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Abstract

Most of the conventional high-level synthesis aim mainly to minimize the number
of control steps and the number of functional units, and they first decide the sched-
ule and the number of functional units by resource constrained scheduling or time con-
strained scheduling, which are followed by resource assignment. However, the connectiv-
ity between modules is also an important metric for VLSIs for its connection with wire
complexity, transmission delay, power consumption, testability, etc. In order to handle
interconnection-related metric more accurately, simultaneous scheduling and assignment
approach and assignment-driven approach are proposed. In those approaches, we often
encounter a scheduling problem with specified resource assignment, which becomes one of
the most importance core tasks in high-level synthesis. We study a loop pipeline schedul-
ing problem under given resource assignment.

In this thesis, (1) we treat both assignment of operations to functional units and
assignment of data to registers, (2) we introduce disjunctive arcs with variable weights
to scheduling graph for representing constraints induced by assignment specification, (3)
we formulate the range of available value for each un-fixed variable, (4) we construct a
branch-and-bound method incorporated with successive refinement of those ranges, (5) we
present, a heuristic method to find a schedule having the minimum iteration period based
on the reduction of those ranges using sensitivity to iteration period, (6) we extend our
variable disjunctive arc approach to assignment constrained scheduling for dependence
graph with conditional branches, and (7) we derive a branch-and-bound method and a
heuristic method incorporated with successive refinement of parameter space.

Finally, we have developed a high-level synthesis system based on a new strategy for
exploring solution space, and demonstrated its high ability in synthesizing cost optimal
data-paths, especially in reducing connection-relevant hardware resource. Most important
feature of our assignment-centric approach is its ability to control connectivity between
modules, and a higher level of design optimization considering transmission delay and
transmission power can be achieved by incorporating floorplan into our system.
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Chapter 1

Introduction

High-level synthesis is the task to transform an algorithm level behavioral description
into register-transfer-level structural and behavioral descriptions, and it contains several
interdependent sub-problems, such as scheduling, allocation and assignment (It is also
called binding) [1]. Most of the conventional high-level synthesis aim mainly to minimize
the number of control steps and the number of functional units, and they first decide
the schedule and the number of functional units by resource constrained scheduling or
time constrained scheduling, which are followed by resource assignment. However, the
connectivity between modules is also an important metric for VLSIs for its connection
with wire complexity, transmission delay, power consumption, testability, etc.

To evaluate interconnection related metric as closely as possible, assignment informa-
tion would be indispensable. Our possible approaches are; (A)“scheduling followed by
assignment, and repeat them if necessary”, (B)“combine schedule-related variables and
assignment-related variables to form a entire variable space, and both schedule and assign-
ment are constructed gradually and concurrently”, and (C) “combine schedule-related vari-
ables and assignment-related variables to form a entire variable space, and solve the com-
bined problem by ILP, branch-and-bound, simulated annealing, etc.” Many researchers
would recognize that the first approach (A) is in-promising since it is hard to make deci-
sion on schedule with regarding interconnections which shall be fixed only after resource
assignment. Approaches (B) and (C) are usually called “simultaneous (or concurrent)
scheduling and assignment”.

With respect to the second approach (B), if an efficient assignment constrained sched-
uler, which can work even for partial assignment, is available, we can extend the approach
(B) to (B’) “assignment is constructed gradually guided partly by assignment constrained
scheduling”. In this extended simultaneous scheduling and assignment approach, a sched-
ule is not fixed at all. Instead, a schedule accommodates to an incrementally-varying
partial assignment, and a partial schedule constructed in approach (B) is now considered
as a solution instance of the assignment (partial assignment) constrained scheduling prob-
lem. As a result, it may probably provide us a larger number of decision alternatives, and
we have more room for developing sophisticated and efficient heuristics to construct an
assignment gradually in approach (B’).

With respect to branch-and-bound, simulated annealing, etc. in the third approach
(C), if an efficient assignment constrained scheduler, which can work even for partial
assignment, is available, we can drastically reduce the solution space to be explored with
a slight expense of optimality, because branching (in branch-and-bound) or neighbor



solutions (in simulated annealing) with respect to schedule variables are all collapsed by
an assignment constrained scheduling.

As a result, we conclude that an assignment constrained scheduling becomes an im-
portant core task in both approaches (B) ((B’)) and (C).

In this thesis, we treat the scheduling problem under specified operation to functional
unit and data to register assignment. (A certain high-level synthesis system, into which
the assignment constrained scheduling is incorporated, is not concerned.) We propose
an assignment constrained loop pipeline scheduling method based on a scheduling graph
with disjunctive arcs having variable weight. The disjunctive arc approach to scheduling
problem is often used in shop scheduling problems. We can see other disjunctive arc ap-
proaches to the scheduling for data-path synthesis [27, 26, 23, 22, 25]. In [26], assignments
are specified only for operations and data transfers, and optimum scheduling method is
not discussed. The method proposed in [27] does not treat loop pipeline scheduling. Also,
they proposed only a simple heuristic algorithm. In [22], the schedule analyzer transforms
functional unit and register binding into precedence constraints (disjunctive arcs). How-
ever disjunctive arcs are introduced only for unambiguous sequentialization of operation
and data lifetime, and the final schedule relies on “off-the-shelf (resource constraints,
not binding constraints) scheduler”. As the result in their approach, “the existence of a
schedule is not strictly guaranteed.”

In this thesis, by contrast, (1) we treat both assignment of operations to functional
units and assignment of data to registers, (2) we introduce disjunctive arcs with variable
weights to scheduling graph for representing constraints induced by assignment specifi-
cation, (3) we examine the range of available value for each un-fixed variable, (4) we
construct a branch-and-bound method incorporated with successive refinement of those
ranges, (5) we present a heuristic method to find the minimum iteration period based
on the reduction of those ranges using sensitivity to iteration period, (6) we extend our
variable disjunctive arc approach to assignment constrained scheduling for dependence
graph with conditional branches, and (7) we derive a branch-and-bound method and a
simple heuristic method incorporated with successive refinement of parameter space.

The rest of this thesis is organized as follows. In Chapter 2, conventional approach,
assignment-driven approach and several notations and terminology used in this thesis are
described. Chapter 3 shows our variable disjunctive arc approach to assignment con-
strained scheduling and presents a branch-and-bound method to decide loop pipeline
scheduling. In Chapter 4, an improved longest path length between vertices on a schedul-
ing graph is presented and the assignment constrained heuristic scheduling algorithm is
proposed. Chapter 5 proposes our extended variable disjunctive arc approach to assign-
ment constrained scheduling for dependence graph with conditional branches. Chapter 6
presents application of our proposed scheduling method to data-path synthesis and shows
experimental results. Finally, Chapter 7 is used for conclusion.



Chapter 2

High-Level Synthesis

2.1 Conventional High-Level Synthesis

In Computer Aided Design (CAD) and Design Automation (DA) of VLSIs, top-down
transformation technology is widely used. High-level synthesis is the task to transform
an algorithm level behavioral description into register-transfer-level structural and behav-
ioral descriptions. An overview of high-level synthesis is shown in Fig. 2.1. To capture
the behavioral specification, a dependence graph is widely used. On the other hand, a
register-transfer-level structural description consists of functional units, register, and the
other interconnection resource such as nets, buses, and multiplexers. High-level synthesis
contains three major subtasks such as scheduling, assignment and allocation. Scheduling
assigns operations of the behavioral description to control steps, each of which corresponds
to a cycle of a system clock. Allocation chooses the type and the number of functional
units and registers from the unit library. Assignment assigns operations to functional
units, data to register, and data transfers to wires or busses [1].

Scheduling assigns operations in the behavioral description to control steps. The
total number of functional units required in a control step corresponds to the number of
operations scheduled to it. If more operations are scheduled to each control step, then
more functional units are necessary. On the other hand, if a few operations are scheduled
to each control step, then a few functional units are sufficient, but more control steps are
necessary. Thus there exit two scheduling problems; time constrained scheduling problem
and resource constrained scheduling problem. Time constrained scheduling problem is
to minimize the hardware cost while all operations are scheduled to the fixed number of
control steps. On the other hand, resource constrained scheduling problem is to minimize
the control steps needed for executing all operations under a fixed amount of hardware.

