JAIST Repository

https://dspace.jaist.ac.jp/

Title gobooooooooboooooooo
Author(s) a, oo

Citation

Issue Date 2002-06

Type Thesis or Dissertation

Text version

aut hor

t/ 10109/ 931

URL http:// hdl handl e. ne
Rights
Description Supervisor: oo 04, ooooooo o0

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Studies on Software Architectural Design

by

Tomoji KISHI

submitted to
Japan Advanced Institute of Science and Technology
in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor Takuya Katayama

School of Information Science
Japan Advanced Institute of Science and Technology

June 30, 2002
Copyright (©) 2002 by Tomoji Kishi

Abstract

In this paper, we discuss software architectural design methods, especially that in the
early phase of software development to find out the design direction for the software.

In architectural design, we examine fundamental software structure considering the
requirements on potential software that will be developed on the architecture, in terms
of functionalities and quality attributes. Besides, as architecture imposes constraints on
following software design, we have to determine the most appropriate design direction, in
the early phase, based on information in hand at that time. In this paper, we examine
an architectural design method, considering these characteristics.

We make a case study on actual architectural design to clarify that we need to examine
the followings in architectural design; the applicability of architectural design alternatives
to requirements, relative preferences among applicable candidates, and, in product-line
architectural design, the tradeoffs between the appropriateness of architectural candidates
to the product-line as a whole and the appropriateness to each member of the product-line.
Then we develop the conceptual framework on architectural design, in which we clarify
the relationship among various concepts related to software architecture and architectural
design.

Based on the above observations, we propose a concrete architectural design method.
This method provides the method to analyze requirements utilizing factors that determine
quality attributes, separate requirements based on aspect-oriented concepts, categorize
requirements for applicability examination, determine preferences using decision-making
techniques, and examine tradeoffs for product-line architectural design. We evaluate the
techniques based on an actual case of architectural design.

The contributions of the paper are to clarify the conceptual framework of architectural
design, and to propose a concrete architectural design method based on it. Furthermore,
as the method explicitly handles the criteria, reasons, and the result of design decision, it
makes design objective, and helps us to trace the reasoning of the design decision.

Acknowledgments

The authors would like to thank Professor Takuya Katayama for continuous supports
and suggestions to the research. We also thank Professor Koichiro Ochimizu, for his com-
ments on the research, especially application of AHP method toward architectural design.
Dr. Toshiaki Aoki and members of Katayama laboratory give us helpful comments and
support to the research. This research is motivated by I'TS on-board system architecture
projects. We appreciate every member participated in the projects. We would like to
express our gratitude to Ms. Natsuko Noda for intensive discussion on the research.

i

Contents

Abstract
Acknowledgments

1 Introduction
1.1 Software Architectural Design
1.1.1 Background
1.1.2 Architectural Design
1.2 The Problem
1.3 Overview of the Solution

2 Related Works
2.1 Software Architecture and Views
2.2 Architectural Descriptions L
2.3 Design Method
2.4 Architectural Design
2.5 Product-line Architecture L

3 Architectural Design
3.1 Software Architecture
3.1.1 Software Structure
3.1.2 Software Structure and Software Architecture
3.1.3 Assumed Scenario and Product-line
3.2 Architectural Design
3.2.1 Definition of Architectural Design
3.2.2 Types of Architectural Design
3.3 Analysis of the Problem o
3.3.1 Overview of the Project
3.3.2 Observation from the Project
3.3.3 Observation on Product-line Scoping
3.4 Modeling Framework
3.4.1 Model for Software Structure
3.4.2 How to Represent Requirements on Quality Attributes

4 Design Techniques
4.1 OVerviewso e
4.1.1 Applicability and Preference
4.1.2 Tradeoffs between Individual Optimal and Whole Optimal

il

11
11
11
12
13
13
13
14
17
17
17
20
20
20
22

4.1.3 Overview of Architectural Design
4.2 Aspect-Oriented Analysis [25, 27] L.
4.2.1 Designing Architecture Considering Quality Attributes
4.2.2 Problems
4.2.3 Overview of the Approach
4.2.4 Factors and Aspects
4.2.5 Analysis Method
426 Example
4.2.7 Application of the Method
4.3 Identifying Category of Requirements [28]
4.3.1 Category of Requirements
4.3.2 Identifying Category of Requirements
4.3.3 Analyzing Commonalities and Differences
4.3.4 Applying the Techniques to Architectural Design
4.3.5 The Meaning of Category of Requirements
4.3.6 Impact of Infrastructure towards Quality Attributes
4.3.7 Category of Requirements and Infrastructure [27]
4.4 Decision-Making in Architectural Design [26,29]
4.4.1 Architectural Design as Decision-Making Problem
4.4.2 Decision-Making Framework
4.4.3 Analytic Hierarchy Process (AHP)
4.4.4 Applying AHP to Architectural Design
4.5 Determining Product-line Scoping [29]
4.5.1 Issues in Product-line Scoping
4.5.2 Requirements on Product and Product-lines
4.5.3 Design Policy
4.5.4 Applying Decision-Making Framework

Design Method

5.1 Design Policy
5.1.1 Relationship among Three Types of Architectural Design
5.1.2 Basic Design Procedure

5.2 Simple Architectural Design for a Single Product

5.3 Product-line Architectural Design

5.4 Product-line Scoping

Case Study
6.1 ITS On-board System as Product-line Architectural Design
6.2 ITS On-board System as Product-line Scoping

Evaluation and Discussion

7.1 Evaluation of the Case Study
711 Size
7.1.2 Cost e
7.1.3 Resolution

7.2 Applicability of the Method
7.2.1 Model for Software Structure
7.2.2 Granularity and Abstraction Level

v

51
51
51
o1
52
95
o7

63
63
67

7.3

7.2.3 Types of Quality Attributes
Comparison with other Techniques
7.3.1 Evaluation Techniques
7.3.2 Scoring Techniques oL
7.3.3 Decision-Making in Architectural Design
7.3.4 Examples of Existing Techniques

8 Conclusion

References

Publications

A Conceptual Framework of Architectural Design

Al
A2
A3
A4
A5
A6

Package
Package
Package
Package
Package
Package

Structure
: Ran’s Framework
: Software Architecture
: Product-line
: Architectural Design
: Product-line Scopingo

B An Example of AHP Calculation

80

84

85
85
86
88
39
90
91

92

List of Figures

1.1 Example of Architectural Design for a Single Product 2
1.2 Example of Product-line Architectural Design 3
1.3 Example of Product-line Scoping 3
1.4 Architectural Design 4
1.5 Overview of the Architectural Design Method 6
3.1 Ran’s Conceptual Framework — Revised 11
3.2 Conceptual Framework for Software Architecture 12
3.3 Variations of Software Architectural Design 14
3.4 Architectural Design for a Single Product 15
3.5 Product-line Architectural Design 16
3.6 Product-line Scoping 16
3.7 Two Extreme Situations in Product-line Scoping 20
3.8 Modeling Framework for Software Structure 21
4.1 Conceptual Model for Applicability and Preference 25
4.2 Conceptual Model for Tradeoffs 26
4.3 Overview of the Architectural Design Method (Revised) 26
4.4 Relationship between Requirements and Factors 29
4.5 Separate Aspects 30
4.6 AOA Example: Logical Structure of Map Information 31
4.7 Partial Ordering based on the Category of Requirements 38
4.8 Infra Example: Logical Structure of Information Terminal 39
4.9 Infra Example: Physical Format of CD-ROM A 39
4.10 Infra Example: Proper Architecture for CD-ROM A 39
4.11 Infra Example: Physical Format of CD-ROM B 40
4.12 Infra Example: Proper Architecture for CD-ROM B 40
4.13 Decision Making Framework 42
4.14 An Example of AHP Scheme00, 43
4.15 AHP Example: Portfolio (by Quality Attributes) 45
4.16 AHP Example: Portfolio (by Types of Quality Attributes) 46
4.17 AHP Example: Portfolio (by Stakeholders) 46
4.18 Framework of Applying AHP to Architectural Design 46
4.19 Example of Product-line Scoping 47
4.20 SCP Example: Description of Sequentially and Co-existence 49
5.1 Basic Design Procedure L 52
5.2 AD Example: Evolution Scenario 53
5.3 PLS Example: Relations among Products 58

vi

5.4 PLS Example: Portfolio of Each Scope 62

6.1 Casestudy 2: Relationship among Products 69
6.2 Casestudy 2: Portfolio of Scopes oo 70
A.1 Package Structure 85
A.2 Package: Ran’s Framework 86
A.3 Package: Software Architecture 88
A.4 Package: Product-line 89
A.5 Package: Architectural Design 0oL 90
A.6 Package: Product-line Scoping 91

Vil

List of Tables

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

5.1
5.2
5.3
5.4
5.9
5.6
5.7
5.8
5.9
5.10
5.11
5.12

Three Types of Architectural Design
Overviews of Architectural Selection for ITS Project
Quality Attributes and their Representation

AOA Example:
AOA Example:
AOA Example:
AOA Example:
AOA Example:
COR Example:
COR Example:
COR Example:
COR Example:
COR Example:
COR Example:
COR Example:
COR Example:
Infra Example:
Infra Example:
Infra Example:
Infra Example:
AHP Example:
AHP Example:
AHP Example:

Example of Description of Product-line Scoping

AD Example:
AD Example:
AD Example:
AD Example:
AD Example:
AD Example:
AD Example:

PLA Example:
PLA Example:

PLA Example: Examine Applicability

Requirements on Products
Architectural Candidates
Category of Requirements (Performance)
Category of Requirements (Size)
Analyzing Commonality and Differences
Applicability Matrix
Weights Obtained by AHP

PLA Example: Products in Product-line

PLA Example: Requirements on Products

Requirements on Quality Attributes
Factors for Each Quality Attributes
Results of Characterization
Separated Aspects (Performance)
Separated Aspects (Size)
Variation of Requirements on Quality Attributes
Candidates of Architectural Techniques
Identifed Categories of Requirements
Requirements on Products
Category of Requirements from Performance
Category of Requirements from Size
Commonalities and Differences
Applicability Matrix
Requirements on Products
Category of Requirements
Applicability Matrix
Category of Infrastructure
Comparison among Criteria and Obtained Weights
Comparison among Options and Obtained Weights
Final Weights of Options

Category of Requirements (Performance)
Category of Requirements (Size)

viil

5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21

7.1

B.1
B.2
B.3
B.4
B.5
B.6

PLA Example: Applicability Matrix.
PLA Example: Preference of Architectural Candidates
PLS Example: Given Set of Products
PLS Example:
PLS Example:
PLS Example:
PLS Example:
PLS Example:
PLS Example:
PLS Example:
PLS Example:
PLS Example:
PLS Example:

Casestudy 1:
Casestudy 1:
Casestudy 1:
Casestudy 1:
Casestudy 1:
Casestudy 1:
Casestudy 1:
Casestudy 1:
Casestudy 1:
Casestudy 1:
Casestudy 1:
Casestudy 1:
Casestudy 2:
Casestudy 2:
Casestudy 2:
Casestudy 2:
Casestudy 2:
Casestudy 2:
Casestudy 2:
Casestudy 2:
Casestudy 2:

Quantitative Comparison of Cost

Numbers Used for Pair-wise Comparison
Comparison among Criteria
Preference among Criteria

Comparison among Candidates in Terms of Performance
Comparison among Candidates in Terms of Size
Preference among Candidates

Requirements on Products
Architectural Candidates

Category of Requirements (Performance)
Category of Requirements (Size)

Candidate of Scope
Weight of Whole Optimal and Individual Optimal

Quality Attributes to be Examined

Requirements on Each Sub Services (Vehicle)
Requirements on Each Sub Services (Roadside)

Architectural Candidates for C1-03
Categories of Requirements (Vehicle)
Categories of Requirements (Roadside)

Analyzing Commonalities and Differences (Vehicle)

Analyzing Commonalities and Differences (Roadside)
Applicability Matrix (Vehicle)

Applicability Matrix (Roadside)
Result of Architecture Selection (Vehicle)

Result of Architecture Selection (Roadside)
Products oo

Quality Attributes to be Examined
Requirements on Products

Requirements on Product-lines
Architectural Candidate
Preference of Architectural Candidate
Applicability Matrix L.

Candidate of Scope

Weight of the Whole Optimal and Individual Optimal

X

Requirements on Product-line.
Preference of Architectural Candidates

Examine Applicability
Applicability Matrix00

Chapter 1

Introduction

1.1 Software Architectural Design

1.1.1 Background

Software architecture is the fundamental software structure that is composed on the infras-
tructure of software. Software architectural design is the design of software architecture
for target software, and is also quite important for the following reasons;

e Software architecture determines the characteristics of the software based on the
architecture. For example, run-time architecture of software is the structure of
components provided by the run-time infrastructure, such as threads and resources,
and has an impact on run-time quality attributes such as performance and run-
time memory size. Development-time architecture of software is the structure of
components provided by the development-time infrastructure, such as programming
language constructors, and has an impact on development-time quality attributes
such as extensibility and reusability.

Therefore we have to design software architecture so as to satisfy the requirements
on quality attributes related to the structure, considering the characteristics of the
infrastructure.

e Software architecture has a strong impact on the software development. As software
architecture is the fundamental structure, many design decisions depend on the
software architecture. If we change the software architecture, that causes serious
impact on these design decisions. In this sense, software architectural design affects
succeeding software development.

Therefore, we have to analyze the nature of software, its evolution, product families
and development style and design software architecture so as to be steady; otherwise,
software development may become quite expensive.

e [t is required to make software architectural decisions open. When we want different
software to communicate and collaborate with each other, we have to make these
software share the same architectural assumptions. For example, software compo-
nents for Web-computing systems have to share the same architectural assumptions,
such as responsibilities of each component, rules of communications, error-handling
policies, so as to collaborate correctly.

Therefore, when we develop software, we have to explicitly define the architecture
and the assumptions behind that in order to make the architecture open.

1.1.2 Architectural Design

The term ”software architecture” gives the impression that it means important software
structure that is the basis of entire structure and governs other software structure. How-
ever, it is difficult to distinguish architectural design from ordinary software design by
‘importance’, because it is a quite objective notion.

In this paper, we try to clarify software architectural issues by focusing on the re-
quirements on software. Namely, in architectural design, we are to examine not only the
requirements on current product but also potential requirements on the product. For
example, if we are to design software architecture that will be steady throughout the
software evolution, we have to examine potential requirements on the software. Similarly,
if we are to develop software spirally, we have to examine development scenarios and ex-
amine the requirement on the software in each iteration to make software architecture to
be the basis of the development.

In actual software development, we encounter many situations in which we have to
consider architectural issues. In our research, we have categorized the situations into the
followings:

e Designing architecture for a single product. Here we design software architecture
for a product considering the evolution of the software, such as customization and
version-up (Figure 1.1).

target assumed evolution

product version up customize

__",\ P2 /\I___‘»‘,\ P3 /‘I

A

Figure 1.1: Example of Architectural Design for a Single Product

e Designing product-line architecture for a family of products. Here we develop soft-
ware architecture that will be shared by products in the family (Figure 1.2).

e Examining the scope of product-line architecture, i.e. to determine the set of prod-
ucts that share the same architecture. Here we decide how we divide the set of
products into sub groups each of which shares the same architecture (Figurel.3).

1.2 The Problem

As mentioned above, software architecture is quite important and we have to carefully
design software architecture so as to make software have required characteristics and make

product-line

() G (o)
T O

Figure 1.2: Example of Product-line Architectural Design

product family

Product-line 1 Product-line 2

Figure 1.3: Example of Product-line Scoping

software development efficient. However, compared with ordinary software design field,
research on software architectural design is not enough and many problems have to be
solved.

Though software architectural design has commonalities with ordinary software design,
there exist unique characteristics to software architectural design. The followings are
typical characteristics for software architecture:

e In software architectural design, we have to examine requirements on functionalities
and that on quality attributes. For functionalities, there are some techniques to de-
sign software architecture, such as analyzing hot/frozen spots from functionalities,
and design software architecture based on the analysis. Similarly, we have to exam-
ine requirements on quality attributes so as to design software architecture to be the
platform of the software that fulfills the requirement of quality attributes. However,
we do not have any systematic architectural design method to handle requirements
on quality attributes.

e As software architecture is the fundamental software structure and become the basis
of the succeeding software design decisions, we have to design software architecture
in the early phase of software development. Therefore we cannot check the appro-
priateness of the design by developing software actually. Far from that, we do not
have enough information to do so. This implies that software architectural design
necessarily has the decision-making aspect and the risk-management aspect.

e We need a systematic way to make decisions in architectural design. Architectural
design has to be done in the early phase of software development, and we have
to make many design decisions based on information we can obtain at that time.

As software architectural decisions are important, we want to make architectural
decisions systematically. We also want to make our decision traceable. However, so
far, we do not have such a decision-making framework for architectural design.

The objective of the study is to find out a practical method for software architectural
design, that reflects the characteristics mentioned above. Here 'practical’ means that we
can apply the method to real problems. In order to apply the method to real problems,
the method has to have the following characteristics:

e We can apply the method to actual size of the problem. Even though experts may
be able to design systems by their own ways, systematic methods are still important
especially when we design a large and important system, because it is dangerous
to design a large system depending upon personal skills. In such a case, it is also
required to design the system in an objective way because we have to claim the
appropriateness of the design to many stakeholders.

e We can apply the method in a reasonable cost. The method does not use any design
technique that requires lots of cost, compared with existing way.

e The method has enough 'resolution’ for architectural design. In architectural de-
sign, we have to examine multiple alternatives to select most suitable one. The
method has to distinguish these alternatives and select suitable one depending on
the requirements and design policy.

1.3 Overview of the Solution

In this paper, we define architectural design as selecting most appropriate architecture
from multiple options, in terms of requirements and design policy. Figure 1.4 shows an
image of software architectural design.

(product -line scoping only)

)) | requirements
design policy | on product-line

—

[preference

requirements 4_,‘/[trade-off]
on each product ' |

—

[applicability

b] evaluate Architectural
ololo
g. U U
A

AC1

AC2

select

<: AC3

Figure 1.4: Architectural Design

In the figure, we are trying to select architecture from architectural candidates. We
have requirements on each product both on functionalities and quality attributes. We also

4

have design policy, in which we define the importance of quality attributes. For example,
we may want to make development cost as low as possible, or we may want to make
product as reliable as possible. When we examine the product-line scoping, we also have
requirements on product-lines, in which we define how we want to develop product-lines.
For example, we want to develop the high-end product first, and then release the standard
model as first as possible, and so on. In order to select an architecture from candidates, we
have to evaluate each architectural candidate, in terms of these requirements and design
policy.

In order to examine the architectural design method, we make case study on an actual
architectural design project to examine the nature of software architectural design. Based
on the observation, we find it important to focus on the followings in architectural design;

e Applicability: If we can attain the requirement on a product based on an architec-
ture, we say that the architecture is applicable in terms of the requirement on the
product. In general, when we design architecture, we examine multiple products
that will be developed on the architecture. Therefore, we have to select architecture
that will be applicable in terms of requirements on corresponding products.

e Preference: There may be multiple applicable architectural candidates. However,
these applicable candidates generally have different characteristics; for example, one
is good for performance and one is good for cost, and so on. In architectural design,
we define design policy in which we determine the importance or weight of each
quality attribute, and we select the best one form candidates based on the design
policy.

e Tradeoffs: In product-line scoping, we have to consider tradeoffs between benefit for
development of each product and benefit for product-lines as a whole. For example,
if we are to have a single architecture shared by every product, that is good for
development cost, because we only develop a single architecture. On the other
hand, If we develop architecture for each product, that is good for each product,
however it will be expensive to develop multiple architectures. We have to examine
this kind of tradeoffs.

Architectural design is to select architecture considering applicability, preference and
tradeoffs. In other words, in architectural design, we have to decide the ordering among
architectural candidates in terms of these three concepts.

