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Abstract

Estimation method of optical flow is an effective method for analysis image sequences.
However, there are important problems that have to be solved to precisely estimate optical
flow such as occlusion, brightness change and fluid analysis using image sequences.

As purpose of this research, in actual image sequences, I aim at solving these impor-
tant problems in optical flow estimation. In order to solve the problems, I attempt to use
velocity vector constraint equations for estimating velocity vectors, which mean “actual
motions of objects”, in each problem. In actual image sequence, there is a case that
parameters including velocity vectors in the constraint equations are scattered in the pa-
rameter space, since differential coefficients of the parameters in the constraint equations
are affected by noise and so on. In such the situation, we can not uniquely determine
parameters of velocity vectors. In order to estimate the parameters of velocity vectors
in such the situation, I use a voting process with a weighting function which is based
on an non-liner approach to estimate parameters in the constraint equations. Since each
problem has a particular problem, based on the voting method, I solve each problem by
using each particular approach such as
‘Occlusion: In estimating velocity vectors, in order to exclude effectiveness of constraint
equations effected by noise and in occlusion regions, I use an method of optical flow es-
timation via voting process with a weighting function. To separate different motions in
regions of different motions, in the voting process, | set a condition to separate constraint
equations in different motions. In occlusion regions, there is a limit of precision of opti-
cal flow estimation by using the voting process with a weighting function. Thus, I use
extrapolation of velocity vectors in occlusion regions from estimated velocity vectors in
assigned regions of the occlusion regions.

-Brightness change: A velocity vector constraint equation considered brightness change
includes three parameters such as velocity vector parameters and temporal change of in-
tensity. In order to estimate the most likelihood parameter in a parameter space, I expand
the parameter space to a 3-dimensional parameter space. I then estimate the parame-
ters in the constraint equation by using a voting process with a weighting function in a
3-dimensional voting space.

‘Fluid analysis using image sequences: In order to deal with the problem of fluid
analysis using by image sequences as a problem of estimating of the most likelihood in
a parameter space, | derive an optical flow constraint equation considering physical con-
straints of fluid. The constraint equation includes three parameters such as velocity vector
parameters and spatial change of pressure. In order to estimate the most likelihood pa-
rameter in a parameter space, expand the parameter space to a 3-dimensional parameter
space. I then estimate the parameters in the constraint equation by using a voting process
with a weighting function in a 3-dimensional voting space.

In this thesis, I describe the proposed methods for each problem in detail and show
its effectiveness.
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Chapter 1

Introduction

1.1 Motivation

Based on the computational vision proposed by Marr[1], computation vision algorithms
based on 2-dimensional images information such as shape from X (X: shading, texture,
contour or motion) have been studied. The field of studies of the computation vision algo-
rithms has been called as ”Computer Vision”. In recent years, computer vision not only
aims at estimating shape information using the technique of shape from X but also aims at
composition, estimation or generation of variety information including shape information.
As information for composition, estimation or generation of variety information, motion
information is one of the most important information in computer vision. Since we can,
based on motion information, compose, generate or estimate variety information. For
example, there are plenty of applications that compose, estimate or generate the variety
information based on motion information such as

- Image composition[9][10]

Calculating parameters of a position or a direction in a camera using motion information,
this method inserts computer graphics image into image frames based on the calculated
parameters.

- Super resolution[11]~[14]

Super resolution is a problem such that solves an inverse problem of estimating z from
an observation value y in y = Hax + b (H: linear degradation operator, b: noise). There
are many methods to solve the inverse problem. Among them, there is a method based
on motion information.

- Motion compensation[15]~[19]

Analyzing motion in a region of an image sequence, a side of transmission transmits the
motion information in the region. A side of receiver receives the motion information, and
then, assigns the motion information to the region of an image sequence. In a side of
receiver, it is possible to reduce quantity of information by this process.

- Robot control[20]~[22]
In the field of robot control, there are methods using motion information estimated by
techniques of computer vision to obtain a position and a direction of the robots in actual



environment.

- Objects tracking[23]~[26] For the sake of doubtful parson tracking or observation
of the volume of traffic, this method tracks motion objects in an image sequence using
motion information.

- Gesture recognition[27][28]
Analyzing of parson’s motion, this method recognizes gestures of parsons based on the
motion information.

- Facial expression analysis[29]~[32]
Extracting of motion on a face in an image sequence, the method analyzes facial expres-
sion based on the extracted facial motion.

- Structure estimation[33]~[39]

3-dimensional positions are constrained by motion, inner and outer parameters of a cam-
era. Using this constraint. This method estimates 3-dimensional positions in a situation
that inner and outer parameters in a camera are known and motion information has
already estimated.

Table 1.1: Motion estimation ability

Properties
Each pixel ‘ Each object
Background subtraction X 0
Active contour model X o
Optical flow estimation 0 o

In order to obtain the motion information by using techniques of computer vision,
some methods such as

‘Background subtraction [3][4]
-Active contour model [5][6]

-Optical flow estimation [7][8]

have been proposed.

The methods of background subtraction extract motion regions in an image frame
by subtraction of temporally continuous frames. If there are motion regions in an image
frame, the motion regions are left by subtracting of temporally continuous frames since
intensity on a pixel included in motion regions in a previous frame is expected to differ
from intensity on the pixel in the next frame (Figure 1.1).

The methods of active contour model extract an interest object in an image frame
using an energy function. By trucking of an interest object extracted using by the active
contour model, we can obtain motion information of the interest object (Figure 1.2).

The methods of optical flow estimation estimate motion vector on each pixel in an
image frame by being based on information of temporal and spatial intensity (Figure

1.3).



An object

Frame 1 Frame 2

A subtructed motion region

Figure 1.1: An example of background subtraction. The lower figure shows a subtracted

region extracted by subtraction the framel and the frame2. The subtracted region denotes
An object Active contour model

the motion region between the framel and the frame2.

Time 1 Time 2 Time 3

Figure 1.2: An example of active contour model. In figure of time 1, the dot string denotes
initial position of the active contour model. As time goes by, the active contour model
converges at the object in the image.
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Estimated motion vectors

Figure 1.3: An example of optical flow estimation. Based on information of spatial and
temporal intensity in a frame 1 and a frame 2, optical flow estimation estimates motion
vectors in each pixel.

The methods for obtaining of the motion information have each ability. Table 1.1
shows the ability of motion estimation in each method.

The methods except optical flow estimation estimate global motion information on
each object in an image sequence. Thus, the methods except optical flow estimation can
not obtain local motion information on each pixel in an image sequence. On the contrary,
estimation methods of optical flow estimate motion vectors in each pixel based on the
following property of image sequences with respect to intensity.

- Temporal-spatial correlation of intensity in an image sequence is high
For instance, spatial autocorrelation coefficients of general image frames is about 0.9.
From the property, it is expected that following conditions are held.

- Intensities in corresponding points between frames are equivalent

- Temporal and spatial changes of intensity are smooth
These conditions are called as optical flow realizable conditions. If the optical flow
realizable conditions are held, motion vectors in a pixel satisfying the conditions are
constrained by temporal-spatial differential coefficients of intensity. The constraint can

be expressed by an optical flow constraint equation|[7] such as

Lu+ Lo+ 1, =0, (1.1)



where I, and I, respectively denote spatial differential coeflicients of intensity for x axis
and y axis in image space, [; denotes a temporal differential coefficient of intensity, u
and v denote components of a motion vector in a pixel. Since I,, I, and I, can be
determined from image sequences, we can estimate motion vectors by solving the optical
flow equation with respect to uw and v. In order to estimate motion vectors using the
optical flow constraint equation, we consider the following property of image sequences
with respect to motions.

- Motions in a local region of an image sequence are approximately equivalent
Based on the property, we assume that the following assumption holds.

- Motion vectors in a local region of an image sequence are equivalent

Based on the assumption, estimation methods of optical flow estimate motion vectors
in each pixel by least mean square using the constraint equations in a local region of an
image sequence. Since the estimation methods of optical flow estimate motion vectors in
each pixel, estimation methods of optical flow can estimate local motion information on
each pixel in an image sequence. By using segmentation based on motion vectors extracted
by optical flow estimation, we can expect to estimate global motion information on each
object. Thus, estimation methods of optical flow have high flexibility in motion analysis.
Therefore, estimation methods of optical flow have been mainly used in motion analysis
of image sequences.

Optical flow estimation methods have effectiveness for motion analysis such as being
able to flexibly estimate motion information. However, there are problems in optical flow
estimation [2] such as

- Occlusion

- Brightness change
- Fluid analysis by using image sequences
- Determination of camera parameters

- Aperture problem etc.

Among them, since occlusion and brightness change often occur in image sequences
and fluid analysis by using image sequence are needed in field of fluid measurement, it is
important to solve occlusion, brightness change problems and the fluid analysis problem
by using image sequences. Thus, I focus on the following important problems.

- Occlusion

- Brightness change

- Fluid analysis by using image sequences
The cause of occurring these problems is not to satisfy the optical flow realizable con-
ditions to estimate “appearance motions”. If the realizable conditions are not held or
insufficient, precision of optical flow estimation decreases. Following two cases do not
satisfy the realizable conditions.

-Occlusion



Occlusion regions

Framel Frame2

Figure 1.4: An example of occlusion. The car in left side moves to right side, the car in
right side moves to left side. Occlusion occurs inside the ellipse regions.

Framel Frame2

Figure 1.5: An example of brightness change. A can moves to the depth right under a
point light source (lower, Framel, Frame2), intensity in a region on the can is changed by
changing of shading (upper, expanded figures).



Framel Frame2

Figure 1.6: An example of incompressible viscous fluid. The figures show flow of incom-
pressible viscous fluid behind a cylinder in the frame 1 and the frame 2.

Occlusion occurs when an object moves on another object, or an object moves on a
background. In this case, the optical flow realizable conditions are not satisfied by ap-
pearance and disappearance of corresponding points between frames, therefore, optical
flow is not estimated precisely (Figure 1.4).

-Brightness change

Brightness change occurs when intensity of a light source changes temporally or shad-
ing change on an object occurs by motion of the object under a point light source. In
this case, the optical flow realizable conditions are not satisfied by difference of intensity
in corresponding points between frames (Figure 1.5)

Even though in case of satisfying the optical flow realizable conditions, there is a case
that precision of optical flow estimation decreases such as

-Fluid analysis by using image sequences

In case of analysis of fluid objects by using image sequences, optical flow realizable
conditions are insufficient to estimate optical flow. To precisely estimate optical flow, we
have to consider physical constraint conditions to precisely estimate velocity vectors in
the analysis of fluid object by using image sequences (Figure 1.6).

1.2 Purpose of this research and approaches

As purpose of this research, I aim at solving the following important problems

- Occlusion
- Brightness change
- Fluid analysis by using image sequences

in actual image sequences, since the applications using optical flow information aim
at applying to actual image sequences.



I consider that the essence of these problems is to estimate optical flow as “appearance
motions” which mean motion vectors in case of assuming that optical flow realizable
conditions hold, I attempt to solve the problems using velocity vector constraint equations
that can be applied to estimation of velocity vectors[52][54] which mean “actual motions
of objects”. In each pixel in an image frame, I assume that constraint equations which can
be applied to estimate velocity vectors of objects in each problem could be formularized
as

a1+ asv + as = 0, (1.2)

where u and v denote components of a velocity vector for xz-axis and y-axis in image
space respectively, a; and a, denote coeflicients of © and v, az denotes a constant term.
We can obtain the constraint equation (1.2) in each pixel. However, in each pixel, we
cannot determine the parameters v and v since the constraint equation includes plural
parameters. To determine the parameters, I set an assumption such as

Assumption: Parameters of constraint equations in an interest pixel and its neighbor-
ing pixels are equivalent.

If this assumption holds, we can uniquely determine the parameters by solving si-

A

\V

N
/C
A 4

Parameter space u-v

Figure 1.7: An intersection of constraint equation in parameter space u-v.

multaneous equation of the constraint equations in an interest pixel and its neighboring
pixels. This means intersections of constraint equation converge into a point in param-
eter space u-v (Figure 1.7). However, If the assumption is not held, intersections of the
constraint equations are scattered in the parameter space u-v. In this situation, we can
not determine the parameters uniquely. Since the constraint equation includes differential
coeflicients, the constraint equation effected in the regions where realizable conditions of



)

Parameter space u-v

Figure 1.8: Scattered intersections of constraint equation in parameter space u-v.

the constraint equation are not held or where noise is added. Therefore in the regions,
intersections of the constraint equations are further scattered in the parameter space u-v
(Figure 1.8).

In this situation, we need a method that can estimate the most likelihood parameter
from the scattered intersections in the parameter space.

There are some methods based on a concept of integral approach to estimate the most
likelihood parameter from the scattered intersections in the parameter space. These are
called “Robust estimation”. As robust estimation methods, following methods have been
proposed.

- M-estimation [64]
- LMedS estimation [65]

- Voting process with a weighting function [66]
Among them, the voting process with a weighting function has been corroborated its
effectiveness in studies of hough transformation[40]~[43], and it has effective properties
such as

- It can estimate the optimum parameter excluding local minimum

- It can reduce calculation times keeping a property of estimating the most likelihood
parameter
I adopt a voting process with a weighting function method that has the effective
properties to estimate the most likelihood parameter from the scattered intersections in
the parameter space.
Since each problem has a peculiar problem, I attempt to solve the peculiar problem
by following different approaches.



:Occlusion

In estimating velocity vectors, in order to exclude effectiveness of constraint equations
effected by noise and in occlusion regions, I use a method of velocity vector estimation
via voting process with a weighting function. To separate different motions in regions of
different motions, in the voting process, I set a condition to separate constraint equations
in different motions. In occlusion regions, there is a limit of precision of velocity vectors
estimation by using the voting process with a weighting function. Thus, I use extrapola-
tion of velocity vectors in occlusion regions from estimated optical flow in assigned regions
of the occlusion regions.

‘Brightness change

An velocity vector constraint equation considered brightness change includes three pa-
rameters such as velocity vector parameters and temporal change of intensity. In order to
estimate the most likelihood parameter in the parameter space, I expand the parameter
space to a 3-dimensional parameter space. I then estimate the parameters in the con-
straint equation by using a voting process with a weighting function in a 3-dimensional
voting space.

-Fluid analysis by using image sequences

In order to deal with the problem of fluid analysis using by image sequences as a
problem of estimating of the most likelihood in a parameter space, I derive an veloc-
ity vector constraint equation considering physical constraints of fluid. The constraint
equation includes three parameters such as velocity vector parameters and spatial change
of pressure. In order to estimate the most likelihood parameter in a parameter space,
I expand the parameter space to a 3-dimensional parameter space. I then estimate the
parameters in the constraint equation by using a voting process with a weighting function
in a 3-dimensional voting space.

1.3 Overview of this thesis

This thesis consists of 6 chapters. The following terms present outlines of each chapter.
Chapter 2: The basic theory of optical flow estimation

This chapter presents the basic theory of optical flow estimation such as concepts of
optical flow estimation and methods of estimating optical low based on the concepts.

Chapter 3: A new method of optical flow estimation for occlusion

This chapter presents a new method of velocity vector estimation for occlusion and
shows the results of experiments for evaluation of velocity vector estimation precision in
conventional methods and a new proposed method.

Chapter 4: A new method of optical flow estimation for brightness change

This chapter presents a new method of velocity vector estimation for brightness change
and shows the results of experiments for evaluation of velocity vector estimation precision
in conventional methods and a new proposed method.

Chapter 5: A new method of optical flow estimation for incompressible viscous
fluid

10



This chapter presents a new method of velocity vector estimation for fluid analysis
and shows the results of experiments for evaluation of velocity vector estimation precision
in conventional methods and a new proposed method.

Chapter 6: Conclusions

This chapter presents conclusion and future works.

11



Chapter 2

The basic theory of optical flow
estimation

Optical flow has been mainly used in motion analysis of image sequences since optical
flow estimation has high flexibility in motion analysis. Methods of optical flow estimation
estimate optical flow vectors as “appearance motion”. In order to estimate actual motion
vectors of objects in occlusion, brighness change or fluid analysis using image sequences, we
have to improve the methods of optical flow estimation. In advance of showing estimation
methods of motion vectors in occlusoin, brightness change or fluid analysis using image
sequences, this section presents the basic theory of the optical flow estimation.
Methods of optical flow estimation are broadly classified into

- Block matching methods
- Gradient methods

The following sections present block matching methods and gradient methods respectively.

2.1 Block matching methods

Block matching methods[44][45] estimate optical flow based on similarity of regions be-
tween a previous image frame and a next frame image. The following evaluation functions
are mainly used to estimate optical flow in block matching methods.

2.1.1 SAD evaluation function

A Dblock matching method using the following evaluation function is called as sum of

absolute differences (SAD).

Bsap(u,v) = > |I(z,y,t) = I(z + u+ Ty, y + v+ yu, t + dt)|, (2.1)
ZTw,Yw €W

where v and v are components of optical flow on coordinates = and y in image space,
Bsap(u,v) is an evaluation function of sum of absolute differences with respect to « and
v, W is a matching region for estimating v and v. I(z,y,t) is intensity on a pixel (z,y) at
time t, I(z +u+ Ty, Y+ v+ Yo, t +dt) is intensity on a pixel (z+u+z,,y+v+y,) at time
t+dt. The block matching method using the SAD evaluation function estimates u and v

12



getting the maximum evaluation value in the SAD evaluation function to be optical flow
components.

2.1.2 SSD evaluation function

A block matching method using the following evaluation function is called as sum of
squared differences (SSD).

Bssp(u,v) = Y. {I(z,y,t) = (& + u+ 2y, y + 0 + Yy, t + dt)}?, (2.2)
Ty, YywEW
where Bssp(u,v) is an evaluation function of sum of squared differences with respect
to u and v. The block matching method using the SSD evaluation function estimates u
and v getting the maximum evaluation value in the S5 D evaluation function to be optical
flow components.

2.1.3 CC evaluation function

A block matching method using the following function is called as cross correlation (C'C).

Beoe = Z (I(x,y,t)xf(x tUu+ Ty, Y+ U+ Yu,t + dt))? (23)
u,veEW
where Beo(u,v) is an evaluation function of cross correlation with respect to u and
v. The block matching method using the C'C' evaluation function estimates u and v
getting the maximum evaluation value in the C'C evaluation function to be optical flow
components.

2.2 Gradient methods

Gradient methods[7][8] estimate optical flow based on an optical flow constraint equation
that constraints optical flow with respect to temporal and spatial gradient of intensity on
an image sequence. The following sections present the optical flow constraint equation
and general methods to solve the optical flow constraint equation.

2.2.1 Optical flow constraint equation

Let I(z,y,t) be the intensity at time t at the image point (z,y). Then, if u(z,y) and
v(x,y) are the x and y components of the optical flow vector at that point, we expect that
the intensity will be the same at time t+dt at the point (z + 6z, y + dy), where dz = uét
and oy = voét. That is,

I(z + ubt,y + vét,t + 6t) = I(x,y,1) (2.4)

for a small time interval dt. This single constraint is not sufficient to determine both u
and v uniquely. It is also clear that we can take advantage of the fact that the motion
field is continuous almost everywhere. If brightness varies smoothly with z, y and ¢, we
can expand the left-hand side of the equation above in a Taylor series and so obtain

13



oI oI oI
I(z,y, )—1—dxa——|—dy8 dta—l—e I(z,y,t). (2.5)

Where e contains second- and higher-order terms in dz, dy and dt. Canceling I(z,y,t),
dividing through by dt and taking the limit as dt—0, we obtain

olde Oldy 0OI

2.6
8xdt+8 at o (2.6)
which is actually just the expansion of the equation

dl

— =0 2.7

5 (2.7)
in the total derivative of I with respect to time. Using the abbreviations v = %7 v =
‘g,[ = gi,] = 3y7]t 8t I we obtain

Lu+ Lv+ 1, =0. (2.8)

The derivatives I,I, and I, are estimated from the image. The above equation is called
the optical flow constraint equation [7], since it expresses a constraint on the components
u and v of the optical flow. Consider a two-dimensional space with axes u and v, which
we shall call velocity space (figure 3). Values of (u,v) satisfying the constraint equation
lie on a straight line in velocity space. All that a local measurement can do is to identify
this constraint line. We can rewrite the constraint equation in the form

(I, Iy)-(u,v) = —1I,. (2.9)
The component of optical flow in the direction of the brightness gradient (I, I,)* is thus

1,

JI2+I2

We cannot, however, determine the component of the optical flow at right angles to this
direction, that is, along the isobrightness contour. This ambiguity is also known as the
aperture problem.

(2.10)

2.2.2 (General methods to solve the optical flow constraint equa-
tion
There are mainly two methods to solve the optical flow constraint equation [46] such as

- Global method [7]

- Local method [8]
the next section present details about each method.

14



Global method

Horn and Schunck [7] proposed the method using the following an evaluation functions
for determination of v and v in equation 2.8. First, they defined an evaluation function
e, for evaluation of smoothness in v and v with respect to = and v,

e, = //((u?c +ul) + (v 4 v)))dady (2.11)

s Uz and v, mean Ou/0z, Ou/0y, Ov/O0xr and Ov/dy respectively. Second,
They defined an evaluation function e, for evaluation of satisfaction of equation 2.8 with

where u,, u

respect to = and y,

e, = //([mu + Ly + I;)*dzdy, (2.12)

Finally, They estimated u and v by minimizing the evaluation function,

€q = €5 + Aeg, (2.13)

where ) is a parameter that weights the error in the image motion equation relative to
the departure from smoothness. This parameter will be large if brightness measurements
are accurate and small if they are noisy. Minimizing an integral of the form

//F(u, V, Uy, Uy, Vg, Uy )dzdy (2.14)
is a problem in the calculus of variations. The corresponding Euler equations are
0 0
F,—-—F, ——F, =0, 2.15
oz = Oy ( )
0 0
F,——F, ——F, =0. 2.16
ox * Oy * ( )
In this case,
F = (u) 4+ u)) 4+ (v +0)) + MLu+ Lv+ I)?, (2.17)
so the Euler equation yield
Viu = MTLu+ Ly + L)1, (2.18)
Vi = Mlu + Ly + 1)1, (2.19)
where 92 52
Vi=s — 4+ — 2.20
Ox? + 0y? ( )

is the Laplacian operator. This coupled pair of elliptic second-order partial differential
equations can be solved using iterative methods.
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Local method

Lucas and Kanade [8] use a local constant model for « and v which is solved as a weighted
least-squares solution to equation 2.8. Velocity estimates are computed by minimizing

> Wz, y)*(VI(z,y,t)-(u,v) + L(z,y, 1)) (2.21)

z,yeN)

where W(x) denotes a window function and R is a spatial neighborhood, €2 denotes a
support region for estimating v and v. The solution of the equation 2.21 represented as

ATW?Av = ATW?b, (2.22)
where
A= [VI(z1,y1,t), s V(T Yy )] (2.23)
W = diag[W(xlyyht):'"7W(ch7yn7t)]: (224)
b= —(It(whylyt),'",.[t(icn,yn,t))T, (225)

with respect to points (z;,;,t)€Q (i = 1,---,n). In case of A”W?2A has regularity, we
can obtain

v=[ATW?A]7ATW?b. (2.26)
This method decides v as estimated optical flow in the .

