; a]g)

= f[a; a]g

and

C1(f[a � b]g) = C1(f[a]g) �C1
C1(f[b]g)

= C1(fm+m0 j m 2 f[a]g; m0 2 f[a]; [b]; [d]gg)

= C1(f[a] + [a]; [a] + [b]; [a] + [d]g)

= C1(f[a; a]; [a; b]; [a; d]g)

= f[a; a]; [a; b]; [a; d]g:

Since f[a; a]g � f[a; a]; [a; b]; [a; d]g,

C1(f[a � a]g) � C1(f[a � b]g):

(Remark

C2(f[a � b]g) = C2(f[a]g) �C2
C2(f[b]g)

= C2(fm+m0 j m 2 f[a]g; m0 2 f[a]; [b]; [d]gg)

= C2(f[a] + [a]; [a] + [b]; [a] + [d]g)

= C2(f[a; a]; [a; b]; [a; d]g)

= f[a; a]; [a; b]; [a; d]; [b; b]; [b; d]; [d; d]g:

Since f[a; a]g � f[a; a]; [a; b]; [a; d]; [b; b]; [b; d]; [d; d]g,

C2(f[a � a]g) � C2(f[a � b]g):)

We can prove j= a � a�Æb � c similarly.
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2. j= a t d�Æb and j= d�Æa t b. Because

C1(f[a t d]g) = C1(f[a]g) [C1
C1(f[d]g)

= C1(C1(f[a]g) [ C1(f[d]g))

= C1(f[a]g [ f[d]g)

= C1(f[a]; [d]g)

= f[a]; [d]g

and C1(f[b]g) = f[a]; [b]; [d]g. Since f[a]; [d]g � f[a]; [b]; [d]g,

C1(f[a t d]g) � C1(f[dg):

(Remark

C2(f[a t d]g) = C2(f[a]g) [C2
C2(f[d]g)

= C2(C2(f[a]g) [ C2(f[d]g))

= C2(f[a]g [ f[d]g)

= C2(f[a]; [d]g)

= f[a]; [b]; [d]g

and C2(f[b]g) = f[a]; [b]; [d]g. Since f[a]; [b]; [d]g � f[a]; [b]; [d]g,

C2(f[a t d]g) � C2(f[d]g):)

We can prove j= d�Æa t b similarly.

3. j= a�Æb u c and j= b u c�Æe. Because

C1(f[a]g) = f[a]g

and

C1(f[b u c]g) = C1(f[b]g) \ C1(f[c]g)

= f[a]; [b]; [d]g \ f[a]; [c]g

= f[a]g:

Since f[a]g � f[a]g,

C1(f[a]g) � C1(f[b u c]g):

We can prove j= bu c�Æe similarly. Since C1(f[bu c]g) = f[a]g, C1(f[e]g) = f[a]; [e]g

and f[a]g � f[a]; [e]g,
C1(f[b u c]g) � C1(f[e]g):

Remark 7.2.2 Here we consider the meaning of u, 3 of the example given above. j=

a�Æb u c means that b and c are reachable from a, but j= b u c�Æe does not mean that e

is reachable from b or c. Note that in the interpretation of m1 um2�Æm3, it is not always

true that we understand the meaning of each marking in formulas as it has. It will be

described later, so here we show a case using the above example, j= b u c�Æe. The rules

of u are the following:
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b) e
b u c) e

(u1))
;

c) e
b u c) e

(u2))
;

The meaning is not `e is reachable from b or c', but `e is reachable from every markings

from which b and c are reachable'. If x <> b and x <> c, then x <> e. This does not

always mean that e is reachable from b or c.

Example 7.2.3 Consider the following net:

d

a

b e

c

Figure 7.2: Petri net - II.