Figure 1.5 shows the overview of the architectural design technique proposed in this
paper. This technique consists of three major parts:

e Examine applicability: Here, we use two techniques; aspect-oriented analysis, and
identifying categories of requirements. Aspect-oriented analysis is a technique to
separate requirements on each quality attribute from the original requirement. Uti-
lizing this technique, we identify categories of requirements, in which we not only
find out applicable candidates, but also identify which one could fulfill widest spec-
trum of requirements.

e Examine preference: We utilize decision-making techniques to decide the preference
in terms of design policy.

Examine
trade-offs

Examine
preference

Examine
applicability

- Aspect-Oriented Analysis - Decision-making | -Requirement on
- Category of requirements framework i product-lines !

(product-line scoping only)

Figure 1.5: Overview of the Architectural Design Method

e Examine tradeoffs: Utilizing the result of previous steps, examine the tradeoff among
options. This step is especially important if we design multiple architectures for a
product family.

Chapter 2

Related Works

2.1 Software Architecture and Views

Though there are many definitions of software architecture [4, 10, 14, 19, 39, 40, 44] and no
single definition is accepted widely, we could say that most of them claim the followings:

e Software architecture refers to the fundamental software structure.

e Software architecture has a strong impact on the characteristics or quality attributes
of the software developed on the architecture.

e Software structure governs the entire software design. Once software architecture is
determined, it is difficult to change the decision, because many succeeding designs
depend on the architecture.

e We can categorize software architecture into relatively independent views. Though
there proposed different categorization and views, they have similarity [31, 40, 45].

In this paper, we adopt Ran’s definition of software structure and views [40], however,
we have adopted the different terminologies.

Some definitions say that software architecture is not only the software structure but
also design principle, policy and guidelines. Though these definitions are quite important
as these concepts govern the software architectural design, these definitions are little
abstract and vague. On the contrast, we just focus on the software structural issues in
this paper. Furthermore, in this research, we regard the software architecture as the basis
for multiple software products. This makes software architectural design clearer.

We categorize the situation in which we have to design the software structure for
multiple products into two. One is designing a single product considering its evolution
(modification and version up). In this case, we consider the possible variations of re-
quirements on the products. However, the focus of the design is the target product. The
other is designing the architecture for product-lines. In this case, we also design software
structure considering multiple requirements. However, in this case, our focus is on the
multiple products. If the architecture is good for a product, but it would be not good
for other products. We have to examine whether or not the architecture is good for each
product in product-line, and maximize the total benefit.

2.2 Architectural Descriptions

There are two different approaches for architectural descriptions. One is to prepare special
language for architectural description. Typically, such languages, usually called Architec-
ture Description Language (ADL) [1, 9, 34, 35, 43|, have mathematical background to
enable mathematical treatment, or have execution semantics to enable simulation. An-
other approach is to utilize modeling language based on relatively loose formalism, such as
Unified Modeling Language (UML) to enable semi-formal description for human commu-
nication or simple tool manipulation such as code generation [16, 18, 31]. In this paper,
we adopt UML to describe software structure.

ADL is good for analyzing known characteristics that can be modeled on the mathe-
matical foundation. For example, it is good to analyze the performance of the software
using the performance model. However, relationship between software architecture and
quality attributes is not well understood, and the application of ADL is limited. Espe-
cially, in the early phase of software architecture, we have to assess wide spectrum of
quality attributes based on limited information. In such a case ADL approach is not
appropriate.

Semi-formal languages such as UML [38] can be used in wider situation. As these
languages are weak, we can not use them for strict analysis or simulation. However, it
could be used to model variety of concepts in a uniform manner. As our focus is making
the appropriate architectural decision considering wide and variety of aspects related to
software quality attributes, these semi-formal languages are more appropriate.

UML is good for describing the static aspects (information or data) and dynamic
aspects (functions and timing). However, we do not have good way to describe require-
ments on quality attributes using UML. In this paper, we attach these requirements to
the modeling components such as class and collaborations. It is not enough in terms
of modeling purpose, but it is one of the most common practice adopted in the actual
software projects.

2.3 Design Method

As software architecture is the fundamental structure and is the basis of the software
design, it is expensive to change the software architecture. That is the main reason why
we have to carefully design software architecture.

Most software design methods treat software architectural issues. One of the main is-
sues in treating software architectural issues is development-time quality attributes such as
reusability and extensibility. In early 70’s, they already argued about the module strength
and coupling. We can say that major methods such as structured-method and object-
oriented method focus on finding good module structure. However, in these software
design method, software structure and software architecture is not clearly distinguished.
In real-time structure method proposed by Hatley [17], they treat architectural issues as
assignment of functions to components connected by communication path.

Designing the reusable assets such as framework and components requires more ex-
plicit focus on software architectural issues. In these design, we do not focus on just
a single product, but potential products that will be developed on the reusable assets.
In framework design, we are to find hot-spots and frozen-spots in order to design the
architecture that can manage the variation of potential products.

In order to develop software and software architecture, it is not enough to design
from functional aspects. We have to consider the aspects related to quality attributes.
However, as we have mentioned, relationship between software architecture and quality
attributes is not well understood. However, there are some researches and practices that
are to handle quality attributes. For example, in engineering fields, there are researches
that treat quality attributes such as performance [15, 17, 42]. Buhr proposes a method
in which they analyze coarse-grained dynamic structure using use-case map [6].

In this paper, we focus on architectural design by examining requirements of multiple
products that will be developed on the target architecture. We examine these require-
ments, especially requirements on quality attributes and find out appropriate design direc-
tions. We do not focus on analyzing strict relationship between architecture and quality
attributes, but are to clarify the general framework of software architectural design.

2.4 Architectural Design

In actual software development, there are typically two stages where we design software
architecture. One is the actual structural design, in which we examine every techni-
cal detail and decide the concrete design. In this phase, we have to clarify everything,
specification and design, and make architecture clearly designed.

The other is in the early stage of the software development in which we find out the
design directions of the software. In this phase, we do not examine every thing, but
focus on the significant issues that have to be determined in the early phase. The global
architectural style and the basic architectural techniques are examples of issues that have
to be decided in this phase. Unless we make any decision on these issues, we cannot
design software any further. In these early phase, we may not have enough information
for architectural design, however we have to make decision on architecture anyhow. In
this paper, we focus on this type of architectural design.

Software design is a creative activity, but we do not always create new design. In soft-
ware architectural design, we could point out three typical types of architectural design.

e Create new architecture based on the requirements. Structured method based on
functional decomposition is one of the way to develop software structure from the
requirements.

e Develop architecture based on the pattern. As same as the design pattern [12],
there are approaches to define catalogues of architectural styles, to solve problems in
architectural design [7, 30, 36, 44]. Tt is important to understand the characteristics
for architectural styles and utilize them in actual architecture, as it is expensive to
actually check the characteristics of architectural styles by ourselves.

e Select the architecture that is most appropriate for the requirements from architec-
tural candidates. In the architectural design, it is common to find design directions
from multiple options.

In this paper, we focus on the third case, select architecture from multiple options. In
selecting architecture, we have to evaluate each architecture in terms of requirements, and
decide most appropriate one. Therefore, evaluation techniques are one of the main focus
[21, 22]. Though some similar works are categorized into architectural evaluation field,

9

in this paper, we categorize our research into design field, as our objective is to select an
appropriate architecture anyhow.

There are another methods that focus on the problem specific to architectural design
[30, 8], and we also have to consider these aspects when we design architecture in actual
project.

2.5 Product-line Architecture

Product-line architecture is architecture that is shared by members of a product-line.
When we are to develop product-lines efficiently, it is important to develop product-line
architecture and set up reusable assets based on the architecture. Usually, product-line
architecture means, not only architecture itself, but also systems of strategic reuse based
on shared architecture [4, 4, 46, 48]. Therefore, non-technical issues such as project man-
agement, cost estimation, and risk management are indispensable for product-line archi-
tecture. However, in this paper, we focus on technical issues of product-line architectural
design.

When we develop product families, we may divide products in the product family
into multiple product-lines. Though products in the same product family have some
commonalities, it is dangerous to share a single architecture by every member of product
family. As product family is determined by many factors such as business issues, technical
issues, development- side issues, we have to carefully examine the products and determine
the product-lines. This activity is normally referred as software scoping [11, 46|, and in
usual, it is not considered to be the design activity but business activity to define the
product-lines and their development activity. However, in this paper, we just focus on
the technical aspect of the software scoping, and categorize the activity in the software
architectural design.

10

Chapter 3

Architectural Design

3.1 Software Architecture
3.1.1 Software Structure

As the basis of our research, we adopt the conceptual framework for software structure
proposed by Ran [40]. Though this framework well explains the nature of software struc-
ture and the relationship between software structure and quality attributes, it does not
explicitly capture the differences between architecture and software structure. In order

to extend the framework, we have slightly changed the terminology. Figure 3.1 shows the
framework.

Fulfill ComposedOn
Requirement Structure Infrastructure
4 a
[\ / \
/ \\ \\
/ \
/ \ \
0..% / \ \
Sk \ 0. \
FRequirement || LStructure \
Y \
N \

\
\ \ \ 0.k
\ | 0. \ 0.x

QRequirement

PStructure PInfrastructure

Figure 3.1: Ran’s Conceptual Framework — Revised

The following is the summary of the framework!:
e Software structure (Structure) is composed on the infrastructure of software, and is

designed so as to fulfill requirements. Requirement is categorized into requirement
on function (FRequirement) and requirement on quality attributes (QRequirement).

Tn the diagram, we use contracted form for each name due to the space reason. In this case, ’structure’
is a concatenate form, and in the text we use ’software structure’.

11

Software structure is categorized into logical structure (LStructure) and physical
structure (PStructure). Logical structure is a special software structure that is con-
structed on the conceptual components. On the other hand, physical structure
is constructed on the physical infrastructure (Pinfrastructure). There are multi-
ple physical structures dependent on the physical infrastructure, such as run-time
structure and development-time structure. FEach structure is designed to fulfill corre-
sponding requirement on quality attribute (QRequirements). For example, run-time
structure is designed so as to fulfill requirement on run-time quality attribute such
as performance and run-time memory size.

Logical structure represents the important notions in the target domain, and re-
lationship among them. In the ordinary development method, functionalities are
represented in this model. Physical structure reflects the logical structure and has
to attain corresponding requirement on quality attributes.

3.1.2 Software Structure and Software Architecture

We extend the Ran’s framework so as to explicitly capture the nature of software ar-
chitecture. As changes of architecturally significant decisions have a serious impact on
succeeding design decisions, we are to design software architecture to be steady through-
out software development and evolution. In other word, software architecture has to be
the platform of potential software that is assumed to be developed on it. Figure 3.2 shows
the conceptual framework for software architecture.

Fulfill

ComposedOn
Requirement | Structure —| Infrastructure

Fulfill Comp dOn
RonProduct ‘ Product ‘ J lofProduct ‘

0.5 R
0.% 0..% 0..%

Categorizedinto

Categorizedinto DevelopedOn
Fulfillable CanbeComposedOn
CategoryOfR Architecture CategoryOfl

Figure 3.2: Conceptual Framework for Software Architecture

The followings are the overview of the framework.

Product is constructed on the infrastructure of the product (lofProduct), and is de-
signed to fulfill requirement on the product (RonProduct). This is the same relation-
ship among requirement, software structure (Structure) and infrastructure defined
in Ran’s framework.

Architecture is the platform of potential products. Here, "potential products” means
products that are assumed to be developed on the architecture. In other words, they
are products included in the scope of the design.

12

e As architecture should be the basis for potential products, each product is devel-
oped on the architecture and has to fulfill the requirements on the product. If
we have a single architecture shared by multiple products, the architecture should
fulfill the range of requirements on every product. We call the requirement on ar-
chitecture that should be the basis of multiple products as category of requirements
(CategoryOfR). We will explain the idea in 4.3 in detail.

e Infrastructure may change during the evolution or we have to port products onto
other infrastructure. We introduce the notion category of infrastructure (Category-
OfI), as same as the requirement case.

3.1.3 Assumed Scenario and Product-line

As we explained in 1.1.2, when we design software architecture, we have to examine the
requirements on software that will be developed on the architecture. In other words,
when we design software architecture, we have to have any information about potential
products that will be developed on the architecture. We call these potential requirements
as assumed scenario. An assumed scenario is a set of requirements that are considered to
be required on software that will be developed on the architecture.

Though it is difficult to identify potential requirements, we try to identify them in
actual software development. For example, when we try to develop software spirally, we
assume the development scenario in which we decide the items to be developed and the
order of development. The development scenario may change, if we encounter problems
or if the situation of development is changed. However, we have to assume the scenario
to make the strategic development plan. Similarly, when we develop systems, we examine
the possible enhancement of the system or change of requirements, in order to handle
such expected changes.

When we develop product-lines, we have to assume scenario more clearly. We have to
make plan for develop product-line, in which we define what kind of products are included
in product-family, what characteristics each product has, and how we develop these prod-
ucts. Without this kind of assumption, we cannot expect the strategic development based
on the reuse technology.

3.2 Architectural Design

3.2.1 Definition of Architectural Design

Architectural design is the process in which we find out the structure of components

provided by the infrastructures so as to fulfill requirements. In this paper, we define

architectural design as the process in which we select most appropriate architecture from

architectural candidates in terms of requirements on potential products and design policy.
We explain the intention of the definition.

e In architectural design, it is common to make a list of possible architectural candi-
dates and select most appropriate one from the list. This definition assumes such a
situation. This process is one of the typical ways of design, especially when we are
to insist the appropriateness of the design decision. On the other hand, it is a little
"heavy” process if we have to make a list of candidates for every design decision.

13

e As we explained in 1.1.2, potential products are products in assumed develop-
ment/evolution scenario, or planned product-lines.

e Appropriate architecture usually means that selected architecture satisfies require-
ments. However, in actual development, it sometimes happens that we cannot fulfill
requirements by any architectural candidates. That happens because we cannot say
that there is no architecture that satisfies requirements until we actually enumerate
candidates and assess the characteristics of them. Therefore, we do not exclude such
a situation, and in this situation appropriateness is judged by the design policy.

e "Design policy” gives the rules to determine the preference among candidates.
Though there may be variety of ways to define ”"design policy”, in this paper, we
define design policy by the preferences among quality attributes. For example, as-
sume that we have two architectural candidates; one is good for performance and
the other is good for cost. If these candidates satisfy requirements, we cannot de-
termine which one in most appropriate. However, if design policy says that cost in
the most important quality attribute, we can select one.

3.2.2 Types of Architectural Design

As we discussed in 1.1.2, we will examine three types of architectural design.

number of

[RonProduct | Fulfill ’m‘/" products

0. O-* 0.%
Categorizedinto DevelopedOn

number of
Fulfillable .-~ architecture

[CategoryOfR | [Architecture |
L]

Figure 3.3: Variations of Software Architectural Design

Figure 3.3 shows a part of the conceptual framework shown in Figure 3.2. When we
design software architecture, we examine target products that will be developed on the
architecture, and "number of products” means the number of the target products. In
developing product families, we may design a single architecture for the products in the
family, or we may divide products into subsets in which they share the same architecture.
"Number of architecture” refers to the number of architecture to be designed. Usually 1
< "number of architecture” < "number of products” holds. We will explain three types
of architectural design shown in Table 3.1.

e Architectural Design: Designing architecture of a product. Here we design software
architecture for a product considering the evolution of the software. In this case,
requirements include not only requirements on target product but also assumed
scenario for the product (Figure 3.4).

14

Table 3.1: Three Types of Architectural Design

number of | number of
architecture | products
Architectural design for 1 1
a single product
Product-line architectural 1 N
design
Product-line scoping M N
Design Policy
. Assumed
Requirements .
Scenario
Product
Architecture

Figure 3.4: Architectural Design for a Single Product

15

e Product-Line Architectural Design: Designing product-line architecture for a family
of products. Here we develop software architecture that will be shared by products
in the family. In this case, requirements include requirements on each product in
the family, and every product shares the same architecture (Figure 3.5).

Design Policy

Requirements

Requirements

1 N
Product Product
) i N
‘\ /'

Architecture

Figure 3.5: Product-line Architectural Design

e Product-Line Scoping: Examining the scope of product-line architecture, i.e. to
determine the set of products that share the same architecture. Here we decide how
we divide the set of products into sub groups each of which shares the same archi-
tecture. In this case, requirements include not only requirements on each product
but also requirements on scoping (Figure 3.6).

Design Policy

Requirements

Requirements

Requirements

on scoping 1 N
| Pro:iuct Pro:luct

1

Architecture

1

:

Architecture
M

Figure 3.6: Product-line Scoping

Usually, product-line scoping is not called architectural design. However, we assume
this is one of the types of architectural design, as this involves quite similar technical
issues as architectural design.

16

3.3 Analysis of the Problem

3.3.1 Overview of the Project

In order to evaluate the technique, we pick up the actual architectural design project,
which designed architecture for on-board (in vehicle) systems for ITS (Intelligent Trans-
port Systems) and make observation on the characteristics of architectural design. We
also apply our technique to the same problem to demonstrate the applicability of the
technique to actual problem.

This project, ”Study on ITS on-board system architecture”, was completed in 1997
by Association of Electronic Technology for Automobile Traffic and Driving (JSK), in
which they investigated the required services and important technologies in the field, and
examined the higher-level architecture for on-board system [2].

In the system architecture (SA), they defined 45 sub-services (correspondent to prod-
uct in our technique), such as route guidance, assistance for economic driving, provision-
ing of road traffic control, and so on. They analyzed 45 sub-services to identify necessary
information and functions using object-oriented analysis. For each function, they enu-
merated candidates of architecture to realize the function, and qualitatively compared
candidates in terms of quality attributes. After that, for each sub-service, they checked
every function required for the sub-service, and selected the proper candidate considering
the requirements on the sub-service and the characteristics of candidates.

Though ITS are not pure software systems but systems that are realized by software
and hardware utilizing communication technology, the differences are not so important in
the early stage of architectural design. Firstly, in many systems, we start analysis before
dividing the system into software part, hardware part, and human activities. Secondly,
when we think of many software systems, most of them are not pure software systems.
For example, when we design web application, we have to think of networking issues;
when we design an embedded system, we have to consider the hardware configuration.
Thirdly, this ITS project have adopted software methodologies, object-oriented method,
to the system architectural design, and the basic scheme of the design is almost the same.

The reasons we have picked up this project for the evaluation are the followings; 1)
as this project was a large joint project among experts of services, system architects,
and specialists of each technologies, the result of the architecture design is considerably
reliable, 2) as they have left the reason of architectural selection and basic materials as
reports, it is relatively easy to trace their reasoning based on the written documents.

In 3.3.2, we will overview the project and observe the characteristics of architectural
design.

3.3.2 Observation from the Project

Though there are hundreds of functions used by 45 sub-services, there are important
functions that they call ”common functions”, which are shared by more than two sub-
services. We focus on these common functions, because they are related to commonalities
between requirements. Among them, we have picked up 21 important functions, because
for these functions, there left enough information in the report. The followings are the
observations from analyzing the architectural selection for these 21 functions:

e Though they have considered dozens of quality attributes when they characterize

17

architectural candidates, they use restricted number of quality attributes for each
architectural selection.

e Among these quality attributes, some quality attributes are used to judge the appli-
cability (namely, they reject some candidates because the candidates cannot fulfill
the requirements on this quality attributes). Other quality attributes are used for
relative comparison between candidates to select a "better” candidate among appli-
cable candidates. We call the former as "key quality attribute” in this paper.

e [f they cannot select a candidate from key quality attributes, they select a candidate
based on the relative comparison. In some case they have examined the character-
istics of the sub-service not only from quality attributes but also from knowledge
about the sub-services.