16



Chapter 3

A new method of velocity vector
estimation for solving the occlusion
problem

3.1 Introduction

When an object moves in front of a background or another object, occluded or appear-
ance regions occur. These regions are called occlusion regions. In occlusion regions and
its neighboring regions, There are optical flow constraint equations that do not satisfy
optical flow realizable conditions by appearance/disappearance of intensity and constraint
equations in regions of different motions and, in case of actual image sequences, constraint
equations effected by noise. Conventional optical flow estimation methods [7][8] estimate
velocity vectors including such constraint equations effected by noise, constraint equa-
tions in occlusion region and constraint equations in regions of different motions. Thus,
velocity vectors are not precisely estimated in case of occurring occlusion in actual image
sequences. In estimating velocity vectors, in order to exclude effectiveness of constraint
equations effected by noise and in occlusion regions, I use an method of velocity vector
estimation via voting process with a weighting function. To separate different motions
in regions of different motions, in the voting process, I set a condition to separate con-
straint equations in different motions. In occlusion regions, there is a limit of precision
of velocity vector estimation in the method of velocity vector estimation via voting pro-
cess with a weighting function. For estimating velocity vectors in occlusion regions, I use
extrapolation from estimated velocity vectors in assigned regions of occlusion regions.

In an object tracking system such as observation system of invasion for plural objects,
we have to separate each object to track each object in case of overlapping each object.
Therefore, we can expect to apply the proposed method to the object tracking system
for plural objects. In a human gesture recognition system to help communication with
each other person through computers, we have to separate each part of body to recognize
meaning of gesture in case of overlapping each part of body. Thus, we can expect to apply
the proposed method to the human gesture recognition system.
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3.2 An approach for solving the occlusion problem

3.2.1 Velocity vector estimation via a voting process with a
weighting function

In occlusion regions and its neighboring regions, conventional methods [7][8] estimate opti-
cal flow including constraint equations that do not satisfy optical flow realizable conditions
by appearance/disappearance of intensity and constraint equations in regions of different
motions and, in case of actual image sequences, constraint equations effected by noise.
Thus, in whole pixels in case of global method [7], in a region where includes those con-
straint equations in case of local method [8], velocity vectors in not sufficiently estimated
because estimated velocity vectors using the conventional methods include effectiveness
of those constraint equations.

In estimating velocity vectors, in order to exclude the constraint equations that do
not satisfy optical flow realizable conditions by appearance/disappearance of intensity
and constraint equations effected by noise, I use a method of velocity vector estimation
via voting process with a weighting function. To separate different motions in regions of
different motions, in the voting process, I set a condition to separate constraint equations
in different motions. We can expect to precisely estimate velocity vectors in case of
occurring occlusion in actual image sequences. However, there is a limit of velocity vector
estimation precision in occlusion regions in the method of velocity vector estimation via
voting process with a weighting function.

3.2.2 A limit of velocity vector estimation precision in occlu-
sion regions in the method via the voting process

If an object in an image sequence is a rigid object, a motion of the object is described
as isotropic motion. In a region of the rigid object in an image sequence, a velocity vector

holds the following theorem [66].

Theorem A velocity vector (u,v) in a region holds the following inequality
uminSUSUmaza (31)

Umingvgvmamp (32)

where U, and v,,;, denote the minimum values of velocity vector components in a region
respectively, Umqae and v,,q, denote the maximum values of velocity vector components in
a region respectively. Equation (3.1) and (3.2) denote range of velocity vectors can be
estimated in a region (Figure 3.1).

Let us consider the situation shown in Figure 3.2. In case of estimating velocity vectors
in a occlusion region using constraint equations in a region except a occlusion region,
velocity vectors in a occlusion region must be estimated within the range of velocity
vectors in a region except a occlusion region. However, velocity vectors in occlusion
regions gets over the range of velocity vectors in a region except a occlusion region since
a isotropic motion is a spatial monotone increasing or decreasing (Figure 3.3).

Since the method via voting process with a weighting function excludes constraint
equations in occlusion regions, the method estimates velocity vectors in occlusion regions
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Figure 3.3: Getting over of a velocity vector in an occlusion region from the range of
a velocity vector in a region except a occlusion region.
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using constraint equations in neighboring regions of occlusion regions. Thus, in case of
the situation such as shown in Figure 3.2, we can not sufficiently estimate velocity vectors
in a occlusion region.

3.2.3 Velocity vector estimation in occlusion regions using ex-
trapolation

We can not sufficiently estimate velocity vectors in occlusion regions using only the method
of velocity vector estimation via a voting process with a weighting function (Figure 3.4).
In regions except occlusion regions, we can expect to precisely estimate velocity vectors by
using the voting process with a weighting function. Therefore, I estimate velocity vectors
in occlusion regions using extrapolation from estimated velocity vectors in assigned regions
of occlusion regions (Figure 3.5). For the extrapolation, I execute the following process.

1. Extraction of occluded /appearance regions

2. Decision of assigned regions of occluded/appearance regions

3. Extrapolation of velocity vectors in occluded /appearance regions from estimated
velocity vectors in its assigned regions
To realize the extrapolation process, we need a method of velocity vector estimation
that can precisely estimate velocity vectors in whole pixels. Using the method of velocity
vector estimation via a voting process with a weighting function, we can expect to precisely
estimate velocity vectors in regions except occlusion regions. Assuming that precision of
velocity vectors in occlusion regions estimated by the voting process with a weighting
function is sufficient to be able to be used to the extrapolation process, in estimation of
velocity vectors in occlusion regions, I use the method of velocity vector estimation via a
voting process with a weighting function for the extrapolation process.

3.3 Estimation of velocity vectors for occlusion us-
ing extrapolation
For the extrapolation process, I execute the following process.

1. Extraction of occluded/appearance regions

2. Decision of assigned regions of occluded/appearance regions

3. Extrapolation of velocity vectors in occluded/appearance regions from estimated
velocity vectors in its assigned regions
To realize the extrapolation process, I execute the following process consists of 5 steps.

(Figure 3.6).

Step 1. Estimation of velocity vectors

Step 2. Segmentation based on motion continuity
Step 3. Extraction of occluded and appearance regions

Step 4. Decision of assigned regions of occluded and appearance regions
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Step 5. Extrapolation of velocity vectors in occlusion regions
The 5 steps are minutely presented in following section.

3.3.1 Estimation of velocity vectors (Stepl)

Using the method via voting process with a weighting function, this step estimates velocity
vectors in whole pixels. This step estimates velocity vectors in the 1st frame and the 2nd
frame or the 2nd frame and 3rd frame for letter steps.

A method of velocity vector estimation via voting process with a weighting
function

Let intensity on a pixel (z,y) at time ¢ in an image sequence be I(z,y,t). An intensity
constraint of velocity vectors with respect to velocity vector components v and v for x
axis and y axis is represented as [7]

Iou+ v+ 1, =0, (3.3)

where I, I, and I; denote partial differential coefficients of I(z,y,t) with respect to x,
y and t respectively. Equation (3.3) represents a line in parameter space u and v called
velocity space. We call the line ”a constraint line”. Since the constraint line contains two
parameters v and v, we cannot determine the parameter u and v of a constraint line on a
pixel. To determine the parameters v and v in a constraint line, we assume that velocity
vector components v and v on an interest pixel are equivalent to v and v on neighboring
pixels of the interest pixel in a support region. If the assumption is satisfied, in a support
region, constraint lines on a interest pixel and the neighboring pixels have equivalent
values of U and V as values of u and v, intersections of constraint lines on a interest pixel
and the neighboring pixels converge into a coordinate (U, V') in parameter space u and v.
In this case, we can determine the coordinate (U, V') as estimated parameters of v and v
on the interest pixel (Figure 3.7).
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However, In case of following situations, the constraint lines have different intersec-
tions from U and V.

(A) Fluctuation of intersections of constraint equation by influence of mo-

tions
I consider in isotropic motion. Isotropic motions in a point on the coordinate (z,y) is

expressed as
(7)) (2)

a 0 cosf —sinf
A_(O b)’B_(SiHG cosf )’

2’ and 3y’ are values after moving of x and y respectively, a and b are parameters of a rate

where

of expansion /contraction respectively, 0 is an angle of rotation, « and [ are parameters of
translation along x-axis and y-axis respectively. I express parameters of a velocity vector

()-(7)-(3) 55

Then equation (3.5) is expressed as

(2)=am(3)(5)-(3)

Similarly, isotropic motions of a point on a coordinate (z + Az, y + Ay) is expressed as

(zj):AB(21§§)+(3)—(§I§§), (3.7)

where v’ v’ are parameters of a velocity vector on the coordinate (z + Az, y 4+ Ay). From
(3.6) and (3.7), we define spatial changes of velocity vectors as

(2)-(2)-(:)

From (3.6) and (3.7), equation (3.8) is expressed as

(8 )=am (58 )+ (5) (5280 ) fam (3) +

Moreover, equation (3.9) is expressed as

(&0)=wr-m(Gi)-00))  em

= {AB - E} ( ﬁ;j ) (3.11)

™ R
~——
|
—
< 8
©HH
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where

E:(é?) (3.12)

From (3.11), in translation, a value of each Au or Av is zero. The meaning is that spatial
change of velocity vectors is nothing. On the other hand, in motions except translation,
intersections are scattered in velocity space because a value of each Au or Av is not zero.
Moreover, a value of each Au or Av depends on a value of each Az or Ay. Therefore, in
the motions except translation, the more a value of each Az or Ay gets enough large, the
more fluctuation of intersection in velocity space gets large.

(B) Fluctuation of intersections of constraint equation by influence of inter-
sections of constraint equations in occlusion regions or constraint equations
effected by noise

I consider two constraint equations (3.3) that satisfy optical flow realizable conditions
in a support region. The equations are expressed by

[Ou+ 10y + 1V =0, (3.13)

where (1), I?SU or It(l) denote partial differential coefficients of I(z,y,t) with respect to

z, y and t on a pixel in a support region respectively, 1{?), 1?52) or ],5(2) denote partial
differential coefficients of I(z,y,t) with respect to x, y and ¢ on another pixel in a support

region respectively. An intersection (u,v)' of these constraint equations is expressed as

197 @) @
U . I£1)1(2)—]£2)I(1)
( ) = | Do |- (3.15)

19(52)11(11)_]£1)L5(/2)

If the equation (3.13) is a constraint equation that does not satisfy optical flow realizable
conditions by factors such that spatial/temporal intensity change is intense by occlusion
or a constraint equations effected by noise, the spatial/temporal gradients in the image
are changed intensely. Thus, (3.13) is replaced by

IV IV 1Y =0, (3.16)

where I.,gl)', I?Sl)' or It(l)’ are coefficients of equation (3.13) in case of not satisfying optical
flow realizable conditions respectively. Therefore the intersection (u,v)" of the constraint

equations is changed to
Igl)'l.t(z)ilt(l)'[§2)
! 1Y (2Y  (2) (13
U Iil) 13(,2)*I=(c2)1§1)
()= [ o

(O _07®

Then, I define a difference vector (Au, Av)T as
Au u—u
(5)-(:%) o
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From equation (3.15) and (3.17), (Au, Av)" is expressed as
(Igl)llgz)—I§2)I§1)I)(11(,1)152)—151)152))—(13)152)—Igz)Igl))(151)’152)—151)1152))
Au D 111y 1) 12 1)
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Since I(MAI(V' [?51)#[?51)” It(l);élt(l)l, the difference vector (Au, Av)' is not zero vector.
This means, if there is a constraint equation that does not satisfy optical flow realizable
conditions or a constraint equation effected by noise in a support region, intersections of
constraint equation are scattered.

I use voting process to estimate values of estimation parameter from scattered inter-
sections of constraint lines by the factors of (A), excluding intersections of constraint
lines by the factors of (B). By voting of intersections in the parameter space u and v to
the voting space, if intersections of constraint lines by the factors of (A) converge into a
cell in voting space, the voting score in the cell will be the maximum voting score. Then
we decide the coordinate of the maximum voting score as estimated parameters u and
v. By this process, we can expect to precisely estimate estimated parameters v and v
excluding the intersections of constraint lines by the factors of (B) (Figure 3.8).

In order to separate different motions from an interest pixel, we use constraint lines
that satisfy the following constraint lines such as

- Constraint lines on pixels of the same object as on an interest pixel.

We assume that intensity of an interest pixel and the neighboring pixels are almost
equivalent, if they are in a same object. If the assumption holds, The condition is formu-
larize as

|I(z,y,t) — I(a,b,t)|<Th,, (3.20)
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Figure 3.9: Effective of voting process with a weighting function.

where I(a,b,t) is intensity of an interest pixel (a,b) at time ¢, I(z,y,t) is intensity of
neighboring pixels of the interest pixel at time ¢, T'h, is a threshold in the condition. We
adopt constraint equations that satisfy the above equations to voting process. In case
that intersections of constraint lines do not converge into a cell in voting space, There is
a case that we cannot obtain the maximum voting score by distribution of voting scores.
To obtain the reasonable maximum voting score in case of distribution of voting scores,
a method of voting process with a weighting function has been proposed. This method
detects the reasonable maximum voting score (Umed, Umed) i f'(Uq, Vo) convoluting voting
score f(u,v) by a weighting function w(u — ta, v — va; 0). The f'(uq,v,) is expressed as

v/i2 V)2

(Ua,va) = Z Z — Ug, U — Vg 0) fu,v), (3.21)

u=—V/2v=-V/2

where V' denotes axis size of each w and v in the voting space, u,, v, denote interest
coordinates in voting space. We use Gaussian function as a weighting function

1 (U —ua)? + (v — v,)?
W(U = Ugy U — V; 0) = Nor exp {— 52 ) (3.22)

where o denotes a variance parameter. Then the method decides (Umed, Umea) as estimated
value of velocity vector components u and v in the interest pixel (Figure 3.9).

3.3.2 Segmentation based on motion continuity (Step2)

This step executes segmentation based on motion continuity of the velocity vectors
obtained in the Stepl. Two adjacent pixels are given by (z1,y;) and (s, y2) respectively,
and velocity vector components on the pixels are given by (uy,v;) and (us, v5) respectively.
The combination condition of these pixels is expressed by

|u1 — u2|2 + |?)1 - ’02|2 < ThR, (323)
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where Thg is a threshold. If adjacent pixels satisfy the condition, they are assigned to be
in a same region. If not, they are assigned to be in different regions. After segmentation,
each region is labeled (Figure 3.10). This step generates segmented image 1 based on
velocity vectors in image frame 1 and 2, and segmented image 2 based on velocity vectors
in image frame2 and 3.

3.3.3 Extraction of occluded and appearance regions (Step3)

This step extracts occluded and appearance regions. In order to apply the method of
extraction of occluded and appearance regions to actual image sequence containing more
than two objects, I use a method of extraction of occluded and appearance regions based
on properties of occluded and appearance regions.

Occlusion regions have a following property.

-A property of occlusion regions: A region on a pixel at time ¢ is different from a
region on the pixel after moving at time ¢.
The property of occlusion regions is expressed by

a(‘r7 Y, t)#a’(gC +u,y+v, t)v (324)

where a(z,y,t) is a label of a pixel on (z,y,t). u and v denote u = u(z,y,t) and v =

(z,y,t) respectively. The label a(z,y,t) of segmented image 1 is determined in Step2.

This step determines a region on a(z + u,y + v,t) as an occluded region (Figure 3.11).
Appearance regions have a following property.

-A property of appearance regions: A region on a pixel at time ¢ + At is different
from a region on a pixel before moving at time ¢ + At.

28



Segmented image 1

Region2

An occluded

n;%%/{%

L

1 region

N

(x+u,y+u,t)

A velocity vector(u,v)

.

]

Figure 3.11: The property of occluded regions.

Segmented image 2

% Regionl

Region2 —

An appearance

region
(X+u,y+Vv,t+at)

(X,y,t+at)

J A velocity vector(u,v)
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The property of appearance regions is expressed by

a(@ +u,y + v, t + At)#a(z, y, t + At),

regions (Step4)

where a(z,y,t + At) is a label of a pixel on (z,y,t + At). The label a(z,y,t + At) of
segmented image 2 is determined in Step2. This step determines a region on a(z,y, t+ At)
as an appearance region (Figure 3.12).

3.3.4 Decision of assigned regions of occluded and appearance

This step decides assigned regions of occluded and appearance regions for extrapolating
of velocity vectors in occlusion regions. In the segmented image 1, this step decides a
region on occlusion region as an assigned region of the occlusion region (Figure 3.13) and
decides a region on appearance region as an assigned region of the appearance region

(Figure 3.14).

29



. Occluded ~ Occluded

regions regions
—p
An Assigned /| ~ Assigned
region of regions of
the occluded the occludec
regions regions
Segmented image 1 Segmented image 1
(Before decision) (After decision)
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Figure 3.14: Decision of assigned regions of appearance regions.

3.3.5 Extrapolation of velocity vectors in occlusion regions
(Step5)

This step extrapolates velocity vectors in occlusion regions regarding velocity vector com-
ponents u and v as a function u(x,y) and v(z,y) with respect to  and y. There are some
methods to interpolate unknown values of a function,

- Lagrange’s interpolation method

- Newton’s interpolation method

- Spline function interpolation method
As a extrapolation method, since Newton’s interpolation method is easy to expand to
extrapolation method and velocity vector components u(z, y) and v(z, y) are 2-dimensional
function, I use Newton’s interpolation method expanded to 2-dimension.
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Expansion of Newton’s interpolation method to 2-dimension

Differential in 1-dimension discrete space is defined as

Anf(@) = f(z + h) = £(a), (3.26)
where h is a interval of z in f(z). Then, n order differential is defined as

AP f(2) = Y (1Y (C) f(a + (n = i)h) (3.27)

1=0

where ,,C; is binomial coefficients, ,,C; means n!/i!(n —7)!. Then, 1-dimensional Newton’s
interpolation is expressed as

flo+h) = F(a) + 3 A F@)} () (3.28)

Next, I expand the 1-dimensional Newton’s interpolation to 2-dimension. Partial differ-
ential in 2-dimensional discrete space is defined as

Ap f(z,y) = f(z+ hayy) — flz,9), (3.29)

Ahyf($7y):f($7y+hy)_f($7y)7 (330)

where h, and h, denote interval of = and y in f(z,y) respectively. Then, n order partial
differential is defined as

n

A%?f(”% y) = Z:(_l)z(ncz)f(x + (n - i)hma y) (331)
AP f(,9) = S~V GCHI @y + (0~ i)hy) (3.32)

By above equations, 2-dimensional Newton’s interpolation is expressed as
1 7 7 :
F(@+ heyy + hy) = f(2,9) + 30 AN (@, 9)(ha) + AL F(2,0)(h)Y (333)
=1 "

An extrapolation method of velocity vectors in occlusion regions

Based on the 2-dimensional Newton’s extrapolation method expressed in equation
(3.33), This step extrapolates velocity vectors in occluded /appearance regions using

WX Y) = ulany o) + 3 A0, o) ) + A u(zo, 1) )Y (3:34)
oY) = 00 0) + 30 Ao, o)) + A (0, 1) )} (3.35)

where X = 29+ h, and Y = yo + hy, (X,Y) denotes coordinates on a pixel that is
extrapolated respectively (Figure 3.15).
The pixels that satisfy the following conditions such as
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Figure 3.15: Extrapolation of velocity vectors from assigned regions.

- a pixel in assigned regions of occluded and appearance regions

- a pixel satisfies the definition of 2-dimensional Newton’s interpolation
are used to extrapolate velocity vectors in occluded /appearance regions.
The second condition will be different by definition of differential. There are some
definitions of differential such as

- Central differential : 1/2{f(z + h) — f(x — h)}
- Forward differential : f(z + h) — f(z)

- Backward differential : f(z) — f(z — h)

Ideally, I would like to use the central differential that has confidences. However, the
central differential needs a lot of pixels to extrapolate velocity vectors in occluded /appearance
regions. In case of not satisfying the condition of central differential, this step uses the
forward differential or backward differential (Figure 3.16). If there is no pixel that do not
satisfy the definition of the above differentials, this step assigns velocity vectors estimated
by the voting method to occluded /appearance regions.
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3.4 Experiments for evaluation of effectiveness of
the proposed method

In order to evaluate effectiveness in the proposed method, I experiment on evaluating of
effectiveness of the proposed method in synthetic image sequences, noisy synthetic image
sequences or actual image sequences. As conventional methods to compare precision of
velocity vector estimation to the method using voting process with a weighting function,
I adopt following major methods such as

- Local method (Lucas-Kanade’s method)|8]
- Global method (Horn’s method)[7]

3.4.1 Experiments in synthetic image sequences

(Experiment:1-A) Experiments of comparison of velocity vector estimation
precision in conventional methods and the method using the voting process
with a weighting function

In order to quantitatively evaluate of effectiveness of the method using the voting process
with a weighting function, in whole pixels in an image frame, I experiment on comparison
of velocity vector estimation precision in conventional method and the method using the
voting process with a weighting function. In this experiments, I use synthetic image
sequences having properties such as

- There are occluded/appearance regions between frames.

- There is sufficient difference of intensity between objects.

- Intensity on an object and a background in a frame smoothly changes spatially
and temporally.
I use the image frame shown in Figure 3.17 as a first image frame and, as a second or
a third image frame, I respectively use an image that objects in the first image frame are
transformed by affine transform of translation, expansion, contraction or rotation whose
parameters are shown in from Table 3.5 through Table 3.8 on condition that parameters
in Table 3.5 are defined right direction as positive direction, parameters in Table 3.8 are
defined counterclockwise as positive direction. Parameters of image frames used in this
experiments are shown in Table 3.1.