For these two time constrained scheduling problem and resource constrained scheduling
problem, Force-directed scheduling [2], List scheduling [3] and Integer linear programming
approach [5] are known as typical scheduling methods. For time constrained scheduling
problem, Force directed scheduling successively selects a single operation among all un-
assigned operations, and assigns it to one control step according to a kind of priority called
“force”. For resource-constrained scheduling problem, List scheduling proceeds form a
control step to a control step, selects operations based on a certain priority function, and
assigns them to current control step. Integer linear programming approaches for both
problems have been formulated. Many modified versions of these scheduling methods
also have been proposed for those two scheduling problems.
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Figure 2.1: An overview of high-level synthesis.

Many works have been also done for pipeline scheduling discussed in this thesis. Se-
hwa [4] is the first system that incorporates pipeline scheduling into high-level synthesis.
Scheduling algorithm is list-based while the operations in the list are ordered by a priority
function called urgency. It can handle only functional pipeline (target algorithm contains
only intra-iteration data dependency but not inter-iteration data dependency). In [5], the
scheduling problem (functional pipelining) are tackled via ILP formulation. FAMOS [6]
is based on the iterative improvement of schedule solution. Heuristics for exploring so-
lution space is similar to the one which was originally proposed by Kernighan and Lin
in their min-cut graph partitioning. FAMOS also handles only functional pipeline. To
reduce the number of registers, the maximum density of live register variables is to be
minimized. About interconnections, they focus on only bus cost. HAL [7] performs a
time-constrained, functional pipelining scheduling using the force directed method. The
issue of inter-iteration dependency has not been addressed. Force-directed scheduling was
extended also in [8] for pipeline schedule. PLS [9] schedules operations into a state of an
iteration at a time using a list-based algorithm. The paper addresses the minimization
of the delay (computation time of one iteration). [10] proposes two-phase approach con-
sisting of “as soon as possible pipelined scheduling” and “rescheduling”. In [11], loops
in an instance algorithm are extracted, and operations in those loops are scheduled first.
Afterward, non-recursive nodes are scheduled. In [12], Improved Force-Directed Schedul-
ing [8] is modified to handle “connectivity” maximization in high-level synthesis, where
the “connectivity” is a metric introduced to estimate interconnection complexity.
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Figure 2.2: Conventional approach and assignment-driven approach.

In many conventional approaches, after scheduling, a data-path is constructed by
allocation and assignment. Allocation determines the number and types of functional
units and registers, which are used in the design, from unit library. Assignment assigns
the operations, data, and data transfer in the scheduled dependence graph to functional
units, register, and interconnection units, respectively. Thus assignment consists of func-
tional unit assignment, register assignment, and interconnection assignment. There are
three major approaches to solve the assignment problem; constructive approaches, de-
composition approaches, and iterative approaches. Constructive approaches progressively
construct a design. Decomposition approaches decompose the assignment problem into its
constituent parts and solve each of them separately. Iterative approaches try to combine
and interleave the solution of assignment sub-problems. Many researchers have proposed
assignment methods based on one of those three approaches [13, 14, 15, 16, 29, 30].

2.2 Our New Approach to High-Level Synthesis

Most of the conventional high-level synthesis aim mainly to minimize the number of
control steps and the number of functional units, and they first decide the schedule and
the number of functional units by resource constrained scheduling or time constrained
scheduling, which are followed by resource assignment. However, the connectivity between
modules is also an important metric for VLSIs for its connection with wire complexity,
transmission delay, power consumption, testability, etc. In the stepwise design; scheduling
and resource assignment in this order, it may be hard to make a decision on operation
schedule with regarding connectivity which shall be fixed only after resource assignment.

In order to handle interconnection-related metric more accurately, assignment-driven
approach is proposed (see Fig. 2.2). In our assignment-driven approach, scheduling is
driven by iteratively generated functional unit assignment and register assignment, and
scheduling length or scheduling feasibility is evaluated for each resource assignment gen-
erated in assignment space exploration. In future, we are going to incorporate floorplan-
ning into our system to realize high-level synthesis considering transmission delay. In
this thesis, assignment constrained scheduling (which is to determine when operations are
executed under specified operation to functional unit and data to register assignment),



which would become one of core task in our assignment-driven approach and simultane-
ous scheduling and assignment approaches, is treated. Especially pipeline scheduling for
high-throughput digital signal processing is discussed.

2.3 Our Assignment Constrained Scheduling

In most of schedulers for high-level synthesis, hardware resource is treated as a constraint
to be met or an objective to be minimized. While the number of functional units is
evaluated exactly and the number of registers is evaluated fairly exactly, interconnec-
tions are hard to estimate in the scheduling phase. Hence, in some papers, only bus cost
is estimated, or some approximated cost instead of the exact interconnections, such as
“connectivity” in [12], is used for the purpose to minimize interconnection cost. However,
interconnections between modules become an important metric for VLSIs for its connec-
tion with hardware cost, routability, transmission delay, power consumption, testability,
etc. To treat interconnection-related metric more exactly, some researchers try to combine
assignment with scheduling [17, 18, 19, 20, 21]. In [17], it treats only DAG scheduling and
the treatment of register mapping is not clearly stated. In [18], assignment considered
during scheduling is only the one of operations to functional units, and register assignment
is done only after scheduling. Hence, interconnections are still approximately evaluated
by “connectivity parameter”. [19] also combines functional unit assignment for operations
and scheduling, but not register assignment for variables. [20] and [21] focus mainly on
the minimization of register requirements, and both try to solve the entire problem using
an ILP approach, which is computationally too expensive.

To evaluate interconnection related metric as closely as possible, assignment informa-
tion would be indispensable. Our possible approaches are; (A)“scheduling followed by
assignment, and repeat them if necessary”, (B)“combine schedule-related variables and
assignment-related variables to form a entire variable space, and both schedule and assign-
ment are constructed gradually and concurrently”, and (C) “combine schedule-related vari-
ables and assignment-related variables to form a entire variable space, and solve the com-
bined problem by ILP, branch-and-bound, simulated annealing, etc.” Many researchers
would recognize that the first approach (A) is in-promising since it is hard to make deci-
sion on schedule with regarding interconnections which shall be fixed only after resource
assignment. Approaches (B) and (C) are usually called “simultaneous (or concurrent)
scheduling and assignment (or binding)”.

With respect to the second approach (B), if an efficient assignment constrained sched-
uler, which can work even for partial assignment, is available, we can extend the approach
(B) to (B’) “assignment is constructed gradually guided partly by assignment constrained
scheduling”. In this extended simultaneous scheduling and assignment approach, a sched-
ule is not fixed at all. Instead, a schedule accommodates to an incrementally-varying
partial assignment, and a partial schedule constructed in approach (B) is now considered
as a solution instance of the assignment (partial assignment) constrained scheduling prob-
lem. As a result, it may probably provide us a larger number of decision alternatives, and
we have more room for developing sophisticated and efficient heuristics to construct an
assignment gradually in approach (B’).

With respect to branch-and-bound, simulated annealing, etc. in the third approach
(C), if an efficient assignment constrained scheduler, which can work even for partial



assignment, is available, we can drastically reduce the solution space to be explored with
a slight expense of optimality, because branching (in branch-and-bound) or neighbor
solutions (in simulated annealing) with respect to schedule variables are all collapsed by
an assignment constrained scheduling.

As a result, we conclude that an assignment constrained scheduling becomes an im-
portant core task in both approaches (B) ((B’)) and (C).

Up to now, we can find the following potential applications of assignment constrained
scheduling. (Of course, its applications are not limited to the following): Application
specific embedded processors are recently increasingly used in digital systems, and recon-
ciliation of usage conflicts of the distributed registers as well as the functional unites in
scheduling becomes a significant problem. Mesman et al. [22] proposed an efficient method
for solving such problem by introducing a register constraint analysis before scheduling,
in which register binding precedes scheduling. [23] takes the same approach, and treats
minimization problem of spill code to resolve register conflict. In [24], module placement
is incorporated into high-level synthesis, where the resource assignment is done first, fol-
lowed by module placement and scheduling considering data transfer delay. [25] takes
similar approach with assignment solution space exploration.