Based on the above observation, we have examined how architectural selection has
done for these 21 sub-services. Table 3.2 shows the followings: number of candidates
for the sub-services, number of quality attributes they used in architectural selection,
number of key quality attributes, whether or not factors other than quality attributes are
used, and the number of selection patterns, i.e. how many types of reasoning exist. For
example, consider that a function F is used by three sub-services S1, S2 and S3, and for
S1 and S2 they select candidate (a) as it is good for cost, and for S3 they select candidate
(b) as it is high performance, we say the number of selection patterns are two. Even if two
sub-services select the same candidate, we say that they are different selection patterns,
if the reason is different. In Table 3.2, id such as C1-02 is the id used in the project. This
table has 19 functions, as two functions have only one candidate and we ignore them.

Based on the observation and the results summarized in Table 3.2, we consider the
followings about the applicability of our techniques:

e In this project, 11 sub-services out of 19 have key quality attributes and we can
identify two or more categories for them. 4 out of 11 have two key quality attributes.
This means that in architectural selection it is important to judge the applicability
of candidates in terms of requirements.

e If there are no key quality attributes, all candidate fulfill the requirements. In
this case, they select an architecture using some technique to decide the relative
preference. (In this project, they use scoring method).

e Many of the architectural selection (13 out of 19) can be done just using quality
attributes. This means that in architectural selection, in many cases, requirements
on quality attributes have enough information for architectural selection.

e Many of the architectural selection (12 out of 19) have more than two selection
patterns. It becomes difficult to clarify the reason of architectural selection, if the
number of the patterns becomes large. In our technique, we can hierarchically
(step-wisely) select the architecture that makes the reasoning clearer.

As shown above, we can observe that in architectural selection, it is important to
determine ”applicability” and "relative preference” for architectural candidates.

18

Table 3.2: Overviews of Architectural Selection for I'TS Project

number of | number of | number of other number of
candidates | quality | key quality | factors are | selection
attributes | attributes | used or not | patterns
C1-02 9 4 1 no 5
C1-03 6 4 2 yes 6
C1-04 4 3 0 yes 1
C1-05 3 2 0 no 1
C1-06 2 1 0 no 2
C1-07 2 3 1 no 3
C1-08 4 4 2 no 1
C1-09 4 3 1 yes 2
C1-10 3 2 0 no 2
C1-11 3 5) 0 no 3
C1-13 3 4 0 no 2
C1-14 3 4 0 no 1
C1-16 4 3 1 yes 1
C1-17 5 3 1 no 1
C2-02 2 1 1 no 2
C3-01 4 6 2 yes 3
C3-02 2 3 0 no 2
C3-04 2 3 1 no 1
C4-01 2 2 2 yes 3

19

3.3.3 Observation on Product-line Scoping

In examining product-line scoping, we have to consider different aspects from that of
single product architectural design and product-line architectural design.

@ (b)
PE
A Al A2 A3

Figure 3.7: Two Extreme Situations in Product-line Scoping

Figure 3.7 shows two extreme situations in product-line scoping.

e In (a), every product shares the same architecture, and we can expect to reduce
the total development cost as we develop a single architecture for every product.
However, it may not be good for the characteristics of each product, as it is difficult
to provide a single architecture that is best for every products.

e In (b), each product has its own architecture. In this case we could develop special-
ized architecture for each product to realize the best characteristics. However, it is
expensive and bad for the total development cost.

As observed above, in product-line scoping, we have to examine not only the charac-
teristics of each product but also the characteristics of total development, such as devel-
opment cost and reuse ratio. These two characteristics are tend to conflict each other,
and in such a case, we have to examine the tradeoffs between these two.

3.4 Modeling Framework

3.4.1 Model for Software Structure

In this section, we explain the modeling framework for software structure used in the
paper. Though the design method proposed in the paper does not tightly combined
with the modeling framework below, it is incorrect to insist that the method is free from
modeling method because there are variety of modeling techniques for software structure.
Our modeling framework is one of common frameworks based on UML. Figure 3.8 shows
the framework.

e Logical structure (LStructure) and physical structure (PStructure) in the concep-
tual framework (Figure 3.1) are modeled as logical model and physical model re-
spectively. These two models are corresponding to analysis model and design model
in ordinary methodology.

20

FRequirement LStructure

—~

~
PStructure
—

PhysicalModel

\ ‘ LCollaboration ‘ ‘ PCollaboration ‘
0..% 0.%
0..% 0%
/ 0-* 0.%
r
——10.%)
D Constrains Constrains

Figure 3.8: Modeling Framework for Software Structure

Logical model consists of logical static model (LStaticModel) and logical collabo-
ration model (LCollaborationModel). Logical static model is described by means
of class diagram of UML, and logical collaboration model is described by means of
collaboration diagram of UML. Physical model also consists of physical static model
(PStaticModel) and physical collaboration model (PCollaborationModel).

Logical model is obtained by analyzing the requirements on function. In logical
static model, there defined conceptual elements that are used in logical collabo-
ration model. In logical collaboration model, there described interactions among
components and roles played by them, typically for specific aspects of software be-
havior. In UML, there are two types of collaboration model, one is at specification
level and the other is at instance level, and we believe both of them are useful for
our purpose.

As we have explained in 3.1.1, there are multiple physical structures dependent on
the different infrastructures. Corresponding to these multiple physical infrastruc-
tures, we can define multiple physical models that describe different structures, such
as run-time structure and development-time structure.

We do not model requirements on quality attributes straightforwardly. We describe
requirements on quality attributes as added information to logical model; attached
information to components in logical static model or logical collaboration in logical
collaboration model. We will explain this further in 3.4.2

Logical collaboration model and physical collaboration model consist of logical col-
laborations and physical collaborations respectively. If physical structure satisfies
the requirements on products, there must be physical collaborations corresponding
to logical collaboration that satisfies both requirements on function and require-
ments on quality attributes.

21

3.4.2 How to Represent Requirements on Quality Attributes

Though our modeling framework is almost as same as modeling framework adopted by
typical object-oriented method, the way to express requirements on quality attributes is
slightly extended. In this section, we explain how to represent variety of requirements on
quality attributes in this modeling framework.

e As we are interested in the quality attributes that relate to software architecture, we
categorize quality attributes by means of types of software architecture that deter-
mines the quality attributes. Namely, we categorize quality attributes into run-time
quality attributes, development-time quality attributes, deployment-time quality at-
tributes, and so on. Based on the category, we attach each requirement on quality
attributes to corresponding software structure model. For example, requirements on
run-time quality attributes are attached to run-time structure model, requirements
on development-time quality attributes are attached to development-time structure,
and so on.

e When we attach requirements to software structure, as explained above, we attach
the requirements to most appropriate modeling components. Typically, require-
ments are attached on static components modeled in logical static model or dynamic
collaborations modeled in logical collaboration model. As both components and col-
laborations can be defined hierarchically, we can attach requirements at arbitrary
level.

The way how to attach the requirements on quality attributes to proper components or
collaborations is context dependent, i.e. we have to analyze the required quality attributes
and judge most appropriate target. Table 3.3 shows some examples of quality attributes
picked up from ISO 9126, and typical examples how to represent the requirements. We
do not insist that all the quality attributes described here have strong relationship with
software structure, but we show the table to clarify how to represent requirements on
quality attributes. Basically, if the quality attribute is about static characteristics of
components, it is attached to the components. If it is about functions, it is attached to
the collaborations representing the functions.

In order to clarify our intention, we explain some quality attributes described in the
table.

e Functionality: Suitability is about the quality of design, and can be attached to
collaborations at design level. Interoperability typically relates data format and is
about run-time component structure.

e Reliability: Typically this quality is about set of services (functions), and can be
attached to collaborations that include the functions.

e Usability: Typically this attribute is about human interface or human operation
and this relates to run-times static / dynamic structure because that affects user
operation.

e Efficiency: Time behavior relates to run-time collaboration. Resource behavior
relates to run-time collaboration (run time resource) or run-time / development-
time components structure (static resource).

22

Table 3.3: Quality Attributes and their Representation

Quality Quality Software Components/
characteristics | sub-characteristics | structure collaboration
Functionality Suitability Run-time Collaboration
Accuracy Run-time Collaboration
Compliance Any structure Depends on the standard
Interoperability Run-time Collaboration
Security Run-time Both
Deployment-time
Reliability Maturity Run-time Collaboration
Fault tolerance Run-time Collaboration
Recoverbility Run-time Collaboration
Usability Understandability | Run-time Both
Learnability Run-time Both
Operability Run-time Both
Efficiency Time behavior Run-time Collaboration
Resource behavior | Run-time Both
Deployment-time
Maintainability | Analyzability Development-time | Both
Run-time
Changeability Development-time | Component
Stability Development-time | Component
Testability Development-time | Both
Run-time
Deployment-time
Portability Adaptability Development-time | Component
Installability Development-time | Component
Conformance Any structure Depends on the standard
Replaceability Development-time

23

e Maintainability: Analyzability relates to how easy to understand the dynamic be-
havior of software. Changeability and stability relate to development time static
structure. Testability depends on both structure.

e Portability: Basically relates to development-time component structure.

24

Chapter 4

Design Techniques

4.1 Overviews

4.1.1 Applicability and Preference

As observed in the previous chapter, we utilize applicability and preference in selecting
an architecture from architectural candidates. Figure 4.1 shows conceptual explanation
of these two concepts.

' DesignPolic

RonProduct Fulfil Product | esenreley

(from Software Architecture) (from Software Architecture) 7
0.% /
0..% 0.x
Categorizedinto DevelopedOn <Klink_attribute>>
Preference

CategoryOfR Fulfillable Architecture

(from Software Architecture) } (from Software Architecture)

|

<Klink_attribute>>

Applicability

Figure 4.1: Conceptual Model for Applicability and Preference

e In architectural design, we are to select applicable architecture, namely architecture
that fulfills the requirements on the products that will potentially be developed on
the architecture. In architectural candidates, some architectures are applicable and
some are not applicable. We can define applicability for every architecture in terms
of requirements on architecture (category of requirements), and this shows to what
extent the architecture fulfills the requirements in the category.

e Among multiple applicable architectures, we are to select an architecture that is
most preferable in terms of the design policy. We can define preference for every

25

architecture in terms of product, and this shows to what extent the characteristics
of the architecture are consistent with the design policy.

4.1.2 Tradeoffs between Individual Optimal and Whole Optimal

Figure 4.2 is the extended conceptual model, in which we express product-line, product-
line scope, product-family, and requirements on product-line.

—— |<Klink_attribute >>

0.% 0.%

RonProduct Fuffil | Product ‘
(from Software | (from Software Architecture)

0.%

0.%
DevelopedOn |~—

| <Klink_attribute>>

Architecture
(from Software Archit (from Archi Design)

preference

Figure 4.2: Conceptual Model for Tradeoffs

In product-line scoping, we define multiple product-lines in product family. Here,
product-line is a set of products that share the same architecture. As we have observed
previously, product-line scope affects the characteristics of the development of the product-
family as a whole. Requirements on product-line is the requirements on the product family
development. We will explain this further in 5.4.

4.1.3 Overview of Architectural Design

In architectural design, we select an architecture considering the applicability, appropri-
ateness, and tradeoffs. In order to support architectural design, we propose techniques
for examining them.

- Aspect-Oriented Analysis(4.2) - Ddecision-making -Requirement on
- Category of requirements(4.3) framework (4.4) product-lines (4.5)

Figure 4.3: Overview of the Architectural Design Method (Revised)

26

e In 4.2, we introduce Aspect-Oriented Analysis (AOA), that is the technique to
separate the requirement on each quality attribute from original requirements. As
it is difficult to handle quality attributes at the same time, this technique enables us
to analyze requirements one by one. This technique is used in identifying category
of requirements, introduced in 4.3

e In 4.3, we introduce a technique to identify category of requirements, using AOA.
This technique is used to decide the applicability of the architecture in terms of
requirements. This technique can be used to decide the most applicable architecture
among options; in other words, it decides the order among options in terms of range
of applicability.

e In 4.4, we introduce how we can apply decision-making technique to architectural
design. We use the technique to decide the preference among candidates. In our
framework, we can decide the preference consistent with the design policy.

e In 4.5, we introduce the notion of characteristics of product-line. In architectural
design, we have to consider the tradeoffs among individual optimal (whether ar-
chitecture is good for each product) and whole optimal (whether architecture is
good for product-line as a whole). In order to analyze the tradeoff, we analyze the
requirement on product-line and examine the characteristics of product-line as a
whole.

4.2 Aspect-Oriented Analysis [25, 27]

4.2.1 Designing Architecture Considering Quality Attributes

As we have discussed in 2.1, software structure has to fulfill not only requirements on
functions, but also requirements on quality attributes.

Most design methodologies deal functional design. In structured method, functions
are modeled as transformation of data, and modeled in terms of data flow diagram in
analysis phase. In design phase, components are structured so as to reflect the data
transformation. In object-oriented method, functions are modeled as collaborations and
we configure components so as to realize the collaborations. Our modeling framework
proposed in 3.4 is categorized into the latter type.

In architectural design, we have to capture ”categories of requirements” and ”cate-
gories of infrastructures”, and design software structure as the basis for potential software
developed on it. For functional design, we have many techniques to design platform such
as inheritances mechanism, framework technologies, and hot / frozen spot analysis, and
SO on.

In this paper, we do not explain how to analyze functions and design architecture so as
to realize required functions. We take a position that we use existing method for functional
design. If we do not have to consider requirements on quality attributes, functional
design works well. However, if we have to consider requirements on quality attributes,
functional design may not work well, as most methodologies consider restricted kinds of
quality attributes, typically extensibility and reusability, and do not consider other quality
attributes.

27

It is obvious that even if architecture fulfills requirements on functions, it cannot be
a platform if it does not fulfills requirements on quality attributes. Software structures
for mission critical systems and ordinary business systems have different structures, even
if required functions are exactly the same. In this sense, it is quite important to design
architecture considering functions and quality attributes. As there are many researches
on functional design, in this paper, we focus on the latter.

4.2.2 Problems

As we mentioned in 4.2.1, though there are multiple methods that handle functional
requirements, we do not have enough design methods that handle quality attributes. The
basic reason is that we do not correctly understand how software structure affects quality
attributes. We just understand them from our experiences.

The followings are typical problems in software design considering quality attributes:

e Generally, relationships among software structure and quality attributes are not
well understood. Though there are some researches that investigate on relation-
ship between specific quality attribute and software structure, we do not have any
systematic way to design software structure from requirements on quality attributes.

e We have to consider multiple quality attributes, some of them relate to different
structure and some relate to the same architecture. It makes requirements on qual-
ity attributes large and complicated. We need a systematic way to analyze these
requirements and make architectural design easier.

4.2.3 Overview of the Approach

In order to solve the problem, we have adopted the following approaches:

e For each quality attribute, we experientially know that there are important factors
that determine the quality attribute. For example, when we examine performance
of data retrieval, we focus on important factors such as size of search space, charac-
teristics of data and search type, and so on. We believe that utilizing these factors
for architectural design is good for establishing a systematic way for architectural
design considering quality attributes.

e As it is difficult to examine multiple quality attributes at the same time, we try
to examine the requirement on each quality attribute independently. If we could
separate requirements on each quality attribute from original requirements, analysis
work is expected to be easier, because the amount of requirements we have to
analyze at a time becomes small. We can also expect that we could examine the
characteristics of requirements on each aspect easily. This technique is so called
"separation of concerns” that is used when we want to reduce the size and complexity
of the original problems [23, 37].

4.2.4 Factors and Aspects

In order to examine systematic way of architectural design considering quality attributes,
we utilize factors that are experientially known to determine quality attributes. Here,

28

factors are defined as important determinants of some software characteristics. We ob-
serve that we utilize factors when we design architecture. For example, when we design
architecture for data retrieval considering performance, we may use factors such as ”size
of search space” and "types of data retrieval (sequential and random)”: if data space is
small, exhaustive search will be enough, if data space is large and we randomly retrieve
data, hashing mechanism works well, and so on.

Consider two quality attributes, performance of data retrieval and run-time memory
size of data retrieval; the performance is determined by data size, data number and
retrieval type, and the run-time memory size is determined by memory management
policy (what part of the data should be on memory) and data size. In this case these
two quality attributes have different sets of factors but some of them (in this case data
size) are shared. In general, if we are examining multiple quality attributes, we could find
factors for each quality attribute, and some of them are shared. Figure 4.4 depicts the
relationship among these concepts.

Requirement

<
~N
Definedln
0. o~
i 0..n 0.n
QRequirement —CharacterizedBy- Factor

Figure 4.4: Relationship between Requirements and Factors

Here, requirement consists of multiple requirements on quality attributes, and each
requirement on quality attribute is characterized by factors. These factors are defined in
terms of requirements. For example, if we are interested in size of search space, we have
to express this in terms of the notion defined in requirements.

Aspect is a view from which some software characteristics are well captured. If we
are interested in the aspect from which characteristics related to some quality attributes
are well captured, the aspect can be considered as a view in which factors related to
corresponding quality attributes are well described.

Our intention is to separate aspect that relates to specific quality attribute from orig-
inal requirements. This is regarded as the operation in which we focus on some quality
attributes, identify factors related to the quality attributes and define requirements in
terms of related factors.

4.2.5 Analysis Method

Here we introduce Aspect-Oriented Analysis (AOA). AOA is a method by which we
separate requirements on each quality attribute from original requirements. The followings
are analysis steps of AOA:

1. Determine quality attributes: decide the quality attributes we are to examine.

29

2. Determine components or collaborations related to requirements on quality at-
tributes: As we have mentioned in 3.4.2, requirements on quality attribute are
attached onto components or collaborations. We decide components or collabora-
tions to be analyzed.

3. Enumerate important factors: For each quality attribute, make a list of important
factors in this context.

4. Characterize components / collaborations in terms of factors.

5. Separate each aspect: For each quality attribute, separate requirements related
to the quality attribute from original requirements, utilizing factors related to the
quality attributes.

This operation is similar to projection of relational database. When we separate an
aspect from original requirements, we focus on factors that relate to the aspect, ignoring
other factors. As a result, we can focus on factors we are interested in. When we separate
aspect, some requirements become the same, because we may ignore factors that make
these requirements different. Consequently, number of requirements may become small
(Figure 4.5).

Quality attribute A is factorl |factor2
determined by factorl and factor2 | SL a t |J a1

S2 a S] A2
& S3 b s
A3

factor1|factor2|factor3 A b S _
S1 a t X There are 3 categories of requirements
S2 a s X on quality attribute A
3 b S y factor|factor3
A b s y

S1 a X
% 2 a X] Bl
S3 b
Quality attribute B is > b z] B2
determined by factorl and factor3

There are 3 categories of requirements
on quality attribute B

Figure 4.5: Separate Aspects

4.2.6 Example

We explain the method using an example. The system we are to analyze is software for
information terminal that retrieves map information stored in CD-ROM database. We
have to be careful to attain required performance of data retrieval because CD-ROM drive
is low-speed. We also have to be careful on the memory size, because this is embedded
software. Each market such as Europe, U.S. and Japan has different standards for CD-
ROM format.

30

area

name 1

0.% 15
B landmark
1 0.% name
address
map telephone
position
description
1 0.k P
mesh
0..% - 1
map_info

Figure 4.6: AOA Example: Logical Structure of Map Information

Figure 4.6 shows the logical structure of map information. Map has multiple areas,
and each area has multiple landmarks. The map is also divided into multiple meshes
(square areas), and landmark also belongs to a mesh. Each mesh has mapinfo, large
and complex data, which is necessary for displaying map on the screen and deciding the
position of the point where user selects by cursor. Description is textual information of
landmark, which is unfixed size and some of them are quite large size. Other attributes
are small and fixed size data.

1. Determine quality attributes: We design the software considering two quality at-
tributes, response time for data retrieval and run-time memory size.

2. Determine collaborations related to requirements on quality attributes: As response
time and run-time memory size in this case relate to functions, requirements on
these quality attributes are attached on collaborations. Table 4.1 shows list of
collaborations (S1 - S5) and attached requirements on these quality attributes. As
the function is data retrieval, we explain the input and output of the data retrieval
in the table.