Table 3.1: Parameters of image frames used in this experiments.

Frequency of a sine (Texture) 0.12[Hz]
Amplitude of a sine (Texture) 25[intensity]
Bias of intensity (Background) 25intensity]

Bias of intensity (left lower object) 100[intensity]
Bias of intensity (right upper object) || 200[intensity]
Resolution 128 x 128[pixels]
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Figure 3.17: A synthetic image frame used in this experiments.

Parameters, determined in this experiment, in conventional methods and the proposed
method are shown in Table 3.17, 3.18 and 3.19 respectively.

Table 3.2: Parameters in local method.
The size of the support region H 10x 10][pixels]

Table 3.3: Parameters in global method.
Weighting coefficient of evaluation terms of smoothness 3
Repetition calculation times 200[times]

Table 3.4: Parameters in the method using voting process with a weighting function.

The threshold in the voting possible condition 1 30[intensity]
The threshold in the voting possible condition 2 10[intensity]
The threshold in the voting possible condition 3 5[intensity]
The threshold in segmentation based on motion continuity 0.02
The size of the support region 30 x 30[pixels]
The size of a cell in the voting space 1.0x10 2
The variance parameter in the weighting function 4

To quantitatively evaluate precision of velocity vector estimation in whole pixels in an
image frame, I define the mean of errors

A SN 2CE e e (3.36)

z,yER,

where M is number of pixels in an image frame, R, is an image regions, f (z,y) is an
estimated velocity vector in a coordinate of an image (z,y). f.(z,y) is a correct velocity
vector.
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Table 3.5: Parameters in image sequences containing translation motions.

Parameters of translation motions [pixel/frame]

Names of each image sequence || The left lower object ‘ The right upper object
Tranl 0.5 -0.5
Tran2 1.0 -1.0
Tran3 1.5 -1.5
Tran4 2.0 -2.0
Tranb 2.5 -2.5
Tran6 3.0 -3.0
Tran7 3.5 -3.5
Tran8 4.0 -4.0
Tran9 4.5 -4.5
Tran10 5.0 -5.0

Table 3.6: Parameters in image sequences containing expansion motions.

Parameters in expansion motions [times/frame]

Names of each image sequence || The left lower object ‘ The right upper object
Expl 1.01 1.01
Exp2 1.02 1.02
Exp3 1.03 1.03
Exp4 1.04 1.04
Expb 1.05 1.05
Exp6 1.06 1.06
Exp7 1.07 1.07
Exp8 1.08 1.08
Exp9 1.09 1.09
Expl0 1.10 1.10

The results in the mean of errors of conventional methods and the method using voting
process with a weighting function in each image sequence are shown in Figure 3.18, 3.19,
3.20 and 3.21 respectively.

In the results of the mean of errors, I obtained well results of precision of velocity vector
estimation by using the method using the voting process with a weighting function. The
factor is supposed to get rid of effectiveness of intersections of constraint equation in
occluded/appearance regions and separating different motions by using a condition of
constraint equation for voting. the precision of each methods decreased as motions get
large. The cause of this is supposed to be not satisfying an optical flow realizable condition
such that motions are infinitesimal by enlargement of motion.

As an example, a correct velocity vector field and velocity vector fields estimated by
conventional methods and the method using voting process with a weighting function in
Trans2 are shown in Figure 3.22, Figure 3.23, Figure 3.24 and Figure 3.25 respectively.
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Table 3.7: Parameters in image sequences containing contraction motions.

Parameters in contraction motions [times/frame]
Names of each image sequence || The left lower object ‘ The right upper object
Contl 0.99 0.99
Cont2 0.98 0.98
Cont3 0.97 0.97
Cont4 0.96 0.96
Contb 0.95 0.95
Cont6 0.94 0.94
Cont7 0.93 0.93
Cont8 0.92 0.92
Cont9 0.91 0.91
Cont10 0.90 0.90

Table 3.8: Parameters in image sequences containing rotation motions.

Parameters in rotation motions [degree/frame]

Names of each image sequence | The left lower object ‘ The right upper object
Rotl 0.5 0.5
Rot2 1.0 1.0
Rot3 1.5 1.5
Rot4 2.0 2.0
Roth 2.5 2.5
Rot6 3.0 3.0
Rot7 3.5 3.5
Rot8 4.0 4.0
Rot9 4.5 4.5
Rot10 5.0 5.0
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Figure 3.18: The mean of errors e of conventional methods and the method using
voting process with a weighting function in translation motions.
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Figure 3.19: The mean of errors € of conventional methods and the method using
voting process with a weighting function in expansion motions.
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Figure 3.20: The mean of errors € of conventional methods and the method using
voting process with a weighting function in contraction motions.
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Figure 3.21: The mean of errors € of conventional methods and the method using
voting process with a weighting function in rotation motions.
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Figure 3.22: A correct velocity vector field in Trans2.
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Figure 3.23: Estimated velocity vector field by local method in Trans2.
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Figure 3.24: Estimated velocity vector field by global method in Trans2.
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Figure 3.25: Estimated velocity vector field by the method using voting process with
a weighting function in Trans2.
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(Experiment:1-B) Experiments of comparison of velocity vector estimation
precision in the method using the voting process with a weighting function
and in case of applying extrapolation

In order to quantitatively evaluate of effectiveness in case of applying extrapolation in
synthetic image sequences, in occlusion regions, I experiment on comparison of velocity
vector estimation precision in the method using the voting process with a weighting
function and in case of applying extrapolation.

I use the image sequences used in the previous experiment and the same parameters
of the method using voting process with a weighting function as the parameters used in
the previous experiment.

To quantitatively evaluate precision of velocity vector estimation in occlusion regions,
I use the mean of errors € in occlusion regions such as

= Y e~ F )] (3.37)

z,yeR,

where M is number of pixels in occluded /appearance regions, R, is occluded /appearance
regions, f.(z,y) is an estimated velocity vector of a coordinate of an image (z,y) in
occluded /appearance regions. f (z,v) is a correct velocity vector in occluded /appearance
regions.

The results in the mean of errors of the method using voting process with a weighting
function and in case of applying extrapolation in occlusion regions of each image sequence
are shown in Table 3.9, Table 3.10, Table 3.11 and 3.12 respectively.

To quantitatively evaluate improvement in the mean of errors, I define the improved
rate of the mean of errors B B

AE = 100x@[%], (3.38)
vote
where €,0 is the mean of errors € in occluded /appearance regions obtained by velocity
vector estimation via voting process with a weighting function. é.., is the mean of errors
€ in occluded/appearance regions obtained by extrapolation.

The results of the improved rate of the mean of errors are shown in Figure 3.26, 3.27,
3.28 and 3.29 respectively.

From the results, I obtained well results of precision of velocity vector estimation by
applying extrapolation. The factor is supposed to extrapolate velocity vectors in occlusion
regions from estimated velocity vectors in assigned regions that has reliability.

As an example, a correct velocity vector field and velocity vector fields estimated
by the method using voting process with a weighting function and in case of applying
extrapolation in Exp3 are shown in Figure 3.31, Figure 3.32 and its expanded figure 3.33
of rectangle regions in the correct velocity vector field, Figure 3.31 and 3.32 respectively.
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Table 3.9: The mean of errors & of (A) the method using voting process with a
weighting function and (B) in case of applying extrapolation in occluded /appearance
regions of translation motions.

The mean of errors é
Names of each image sequence (A) | (B)
Transl 1.32x1072 | 1.30x 1073
Trans2 4.79%x1073 | 4.76x1073
Trans3 1.55x1072 | 1.54x 1072
Trans4 5.22x1072 | 5.22x10
Transb 5.15x107t | 5.15x 1071
Trans6 1.49 1.49
Trans7 3.33 3.33
Trans8 4.99 4.99
Trans9 9.21 9.21
Trans10 1.47x10 14.7x10

Table 3.10: The mean of errors € of (A) the method using voting process with a
weighting function and (B) in case of applying extrapolation in occluded /appearance
regions of expansion motions.

The mean of errors é
Names of each image sequence (A) ‘ (B)
Expl - -
Exp2 117%10 * | 0.99x10 !
Exp3 2.13x107" | 1.89x 107!
Exp4 2.99x107t | 2.75x1071
Exp5 6.29%10°1 | 5.98x10"!
Expb6 1.08 1.04
Exp7 2.00 1.96
Exp8 2.93 2.90
Exp9 4.31 4.30
Expl0 1.47x10 14.7x10
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Table 3.11: The mean of errors € of (A) the method using voting process with a
weighting function and (B) in case of applying extrapolation in occluded /appearance
regions of contraction motions.

The mean of errors é
Names of each image sequence (A) ‘ (B)
Contl - -
Cont2 - -
Cont3 1.01x10~' | 0.92x10~!
Cont4 1.84x1071 | 1.73x107!
Contb 3.15x1071 | 3.05x 1071
Cont6 5.99%x107 ! | 5.87x1071
Cont7 9.56x107t | 9.46x10~1
Cont8 1.62 1.61
Cont9 2.87 2.87
Cont10 3.89 3.89

Table 3.12: The mean of errors € of (A) the method using voting process with a
weighting function and (B) in case of applying extrapolation in occluded /appearance
regions of rotation motions.

The mean of errors é
Names of each image sequence (A) ‘ (B)
Rotl - -
Rot2 2.88x1072 | 2.68x1072
Rot3 0.12x1072 | 8.84x 1072
Rot4 1.54x1071 | 1.53%x10~!
Rotb 2.42x107t | 2.36x1071
Rot6 4.13x107" | 4.12x1071
Rot7 7.15x1071 | 7.06x1071
Rot8 1.24 1.23
Rot9 2.09 2.08
Rot10 3.38 3.36
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Figure 3.26: Improved rate of the mean of errors A€ in translation motions.
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Figure 3.27: Improved rate of the mean of errors Aé in expansion motions.
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Figure 3.28: Improved rate of the mean of errors Aé in contraction motions.
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Figure 3.31: A velocity vector field estimated by the
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Figure 3.32: A velocity vector field estimated by in case of applying extrapolation

in Exp3.
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3.4.2 Experiments in noisy synthetic image sequences

(Experiment:2-A) Experiments of comparison of velocity vector estimation
precision in conventional methods and the method using the voting process
with a weighting function

In order to quantitatively evaluate of effectiveness of conventional methods and the
method using the voting process with a weighting function, in noisy synthetic image
sequences, I experiment on comparison of velocity vector estimation precision in conven-
tional method and the method using the voting process with a weighting function. In this
experiment, I use

255
PSNR[dB] = 201log = (3.39)
g

as a evaluation scale of quantity of noise. Synthetic images used in this experiments are
synthetic images I'(z,y,t) expressed as

I'(z,y,t) = I(z,y,t) +n (3.40)

where n denotes Gaussian noise expressed as

1 n2
exp 2.7, (3.41)

Pn) = 2ro
I(z,y,t) denotes a synthetic image used in previous experiments. As examples, I use
image sequences Trans6, Exp3, Cont6 or Rot8 that are added Gaussian noise.

Parameters, determined in this experiment, in conventional methods and the proposed
method are shown in Table 3.17, 3.18 and 3.19 respectively.

To quantitatively evaluate precision of velocity vector estimation in occlusion regions,
I use the mean of errors € used in the experiment:1-A.

The results in the mean of errors of conventional methods and the method using voting
process with a weighting function in each image sequence are shown in Figure 3.34, 3.35,
3.36 and 3.37 respectively.

In the results of the mean of errors, I obtained well results of precision of velocity vector
estimation by using the method using the voting process with a weighting function. The
factor is supposed to get rid of effectiveness of intersections of constraint equation in
occluded /appearance regions and separating different motions by using a voting possible
condition, in addition to getting rid of effectiveness of noise.

As an example, a correct velocity vector field and velocity vector fields estimated by
conventional methods and the method using voting process with a weighting function in
Trans6 of PSN R=35.4|dB] are shown in Figure 3.38, Figure 3.39, Figure 3.40 and Figure
3.41 respectively.
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Figure 3.34: The mean of errors € of conventional methods and the method using
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Figure 3.38: A correct velocity vector field in Trans6 of PSN R=35.4[dB|.
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Figure 3.39: Estimated velocity vector field by local method in Trans6
PSNR=35.4[dB].
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Figure 3.40: Estimated velocity vector field by global method in Trans6
PSNR=35.4[dB].

1 1 1 1 1 1 1 ’ 1 1 1 1 1 I; 1 I‘ 1 1 1 ;‘ 1 ; 1 ; 1 ;I N
0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120125
X

Figure 3.41: Estimated velocity vector field by the method using voting process with
a weighting function in Trans6 PSN R=35.4[dB].
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(Experiment:2-B) Experiments of comparison of velocity vector estimation
precision in the method using the voting process with a weighting function
and in case of applying extrapolation

In order to quantitatively evaluate of effectiveness in case of applying extrapolation in
noisy synthetic image sequences, in occlusion regions, I experiment on comparison of ve-
locity vector estimation precision in the method using the voting process with a weighting
function and in case of applying extrapolation.

I use the image sequences used in the previous experiment and the same parameters
of the method using voting process with a weighting function as the parameters used in
the previous experiment.

To quantitatively evaluate precision of velocity vector estimation in occlusion regions,
I use the mean of errors € used in experiment:1-B.

The results in the mean of errors of the method using voting process with a weighting
function and in case of applying extrapolation in occlusion regions of each image sequence
are shown in Table 3.13, Table 3.14, Table 3.15 and Table 3.16 respectively. These results
are 10 times average with respect to adding Gaussian noise in 3 samples of each motion.

To quantitatively evaluate improvement in the mean of errors, I use the improved rate
of the mean of errors A¢ used in experiment:1-B.

The results of the improved rate of the mean of errors are shown in Figure 3.42, 3.43,
3.44 and 3.45 respectively. These results are 10 times average with respect to adding
Gaussian noise in 3 samples of each motion. From the results, even though in noisy image
sequences, | obtained well results of precision of velocity vector estimation by applying
extrapolation. The mean of errors intends to decrease as quantity of noise increases.
Since precision of velocity vector estimation in occluded/appearance regions depends on
precision of velocity vector estimation in assigned regions of occluded /appearance regions,
the factor is supposed that precision of velocity vector estimation in assigned regions of
occluded /appearance regions decrease as quantity of noise increases. I obtained well
results of the improved rate of the mean of errors as motions get small. the factor is
supposed that effectiveness of extrapolation decreases since precition of velocity vector
estimation in occluded/appearance region and its assigned region decreases as motions
get large.

As an example, a correct velocity vector field and velocity vector fields estimated
by the method using voting process with a weighting function and in case of applying
extrapolation in Rot8 of PSN R=36.8[dB] are shown in Figure 3.46, Figure 3.47, Figure
3.48 and its expanded figure 3.49 of the rectangle regions in a correct velocity vector field,
Figure 3.47 and Figure 3.48 respectively.
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Table 3.13: The mean of errors € of (A) the method using voting process with a
weighting function and (B) in case of applying extrapolation in occluded /appearance
regions of noisy translation image sequences.

The mean of errors
2.5[pixel /frame] | 3.0[pixel/frame| | 3.5[pixel/frame]
PSNRAB] | (A)] (B) [A)] ®B) [A)] (B)
39.8 5.23 5.23 6.15 6.14 7.36 7.36
39.6 5.42 5.42 6.15 6.14 7.38 7.38
37.5 5.48 5.48 6.15 6.14 7.46 7.46
37.4 5.51 5.51 6.15 6.14 7.52 7.52
36.9 5.58 5.58 6.15 6.14 7.56 7.56
36.0 5.61 5.61 6.15 6.14 7.73 7.73
35.7 5.82 5.81 6.15 6.14 7.91 7.91
35.4 5.96 5.95 6.15 6.14 8.02 8.02

Table 3.14: The mean of errors € of (A) the method using voting process with a
weighting function and (B) in case of applying extrapolation in occluded /appearance
regions of noisy expansion image sequences.

The mean of errors é
1.05[times/frame] | 1.06[times/frame| | 1.07[times/frame]
PSNR[dB] | (A) [ (B) A [ B A B
39.8 0.92 0.92 1.15 1.14 1.52 1.52
39.5 0.98 0.98 1.31 1.29 1.68 1.68
37.5 1.01 1.00 1.58 1.57 1.78 1.78
37.4 1.24 1.23 1.73 1.72 1.86 1.85
36.8 1.25 1.24 1.84 1.83 2.19 2.18
36.1 1.36 1.34 1.95 1.94 2.30 2.29
35.6 1.42 1.39 2.10 2.10 2.42 2.40
35.4 1.53 1.50 2.21 2.21 2.63 2.61
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Table 3.15: The mean of errors € of (A) the method using voting process with a
weighting function and (B) in case of applying extrapolation in occluded /appearance
regions of noisy contraction image sequences.

The mean of errors e
0.95[times/frame] | 0.94[times/frame] | 0.93[times/frame]
PSNR[dB] | (A) [ (B) A [ B A B
39.8 0.82 0.82 1.17 1.15 1.61 1.61
39.6 0.96 0.96 1.28 1.26 1.68 1.68
37.5 1.11 1.11 1.49 1.48 1.72 1.72
37.4 1.26 1.25 1.68 1.67 1.83 1.82
36.9 1.38 1.37 1.86 1.85 1.96 1.95
36.0 1.41 1.39 2.04 1.04 2.15 2.14
35.7 1.45 1.42 2.14 2.14 2.32 2.29
35.4 1.63 1.60 2.23 2.23 2.48 2.45

Table 3.16: The mean of errors € of (A) the method using voting process with a
weighting function and (B) in case of applying extrapolation in occluded /appearance
regions of noisy rotation image sequences.

The mean of errors
3.5[degree/frame| | 4.0[degree/frame| | 4.5[degree/frame]
PSNR[AB] || (A) | (B) A [ B (A [ B
39.8 2.14 2.14 2.48 2.42 2.86 2.86
39.5 2.26 2.25 2.61 2.57 2.98 2.97
37.5 2.42 2.42 2.85 2.80 3.18 3.18
37.4 2.56 2.54 2.91 2.86 3.32 3.31
36.8 2.58 3.54 3.15 3.11 3.45 3.43
36.1 2.85 3.78 3.32 3.31 3.52 3.49
35.6 2.96 3.87 3.51 3.49 3.81 3.76
35.4 3.02 2.94 3.62 3.62 3.93 3.89
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Figure 3.42: Improved rate of the mean of errors A€ in noisy image sequences of
translation.

I I I I

1.05[times/frame] —e—
1.06[times/frame] - -®-- 3 3 3
25 1.07[times/frame] —=— . ]

Improved rate of the mean of errors[%]

354 356 361 368 374 375 395 39.8
PSNR[dB]

Figure 3.43: Improved rate of the mean of errors A€ in noisy image sequences of
expansion.
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Figure 3.44: Improved rate of the mean of errors A€ in noisy image sequences of
contraction.
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Figure 3.45: Improved rate of the mean of errors A€ in noisy image sequences of
rotation.
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Figure 3.46: A correct velocity vector field in Rot8 of PSNR
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Figure 3.47: A velocity vector field estimated by the method via voting process with
a weighting function in Rot8 of PSN R=36.8[dB]|.
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Figure 3.48: A velocity vector field applied extrapolation in Rot8 of
PSNR=36.8[dB].
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field, (b):Figure 3.47 and (c):Figure 3.48
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3.4.3 Experiments in actual image sequences

(Experiment:3-A) Comparison of precision of velocity vector estimation in
conventional methods and the method via voting process with a weighting g
function

In order to evaluate effectiveness of the method via voting process with a weighting
function, I experiment on applying the conventional methods and the method via voting
process with a weighting function to actual image sequences including following motions

- Translation

- Expansion/Contraction

- Rotation
In this experiments, I determine the parameters in the proposed methods and the
method via voting process with a weighting function to the values shown in Table 3.17,
Table 3.18 and Table 3.19 respectively.

Table 3.17: Parameters in local method.
The size of the support region H 15x 15]pixels]

Table 3.18: Parameters in global method.
Weighting coefficient of evaluation terms of smoothness 4.2
Repetition calculation times 120[times]

Table 3.19: The values in determined parameters of the method via voting process
with a weighting function for actual image sequences.

The threshold in the voting possible condition 1 11[intensity]
The threshold in the voting possible condition 2 6[intensity]
The threshold in the voting possible condition 3 3[intensity]
The threshold in segmentation based on motion continuity 0.05
The size of the support region 35x 35[pixels]
The size of each cell in the voting space 1.0x10 2
The variance parameter in the weighting function 2

3 frames of each image sequence used in this experiments are shown in Figure 3.50,Figure
3.51 or Figure 3.52 respectively. The resolution of each image sequence are 106 x41[pixels],
96 x 61[pixels] or 86x61[pixels| respectively.

The velocity vector fields estimated by conventional methods and the method via vot-
ing process with a weighting function in an actual image sequence including a translation
motion are shown in Figure 3.53, Figure 3.54 and Figure 3.55 respectively. The veloc-
ity vector fields estimated by conventional methods and the method via voting process
with a weighting function in an actual image sequence including expansion/contraction
motions are shown in Figure 3.56, Figure 3.57 and Figure 3.58 respectively. The velocity
vector fields estimated by conventional methods and the method via voting process with
a weighting function in an actual image sequence including a rotation motion are shown
in Figure 3.59, Figure 3.60 and Figure 3.61 respectively.
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From the results, we see that we could precisely estimate by using the method via
voting process with a weighting function. The factor is supposed to get rid of effectiveness
of constraint equations that do not satisfy optical flow realizable conditions in occlusion
regions and that are effected by noise, in addition to separating different motions.
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Frame3

Figure 3.50: The actual image sequence used in this experiments including a trans-
lation motion.
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Framel

Frame?2

Frame3

Figure 3.51: The actual image sequence used in the experiments including a expan-
sion /contraction motion.

66



Frame?2

Frame3

Figure 3.52: The actual image sequence used in this experiments including a rotation
motion.
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Figure 3.53: A velocity vector field estimated by local method n an actual image
sequence including a translation motion.
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Figure 3.54: A velocity vector field estimated by global method in an actual image
sequence including a translation motion.
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Figure 3.55: A velocity vector field estimated by the method via voting process with
a weighting function in an actual image sequence including a translation motion.