Here we have

C1(f[c]g) = C2(f[c]g)

= f[a; b]; [c]g;

C1(f[e]g) = C2(f[e]g)

= f[a; b; d]; [c; d]; [e]g:

In this example, with interpretations of connectives �Æ, the following holds:

1. C1(f[b�Æc]g) = C2(f[b�Æc]g) = f[a]g, and then

j= (b�Æc)�Æa:

Because

C1(f[b�Æc]g) = C1(f[b]g)��C1(f[c]g)

=
[

C1

fX j X � C1(f[b]g) � C1(f[c]g)g

= C1(fx j x+ y 2 C1(f[c]g) for all y 2 C1(f[b]g)g)

= C1(fx j x+ [b] 2 f[a; b]; [c]gg):

If x = [a], then [a] + [b] = [a; b] 2 f[a; b]; [c]g, and hence

C1(f[b�Æc]g) = f[a]g:
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2. C1([d�Æe]) = C2([d�Æe]) = f[a; b]; [c]g, and then

j= (d�Æe)�Æa � b and j= (d�Æe)�Æc:

Because

C1(f[d�Æe]g) = C1(f[d]g)��C1(f[e]g)

=
[

C1

fX j X � C1(f[d]g) � C1(f[e]g)g

= C1(fx j x+ y 2 C1(f[e]g) for all y 2 C1(f[d]g)g)

= C1(fx j x+ [d] 2 f[a; b; d]; [c; d]; [e]gg):

If x = [a; b], then

[a; b] + [d] = [a; b; d] 2 f[a; b; d]; [c; d]; [e]g;

and if x = [c], then [c] + [d] = [c; d] 2 f[a; b; d]; [c; d]; [e]g. Therefore

C1(f[d�Æe]g) = f[a; b]; [c]g:

The following example shows the di�erence between C1 and C2.

Example 7.2.4 Consider the net of Figure 7.1:

Here we have

� C1(f[b]g) = C2(f[b]g) = f[a]; [b]; [d]g,

� C1(f[c]g) = C2(f[c]g) = f[a]; [c]g,

� C1(f[a]; [d]g) 6= C2(f[a]; [d]g), because

C1(f[a]; [d]g) = f[a]; [d]g;

and since f[a]; [d]g! = f[b]g and f[b]g = f[a]; [b]; [d]g, then

C2(f[a]; [d]g) = f[a]; [b]; [d]g:

Next we show that, while the quantale constructed using C1 is distributive, it is not

always true in the quantales using C2.

Example 7.2.5 Consider the net of Figure 7.2:

When we construct a quantale using C1, we have

1. (C1(f[a; b]g) [C1
C1(f[d]g)) \ C1(f[c]g)

= C1(C1(f[a; b]g) [ C1(f[d]g)) \ C1(f[c]g)

= C1(f[a; b]g [ f[d]g) \ C1(f[c]g)

= C1(f[a; b; d]g) \ C1(f[c]g)

= f[a; b; d]g \ f[a; b; c]g

= f[a; b]g;
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2. (C1(f[a; b]g) \ C1(f[c]g)) [C1
(C1(f[d]g) \ C1(f[c]g))

= C1((C1(f[a; b]g) \ C1(f[c]g)) [ (C1(f[d]g) \ C1(f[c]g)))

= C1((f[a; b]g \ f[a; b; c]g) [ (f[d]g \ f[a; b; c]g))

= C1(f[a; b]g [ ;)

= C1(f[a; b]g)

= f[a; b]g:

Therefore

(C1(f[a; b]g) [C1
C1(f[d]g)) \ C1(f[c]g)

= (C1(f[a; b]g) \ C1(f[c]g)) [C1
(C1(f[d]g) \ C1(f[c]g));

then distributivity is valid. But when we construct a quantale using C2, we have

1. (C2(f[a; b]g) [C2
C2(f[d]g)) \ C2(f[c]g) = f[a; b]; [c]g, because

C2(f[a; b]g) [C2
C2(f[d]g) = C2(C2(f[a; b]g) [ C2(f[d]g))

= C2(f[a; b]g [ f[d]g)

= C2(f[a; b]; [d]g)

= (f[a; b]; [d]g!) 

= f[e]g 

= f[a; b]; [c]; [d]; [e]g

and

C2(f[c]g) = (f[c]g!) 