2.4 Terminology and Notations

Now we will define terminology and notations used throughout this thesis as follows.

e Dependence graph

Computation algorithm is specified with a directed graph G = (Vg, Ag) (Fig. 2.3(a)),
where V; is a union of a set Vp of operations and a set Vp of data, and Ag is a
union of a set Ag C Vi x Vp (Cartesian product of two sets Vp and Vp) of arcs
from operations to data and a set Ay C Vp x Vp of arcs from data to operations.
An example of a dependence graph is shown in Fig. 2.3 Throughout this thesis,
we use p(v) (s(v)) to represent an immediate predecessor (successor) of a vertex v
in a directed graph. If there exist plural predecessors (successors), we will use an
appropriate suffix like p;(v) (s;(v)) to identify each of them.

The number of control steps, which is needed for executing each operation, is given
by e : Vo — Z., where a control step is a time unit. Each operation o € V, has its
unique output data s(o) € Vp with (o, s(0)) € Ao, and each data d € Vp is used by
operations s;(d) € Vo with (d, s;(d)) € Ar as input. Assuming that each operation
in a dependence graph is executed repeatedly, each arc (d,0) € A; is associated with
its delay D(d,0) which implies that d in kth (k € Z) iteration (denoted as d¥) is
used by o in (k + D(d, 0))th iteration (i.e., of+P(de)),

e Resource assignment
p:Vo— Fand&: Vp — R are functional unit assignment and register assignment,
respectively, where F is a set of functional units and R is a set of registers.

e Pipeline schedule

Schedule is a mapping o : Vo — Z, where o denotes the start control step of each
operation in Oth iteration. Every operation is executed repeatedly with a common
period T,. That is, the execution of of in kth (k € Z) iteration starts at o(o;) + kT,

7



Figure 2.3: Dependence graph.

e Lifetime

The lifetime 7(0;) of an operation o; is given as

7(01) = {J 7(0}).

keZz

where,
7(of) = [o(0;) + kT, o(0;) +e(0;) — 1+ kT}],
assuming 7(of) N7 (o) =0, Vk € Z.

Similarly, the lifetime 7(d;) of data d; is given as

7(di) = U 7(df)

D(d1,02)=1

hor=s

f f 1(0})
2 o0

1 | 2 | 3 | 4 | 5cohtro|step

1
0(02) 0(01)

Figure 2.4: Lifetime chart for oy, 09, and d; in Fig. 2.3(a) under o(01) = 0, o(02) = —1
and T, = 4.



with,

7(df) = [o(p(di)) + e(p(dy)) + kT, MAX[o(s;(di)) + e(s;(d)) = L+ (h + ni)) 11|,
assuming 7(d¥) N 7(d¥*!) = 0, Yk € Z, where n;; = D(d;, s;(d;)). An example of

lifetimes 7(01), 7(02), and 7(d;) of operations o, and 0, and data d; in Fig. 2.3(a)
under o(01) =0, 0(02) = —1 and T, = 4 is shown in Fig. 2.4.



Chapter 3

Assignment Constrained Loop
Scheduling

3.1 Introduction

In this chapter, we will discuss assignment constrained loop pipeline scheduling method
based on a scheduling graph with disjunctive arcs having variable weight. The dis-
junctive arc approach to scheduling problem is often used in shop scheduling problems.
We can see other disjunctive arc approaches to the scheduling for data-path synthe-
sis [27, 26, 23, 22, 25]. In [26], assignments are specified only for operations and data
transfers, and optimum scheduling method is not discussed. The method proposed in [27]
does not treat loop pipeline scheduling. Also, they proposed only a simple heuristic algo-
rithm. In [22], the schedule analyzer transforms functional unit and register binding into
precedence constraints (disjunctive arcs). However disjunctive arcs are introduced only
for unambiguous sequentialization of operation and data lifetime, and the final schedule
relies on “off-the-shelf (resource constraints, not binding constraints) scheduler”. As the
result in their approach, “the existence of a schedule is not strictly guaranteed.”

By contrast, (1) we treat both assignment of operations to functional units and as-
signment of data to registers, (2) we introduce disjunctive arcs with variable weights to
scheduling graph for representing constraints induced by assignment specification, (3) we
examine the range of available value for each unknown variable, and construct a branch-
and-bound method incorporated with successive refinement of those ranges.

We define assignment constrained loop scheduling problem as follows; Given a depen-
dence graph G' and resource assignment p and &, find the minimum iteration period T
and a schedule o* for T)* such that;

1. In any control step, each functional unit is occupied at most one operation, and also
each register is occupied at most one data. That is,

VOi,Oj e Vo, 0; 7& 0j,
p(o) = ploj) = 7%(0i) [\ 7"(05) =0,

Vdi,dj € VD, dz 7& dj,

¢(di) = &(dy) = 7(di) () 7"(d;) =0,

where 7* is 7 for o*.

10
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Figure 3.1: Precedence constraint graphs and schedules for the dependence graph in
Fig. 2.3(a).

2. Any data cannot be used by any operation as input before it is generated. That is,

Yd,; € VD,
0" (s;(d;))+D(d;, 5;(d;)) T > 0" (p(d;)) +e(p(ds)).

3.2 Disjunctive Arc Approach

3.2.1 Demonstrative Example

To demonstrate the concept of our variable disjunctive arc approach, we will consider
a schedule of the dependence graph in Fig. 2.3(a). Figure 3.1(a) shows the precedence
constraint graph which is obtained from the input dependence graph by removing data
vertices while keeping precedence relation between operations. Note that arc (o;, 0;) with
its weight w;; constrains a schedule to satisfy

O'(Oj) 2 O'(Oi) + Wy .

For example, the arc (03, 04) comes from arcs (o3, d3) and (ds, 04) of the input depen-
dence graph, and its weight 2 — 27, reflects e(03) = 2 and D(d3,04) = 2. That is, since
04 Tequires ds generated in 2 iteration before, of can start after of~? is finished for every

k € Z. Since the schedule function ¢ is defined for executions in Oth iteration,

o(04) + kT, > o(03) + (k — 2)T, + e(o3), Yk € Z,

11



and it reduces to the constraint
o(04) > o(03) +2 —2T,.

Thus the arc (03, 04) has its weight 2 — 27,.

Now we assume the resource assignment for operations p(01) = p(o3) = FU1 and
p(o2) = p(os) = FU2. Figure 3.1(b) shows an example of a schedule under the speci-
fied functional unit assignment. From this schedule, we can extract execution sequences

ok oo and ofokToh™!, and it is worthwhile to note that these sequences essentially

limit the iteration period to no smaller than 7, = 5. That is, the sequence ofof™ of™!

(their lifetimes should not overlap) constrains a schedule to satisfy

o(o1) +e(or) — T,
o(o3) + e(03).

VAR

These two precedence constraints are represented by adding arcs (o1, 03) with its weight
2 — T, and (03, 0;) with 2 to the precedence constraint graph in Fig. 3.1(a). Figure 3.1(c)
shows the resultant precedence constraint graph which includes not only additional arcs
(01,03) and (03,01) but also the other additional arcs (0s,04) and (o4, 02) due to the
sequence 0’50’1“0’5“ on FU2.

Since operations with precedence constraints can be scheduled if and only if the cor-
responding precedence constraint graph contains no positive cycle, the minimum possible
T, is 5 for Fig. 3.1(c). To find a schedule with smaller 7,, we need to find better operation
sequences on FU1 and FU2. If we employ ofofof™ instead of ofof™ 0% the correspond-
ing precedence constraint graph with additional arcs is obtained as shown in Fig. 3.1(d),
and its minimum possible 7, is 4. Figure 3.1(e) shows a schedule under T, = 4, which
is obtained by computing longest path lengths from some reference vertex to all other
vertices (ASAP scheduling) on the resultant precedence constraint graph in Fig. 3.1(d).

More generally for this particular instance, the problem to find a schedule with the
minimum iteration period 7;* (under the specified functional unit assignment) is reduced
to find the best sequences 0’{0§+F1’30’f+1 and OSOZ+FQ’40§+1 (only Fi 5 and F, 4 are variables
to be fixed), and F} 3 = 0 and Fy4 = 1 are the solution which give 7, = 4.

3.2.2 Scheduling Graph

We will call a graph which represents precedence constraints between operations as a
“scheduling graph” Gg = (Vs = Vo, Ag), where a set of arcs Ag is associated with two
functions Fg : Ag — Z and Dg : As — Z. When the iteration period 7T, is specified,
the weight of each arc (0;,0;) € Ag is computed as Eg(0;,0;) — Dg(0;,0;)T;, and the
constraints for a feasible schedule are given as,

V(Oi, Oj) € AS,
o(0;) > o(0;) + Es(0;,05) — Dg(0;,04)T;.