69



ctligaIiiiIl
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95
X

Figure 3.56: A velocity vector field estimated by local method n an actual image
sequence including expansion /contraction motions.
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Figure 3.57: A velocity vector field estimated by global method in an actual image
sequence including expansion/contraction motions.
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Figure 3.58: A velocity vector field estimated by the method via voting process with
a weighting function in an actual image sequence including expansion/contraction
motions.
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(Experiment:3-B) Comparison of precision of velocity vector estimation in
conventional methods and the method via voting process with a weighting g
function

In order to evaluate effectiveness of extrapolation, I experiment on comparison of velocity
vector estimation precision of the method via voting process with a weighting function
and in case of applying extrapolation in actual image sequences.

In this experiments, I determine the same parameters in the method via voting process
with a weighting function as the parameters used in the previous experiment. I use the
same image sequences used in the previous experiment.

The results of the experiments in an actual image sequence including translation mo-
tion are shown in Figure 3.62 and Figure 3.63. The expanded figure in rectangle regions
in Figure 3.62 and Figure 3.63 is shown in Figure 3.64. The results of the experiments
in an actual image sequence including expansion/contraction motion are shown in Figure
3.65 and Figure 3.66. The expanded figure in rectangle regions in Figure 3.65 and Figure
3.66 is shown in Figure 3.67. The results of the experiments in an actual image sequence
including rotation motion are shown in Figure 3.68 and Figure 3.69. The expanded figure
in rectangle regions in Figure 3.68 and Figure 3.69 is shown in Figure 3.70.

From the results, we see that precision of velocity vector estimation in occlusion regions
was improved by applying extrapolation in each image sequence.
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Figure 3.62: A velocity vector field estimated by the method via voting process with
a weighting function.
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Figure 3.63: A velocity vector field applied extrapolation.
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Figure 3.64: Expanded figures of rectangle regions in Figure 3.62 (a) and Figure
3.63 (b).
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3.5 Summary

In order to precisely estimate velocity vectors in situation of occurring occlusion in actual
image sequences, I proposed a method of velocity vector estimation based on voting
process with a weighting function using extrapolation.

To evaluate effectiveness of the proposed method, I experimented on comparison of
velocity vector estimation precision in conventional method and the method via voting
process with a weighting function in synthesis image sequences and noisy synthesis image
sequences. From the results of the experiment, by using the method via the voting
process, I obtained approximately 40% higher precision of velocity vector estimation in
the maximum than precision of velocity vector estimation in conventional methods. The
factor is supposed to get rid of effectiveness of intersections of constraint equations in
occlusion regions and separate different motions in regions including different motions,
in addition to getting rid of effectiveness of noise. In order to moreover obtain precise
estimation results in the estimation of velocity vectors using the voting process, primarily,
we have to investigate the optimum weighting function for each application in velocity
vector estimation considering occlusion.

I experimented on comparison of velocity vector estimation precision in the method
via voting process with a weighting function and in case of applying extrapolation in
synthesis image sequences and noisy synthesis image sequences. From the results of the
experiment, by applying extrapolation, I obtained approximately 15% higher precision of
velocity vector estimation in the maximum than precision of velocity vector estimation
in the method using the voting process. The factor is supposed to extrapolate velocity
vectors in occlusion regions from estimated velocity vectors in assigned regions of occlusion
regions that has reliability. In order to moreover obtain precise estimation results in the
estimation of velocity vectors using extrapolation, we have to improve the method using
the voting method since extrapolation depends on the results of velocity vector estimation
by the method using the voting method.

Finally, I experimented on comparison of velocity vector estimation precision in con-
ventional method and the method via voting process with a weighting function in actual
image sequences. By using the method via the voting process, I obtained well results of
velocity vector estimation precision in comparison with the conventional methods. Simi-
larly, I experimented on comparison of velocity vector estimation precision in the method
via voting process with a weighting function and in case of applying extrapolation in
actual image sequences. By applying extrapolation, I obtained well results of velocity
vector estimation precision in comparison with the method via the voting process.
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Chapter 4

A new method of velocity vector
estimation for solving the
brightness change problem

4.1 Introduction

Estimation of optical flow is an available method for motion analysis in image sequence.
However, there is a problem such that estimation precision of velocity vectors declines in
a situation of brightness change.

In case of dealing with physical phenomena such as metrology or fluid analysis, there
are cases not avoiding to brightness change[51]. For instance, in the field of metrology,
they analyze cloud motion using image sequences taken in enough time intervals because
of infinitesimal cloud motion in actual time rates of camera. In case of analysis of cloud
motion using image sequence taken by satellites, the image sequences taken by satellites
in enough time intervals occur brightness change by shading effect caused by rotation of
the earth. Moreover, in case of taking image sequences of cloud in enough time intervals
from the ground, brightness change occurs in the image sequences of cloud by changing
of an angle of incidence of the sun by rotation of the earth. In 3-dimensional high-speed
motion objects such as fluid, in normal NTSC video frame rates, brightness change occurs
by shading, shadowing or high speeding of object motion. In these situations, we have to
consider brightness change for precision estimation of velocity vectors.

To precisely estimate velocity vectors in these situations, following method considering
brightness change have been proposed. The methods are classified into

- Methods considering intensity change with respect to time[51][52]

- Methods considering intensity change with respect to time and space[53][54]

These methods have effective properties for estimating velocity vectors in the situation
of brightness change in actual image sequence.

By dealing with estimating velocity vectors in a situation of occurring brightness
change as estimating the most likelihood parameter of constraint equations considering
brightness change in a parameter space, | propose a method that has all effective proper-
ties in the conventional methods considering brightness change and an effective property
which has not obtained by the conventional methods. In order to estimate the most like-
lihood parameter in a parameter space, I expand the parameter space to a 3-dimensional
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parameter space since a constraint equation considering brightness change has three pa-
rameters. | then estimate the parameters in the constraint equation by using a voting
process with a weighting function in a 3-dimensional voting space.

In object tracking systems such as an observation system of invasion or observation
system of traffic considering a situation that an object moves into a region of shade or
moves out from a region of shade, we have to consider the brightness change on the object.
Thus, we can expect to apply the proposed method to the object tracking systems. In an
robot control using visual servo such as guard robots considering a situation that robot
moves across different lighting environments, we have to consider the different lighting
environments in the visual servo, Therefore, we can apply the method to the robot control
using visual servo.

4.2 Extension of a velocity vector constraint equa-
tion

In this section, I derive a velocity vector constraint equation which is taken account of
intensity change between corresponding points.

Let I(z,y,t) be an intensity of a pixel (z,y) in an image at the time of ¢, and let
I{z + Az,y + Ay,t + At) be an intensity of the corresponding pixel (z + Az, y + Ay) in
an image at the time of ¢ + At. Let W be a quantity of intensity change. The relation
between I(z,y,t) and I(z + Az,y + Ay, t + At) is expressed by

I(z + Az,y + Ay, t + At) — I(z,y,t) = W. (4.1)

We can expand the left side of (4.1) in a Taylor series and obtain

ol ol ol
—A —A —At =W 4.2
i W L (42
where e contains second- and high order terms in Az, Ay and At. Because we consider
that e is sufficiently small, we ignore e. We can divide both sides of (4.2) by At. We take
the limits as At — 0, we obtain
olde Oldy oI W

olde  Ooldy O W 4
drdt oydt ot di (43)

Using the abbreviations [, = g_in = g—;,ft = %, U= ’fl—’t”,v = %,w = %. We obtain

Lu+Iv+ 1, =w. (4.4)
Equation (4.4) is a velocity vector constraint equation which is taken account of intensity
change between corresponding points. Equation (4.4) is used in conventional methods.

However, interpretation of the constraint equation in conventional methods differs from
our interpretation of the constraint equation.

4.3 Properties of conventional methods

The methods of velocity vector estimation to apply for brightness change have been pro-
posed by Nomura[51], Cornelius[52], Mukawa[53] and Negahdaripour[54]. The conven-
tional methods are classified into two categories.
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First, there are the methods which use temporal constraint (Equation (4.4)) of in-
tensity change. The methods have been proposed by Nomura [51] and Cornelius [52].
Nomura derived the Equation (4.4) which based on the theorem of influx-efflux intensity.
The method determines parameters in equation (4.4) by using a constraint condition that
object motions and intensity change are constant in at least three frames. Cornelius de-
rived the constraint equation (Equation (4.4)) which is assumed that w only depends on
diffuse reflection component in a reflection model [67].

On the other hand, the methods which use temporal and spatial constraints have
been proposed by Mukawa[53] and Negahrdairpour [54]. Mukawa derived the constraint
equations such as

w, = cly, (4.5)

wy = cly, (4.6)

where cis a constant, w, and w, are differentials of w with respect to z and y, I, and I, are
differentials of intensity I with respect to « and vy, respectively. Equation (4.5) and (4.6)
represent the relations between quantity of intensity change in a pixel and quantity of
spatial intensity change. Negahdaripour extended the Mukawa’s method to apply to the
situation that light source intensity changes temporally. These methods can be applied
to the situation that a reflection rate of an object changes spatially.

The properties of conventional methods are shown in Table 4.1. The sign o in the
table expresses that the method has the property is specified in their research paper. The
sign X in the table expresses that the method does not have the property is specified in
their research paper. The sign — in the table expresses that the method has the property
is not specified in their research paper.

Table 4.1: Properties of each method (1=the parameters in a constraint equation can be
estimated in 2 frames, 2=the reflection rate on the surface of an object is not necessary
to be constant, 3=change of intensity by effectiveness of shading is considered, 4=change
of intensity by changing of a light source intensity is considered, 5=the method has ro-
bustness against noise, 6=the method has robustness in the region where pattern changes
intensely).

Properties
1 [2]3]4[5]6
Nomural[51] X|-|-]ofo]-
Cornelius[52] o | x|ol-1-7-
Mukawa[53] olololx]|-1-
Negahdaripour[54] | o | o [o | o |- | -

4.4 An estimation method of velocity vectors for
brightness change using 3-dimensional voting space

The conventional methods have effective properties for estimating velocity vectors in the
situation of brightness change in actual image sequence.
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By dealing with estimating velocity vectors in a situation of occurring brightness
change as estimating the most likelihood parameter of constraint equations considering
brightness change in a parameter space, | propose a method that has all effective properties
in the conventional methods considering brightness change. In order to realize the method,
we first use an assumption for velocity vector estimation for obtaining the property 1.
Second, since a constraint equation considering brightness change has three parameters,
I estimate the parameters in the constraint equation by using a voting process with a
weighting function in a 3-dimensional voting space and a condition of constraint equations
for voting for obtaining properties from 2 through 6.

4.4.1 An assumption for velocity vector estimation in the sit-
uation of brightness change

[—f Constraint plane:

u

An intersection of
constraint planes
Parameter spaceu-v-w

Figure 4.1: Constraint planes on u-v-w space and an intersection point

Equation (4.4) contains three parameters «,v and w. In parameter space u-v-w, equa-
tion (4.4) expresses a plane. Thus, we call equation (4.4) a constraint plane. A constraint
plane is obtained in each pixel. However, it is impossible to determine parameters be-
cause a constraint plane contains three parameters. Therefore, we use an assumption
“a notice pixel and the neighboring pixels have the similar values of parameters in the
constraint equation”. It is possible to determine the value of the parameters uniquely
unless constraint planes are not parallel to each other in at least three constraint planes
(Figure 4.1). By using this assumption, We can determine parameters in the constraint
equation, since the coefficients I, I, and I; in the constraint equation (4.4) are able to
be determined from 2 image frames in an image sequence. Thus, it is possible to obtain
property 1.
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4.4.2 A velocity vector estimation by using voting process

In the actual situations, intersections of constraint planes are scattered by following factors
from (A) to (C).

(A) Fluctuation of the value of parameter w

Intensity I(z,y,t) is expressed by using a reflection model [67] such as

I(z,y,t) = Ry, + Ryl cos 01 + RsI, cos™ 0, (4.7)

I, : Intensity of ambient
: Intensity of a light source
R, : Ambient reflection rate
R, : Diffuse reflection rate
: Angle between the normal vector on a object surface and the direction of incidence
light

0> : Angle between the direction of reflection light and eyes

Ry : Specular reflection rate

n . Parameter of high light.

By using the reflection model, an intensity of a corresponding point I(z+Az, y+Ay, t+At)
is expressed as

I(z + Az,y + Ay, t + At) = RoI, + Ral cos 6y’ + RyI, cos™ 05, (4.8)

where
I,' : Intensity of ambient in a corresponding point

I,/ : Intensity of a light source in a corresponding point

9, : Angle between normal vector on an object surface and incidence light in a corre-
sponding point
;' : Angle between reflection light and eye in a corresponding point.
By using equation (4.1) and (4.3)w in (4.4) is expressed as

1
w = E{I(x—l—Ax,y—l—Ay,t—l—At) — I(z,y,t)}. (4.9)
I substitute equation (4.7) and (4.8) for (4.9) and obtain
1
w = %{RQ(IZL — Io) + Ry(I,cos b1 — I cos01) + Ry(I, cos™ ;' — I;cos™ 65)}.  (4.10)
In equation (4.10), the parameters which change spatially are 6y, 62, R,, R4 and Ry. The
quantity of spatial change Aw of the parameter w is expressed by
dt
+ (Ris+ ARy) {I; cos(01 + Aby) — I, cos(61 + A@l)}
- Ry (I; cos§) — I, cos 91)
+ (Ry+ ARy) {1, cos™(02 + AD)' — I, cos™ (02 + Ady) |

Aw = 1 [{(Ra + ARa)([CIL - Ia) - Ra([:lz - [a)}

— Ry ([; cos™ 0y — I; cos™ 92)].

(4.11)
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If A0;—0, A0,—0, AR,—0, AR;—0, AR;—0, then Aw converges to zero. However,
in an actual image space which is discrete, there is quantity of spatial change because the
each delta parameter has enough large values in an actual image space.

(B) Fluctuation of the value of parameters u,v

A point (z,y,z) in three-dimensional space is projected to a point (X,Y) in two-
dimensional projection plane such as

(5)-1(3)

where f is a focal length. Similarly, a point of (2', 4/, z’) which is moved from (z,y, z) in
a three-dimensional space is projected to a point (X', Y”) in two-dimensional projection

plane such as
X' z
(5)=s(3) "
is expressed as
u X' X
(1)-(5)-(3) =
We substitute (4.12) and (4.13) for (4.14) and then obtain

()-1(573)

Similarly, a velocity vector (u*,v*)" in a coordinate (z + Az, y + Ay, t + At) is expressed
as the following equation in a two-dimensional projection plane

u*
()=
We define a spatial changes of velocity vectors (Au, Av)' by
Au u* U
(3) = (5)-(%) 1)

(z+Az)! _ zt+Az
- f( CAr ) (ii) (4.19)

N Qw8

S

A velocity vector (u,v)"

SYERNE
N R N8

2+Az2) T (2+Az)
y+Ay) _ (y+Ay)
z+Az) (z+Az)

(4.16)

z+Az) (z+Az) )

PPN PN

(z4+Az) z2+Az

N\‘@N‘H
N QN8

We consider in isotropic motion. Any isotropic motion for a point (x,y, z) is expressed as

/

x x
Yy |=ER| y |+T (4.19)
Z z
where
a 0 0 cosy —siny 0 cos 0 sinf 1 0 0
E=|1010b0]|,R=| siny cosy 0 0 1 0 0 cosa —sina
0 0 ¢ 0 0 1 —sinf3 0 cosf3 0 sina cosa
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a,b,c are expansion/contraction rate for z,y,z axis respectively, «,5,y are rotation angle
for z,y,z axis respectively, t,,t,,t. are quantity of translation for z,y,z axis respectively.
Similarly, isotropic motions in a point on the coordinate (z + Az,y + Ay, z + Az) is
expressed as

(z + Az)’ z+ Az
(y+Ay) | =ER| y+Ay | +T. (4.20)
(z + Az) z+ Az

We substitute (4.19) and (4.20) for (4.18) and obtain

—sin B(z+Az)+sin a cos B(y+Ay)+cos acos B(z+Az)}+i.
Av

b{cos B sin 'y(a:—&—Aaz)—Iicos a cosy+sin asin @ sin y)(y+Ay)+(— sin a cosy+cos asin Ssin y(z+Az)} 41,

c{—sin B(z+Az)+sin a cos B(y+Ay)+cos acos B(z+Az)}+iz
( a{cos B cos ax+(— cos asiny+sin asin B sin y)y+(sin a sin y+cos asin 8 cosy)z}+tz )

c{—sin fz+sin a cos By+cos a cos fz}+i.
b{cos B sinyz+(cos a cosy+sin asin B sin y)y+(— sin a cos y+cos asin Bsinyz) }+iy

c{— sin Bz+sin a cos By+cos a cos Bz} +t,

If Az—0, Ay—0, Az—0, then each element of (Au, Av)" converges to zero. However,in
an actual image space which is discrete, there is quantity of spatial change because the
each delta parameter has enough large values in an actual image space.

(C) Fluctuation of intersections of constraint equation by influence of in-
tersections of constraint equations in regions where pattern changes intensely
or constraint equations effected by noise

I consider three constraint equations (4.4) that satisfy realizable conditions of the
constraint equations in a support region. The equations are expressed by

[Ou+ 1Mo+ 119 = (4.22)
IPu+ 1Pv 4+ 1P = w, (4.23)
IOu+ 1Pv 4+ 1% = w, (4.24)

where I(1), 1?51) or ]t(l) denote partial differential coefficients of I(z,y,t) with respect to

x,y and t on a first pixel in a support region respectively, [£2)7 1352) or [,5(2) denote partial

differential coefficients of I(z, y,t) with respect to x, y and ¢ on a second pixel in a support

region respectively, 1{3), 1153) or It(g) denote partial differential coefficients of I(z,y,t) with

z
respect to x, y and ¢ on a third pixel in a support region respectively, An intersection

(u,v,w)" of these constraint equations is expressed as

S RO SN ON O N O NSO NP O N ONPON O

IO 1<2)1(1>)(1(3> D)D) @ Dy Dy

_ AR 1019y (7 ) 7000 e 1)

vl = Ol O O Ny O Oy O ORy O ONF OB ON

w QIR O L N O O F NI RSO O N M I O ONSTON
AP 1D (DD [ D) (D[ 1(2> 1(1>)(1(3> M)

(4.25)

If the equation (4.22) is a constraint equation in regions where pattern changes intensely
such as regions in boundaries of objects or a constraint equation effected by noise, the
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spatial /temporal gradients in the image are changed intensely. Thus, (4.22) is replaced
by
IV 4+ IV + 1Y = w, (4.26)

where 1(1)', Iyl)' or ]t(l)l are changed coefficients of equation (4.22). Therefore the inter-
section (u,v,w)' of the constraint equations is changed to

0 1) 0 11011 1019

) (

R M L e T R O R TT S )
u’ (M 1 1@ 1O @) a1 1Sy
| = (D 1) 12 1) 1) (1D 1 1P 1"y (1) 18

W' BRI O (O O O ) (O (O (Ol (Ol O I O R (O (O
1 1 1 ! 1 !
O O (R R R e B O Y e D (R )

(4.27)
Then, I define a difference vector (Au, Av, Aw)" as
Au u—u
Av | =] v—2v" |. (4.28)
Aw w—w

Since I(MAI(D" _73(/1)#[351)'7 It(l);éft(l)l, the difference vector (Au, Av,Aw)" is not zero
vector. This means, if there is a constraint equation in regions where pattern changes
intensely or a constraint equation effected by noise in a support region, intersections of
constraint equation are scattered.

Constraint
planes

Voting of
intersection

N\ Voting scores

u

Intersections of
constraint planes

Parameter space u-v-w Three-dimensional
voting space

Figure 4.2: Voting of intersection to three-dimensional voting space

I use voting process to estimate values of estimation parameters from scattered in-
tersections of constraint planes by the factors of (A) and (B), excluding intersections of
constraint planes by the factors of (C). By voting of intersections in the parameter space
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u-v-w to the voting space, if scattered intersections of constraint planes by the factors of
(A) and (B) converge into a cell in voting space, the voting score in the cell will be the
maximum voting score. Then we decide the coordinate of the maximum voting score as
estimated parameters u, v and w. By this process, we can expect to precisely estimate es-
timated parameters v and v excluding the intersections of constraint planes by the factors
of (C) (Figure 4.2).

In order to separate different motions from an interest pixel, we use constraint planes
that satisfy the following constraint planes such as

- Constraint planes on pixels of the same object as on an interest pixel.
We assume that intensity of an interest pixel and the neighboring pixels are almost
equivalent, if they are in a same object. If the assumption holds, the condition is formu-

larize as
|I(Ji,y,t) - I(a7 bat)|§Thb7 (429)

where I(a,b,t) is intensity of an interest pixel (a,b) at time ¢, I(z,y,t) is intensity of
neighboring pixels of the interest pixel at time ¢, T'hy is a threshold in the condition. We
adopt constraint equations that satisfy the above condition to voting process.

It is possible to obtain the properties from 2 through 6 because fluctuation of inter-
sections is restrained by using voting procedure and a condition of constraint equation
for voting.

4.4.3 Weighting of voting score by weight function

In case that intersections of constraint planes do not converge into a cell in voting space,
There is a case that we cannot obtain the maximum voting score by fluctuation of
voting scores. To obtain the reasonable maximum voting score in case of fluctuation
of voting scores, a method of voting process with a weighting function has been pro-
posed. This method detects the reasonable maximum voting score (Umed, Umeds Wmed) 1N
[ (Ua, Vo, Wy ) convoluting voting score f(u,v,w) by a weighting function w(u — uq,v —
Vgy W — Wa Oyyy Oop). The f(Ug, Vg, Wy ) is expressed as

V2 V2 V)2

fl(uaavaawa) = Z Z Z w(u = U, U — Uauwa;auvaaw)f(u)vaw>) (430)

u=—V/20v=-V/2 w=—V,, /2

where V' denotes axis size of each v and v in the voting space, V,, denotes axis size of
win the voting space, u,, v4 and w, denote interest coordinates in voting space. We use
Gaussian function as a weighting function

exp(A) (4.31)

’U)(U — Uy U — VUq, W — Wq; Oyy, Uw) -

1
(27‘-)3/2 \/Eu'v \% Ow

experimentally, where

i {_(u —uaf+ (=) (= wa>2} )

2 2
202, 202

04, and o, are a variance parameter on u and v axis in the voting space and a variance
parameter on w axis in the voting space respectively.
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Figure 4.3: An image used for this experiment on evaluating property 1 and property 2.