= f[c]; [e]g 

= f[a; b]; [c]g;

then (C2(f[a; b]g) [C2
C2(f[d]g)) \ C2(f[c]g)

= f[a; b]; [c]; [d]; [e]g \ f[a; b]; [c]g

= f[a; b]; [c]g;

2. but (C2(f[a; b]g) \ C2(f[c]g)) [C2
(C2(f[d]g) \ C2(f[c]g))

= C2((C2(f[a; b]g) \ C2(f[c]g)) [ (C2(f[d]g) \ C2(f[c]g)))

= C2((f[a; b]g \ f[a; b]; [c]g) [ (f[d]g \ f[a; b]; [c]g))

= C2(f[a; b]g [ ;)

= C2(f[a; b]g)

= (f[a; b]g!) 

= f[a; b]; [c]; [e]g 

= f[a; b]g:
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Therefore

(C2(f[a; b]g) [C2
C2(f[d]g)) \ C2(f[c]g)

6= (C2(f[a; b]g) \ C2(f[c]g)) [C2
(C2(f[d]g) \ C2(f[c]g));

then distributivity is not valid.

We consider conjunction and disjunction of two markings. Let m1, m2, and m3 be

markings inM. The interpretation in C1(P(XN)) is described as follows.

� j= m1�Æm2 tm3:

m2 or m3 are reachable from m1.

� j= m1�Æm2 um3:

m2 and m3 are reachable from m1.

� j= m1 tm2�Æm3:

m3 is reachable from m1 and m2.

� j= m1 um2�Æm3:

m3 is reachable from every markings from which m1 and m2 are reachable, i.e., if

m<>m1 andm<>m2 then m<>m3. This does not always mean thatm3 is reachable

from m1 or m2.

From the last formula, it is not always true that we understand the meaning of each

marking in formulas as it has. We should read j= m�Æm0 as `if m is reachable from some

marking, then m0 is also reachable from it'. Using this interpretation, the last formula is

read as `if m1 and m2 is reachable from some marking, then m3 is also reachable from it'.

Using the same examples, we show the interpretation in C2(P(XN)). Only the di�er-

ence between C1(P(XN)) and C2(P(XN)) is found in formulas with t, because

v(m1 tm2) = C2(fm1g) [C2
C2(fm2g)

is not necessarily equal to

C2(fm1g) [ C2(fm2g):

� j= m1�Æm2 tm3:

Every marking reachable in common from m2 and m3 is also reachable from m1.

� j= m1 tm2�Æm3:

m3 is reachable from every marking reachable in common from m1 and m2. As a

result, m3 is reachable from m1 and m2, provided that there exist some markings

reachable from both m1 and m2.
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7.3 Interpretation of Exponential !

For understanding exponential, we give the following example.

Example 7.3.1 Consider the following net:

t

t

1

2

3
t

a

b

Figure 7.3: Petri net - III.

If we have a token in the place a, by the �rings of transition t1, we may extract as

many tokens as we like. Because we can get two tokens from one token. So we can regard

the place a as one which can supply arbitrary many but �nite tokens.

When we construct a quantale using C2, we have the followings:

1. C2(f[a]g) = f[a]; [a; a]; [a; a; a]; : : :g, because C2(f[a]g) = (f[a]g!) , and f[a]g! is

f[ ]; [b]; [a; a; a; : : :]g, and then

f[ ]; [b]g = f[a]; [a; a]; [a; a; a]; : : :g:

2. C2(f[ ]g) = f[ ]; [a]; [a; a]; [a; a; a]; : : :g, because C2(f[ ]g) = (f[ ]g!) , and f[ ]g! is

f[ ]g, and then

f[ ]g = f[ ]g [ f[a]; [a; a]; [a; a; a]; : : :g

= f[ ]; [a]; [a; a]; [a; a; a]; : : :g:

3. C2(f[b]g) = f[b]; [a]; [a; a]; [a; a; a]; : : :g, because C2(f[b]g) = (f[b]g!) , and f[b]g! =

f[b]g, and then

f[b]g = f[b]g [ f[a]; [a; a]; [a; a; a]; : : :g

= f[b]; [a]; [a; a]; [a; a; a]; : : :g:

Note that

C2(f[b]g) = f[b]; [a]; [a; a]; [a; a; a]; : : :g

and

C2(f[a]g) = f[a]; [a; a]; [a; a; a]; : : :g = C2(f[!b]g):

Therefore C2(f[b]g) properly contains C2(f[!b]g).
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Remark 7.3.2 When we construct the quantale using C2 from the example given above,

for the set F of the quantale with exponential we have

F = ff[an] j n � 1g; f[an] j n � 0gg;

where [an] := [a; : : : ; a| {z }
n

]:

We can show that these hold De�nition 4.3.7.