Table 4.1: AOA Example: Requirements on Quality Attributes

input output | response | size
S1 | zip name | < 1sec | < 250K
S2 | tel name | < 1sec | < 250K
S3 | name tel < 1lsec | < 250K

S4 | position | name | < 1sec | < 250K
S5 | string name | < 1sec | < 250K

3. Enumerate important factors: For each quality attribute, make a list of important
factors that determine the quality attribute. (Table 4.2)

4. Characterize collaborations in terms of factors: Characterize each collaboration by
factors listed in the previous step. (Table 4.3)

5. Separate each aspect: Separate aspect from the requirements. If we are interested
in response time, we focus on the factors such as pattern, number, and size. If we

31

Table 4.2: AOA Example: Factors for Each Quality Attributes

factors meaning
response | access pattern | random or sequential
number number of data in search space
size large or small / fized or unfized
size mapinfo size of mapinfo in CD-ROM

Table 4.3: AOA Example: Results of Characterization
pattern number | size mapsize

S1 | random 100 small /fixed 0
S2 | random 100,000 | small/fixed 0
S3 | random 100,000 | small/fixed | 0
S4 | random 100,000 | small/fixed | 50K*4
S5 | sequential | 100,000 | large/unfixed | 0

are interested in memory size, we focus on factors such as mapsize. Ignoring other
factors, we obtain the following separated requirements. (Table 4.4, Table 4.5)

Table 4.4: AOA Example: Separated Aspects (Performance)
pattern number | size response
CP3 | random 100 small/fixed < 1 sec
CP4 | random 100,000 | small/fixed < 1 sec
CP5 | sequential | 100,000 | large/unfixed | < 5-6 sec

4.2.7 Application of the Method

Using the technique, we can separate aspects, each of which well captures the require-
ments on some quality attributes. Namely, we can separate three types of requirements
on response time, two types of requirements related to memory size, from original re-
quirements. We can expect that analysis work for requirements on each quality attribute
becomes easy, because complexity and size of the requirements we have to analyze at a
time becomes simple and small. We can understand the spectrum of requirements on
quality attributes in a systematic and analytic way.

This method is a basic technique and it does not help architectural design straight-

forwardly. In the next section, we introduce another technique for architectural design,
in which we fully utilize AOA.

32

Table 4.5: AOA Example: Separated Aspects (Size)
mapsize | size

| CS1 |0 < 250K
| CS2 | 50K * 4 | < 250K

4.3 Identifying Category of Requirements [28]

4.3.1 Category of Requirements

In order to design software architecture to be steady throughout evolution, it is important
to identify ”category of requirements”. Here, category of requirements means the set of
requirements that can be fulfilled by the same architectural technique. For example,
consider the series of products that have the similar functions, such as data retrieval,
but the requirements on number of data in the search space becomes larger; say 1,000
items, 10,000 items, and 100,000 items. Assume that we can realize these products on
the same architecture until the requirements become 10,000 items, but we need entirely
different architecture for 100,000 items. In such a situation, we can say that the first
two requirements (1,000 items, and 10,000 items) are in the same category, and the last
requirement (100,000 items) is in a different category. The reason why we introduce
the idea of ”category of requirements” is that, in architectural design, it is important to
identify the commonalities and differences of necessary architectural techniques, because
if two requirements can be fulfilled by the same architectural technique, we do not need
to change the architecture even if they are not exactly the same.

4.3.2 Identifying Category of Requirements

As we mentioned in the previous section, ”category of requirements” depends on architec-
tural technique that can be used for the target software. Therefore, when we identify the
categories, we have to examine both requirements and possible architectural techniques.
The followings are the steps to identify ”category of requirements”. As category of re-
quirements is defined for each quality attribute, we consider just one quality attribute in
this section. In the next section, we will show how to handle multiple quality attributes
based on the categories for each quality attribute.

Here product means software we are to consider. Each product includes important
functions for which we have to examine architectural techniques in order to fulfill require-
ments. In general, each product has multiple important functions. In such a case, apply
the following steps to each important function.

1. Decide the quality attribute to be examined: Pick up quality attributes we are to
examine. For example, in the case of developing products that retrieve data in
storage, the response-time of data retrieval and run-time memory size are typical
quality attributes to be examined.

2. Identify the variation of requirements in terms of the quality attribute: Examine the
requirements on the quality attribute, and identify the variations. For data retrieval
example, consider that there are three products in a family, and requirements on

33

response time are the same, but the number of items in search space is different
(Table 4.6). In this case, we can identify three variations in requirements; R1, R2
and R3.

Table 4.6: COR Example: Variation of Requirements on Quality Attributes

response time | number
P1 | < 2-3 sec 100 —R1
P2 | < 2-3 sec 1.000 —R2
P3| < 2-3 sec 100,000 | —R3

. Make a list of candidates of architectural techniques: Considering the variation of
requirements, make a list of candidates of architectural technique. For data retrieval
example, if the requirements are not severe, we can attain them without considering
any architectural technique, and we may design architecture so as to reflect the
structure of analysis model that captures the nature of target domain, because it is
considered to be good for extensibility. However, if the requirements are severe, we
have to examine architectural techniques. In this case we enumerate two candidates;
A1 has caching mechanism, and A2 loads index data of storage onto memory at the
initialization time. Let AO be the architecture that reflects the structure of analysis

model (Table 4.7).

Table 4.7: COR Example: Candidates of Architectural Techniques
A0 | Architecture that reflects the structure of analysis model.
A1l | Architecture that adopts caching mechanism.

A2 | Load index data onto memory at the initialization time.

. Identify the categories: Check if each candidate listed in the previous step can be
applicable to each variation of requirements. If the set of applicable architectural
techniques are the same, categorize the requirements into the same category. If
the set of applicable architectural techniques are different, categorize them into the
different categories. In the data retrieval example, we determine that we can fulfill
R1 and R2 without any architectural technique, but we need Al or A2 to fulfill R3.
Based on this examination, we identify two categories: CP1 that can be fulfilled by
A0, A1 or A2 and CP2 that can be fulfilled by A2 and A3. (Table 4.8).

Table 4.8: COR Example: Identifed Categories of Requirements
requirements | applicable architectural techniques
CP1 | R1, R2 A0, A1, A2

CP2 | R3 Al, A2

34

4.3.3 Analyzing Commonalities and Differences

In architectural design, we are to design software architecture to be steady throughout
the evolution, or we are to make the architecture to be the platform of the software in
the product family. In order to design software architecture to have such characteristics,
we have to analyze the commonality and differences of necessary architectural techniques
and design software architecture so as to accommodate the commonality and differences.

In the previous section, we propose the technique to identify the ”category of require-
ments”, in which we focus on one quality attributes. In actual architectural design, it is
common that we have to consider multiple quality attributes; however, considering multi-
ple quality attributes at a time is not easy. We have adopted "separation of concerns” to
this problem. Namely, we firstly examine the ”category of requirements” that is defined
for each quality attributes, and then merge the result to find out the commonalities and
differences of necessary architectural techniques.

1. Define the scope of the analysis: Assume the scenario of evolution or that of devel-
opment of products in a family. Pick up target products to be analyzed from the
scenario. We also decide quality attributes, from which we analyze requirements.
For example, consider products that retrieve data in storage. We analyze three
products P1, P2 and P3 in a product family. We focus on the response time and
memory size. Table 4.9 shows the requirements on the quality attributes for these
products.

Table 4.9: COR Example: Requirements on Products
number | response time | memory size

P1 | 100 < 2-3 sec small
P2 | 1,000 < 2-3 sec
P3| 100,000 | < 2-3 sec

2. Identify the ”"category of requirements” for each quality attribute: Using the tech-
nique proposed in the previous section, identify categories of requirements for each
quality attributes. Table 4.10 and Table 4.11 show the categories of requirements
we have identified for the data retrieval example. In this table, "*’ represents "no
requirements”. The categories of requirements from performance are as same as we
have identified in the previous section. For memory size, we cannot use A2 if mem-
ory size is required to be small, because loading index data requires considerably
large memory size.

Table 4.10: COR Example: Category of Requirements from Performance
number response | architectural techniques
CP1 | 100-1,000 | < 2-3 sec | A0, A1, A2

CP2 | 100,000 < 2-3sec | Al, A2

3. Analyze commonalities and differences: Firstly, we determine the applicability of
architectural technique to each product. Table 4.12 shows how to determine the

35

Table 4.11: COR Example: Category of Requirements from Size
memory size | architectural techniques
CS1 | small A0, A1

CS2 | * A0, A1, A2

applicability. From performance aspect, we can apply AO to P1 and P2, and from
size aspect, we can use AQ to every product. Therefore, if we are to attain both
requirements, A0 is applicable to P1 and P2. Similarly, A1 is applicable to every
product, and A2 is applicable to P2 and P3. Table 4.13 is a matrix obtained from
the merged result. In this table, 'x’ indicates ”applicable.

Table 4.12: COR Example: Commonalities and Differences

A0 Al A2
performance P1, P2 P1, P2, P3| P1, P2, P3
size P1, P2, P3| P1, P2, P3 | P2, P3
merged result | P1, P2 P1, P2, P3| P2, P3

Table 4.13: COR Example: Applicability Matrix

P1 | P2 | P3
A0 | x | x
Al | x | x | x
A2 X | x

Based on the analysis, we can understand the commonalities and differences of nec-
essary architectural techniques. Table 4.13 shows what architectural techniques can be
applicable to each product. P1 and P2 can use A0, but P3 cannot. Every product can
use Al. P2 and P3 can use A2, but P1 cannot. Note that, applicable means that the
requirements can be fulfilled, but it does not mean that every applicable architecture can
attain the same level of quality attribute. For example, both A0 and A1 is applicable to
P1, we can expect that A1l attains better performance than A0, and so on.

4.3.4 Applying the Techniques to Architectural Design

We can apply the technique introduced in the previous sections to early phase of archi-
tectural design in which we make decision on the direction of architectural design. In
the next chapter, we will explain how to design architecture in detail. Here, we explain
typical steps:

1. Determine the style of global architecture: Our technique proposed above is used
to select architectural candidates for important functions included in products. In
general, each product includes multiple important functions for which we have to
examine the architectural techniques. However, architecture of the entire product is

36

not just a gathering of architectural techniques selected for each important function.
In order to make the architecture consistent, we generally examine the architectural
style that governs the entire product. This style constrains the architectural selec-
tion in the following steps.

. Identify categories of requirements: Decide quality attributes we have to examine,
then, for each quality attribute, identify categories of requirements (see 4.3.2).

. Analyze commonalities and differences: Based on the identified categories of re-
quirements, analyze the commonalities and differences on necessary architectural
techniques (see 4.3.3).

. Determines the basic policy: Determine the basic policy of architecture selection.
In step 3, we have identified applicable architectural techniques to each product.
In general, we can expect that the number of architectural techniques decreases by
step 3, but we cannot always select one architectural technique. (If the number of
applicable architectural technique becomes zero, it means we cannot think of how to
fulfill requirements). At this step, we do not consider which architectural technique
is good for each product, but examine the product-wide strategy of development.
Typically we have to examine from the following viewpoints:

e If products are developed sequentially, we have to consider if architectural
change is necessary or not. In the example of data retrieval system (Table
4.13), if we choose A2, no architectural change is required. However we may in-
tentionally abandon continuation at some point, and develop high-performance
model based on different architecture.

e If products are in the product family, we have to consider to what extent we
are to share the same architecture. If we are to reduce development cost, it
may be good to maximize the sharing. However, we may want to use different
architecture for high-end product, to realize the high-performance, and so on.

. Select proper architectural techniques for each product: For each product, select
appropriate techniques, based on the policies determined in the previous section.
We may not be able to select one architectural technique for each product using the
basic policy. Typically we have to examine the followings to select a technique:

e Compare candidates in terms of quality attributes. Even if multiple archi-
tectural candidates are applicable to the product, they do not have the same
level of quality attribute. In the data retrieval example, A2 is better than Al
in terms of performance. Under the constraints of basic policy, select better
candidate for the product. In this step, it is common to encounter the tradeoff
problem. In the above example, Al is better than A2 in terms of memory
size. Therefore, we have to make decision considering which quality attribute
is important.

e Examine issues specific to the product. For example, even if we decide one
architectural technique, say Al is better than A2, we may select A2 if it is
a common architecture in the market. This kind of examination is quite im-
portant but difficult to systematically do. If we introduce this kind of exam-
ination too early, it becomes a big bias of architectural design, and we may

37

design architecture just based on our impression. Therefore, we believe that
it is important to examine architecture systematically in prior to considering
this kind of issues.

4.3.5 The Meaning of Category of Requirements

In architectural design, we examine multiple requirements, and design software architec-
ture to fulfill these requirements.

In functional design, there are a few ways to design software architecture to be the
platform for multiple requirements. One is to develop software architecture to have every
required functions. Each software selectively use these functions. One another is to de-
velop software architecture to have the common part of the requirements. Each software
is developed on the platform adding the difference on it. Furthermore, we could de-
velop software architecture to have abstract functions for requirements, and each software
defines concrete functions utilizing these architecture.

In quality aspect, on the other hand, the techniques are not well studied. However, one
way is to make software architecture to be able to fulfill the wider range of requirements
on quality attributes. We can compare the width based on the category of requirements.
For example, in Table 4.13, A0 can fulfill the requirements for P1 and P2, and Al can
fulfill that for P1, P2 and P3. Therefore, Al can fulfill the wider range of requirements.
(Figure 4.7)

Al (PL, P2, P3)

AO (PL, P2) A2 (P2, P3)

Figure 4.7: Partial Ordering based on the Category of Requirements

4.3.6 Impact of Infrastructure towards Quality Attributes

When we identify category of requirements and examine applicability, we do not consider
the infrastructure. However, it is not rare that infrastructure of the software such as
hardware, operating system and middleware would change during the evolution, or we
have to develop products in product-line on multiple infrastructures. It is one of the
typical techniques to adopt layered architecture in which we design a layer that hides
the differences of infrastructures. However, this technique does not always work well,
especially when we consider the quality attributes such as performance and memory-size.

Assume that we develop a family of information terminals that retrieve information
stored in CD-ROM database. Though the CD-ROM format in the U.S. market is dif-
ferent from that in the Japanese market, we want to develop the same architecture for
both markets. As the format of CD-ROM significantly influences the performance of the
software because of its slow access speed, certain parts of the architecture have to depend

38

on the CD-ROM format in order to fulfill required performance. Figure 4.8 shows the
logical structure of the information terminal.

touch_panel retrieval display
. . landmark
map 0.. area 0.. name
- name address
description

Figure 4.8: Infra Example: Logical Structure of Information Terminal

Consider the function that retrieves description that includes a given string s. As this
function has to search every description text, physical format of CD-ROM has strong
impact on the performance. Figure 4.9 and Figure 4.12 indicate physical formats of CD-
ROM respectively. In these figures, the information about the physical format (physical
arrangement) of the ”description” data is shown. In format A, ”description” data is
grouped by the area in which corresponding landmark is included, and sorted by name.
In format B, all the description data are placed in the continuous sectors, and sorted by
id.

map

[andmark] .--~~ nameand addressare stored here
e

w>§

{sorted by name}

description of a2

\4

landmark continuous sectors

{sorted by name}

v

continuous sectors

Figure 4.9: Infra Example: Physical Format of CD-ROM A

map F——— area * l[andmark
name id
search(s) name
address

Figure 4.10: Infra Example: Proper Architecture for CD-ROM A

Based on the above analysis, we examined whether or not CD-ROM format has an
impact on the architecture. To realize function that retrieves data on the CD-ROM
format A is relatively straightforward. In the physical format, ”description” data in the
same ”area” are placed in the continuous sectors, so we just search the description data
from the beginning of the sectors. Therefore, we defined the method ”search(s)” (search
a string s from the set of ”descriptions” included in the corresponding ”area”) in class
7area” (Figure 4.10). On the other hand, to realize the function on the CD-ROM format

39

B is not so straightforward. In order to read the continuous sectors from the beginning
and not to cause unnecessary seeks, we first retrieve the landmarks in the specified area,
sort their id’s, and read ”description” data from the beginning of the sectors skipping
unnecessary part. Therefore, we have defined the method ” get_idlst()” (get the list of id’s
included in the corresponding area) in class "area”, and define the method ”search(idlst,
s)” (search a string s from all the ”description” whose id is included in the idlist) in class
"map” (Figure 4.12).

map
» area
A » |landmar k
B al
\ 2]
landmark
bl
o
b
{sorted by id]

Ydescription of a1[description of b3 Hescription of bflescription of a2

>

continuous sectors

Figure 4.11: Infra Example: Physical Format of CD-ROM B

map area landmark
name id
search(idlst,s) get_idist() name
address

Figure 4.12: Infra Example: Proper Architecture for CD-ROM B

4.3.7 Category of Requirements and Infrastructure [27]

As we have examined in 4.3.6, when we have to consider multiple infrastructures, we have
to carefully examine the impact of infrastructure towards quality attributes. As same
as we examine requirements on potential software, we have to examine infrastructures of
potential software. Assume that we have analyzed category of requirements to examine
applicability.

There are three products P1, P2 and P3, and requirements on response time is shown
in Table 4.14.

Table 4.14: Infra Example: Requirements on Products
number | response time
P1 | 100 < 2-3 sec
P2 | 1,000 < 2-3 sec
P3| 100,000 | < 2-3 sec

We have three architectural candidates AO, A1 and A2, and identified categories of
requirements are shown in Table 4.15. Based on that we have decided the applicability

40

Table 4.15: Infra Example: Category of Requirements
number response | architectural techniques
CP1 | 100 - 1,000 | < 2-3 sec | A0, A1, A2

CP2 | 100,000 < 2-3sec | Al, A2

Table 4.16: Infra Example: Applicability Matrix
P1| P2 | P3
A0 | x | x
Al | x | x | x
A2 | x | x | x

as Table 4.16. Here, we consider the infrastructure. Let PO and P1 are developed on
infrastructure 10, and P2 is developed on infrastructure I1. A0, A1 and A2 can fulfill per-
formance specified as CP1 regardless of infrastructure, but in order to attain performance
specified as CP2, Al has to be developed on 10 and A2 has to be developed on I1.

Table 4.17: Infra Example: Category of Infrastructure

number response | candidates | infrastructure
CP1 | 100 - 1,000 | < 2-3 sec | A0, A1, A2 | 10, I1
CP2 | 100,000 < 2-dsec | Al 10
A2 I1

Category of infrastructure is defined for each category of requirements, and defined
as a set of infrastructure on which same set of architectural techniques can fulfill the
requirements included in the category of requirements (Table 4.17).

4.4 Decision-Making in Architectural Design [26, 29]

4.4.1 Architectural Design as Decision-Making Problem

As we have described in 3.2.1, we select architecture from architectural candidates that
is most appropriate in terms of requirements on potential products developed on it and
best matches the design policy. Though we can select architectures that satisfy the re-
quirements on potential products using the technique based on category of requirements,
there may remain multiple architectures that satisfy requirements. In such cases, we try
to select one that best matches the design policy. We have mentioned in 3.2.1 that design
policy gives the rules to determine the preference among candidates. In other words,
selecting architecture that matches the design policy is to select most preferable archi-
tecture in terms of quality attributes. This process can be regarded as decision-making
problem.

The other reason we are to apply decision-making framework toward architectural
design is that we have to select architecture in the early phase of software development.

41

In the early phase, we do not have enough information about the architectural candidates,
but we have to select design direction anyhow. We believe that when we select architecture
based on information in hand, we need a systematic framework to do so, unless we select
architecture just depending on our intuition. It is also important to make it possible to
trace how we selected candidates. If we have leave information for tracing, we could check
the validness of the decision, when we would obtain new information later on.