It is clear that a scheduling graph has a feasible schedule under 7, if and only if the graph
contains no positive cycles.

12



Figure 3.2: The scheduling graph constructed from the dependence graph in Fig. 2.3.

A scheduling graph, which is called an “initial scheduling graph” and denoted as G g,
is first constructed as

As = Ag1UAgyU Ags,
Ast = {(0i,05)|(s(02), 05) € Ar},
Es(Oi,Oj) = e(0;), Ds(o;, Oj) = D(S(Oz‘)aoj),
Aga = {(04,0i)]0; € Vo },
Es(0;,0;) = e(0;), Ds(0;,0;) = 1,
Ass = {(sj(ds),p(di))|di € Vip},
Es(sj(di), p(di)) = e(s;(di)) — e(p(d;)),
Ds(sj(di), p(di)) = —D(p(d;), s;(d:)) + 1.

Agy is a set of constraint arcs which reflects precedence constraints of the given dependence
graph GG, while Agy and Ags are sets of constraint arcs to avoid overlap between successive
lifetimes of each operation and data, respectively, (i.e. 7(of) N 7(o¥™!) = 0, 7(d*) N
7(df*) = 0, Vk € Z). Fig. 3.2 shows the initial scheduling graph constructed from the
dependence graph in Fig. 2.3.

Lemma 1 If a dependence graph G is connected, then its corresponding initial scheduling
graph Gg, is strongly connected.

We often consider a schedule with a specified reference vertex v € Vg in which o(v) =0
is retained, and we denote it as 0, : Vg — Z. Let L(T,, v, w) be the longest path length
from v € Vp to w € Vp under iteration period 7, on GGg. Then we can have the following
lemma.

Lemma 2 For any choice of a reference node v,

L(T,,v,w) < o,(w) < —=L(T,,w,v).

13
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Figure 3.3: Collision-free schedule of 0; and o; assigned to the same functional unit.

3.2.3 Constraints from Resource Assignment

If two operations o; and o; in G are assigned to the same functional unit (i.e. p(0;) = p(0;)),
then the lifetimes 7(0;) and 7(0;) should not overlap (see Fig. 3.3), which is satisfied if
and only if there exists an integer F; ; such that;

(1) The lifetime of kth execution of the operation o; (i.e. 7(ofF)) precedes the lifetime
of (k — F; j)th execution of the operation o; (i.e. T(of_Fi’j))

(2) At the same time, the lifetime of (k — Fj;)th execution of the operation o; (i.e.

T(of_Fi’j)) precedes the lifetime of (k4 1)th execution of the operation (i.e. 7(of*")).

From above two constraints, we obtain the following inequalities.

o(o;) + (k—F,;))T, > o(o;)+e(o;) + kT,

o(o;) > olo;) +e(o;) + Fi ;1. (3.1)
o(0;) + (k+1)T, > o(o;) +e(oj) + (k= Fi )T,
o(o;)) > o(oj) +elo;) — (1 + F; ;)T (3.2)

On the scheduling graph G'g, these two constraints can be represented by adding a pair
of arcs (0;,0;) and (0, 0;) with

Es(0i,05) = €(0:), Ds(0i,05) = —Fi,
Es(oj, oi) = 6(0]'), DS(OjaOi) =1+ Fy;.

We call these arcs “disjunctive arcs”. An example of these disjunctive arcs is shown in
Fig. 3.4.

Similarly, if two data d; and d; which are generated by operations o; and o, respec-
tively, are assigned to the same register, then the lifetimes 7(d;) and 7(d;) should not
overlap (see Fig. 3.5), which is satisfied if and only if there exists an integer R;; such
that;

(1) The lifetime of the data d; which is generated by kth execution of operation o;
(i.e. 7(d¥)) precedes the lifetime (;Cf ’Ic%he data d; which is generated by (k — R;;)th
).

execution of operation o; (i.e. 7(d;

(2) At the same time, the lifetime of the data d; which is generated by (k — R; ;)th
execution of operation o; (i.e. T(d?_Ri’j)) precedes the lifetime of the data d; which

is generated by (k + 1)th execution of o; (i.e. 7(dF™)).

14
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Figure 3.4: Pairs of disjunctive arcs induced by functional unit assignment.
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MAX[o(sx(0i))+e(sx(0i))-1+kTr] \MAX[G(Sy(oj))+e(Sy(0j))-1+(k-Ri,j)Tr]

Figure 3.5: Collision-free schedule of d; and d; assigned to the same register.

When operation s, (o;) uses d; as its input and t, = Dg(0;, s.(0;)), and at the same time
operation s,(o0;) which uses d; as its input and u, = Dg(0;, s,(0,)), we obtain the following
inequalities from the above two constraints.

0'(0]') + 6(0]') —1 + (k — Ri,j)T,«
> MAX[o(s:(05)) + €e(sa(0:)) =1+ (k + 1) T3]
o(0;)
> MAX[o(sq(0:)) + €(sa(0i)) — e(0) + (ta + Rij) T, ] (3.3)
o(o;) +e(o;) — 1+ (k+1)T,
> MAX [o(5,(09) + e(sy(07)) 1+ (b iy + )T}
o (0;)
> MAX[o(s,(07)) + €5y () — cl0) — (L+ Ry —w)T].  (3.0)

On G, these constraints are represented by adding disjunctive arcs (s;(0;), 0;) for every
operation s, (o;) which uses d; as its input, and (s, (0;), 0;) for every operation s,(0;) which
uses d; as its input, and their weight functions are given as,
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where t, = Dg(0;, 54(0;)), uy = Dg(0j, 54(0;)), and R;; is an unknown integer to be fixed.
Fig. 3.6 shows an example of these disjunctive arcs.

A variable F; ; is introduced into Gg (initially G, = Gg) for every pair of operations
o; and o; which are assigned to the same functional unit. A variable R; ; is also introduced
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Figure 3.6: Pairs of disjunctive arcs induced by register assignment.

into Gg for every pair of data d; (generated by o;) and d; (generated by o;) which are
assigned to the same register. We denote the set of all variables F; ;s as F' and the set of
all variables R; ;s as R.

Theorem 1 Under given resource assignment and iteration period T,., the input algorithm
18 schedulable if and only if there exist ¥ : F U R — Z and the resultant scheduling graph
contains no positive cycles.

Corollary 1 If ¥ : F U R — Z s given, and the resultant scheduling graph contains no
positive cycles under the iteration period T)., a schedule o : Vo — Z can be computed in
polynomial time of |Vo 3.

3.2.4 Ranges of Variables to Be Fixed

We investigate the ranges of variables F U R. In the following, we remember that the
initial scheduling graph G, is strongly connected from Lemma 1.

We consider the variable F;; € F on the disjunctive arcs derived from operation
resource assignment p(o;) = p(0;). When we consider a scheduling o,, with a reference
node o,, two inequalities

0o, (05) — 00, (0i) — e(0i)
Fi; < T (3.5)

and
—0,,(0i) +0,,(0;) + ¢e(0))

1
hold from inequalities (3.1) and (3.2), respectively. Further, from Lemma 2,

~1<F (3.6)

00, (05) — 04, (0;) — €(0;) < —L(T;, 05,0,) — L(T, 0, 0;) — €(0;)
T, - T,

16



and,

L(T;, 0i,0,) + L(T}, 00, 0) +e(0;) | < Y. (0i) + 04, (0§) + €(0;)
T, = T

1 (3.8)

hold.
Since inequalities (3.5), (3.6), (3.8) and (3.7) hold for any selection of the reference
node, we can obtain the following inequalities.

VIAX [L(Tr,oi,ov) + LTy, 00, 0) +elog) ]
0,E€Vp Tr
—L Tr; iy Oy _LTra vy Ut) — i
Fy; < MIN [ (v 04, 00) = L(Tr 00, ) 6(0)] (3.9)
’ 0,€Vo 1,

On the other hand, for the data d; which is generated by the operation o; and is used
by the operation s,(o0;) and the data d; which is generated by the operation o; and is
used by the operation s,(0;), the variable R; ; on the disjunctive arcs is introduced when
&(d,) = &(dy). Similarly, we consider a scheduling o,, with a reference node o,, two
inequalities

o <A [%(0].) 7 (oa(0) = cloalo) +eloy) tml (3.10)
and
VAKX [—aov(ol) + Uov(sy(oj-}) + e(sy(04)) — e(oi) tu, — 1| <Ry, (3.11)

hold from inequalities (3.3) and (3.4), respectively. Further, from Lemma 2,
e [ 2200 = 0ulnl0) ~cluled belo)

< VAX l—L(Tr,oj,ou) —L(Tr,omjiz(w)) — c(sa(03) +¢(0)) —tm] (3.12)
and,
MAX [L(Tr, 01, 00) + L(T}, 0y, S;T(oj)) telsy(of) —elo) |, 1]
Ax [—ao,,(oo onolo) eliyloi) = o), 1] (3.13)
hold.