4.5 Experiments for evaluating properties in a es-
timation method of velocity vectors for bright-
ness change using a 3-dimensional voting space

In order to evaluate that the proposed method has all properties of conventional methods,
I first experiment on comparison of velocity vector estimation precision of conventional
methods and the proposed method in synthesis image sequences generated by computer
graphics. I then apply the conventional methods and the proposed method to actual
image sequence. In velocity vector estimation using actual image sequences, we can not
obtain actual velocity vectors, we can not quantitatively evaluate precision of velocity
vevtor estimation. Thus, we qualitatively evaluate results of velocity vector estimation.

4.5.1 Experiments in synthesis image sequences

In order to quantitatively evaluate that the proposed method has all properties, I exper-
iment on comparison of velocity vector estimation precision of the conventional methods
and the proposed method in synthesis image sequences generated by computer graphics.

Experiments on evaluating property 1 and property 2

In order to evaluate that the proposed method has property 1 and property 2, I
experiment on comparison of velocity vector estimation precision of conventional methods
and the proposed method by applying these methods to image sequence whose temporal
intensity change on inside of an object is different from its on outside of an object by
difference of reflection rate. The first image frame used in this experiment is shown in
Figure 4.3. the second and third image frames used in this experiment are transformed
by affine transformation shown in Table 4.8, Table 4.9, Table 4.10 and Table 4.11, on
condition that parameters in Table 4.8 are defined right direction as positive direction,
parameters in Table 4.11 are defined counterclockwise as positive direction. Parameters
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of image frames used in this experiment are shown in Table 4.2.

Table 4.2: Parameters in generated images used in this experiment

Frequency of a sine wave (Texture)

0.12[Hz]

Amplitude of a sine wave (Texture)

25[intensity]

Bias of intensity (Inside of the object)

100[intensity]

Bias of intensity (Outside of the object)

200[intensity]

Quantity of temporal intensity change (Inside of the object)

-20[intensity /frame]

Quantity of temporal intensity change (Outside of the object)

-10[intensity /frame]

Resolution

128 x 128]pixels]

Parameters of the conventional methods and the proposed method are shown in from

Table 4.3 through Table 4.7.

Table 4.3: Parameters in the proposed method

The threshold in the voting possible condition

30[intensity]

The size of the support region

30x 30[pixels]

The size of a cell in the voting space 1.0x102
The variance parameter in the weighting function o, 4
The variance parameter in the weighting function o, 4

Table 4.4: Parameters in Cornelius’s method

Weighting of spatial smoothness of velocity vectors a

3.2

Weighting of spatial smoothness of temporal intensity change 3

1.8

The number of times of iterative calculation

50000[Times]

As evaluation scale for evaluating precision of velocity vector estimation, I use the

mean of normalized error

M—-1N-— 1||f;cy

CEMN 525 1

:I:O'yO

Tl
9

where M, N are the vertical/horizontal size of image frame respectively, ]’

velocity vector in (z,v), j“zy

(4.33)

is a correct

Yy

is an estimated velocity vector in (z,y).

As examples, a correct velocity vector field and estimated velocity vector fields in
P12 _Transl are shown in from Figure 4.4 though Figure 4.9. In regions where reflection
rate changes intensely, we see that the proposed method could estimate velocity vectors

precisely in comparison with the other methods.

The results of mean of normalized error in each image sequence are shown in from

Figure 4.10 though Figure 4.13.
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Table 4.5: Parameters in Nomura’s method

The number of frame for velocity vector estimation K

Order of constraint equation with respect to temporal change of velocity vectors N || 1

Table 4.6: Parameters in Mukawa’s method
Weighting of the velocity vector constraint equation
considering temporal change of intensity A 5.4
Weighting of spatial constraint equation
with respect to temporal change of intensity p 2.5
Weighting of spatial constraint of ¢ v 1.3
The number of times of iterative calculation 50000[Times]

From the result, we see that the result of velocity vector estimation by using the
proposed method is well in comparison with the other methods. The factor is supposed
that the proposed method has property 1 and property 2.
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Table 4.7: A parameter in Negahdaripour’s method
The size of support region H 4x4

Table 4.8: Parameters of generated image in translation motions

Names of each image sequence H Parameters in translation motions [pixel /frame]

P12 _Transl 1.0
P12_Trans2 2.0
P12 Trans3 3.0
P12_Trans4 4.0
P12 _Transb 5.0

Table 4.9: Parameters of generated image in expansion motions

Names of each image sequence H Parameters in expansion motions [times/frame]

P12 Expl 1.01
P12_Exp2 1.02
P12 _Exp3 1.03
P12 Exp4 1.04
P12_Exp5 1.05

Table 4.10: Parameters of generated image in contraction motions

Names of each image sequence H Parameters in contraction motions [times/frame]

P12_Contl 0.99
P12_Cont2 0.98
P12_Cont3 0.97
P12_Cont4 0.96
P12_Contb 0.95

Table 4.11: Parameters of generated image in rotation motions

Names of each image sequence H Parameters in rotation motions [degree/frame]

P12 _Rotl 1.0
P12 _Rot2 2.0
P12 _Rot3 3.0
P12_Rot4 4.0
P12 _Rot5 5.0
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Figure 4.4: A correct velocity vector field in P12 Transl
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Figure 4.5: An estimated velocity vector field by the proposed method in P12 _Trans1
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Figure 4.6: An estimated velocity vector field by Nomura’s method in P12 Transl
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Figure 4.7: An estimated velocity vector field by Cornelius’s method in P12 _Transl
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Figure 4.8: An estimated velocity vector field by Mukawa’s method in P12 Transl
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Figure 4.9: An estimated velocity vector field by Negahdaripour’s method in
P12 Transl
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Figure 4.10: The mean of normalized error in translation motions
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Figure 4.11: The mean of normalized error in expansion motions
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Figure 4.12: The mean of normalized error in contraction motions
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Figure 4.13: The mean of normalized error in rotation motions
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Experiments on evaluating property 3

In order to evaluate that the proposed method has property 3, I experiment on com-
parison of velocity vector estimation precision of conventional methods and the proposed
method by applying these methods to image sequence whose intensity changes temporally
by effectiveness of shading in case that objects move. An image frame used in this exper-
iment is shown in Figure 4.14. In a situation that light source irradiates light from right
upper front position to an object, the first image frame used in this experiment is cut off
not to include boundaries of an object, the second and third image frames used in this
experiment are cut off not to include boundaries of an object from an image whose an
object is 3-dimensionally transformed by affine transformation shown in Table 4.12, Table
4.13, Table 4.14 and Table 4.15, on condition that parameters in Table 4.12 are defined
right direction as positive direction, parameters in Table 4.15 are defined counterclockwise

as positive direction. Parameters of image frames used in this experiment are shown in
Table 4.16.

Table 4.12: Parameters of generated image in translation motions

Names of each image sequence H Parameters in translation motions [coordinate/frame]

P3_Transl 2.0
P3_Trans2 4.0
P3_Trans3 6.0
P3_Trans4 8.0
P3_Transh 10.0
P3_Trans6 12.0
P3_Trans7 14.0
P3_Trans8 16.0
P3_Trans9 18.0
P3_Transl0 20.0

Table 4.13: Parameters of generated image in expansion motions
Names of each image sequence H Parameters in expansion motions [times/frame]

P3_Expl 1.02
P3_Exp2 1.04
P3_Exp3 1.06
P3_Exp4 1.08
P3_Expb) 1.10
P3_Exp6 1.12
P3_Exp7 1.14
P3_Exp8 1.16
P3_Exp9 1.18
P3_Expl0 1.20

Parameters of the conventional methods and the proposed method are used the same
parameters as shown in from Table 4.3 through Table 4.7.
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Figure 4.14: An image used for this experiment on evaluating property 3.

As evaluation scale for evaluating precision of velocity vector estimation, I use the
mean of normalized error (Equation (4.33)).

As examples, a correct velocity vector field and estimated velocity vector fields in
P3_Trans2 are shown in from Figure 4.15 though Figure 4.20. In regions where shad-
ing changes intensely, we see that the proposed method could estimate velocity vectors
precisely in comparison with the other methods.

The results of the mean of normalized error in each image sequence are shown in from
Figure 4.21 though Figure 4.24. In these figures of the results, the mean of normalized
error intensely increased after P3_Trans6, P3_Exp6, P3_Cont6, P3_Rot6 respectively. The
factor is supposed that spatial gradients of intensity reverse by shifting of a half-period
of the sin-wave texture on the object in the image sequences.

From the result, we see that the result of velocity vector estimation by using the
proposed method is well in comparison with the other methods. The factor is supposed
that the proposed method has property 3.

101



Table 4.14: Parameters of generated image in contraction motions

Names of each image sequence H Parameters in contraction motions [times/frame]

P3_Contl 0.98
P3_Cont2 0.96
P3_Cont3 0.94
P3_Cont4 0.92
P3_Contb 0.90
P3_Cont6 0.88
P3_Cont7 0.86
P3_Cont8 0.84
P3_Cont9 0.82
P3_Cont10 0.80

Table 4.15: Parameters of generated image in rotation motions

Names of each image sequence H Parameters in rotation motions [degree/frame]

P3_Rotl 2.0
P3_Rot2 4.0
P3_Rot3 6.0
P3_Rot4 8.0
P3_Rot5 10.0
P3_Rot6 12.0
P3_Rot7 14.0
P3_Rot8 16.0
P3_Rot9 18.0
P3_Rot10 20.0

Table 4.16: Parameters in generated images used in this experiment

Frequency of a sine wave (Texture) 0.12[Hz]
Amplitude of a sine wave (Texture) 25[intensity]
Bias of intensity (Texture) 100[intensity|
Resolution 128 x 128 pixels]
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Figure 4.15: A correct velocity vector field in P3_Trans?2
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Figure 4.16: An estimated velocity vector field by the proposed method in P3_Trans2
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Figure 4.17: An estimated velocity vector field by Nomura’s method in P3_Trans?2
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Figure 4.18: An estimated velocity vector field by Cornelius’s method in P3_Trans2
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Figure 4.19: An estimated velocity vector field by Mukawa’s method in P3_Trans2
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Figure 4.20: An estimated velocity vector field by Negahdaripour’s method in
P3_Trans2
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Figure 4.21: The mean of normalized error in translation motions
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Figure 4.22: The mean of normalized error in expansion motions
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Figure 4.23: The mean of normalized error in contraction motions
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Figure 4.24: The mean of normalized error in rotation motions
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Experiments on evaluating property 4

In order to evaluate that the proposed method has property 4, I experiment on com-
parison of velocity vector estimation precision of conventional methods and the proposed
method applying to image sequence whose intensity changes temporally by temporal
changing of light source intensity. An image frame used in this experiment is shown
in Figure 4.25. In a situation that light source irradiates light from right upper front po-
sition to the object, the first image frame used in this experiment is cut off not to include
boundaries of an object, the second and third image frames used in this experiment are
cut off not to include boundaries of an object from an image whose light source intensity
changes temporally as shown in Table 4.17. Parameters of image frames used in this
experiment are shown in Table 4.18.

Table 4.17: Parameters of generated image in temporal intensity change

Names of each image sequence H Parameters in temporal intensity change [quantity/frame]

P4 _Intensel -10.0
P4 _Intense? -20.0
P4 _Intense3 -30.0
P4 _Intensed -40.0
P4 _Intenseb -50.0
P4 _Intense6 -60.0
P4 _Intense? -70.0
P4 _Intense8 -80.0
P4 _Intense9 -90.0
P4 _Intensel0 -100.0

Table 4.18: Parameters in generated images used in this experiment

Frequency of a sine wave (Texture) 0.12[Hz]
Amplitude of a sine wave (Texture) 25[intensity]
Bias of intensity (Texture) 100[intensity]
Resolution 128 x128]pixels]

Parameters of the conventional methods and the proposed method are used the same
parameters as shown in from Table 4.3 through Table 4.7.

As examples, a correct velocity vector field and estimated velocity vector fields in
P4 Intenseb are shown in from Figure 4.26 though Figure 4.31. In regions where inten-
sity changes intensely, we see that the proposed method could estimate velocity vectors
precisely in comparison with the other methods.

As evaluation scale for evaluating precision of velocity vector estimation, I use the
mean of normalized error (Equation (4.33)). The results of the mean of normalized error
are shown in Figure 4.32. In the Figure 4.32, the mean of normalized error abruptly
increased from P4 Intense8. The factor is supposed that intensity which was transformed
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Figure 4.25: An image used for this experiment on evaluating property 4.

by change of intensity of light source got off the dynamic range of intensity of the image
sequences used in this experiment.

From the result, we see that the result of velocity vector estimation by using the
proposed method is well in comparison with the other methods. The factor is supposed
that the proposed method has property 4.
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Figure 4.26: A correct velocity vector field in P4 Intenseb
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Figure 4.27: An estimated velocity vector field by the proposed method in
P4 Intenseb
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Figure 4.30: An estimated velocity vector field by Mukawa’s method in P4 Intenseb
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Figure 4.31: An estimated velocity vector field by Negahdaripour’s method in
P4 Intenseb
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Figure 4.32: The mean of normalized error in temporal intensity change
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Figure 4.33: An image used for this experiment on evaluating property 5.

Experiments on evaluating property 5

In order to evaluate that the proposed method has property 5, I experiment on com-
parison of velocity vector estimation precision of conventional methods and the proposed
method in case of applying to image sequences added Gaussian noise. The first image
frame used in this experiment is shown in Figure 4.33, the second and third image frames
used in this experiment are transformed by affine transformation shown in Table 4.19,
Table 4.20, Table 4.21 and Table 4.22; on condition that parameters in Table 4.19 are
defined right direction as positive direction, parameters in Table 4.22 are defined counter-
clockwise as positive direction. Parameters of image frames used in this experiment are
shown in Table 4.23. Each image sequence is added Gaussian noise n whose probability
is expressed as

1 2
P(n) = ———exp™ 2.2, (4.34)
2ro
I use
255
PSNR[dB] = 20log — (4.35)
o

as a evaluation scale of quantity of noise.

Table 4.19: Parameters of generated image in translation motions

Names of each image sequence | Parameters in translation motions [pixels/frame]
P5_Transl H 1.0

Table 4.20: Parameters of generated image in expansion motions
Names of each image sequence H Parameters in expansion motions [times/frame]

P5_Expl | 1.01
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Table 4.21: Parameters of generated image in contraction motions

Names of each image sequence H Parameters in contraction motions [times/frame]
P5_Contl | 0.99

Table 4.22: Parameters of generated image in rotation motions
Names of each image sequence H Parameters in rotation motions [degree/frame]

P5_Rotl | 1.0

Table 4.23: Parameters in generated images used in this experiment

Frequency of a sine wave (Texture) 0.12[Hz]
Amplitude of a sine wave (Texture) 25[intensity]
Bias of intensity (Texture) 200[intensity]
Resolution 128 x 128[pixels]

Parameters of the conventional methods and the proposed method are used the same
parameters as shown in from Table 4.3 through Table 4.7.

As evaluation scale for evaluating precision of velocity vector estimation, I use the
mean of normalized error (Equation (4.33)).

As examples, a correct velocity vector field and estimated velocity vector fields in
P5 Transl of PSNR=31.4[dB] are shown in from Figure 4.34 though Figure 4.39. In
whole regions of image sequences, we see that the proposed method could estimate velocity
vectors precisely in comparison with the other methods.

The results of mean of normalized error in each image sequence are shown in from
Figure 4.40 though Figure 4.43.

From the result, we see that the result of velocity vector estimation by using the
proposed method is well in comparison with the other methods. The factor is supposed
that the proposed method has property 5.
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Figure 4.34: A correct velocity vector field in P5 Transl of PSN R=31.4[dB]
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Figure 4.35: An estimated velocity vector field by the proposed method in P5_Trans1
of PSN R=31.4[dB]
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Figure 4.40: The mean of normalized error in translation motions
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Figure 4.41: The mean of normalized error in expansion motions
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Figure 4.42: The mean of normalized error in contraction motions
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Figure 4.43: The mean of normalized error in rotation motions

120



Figure 4.44: An image used for this experiment on evaluating property 6.

Experiments on evaluating property 6

In order to evaluate that the proposed method has property 6, I experiment on com-
parison of velocity vector estimation precision of conventional methods and the proposed
method in case of applying to image sequences including regions where pattern change
is intense. The first image frame used in this experiment is shown in Figure 4.44. The
second and third image frames used in this experiment are transformed by affine trans-
formation shown in Table 4.24, Table 4.25, Table 4.26 and Table 4.27, on condition that
parameters in Table 4.24 are defined right direction as positive direction, parameters in
Table 4.27 are defined counterclockwise as positive direction. Parameters of image frames
used in this experiment are shown in Table 4.28.

Table 4.24: Parameters of generated image in translation motions

Names of each image sequence H Parameters in translation motions [coordinate/frame]

P6_Transl 1.0
P6_Trans2 2.0
P6_Trans3 3.0
P6_Trans4 4.0
P6_Transb 5.0

Table 4.25: Parameters of generated image in expansion motions
Names of each image sequence H Parameters in expansion motions [times/frame]

P6_Expl 1.01
P6_Exp2 1.02
P6_Exp3 1.03
P6_Exp4 1.04
P6_Expb) 1.05
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Table 4.26: Parameters of generated image in contraction motions

Names of each image sequence H Parameters in contraction motions [times/frame]

P6_Contl 0.99
P6_Cont2 0.98
P6_Cont3 0.97
P6_Cont4 0.96
P6_Contbh 0.95

Table 4.27: Parameters of generated image in rotation motions
Names of each image sequence H Parameters in rotation motions [degree/frame]

P6_Rotl 1.0
P6_Rot2 2.0
P6_Rot3 3.0
P6_Rot4 4.0
P6_Rotb 5.0

Table 4.28: Parameters in generated images used in this experiment

Frequency of a sine wave (Object) 0.12[Hz]
Amplitude of a sine wave (Object) 25intensity]
Bias of intensity (Texture) 200]intensity]
Frequency of a sine wave (Background) 0.12[Hz]
Amplitude of a sine wave (Background) 15[intensity]
Bias of intensity (Texture) 30[intensity]
Resolution 128 x 128]pixels]

Parameters of the conventional methods and the proposed method are used the same
parameters as shown in from Table 4.3 through Table 4.7.

As evaluation scale for evaluating precision of velocity vector estimation, since image
sequences used in this experiment include non motion regions, I use the mean of error,

= 3 ey~ £l (4.36)

z,yER,

where M is number of pixels in occluded/appearance regions extracted by the proposed
method, R, is a occluded /appearance region, f.(x,y) is a correct velocity vector in (z,y),
f.(z,y) is an estimated velocity vector by extrapolation in (z,y).

As examples, a correct velocity vector field and estimated velocity vector fields in
P6_Transl are shown in from Figure 4.45 though Figure 4.50. In regions where pat-
tern changes intensely, we see that the proposed method could estimate velocity vectors
precisely in comparison with the other methods.

The results of mean of error in each image sequence are shown in from Figure 4.51
though Figure 4.54.
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From the result, we see that the result of velocity vector estimation by using the
proposed method is well in comparison with the other methods. The factor is supposed
that the proposed method has property 6.
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Figure 4.45: An correct velocity vector field in P6_Transl
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Figure 4.46: An estimated velocity vector field by the proposed method in P6_Trans1
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Figure 4.47: An estimated velocity vector field by Nomura’s method in P6_Transl
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Figure 4.48: An estimated velocity vector field by Cornelius’s method in P6_Transl
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Figure 4.49: An estimated velocity vector field by Mukawa’s method in P6_Transl
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Figure 4.50: An estimated velocity vector field by Negahdaripour’s method in
P6_Transl
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Figure 4.51: The mean of error in translation motions
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Figure 4.52: The mean of error in expansion motions
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Figure 4.53: The mean of error in contraction motions
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Figure 4.54: The mean of error in rotation motions
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Figure 4.55: An image used for this experiment on evaluating all properties.

Experiments on evaluating in case of including factors of all properties

In order to evaluate that the proposed method has all properties from 1 through 6, I
experiment on comparison of velocity vector estimation precision of conventional methods
and the proposed method in case of applying to image sequences including factors of the
all properties from 1 though 6. The first image frame used in this experiment is shown
in Figure 4.55 that includes factors of the all properties from 1 through 6. Objects in
the second and third image frames used in this experiment are transformed by affine
transformation shown in Table 4.29, Table 4.30, Table 4.31 and Table 4.32, on condition
that parameters in Table 4.29 are defined right direction as positive direction, parameters
in Table 4.32 are defined counterclockwise as positive direction. Parameters of image
frames used in this experiment are shown in Table 4.33.

Table 4.29: Parameters of generated image in translation motions

Names of Motion parameters of Quantity of temporal change | Quantity
image sequence || translation[coordinate/frame] of light source intensity of noise[dB]
Pa Trans || 1.0 | -20 | 361

Table 4.30: Parameters of generated image in expansion motions

Names of Motion parameters of | Quantity of temporal change of | Quantity of
image sequence || expansion[times/frame] light source intensity noise[dB|
PaExp | 1.01 | -20 | 361

Parameters of the conventional methods and the proposed method are used the same
parameters as shown in from Table 4.3 through Table 4.7.

As evaluation scale for evaluating precision of velocity vector estimation, since image
sequences used in this experiment include non motion regions, I use the mean of error é.
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Table 4.31: Parameters of generated image in contraction motions

Names of Motion parameters of | Quantity of temporal change | Quantity
image sequence || contraction[times/frame] of light source intensity of noise[dB]
Pa_Cont || 0.99 | -20 | 361

Table 4.32: Parameters of generated image in rotation motions

Names of Motion parameters of | Quantity of temporal change of | Quantity of
image sequence | rotation[degree/frame] light source intensity noise|dB]
PaRot | 1.0 | -20 36.1

Table 4.33: Parameters in generated images used in this experiment
Frequency of a sine wave (Object) 0.12[Hz]
Amplitude of a sine wave (Object) 25[intensity]

Bias of intensity (Outside of the object) | 200[intensity]
Bias of intensity (Inside of the object) 100[intensity]

Frequency of a sine wave (Background) 0.12[Hz]
Amplitude of a sine wave (Background) 15[intensity]
Bias of intensity (Background) 30[intensity]
Resolution 128 x 128]pixels]

As examples, a correct velocity vector field and estimated velocity vector fields in
Pa_trans are shown in from Figure 4.56 though Figure 4.61. In these figures, we see that
the proposed method could estimate velocity vectors precisely in comparison with the
other methods.

The results of mean of error of each method in each image sequence are shown in from
Table 4.62.