1. For if x; y 2 F, then x � y 2 F,

f[an] j n � 1g � f[an] j n � 0g = f[an] j n � 1g 2 F:

2. For x � x = x for all x 2 F,

f[an] j n � 1g � f[an] j n � 1g = f[an] j n � 1g;

f[an] j n � 0g � f[an] j n � 0g = f[an] j n � 0g:

3. For 1 2 F and x v 1 for all x 2 F, C2(f[1]g) = f[a
n] j n � 0g, and

f[an] j n � 1g � C2(f[1]g);

f[an] j n � 0g � C2(f[1]g):

7.4 Another Interpretation

We now give an intuitional meaning of each marking in formulas. By the de�nition of the

closure operation, it is easy to see that for any X 2 P(M),

C2(X)! := X!

and

(C2(X)!) = C2(X)

holds. Therefore, a function

I : C2(P(M)) �! P(M)!

de�ned by I(X) := X! is a bijection, and its inverse is I�1(Y ) := Y . Note that for

any X1; X2 �M,

C2(X1) � C2(X2) if and only if I(X1) � I(X2):

We try to give the meaning of X 2 P(M) by I(X) instead of C2(X). I(X) is the set

of all markings reachable from every marking in X. Considering each token as a resource,

I(fmg); m 2 M corresponds to results obtainable by providing resources m, where the

results includes all markings reachable from m.

Let m1; m2 be markings. For the meaning of m1 u m2 and m1 t m2, we have the

following.
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� C2(fm1g) \ C2(fm2g) is the set of all markings from which both of m1 and m2 are

reachable. Therefore, the meaning of m1 um2, i.e., I(C2(fm1g)\C2(fm2g)), is the

set of all results obtainable from every markings in C2(fm1g) \ C2(fm2g). As a

results, it contains both of I(fm1g) and I(fm2g).

� The meaning of m1 t m2, i.e., I(C2(fm1g) [C2
C2(fm2g)), is the set of all results

obtainable in common by resources m1 and by resources m2.

Then the following interpretation is possible.

� j= m1�Æm2 means that

`if one can get any result obtainable from resource m1, then one can also get any

result obtainable from m2'. As a result, m2 is reachable from m1.

� j= m1 tm2�Æm3 means that

`if one can get any result obtainable in common from m1 and m2, then one can also

get any result obtainable from m3'. As a result, m3 is reachable from both m1 and

m2, provided that there exist some markings reachable from both m1 and m2.

� j= m1�Æm2 tm3 means that

`if one can get any result obtainable from m1, then one can also get any result

obtainable in common from m2 and m3'.

� j= m1 um2�Æm3 means that

`if one can get both of any result obtainable from m1 and any result obtainable from

m2, then one can also get any result obtainable from m3'. This does not necessarily

imply that m3 is reachable from m1 and m2.

� j= m1�Æm2 um3 means that

`if one can get any result obtainable from m1, then one can also get both of any

result obtainable from m2 and any result obtainable from m3'. As a result, both m2

and m3 are reachable from m1.

Comparing with temporal logics, one of advantages of using linear logic in Petri nets

is to describe properties on individual tokens. For example,

j= c �m�Æ(a t b) �m

means that `any results obtainable in common from marking m with additional resource

a and marking m with additional resource b is also obtainable by adding resource c'.

The di�erence between the interpretation shown above and that by [15] can be found

in the following example:

`once place a is marked, it is possible to reach a marking where b is marked'.

On the model of [15], it is described by

j= a � >�Æb � >:

On the model of this thesis, this has a di�erent meaning:

`if one can get any result obtainable in common from any marking with a marked,

then one can also get any result obtainable in common from any marking with b marked'.