Since inequalities (3.10), (3.11), (3.13) and (3.12) hold for any selection of the reference
node, we can obtain the following inequalities.

MAX MAX [L(Tr,Oi,Ov)+L(TT,OU,Sy(Oj))+€(Sy(0j)) —Q(Oi) +Uy_ 1 S
0v6V0 Yy T/,a
Ri,j < MH;I MIN l_L(TT7 05, OU) — L(T,«, Ovzzfm(oi)) — 6(833(01')) + 6(0]') _ tm] .
0y E (0] T r
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Then since for any selection of the reference node, we have
L(T,«, Og, Ov) + L(Tra Oy, Oy) S L(Tra Og, Oy)a

inequalites (3.9) and (3.14) can be simplified further, and finally the following theorem is
obtained.

Theorem 2 A relation between the iteration period T, and the possible ranges of F; ; and
R; ; are given without loss of optimality as follows;

L(T,«,oi,oj)—i—e(oj) —L(Tr,Oj,Oi)—e(Oi)

—1<F, ;<

T, "= T, ’
L(T.,0; - N — e,
MAX [ (T}, 0i, 54(05))+e(sy(0g)) 6(0’)+uy—1 <
Y Tr
_IAT.. 0: ) . .
Ri,j S MQEN [ ( ry 0j, Sm(oz);—’ 6(893(01))"‘6(0]) —tx] 7

where L(T,,v,w) is the longest path length from node v to node w on scheduling graph G g
under the iteration period T.

Note that the possible range only guarantees that there is no solution outside of
this range. Since the effect of other disjunctive arcs with un-fixed variable weight is
not included exactly in the evaluation of the possible range for a variable concerned, the
possible range dose not guarantee a solution except the case that only one variable remains
un-fixed and the other are fixed.

3.3 Branch-and-Bound Method for Exact Solution

We show the scheduling (iteration period constraint scheduling) algorithm based on
branch-and-bound exploration of the solution space for ¥. The outline of the algorithm
is described in Fig. 3.7. An initial solution space for ¥ is formed from a set of possible
integers (possible range), which are calculated by using Theorem 2, for every unknown
variables (F U R). Also these ranges are updated using Theorem 2 to increase bound-
ing opportunities, whenever a branching is proceeded. Once a feasible ¥ : FU R — Z
(i.e. the corresponding scheduling graph Gg contains no positive cycles) is found, the
scheduling o is obtained by calculating the longest path lengths from a reference node to
all nodes on Gg.

In our variable disjunctive arc approach, a variable arises for each pair of operations
which are assigned to the same functional unit and data which are assigned to the same
register. Thus the number of variables is the largest when all the operations are assigned
to one functional unit and all the data are assigned to one register. When we let N be
the number of operation nodes, |F U R| is at most N?. Moreover if we let f be the
maximum number of integers in a ranges over all variables in F' U R, the total number
of integer assignments to F U R is at most f‘FUR‘ — fN? The time complexity of
seeking the longest path length is O(N?) if we use Floyd’s algorithm. Therefore the time
complexity of this algorithm is O(N3 fV 2). However, in practice, our approach dose not
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SCHEDULING(G, p, &, T;)
1. Construct the initial scheduling graph Gg, from G.
2. Construct variable list F'U R from p and €.

3. if (BAB(Gs,, FUR,T,) == 1) “SUCCESS”
else “FAIL”

BAB(Gg, F U R, T})

Step 1: Calculate the longest path length of every pair of nodes on scheduling graph Gg.
(if a positive cycle is detected, return(0)).

Step 2: Calculate the range of remained variables in F U R.
Step 3: if (There exists no un-fixed variables)

print the longest path length from reference node to all other nodes, and re-
turn(1)

else if (There exists an un-fixed variable whose range contains no integer value)
return(0)

else if (There exists un-fixed variables whose range contains exactly one integer
value)

for(each un-fixed variable whose range contains exactly one integer value)

fix the value of the un-fixed variable to the integer value contained in its
range, and add the corresponding disjunctive arcs to G's. back to Step 1.

else
Select one un-fixed variable

for(each integer contained in its range)

3-1. fix the value, add the corresponding disjunctive arcs to Gg
3-2. if (BAB(Gs,F UR,T,) == 1) return(1)
3-3. delete disjunctive arcs added in step 3-1.

return(0)

Figure 3.7: Scheduling algorithm based on branch-and-bound exploration.
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spend excessive run-time since the solution space ¥ is explored efficiently. Since possible
ranges of un-fixed variables may be reduce by fixing other variables, possible ranges of
un-fixed variables are updated whenever a variable is fixed for some value in branching
procedure.

3.4 Conclusion

In this chapter, we have proposed an approach using parametric scheduling graph with dis-
junctive arcs generated from the specified assignment information (operation to functional
unit assignments and data to register assignments) in loop pipeline scheduling problem.
After transforming our assignment constrained scheduling problem into the problem to
assign integers to disjunctive arcs, we have derived a branch-and-bound solution method
with successive refinement of parameter space.
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Chapter 4

Heuristic Scheduling Based on
Sensitivity to Iteration Period

4.1 Introduction

In Chapter 3, disjunctive arc with variable weight has been introduced, and the assignment
constrained scheduling problem has been transformed into the problem to assign integers
to variables on disjunctive arcs. However their solution is based on the branch-and-bound
search and hence time consuming.

In this chapter, we will discuss an improved longest path length between nodes in a
scheduling graph, by which we can improve ASAP schedule and ALAP schedule under
resource assignment. And also we will discuss a heuristic assignment constrained loop
pipeline scheduling method based on a scheduling graph with disjunctive arcs having
variable weight. Our proposed method is based on the evaluation of possible range of
each variable on a disjunctive arc, and we propose a heuristic method to narrow these
ranges based on the sensitivity to iteration period.

4.2 Improvement of Longest Path Length

When we compute the longest path length L(7,, z,y) from z to y under 7,, we can only
use arcs in the initial scheduling graph and some disjunctive arcs whose variables (F; ;
or R; ;) have been fixed as integers. If we can make use of disjunctive arcs with un-fixed
variables more aggressively, we may obtain tighter evaluation on the longest path length.

Let Pyij)y and Pyji, be the longest paths from x to y, each of which contains exactly
one disjunctive arc (0;,0;) or (o0j,0;) having an un-fixed variable F;; (see Fig. 4.1), and
let f/Fi,j (T, z,y) be an improved longest path length from z to y considering un-fixed
variable F; ;. Then,

LFi,j (T,«, Z, y) >
zFi,j (TT‘7 x? y) Z

L(T,«, x, 0i)+6(0i)+ﬂ,jTr+L(Tra 0y, y)a
L(T,,x,05)+e(0;) —(1 + F, ;) T, +L(T}, 0, y).
While we do not know the value of F;;, but we know that Fj; must have some integer

value. Hence we can find the minimum integer f/pi,j (T, z,y) satisfying the above two
inequalities simultaneously among all possible integers (given by Theorem 2) for F; ;, and
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Figure 4.1: Longest paths P,;;), and P, containing exactly one disjunctive arc having
an un-fixed variable Fj ;.

let it be E?l:‘ (T,,x,y). Finally we can improve the longest path length to L as follows,

L(T,,2,y) = MAX{Xl\EAﬁA}RiT”(TT,x,y), L(Tr,fc,y)}-

Theorem 3 For any choice of a reference node v,
L(T,,v,w) < L(T,,v,w) < o,(w) < —L(T,,w,v) < —L(T,, w,v).

Note that we can use improved L(T},z,y) instead of L(T},z,y) in Theorem 2 without
loss of optimality.