From the result, we see that the result of velocity vector estimation by using the
proposed method is well in comparison with the other methods. The factor is supposed
that the proposed method has all properties from 1 through 6.
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Figure 4.56: A correct velocity vector field in Pa_Trans
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Figure 4.57: An estimated velocity vector field by the proposed method in Pa_Trans
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Figure 4.58: An estimated velocity vector field by Nomura’s method in Pa_Trans
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Figure 4.59: An estimated velocity vector field by Cornelius’s method in Pa_Trans
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Figure 4.62: The mean of error of each method in each image sequence, A:The
proposed method, B: Conelius’s method, C:Nomura’s method, D:Mukawa’s method,
E:Negahdaripour’s method.

Names of

The mean of error in each method

each image sequence A B C D E
Pa Trans 2.73x1071 | 4.38x107! | 4.14x107% | 4.70x107* | 4.89x 1071
Pa Exp 2.82x1071 | 3.70x107! | 3.08x107! | 3.31x107! | 3.42x107!
Pa Cont 2.86x1071 [ 3.96x107! | 3.11x107% | 3.97x107! | 4.14x10°1
Pa_Rot 3.78x1071 | 5.12x107! | 4.30x107% | 5.08x107! | 5.30x10~*
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4.5.2 Application to actual image sequences

In order to evaluate effectiveness of the proposed method in actual image sequences, I
experiment on comparison of velocity vector estimation precision of conventional meth-
ods and the proposed method in case of applying to actual image sequences. I apply
each method to the actual image sequences including translation, expansion, contraction
or rotation motions as shown in Figure 4.63, Figure 4.69, Figure 4.75 or Figure 4.81
respectively. The resolution of each image sequence are 111x56[pixels], 56 x46[pixels],
56 x46|pixels] or 76 x41[pixels| respectively.

I use the same parameters of the conventional methods and the proposed method as
shown in from Table 4.3 through Table 4.7.

Estimated velocity vector fields in the actual image sequences are shown in from Figure
4.64 though Figure 4.86 respectively.

From the result, we see that the result of velocity vector estimation by using the
proposed method is the best. The main factor is supposed that the proposed method has
all properties from 1 through 6. .
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Figure 4.63: An actual image sequence including a translation motion
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Figure 4.64: An estimated velocity vector field of the proposed method in the actual
image sequence including a translation motion

10

15

———

AR
= Jt
. e

4 24 .

20

25

30

35

40

45

50

55 i P Vyean e PR L TR
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
X

Figure 4.65: An estimated velocity vector fields of Cornelius’s method in the actual
image sequence including a translation motion
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Figure 4.66: An estimated velocity vector field of Nomura’s method in the actual
image sequence including a translation motion
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Figure 4.67: An estimated velocity vector field of Mukawa’s method in the actual
image sequence including a translation motion
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Figure 4.68: An estimated velocity vector field of Negahdaripour’s method in the
actual image sequence including a translation motion
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Figure 4.69: An actual image sequence including an expansion motion
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Figure 4.70: An estimated velocity vector field of the proposed method in the actual

image sequence including a expansion motion
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Figure 4.71: An estimated velocity vector field of Cornelius

image sequence including a expansion motion
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Figure 4.72: An estimated velocity vector field of Nomura’s method in the actual

image sequence including a expansion motion

Figure 4.73: An estimated velocity vector field of Mukawa’s method in the actual

image sequence including a expansion motion
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Figure 4.74: An estimated velocity vector field of Negahdaripour’s method in the

actual image sequence including a expansion motion
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Figure 4.75: An actual image sequence including an contraction motion
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Figure 4.76: An estimated velocity vector field of the proposed method in the actual

image sequence including a contraction motion

Figure 4.77: An estimated velocity vector field of Cornelius’s method in the actual

image sequence including a contraction motion
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Figure 4.78: An estimated velocity vector field of Nomura’s method in the actual

image sequence including a contraction motion

Figure 4.79: An estimated velocity vector field of Mukawa’s method in the actual

image sequence including a contraction motion
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Figure 4.80: An estimated velocity vector field of Negahdaripour’s method in the
actual image sequence including a contraction motion
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Figure 4.81: An actual image sequence including an rotation motion

148



CIITTTEEEET e ———————
“m\\\\ e
e
ey A T
B P NN
DI DI
SIS NN
[y A :
==

s LI L s .

%
{
\
\

l
1
t
t
!
!
SONNN
AN

NNNAN

SN NN
\
\
\
\
\
t
1
1
1

PSRN
JENNN

P

40 b

75

70

65

60

15 20 25 30 35 40 45 50 55

10

Figure 4.82: An estimated velocity vector field of the proposed method in the actual

image sequence including a rotation motion

Figure 4.83: An estimated velocity vector field of Cornelius’s method in the actual

image sequence including a rotation motion
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Figure 4.85: An estimated velocity vector field of Mukawa’s method in the actual

image sequence including a rotation motion
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4.6 Summary

In order to precisely estimate velocity vectors in the situation of brightness change, I
attempted to proposed a method that has all properties in conventional methods such as

Property 1: The parameters in a constraint equation can be estimated in 2 frames,

Property 2: The reflection rate on the surface of an object is not necessary to be
constant

Property 3: Change of intensity by effectiveness of shading is considered
Property 4: Change of intensity by changing of a light source intensity is considered
Property 5: The method has robustness against noise

Property 6: The method has robustness in the region where pattern changes in-
tensely.

To obtain property 1, I adopted an assumption for velocity vector estimation in the
situation of brightness change. To obtain from property 2 through property 6, I ana-
lyzed fluctuation of intersections of constraint equation considering brightness change in
parameter space u-v-w. From the result of the analysis, I decided to use a method using
3-dimensional voting process and a condition of constraint equations for voting.

In order to evaluate that the proposed method has the all properties from property 1
through property 6, I first experimented on comparison of precision of velocity vectors in
following image sequence.

For evaluating property 1 and property 2 : Image sequences including effectiveness
of different reflection rate on an object

For evaluating property 3 : Image sequences including effectiveness of shading on
an object

For evaluating property 4 : Image sequences including effectiveness of intensity
change of a light source

For evaluating property 5 : Image sequences including effectiveness of noise

For evaluating property 6 : Image sequences including effectiveness of regions where
pattern changes intensely

From the results of the experiments, precision of velocity vector estimation by using the
proposed method was well in comparison with the other method. The factor is supposed
that the proposed method has each property.

I next experimented on comparison of precision of velocity vectors in image sequences
that have factors of all properties. From the result of the experiment, by using the pro-
posed method I obtained approximately 34% higher precision of velocity vector estimation
in the maximum than precision of velocity vector estimation in conventional methods. The
factor is supposed that the proposed method has all properties. In order to moreover ob-
tain precise estimation results, primarily, we have to investigate the optimum weighting
function for each application in velocity vector estimation considering brightness change.
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I finally applied the proposed method and the conventional methods to actual image
sequences that include translation, expansion, contraction or rotation. From the result
of the experiment, precision of velocity vector estimation by using the proposed method
was qualitatively well in comparison with the other methods.
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Chapter 5

A new method of velocity vector
estimation for incompressible
viscous fluid analysis

5.1 Introduction

Methods of fluid analysis using image sequences are classified into two category such as
particle base methods[55]~[60] called PIV (Particle Image Velocitmetry) that analyze fluid
motions using particles and texture base methods[61][62][63] that analyze fluid motions
using dyestuffs. The particle base methods can estimate velocity vectors of fluid in the
less cost of calculation. However, the methods can not basically estimate velocity vectors
in high density. The texture base methods can estimate velocity vectors in spatial high
density, However, the methods can not estimate velocity vectors in less calculation in
comparison with the particle base methods. I focus on texture base methods which can
estimate velocity vectors in spatial high density.

The texture base methods are classified into two categories. One is a method con-
sidering constraints of perfect fluid[61][62], the other is a method considering constraint
of incompressible viscous fluid[63]. These methods estimate velocity vectors using eval-
uation function of constraint equations with respect to estimation parameters on whole
pixels in an image. Therefore, if the constraint equations are influenced by noise, precision
of velocity vector estimation declines. In order to precisely estimate velocity vectors in
actual image sequences including fluid object, we have to exclude effectiveness of noise.

As a method that can precisely estimate parameters excluding effectiveness of noise,
A voting process with a weighting function has been proposed[66]. The method estimates
the most likelihood parameters from intersections of a constraint equation. However,
constraint equations used in conventional methods include partial differential coefficients
of velocity vector components u and v, we cannot determine the partial differential co-
efficients of velocity vector components v and v. Thus, we cannot apply the constraint
equations used in conventional methods to the method via voting process with a weighting
function.

I assume that a premise condition of a theorem such that ”partial differential coeffi-
cients including u and v can be determined by using intersections of intensity constraint
equations of a velocity vector” holds. If the theorem holds, we can determine the par-
tial differential coefficients. By determining the partial differential coefficients based on
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the theorem, we can apply the constraint equations used in conventional methods to the
method via voting process with a weighting function. In the field of fluid analysis, the
incompressible viscous fluid is mainly used as an application object. Thus, I aim to apply
to the incompressible viscous fluid. In order to apply to the incompressible viscous fluid,
I derive an incompressible viscous fluid velocity vector constraint equation determined
coefficients by intensity constraint, based on constraint equations considering physical
constraints of incompressible viscous fluid used in Nakajima’s method[63]. The constraint
equation includes three parameters such as velocity vector parameters and spatial change
of pressure. Thus, I expand the parameter space to a 3-dimensional parameter space. I
then estimate the parameters in the constraint equation by using a voting process with a
weighting function in a 3-dimensional voting space.

In weather anticipations using image sequences of clouds taken by weather satellites,
we have to estimate velocity vectors of the clouds in the image sequences to precisely
anticipate weather. Thus, we can apply the proposed method to the weather anticipations.

5.2 Effective of noise in estimation values in the
conventional methods considering physical con-
straint of fluid

In a situation of non-noise, constraint equations with respect to estimation parameters
used in conventional methods considering physical constraint of fluid can be regularized
as

QO T

D @l vij + b, =0, (5.1)

i=1j=1
where T is transposition, €2 is the number of pixels in an image region, 7" is the number of
estimation parameters in a constraint equation, v,; is a vector of an estimation parameter
j on ¢ pixel in an image region, a'y;; is a coefficient vector of v,; in h order of the constraint
equations. b}, is a constant term in h and ¢. Evaluation functions used in conventional
methods[63][61][62] to estimate estimation parameters vy, v12, - - -,uqr can be regularized
as

c (T 2
E(v11, 012, -, va7) = Y {Z > (a;»].'vij + bhi)} , (5.2)

r=1 |i=1j=1
where ap;; is a coefficient vector of v;; in the h order of the constraint equations in
the evaluation function, bp; is a constant term in h and ¢ in the evaluation function. If
noise is added to m pixels (0<m<Q), the evaluation function E.(v11,v12,: -+, vqr) can be
represented as

Ee(vll, V12, -, ’UQT)

c [ m T Q T '|2
= YY" {(an +eany) vig + (b Fem)}+ X D (@irvn 0w |

h=1 L’:1 i=1 k=m+1j=1 J

where eqp;; is noise added to ap;;, €pn; is noise added to by;. Since the evaluation function
E(vi1,v12, -+, vqr) is a second order function, the optimum value of a component v,g, in
a order o of an estimation parameter v,g (0<a<Q, 0<F<T') is the extremal value. To
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estimate the extremal value, I execute partial differentiation for the evaluation function
E(vi1,v12, -+, vqr) with respect to v,g,. Then I set the partial differentiation is 0. By
solving the partial differentiation with respect to v,s,, we obtain

- Zg:l E?:l Z?:l(a’]—ll—z]v” + bhl)

C
Zh:l a’haﬁo

VapBo =

) (5.3)

where apag, 1s a coefficient of vag, in a h order of the constraint equation. I do not deal
with a term of a,faﬁovaﬂo in the term a;jvi]' in the left side of the equation 5.3. Similarly,
the optimum value with respect to v,g, in the evaluation function E.(v11,v12,- -, var) is

DD Y E?:1(ahij + eanij) ' vij
Sh1(Ahago + €napo)
- Eg:l > E?:l(bhi + ewni)  — Zg:l Z%:mﬂ Zyrzl(a;kjvkj + bik)
Y h=1(@hago + €hago) > h=1(Ghago + €hapo)

Voo

+

(5.4)

where epag, is noise added to apago,. 1 do not deal with the term (apogo + €nago)Vago it
the (ap;; + eahij)Tvi]' in the left side of the equation 5.4. Comparing the equation 5.3
with the equation 5.4, we can see that the optimum value is an estimation value including
effectiveness of noise in the image.

5.3 An estimation method of velocity vector via vot-
ing process with a weighting function using an
incompressible viscous fluid velocity vector con-
straint equation determined coefficients by in-
tensity constraint

The conventional methods considering physical constraint of fluid estimate vyy, v12, -,
vor using an evaluation function of constraint equations defined in each method on whole
pixels in an image. In case of adding noise to the image, as shown in equation (5.4),
precision of estimation parameters of velocity vector declines. We expect that we can
precisely estimate velocity vectors, if we exclude effective of noise against estimation
parameters.

As a method that can precisely estimate parameters excluding effectiveness of noise,
A voting process with a weighting function has been proposed[66]. The method calcu-
lates each estimation value v,,eq11, Umed12, = * * , Umedor DY using intersections of constraint
equations with respect to estimation parameters in a parameter space of v, v12, - - -, var.
The voting process with a weighting function, in the process of calculation of estimation
values, excludes intersections of constraint equations influenced by noise. Therefore, the
method has robustness against noise for estimating estimation parameters.

Since partial differential coefficients of velocity vector components u and v in constraint
equations used in the conventional methods considering physical constraint of fluid include
velocity vector parameters u and v, we cannot determine the partial differential coefficients
of velocity vector components u and v. Thus, we cannot apply the constraint equations
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used in the conventional methods to the voting process with a weighting function. I assume
that a premise condition of a theorem such that ”partial differential coefficients including
u and v can be determined by using intersections of intensity constraint equation of a
velocity vector” is satisfied. If the theorem holds, we can determine the partial differential
coefficients. By determining the partial differential coefficients based on the theorem, we
can apply the constraint equations used in conventional methods to the method via voting
process with a weighting function. In the field of fluid analysis, the incompressible viscous
fluid is mainly used as an application object. Thus, I aim to apply to the incompressible
viscous fluid.

In order to apply to the incompressible viscous fluid, I derive an incompressible viscous
fluid velocity vector constraint equation determined coefficients by intensity constraint
based on constraint equations considering physical constraints of incompressible viscous
fluid used in Nakajima’s method[63]. The constraint equation includes three parameters
such as velocity vector parameters and spatial change of pressure. Thus, I expand the
parameter space to a 3-dimensional parameter space. I then estimate the parameters
in the constraint equation by using a voting process with a weighting function in a 3-
dimensional voting space.

In this section, first, I derive an incompressible viscous fluid velocity vector constraint
equation determined coefficients by intensity constraint. Second, I mention about an
estimation method of velocity vector via voting process with a weighting function using
the incompressible viscous fluid velocity vector constraint equation determined coefficients
by intensity constraint.

5.3.1 Derivation of an incompressible viscous fluid velocity
vector constraint equation determined coefficients by in-
tensity constraint

Let (z,y,t) be a pixel (z,y) at time ¢t. A velocity vector on (z,y,t) satisfies an intensity
constraint equation of velocity vector|7]

oI ol ol

where 01/0x, 01/0y, 01/0t are partial differential coefficients of an intensity I(x,y,t)
on (z,y,t) with respect to z, y, t, respectively, u, v are components of velocity vector
axis on (z,y,t) for = axis and y axis respectively. In case that objects in an image is
incompressible viscous fluid, the objects satisfy continuity equation

Oou  Ov
— 4+ —=0 5.6
oz + dy (56)
and Navier-Stokes’s equation
ou  Ou ou 10p &u  0%u
— 4+ — — V= ——— —+ — X .
ot + Bz 8yv pOox g ((93:2 (93/2) + (5:7)
ov Ov Ov 19p v 0%
— + — —v = ——— —+ — Y 5.8
8t+8xu+8yv p8y+y(8w2+8y2)+ (58)
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where p, v, and p are density, kinematic viscosity and pressure respectively, X and Y are
components of external force on (z,y,t) for z axis and y axis respectively. In case that
estimation parameters on (z,y,t) satisfy from equation (5.5) through equation (5.8), the
estimation parameters satisfy

(N A T IR )
at ot Oor Ox Ox Jdy Oy Oy p \Ox Oy
_ v 0%u 0% 0%
B V(8x2+8y2+8x2+8—y2)

+—+X+Y+(8—u+@>. (5.9)
dr Oy

Equation (5.9) represents a velocity vector constraint equation considering physical con-
straint of incompressible viscous fluid. In equation (5.9), we can obtain the coefficients
0I/dz, 81/0y, 81/0t from an image, we can obtain values of the parameters p, v, X, Y
as known quantity from environment conditions. However, we cannot determine partial
differential coefficients with respect to v and v directly since partial differential coeflicients
with respect to u and v include estimation parameters v and v. Thus, we cannot apply
the equation (5.9) to the voting process with a weighting function. We regard Az, Ay,
At as Az—0, Ay—0, At—0, by theorem 1 (See appendix), we regard «, v, p in equation
(5.9) on a point (z,y,t) and its the temporal/spatial neighboring points as an equivalent
value respectively. Then, we regard equation (5.9) as equation (5.5). In this case, if theo-
rem 2 (See appendix) holds, we can obtain the partial differential coefficients with respect
to u and v in equation (5.9) from equation (5.5). Finally, we can regard the equation
(5.9) as liner equation with respect to u, v, (Op/0x + 9p/dy) (In following, we represent
(Op/0x + Op/0y) as p,y). Since the equation (5.9) can be regarded as liner equation, we
can apply the equation (5.9) to the voting process with a weighting function. We call
the liner constraint equation as an incompressible viscous fluid velocity vector constraint
equation determined coefficients by an intensity constraint.

5.3.2 Determination of estimation parameters u, v, p,;, in an
incompressible viscous fluid velocity vector constraint
equation determined coefficients by an intensity constraint
via voting process with a weighting function

I set an interest pixel for estimating velocity vector in a support region (Figure 5.1),
we can obtain n equations (5.9) on each pixel (1~n) in the support region.

U+ ﬁlv + V1Pxy = ¢1
QU + ﬁZU + V2Pay — ¢2

U + ﬁnv + YnDey = gbm

where «, § and v are coefficients of u, v, p,, respectively, ¢ is a constant term. If the the-
orem 1 holds in the support region, u, v, p,, are equivalent values U, V', P,, respectively.
Then, intersections of n equations (5.9) converge into U, V', P,, in parameter space u, v,
Day- In this case, we can determine the coordinate (U,V, P,,) as estimated parameters of
u, v and p,, on the interest pixel (Figure 5.1). However, In case of following situations,
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Constraint equations in each pixel

An interest pixle

u
An intersection
An image frame A support region of constraint

equations
Parameter spaceu-v-p Xy

Figure 5.1: A support region and constraint planes in parameter space u-v-p,,.

the constraint lines have different intersections from U, V' and P,,

(A) Fluctuation of intersections of constraint equation by influence of spatial
changes of motions and pressure In incompressible viscous fluid, there are spatial
changes of velocity vector and pressure generally. In such a situation, each pixel in a sup-
port region has different parameter u, v and p,, from other pixels in the support region. It
means that there is fluctuation of intersections of constraint equation in parameter space
U-V-Dgy-
(B) Fluctuation of intersections of constraint equation effected by noise

I consider three constraint equations (5.9) that satisfy premise conditions of the con-
straint equation (5.9) in a support region. The equations are expressed by

ou + Grv + Y1Pzy = o1, (5-10)
U + B0 + YaPay = o, (5.11)
a3t + B30 + Y3Pay = 3, (5.12)

where oy, #; or vy; denote coefficients with respect to u, v or p,, in constraint equation
(5.9) on a first pixel in a support region respectively, as, [F2 or 72 denote coefficients
with respect to u, v or p,, in constraint equation (5.9) on a second pixel in a support
region respectively, as, B3 or 3 denote coefficients with respect to u, v or p,, in constraint
equation (5.9) on a third pixel in a support region respectively. An intersection (u,v,py,)"
of these constraint equations is expressed as

(B2¢1—B1d2)(v1—B3—73P1)—(Bz—d1—P1¢3) (7182 —281)
U (a1B2—a2B1)(7183 —7361)— (a1/33 asf1)(v18s—v3P1)
_ (raz—y201)(y1—a3 —y3a1)—(d1—az—dza)(y12—y200)
v = — —— 2 . (5.13)
(Braz—PBza1)(m1—az—za1)—(Bias ﬂ3a1%(’71 az—yz2a1)
Day (a2¢1—a1¢2)(Bras—Pson)—($1—az—ps—a1)(B1—az—fa—a1)
(112 —y201)((Braz—Bzon)—(11—as—y3 —a1)(Braz—Pac1)

If the equation (5.10) is a constraint equation effected by noise, the spatial/temporal
gradients in the image are changed intensely. Thus, (5.10) is replaced by

o4 u + B1U + YPey = ¢4, (5.14)
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where o}, ] or ¢ are coefficients of equation (5.10) in case of not satisfying realizable
conditions of the constraint equation respectively. Therefore the intersection (u, v, p,,)"
of the constraint equations is changed to

(ﬂz -8 ¢2)(71 —B3—3P1)— (B3 —¢1 —B1$3) (7182 —267)
u () B2—a2B])(7106s ’Ysﬂ') (a 1ﬁ3 asﬁl)(’h Bs 73;31)
V! _ (v1o2— 726!1)671 —az—y3a) ) (¢ —az—¢sa))(y1az—720)) (5 15)
; - (ﬁ1a2 /320‘1)(71 a3 ’73041) (/610‘3 ﬁ3a})(7l a2 720‘1) ’ ’
Day (2] —of $2)(Byas—B3at)—(dy —az —¢s —a ) (B —x2—B2—])

(1az—r20))(Biaz—PFsa))—(11—as—ys —a) ) (B a2 —F2a})

Then, I define a difference vector (Au, Av, Ap,,)" as

Au u—u
Av | = v— : (5.16)
Apa:y pmy - p;:y

Since ay#£al, B1#£06,, 11771, the difference vector (Au, Av, Ap,,)" is not zero vector. This
means, if there is a constraint equation effected by noise in a support region, intersections
of constraint equations are scattered.