4.4.2 Decision-Making Framework

In decision-making, we select preferable one from multiple candidates in terms of decision
criteria [20, 41]. In this paper, we consider architectural design as decision-making activity
as follows (Figure 4.13):

e Candidates: We assume that architectural design is to select preferable architecture
from architectural candidates in terms of decision criteria.

e Decision criteria: The decision criteria are quality attributes we are to consider
when we design architecture. When we examine product-lines, we have to consider
the quality of product-line as a whole, such as total development cost and reuse
ratio. We will explain about quality of product-line in the next chapter.

e Preference: In general, we have to consider multiple criteria, and it is difficult to
select single architecture that is superior to other candidates in terms of multiple
criteria. We have to prioritize criteria so as to reflect the policy of product-line
development.

Decision criteria

Fulfill

RonProduct 0,“* Product
]
0..% 0..%
Categorize dinto <<lin attribute>> \
candidates T F’”’\fm"“
1 weig.ting among
CategoryOfR : e quality attributes
] 0..% 0..% L 1
’ preference
<<lin attribute>>
Applicability

Figure 4.13: Decision Making Framework

4.4.3 Analytic Hierarchy Process (AHP)

Analytic Hierarchy Process (AHP) is one of the decision-making methods in which we
select most preferable one from candidates in terms of design criteria [41]. In AHP,

42

this scheme is depicted in Figure 4.14. Here, the target is to select most appropriate
architecture, design criteria are seven quality attributes such as reliability, response and
so on, and we have four candidates, option 1 to option 4. AHP is based on simple pair wise

’ Most appropriate architecture ‘

| [] | [|

infra ease of user
cost data renewal cost

| | | | | |

reliability response saf ety extensibility

l l l l

optionl option2 option3 option4

Figure 4.14: An Example of AHP Scheme

comparison among criteria and options. Firstly, we decide the relative importance among
criteria based on pair wise comparison. Secondly, from each criterion, we also make pair
wise comparison among architectural candidates. Finally, based on these comparisons,
we can obtain overall priorities. We will explain the procedure in the next section.

4.4.4 Applying AHP to Architectural Design

Here, we have picked up an example from ITS on-board systems (see chapter 3.3 in detail)
in which we select architecture for detecting vehicle position. As we have shown in Figure
4.14, we have seven quality attributes as criteria and four architectural candidates.

Firstly, we make pair wise comparison among criteria to decide the weight of each
criterion. Table 4.18 shows the result of the pair wise comparison. Here, 1 means that
two criteria are the same importance, 3 and 5 mean it is more important, and 1/3 and 1/5
mean it is less important. These values represent the relative importance. In the table,
there represent that reliability is more important then safety but it is less important than
user cost, and so on. Based on these pair wise comparisons, we can obtain weights of each
criterion. We indicate the value in Table 4.18.

Secondly, for every criterion, we make pair-wise comparison among candidates. Table
4.19 shows pair wise comparison among candidates in terms of reliability. We also cal-
culate the weight for every candidate. This table says that option2 is best in terms of
reliability. We make this kind of comparison for other quality attributes.

When we got weights of criteria and weights of each option in terms of every criteria
we can calculate the final weight for each option. Table 4.20 shows that option 4 is most
preferable one among four options.

AHP is a tool to support decision-making and it gives us the weight among options
based on pair wise comparison among criteria and options in terms of each criterion.
Though it may be difficult to judge which option is the best, it is relatively easy and clear
to judge small pair wise comparison. Based on these small decisions, AHP calculates the
final weights among options in terms of design criteria. AHP shows just a consequence
obtained by small decisions we made. Therefore AHP people warn that it is dangerous to

43

Table 4.18: AHP Example: Comparison among Criteria and Obtained Weights

Relia- | Re- | Safety | Extensi- | Infra. | Ease of | User || weight
bility | sponse bility cost data cost
renewal
Reliability 1 1 3 1 1 1/3 1/3 0.101
Response 1 3 1 1 1/3 1/3 | 0.101
Safety 1 1/3 | 1/3 | 1/5 | 1/5 | 0.041
Extensibiity 1 1 1/3 1/3 0.101
Infra. cost 1 1/3 1/3 0.101
Ease of data 1 1 0.279
renewal
User cost 1 0.179

Table 4.19: AHP Example: Comparison among Options and Obtained Weights

Optionl | Option2 | Option3d | Optiond || weight
Optionl 1 1/7 1/5 1/5 0.052
Option2 1 3 3 0.528
Option3 1 1 0.21
Option4 1 0.21

Table 4.20: AHP Example: Final Weights of Options

weight
Optionl | 0.18
Option2 0.3
Option3 | 0.205
Option4 | 0.319

44

use the weights without examining their appropriateness. They suggest that once we get
weights, we should examine the result if it reflects our preference, and repeat the process
until we get satisfactory weights.

In the case of making decision of architectural selection, we find that it is useful
to check the portfolio of each options in terms of quality attributes, category of quality
attributes (run-time, development-time, and so on) and to whom the quality gives benefit.

Figure 4.15 is a chart that shows portfolio of each candidate in terms of quality at-
tributes. We understand that option4 is good for user cost and option2 is good for ease of
data renewal. As we think that user cost is most important, we prefer option4. This chart
visually shows characteristics of each candidate, and helps us to understand the meaning
of weights obtained by AHP.

reliability
0.

Optionl :::i:i:i:t
Option2
response Optl0n3

Option4 N

user cost

ease of data renewal safety

infra. Cost extensibility

Figure 4.15: AHP Example: Portfolio (by Quality Attributes)

Figure 4.16 is another view of portfolio. As quality attributes can be categorized by
means of the software structure, we categorized them into run-time quality attribute,
operation-time quality attributes and development-time quality attributes. This shows
that our preference is mainly based on operation-time quality attributes. If we think that
run-time quality attributes or development quality attributes are more important than
operation-time quality attributes, the preference may change.

Figure 4.17 shows the portfolio in terms of stakeholders, i.e. to whom these options
are beneficial. As it is difficult to distinguish developers from operators (who manages the
system), we categorize stakeholders into two, user and developer/operator. We understand
optiond is good for user, and option2 is goof for developer/operator. This portfolio gives
us the different view from those of other portfolios. Though both user cost and ease of
data renewal are operation time quality attributes, the former is for user and the latter
is for system manager.

Figure 4.18 shows the framework how we apply AHP to architectural selection.

e Firstly, we decide the policy for pair-wise comparison based on the design policy.
For example, we decide the guideline of using the scale (such as 3, 1, 1/3).

45

execution i

0.25 Optiond i
Option2
Option3

Option4 N

operation development

Figure 4.16: AHP Example: Portfolio (by Types of Quality Attributes)

0_25user Optionl it
Option2
Option3
Option4 N

developer/operator

Figure 4.17: AHP Example: Portfolio (by Stakeholders)

desian nolic architectural
gn policy candidates
make policy for
pair comparison
A 4
review the result <:| pair comparison preference
(check portfolio) and calculation (pair-wise)

preference |
among candidates)

Figure 4.18: Framework of Applying AHP to Architectural Design

46

e Secondly, we make pair-wise comparison among criteria and architectural candidates
to calculate weights among them, and decide the preference among candidates in
terms of design policy.

e Thirdly, we review the result. In this step, it is useful to analyze the portfolio of
each candidate. We iterate this process until we will be satisfied with the result.

Through out these steps, it is assumed that we can decide the preferences for pair-wise
comparison. AHP just shows us the preference among candidates, as the consequence of
pair-wise comparison.

4.5 Determining Product-line Scoping [29]

4.5.1 Issues in Product-line Scoping

Product-line scoping is used to define the product-line. Namely it determines the products
that comprise the product-line. Once a product-line is defined, we design a product-line
architecture for it, and we examine the strategic development of the product-line utilizing
the reusable assets based on the architecture. Therefore, when we define the scope, we
have to examine whether or not it is appropriate for the products in product-line to share
the architecture. In order to examine the appropriateness of sharing the architecture, it
is useful not only to determine a set of products in the product-line, but also to examine
what type of architecture would be shared by the determined products. In this paper,
we define product-line scoping to be not only determining the member products but also
examining architecture for the product-line. In other words, scoping is to divide a given
set of products into one or more product-lines, and to examine the architecture for the
product-line. Figure 4.19 shows an example of product-line scoping.

S1
[P1 | [P2 | [P3 | [P4 |
AL D
S2
[Pt || P2 || P83 || P4 |
S3
[P1 | [P2 | [P3 | [P4 |

Figure 4.19: Example of Product-line Scoping

We describe a scope as a set of product-lines and a product-line as a pair of members-
list and architecture. For example, assume that we have given a set of products P1, P2,
P3 and P4, and A1l and A2 are architectural candidates for these products. Table 4.21
shows some examples of scope we could define:

47

Table 4.21: Example of Description of Product-line Scoping
S1 | <P1, P2, P3, P4, Al>

S2 | <P1, P3, Al>, <P2, P4, A2>
S3 | <P1, P3, P4, Al>, <P2, A2>

S1 is a scope in which we define one product-line that includes every product and
they share the architecture Al. S2 is a scope in which we define two product-lines, one
includes P1 and P3, and the other includes P2 and P4, and so on. We do not prohibit a

product-line to be consisting of a single product.

4.5.2 Requirements on Product and Product-lines

In our methods, we treat two types of requirements, one type is the requirements for each
single product and the other type is the requirements for the product-line.

Requirements for single products are divided into requirements on functionality and
requirements on quality attributes. In our method, we examine important services the
product has to provide, and important requirements on quality attributes such as per-
formance and memory size. As we examine the architecture for each product-line, we
have to be careful whether or not the selected architecture is suitable for requirements for
each single product. In this sense, the requirements for each product relate to individual
optimal.

Requirements for product-lines show how we want to develop product-lines. Even if
scoping is the same, the characteristic of product-line development may be different, for
instance, development cost. For example, consider two products P1 and P2, which are
developed sequentially, and we want to develop P2 faster, it is good to let P1 and P2 share
the same architecture. Though there may be many complicated situations, we observe
that there are typically two types of important situations in terms of determining the
benefit of architecture sharing:

e Sequentially: The situation in which products are developed sequentially. For ex-
ample, develop the high-end model first, and then develop the cost-down model.

e Co-existence: The situation in which products are developed simultaneously or in
parallel. For example, develop products for different markets at the same time.

In the above cases, we can expect developing the products efficiently, if they share the
same architecture. On the other hand, if we have to change the architecture, it would take
time and the development becomes expensive. We do not claim that every product that
is developed sequentially or in parallel has to share the architecture with other products.
There may be a situation in which we want to release a product right after the previous
product is released, or there may be another situation in which the quality of the product
is more important than the release speed. Therefore, we should check the situation to
determine the product-line scope. In other words, if we are not sure which products
are developed first, or which products are developed simultaneously, we cannot judge
whether they should share the architecture or not. In this paper, we describe sequential
development and co-existence development as follow;

48

| P1 —» P2

Figure 4.20: SCP Example: Description of Sequentially and Co-existence

In Figure 4.20, an arrow denotes sequential developments, and a dotted square denotes
co-existent developments. For example, P2 is developed right after P1, and P3 and P4
are developed simultaneously after developing P2. When we examine requirements on
product-lines, we firstly identify these sequential products, which are developed subse-
quently and which do co-exist. Next we evaluate whether a scope is good or bad in terms
of the quality of the product-line. Consider the above example in Figure 4.20. There
defined four sequential links and one co-existent link. When each requirement is as im-
portant as the others, we may define the scope so as to satisfy as many requirements as
possible. If there defined priorities among them, we define the scope to satisfy the most
important requirement. For example, assume that we want to develop P3 and P4 as fast
as possible after developing P2. In such a case, Scopel = { < {P1, P2, P3, P4}, A1 } and
Scope2 = { < {P1}, Al >, < {P2, P3, P4}, A2 > } are considered to be good in terms
of this requirement, since P2, P3 and P4 share the same architecture. However, Scope3
= { < {P1, P2}, Al >, < {P3, P4}, A2 > } is not considered good because in Scope3,
the architecture for P3 and P4 are different from that of P2.

4.5.3 Design Policy

In determining the product-line scope, using requirements for each single product and
for the product-line as a whole, we first have to judge whether or not the scope under
consideration can fulfill the requirements. For example, assume that we have scope S = {
< {P1, P2}, Al>, <{P3}, A2 > }. In order to fulfill the requirements on each product,
A1 has to fulfill the requirements on P1 and P2; and A2 has to fulfill the requirements on
P3.

Though we may restrict the number of scoping candidates by excluding candidates
that do not satisfy the requirements, there may remain multiple candidates. In product-
line scoping, we have to select one from these candidates. In such a case, we generally
select the one that best matches the design policy of the product-line. Each candidate that
satisfies the requirements has different characteristics. The design policy should give us
the way to select from different candidates. In this paper, we characterize the candidates
by means of quality attributes, and the design policy is defined as the priority among the
quality attributes.

4.5.4 Applying Decision-Making Framework

During decision-making, we preferably select one from multiple candidates in terms of
the decision criteria [20]. [41] We can apply this framework to product-line scoping, as
this requires many decisions. For example, as we mentioned above, we have to select the
most appropriate scope from multiple candidates of the product-line scope that satisty

49

different quality attributes. There is no objective way to decide which one is the best in
terms of multiple quality attributes. We have to make a decision that is most suitable for
our design policy.

In this paper, we consider scoping as a decision-making activity as follows:

e Options: We assume that scoping is to preferably select one from multiple candidates
of the product-line scope in terms of the decision criteria.

e Decision criteria: There are two types of decision criteria. One type relates to re-
quirements for each single product in terms of quality attributes such as performance
and reliability [26]. The other type relates to requirements for the product-lines in
terms of 'qualities’ of product-line as a whole, such as total development cost and
reuse ratio.

e Preference: In general, we have to consider multiple criteria, and it is difficult to
select a single scope that is superior to other scopes in terms of multiple criteria.
We have to prioritize criteria so as to reflect the policy of product-line development.

20

Chapter 5

Design Method

5.1 Design Policy

5.1.1 Relationship among Three Types of Architectural Design

We have categorized architectural design into three types, architectural design, product-
line architectural design and product-line scoping. We will explain the design procedure
for each type of architectural design from the following sections. However, these three
design procedures are not completely independent. They share the same techniques we
have explained in the previous chapters, and roughly speaking, product-line architec-
tural design includes architectural design, and product-line scoping includes product-line
architectural design. .

5.1.2 Basic Design Procedure

Basic procedure for architectural design is as follows:

1.

Define design policy and scope of design: Clarify the target product or product-
family to which we are to design architecture. We also have to clarify what kind
of quality attributes we are to consider and define design policy in terms of these
quality attributes.

. Clarify requirements: Clarify the requirements on target product or product-family.

Examine the applicability: For each architectural candidate, examine whether or
not it can fulfill the requirements in terms of each quality attribute. In this step,
we utilize AOA and the idea of category of requirements.

Examine the preference: Though there may be multiple candidates that are applica-
ble to the products, they have different characteristics. We examine the preference
among candidates in terms of design policy.

. Examine the tradeoffs: In product-line scoping, we have to examine the tradeoff

between individual optimal and whole optimal.

Decide the design: Based on the result of examination on applicability and pref-
erence, we decide the design, namely select most appropriate architecture from
architectural candidates.

o1

This basic procedure is summarized in Figure 5.1.

Define policy and scope

4

Clarify requirements

I

Examine applicability

I

Examine preference

I

Examine trade-offs

I

Decide the design

Figure 5.1: Basic Design Procedure

Our policy of defining design procedure is that even though we may not have enough
information at architectural design phase, we examine current information systematically
and analytically before making decisions, because it is quite important to make the design
objective and traceable. We believe that it is important for architectural design not only
to obtain good result but also to clarify the way how we reach the result, as architectural
design is not a static process but dynamic process in which we check the appropriateness of
decision and examine the effect to the result whenever new information about architectural
design becomes available.

5.2 Simple Architectural Design for a Single Product

The followings are design procedure for architectural design for single product. Here we
explain the procedure using a simple example.

1. Define design policy and scope of design: Assume the scenario of evolution or that
of development of the product. Pick up target products to be analyzed from the
scenario. We also decide quality attributes, from which we analyze requirements.
For example, consider products that retrieve data in storage. Though our target is
to design the architecture for P1, we assume evolution scenario for P1, and examine
three products P1, P2 and P3 for the architectural design (Figure 5.2). We focus
on the response time and memory size. We also define design policy. In which, we
decide response time is more important than memory size. We think requirement
on P1 is most important.

2. Clarify requirements: Table 5.1 shows the requirements on the quality attributes
for these products.

52

low end

middle class

high end

P1

=

P2

=

P3

Figure 5.2: AD Example: Evolution Scenario

Table 5.1: AD Example: Requirements on Products

number | response | memory
time size
R1 | 100 < 2-3 sec | small
R2 | 1,00 < 2-3 sec
R3 | 100,000 | < 2-3 sec

3. Examine the applicability: Identify the ”category of requirements” for each quality
attribute. Using the technique proposed in the previous section, identify categories
of requirements for each quality attributes. In order to identify category of require-
ments, we pick up possible architectural candidates (Table 5.2).

Table 5.2: AD Example: Architectural Candidates

A0 | Architecture that reflects the structure of analysis model.

A1l | Architecture that adopts caching mechanism

A2 | Load index data onto memory at the initialization time.
It also has cache.

Table 5.3 and Table 5.4 show the categories of requirements we have identified for
the data retrieval example. In these tables, "*’ represents "no requirements”. The
categories of requirements from performance are as same as we have identified in
the previous section. For memory size, we cannot use A2 if memory size is required
to be small, because loading index data requires considerably large memory size.

Table 5.5 shows how to determine the applicability. From performance aspect, we
can apply A0 to P1 and P2, and from size aspect, we can use A0 to every products.
Therefore, if we are to fulfill both requirements, A0 is applicable to P1 and P2.
Similarly, Al is applicable to every product, and A2 is applicable to P2 and P3.
Table 5.6 is a matrix obtained from the merged result. In this table, 'x’ indicates
"applicable”.

Based on the analysis, we can understand the commonalities and differences of nec-
essary architectural techniques. Table 5.6 shows what architectural techniques can
be applicable to each product. P1 and P2 can use A0, but P3 cannot. Every prod-
uct can use Al. P2 and P3 can use A2, but P1 cannot. Note that, applicable means
that the requirements can be fulfilled, but it does not mean that every applicable
architecture can attain the same level of quality attribute. For example, both A0
and Al is applicable to P1, we can expect that Al attains better performance than
A0, and so on.

23

Table 5.3: AD Example: Category of Requirements (Performance)

number response | architectural
techniques
CP1 | 100-1,000 | < 2-3 sec | A0, A1, A2
CP2 | 100,000 < 2-3sec | Al, A2

Table 5.4: AD Example: Category of Requirements (Size)

memory size | architectural
techniques
CS1 | small A0, A1
CS2 | * A0, A1, A2

Table 5.5: AD Example: Analyzing Commonality and Differences

A0 Al A2
performance P1, P2 P1, P2, P3 | P1, P2, P3
size P1, P2, P3 | P1, P2, P3 | P2, P3
merged result | P1, P2 P1, P2, P3| P2, P3

Table 5.6: AD Example: Applicability Matrix

P1 | P2 | P3
A0 | x | x
Al | x | x | x
A2 X | X

o4

4. Examine the preference: Decide the preference among candidates using decision-
making technique. Here we apply AHP to the problem in which we have two criteria
performance and size, and three candidates A1, A2 and A3. We firstly make pair-
wise comparison among criteria based on our design policy. Our design policy says
that performance is more important than size, so we reflect the design policy to the
comparison. Then, we make pair-wise comparison among candidates in terms of
criteria. Table 5.7 shows the weights obtained by AHP.

Table 5.7: AD Example: Weights Obtained by AHP

P1
A0 | 0.367
Al | 0.406
A2 | 0.228

5. Decide the design: As design policy says that requirement on P1 is most important,
we cannot select A2, because A2 does not satisfy requirements on size. On the other
hand, we could select AQ because requirement on P3 is not so important as that on
P1. However, considering the preference, Al is better than AO. Therefore, we select
A1 for our product.

5.3 Product-line Architectural Design

The followings are design procedure for architectural design for product-line.