Example:

Consider scheduling graph shown in Fig. 4.2(a). Assume that operations o, and o,
are assigned to one functional unit (FU1), operations o, and o4 are assigned to another
functional unit (FU2), and the numbers of control steps for executing each operation are
e(0,) = e(op) = 1 and e(o.) = e(04) = 2. Now we consider the iteration period T, = 5.
Longest paths from o, to oy, from o, to o,, from o. to o4 and from o4 to o. are o0,0.0y,
0p0:04, 0.0,04 and 040,40, respectively, and their lengths are all —2. We have possible
ranges of Fy,;, and F; 4 as follows,

- SFa,bS _1§Fc,d§0-

Y

(SN
o] =

If we choose F,j, = 0 from possible integers {—1,0} for F,;, then the scheduling fails
since, whichever —1 or 0 F,q is fixed, the resultant scheduling graph contains positive
cycles. Also, if we choose Fi. 4 =0 and F,, = —1 or 0, the scheduling fails.

Consider longest paths Py, (cajo, = 050040, and P, (4c)o, = 05040.0, from o, to o,
considering disjunctive arcs having un-fixed variable F;4. Since their path lengths are
SF¢q for Py, (c4)0, and —5(1+F,4) for P, (dc)o. » and from the possible range of F¢ 4, 5F 4 <
—5(1 4+ F.q4) = 0in case F.g = —1, and —5(1 + F,4) < 5F,4 = 0 in case F,4 = 0. So
we obtain improved longest path length L(5,04,0,) = 0. Similarly we obtain improved
longest path lengths L(5, 04, 0.) = —1 using P, (abjo. = 0404040, for Fyp, = 0 and P, (50)0, =
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Figure 4.2: Scheduling graphs and a schedule under p(o,) = p(os), p(o.) = p(o4), and
T, =5.

040p040, for F,, = —1, (and L(5, 04, 04) = L(5, 0¢,04) = —2). When we use L(5, 0y, 0,)
and L(5, 04,0.) instead of L(5,0p,0,) and L(5, 04, 0.), the possible ranges of F,; and F, 4
are reduced without loss of optimality as follows,

1
<Py <—i 1<Fa<-;
5 5 5
Then, single possible integers F,, = —1 and F.45 = —1 are obtained. The resul-

tant scheduling graph with disjunctive arcs (variables are fixed as integers) is shown
in Fig. 4.2(b). As the result, we obtain a schedule (Fig. 4.2(c)) under 7, = 5 by applying
ASAP scheduling to the scheduling graph in Fig. 4.2(b).

4.3 Heuristic Scheduling Based on Sensitivity to It-
eration Period

Our final goal is to find the minimum iteration period 7, but, at the same time, we also
need to find integer for variables FUR to confirm the feasibility of 7)*. Our basic strategy
is the alternate updates of the iteration period and the solution for variables FUR. Note
that, when variables in FUR are all fixed, the corresponding minimum iteration period 7,
can be computed in polynomial time with respect to the number of operations. However,
even if the iteration period 7, is fixed, the problem to find solution for FUR to meet
the iteration period T, (or less) is N"P-complete [28]. Also the solution for FUR is not
always unique.
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4.3.1 Heuristics to Find Solution for FUR

If we ignore the possibility that the longest path between two vertices may change de-
pending on the value of iteration period 7', the lower bounds F’ll“;“éf’" and Rﬁ‘}“’ﬁ’" and the
upper bounds F;"7%" and R} of the possible ranges for Fj; and R;; are approximated
as functions of the iteration period T as follows,

Y [Es(e) = Ds(e)T] + e(o)

lower e€Foj0;
F9r(T) = T -1,
— Y. [Es(e) — Ds(e)T] —e(o;)
FIR(r) = ,
> [Es(e)—Dg(e)T]+ey;
Rigsr(T) = MAX |22 -1

RZN(T) = MIN

0,451

where P, is a longest path from x to y under some specific iteration period T" = T,. Note
that the third suffix 7} of Filgf‘ﬁ’"(T), etc., represents that the function (approximation) is
derived from the longest path under the iteration period 7' = T,. Since we have

> Es(e)

:” Es(x,21) + Eg(21,20) + -+ + Es(zn, )
e(r) —e(z1) +e(z1) —e(22) + - +e(2,) — e(y)
e(z) — e(y),

Y

we can obtain

Z E5(€)+€(Oj) Z 0,
BEPoin

Z Es(e)+e(o;)) > 0,
eEPojoi

Z ES(6)+€yi Z 0,
eeP"iSy(Oj)

Z ES(€)+6:1:]' Z 0
eGPOjSI(Oi)

Then, we can show the following monotonic property.
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Figure 4.3: Priority functions A(F; ;) = 0 and ['(F; ;) = dF/"" /dT — dF}54" /dT.

Lemma 3 The possible range is reduced, as the iteration period becomes smaller. That
is, for 6 > 0,

P (1) < Floie (1,—0) < Fioio(T,—9),
Fiim—s(T:=0) < Fiip (T, —6) < F 77 (T,

lower lower lower

R,J, (1)< R i,9,T; (T’" 0) SR,J, (TT"_(S)’
R S(T,—0) < R (T,—0) < RI(T,).

If G contains positive cycles under T =T, — 8, F/%%" 5(T, — 6) and R (T, —6) and
F20 5(Tr — 0) and R (T, — 6) are assumed to be 0o and —oo, respectively.

Note that decisions are needed when possible ranges of some un-fixed variables in FUR
remain containing plural integers. Our strategy employed here is to reduce those possible
ranges by estimating ranges at an iteration period smaller than 7,,. We can evaluate how
fast the possible range is reduced as the iteration period decreases by (1) the minimum ¢
such that no more than one possible integer is contained in the resultant possible range
under T =T, — ¢ (let such minimum ¢ be A(X) for X € FUR, and if there is no such
§, A(X) is defined as —oo), and (2) the differential coefficient of the width of possible

range with respect to the iteration period, I'(X) 2 d(Xuprer — X'lower) /4T for X € FUR
(Fig. 4.3).

The routine HS(Gs,F U R,T) is the one to find the solution for FUR under given
iteration period 7. In HS(Ggs,F U R,T), the possible ranges under T are calculated by
using Theorem 2 for every un-fixed variables in F' U R. If there are un-fixed variables
each range of which contains exactly one integer, then we fix them, add the corresponding
disjunctive arcs on Gg, and update the other ranges. When the possible ranges of all un-
fixed variables contain more than one integer, we find one variable X (an element in
F U R, and un-fixed) which has maximum I'(X) among the minimum A(X), and fix
X as the integer which is contained in the reduced range under the iteration period
T — A(X). Note that the reduced range under the iteration period 7' — A(X) might not
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contain exactly one possible integer in two cases. (C1) If the reduced range under the
iteration period 7' — A(X) contains more than one integer (i.e., A(X) = 00), X is fixed
as | (Xuprer — Xlowery /2] (C2) If A(X) = 04 (arbitrary small value greater than 0) and
the reduced range under the iteration period T'— A(X) contains no integer (i.e., X"PP"
and X' are integers and XPPer = X'lower 4 1) X is fixed as X“P°" if the absolute
value of the differential coefficient of X"PP¢"(T') with respect to T is smaller than that of
X'ower(T) and otherwise X'°¥*". For more details, please refer to Fig. 4.4.

4.3.2 Overall Scheduler

Fig. 4.4 shows the outline of the proposed assignment constrained heuristic scheduling
based on the alternate updates of the iteration period and the solution for FUR, and
the imaginary decrement of the iteration period with A, I' priority in the latter. In the
algorithm, we begin with HS(Gs,F U R,T) for the upper bound of the iteration period
(T'" = T"*). Once every variable is fixed so that the resultant scheduling graph G
contains no positive cycles, we calculate the minimum iteration period 7] on Gg, and
update T, as T). Executing HS(Gs,,F'UR,T, — 1) repeatedly with updating 7, as 7, until
it returns “FAIL”, we obtain the minimum iteration period 7, under given G, p, and £.
When ¢ is required, we apply ASAP scheduling under the 7, using the solution for FUR
obtained in the last HS(Gg,,F U R, T, — 1) which returns “SUCCESS”.