Note that since I(v(a � >)) may be empty in most cases, it is hard to describe such

don't care submarkings on the model of this thesis.
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7.5 Relation of Linear Logic, Models and Petri Nets

Here we consider the relation of linear Logic, models (quantales with exponential !) and

Petri nets.

quantale

Petri netsPN-
quantales

all formulas

c

a=b

s

(L) (Q) (P)

Figure 7.4: The relation of linear logic, models and Petri nets.

These mean that (L) is the set of formulas, (Q) is the set of quantales and (P ) is the

set of Petri nets, respectively.

� L : the set of formulas

all formulas : the set of all formulas, i.e., �

a � � : the set of all provable formulas

b � � : the set of all formulas which are valid in the quantales

c � � : the set of all formulas which are valid in the quantales generated from

Petri nets

� Q : the set of quantales

quantales : the set of all quantales

PN-quantales : the set of all quantales generated from Petri nets

1. relation between a and b

soundness : a � b

completeness : b � a

2. relation between a and c

soundness : a � c

completeness : c � a
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Soundness and completeness of linear logic are proved for quantales [1, 5, 19, 21, 22,

39, 47]. Therefore the set of all provable formulas equals the set of all formulas which are

valid in quantales, i.e., a = b. The problem of this thesis is how is the relation between

a and c. We considered whether the set of all formulas which are valid in the quantales,

i.e., the set of all provable formulas equals the set of all formulas valid in the quantales

generated from Petri nets or not, and have proved a = c.
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Chapter 8

Concluding Remarks

We have seen how to construct quantales in which the distributivity is not always valid

from Petri nets, and prove completeness of linear logic for the quantales. Moreover, we

extend the quantales to the quantales with exponential !. We introduce how to construct

quantales with exponential from Petri nets, and prove completeness of linear logic for the

quantales with exponential.

In this concluding chapter, moreover we consider the connection between classical

linear logic and Petri nets.

De�nition A modal classical quantale is a classical quantale with additional unary op-

eration ? satisfying:

1. !(a��b) v?a��?b,

2. a v?a,

3. ?0 = 0,

4. ??a v?a,

5. 0 v?a.

Lemma In every modal classical quantale, the following holds:

1. if a v b then ?a v?b,

2. if !a � b v?c then !a�?b v?c.

De�nition A structure Q = hQ;_; �; 1; 0i is a commutative classical quantale if

1. hQ;_i is a complete lattice,

2. hQ; �; 1i is a commutative monoid,

3. (
W
xi) � y =

W
(xi � y) for all xi; y 2 Q,

4. �� x = x (� x := x��0) for all x 2 Q.
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We shall use simply classical quantale for commutative classical quantale with unit.

De�nition De�ne a binary operation �� on Q by

y��z :=
_
fx j x � y v zg:

Then

x v y��z if and only if x � y v z:

De�nition Syntax (formulas, sequents, axioms and rules) of classical linear logic are

follows: (In this section we show only formulas, axioms and rules we have to add to linear

logic in Chapter 6.)

1. Formulas

The language of classical linear logic has an alphabet consisting of

a propositional constant: 0,

an unary connective: ? and

a binary connective: �.

The connective carry traditional name:

�: disjunction (par) and

?: modality (why not, consumption or costorage).

Formulas are inductively de�ned by

The propositional variables and constants are formulas and

if A is formula, then ?A is formula.

2. Axioms and Rules

The basic calculus is obtained from the calculus of linear logic by adding the fol-

lowing rules.

(a) The adding axiom of classical linear logic is the instance of the following one

axiom-scheme:

�; 0) �:

(b) The adding rules of inference of classical linear logic are the following structural

rules:
�) �
�) �; 0

(0 - weakening)
;

�) �; A; B;�

�) �; B; A;�
(exchange)

;

and the following logical rules:

�) �; D

D?;�) �
(? ))

;

D;�) �

�) �; D?
() ?)

;
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A;�) � B;�) �

A� B;�;�) �;�
(� ))

;

�) �; A; B

�) �; A� B
() �)

;

and the following modality rules:

�) �
�) �; ?A

(? - weakening)
;

�) �; ?A; ?A

�) �; ?A
(? - contraction)

;

A)?�
?A)?�

(?))
;

�) �; A

�) �; ?A
()?)

;

where ?� is a shorthand for ?A1; : : : ; ?An where � = A1; : : : ; An.