1. Define design policy and scope of design: Identify products in product-line, and
quality attributes to be considered. In this example, we consider P1, P2, P3 and
P4 (Table 5.8), and consider response time and memory size. We also define design
policy. In this example, we decide that memory size is most important for low-end
model, and performance is most important for other products. We think P2 is most
important product.

Table 5.8: PLA Example: Products in Product-line
P1 | Low-end model for Japanese market.
P2 | Standard model for Japanese market
P3 | High-end model for Japanese. market
P4 | High-end model for U.S. market

2. Clarify requirements: Identify the requirements on each product. Requirements
on each product are defined in terms of quality attributes of products. Table 5.9
shows requirements on each product. This shows the requirements related to quality
attributes of data retrieval, number of data in search space, response time and
required memory size. As P1 is a low-end model, it has small number of data and is
equipped with small memory. On the other hand, P3 and P4 have a large number
of data, and so on.

25

Table 5.9: PLA Example: Requirements on Products
number | response time | memory size
P1 | 100 < 2-3 sec small

P2 | 1,000 < 2-3 sec
P3| 100,000 | < 2-3 sec
P4 | 100,000 | < 2-3 sec

3. Examine the applicability: Make a list of the candidate of architecture for given
products. In this case, we make a list of candidates same as architectural design
example (Table 5.2). In the previous step, we determine relative preference. In
this step, we determine whether each candidate can fulfill the requirements. Firstly,
assess each architectural candidate in terms of each quality attributes, and categorize
requirements so as to each category of requirements can be fulfilled by the same set
of architectural candidates (Table 5.10, Table 5.11).

Table 5.10: PLA Example: Category of Requirements (Performance)
number response | architectural techniques
CP1 | 100-1,000 | < 2-3 sec | A0, A1, A2

CP2 | 100,000 | < 2-3 sec | Al, A2

Table 5.11: PLA Example: Category of Requirements (Size)
memory size | architectural techniques
CS1 | small A0, Al

Cs” | * A0, A1, A2

Secondly, examine requirements on each product and identify categories of require-
ments. For example, from performance aspect, A0 can be used for P1 and P2. From
size aspect, AO can be used for every product. So, we determine that A0 can be
used for P1 and P2, because both performance and size have to be fulfilled (Table
5.12).

The Table 5.13 is another view of the result obtained by above examination. In this
table, 'x’ means "applicable”and blank means "non-applicable” (Table 5.13).

4. Examine the preference: For every product in product-line, examine the preference
using AHP. Table 5.14 shows the result.

5. Decide the design: In this example, Al is the only architecture that can be used
by every product. Therefore, we select Al for architecture for the product-line.
However, note that A2 is most preferable architecture for P2, P3 and P4. In actual
design, this may be a problem. In the next section, we examine the problem further.

26

Table 5.12: PLA Example: Examine Applicability

A0 Al A2
performance P1, P2 P1, P2, P3, P4 | P1, P2, P3, P4
size P1, P2, P3, P4 | P1, P2, P3, P4 | P2, P3, P4
merged result | P1, P2 P1, P2, P3, P4 | P2, P3, P4

Table 5.13: PLA Example: Applicability Matrix

P1|P2|P3|P4
A0 | x | x
Al x | x | x | x
A2 X | x| x

5.4 Product-line Scoping

In this section, we show the procedure to decide the scope of the product-line using a
simple example. The example is a development of information terminal. Assume that we
are to develop the following four products (Table 5.15).

The overview of our method is as follows:

e We first analyze the requirements for each product, and make a list of architectural
candidates for each product. Then we evaluate these candidates from two aspects:
One is to examine relative preference, and the other is to evaluate the applicability.
This corresponds to examining product-line scoping from the view of the individual
optimal.

e Then, based on this result, we make a list of the candidates of the product-line scope.
We evaluate the requirements on the product-lines, and examine these candidates.
This corresponds to examining product-line scoping from the view of the whole
optimal.

e Finally, we examine the preference of scopes and the preference of each product,
and determine the best scope, considering the quality of the product-line, and the
quality of each product. In this step, we have to consider the tradeoffs between the
individual optimal and the whole optimal.

e In the above steps, the relative preference is determined using a decision-making
method; in our case we use the decision-making method AHP (Analytic Hierarchy
Process [41]).

Table 5.14: PLA Example: Preference of Architectural Candidates

P1 P2 P3 P4
A0 | 0.367 | 0.26 | 0.193 | 0.193
A1] 0.406 | 0.357 | 0.307 | 0.307
A2 10.228 | 0.364 | 0.501 | 0.501

a7

Table 5.15: PLS Example: Given Set of Products
P1 | Low-end model for the Japanese market.
P2 | Standard model for the Japanese market.
P3 | High-end model for the Japanese market.
P4 | High-end model for the U.S. market.

The following is the procedure of determining product-line scoping.

1. Identify the requirements: Identify the requirements for each product and the re-
quirements for the product-line. The requirements for each product are defined in
terms of the quality attributes of the products. The requirements for the product-
line are defined in terms of sequentially and co-existing products.

Table 5.16 shows requirements for each product. This shows the requirements re-
lated to the following quality attributes of data retrieval: the number of data ele-
ments in the search space, the response time and the required memory size. As P1
is a low-end model, it has small number of data elements and is equipped with a
small memory. On the other hand, P3 and P4 have a large number of data elements,
and so on.

Table 5.16: PLS Example: Requirements on Products
number | response time | memory size
P1 | 100 < 2-3 sec small

P2 | 1,000 < 2-3 sec
P3| 100,000 | < 2-3 sec
P4 | 100,000 | < 2-3 sec

Figure 5.3 shows the relations among products depicted by the notation we have
introduced in the previous chapter.

Figure 5.3: PLS Example: Relations among Products

Table 5.17 shows the requirements on the product-line. As we have shown in Figure
5.3, we develop P1 first, then develop P2, and finally develop P3 and P4 in parallel.
Among these requirements, developing P3 and P4 in parallel is the most critical
factor for developments of the products.

2. Define design policy: Define the design policy in terms of priority among the re-
quirements. The following is the design policy for this example:

o8

Table 5.17: PLS Example: Requirements on Product-line
Sequentially | P1, P2
P2, P3 | More important than sequentially
between P1 and P2
P2, P4 | More important than sequentially
between P1 and P2.

Co-Existence | P3, P4 | Most critical requirement for devel-
opment of the product-line

e For the low-end model, reduction of the memory size is the most important.
e For the high-end model, the performance is the most important.

e If we can fulfill the above requirements, we would like to maximize the quality
of each product.

3. Enumerate architectural candidate: Make a list of the candidate of architecture for
the given products. For the data retrieval example, if the requirements on the quality
attributes are not severe, we can fulfill them without considering any architectural
technique. In such a case, we would design the architecture so as to reflect the
structure of the analysis model that captures the nature of target domain, because
this is considered to be good for the extensibility. However, if the requirements on
quality attributes are severe, we may have to apply some architectural techniques
to improve the quality attributes. In this example we have three candidates; A0
does not have any architectural technique to improve quality attributes, A1l has
caching mechanism, and A2 loads index data of the storage onto memory at the
initialization time (Table 5.18).

Table 5.18: PLS Example: Architectural Candidates
AO | Architecture that reflects the structure of analysis model.
A1 | Architecture that adopts caching mechanism.
A2 | Load index data onto memory at the initialization time.
It also has cache.

4. Determine the preference of architectural candidate: In this step, we examine each
candidate, and decide the relative preference among the applicable architectural
candidates.

We have applied AHP (Analytic Hierarchy Process) to decide the preference. AHP
is one of the decision-making methods in which the most preferable one is selected
in terms of decision criteria. In this case, the alternatives are the architectural
candidates listed above, and the criteria are the quality attributes on which require-
ments are imposed, such as performance and reliability. AHP is based on simple
pair-wise comparison among criteria and alternatives. First, we decide the relative
importance among the criteria based on a pair-wise comparison. Second, for each
criterion, we also make pair-wise comparison among the architectural candidates.

29

Table 5.19 shows the preference of the candidates for each product obtained by
AHP.

Table 5.19: PLS Example: Preference of Architectural Candidates
P1 P2 P3 P4

A0 | 0.367 | 0.26 | 0.193 | 0.193
A1] 0.406 | 0.357 | 0.307 | 0.307
A2 0.228 | 0.364 | 0.501 | 0.501

5. Examine applicability of architectural candidate for each product: In this step, we
determine whether each candidate can fulfill the requirements. First, assess each ar-
chitectural candidate in terms of each quality attribute, and categorize requirements
in such a way that each category of requirements can be fulfilled by the same set of
architectural candidates. For example, we can fulfill the performance requirements
by any architectural candidate if the number of data element is 100 to 1000, but
only A1l and A2 can fulfill the performance requirement for 100,000 data elements.
This leads to two types of requirements. Similarly we examine from size aspect,
and find two types of requirements. Here, "*’ denotes, no requirement (Table 5.20,
Table 5.21).

Table 5.20: PLS Example: Category of Requirements (Performance)
number response | architectural techniques
CP1 | 100-1,000 | < 2-3 sec | AO, A1, A2

CP2 | 100,000 < 2-3sec | Al, A2

Table 5.21: PLS Example: Category of Requirements (Size)
memory size | architectural techniques
CS1 | small A0, Al

CS2 | * A0, A1, A2

Second, examine the requirements for each product within the categories we found
above. Determine the applicability of each architectural candidate to the products.
For example, for the performance aspect, A0 can be used for P1 and P2. For the
size aspect, AQ can be used for every product. Thus, we determine that A0 can be
used for P1 and P2, because both performance and size requirements can be fulfilled
(Table 5.22).

The Table 5.23 is another view of the result obtained by the above examination. In
this table, 'x” means "applicable” and blank means "non-applicable”.

6. Examine candidates for the product-line scope: (Examine candidates for the product-
line scope.) We have to avoid assigning ”"non-applicable” architectural candidates
to the products. For the data retrieval example, we prepare the following candidates

60

Table 5.22: PLS Example: Examine Applicability

A0 Al A2
performance P1, P2 P1, P2, P3, P4 | P1, P2, P3, P4
size P1, P2, P3 P4 | P1, P2, P3, P4 | P2, P3, P4
merged result | P1, P2 P1, P2, P3, P4 | P2, P3, P4

Table 5.23: PLS Example: Applicability Matrix

P1 | P2|P3|P4
A0 | x | x
Al x | x | x | x
A2 X | x| x

(Table 5.24). Note that we do not intend to exhaustively enumerate the possible
combinations. S1 is based on the idea to maximize the architectural sharing. S2 is
to develop the low-end model on a different architecture than that the other models
are developed on. S3 is to develop the high-end model on a different architecture
than that the other models are developed on (Table 5.24).

Table 5.24: PLS Example: Candidate of Scope

S1 | < P1, P2, P3, P4, Al>
S2 | < P1, Al >, < P2, P3, P4, A2 >
S3 | < Pl1, P2, Al >, < P3, P4, A2 >

. Determine preference among the candidates of the product-line scope: We deter-
mine the preference of the candidates of the product-line scope. Here, we also use
AHP: candidates for the product-line scope are the alternatives, sequentially and
co-existence are the decision-criteria. For sequentially, S1 is the best, as there is no
architectural change during the development sequence, S2 is better than S3, because
the requirements say that the sequence between P2 and P3, and the sequence be-
tween P2 and P4 are important, and S3 requires architectural change between them.
For co-existence, S1 is also the best. S2 and S3 is the same, as the requirements say
that co-existence of P3 and P4 is important, and in both scopes P3 and P4 share
the same architecture.

Based on these judgements, we have determined the following weight using AHP. We
also obtain the sum of weights of each product defined in Table 5.19. For example,
as S2 adopts Al for P1, and A2 for P2, P3, P4, we get 0.406 + 0.364 + 0.501 +
0.501 = 1.772. This weight represents the relative preference in terms of individual
optimal (Table 5.25).

. Define scope: Based on the examination so far, we determine the preferable scopes.
As every products in S1 shares a single architecture, S1 is the best from the point of
view of the whole optimal. However, sharing a single architecture does not maximize
the quality of each product.

61

Table 5.25: PLS Example: Weight of Whole Optimal and Individual Optimal

Whole optimal | Individual optimal
S1 0.619 1.377
S2 0.229 1.772
S3 0.153 1.765
individual
optimal
A
(I |
S3 S2
u
S

whole optimal

Figure 5.4: PLS Example: Portfolio of Each Scope

Figure 5.4 shows the situation. Note that, though the scopes have different charac-
teristics, all of them satisfy the requirements on each product and the requirements
on the product-lines. Based on the design policy, we want to maximize the individ-
ual optimal as far as we can fulfill the requirements on the product-line; we select
S2 as our scope for this example.

62

Chapter 6

Case Study

6.1 ITS On-board System as Product-line Architec-
tural Design

In this section, we actually apply the technique to ITS case, to demonstrate the applica-
bility of the technique to actual problem.
The followings outline how we apply the technique.

1. Define design policy and scope of design: We pick up function C1-03 for this trial,
because it is one of the most complicated cases, and used by 20 sub-services. We
have applied the technique just using the knowledge about the quality attributes
written in the report, and not using other factors. C1-03 is a function that detects
the position of vehicle. For this function, they have requirements on the following
four quality attributes: accuracy, road coverage, vehicle coverage, and cost. We
summarize the meaning of these quality attributes in Table 6.1.

Table 6.1: Casestudy 1: Quality Attributes to be Examined
accuracy | The accuracy of detected position.
road The ratio of the area (road) where this function works. If vehicle has the
coverage | function, it may work everywhere, but if some equipment is required on
roadside, it may be difficult to cover the entire road, because we have to
equip them everywhere.
vehicle The ratio of the vehicle to which this function works. If vehicle has to
coverage | have some equipment, it may be difficult to detect every vehicle because
we have to equip them to every vehicle.
cost Cost of developing infrastructure on roadside.

There are 20 sub-services that use the function, and we have examined these sub-
service in the following steps.

We have defined two design policies. Firstly, we try to maximize the sharing of
architectural technique. Secondly we minimize the cost if possible.

2. Clarify requirements: Table 6.2 and Table 6.3 summarizes the requirements on these
functions.

63

Though the decision where the function has to be placed is not specified in analysis
model, they have decided the global architectural style for some sub-services and
these decisions determine the placement of the functions. For example, if they
decide to make the service without any support of roadside equipment, we have to
place the function on vehicle, and so on. Based on this global architecture, we have
divided sub-services into two; one is for vehicle, and the other for roadside. Some
sub-services require placing the function both side.

The number of each sub-service is the id used in the projects. These requirements
are picked up from the report, and blank columns mean there are no written re-
quirements in the report.

Table 6.2: Casestudy 1: Requirements on Each Sub Services (Vehicle)

accuracy | road vehicle | cost
coverage coverage
01 | high everywhere
02 | high everywhere
03 | high everywhere
04 | low everywhere low
12
14
15
16
19 | high
28 | low everywhere low
29 | low everywhere low
32 | low everywhere low
33 | low everywhere low
40
41
42
43
45

3. Examine the applicability: Table 6.4 shows the list of architectural candidate. (a),
(b) and (c) is for detecting on vehicle, and (d), (e) and (f) is detecting on roadside.

Table 6.5 and Table 6.6 show the categories of requirements for each quality at-
tribute.

Table 6.7, Table 6.8, Table 6.9, and Table 6.10 show the result of analyzing com-
monalities and differences.

4. Examine the preference: Though we could use AHP to determine the preference,
in this case preference is easily judged. For vehicle, we prefer (b) if accuracy is
required, unless we prefer (a) because it is good for cost. For road-side, we prefer
(f), if applicable, as it is good for cost.

64

Table 6.3: Casestudy 1: Requirements on Each Sub Services (Roadside)
accuracy | road vehicle cost

coverage coverage

12 every vehicle

14

15

16

27 urban area low

31 specific route
only

34 specific route
only

41 | high

Table 6.4: Casestudy 1: Architectural Candidates for C1-03

Detecting position only by vehicle (no communication with roadside or
center).

Detecting position by vehicle, and use the data from roadside and center
to correct the error. (DGPS and KGPS are included in this.)

Detecting position using the data from roadside, then reflect the data of
database or gyro in vehicle.

Collecting data obtained by (a) or (b) using inter-center communication.

Detecting the vehicle from roadside equipment by receiving information
transmitted from vehicle.

Detecting the vehicle from roadside equipment by reading the license
number, and so on.

Table 6.5: Casestudy 1: Categories of Requirements (Vehicle)

accuracy | candidate road candidate vehicle | candidate cost | candidate
coverage coverage

high (b) everywhere/* | (a)(b)(c) | | * (a)(b)(c) * [(a)(b)(c)

low/* | (a)(b)(c)

Table 6.6: Casestudy 1: Categories of Requirements (Roadside)

accuracy | candidate road candidate vehicle | candidate cost | candidate
coverage coverage

high/* (d)(e)(f) urban/road | (e) every (f) * (d)(e)(f)

vehicle

* (d)(e)(f) * (d)(e)(f)

65

Table 6.7: Casestudy 1: Analyzing Commonalities and Differences (Vehicle)

(a))] (c)

accuracy | other than 01, 02, 03, 19, 45 | all | other than 01, 02, 03, 19, 45

road all all | all
coverage
vehicle all all | all
coverage
cost all all | all

merged | other than 01, 02, 03, 19, 45 | all | other than 01, 02, 03, 19, 45
result

Table 6.8: Casestudy 1: Analyzing Commonalities and Differences (Roadside

(@ (©) 4
accuracy | all all all
road other than 27, 31, 34 all other than 27, 31, 34
coverage
vehicle other than 12 other than 12 | all
coverage
cost all all all
merged | other than 12, 27, 31, 34 | other than 12 | other than 27, 31, 34
result

Table 6.9: Casestudy 1: Applicability Matrix (Vehicle)

0110210304 1214|1516 19|28 |29 |32|33]|40 |41 |42]43

X X X X X X X X X X X X X

"
"

X X X X X X X X X X X X X X X

X X X X X X X X X X X X X

Table 6.10: Casestudy 1: Applicability Matrix (Roadside)

12114 |15 |16 | 27 | 31 | 34 | 41
(d) X | X | X X
(e) X | X | x| x| x|x|X
f) | x| x| x| x X

66

5. Decide the design: The followings are results of architectural selection based on the
technique. For vehicle, if we have multiple candidates, we select (a) as it is good
for cost. For roadside, if we have multiple candidates, we select (f) as it is good for
cost. Table 6.11 and Table 6.12 show the result of architectural selection: "result”
is our selection, and "original” is the result of the project.

Table 6.11: Casestudy 1: Result of Architecture Selection (Vehicle)

01102030412 (14|15 |16 |19| 28|29 |32 |33 |40 |41 |42 |43 |45

result | b|b|b|lalalalalal|b|alalalalalal|al|al|b

origihal | a |a|a|a|a|lalalalalalalalal|al|al|al|a]|b
b|b|b b|b|b|b b|b|b|b

Table 6.12: Casestudy 1: Result of Architecture Selection (Roadside)
12 |14 | 15|16 | 27 | 31 | 34 | 41
result | £ | f | f | f | e | e]|e]|f
original | f | £ | f | f |de| e | e | f

The followings are some analysis about the result: We analyze the reason why we have
different result for 19. The reason is that in the project, candidate (a) is selected because
it is already used in the current system. As we do not use such information, the result
becomes different. For some sub-services, they select more than one candidates. However,
in most of the case, our selection is included in their candidates, and we do not think it
is the major differences. For 01, 02, 03, we have omitted the (a) as it is not applicable
(Table 6.9). The reason of these differences is that they select the candidate nevertheless
they explicitly pointing out that this candidate has not enough accuracy. For 27, we also
omit the (d) (Table 6.10), but it is selected as one of the candidate. They select (d) as it
is applicable to urban area for some reason. Except these points, we have obtained the
considerably reliable result using the technique without considering other factors.