I use voting process to estimate values of estimation parameters from scattered intersec-
tions of constraint equations by the factors of (A), excluding intersections of constraint
equations by the factors of (B). By voting of intersections in the parameter space u-v-p,,

_ Constraint
equations _
Voting of Voting scores
intersectiong High [

/44

Intersections of
constraint equations

Parameter space u-v-p Three-dimensional
voting space

Figure 5.2: Voting process of intersections in parameter space u-v-p,, to 3-dimensional
voting space.

to the voting space, if scattered intersections of constraint equations by the factors of
(A) converge into a cell in voting space, the voting score in the cell will be the maximum
voting score. Then we decide the coordinate of the maximum voting score as estimated
parameters u, v and p,,. By this process, we can expect to precisely estimate estimated
parameters v and v excluding the intersections of constraint equations by the factors of
(B) (Figure 5.2). In case that intersections of constraint equations do not converge into a
cell in voting space, There is a case that we cannot obtain the maximum voting score by
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fluctuation of voting scores. To obtain the reasonable maximum voting score in case of
fluctuation of voting scores, a method of voting process with a weighting function has been
proposed. This method determines (Umed, Umed) as a velocity vector in the interest pixel
in the support region by detecting the coordinate umed, Umeq and Prymeq of the maximum
voting score in f'(Uq, Va, Peya) Tepresented as

V/2 V/2 Vo /2

f,(uon Umpmya) = Z Z Z w(u — Uay ¥V = Vay Pay — pa:yoc)f(“; Uapmy)7 (517)

u=—V/2v=—V/2pry=—V,/2

where V' and V), are size on axis u and v in the voting space and size on axis p,, of the
voting space respectively, wa, Vo, P2ya are interest coordinates in the voting space, W is a
weighting function. I decide a weighting function as

. 1 (u - ua)z + (U - Ua)z (p - pa)2
w(u_ua7v_va)pa:y_pwya7 g, Up) = (271')3/2\/5\/0'_], €Xp 4 — 2052 - 202
b
(5.18)

where o and o, are a variance parameter on u and v axis in the voting space and a
variance parameter on p,, axis in the voting space respectively.
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Figure 5.3: The model image used in the experiments.

5.4 Experiments for comparison of velocity vector
estimation precision

To evaluate effectiveness of the proposed method quantitatively, I experiment on compar-
ison of precision of velocity vectors in the proposed method and conventional methods.

In conventional methods, since they experimented using 2-dimensional steady flow,
Thus, we experiment using 2-dimensional steady flow. By using steady flow, we regard
gravity as zero because optical axis of a camera is parallel with gravity. Thus, we set X
and Y to zero respectively. We set du/0t=0v/dt=0 because there is no change of stream
line in time variant.

5.4.1 Experiments in synthetic image sequences

In this section, I quantitatively evaluate precision of velocity vector estimation by
the proposed method and conventional methods in synthetic image sequences. I set an
environment setting of the flow field 1 as a criterion (Figure 5.4). In the flow field 2,
I changed quantity of inflow of the flow field 1 as shown in the Figure 5.6. In the flow
field 3, I changed the position of the obstacle of the flow field 1 as shown in the Figure
5.8. Then, I generated flow fields shown in Figure 5.5, Figure 5.7 and Figure 5.9 by the
numerical calculation of incompressible viscous based on the situations in inside regions
surrounded by point lines in the Figure 5.4, Figure 5.6 or Figure 5.8. The values of v, p
and Reynolds number Re used in the numerical calculation are set to 1.004x10~°[m?/s]
and 1.0x10%[kg/m?®) and Re = 25.0 as the values of water respectively. As the first
frame of each image sequences used in this experiments, I used images that the size is
20x20[pixels| and the quantity level is 8[bit/pixel] and intensity is smooth temporally
and spatially (Figure 5.3). As the second frame of each image sequence used in this
experiments, [ generated images based on the flow field in Figure 5.5, Figure 5.7 or Figure
5.9. I call the set of the first image and second image generated based on the each flow field
as image 1, image 2 and image 3 respectively. Since each image dose not contain motion
boundary, I do not consider boundary conditions. To quantitatively evaluate precision of
velocity vectors, I use the mean of normalized error

I e e s o
e = N 2 2

: (5.19)
z=0 y=0 ||fa3y||
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Table 5.1: The parameters used in each method.

Method Values of parameters
The proposed method V =1.2x10 V, = 4.0x10°
c=1.5x10 op =2.0
Nakajima ay = 1.0x107™* | By = 1.0x10~*
Corpetti ac = 1.0x1072 | Be = 1.0x10?
Bereziat ag =1.0x1073

Table 5.2: The mean of normalized error €, of each method in the model image 1.

Method €n
The proposed method || 4.15x10°!
Nakajima 4.81x107¢
Corpetti 5.15x 1071
Bereziat 5.18x10°1

Table 5.3: The mean of normalized error €, of each method in the model image 2.

Method €n
The proposed method || 5.43x10!
Nakajima 5.79%x 1071
Corpetti 5.95x1071
Bereziat 6.04x10°1

Table 5.4: The mean of normalized error €, of each method in the model image 3.

Method €n
The proposed method || 4.16x10*
Nakajima 4.31x107¢
Corpetti 4.43x1071
Bereziat 4.45%10°1

where M and N are vertical and horizontal image size respectively, f, is an correct

~

velocity vector on a pixel (z,y), f,, is an estimated velocity vector on a pixel (z,y). The
parameters used in this experiments are shown in the Table 5.1. I decided the parameters
to be the optimum experimentally. I set the size of support region to 9x9[pixels] and cell
size V and V,, in the voting space to 1.0x10 "2 and 1.0x10 ! respectively. As values in
water, I set v and p in Nakajima’s method and the proposed method to 1.004x10~° and
1.0x 103 respectively. I set iterative calculation times for estimating velocity vectors in
conventional methods to 5000 times.

Experimental results of from image 1 though image 3 are shown in from Table 5.2
through Table 5.4. Estimated flow fields in each image sequence are shown in from
Figure 5.10 through Figure 5.21. In the experimental result of imagel, by using the
proposed method, T could obtain approximately 20% higher precision of velocity vector
estimation in comparison with precision of conventional methods. I consider that the
factors of improvement of precision of velocity vectors by using the proposed method are
considering physical conditions of incompressible viscous fluid and excluding equations
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(5.9) that deviate from premise condition of the theorem 2. On the other hand, in image
2 and image 3, the subtraction of precision of velocity vector estimation in the conventional
methods and the proposed method kept no more than 7 %. I consider that the factor is, by
asymmetry of the vortex in image 2 and image 3, declining of approximation precision in
partial differential coefficients with respect to v and v of equation (5.9) based on theorem
2.
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Figure 5.5: The generated flow field 1.
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Figure 5.7: The generated flow field 2.
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Figure 5.9: The generated flow field 3.
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Figure 5.10: An estimated flow field by the proposed method in image 1.
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Figure 5.11: An estimated flow field by Nakajima’s method in image 1.
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Figure 5.13: An estimated flow field by Bereziat’s method in image 1.
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Figure 5.15: An estimated flow field by Nakajima’s method in image 2.
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Figure 5.17: An estimated flow field by Bereziat’s method in image 2.
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Figure 5.21: An estimated flow field by Bereziat’s method in image 3.
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5.4.2 Experiments in noisy image sequences

I quantitatively evaluate precision of velocity vector estimation by the proposed method
and conventional methods in noisy image sequences.
In this experiments, I add Gaussian noise n whose probability distribution is given by

1 n?
P(n) = e 22 (5.20)
2o
to I(x,y,t) and obtain
I'(z,y,t) = I(z,y,t) +n (5.21)

where I(z,y,t) denotes an intensity of the images which is used in the previous experi-
ments. I use
255

PSNR[dB] = 2010g7 (5.22)
to indicate the quantity of noise. I added the Gaussian noise to image 1, image 2 and
image 3, then I call the images added Gaussian noise as image 4, image 5 and image 6
respectively. In this experiments, I use the same value of parameters in the methods as
it used in the previous experiments.

Estimated flow fields in each image sequence are shown in from Figure 5.22 through
Figure 5.33. The experimental result from in image 4 through in image 6 are shown
from in Figure 5.34 through in Figure 5.36. 1 could obtain precision of velocity vector
estimation higher than precision of conventional methods by using the proposed method.
Especially, The more noise is added to the image, the more improvement of precision of
velocity vector estimation is much better by using the proposed method. This factor is
supposed that the proposed method has robustness against noise.
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Figure 5.22: An estimated flow field by the proposed method in image 4 of 27.3[dB].
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Figure 5.23: An estimated flow field by Nakajima’s method in image 4 of 27.3[dB].
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Figure 5.24: An estimated flow field by Corpetti’s method in image 4 of 27.3[dB].
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Figure 5.25: An estimated flow field by Bereziat’s method in image 4 of 27.3[dB].
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Figure 5.27: An estimated flow field by Nakajima’s method in image 5 of 27.3[dB].
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Figure 5.29: An estimated flow field by Bereziat’s method in image 5 of 27.3[dB].
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Figure 5.30: An estimated flow field by the proposed method in image 6 of 27.3[dB].
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Figure 5.31: An estimated flow field by Nakajima’s method in image 6 of 27.3[dB].
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Figure 5.33: An estimated flow field by Bereziat’s method in image 6 of 27.3[dB].
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5.4.3 Experiment in an actual image sequence

In order to evaluate effectiveness of the proposed method, I experiment on comparison
of velocity vector estimation precision of conventional methods and the proposed method
in case of applying to an actual image sequence image sequences. | use temporal 2 frames
(Figure 5.38) of an actual image sequence (Figure 5.37) for this experiment. The condition
of the actual image sequence (Figure 5.37) is shown in Figure 5.39. The water flow in the
actual image sequence is visiblized by using a dyestuff.

I set parameters in the proposed method and the conventional methods to the same
parameter values shown in Table 5.1.

Estimated flow fields are shown in from Figure 5.40 though Figure 5.43.

From the result, we see that the result of velocity vector estimation by using the
proposed method is the best. The main factor is supposed to exclude effectiveness of noise
by velocity vector estimation method using a voting process with a weighting function.
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Figure 5.37: An actual image sequence used in this experiment (Re = 25.0).

™ .

” "

Framel Frame?2

Figure 5.38: Temporal continuous 2 frames of the actual image sequence used in
this experiment.
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Figure 5.39: The condition in the actual image sequence used in this experiment.
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Figure 5.40: An estimated flow field by the proposed method.
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Figure 5.41: An estimated flow field by Nakajima’s method.
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Figure 5.42: An estimated flow field by Corpetti’s method
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Figure 5.43: An estimated flow field by Bereziat’s method
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5.5 Summary

In order to precisely estimate velocity vectors in fluid analysis using actual image se-
quences, I derived a constraint equation of a velocity vector considering physical constraint
of incompressible viscous fluid. Using theorem 1 and theorem 2, we decided the partial
difference coefficients in the derived constraint equation of a velocity vector considering
physical constraint of incompressible viscous fluid. We applied the constraint equation of
a velocity vector determined partial differential coefficients to the method using voting
process with a weighting function.

In order to quantitatively evaluate precision of velocity vector estimation, I exper-
imented on comparison of precision velocity vector estimation by the proposed method
and conventional methods in synthetic images, noisy images and an actual image sequence
including an incompressible viscous fluid. From the experimental results in synthetic im-
age sequences, I obtained precise precision of velocity vector estimation by using the
proposed method. The factor is supposed to exclude intersections of constraint equations
that do not satisfy the premise condition of the constraint equations. From the experimen-
tal results in noisy synthetic image sequences, by using the proposed method, I obtained
approximately 25% higher precision of velocity vector estimation in the maximum than
precision of velocity vector estimation in conventional methods. The factor is supposed
to exclude intersections of constraint equations effected by noise. From the experimental
results in an actual image sequence, I qualitatively obtained precise precision of velocity
vector estimation in comparison with the conventional methods. In order to moreover
obtain precise estimation results in the estimation of velocity vectors using the voting
process, we have to investigate the optimum weighting function for each application in
fluid analysis using image sequences.

For the future, I will evaluate effectiveness of the proposed method in unsteady vor-
tex such as Kalman vortex. I will apply an incompressible viscous fluid velocity vector
constraint equation determined coeflicients by an intensity constraint to other robust
estimations except the voting process with a weighting function to compare precision
of velocity vector estimation in the proposed method and conventional methods in case
of using an incompressible viscous fluid velocity vector constraint equation determined
coefficients.
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Chapter 6

Conclusions

6.1 Conclusions in this thesis

In actual image sequences, to solve the following important problems in optical flow
estimation such as

- Occlusion

- Brightness change

- Fluid analysis by using image sequences
we dealt with the problems as estimation problems of the most likelihood parameter
of constraint equations that can be applied to estimate “actual motion of objects”. As a
method to estimate the most likelihood parameter of the constraint equations, we used a
estimation method via voting process with a weighting function. Since each problem has
a peculiar problem, I attempted to solve the peculiar problem by different approaches.
In following, I summarize the proposed methods for each problem and its effectiveness.

-Occlusion

In estimating velocity vectors, in order to exclude effectiveness of constraint equations
effected by noise and in occlusion regions, I used an estimation method of velocity vectors
via voting process with a weighting function. To separate different motions in regions of
different motions, in the voting process, I set a condition to separate constraint equations
in different motions. In occlusion regions, there is a limit of precision of velocity vector
estimation in the estimation method of velocity vectors via voting process with a weighting
function. For estimating velocity vectors in occlusion regions, I used extrapolation from
estimated velocity vectors in assigned regions of occlusion regions. In experiments for
evaluating effectiveness of the proposed method, we obtained following results.

e To evaluate effectiveness of the proposed method, I experimented on comparison
of velocity vector estimation precision in conventional methods and the method
via voting process with a weighting function in synthesis image sequences and noisy
synthesis image sequences. From the results of the experiment, By using the method
via the voting process, I obtained well results of velocity vector estimation precision
in comparison with the conventional methods. The factor is supposed to get rid of
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effectiveness of intersections of constraint equations effected by noise or in occlusion
regions and separate different motions in regions including different motions.

o [ experimented on comparison of velocity vector estimation precision in the method
via voting process with a weighting function and in case of applying extrapolation in
synthesis image sequences and noisy synthesis image sequences. From the results of
the experiment, By applying extrapolation, I obtained well results of velocity vector
estimation precision in occlusion regions in comparison with the method via the
voting process. The factor is supposed to extrapolate velocity vectors in occlusion
regions from estimated velocity vectors that have reliability in assigned regions of
occlusion regions.

¢ Finally, I experimented on comparison of velocity vector estimation precision in con-
ventional methods and the method via voting process with a weighting function in
actual image sequences. By using the method via the voting process, I obtained well
results of velocity vector estimation precision in comparison with the conventional
methods. Similarly, I experimented on comparison of velocity vector estimation
precision in the method via voting process with a weighting function and in case
of applying extrapolation in actual image sequences. By applying extrapolation, I
obtained well results of velocity vector estimation precision in comparison with the
method via the voting process.

‘Brightness change

By dealing with estimating velocity vectors in a situation of occurring brightness
change as estimating the most likelihood parameter of constraint equations considering
brightness change in a parameter space, I proposed a method that has all effective prop-
erties in the conventional methods considering brightness change. In order to estimate
the most likelihood parameter in a parameter space, I expanded the parameter space
to a 3-dimensional parameter space since a constraint equation considering brightness
change has three parameters. I then estimated the parameters in the constraint equation
by using a voting process with a weighting function in a 3-dimensional voting space. In
experiments for evaluating effectiveness of the proposed method, we obtained following
results.

e In order to evaluate that the proposed method has the all properties from property 1
through property 6, I first experimented on comparison of velocity vector estimation
precision in following image sequence.

— For evaluating property 1 and property 2 : Image sequences including effec-
tiveness of different reflection rate on an object

— For evaluating property 3 : Image sequences including effectiveness of shading
on an object

— For evaluating property 4 : Image sequences including effectiveness of intensity
change of a light source

— For evaluating property 5 : Image sequences including effectiveness of noise

— For evaluating property 6 : Image sequences including effectiveness of regions
where pattern changes intensely
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From the results of the experiments, precision of velocity vector estimation by using
the proposed method was well in comparison with the other methods. The factor is
supposed that the proposed method has each property.

e [ next experimented on comparison of velocity vector precision in image sequences
that have factors of all properties. From the result of the experiment, precision of
velocity vector estimation by using the proposed method was well in comparison
with the other methods. The factor is supposed that the proposed method has all
properties.

e [ finally applied the proposed method and the conventional methods to actual image
sequences that include translation, expansion, contraction or rotation respectively.
From the result of the experiment, precision of velocity vector estimation by using
the proposed method was qualitatively well in comparison with the other methods.

-Fluid analysis by using image sequences

In order to precisely estimate velocity vectors in fluid analysis using actual image se-
quences, I derived a constraint equation of velocity vectors considering physical constraint
of incompressible viscous fluid. Using theorem 1 and theorem 2, we decided the partial
difference coeflicients in the derived constraint equation of velocity vectors considering
physical constraint of incompressible viscous fluid. We applied the constraint equation
of velocity vectors determined partial differential coefficients to the method using vot-
ing process with a weighting function. In experiments for evaluating effectiveness of the
proposed method, we obtained following results.

e In order to quantitatively evaluate precision of velocity vector estimation in synthetic
images including an incompressible viscous fluid, I experimented on comparison of
precision of velocity vector estimation by the proposed method and conventional
methods. From the experimental results in synthetic image sequences, I obtained
precise precision of velocity vector estimation by using the proposed method. The
factor is supposed to exclude intersections of constraint equations that do not satisfy
the premise condition of the constraint equations.

e In order to quantitatively evaluate precision of velocity vector estimation in noisy
synthetic images including an incompressible viscous fluid, I experimented on com-
parison of precision of velocity vector estimation by the proposed method and con-
ventional methods. From the experimental results in noisy synthetic image se-
quences, | obtained precise precision of velocity vector estimation by using the
proposed method. The factor is supposed to exclude intersections of constraint
equations effected by noise.

e In order to qualitatively evaluate precision of velocity vector estimation in an actual
image sequence, I experimented on comparison of precision of velocity vector esti-
mation by the proposed method and conventional methods. From the experimental
results in an actual image sequence, I qualitatively obtained precise precision of
velocity vector estimation in comparison with the conventional methods.

By solving each problems using the proposed methods for solving each problem, I
believe that could expand range of application in velocity vector estimation.
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6.2 Future works

For the future, we will investigate following terms.
-Investigation of applicable range in the proposed methods

Each method for the problems must have applicable range. By applying the proposed
method to various image sequences, I will investigate the applicable range in the proposed
methods for each problem.

Investigation of a relation between calculation time and precision of veloc-
ity vector estimation

The method using voting process with a weighting function has a property such that
we can reduce calculation time for velocity vector estimation keeping robustness against
noise. I will investigate a relation between calculation time and precision of velocity vec-
tor estimation.

-Application of the proposed method to other robust estimation methods

Based on a voting process with a weighting function, I proposed each method for the
problems. As I mentioned in introduction, there are other robust estimation methods
such as

- M estimation

- LMedS estimation
Attempting to apply the proposed method to the other robust estimations, I investi-
gate properties of the proposed method in case of applying to the other robust estimations.

-Construction of a system for real time image sequences analysis using the
proposed methods

From the results of investigation of range of application and the relation between
calculation time and precision of velocity vector estimation in the method using voting
process with a weighting function, we can obtain properties of the proposed method for
each problem. Based on the properties, I will construct a system for real time image
sequences analysis using the proposed methods for each problem.

-Application of the proposed methods to the applications based on velocity
vector estimation

For example image composition, super resolution, structure estimation and so on,
there are many applications based on velocity vector estimation. Attempting to apply the
proposed method to the applications, I investigate effectiveness of the proposed method
in case of applying to the applications.
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Appendix A

Evaluation scales for evaluating
estimation precision of optical flow

For evaluating estimation precision of optical flow, Various evaluation scales have been
used in a different point of view. KEach evaluation scale has a different property for
evaluating optical flow. In this section, I mention about each evaluation scale minutely.

A.1 The mean of error

A evaluation scale for precision of optical flow called the mean of error is defined as

LS F e - Fewl (A1)

C zyeM

E, =

where M. denotes the number of pixels in an image frame, M denotes a region of an
image frame, %(:13, y) denote a actual optical flow on the coordinates (z,y), %(:13, y) denotes
a estimated optical flow on the coordinates (z,y). This evaluation scale is often used
to evaluate precision of optical flow in an image sequence including non-moving regions.
this evaluation scale is one of the most popular evaluation scale for evaluating estimation
precision of optical flow.

A.2 The normalized mean of error

A evaluation scale for precision of optical flow called the normalized mean of error is
defined as ~ .

1 —

Me e IF (2 9)l|

This evaluation scale is often used to evaluate precision of optical flow in an image sequence

E, =

not including non-moving regions and in terms of evaluating errors against actual optical
flow. this evaluation scale is one of the most popular evaluation scale for evaluating
estimation precision of optical flow too.
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A3 PSNR

A evaluation scale for precision of optical flow called PSN R is defined as

1 255
E, =201 _ . . A3
Og{MC z,yZe:Ml|f(:v,y)—f(a:,y)||} (A.3)

This evaluation scale is often used to evaluate precision of optical flow as PSNR.