For understanding of the adding rules described above, we give the following examples.

Examples of Proofs

1. We can derive that (A �B)? � A? �B?.

� For (A �B)? ) A? �B?,

A) A B ) B
A;B ) A �B

() �)

(A �B)? ) A?; B?

(A �B)? ) A? � B?
() �)

(? );) ?)

:

� For A? �B? ) (A �B)?,

A) A
A?; A)

(? )) B ) B
B?; B )

(? ))

A;B;A? �B? )

A �B;A? �B? )

A? � B? ) (A �B)?
() ?)

(� ))

(� ))

:

2. We can derive that A�ÆB � A? �B.

� For A�ÆB ) A? �B,

A) A
) A;A?

() ?)
B ) B

A�ÆB ) A?; B

A�ÆB ) A? � B
() �)

(�Æ ))

:
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� For A? �B ) A�ÆB,

A) A
A;A?)

(? ))
B ) B

A;A? � B ) B

A? � B ) A�ÆB
() �Æ)

(� ))

:

3. We can derive that (!A)? �?A?.

� For (!A)? )?A?,
A) A
) A;A?

() ?)

) A; ?A?

)!A; ?A?

(!A)? )?A?
(? ))

()!)

()?)

:

� For ?A? ) (!A)?,

A) A
A?; A)

(? ))

A?; !A)

?A?; !A)

?A? ) (!A)?
() ?)

(?))

(!))

:

4. We can derive that A? � A�Æ0. We use this later.

� For A? ) A�Æ0,

A) A
A;A? )

(? ))

A;A?) 0

A? ) A�Æ0
() �Æ)

(0 - weakening)

:

� For A�Æ0) A?,
0) A) A

A;A�Æ0)

A�Æ0) A?
() ?)

(�Æ ))

:

5. We derive that 0 �??.

� For 0)??, we have
0)

0)??
(? - weakening)

:

� For ?? ) 0, we have
? )

?? )
(?))

?? ) 0
(0 - weakening)

:

Therefore if there is ?, then 0 is expressed by ?.
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Suppose that we want to express the set of all markings which cannot be reached from

a marking.

For example, suppose that we want to express that in a Petri net model, a marking

in a place a cannot get into a place b. How we can express this ? For understanding, we

give the following example.

Example

Consider the following net:

Suppose that there are one token in b, w1 and w2, and we want to express that in

a Petri net model of mutual exclusion, processes p1 and p2 cannot get into their critical

regions c1 and c2 at the same time.

P-1 P-2
c-1 c-2w-1 w-2

a

b

Figure 8.1: Mutual exclusion.

Where the marking of the place w1 indicates that the �rst process, p1, is working

outside its critical region, c1, and similarly for the other process, p2. The resource corre-

sponding to b is used to ensure mutual exclusion of the critical regions and after a process

has been in its critical region it returns a resource, a, which then is prepared (transformed

into b) for the next turn. The initial marking, m0, will be

m0 = [b] + [w1] + [w2]:

We can now express that e.g. p1 can enter its critical region (from the initial marking)

by:

j= m0�Æc1 � >:

However this does not ensure that no undesired tokens are present, so it is better to

express it:

j= m0�Æc1 � w2:

If the system is in a \working state" then both processes have the possibility of entering

their critical section:

j= w1 � (a t b) � w2�Æc1 � w2 u w1 � c2:

The property, that when p1 is in its critical section and p2 is working it is possible that

p2 can later came into its critical section with p1 working, is expressed by:

j= c1 � w2�Æw1 � c2:

93



Similar other \positive" properties can be expressed. Shortly we shall see how to express

the \negative" property that both processes cannot be in their critical regions at the same

time.

Suppose we want to see how to express the negative property for Petri net, for example,

two processes cannot be in their critical regions at the same time. Then we consider the

operation of linear negation.

De�nition

Linear negation can be expressed in terms of 0 and �Æ by

A? := A�Æ0:

Its semantics with respect to a quantale is determined by a choice for the denotation 0.

Now we can prove soundness theorem for quantales generated by Petri nets, but have

not succeeded to prove completeness for quantales by using similar construction in Chapter

5 and 6. It is one of subjects of further research.
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