This trial shows that we can apply the technique to actual problem, and we have
obtained considerably reliable result by this systematic procedure.

6.2 ITS On-board System as Product-line Scoping

In this section, we pick up some products (sub-services) examined in the projects, and
determine the scope using the method. We pick up the following products: P02, P04 and
P19.

We have to develop each product in 2003 and 2008 (Table 6.13).

In this case study, we focus on the year 2003 and 2008. As the requirements on each
product and technology may be different in these years, we distinguish the products in
2003 from those in 2008. We attach the year behind the product name to denote the
year. For example, P02-2003 means product P02 in 2003. In this section, we focus on
the architecture that realizes the function ”detect the vehicle position”, one of the most
important functions and it has strong impact on the entire architecture for these products.

67

Table 6.13: Casestudy 2: Products

P02 | Route guidance

P04 | Provision of road traffic information

P09 | Notification to emergency center

1. Identify the requirements: We consider the following quality attributes (Table 6.14).

Table 6.14: Casestudy 2: Quality Attributes to be Examined

accuracy | The accuracy of detected position.

road The ratio of the area (road) where this function

coverage | works. If the vehicle has the function, it may
work everywhere, but if some equipment is
required on the roadside, it may be difficult to
cover the entire road, because we have to equip
them everywhere.

vehicle The ratio of the vehicle to which this function

coverage | works. If the vehicle has to have some equipment,
it may be difficult to detect every vehicle
because we have to them to all vehicles.

cost Cost of developing the infrastructure on the
roadside.

The followings are the requirements for the products in 2003. For the 2008 version,
the requirements are the same, except that the accuracy for P02 becomes higher

(Table 6.15).

Table 6.15: Casestudy 2: Requirements on Products

accuracy | road coverage | vehicle coverage | cost
P02 | high everywhere
P04 | low everywhere low
P19 | high

Figure 6.1 shows the relations among the products.

The requirements on the product-line are as follows (Table 6.16).

2. Define the design policy: The Following is the design policy.

e For P02, the accuracy is the most important. However, in 2003, the require-
ments are not so severe as we do not have enough services that require such

accuracy.

e For P04, the cost is the most important.

e For P19, the accuracy is the most important, as this product relates to safety.

68

P19-2003 P19-2008

Figure 6.1: Casestudy 2: Relationship among Products

Table 6.16: Casestudy 2: Requirements on Product-lines
Sequentially | P02-2003, P02-2008 same importance
P04-2003, P04-2008
P19-2003, P04-2008
Co-Existence | P02-2003, P04-2003, P19-2003 | same importance
P02-2008, P04-2008, P19-2008

e If the product can fulfill the above requirements, we would like to maximize
the quality of each product.

3. Enumerate architectural candidate: Table 6.17 shows the architectural candidates
for ”detect vehicle position”.

Table 6.17: Casestudy 2: Architectural Candidate
(a) | Detect the position by the vehicle only (no
communication with the roadside or a center).
(b) | Detect the position by the vehicle, and use the data
from the roadside and the center to correct the error.
(DGPS and KGPS are included in this.)
(c) | Detect the position using the data from the roadside,
next reflect the data of the database or the gyro in the
vehicle.

4. Determine the preference of the architectural candidate: Using the accuracy, road
coverage, vehicle coverage and cost as criteria, we determine the following preference
using AHP (Table 6.18).

5. Examine the applicability of the architectural candidate for each product: Using
the procedure we have discussed in the previous section, we determine the following
applicability. There are no differences between 2003 and 2008 except for P02 (Table
6.19).

6. Examine the candidates for the product-line scopes: We have examined the following
candidates for the product-line scopes (Table 6.20).

69

Table 6.18: Casestudy 2: Preference of Architectural Candidate

P02-2003 | P02-2008 | P04-2003 | P04-2008 | P19-2003 | P19-2008
(a) 0.364 0.282 0.481 0.481 0.286 0.286
(b) 0.414 0.482 0.314 0.314 0.485 0.485
(c) 0.222 0.227 0.205 0.205 0.229 0.229

Table 6.19: Casestudy 2: Applicability Matrix

P02-2003 | P02-2008 | P04-2003 | P04-2008 | P19-2003 | P19-2008
(a) X b'e X
(b) X b'e X X b'e X
(c) X X

7. Determine the preference among the candidates for the product-line scope: The
following shows the weights that represent the whole optimal and the individual
optimal for each candidate of scope (Table 6.21).

8. Define scope: Based on the design policy, we select S2 as the scope (Figure 6.2).

individual
optimal
A
s U
S3 82 n

whole op'timal

Figure 6.2: Casestudy 2: Portfolio of Scopes

This decision means that in 2003, we develop P02 and P04 on a relatively inaccurate
and low-cost architecture, as these services are for comfortable driving, but do not directly
relate to safety. But, for P19, we adopt an expensive but accurate technology as it relates
to safety. In 2008, the functionality of each product is upgraded, and they require an
architecture that is more accurate. The result matches our value.

Table 6.20: Casestudy 2: Candidate of Scope

S0

{<P02-2003, P02-2008, P04-2003, P04-2008, P19-2003, P19-2008, (b)>}

S1

{ < { P02-2003, P02-2008, P19-2003, P19-2008}, (b) >,
< { P04-2003, P04-2008}, (a) > }

S2

{ < { P02-2003, P04-2003}, (a) > ,
< { P02-2008, P04-2008, P19-2003, P19-2008}, (b) > }

70

Table 6.21: Casestudy 2: Weight of the Whole Optimal and Individual Optimal

Whole optimal | Individual optimal
S1 0.644 2.494
S2 0.24 2.828
S3 0.116 2.611

The case study demonstrates the following:

e We can determine the scope of the product-line by a systematic way, considering
quality attributes of each product and quality of the product-line.

e We can determine the scope of a product-line in a systematic way, and we can obtain
the result with enough resolution that is required in the actual projects.

e We can apply the method to the case from the actual project that was carried out
by more than 10 experts, and we can obtain the result with enough resolution.

71

Chapter 7

Evaluation and Discussion

7.1 Evaluation of the Case Study

In 1.2, we have mentioned the conditions for practical methodology, size, cost and reso-
lution. We evaluate the method in terms of these conditions.

7.1.1 Size

The case study is based on the actual project, and we have applied our technique to
the problem using exactly the same procedure we have proposed in this paper, and have
obtained the result. As we have introduced in 3.3.1, the project is large projects, i.e. it
takes nearly two years just for architectural design. As the project is for investigating
the direction of development of ITS on-board systems, we have to exhaustively enumerate
possible alternatives and evaluate them to make the result reliable and acceptable for every
stakeholder. We have extracted dozens of important functions, enumerated architectural
candidates for each of them, and evaluated the appropriateness for each sub-services.
In this sense, the size of the projects is quite large in terms of number of architectural
candidates and number of evaluations.

Though the project is quite large, the focus of the project is to determine the design
direction of ITS systems in the early phase of development, and does not include im-
plementation issues. The architectural design for finding design directions, and that for
actual implementation have different characteristics. We will discuss on the difference in
7.2.2.

7.1.2 Cost

We examine whether the cost required by the method is reasonable or not by comparing
the cost with that of the actual ITS on-board architectural design. As it is difficult to
compare the cost numerically, we examine the cost quantitatively. Table 7.1 summarizes
the differences.

The table compares similar step of each method. Our method requires extra step
to separate requirements on each quality attribute from original requirements. On the
other hand, actual method requires characterizing each architectural candidate in terms
of quality attribute. Though we cannot quantitatively argue the cost from this table,

72

Table 7.1: Quantitative Comparison of Cost

Actual ITS on-boar architecture Our method
design Method

For every important requirement, separate
requirements on quality attribute using

AOA.
For every important requirements, list up | For every quality attribute, list up
architectural candidates. architectural techniques considering the

category of requirements.

For every architectural candidate, examine
its characteristic in terms of quality

attributes

For every important requirement, examine | For every important requirement, examine
the appropriateness of each architectural applicability and preference of each
candidate. architectural candidate.

we can say that our method requires more atomic works and requires a little more cost.
However, as far as we examine our case study, the difference is not so large.

In the actual project, we simply characterize each candidate in terms of quality at-
tribute. On the other hand, in our method, we identify the category of requirements.
Though identifying the category of requirements requires higher skills, this categorization
becomes the template of examining the applicability, and helps us to decide applicability
in the consistent way.

7.1.3 Resolution

As we have made the observation in 3.3.2 and the demonstration in 6.1, we can distinguish
architectural candidates and select suitable one depending on the requirements and design
policy as we have done in actual project. As ITS example is higher-level architectural
design, one may claim that we need more fine-grained resolution if we are to apply the
method lower-level architectural design. However, we believe that a basic framework for
architectural evaluation, in which we compare possible architectural candidates in the
objective way, should not be so complicated, because complicated methods are difficult
to understand and expensive.

7.2 Applicability of the Method

7.2.1 Model for Software Structure

As we have explained in 3.4, our modeling framework of software structure is based on
the ordinary object-oriented modeling framework, this framework can be applied to wide
range of software structure, from high-level modeling like ITS case to low-level modeling
like information terminal case. Though the way to describe requirements on quality
attributes is extended by us, it is natural extension of UML. This is quite similar to

73

existing documentation technique in which we describe requirements on quality attributes
as textual form in documents that are structured by components or functions.

7.2.2 Granularity and Abstraction Level

As we have claimed in 7.2.1, we can model architecture at wide spectrum of abstraction
level and granularity. However, the characteristics of resulting model become different.
The major difference is relationship among modeled components and collaborations. In
our I'TS example, typical relationship among collaborations can be categorized into two:

e One is vertical relationship, that is higher level decision constrains lower level de-
cisions. For example, if we decide at higher level to deploy heavy processing unit
at center side, and make on-board system as light as possible, the lower architec-
tural decisions have to follow the higher policy. We cannot adopt components or
collaborations that violate the policy.

e The other is horizontal relationship, that is components and collaborations at the
same level impose constraints each other. They have to share the same architectural
assumption such as basic policy of data handling, control architecture, assignment
of responsibility to each subsystems, unless they cannot work correctly.

Even though we design at low-level architectural design, relationship among compo-
nents and collaborations can be typically categorized into these two. However, at low-level
architectural design, the model becomes more concrete and finer, and the relationship also
becomes complicated. Consequently, we have to carefully select architectural candidates
considering these constraints.

7.2.3 Types of Quality Attributes

In 3.4.2, we have discussed that though it is possible to describe requirements on quality
attributes in our modeling framework, we do not insist that we could consider requirements
on every quality attribute by our method. As a matter of fact, for some quality attributes,
we do not find strong and direct relationship with software structure. If factors that
determine quality attributes are not naturally described on architectural model, we do
not think we can consider the quality attributes using the techniques proposed in this
paper. For example, though some aspects of usability may be determined by software
structure, non-architectural issues such as human interface design have a stronger impact
on the quality attribute.

7.3 Comparison with other Techniques

7.3.1 Evaluation Techniques

In selecting architecture from multiple options, we have to evaluate each option in terms
of requirements on quality attributes. Therefore evaluation technique is one of the key
issues in architectural design.

The followings are typical techniques for architecture evaluation;

74

ADL: Describe software architecture by ADL and evaluate the characteristics of the
architecture by mathematical analysis or simulation. This technique is rigorous, but
is only applicable to some restricted field [1, 9, 34, 35, 43].

Performance model: There are many researches on performance model in the per-
formance engineering field, and there are researches on software architecture field
that utilize the performance model [22]. Some of the ADL approaches above utilize
this technique. There are also researches in which they map UML models onto
performance model [16]. There also researches in which they link architectural style
with the performance model [30].

Scoring: Set up some scoring criteria, and evaluate each option in terms of the
criteria, mainly by qualitative way. This method can be used easily and widely, and
already used in the actual software field. However, in order to make the technique
properly work, there still remain many issues such as how to set up criteria, how to
make qualitative evaluation, how to decide the weight for each criterion, and so on.
SAAM is one of the typical scoring techniques that utilize the scenario [21].

Review: It is a common techniques in software development to review some artifacts,
such as documents, source code and test cases. For architecture, there are typically
two types of reviews, one is architecture review in the early phase of software de-
velopment, and the other is that in the actual design phase. In this architectural
review, the role of architect is quite important [32]. Among studies on architec-
tural review, ATAM is the technique that utilize architectural catalogues to analyze
characteristics of some quality attributes [22].

Heuristics: There are researches in which they utilize heuristics commonly used
in architectural design. RARE is one of the environment, in which they support
software generation based on the decisions in terms of these heuristics [3].

Our method can be categorized into the scoring method. As our focus is architectural

design in the early phase of software architectural design in which we evaluate architec-
tures from spectrum of quality attributes. The scoring is one of the best approaches for
such purpose. Furthermore, our experiences in the I'TS project require to make the archi-
tectural design as objective as possible, because it is a national project and has to make
the result open and accountable.

7.3.2 Scoring Techniques

There are many ways to evaluate architecture by scoring. The followings are typical
criteria for scoring;

e Scenario: In SAAM, they pick up important scenarios, and score architectures in

terms of these scenarios. Scenario reflects the actual use of the system and make the
evaluation real. On the other hand, it is difficult to decide the good set of scenarios
for architectural evaluation [21].

e Parameter/Key: In selecting architecture, there must be some important parame-
ters or keys that affect the selection. There are researches in which they utilize these

75

parameters and keys for architecture selection. This technique is good as it reflects
the actual way of architecture selection, but tends to domain and application de-
pendent, and it is difficult to find the general framework for architectural selection
3, 33].

e Quality Attributes: Using the quality attributes (or some sub characteristics) for
architectural evaluation. This technique is good for make the scoring objective and
reliable, but it is difficult to set up set of criteria and decide the weight of each
criterion.

Our method utilizes the quality attributes as evaluation criteria, as it is good for
making the scoring objective. The criteria mentioned above are not exclusive. For ex-
ample, combining scenario-base evaluation with quality attributes based evaluation, may
compliment each other.

7.3.3 Decision-Making in Architectural Design

Our decision-making technique is based on the decision-making framework proposed by
Jozwiak [20]. They showed general and abstract framework of decision-making issues in
software design. Our method is conceptually based on this framework, but concretely
argues how to apply the framework to software architectural case.

In our method, we use the quality attributes as decision criteria. We can define
different software architecture on different infrastructure; such as run-time software ar-
chitecture and development-time software architecture. Each architecture relates to corre-
sponding quality attribute; for example, run-time architecture determines run-time quality
attributes. Therefore, using these quality attributes as decision criteria makes it easy to
understand the relationship among the decision and corresponding architectural design.

We have used the technique to decide the preference among the applicable candidates.
Once we have chosen applicable options, we want to select one that best matches the
design policy. As we have defined design policy by means of weighting among quality at-
tributes, namely decision criteria, we can determine the preference consistent with design
policy. We have also applied decision-making technique to examine the whole-optimal and
individual-optimal; we analytically evaluate architecture in terms of quality attributes,
and based on that determine these optimal, using decision-making technique.

Among many decision-making techniques, we have adopted AHP [41]. This technique
is suitable for architectural design, as it is easy to use; we can determine the preference
based on the simple pair-wise comparisons. In early phase of architectural design, we do
not have enough information to make comparisons. AHP can be used in such a case; we
can calculate the weight, even if we leave some uncertain pair-wise comparison undecided.

7.3.4 Examples of Existing Techniques

The followings are comparisons with famous techniques.

SAAM [21]

As our method supports evaluating design alternatives to select most appropriate architec-
ture from alternatives, evaluation is one of the important techniques. One of the famous

76

evaluation techniques for architectural design is Software Architecture Analysis Method
(SAAM). This method is to evaluate multiple architectural candidates by scoring utiliz-
ing scenarios. One of the typical examples of utilizing SAAM is to evaluate extensibility
of the software by examining what part of architecture requires change if the extension
specified in scenario would occur.

Comparing our method that gives general framework, SAAM is good for evaluating
architecture in terms of specific quality attributes such as extensibility. On the other
hand, our method gives general framework for evaluation for many quality attributes.

ATAM [22]

The Architecture Tradeoff Analysis Method (ATAM) is a method for architecture evalua-
tion. It provides a set of data for us to understand the architecture and to judge whether
the architecture can meet the requirements on quality attributes or not. It means that
we do not get any numerical value of the architecture, which automatically leads us to a
final decision, by the method, but we can understand and consider the architecture based
on the data obtained by the method. In that sense, it resembles the architecture review
approach. The data obtained by the method include which parts of the architecture are
critical for a quality attribute, and which parts of the architecture are related to tradeoff
problems.

The method utilizes scenarios greatly. They analyze architectural approaches (the set
of architectural decisions) used in the architecture based on the scenarios. The architec-
tural approaches can be described using architectural styles. Especially, the Attribute
Based Architectural Styles (ABAS) [30] are very useful in the method. We could uti-
lize this kind of review technique in our method, when we examine the characteristics of
architectural candidates.

7

Chapter 8

Conclusion

We have proposed an architectural design method in which we consider requirements on
quality attributes, and support decision-making we encounter during architectural design.

This research was motivated by the ITS on-board system design, we introduced in
this paper, in which we have to objectively design higher architecture. As the system
is large, complicated, and socially important, we have to adopt a systematic way for
the architectural design. We have adopted scoring technique in actual design. After
completing the projet, we observerd the process to see what we did actually and how
it worked. From this observation, we found out it is important to analytically examine
quality attributes, to identify category of requirements and to handle decision-making
issues.

In actual software development, it has not been so popular to adopt a systematic
method for architectural design. The actual practice in daily software development
projects is that a few skilled software designers gather and discuss the design direction
mostly based on their knowledge, experience and intuition. In the larger projects, on the
other hand, they spend more time on discussing architectural design based on the com-
parison of possible design alternatives; sometimes they make prototypes to validate the
design or compare the alternatives. However they lack a systematic method to determine
software design direction.

However, recent demands on software such as continuous evolution, spiral develop-
ment, and strategic development of product-lines make software architecture more and
more important, and the need for architectural design method is increasing. In addition,
situations in which we have to make the architectural design open are also increasing. For
example, in order to make reuse effectively work, we have to share the same architectural
assumptions. We also have to share the same architecture to make the system coop-
eratively communicate in the network environment. All of these recent trends demand
systematic and objective methods for architectural design.

There are two types of approach in software engineering field. One is the study on the
basic ideas or specific techniques for the field. For example, studies on specific languages,
tools, or metrics fall into this category. The other is what we call 'best practice’ types
of study. In this types of research, we do not mainly focus on the specific techniques or
ideas, but we examine how to systematically utilize many techniques we have in hand.

In order to many techniques and ideas in the field work effectively, we need the frame-
work that connects them. Without such a framework, it is difficult to utilize basic tech-
niques and ideas in the actual software development activities. The conceptual framework

78

of software architectural design we have examined in our research is intended to play this
role. Using the framework, we can overlook what activities are required in architectural
design, how they relate each other, and to where each basic technique is applied.

On the other hand, we also propose some basic techniques that are used in architectural
design. As there exists a wide-spectrum of software architectural design, we focus on a
specific category of software architectural design, i.e. an architectural design in the early
phase of development, in which we examine the direction of system development, mainly
from technical view points. These techniques, together with other existing techniques,
are systematically combined to support such category of architectural design.

The framework and techniques were examined, in terms of our experiences of the I'TS
on-board system project. In order to make the framework and techniques effectively work
in the real world, we need not only refine them, but also gain experiences of architectural
design. In that sense, we hope not only that our research makes contribution to the

architectural design, but also that this work becomes the beginning of the next research
in the field.

79

Bibliography

1]

[10]

[11]

[12]

Allen, R.,and Garlan, D.: Formalizing Architectural Connection, Proceedings of the
16th International Conference on Software Engineering, p71-80, May 1994.

Association of Electronic Technology for Automobile Traffic and Driving: Study on
ITS On-board system architecture, http://www.jsk.or/jp/eindex.html, 1999.