The time complexity of HS(G g, FUR,T) with respect to the number of operations N is
evaluated as follows. Using Floyd’s algorithm, the time complexity for computing longest
path lengths of all pairs of vertices is O(N?). Step 1 is computed in O(N? + |F U R|?)
(including the time complexity for computing improved longest path lengths). Step 3, 4,
and 5 are computed in O(|F U R|). The overall time complexity of HS(Gs,F U R,T) is
O(|FUR|-(N3*+|FURJ*)) (or O(N?®) since |FUR| = O(N?)). If we let T be the upper
bound of the iteration period, then totally, the overall time complexity of our assignment
constrained heuristic scheduling algorithm is O(T™ - N®), since HS(Gg,F U R,T) may be
repeated O(7™*") times. However, since feasible integers are assigned to FUR by using
decision to be made at a smaller iteration period, T, reduces fast in the repetition of
HS(Gs,F U R,T) and the number of repetition HS(Gg,F U R,T') is very small in practice.

4.4 Experiments

The performance of our heuristic scheduling algorithm is evaluated using 1000 different
resource assignments for the fifth-order elliptic wave digital filter benchmark (which con-
tains 26 additions, 8 multiplications, 35 variables and 8 constants), and 100 different
resource assignments for the modified fifth-order elliptic wave digital filter so that two
original iterations are blocked as a new single iteration. Note that the latter contains
double numbers of operations and data (i.e., it contains 52 additions, 16 multiplications,
69 variables and 8 constants). The proposed scheduling algorithm is implemented using
C programming language on a 1GHz Pentium III personal computer.

Table 4.1 lists the numbers of instances as entries of the matrix whose column corre-
sponds to the difference between the minimum iteration period 7, calculated using the
solution for FUR obtained in HS(Gs,,FUR,T,—1) and the optimum solution obtained by
branch-and-bound method and whose row corresponds to the turn of HS(Gg,,FUR,T,—1)
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SCHEDULING(G,p,¢)

1. T, <= T + 1 (T is the upper bound of the iteration period).
2. Construct the initial scheduling graph Gg, from G.
3. Construct variable list F' U R from p and €.
4. while (HS(Gs,,F U R/T, — 1) = “SUCCESS”)
Using the solution for F U R obtained in HS(Gs,,F U R, T, — 1), calculate

minimum iteration period 7.
T, < T).
5. if (T, = T"* + 1)
return(oo). /x No feasible schedule x/
else

return(7,). /* T, minimum iteration period */
/% Apply ASAP scheduling under the 7}, when o is required. */

HS(Gg,F UR,T)

Step 1: Calculate the longest path length of every pair of vertices on Gg under the iter-
ation period T. If positive cycles are detected, return(“FAIL”).

Step 2: If there is no un-fixed variables in F U R, return(“SUCCESS”).

Step 3: Calculate the possible ranges, A, and I' of remained variables in F' U R. If some
range contains no integer, return( “FAIL”).

Step 4: If there are un-fixed variables whose ranges contain exactly one integer, then fix
them, add the corresponding disjunctive arcs in Gg, and return to Step 1.

Step 5: For the un-fixed variable X € F U R which has the maximum I'(X) among the
minimum A(X), fix X as one integer which is contained in the reduced range under
T — A(X), exceptionally |(XuPpPer — X'lower) /2| in case (C1), or X“PPeT or X'lower in
case (C2), add the corresponding disjunctive arcs in G, and return to Step 1.

Figure 4.4: Outline of our assignment constrained heuristic scheduling algorithm.

27



Table 4.1: Results of our scheduling.

elliptic wave filter (original)

method Heuristics B&B
difference +0| +1 +2 K3 +4 -
1st iteration 891|76(-5)28(-11)[ 5| 0 average
2nd iteration 16| 0 0 0] 0 6.69
3rd iteration 0| O 0 0] 0O iterations
final result 907 71 17 |5] 0

runtime[s| (shortest, longest, average) 0.002, 0.070, 0.017 | 0.019, 955.0, 12.20
elliptic wave filter (double)

method Heuristics B&B
difference +0] +1 | +2 3 +4 -
1st iteration 79| 18 1 |02(-2) average
2nd iteration 21 0 0 0] 0O 15.12
3rd iteration 0| O 0 0] 0O iterations
final result 81| 18 1 0] 0
runtimels] (shortest, longest, average) 0.18, 0.35, 0.19 1.30, 16979, 576.5

repetition. The number which appears in sth iteration row, +j column denotes the num-
ber of instances (among 1000 or 100) for which 7 = “optimum iteration period +j;”
is obtained in ith turn of HS(Gs,,F U R,T, — 1) repetition. The number in paren-
theses denotes the number of instances whose solutions are refined in the next turn of
HS(Gs,,F U R,T, — 1). As we can see from this table, HS(Gs,,F U R, T, — 1) is repeated
at most 3 times (including the final one to decide no solution for a smaller iteration pe-
riod) until the procedure terminates, while branch-and-bound method needs to update
T, 6.63 or 15.12 times in average. As for the quality of solutions, our proposed heuristic
method produces optimum solutions for at least 80% of test instances. Table 4.2 shows
solution distribution generated by our heuristic method for original elliptic wave filter.
The last row of each sub-table shows average runtimes of our proposed heuristic method
and of branch-and-bound method, both of which are for one input instance. The proposed
heuristic method runs about 700~3000 times faster than the exact solution method on
average.

In our heuristic method, the possible range of un-fixed variable X € F U R under
smaller iteration period than the one now considered is evaluated, and X is fixed as an
integer which is contained in its approximated range. From the sampling inspection of
our in-optimum solutions, we have confirmed that our misdecisions occur in the following
cases. (a) If, depending on the value of iteration period, the longest paths change, then
the approximated possible range is different from the actual possible range and X would
be fixed as an invalid integer which is not contained in its actual possible range. (b) If
A(X) = 04 and the absolute value of the differential coefficient of X"“PP*"(T) is equal to
one of X'wer(T) X is always fixed as X'°“*" without any justification.

If the assignment is limited only for operations to functional units and assignment
of data to register is free, an incorrect decision on sequentialization of two operations
assigned to the same functional unit leads not so much increase of scheduling length
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Table 4.2: Results of our scheduling for original elliptic wave filter in Table 4.1.

35 5
34 20 -
33 1] 28] -| -
32 20 2|11} 51 -| -| -
31 10169 -| -| -| -
30 1| 18|83 -| -| -| -| -
29 16114 -| -| -1 -| -| -
28 131 I e I = R
27 1| 3 34 - -l - - - - - -
Heuristic | 26
25
24 2
23 21781 -| -] -| - - e e Y ey e
22 1 481 -1 -1 -| -| - - e e Y ey e
21 481 -1 -| -| -| -| - - e e Y ey e
20 21 3L -| -| -| -| -| -| - - e e Y ey e
19 120 - - -| -| -| -| -| - - e e Y ey e
18 Y e e - e e Y ey e
7y 3 - -| -| -| -| -| -| -] -| - - e e Y ey e

Exact T, [ 17] 18] 19] 20] 21] 22[ 23] 24| 25] 26] 27] 28] 29] 30| 31| 32[ 33] 34] 35|

S| OO DN
ot
NeJ
1
1
1
1
1
1
1
1
1
1

Table 4.3: Comparison of our scheduling with HCS.

difference +0 | +1 | +2 | 3| +4 | +5 | +6 | +7 | +8
Proposed method || 922 | 67 | 11 | 0 0 0 0 0 0
HCS 403 | 193 | 176 | 96 | 64 | 41 | 24 | 3 | O

and iteration period, since the lifetime of each operation is fixed and relatively small (in
case of our schedule example, 1 and 2). On the other hand, if the assignment of data to
register is specified, which is our case, an incorrect sequentialization of two data (incorrect
sequentialization of two operations which generate these data) may lead much increase
of scheduling length and iteration period, since the lifetime of each data is un-fixed in
advance and may become much longer than a lifetime of an operation. That is thought as
a reason why in-optimum solutions having larger difference in iteration period compared
with optimum solution are generated occasionally.

Table 4.3 shows the comparison of our proposed method with other method with
respect to the fifth-order elliptic wave digital filter benchmark. Unfortunately, authors
could not find any scheduler for the same problem of ours. So we implemented another
heuristics (HCS) combining unambiguous sequentializations and ASAP-like sequential-
izations. For an un-fixed variable F; ; (or R; ;) € F U R, ASAP-like sequentializations are
the sequences o; and o; based on two longest path lengths L(Tr,v,0;) and L(Tr, v, 0;) for
a reference node v. That is, if L(T'r, v, 0;) is shorter than L(T'r,v,0;), then operation o;
(data d;) precedes operation o; (data d;), and otherwise operation o; (data d;) precedes
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operation o; (data d;). The ASAP-like sequentializations are applied for X;; € FU R
having the maximum |L(7'r,v,0;) — L(T'r,v,0;)| when possible ranges of some un-fixed
variables in F' U R remain containing plural integers. The construction of Table 4.3 is
similar to Table 4.1, but it shows only final results. For Table 4.3, 1000 different assign-
ments, which are different to those used for Table 4.1, are generated, and hence the result
of proposed method is different to the one in Table 4.1.