A.4 The mean of angle error

A evaluation scale for precision of optical flow called the mean of angle error is defined as

E, = 1 Z }(:c,y)f(:c,y) (A4)

MC z,yeM ||}($,y)||||f(w,y)||

This evaluation scale is often used to evaluate precision of optical flow in terms of evalu-
ating errors of angle against actual optical flow.
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Appendix B

Theorems and derivation of partial
differential coefficients of v and v
with respect to =, y and ¢

B.1 Theorem 1 and its proof

Theorem 1 If optical flow (u(z,y,t),v(z,y,t))" and pressure p(z,y,t) satisfy Navier-
Storkes equation and Ax, Ay and At are Ax—0, Ay—0 and At—0, the following equa-
tions hold.

wz,y,t) = w(z + Az, y + Ay, t + At) (B.1)
v(z,y,t) = v(z + Az,y + Ay, t + At) (B.2)
t(z,y,t) =tz + Az, y + Ay, t + At) (B.3)

(Proof) If (u(z,y,t),v(z,y,t))" and pressure p(z,y,t) satisfy Navier-Storkes equation,
(u(z,y,t),v(z,y,t))" and pressure p(x,y,t) can be possible to be done partial difference
with respect to x, y, or t. Therefore, (u(z,y,t),v(x,y,t))" and pressure p(z,y,t) are
continuous function with respect to z, y, or t. Thus,

lim w(z,y,t) = u(z+ Az,y + Ay, t + At) (B.4)
Az—0
Ay—0
At—0

lim v(z,y,t) =v(z+ Az,y + Ay, t + At) (B.5)
Axz—0
Ay—0
At—0

lim p(z,y,t) = p(ez + Az,y + Ay, t + At) (B.6)
Az—(
Ay—0
At—0

Equation (B.1), (B.2) and (B.3) hold (Q.E.D)
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B.2 Theorem 2 and its proof

Theorem 2 In case that intensity constraints of optical flow have intersections, in pa-
rameter space u and v, on neighboring points (zxAx,y,t), (z,y£Ay,t) or (z,y,t+At)
of the point (z,y,t) in an image coordinates (z,y) at time t of an image sequence, and
i case that Az, Ay, At are infinitesimal, difference of the points for w and v axis ap-
prozimates difference of u and v in actual optical flow on (x,y,t) and neighboring point
of (z,y,t).

(Proof) Let optical flow on coordinates (z, y) at time ¢ in an image sequence be (u(z,y,t)
,v(z,y,t))" and Let intensities on a point (zo, yo, to) and neighboring point (zo+Axz, yo, to)
and (zg — Az, yo,to) be I, I, and I respectively on condition that I, I, and I  are
continuous functions with respect to =, y and ¢. intensity constraints of optical flow are
represented as

ol ol ol

8_xu($07 y())t()) + a_yv(x())yO)tO) + E = 0 (B7)
ol ol ol
a—;u(xh Yo, to) + 8—;7}(«1‘17 Yo, to) + 8—: =0 (B.8)
ol_ ol_ ol_
87“(332; Yo, to) + aiyv(ﬂﬁz, Yo, to) + o 0 (B.9)

where x; denotes xq + Az, x5 denotes xy — Az. First, we express difference of inter-
sections on the intensity constraint equation of optical flow in (xg, yo,to) and (z1, Yo, to)
or (Zo,Yo,to) and (z2,%0,%0). Let intersections on the intensity constraint equation of
optical flow in (xo, yo,to) and (1, Yo, to) be (Uujaz, Vine)' . With respect to uing, viax,
(w(zo, Yo, to), v(To, Yo, to)) " and (u(z1, vo, to), v(x1, Yo, o)) " in equation (B.7) and (B.8) are
represented

oI 81 a1 8l

Oy ot ot Oy
U+az = pror,  aroly (B.10)

Oz Oy dy Oz
oI 911 81 94

_ bz bt 8t Oz
”U+Am = a1 3I+ ﬂ31+ . (Bll)

dy Oz dz Oy

Let intersections on the intensity constraint equation of optical flow in (zo, yo,to) and
(1'27 Yo, tO) be (qu:m v*Aa?)T- With reSPeCt to U_Azy V-Az, (’LL(CL’O, Yo, tO)) 'U(.’L'(), Yo, tO))T and
(w(za, Yo, to), v(T2, Yo, to)) " in equation (B.7) and (B.9) are represented

818l 1 dI
__ Oy Ot ot dy
U-Az = Jrar__ aroi_» (B.12)

dz Oy dy Oz

18I 9Idl_

__ Oz ot ot dz
U-Az = jrar__ arol_- (B.13)

Oy Oz oz Oy

By equation(B.10) and (B.12), difference of intersections on the intensity constraint equa-
tions of optical flow in (g, yo, to) and (21, Yo, o) or (zg, Yo, to) and (2, yo,to) represented

o181y _ 810l
Oy ot ot Oy
Utnz —U-Az = Brar,  aroly
8z 9y Oy oz
ool _ aral-
dy Ot ot Oy
T 818l _ 810l (B.14)

oz Oy - dy Oz
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Similarly, by equation (B.11 and (B.13),

o190y _ o10L4
v — v _ Oz 0ot It Oz
+Az Az — 81 8L _ oI oIy
dy Oz oz dy
81 dI_  8IdI_
dz It dt Oz

T 918l aI 81— (B'15)

8y 9z dx 9y
on the condition that denominators from in equation (B.10) through (B.15) are not zero.
Next, we express (u(Zo, Yo, to), v(To, Yo, t0)) " and (u(z1, Yo, to), v(1, %0, t0)) ' to express dif-

ference of actual optical flow in (zo, Yo, o) and (1, Yo, to)- Since (u(zo, Yo, to), v(Zo, Yo, o))"
are determined uniquely, we can express

w(zo, Yo, to) = Jim g, (B.16)

v(Zo, Yo, to) = Jm vag. (B.17)
Similarly,

u(z1, Yo, lo) = 131_1}31?1 Uy Aa; (B.18)

v(x1, Yo, t0) = w%lg{lﬁ Vi Ag- (B.19)

However, equations from (B.16) though (B.19) are unsettled. Therefore, based on con-
tinuity of u(z,y,t) and v(z,y,t) with respect to z, y, t, we express the equations from
(B.16) to (B.17) as approximate equations

u(Zo, Yo, to)  lHm  u A, (B.20)
zo—xgt+dz
v(Zo, Yo, to)~ lim v A, (B.21)
To—To+dT
w(zy,y,t)~  Hm  uya, (B.22)
ro—x1+dx
v(zg,y,t)~  lim  via, (B.23)
zo—x1+dz
where dz denotes infinitesimal value (dz#0). Let Az be dz and intensities in (zo+dz, v, t)

and (z + dz,y,t) be I.4, and I_g, respectively. By equation (B.20) and (B.22),

u(1, Yo, to) — u(To, Yo, to)

~ lim wuip, — lim  w_np,
zo—T1+dz zo—xo+dz
Ol 4, 814 Ol 4, OI4
. 8y ot ot oy
- aIerm 8I+ aI+dz 8I+
oz W - dy 9z
OI_4, OI_ Ol _gq, OI_
dy ot ot Oy
T8I g 01 Ol 4,91 ¢
8z o8y 8y Oz

(B.24)
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By equation (B.21) and (B.23)

v(21, Yo, to) — v(zo, Yo, to)

o~ lim  via, — lim v A,
ro—xyt+dz To—To+dT
Al 4, 814 Ol 4, OI

— dx 8t 9t Bz

- Ol 4, % o Al gz %

dy Oz oz Oy
Ol 4,81 Ol 4,91

_ dx ot 8t dx
O 4y 91 _ 9L 4y 0l

dy Oz dz Oy

(B.25)

On the condition that denominators in equation (B.24) and (B.25) are not zero. By
equation (B.14) and (B.24) or equation (B.15) and (B.25), we can express

U(Jfl, Yo, tO) - U(:BO, Yo, to)gu-l-ﬂa? — U_Az, (B26)

U(fl?hyo,to) - U(»To, y07t0)2,0+Am — V_Az. (B~27)

Thus, theorem 2 holds with respect to . Similarly, theorem 2 holds with respect to y
and t obviously. Therefore, theorem 2 holds. (Q.E.D)

B.3 Derivation of partial differential coefficients of
v and v with respect to =, y and ¢

In case that theorem 2 holds, if we set

ou
or w1, Yo, to) — w(@o, Yo, to), (B.28)
T
ov
Fr v(®1, Yo, o) — v(To, Yo, To)- (B.29)
By equation (B.26) and (B.27), we can regard equation (B.28) and (B.29) as
ou
% = Usppe — U_Ag, (BSO)
ov
8733 = Vqiaz — V_Az (B?)]_)

respectively. By using equation (B.30) and (B.31), we can directly determine the first
order partial differential coefficients with respect to « from an image sequence. Let inter-
sections on intensity constraint equations in (g, yo, to) and (xq, yo + Ay, to) or (zo, Yo, to)
and (o, Yo — Ay, to) be (utay, Viny) and (u_ay, v_a,) respectively. We can determine the
first order partial differential coefficients with respect to y as

ou
%ty (5.2)
ov
873/ =ViAy — V_py (B33)
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from an image sequence. Similarly, let intersections on intensity constraint equations
in (9, Yo, %) and (zo, Yo, to + At) or (zo,vo,t0) and (o, Yo, to — At) be (uyas, via:) and
(u_az,v_na¢) respectively. We can determine the first order partial differential coefficients
with respect to t as

ou
a = Uspat — Ut (B34)
ov
a = U+At — V_At (B.35)

from an image sequence. Let intersections on intensity constraint equations of optical

flow in(zg — Az, yo,t0) and (g — 2Az, Yo, to) be (u_2az,V_24z). In case that we define
second order partial differential coefficients of uw and v with respect to x as

0%u
@ = (U+Aw - u*Aw) - (U*Ail? - u72Aw)7 (BSG)
5%v
@ = (U+Aw - U*Aw) - (/U*Aw - /U72A;v)7 (BS?)

we can determine second order partial differential coefficients of v and v with respect to
x by the first order partial differential coefficients of u and v with respect to x. Similarly,
we can determine second order partial differential coefficients of v and v with respect to
yort as

0%

e (usny = t-ny) = (-ay = U-2ay), (B-38)
g;} = (U+Ay - U—Ay) - (U—Ay - v—2Ay): (B.39)
g?fg = (uyar — u-at) — (u-ar — u—2a1); (B.40)
% = (viar — v-at) — (V-ar — vo2as), (B.41)

if we can obtain the first order partial differential coefficients of © and v with respect to
Yy or t.
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Appendix C

Estimation of velocity vectors in
image sequences taken by a digital
video camera

In this section, I show results of estimation of velocity vectors in image sequences taken
by a digital video camera.

First, I applied the proposed method for solving occlusion problem to an image se-
quence shown in Figure C.1 occurring occlusion. The situation of the image sequence is
set as the situation of the image sequence shown in Figure 3.50.

Table C.1: Parameters in the proposed method for solving the occlusion problem

The threshold in the voting possible condition 30[intensity]
The size of the support region 11x11[pixels]
The size of a cell in the voting space 1.0x1072
The variance parameter in the weighting function o 4

Table C.2: Parameters in the proposed method for solving the brightness change problem

The threshold in the voting possible condition 30[intensity]
The size of the support region 21 x21[pixels]
The size of a cell in the voting space 1.0x102
The variance parameter in the weighting function o, 8
The variance parameter in the weighting function o, 8

This image sequence was taken by Sony Digital Handycam DCR-VX-1000 with DV
codec. The size of the image sequence is 106 x41[pixels|, quantization level is 8[bit/pixel].
Parameters of the proposed method for solving occlusion problem is shown in Table
C.1. I directly applied the proposed method for solving the occlusion problem to the
image sequence shown in Figure C.1 taken by the digital video camera, therefore, Cross
luminance obstruction dose not occur in the image sequence.

The result of estimation of velocity vectors in the image sequence is shown in Figure
C.2. From the results, we could not precisely obtain precision of velocity vector estimation
in comparison with in case of using the image sequence shown in Figure 3.50. Especially,
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velocity vectors were not precisely estimated in boundary of the right object and inside
of the right object. The image sequence shown in Figure 3.50 was taken each frame
under the situation that objects were standed. On the contrary, the image sequence
shown in Figure C.1 was taken under the situation that objects were moving. In case
of taking image sequence by a digital video camera under the situation that objects are
moving, there are cases that corrugated textures by interlace and motion blurs occur
in each frame of the image sequence. Therefore, The factor of decrease of precision of
velocity vector estimation is supposed the following causes, one is that we could not
separate velocity vector constraint equations by the condition for separating each motion
of object because intensities around boundaries of the objects were spatially smoothed
by occurring of motion blurs. the other is that we could not obtain sufficient constraint
equations satisfying realizable conditions of the constraint equation by effectiveness of
corrugated texture by interlace. However, The result of estimated velocity vectors by
the proposed method seems to be well in comparison with estimated velocity vectors by
conventional methods shown in Figure C.3 or Figure C.4. 1 then applied the proposed
method for solving the occlusion problem to an image sequence shown in Figure C.5 that
includes objects moving faster than the objects in the image sequence shown in Figure
C.1. The result of velocity vector estimation is shown in Figure C.6. In comparison with
Figure C.2, I could not obtain well results. The factor is supposed that effectiveness of
motion blur and corrugated textures by interlace increases as motion gets large.

Second, I applied the proposed method for solving brightness change problem to an
image sequence shown in Figure C.7 occurring brightness change. The situation of the
image sequence is set as the situation of the image sequence shown in Figure 4.63.

This image sequence was taken by Sony Digital Handycam DCR-VX-1000 with DV
codec. The size of the image sequence is 111x56[pixels|, quantization level is 8[bit/pixel].
Parameters of the proposed method for solving brightness change problem is shown in
Table C.2. I directly applied the proposed method for solving the brightness change
problem to the image sequence shown in Figure C.7 taken by the digital video camera,
therefore, Cross luminance obstruction dose not occur in the image sequence.

The result of estimation of velocity vectors in the image sequence is shown in Figure
C.8. From the results, we could not precisely obtain precision of velocity in comparison
with in case of using the image sequence shown in Figure 4.63. Especially, velocity vectors
were not precisely estimated in the boundary of the object and inside of the object. The
image sequence shown in Figure 4.63 was taken each frame under the situation that the
object was standed. On the contrary, the image sequence shown in Figure C.7 was taken
under the situation that the object was moving. In case of taking image sequence by
a digital video camera under the situation that objects are moving, there are a case
that motion blurs and corrugated textures by interlace occur in each frame of the image
sequence. Therefore, The factor of decrease of precision of velocity vector estimation is
supposed the following causes, one is that we could not separate velocity vector constraint
equations by the condition for separating each motion of object because intensities around
boundaries of the objects were spatially smoothed by occurring of motion blurs. the other
is that we could not obtain sufficient constraint equations satisfying realizable conditions
of the constraint equation by effectiveness of corrugated texture by interlace. However,
The result of estimated velocity vectors by the proposed method seems to be well in
comparison with estimated velocity vectors by conventional methods shown in from Figure
C.9 through Figure C.12. I then applied the proposed method for solving the brightness
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change problem to an image sequence shown in Figure C.13 that includes objects moving
faster than the objects in the image sequence shown in Figure C.7. The result of velocity
vector estimation is shown in Figure C.14. In comparison with Figure C.8, I could not
obtain well results. The factor is supposed that effectiveness of motion blur and corrugated
textures by interlace increases as motion gets large.

In order to estimate velocity vector in image sequences taken by a digital video camera,
we firstly have to exclude effectiveness of motion blurs. To exclude effectiveness of motion
blurs, we should use a high-speed camera. We then have to exclude effectiveness of
corrugated textures. To exclude effectiveness of corrugated textures, we firstly thin out
the image sequences occurring corrugated textures to each even of odd line. Then, we
interpolate the thined out lines in each frame of even line or frame of odd line. Finally,
we should apply the proposed method to the interpolated image sequence.
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Frame?Z2

Figure C.1: An image sequence occurring occlusion taken by a digital video camera.
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Figure C.2: Estimated velocity vectors by the proposed method for solving the
occlusion problem in the image sequence occurring occlusion.
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Figure C.3: Estimated velocity vectors by the global method in the image sequence
occurring occlusion.
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Figure C.4: Estimated velocity vectors by the local method in the image sequence
occurring occlusion.
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Frame?2

Figure C.5: An image sequence occurring occlusion taken by a digital video camera.
The image sequence includes objects moving faster than the objects included in the
image sequence of Figure C.1.
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Figure C.6: Estimated velocity vectors by the proposed method for solving the
occlusion problem in the image sequence shown in Figure C.5.
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Framel

Frame?Z2

Figure C.7: An image sequence occurring brightness change taken by a digital video
camera
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Figure C.10: Estimated velocity vectors by Nomura’s method in the image sequence
occurring brightness change.
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Figure C.11: Estimated velocity vectors by Mukawa’s method in the image sequence
occurring brightness change. 210
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Figure C.12: Estimated velocity vectors by Negahdaripour’s method in the image

sequence occurring brightness change.



Framel

Frame?Z2

Figure C.13: An image sequence occurring brightness change taken by a digital
video camera. The image sequence includes objects moving faster than the objects
included in the image sequence of Figure C.7.
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Figure C.14: Estimated velocity vectors by the proposed method for solving the
brightness change problem in the image sequence shown in Figure C.13.
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Appendix D

Experiments for appropriateness of
the proposed method for solving
fluid analysis using image sequences

D.1 Experiments for appropriateness of using the
continuous equation and Navier-Stokes equa-
tion in fluid analysis using image sequences

In order to show appropriateness of using the continuous equation and Navier-Stokes
equation in fluid analysis using image sequences, I experimented on comparison of esti-
mation precision of velocity vectors in case of using only an intensity constraint equation,
using an intensity constraint equation and the continuous equation or using an inten-
sity constraint equation, the continuous equation and Navier-Stokes equation. For this
experiment, I used image sequences used in the experiments of chapter 5.

First, I experimented on comparison of estimation precision of velocity vectors in
synthetic image sequences. The parameters of each method are shown in Table D.1. As
evaluation scale, I used the mean of normalized error. The results of this experiment are
shown in from Table D.2 through Table D.4.

Table D.1: The parameters used in each method.
Parameters H Values of parameters

v 1.2x10
Vo 4.0x10°
o 1.5x10
Op 2.0

From the results of this experiments, we obtained well results in case of using the
method C in comparison with the other methods.

Finally, I experimented on comparison of estimation precision of velocity vectors in
noisy synthetic image sequences. The parameters of each method are shown in Table D.1.
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Table D.2: The mean of normalized error €, of each method in the model image
1, A: a method using only an intensity constraint equation, B: a method using an
intensity constraint equation and the continuous equation, C: a method using an
intensity constraint equation, the continuous equation and Navier-Stokes equation.
Method H €n

A 7.98x10°1

B 5.11x1071

C 4.15x1071

Table D.3: The mean of normalized error e, of each method in the model image
2, A: a method using only an intensity constraint equation, B: a method using an
intensity constraint equation and the continuous equation, C: a method using an
intensity constraint equation, the continuous equation and Navier-Stokes equation.
Method H €n

A 8.23x1071

B 6.21x1071

C 5.43x1071

Table D.4: The mean of normalized error €, of each method in the model image
3, A: a method using only an intensity constraint equation, B: a method using an
intensity constraint equation and the continuous equation, C: a method using an
intensity constraint equation, the continuous equation and Navier-Stokes equation.
Method H €n

A 8.12x107!

B 5.05x107*

C 4.16x1071

As evaluation scale, | used the mean of normalized error. The results of this experiment

are shown in from Figure D.1 through Figure D.3.

From the results of this experiments, we obtained well results in case of using the

method C in comparison with the other methods. Even though in noisy synthetic image
sequences, the factor of the results in the synthetic and noisy synthetic image sequences
is supposed following two causes. The one is to consider the continuous equation that is
satisfied in incompressible viscous fluid since the image sequences used in the experiment

are generated by numerical calculation of . The other is to consider a parameter of
pressure since, according to Navier-Stokes equation, a velocity vector is constrainted by

spatial change of the pressure.
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D.2 Experiments on estimation precision of the pa-
rameter p,, in the constraint equation consider-

ing physical condition of incompressible viscous
fluid

I experimented on comparison of estimation precision of the parameter p,, in the con-
straint equation considering physical condition of incompressible viscous fluid. For this
experiment, I used image sequences used in the experiments of chapter 5.

First, I experimented on comparison of estimation precision of the parameter p,, in
synthetic image sequences. For comparison of estimation precision of the parameter p,,,
I used Nakajima’s method which can estimate parameter p,,. The parameters of each
method are shown in Table D.5. As evaluation scale, I used the mean of normalized error

Table D.5: The parameters used in each method.

Method Values of parameters
The proposed method V =1.2x10 V, = 4.0x10°
o =1.5x10 o, =2.0
Nakajima ay = 1.0x107* | By = 1.0x107*

of pyy which is defined as

Z Z |pcccy €T y pemy($7y)| (Dl)

Da
v MN:v ly=1 |pczy($ y)|

where pe.y(z,y) denotes correct value of p,, on a coordinate (z,y) in an image frame,
Pexy(2,y) denotes estimated value of p,, on a coordinate (z,y) in an image frame, M and
N denote size of image frame for x or y axis respectively. The results of this experiment
are shown in Table D.6.

From the results in this experiment, we obtained estimation precision in approximately
50% against correct value of p,,, and we obtained well results of estimation precision in
comparison with Nakajima’s method. Finally, I experimented on comparison of estimation
precision of the parameter p,,. The parameters of each method are shown in Table D.1.
As evaluation scale, I used the mean of normalized error of p,,. The results of this
experiment are shown in from Table D.4 through Table D.6.

Table D.6: The mean of normalized error of p,, in each image sequence.

pil?

Image names || The proposed metyhod ‘ Nakajima
Image 1 4.98%x107! 5.42x1071
Image 2 5.11x10°1 6.52x 1071
Image 3 5.15x107* 5.25%x 1071
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From the results in this experiment, we obtained well results of estimation precision
in comparison with Nakajima’s method. Decrease rate of estimation precision of p,y with
respect to adding noise in the proposed method is less than that of Nakajima’s method.
The factor is supposed that the proposed method has robustness against noise.
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The Mean of Normalized Error

Figure D.1: The mean of normalized error of each method in image 4, A: a method
using only an intensity constraint equation, B: a method using an intensity constraint
equation and the continuous equation, C: a method using an intensity constraint
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equation, the continuous equation and Navier-Stokes equation.

The Mean of Normalized Error

Figure D.2: The mean of normalized error of each method in image 5, A: a method
using only an intensity constraint equation, B: a method using an intensity constraint
equation and the continuous equation, C: a method using an intensity constraint
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The Mean of Normalized Error

Figure D.3: The mean of normalized error of each method in image 6, A: a method
using only an intensity constraint equation, B: a method using an intensity constraint
equation and the continuous equation, C: a method using an intensity constraint
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equation, the continuous equation and Navier-Stokes equation.
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Figure D.4: The mean of normalized error of p,, in Image 4.
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Figure D.5: The mean of normalized error of p,, in Image 5.

220



15 T T T T T T T T T 1
14 Nakajima %
SRR SO SO The proposed method —&— .

The Mean of Normalized Error of pxy

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
PSNR [dB]

Figure D.6: The mean of normalized error of p,, in Image 6.
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