Barber, K.S and Graser, T.J.:Tool Support for Systematic Class Identification in
Object-Oriented Software Architecture, 37th International Conference on Technology
of Object-Oriented Languages and Systems (TOOLS-Pacific 2000), 2000.

Bass, L., Clements, P. and Kazman, R.: Software Architecture in Practice, Addison-
Wesley, 1998.

Brown, A.W. and Wallnau, K.C.: Engineering of Component-Based
Systems,Component-Based Software Engineering - Selected Papars from the
Software Engineering Institute, p7-15, IEEE 1996.

Buhr, R.J. and Casselman, R.S.: Use CASE Maps for Object-Oriented Systems,
Prentice-Hall, 1996.

Buschmann, F., et.al.: Pattern-Oriented Software Architecture - A System of Pat-
terns, John Wiley & Sons, 1996.

Chung, L, Gross, D. and Yu, E.: Architectural Design to Meet Stakeholder Require-
ments, First Working IFIP Conference on Software Architecture (WICSA1), Software
Architecture, Kluwer Academic Publishers, p545-564, 1999.

Clements, P.C.: A Survey of Architecture Description Languages, 8th International
Workshop on Software Specification and Design, 1996.

Clements, P.C. and Norhrop, L.N.: Software Architecture: An Executive Overview,
Component-Based Software Engineering - Selected Papers from the Software Engi-
neering Institute, p55-p68, IEEE 1996.

DeBaud, J. and Schmid, K.: A Systematic Approach to Derive Scope of Software
Product-Lines, Proceedings of the International Conference on Software Engineering,
1999.

Gamma, E., et.al.: Design Patterns - Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

80

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[25]

[20]

[27]

28]

Garlan, D., Allen, R., and Ockerbloom, J.: Architectural Mismatch: Why Reuse Is
So Hard, IEEE Software, Nov. 1995, p17-26.

Garlan, D. and Perry, D.E.: Introduction to the Special Issue on Software Archi-
tecture, IEEE Transaction on Software Engineering, Vol.21, No.4. p269-274, April
1995.

Gomaa, H.: Software Design Method for Concurrent and Real-time Systems,
Addison-Wesley, 1993.

Gomaa, H, and Manasce, D.A.: Design and Performance Modeling of Component
Interconnection Patterns for Distributed Software Architecture, WOSP 2000, 2000.

Hatley, D.J. and Pirbhai, I.A.: Strategies for Real-Time System Specification, Dorset
House Publishing, 1988.

Hofmeister, C., Nord, R.L. and Soni, D.: Describing Software Architecture with
UML, First Working IFIP Conference on Software Architecture (WICSA1), Software
Architecture, Kluwer Academic Publishers, p145-159, 1999.

Jazayeri, M., et.al.: Software Architecture for Product Families, Addison-Wesley,
2000.

Jozwiak, L. and Ong, S.A.: Quality-Driven Decision Making Methodology for
System-Level Design, Proc. of EUROMICO-22, 1996.

Kazman, R., et.al.: SAAM: A Method for Analyzing the Properties of Software Archi-
tectures, Proceedings of the 16th International Conference on Software Engineering,
p81-90, May, 1994.

Kazman, R., et.al.: The Architectural Tradeoff Analysis Method, Proceedings of
International Conference on Engineering of Complex Computer Systems (ICECCS),
1998.

Kiczales, G., et.al.: Aspect-Oriented Programming, In proceedings of the European
Conference on Object-Oriented Programming (ECOOP), Jun. 1997,

Kishi, T. and Noda, N: Analyzing Hot/Frozen-spots from Performance Aspect,
Object-Oriented Product Line Architecture (OPLA), ECOOP, 1999.

Kishi, T. and Noda, N.: Aspect-Oriented Analysis for Product Line Architecture,
Ist Software Product Line Conference (SPLC1), 2000.

Kishi, T.: On Software Architecture - Architectural Selection based on AHP -,
SIGSE, March, 2001. (In Japanese)

Kishi, T. and Noda, N: Aspect-Oriented Analysis for Architectural Design, Interna-
tional Workshop on Principles of Software Evolution (IWPSE), 2001.

Kishi, T, Noda, N. and Katayama, T.: Architecture Design for Evolution by An-
alyzing Requirements on Quality Attributes, 8th Asia-Pacific Software Engineering
Conference (APSEC 2001), p111-118, 2001.

81

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Kishi, T., Noda, N. and Katayama, T.: Method for Product-Line Scoping based on
Decision-Making Framework, 2nd Software Product Line Conference (SPLC2), 2002
(to be appeared).

Klein, M.H., et.al.: Attribute-Based Architecture Styles, First Working IFIP Confer-
ence on Software Architecture (WICSA1), Software Architecture, Kluwer Academic
Publishers, p225-243, 1999.

Kruchten, P.B.: The 441 View Model of Architecture, IEEE Software, Nov. 1995,
p42-50.

Kruchten, P.B.: The Software Architect - and the Software Architecture Team -,
First Working IFIP Conference on Software Architecture (WICSA1), Software Ar-
chitecture, Kluwer Academic Publishers, p565-583, 1999.

Krueger, C.W.: Modeling and Simulating a Software Architecture Design Space,
CMU-CS-97-158, 1997.

Luckham, D.C., et.al.: Specification and Analysis of System Architecture Using
Rapide, IEEE Transaction on Software Engineering, Vol.21, No.4. p336-355, April
1995. http://pavg.starnford.edu/rapide/

Medvidovic, N. and Taylor, R.N.: A Framework for Classifying and Comparing Archi-
tecture Desciption Languages, Proceedings of the 6th European Software Engineering
Conference, Lecture Notes in Computer Science, 1997

Monroe, R.T., et.al.: Architectural Styles, Design Pattenrs, and Objects, IEEE Soft-
ware, Jan. 1997, p43-52.

Noda, N. and Kishi, T.: On Aspect-Oriented Design - An Approach to Designing
Quality Attributes-, Proceedings of 6th Asia-Pacific Software Engineering Confer-
ence, p230-237, 1999.

Object Management Group: OMG Unified Modeling Language Specification (draft)
version 1.3 alpha R2, Framingham, MA, 1999.

Perry,D.E. and Wolf, A.L.: Foundation for the Study of Software Architecture,
SOFTWARE ENGINEERING NOTES, vol.17, no.4, p40-52, 1992.

Ran, A.: Architectural Structures and Views, Proceedings of the 3rd International
workshop on Software architecture (ISAW-3), p117-120, 1998.

Saaty, T.L.: The Analytic Hierarchy Process, McGraw-Hill, 1980.
Selic, B., et.al.: Real-Time Object-Oriented Modelling, Willey, 1994.

Shaw, M., et.al: Abstractions for Software Architecture and Tools to Support Them,
IEEE Transaction on Software Engineering, Vol.21, No.4. p314-335, April 1995.

Shaw, M. and Garlan, D.: Software Architecture: Perspectives on Emerging Disci-
pline, Prentice-Hall, 1996.

82

[45] Soni, D., Nord, R.L., and Hofmeister, C.: Software Architecture in Industrial Appli-
cations, Proceedings of the 17th International Conference on Software Engineering,
p196-207, April 1995.

[46] Software Engineering Institute,: The Product Line Practice (PLP) Initiative,
http://www.sei.cmu.edu/plp/plp_init.html.

[47] Stevens, P.. UML for Describing Product-Line Architecture. Workshop on Object
Technology for Product-Line Architecture, ECOOP’99, p109-118, 1999.

(48] Weiss,D.M. and Lai, C.T.R.: Software Product-Line Engineering, A Family-Based
Software Development Process, Addison Wesley, 1999.

83

Publications

1]

Kishi, T. and Noda, N: Analyzing Hot/Frozen-spots from Performance Aspect,
Object-Oriented Product Line Architecture (OPLA), ECOOP, 1999. — Make Ob-

servation on the impact of infrastructure towards architectural decision.

Kishi, T. and Noda, N.: Aspect-Oriented Analysis for Product Line Architecture,
Ist Software Product Line Conference (SPLC1), 2000. —- Propose basic idea of
aspect-oriented analysis.

Kishi, T. and Noda, N: Aspect-Oriented Analysis for Architectural Design, Interna-
tional Workshop on Principles of Software Evolution (IWPSE), 2001. —- Discuss
architectural design from a point of view of software evolution.

Kishi, T, Noda, N. and Katayama, T.: Architecture Design for Evolution by Ana-
lyzing Requirements on Quality Attributes, 8th Asia-Pacific Software Engineering
Conference (APSEC 2001), p111-118, 2001. — Propose category of requirements
and design method based on the idea.

Kishi, T., Noda, N. and Katayama, T.: Method for Product-Line Scoping based on
Decision-Making Framework, 2nd Software Product Line Conference (SPLC2), 2001
(to be appeared). — Propose scoping method based on decision-making framework.

84

Appendix A

Conceptual Framework of
Architectural Design

Here, we show the entire model of our conceptual framework of architectural design. In

the following sections, we show class diagrams of UML that depict conceptuarl framework,

and give brief definitions and/or explanation for the class and relationship among them.
In the definition, we use the followings;

e Aggregation is referred as < Aggregates >>.
e Dependency is referred as < Depends >>.
e Inheritance is referred as < Inherites >.

e Link attribute is referred as < LinkAttribute >>>.

A.1 Package Structure

The conceptual framework is consists of three packages (Figure A.1).

Ran's Software Product-line
Framework < Architecture <

|

—

Architectural Product-line
Design Scoping

A A
|
|

Figure A.1: Package Structure

85

e Ran’s Framework: This package includes the model for a revised version of Ran’s

conceptual framework. As our conceptual framework based on Ran’s framework, we
define this package to make our conceptual model on it.

e Software Architecture: This package includes the model that defines the soft-
ware architecture and related concepts.

e Product-line:

This package includes the model that defines the product-line and
related concepts.

e Architectural Design: This package imports the concepts defined in the package
Software Architecture, and adds some concepts related to architectural design.

e Product-line Scoping: This package imports the concepts defined in the package
Product-line, and adds some concepts related to product-line scoping.

A.2 Package: Ran’s Framework

This package includes the model for a revised version of Ran’s conceptual framework
(Figure A.2). As our conceptual framework is based on Ran’s framework, we define this
package to make our conceptual model on it.

Though we have changed some terminologies in order to make consistency with other
part of our paper, the basic idea of the model is the same as Ran’s original work.

Fulfill ComposedOn

Requirement

Structure

Infrastructure

0. \
\

0%

QRequirement

LStructure

N

AN

N\ 0.k

PStructure

Pinfrastructure

Figure A.2: Package: Ran’s Framework

e Requirement: Requirement is imposed on the software.

— < Aggregates >FRequiremnet and (multiple) QRequirements: Requirement
consists of Requirements on functionality and multiple Requirements on quality

attributes, such as requirements on run-time quality attributes, and require-
ments on development-time quality attributes.

86

e Structure: Software structure. In Ran’s framework, this is called as ” Architec-
ture”. In our model, on the other hand, we use the term ” Architecture” in more
specific context, as we want to make clear the differences between software archi-
tectural design and ordinary software design.

— Fulfill Requirement: Software structure is constructed so as to fulfill given
Requirement.

— ComposedOn Infrastructure: Software structure is constructed on the Infras-
turcture, i.e. software structure is the structure of elements provided by Infras-
tructure.

— < Aggregates >LStructure and (multiple) PStructure: Software structure
consists of Logical structure and multiple types of Physical structure such as
run-time software structure and development-time software structure.

Infrastructure: Infrastructure of software.

— < Aggregates >(multiple) Plnfrastructures: There are multiple types of In-
frastructure such as run-time infrastructure and development time infrastruc-
ture.

FRequirement: Requirements on functionality.

QRequirement: Requirements on quality attributes.

— & Depends >FRequirement: Some Requirements on quality attributes are
defined in terms of Requirements on functionality, such as performance of ex-
ecuting a function.

LStructure: Logical structure of software. The structure of conceptual entities.
This is a special Software structure that does not constructed on actual Infrastruc-
ture. Functionalities of the software is usually defined in terms of Logical structure.
In Ran’s model, this is called as ”Conceptual Views”.

— <K Depends >FRequirement: Logical structure is defined based on Require-
ments on functionality, namely it is constructed so as to Fulfill Requirement on
functionality (inherit from the association between Requirement and Structure).

e PStructure: Physical structure of the software, such as run-time structure and
development-time structure. In Ran’s model, this is called as ”Structure”.

— < Depends >QRequirement: As each Physical structure has an impact on
the corresponding quality attributes, Physical structure is constructed so as to
Fulfill the corresponding Requirement on quality attributes. (inherit from the
association between Requirement and Structure).

— & Depends >Plnfrastructure: Physical structure is ComposedOn the corre-
sponding Physical infrastructure, such as run-time infrastructure and development-
time infrastructure (inherit from the asscociation between Structure and Infras-
tructure.

e Plnfrastructure: Physical infrastructure,

87

A.3 Package: Software Architecture

This package includes the model that defines the software architecture and related con-
cepts (Figure A.3).

Fulfill ComposedOn

Requirement Structure Infrastructure

(from Ran’s Frame work) (from Ran's Framework) (from Ran’s Framework)
Fulfill ComposedOn
RonProduct Product [ofProduct
0.%
0.% 0..% 0..%
Categorizedinto DevelopedOn Categorizedinto
Fulfillable CanbeComposedOn
CategoryOfR Architecture CategoryOfl

Figure A.3: Package: Software Architecture

e RonProduct: Requirement on software product.

— K Inherites >Requirement : Requirement on software product inherits the
nature of Requirement.

— CategorizedInto CategoryOfR: Requirement on software product can be cate-
gorized into Category of requirements. If the product can be developed on a
software architecture, the architecture can be the basis for fulfilling the Cate-
gory of requirements.

e Product: Software product. Software product has the same characteristics as
Software structure.

— & Inherites >Structure: Software product has the same characteristics as
Software structure.

— Fulfill RonProduct: This is the inherited association from Software structure.
We just explicitly show the association.

— ComposedOn lofProduct: This is the inherited association form Software struc-
ture. We just explicitly show the association.

— DevelopedOn Architecture: Softawre product is developed on Software archi-
tecture. Multiple Software products may share the same Software architecture.

e lofProduct: Infrastructure of software product.

88

— K Inherites >Infrastructure: Infrastructure of software product has the same
nature of Infrastructure.

— CategorizedInto CategoryOfl: Infrastructure of software product can be catego-
rized into Category of Infrastructure.

o CategoryOfR: Category of requirement. Set of Requirements on software product
that can be fulfilled by Software products developed on the corresponding Software
architecture.

e Architecture: Software architecture.

— Fulfillable CategoryOfR: Category of requirements is fulfillable by Software ar-
chitecture, i.e. Requirement on software product that is categorized into the
Category of requirement, can be fulfilled by Software products developed on
the Software architecture.

— CanbeComposedOn CategoryOfl: Software architecture can be composed on
Category of infrastructure, i.e. Software products developed on the Software
architecture can be composed on Infrastructure of product that is categorized
into the Category of infrastructure.

e CategoryOfl: Category of infrastructure. Set of Infrastructure of product on which
Software products can be composed based on the corresponding Software architec-
ture.

A.4 Package: Product-line

This package includes the model that defines the product-line and related concepts (Figure
A4).

Fulfill
RonProduct-lines Product Family
|
0%

'

‘ Adopt

Define !
Product-line Product-line Scope

0.% 0.* 0.%
RonProduct Fulfill Product
(from Architecture) (from Archi)
0.
0..%
DevelopedOn Adopt
Architecture
(from Archi)

Figure A.4: Package: Product-line

89

e Product Family: Product family. Set of products to be developed.

— < Aggregates >(multiple) Product: Product family consists of multiple Soft-
ware products.

— Fulfill RonProduct-lines: Product family is developed so as to fulfill Require-
ment on product-lines.

— Adopt Product-line Scope: Product family is developed by adopting a Product-
line scope.

e Product-line: Product-line of software products.

— & Aggregates >(multiple) Product: Product-line consists of multiple Soft-
ware products.

— Adopt Software Architecture: The member of Product-line shares a single Soft-
ware Architecture.

e RonProduct-lines: Requirement on product-lines in terms of software develop-
ment.

e Product-line Scope: Procuct-line Scope defines the procuct-lines in a Product
family.

— Define Product-line. Product-line scope determines a set of Product-line of
software products.

A.5 Package: Architectural Design

This package imports the concepts defined in the package Software Architecture, and adds
some concepts related to architectural design.

; DesignPolic

RonProduct Fulfil Product £ Y

(from Software Architecture) (from Software Architecture)
0.% T
0..% 0.%
Categorizedinto DevelopedOn <link_attribute>>
Preference

CategoryOfR Fulfillable Architecture

(from Software Architecture) 1 (from Software Architecture)

|

Klink_attribute>>

Applicability

Figure A.5: Package: Architectural Design

90

o K LinkAttribute >Applicability: Applicability of architecture to Category of
requirements. This is a link attribute between Software architecture and Category
of requirement.

o K LinkAttribute >Preference: Preference of architecture for Software product
in terms of Design policy.

e Design Policy: Design policy that determines the weight among decision criteria,
i.e. quality attributes.
A.6 Package: Product-line Scoping

This package imports the concepts defined in the package Product-line, and add some
concepts relate to product-line scoping.

RonProduct-lines Fulfill Product Family
(from Product-line) (from Product-line)

il
Adopt
—

1

Preference
Product-line Define Product-line Scope
— (from Prod uct-line) (from Product-ine)

0..% 1

0.%

— [link_attribute>>

RonProduct Fulfill Product
(from Software Archi (from Software Archil
0.% /
0.
DevelopedOn |~ —__ Adopt J
—_

<Llink_attribute>>

Architecture Desi_gnPoIicy .
—— ——>|(from Desi

(from Software Archi (from Archi Design) ign)

Figure A.6: Package: Product-line Scoping

o K LinkAttribute >Preference: Preference of product-line scope for Product
family in terms of Design policy.

91

Appendix B
An Example of AHP Calculation

The followings are the steps to determine the preference of the candidates using AHP
[41]. In the example in chapter 5, we have determined the preference of the candidates
for each product. In this appendix, we will show how to calculate the preference for P1.
Other preferences are determined using the same steps.

1. Decide the relative importance among the criteria. We have focused on performance

and size. We make pair-wise comparisons between criteria, using the following
numbers (Table B.1).

Table B.1: Numbers Used for Pair-wise Comparison
Strongly more important
Weakly more important
Equally important

1/3 | Weakly less important
1/5 | Strongly less important

—| Q| Ot

Table B.2 shows the result of pair-comparisons. The first row shows the relative
importance of performance and the second row shows that of size. As P1 is the
low-end model and performance is less important than size, we give the following
numbers.

Table B.2: Comparison among Criteria
Performance | Size
| Performance 1 1/3
| Size 3 1

We can obtain the priority vector from above matrix, by calculating the principal
eigenvector and normalize them. The following is the result (Table B.3).

2. For each criterion, decide the preference of the candidates. For each criterion, we
compare three architectural candidates, and calculate the relative preference (Table

B.4, Table B.5).

92

Table B.3: Preference among Criteria
Performance | 0.25

Size 0.75

Table B.4: Comparison among Candidates in Terms of Performance
AO | A1 | A2 | Preference

A0 1 [1/3[1/5]| 0.105
AT 3 [1 [1/3] 0258
A2 5 [3 |1 0.637

Table B.5: Comparison among Candidates in Terms of Size
AO | A1 | A2 | Preference
A0 | 1 1 5 0.455
Al | 1 1 5 0.455
A2 [1/5[1/5] 1 0.091

3. Obtain overall priorities. Based on the preference among criteria, and preference
among candidates, we can calculate overall priorities.

0.105 0.455 0.367
0.25 x | 0.258 | +0.75 x | 0.455 | = | 0.406 (B.1)
0.637 0.228 0.228

This gives the preference among candidates for P1 (Table B.6).

Table B.6: Preference among Candidates
P1

A0 | 0.367
Al | 0.406
A2 | 0.228

93