4.5 Conclusion

Evaluating possible ranges of variables to be fixed, we have proposed an improved longest
path length between vertices in a scheduling graph, by which we can improve possible
ranges of variables. We have proposed also a heuristic method to find the minimum
iteration period under specified resource assignment. Experimental results for both the
fiftth-order elliptic wave filter benchmark and its modified version in which the number of
operations and data is doubled show the proposed heuristic method runs about 700~3000
times faster than the exact solution method, while it can find the optimum iteration
periods in most cases.
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Chapter 5

Assignment Constrained Schedule
with Conditional Branches

5.1 Introduction

Operations in a computation algorithm may vary depending on the input data or in-
termediate results of the algorithm. In that case, only when a certain condition holds,
some operations are executed and data are generated by these operations. The operation
whose execution depends on a condition is called a conditional operation, and the data
generated by the operation is called a conditional data. Figure 5.1(a) shows an example
of a computation algorithm including conditional operations and data. In this algorithm,
data b is added to data y if data x is greater than data a (z > a), or data c is subtracted
from data z otherwise (x < a). Operation 1 compares the input data = with the other
input data a, and determines if a condition holds. We call it a decision operation. If the
condition holds (i.e., the condition x > a is true), then operation 2 (i.e. an addition) is
executed and data i(= x + a) is generated. On the other hand, if the condition does not
hold (i.e., the condition = > a is false), then operation 3 (i.e. a subtraction) is executed
and data j(= z — ¢) is generated. Let two operations (data) each of which is executed on
the condition exactly opposite to the other be said mutually exclusive to the other oper-
ation (data). For example, operation 3 is the mutually exclusive operation of operation
2 and data j is the mutually exclusive data of data ¢. If operations 2 and 3 are assigned
to the same functional unit, since these operations are mutually exclusive to each other,
it is possible to schedule operations 2 and 3 to the control steps such that these lifetimes
overlap as shown in Fig. 5.1(b). After the operation 1, operation 2 is executed if the
condition holds, or operation 3 is executed if the condition does not hold. Note that, only
after the condition is resolved, the conditional operations, which are mutually exclusive
and are assigned to the same functional unit, can be scheduled to the control step such
that these lifetimes overlap.

If the lifetimes of mutually exclusive operations which are assigned to the same func-
tional unit do not overlap or these operations are assigned to a different functional unit to
each other, then these operations can be scheduled before the decision operation is com-
pleted. Examples of the schedules for operations of a computation algorithm in Fig. 5.1(a)
are shown in Fig. 5.1(c) and (d), respectively. In these schedules, both operation 2 and
operation 3 are executed and one of the results (i.e. data i and data j) is selected based
on the condition resolved by the decision operation 1. This is possible since there are no
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(b) control step
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Figure 5.1: A computation algorithm with a conditional branch and the schedules for
operations.

data dependencies and therefore no precedence constraints from the decision operation to
the conditional operations.

In this chapter, we will discuss assignment constrained scheduling for iterative algo-
rithms with conditional branches. Many researchers have proposed scheduling methods for
computation algorithms with conditional branches [31, 32, 33, 34, 35]. However, all these
scheduling methods are time constrained scheduling or resource constrained scheduling.
We propose an approach using a scheduling graph with disjunctive arcs generated form
the specified assignment information. Especially, we consider disjunctive arcs to obtain a
feasible schedule for mutually exclusive operations to functional units assignment and mu-
tually exclusive data to registers assignment, and derive a branch-and-bound method and
a simple heuristic method incorporated with successive refinement of parameter space.

5.2 Preliminaries

5.2.1 Dependence Graph with Conditional Branches

Although we define a dependence graph representing an iterative algorithm in Chapter 2,
in this chapter we redefine a dependence graph to represent an iterative algorithm with
conditional branches.

A computation algorithm with conditional branches is specified with a directed graph
G = (Vg, Ag), which is called “dependence graph with conditional branches”. Vg is a
union of a set Vp of operations, a set Vp of data, a set Vi of fork nodes, and a set V;
of join nodes. Ag is a union of a set Ap of arcs which represent a data dependency and
are called data dependency arcs, and a set Ac of arcs which imply the operations adjoin
to ones are conditionally executed and are called control dependency arcs. An example
of a dependence graph with conditional branches is shown in Fig 5.2(a). The number of
control steps, which is needed for executing each operation, is given by e : Vo — Z,,
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where a control step is a time unit. We assume that the number of control steps which is
needed at a fork node or a join node is 0.

Each fork node f € V implies the start of conditional branch, and has one incoming
data dependency arc and two outgoing control dependency arcs. The branch to be exe-
cuted is determined by the operation, which is an immediate predecessor of a fork node,
and it is called the decision operation of the branch. For example, operation o, is the
decision operation of branch f; in Fig. 5.2. If the condition is true, then operations oy is
executed and data ds is generated and used, and if the condition is false, then operations
o3 is executed and data d3 is generated and used. Note that a control dependency arc
does not imply data dependences from the fork node to the conditional operations.

Each join node j € V; implies the conditional operation flows from a fork node join
to a single operation flow, and has two incoming data dependency arcs and one outgoing
data dependency arc. Thus each fork node has its corresponding join node. For example
in Fig. 5.2, two data flows which branch at the fork node f; join at the join node j; when
either conditional data dy (generated by conditional operation 0,) or conditional data dj
(generated by conditional operation o03) is used.

Assuming that each operation in a dependence graph is executed repeatedly, each data
dependency arc (d, o) from data d to operation o is associated with its delay D(d, o) which
implies that d in kth (k € Z) iteration (denoted as d*) is used by o in (k + D(d,0))th
iteration (i.e., 0f*tP(®))  For example in Fig. 5.2, data dy (d¥) which is generated by
operation o4 (0f) is used by operation o; in the next iteration (of™). A dependency arc
(4,0) from join node j to operation o also have its delay D(j,0). The delay D(j, o) implies
that data d* before join node j is used by 0f*PU°) (neglecting the join node j which is
contained in a path from data d to operation o). Note that we use delay D(j, 0) of a data
dependency arc from join node j to operation o identified by delay D(d,o0) of one from
data d to operation o.

5.2.2 Problem Formulation

The input and output of assignment constrained scheduling problem with conditional
branches are represented as follows.
Input;

e Dependence graph with conditional branches G = (Vi, Ag):
e Resource assignment p, &:
Output;

e Pipeline schedule o:
The following constraints must be satisfied.
1. A schedule satisfies the precedence constraints specified by execution time of
operations, data dependency arcs and their delay in G.

2. If two operations (data), which are not mutually exclusive to each other, are
assigned to the same functional unit (register), then their lifetimes do not overlap.

3. If two operations (data), which are mutually exclusive to each other, are assigned
to the same functional unit (register), then
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D(ds,01)=0 e(01)=2
ds 01

D(ds,02)=0 D(d4,01)=1

Figure 5.2: Dependence graph with conditional branches and its initial scheduling graph.

a. their lifetimes do not overlap,

b. or either of these operations (data) is executed (stored) after the decision
operation is completed.

5.2.3 Scheduling Graph

For a dependence graph with conditional branches, we construct a scheduling graph like
one in Chapter 3.

Asi = {(p(d), si(d))|(p(d), si(d)) € Vp},

Es(p(d), si(d)) = e(p(d)), Ds(p(d), si(d)) = D(d, si(d)),
Aga = {(05,0i)]0; € Vo},

Es(0;,0;) = e(0;), Ds(0;,0;) = 1,
Ass = {(sj(di),p(di))|di € Vp},

Es(sj(di), p(di)) = e(s;(di)) — e(p(ds)),

Ds(sj(di), p(di)) = —D(p(d;), s(d;)) + 1.

Agy is a set of constraint arcs which reflects precedence constraints of the given dependence
graph GG, while Ag, and Ags are sets of constraint arcs to avoid overlap between successive
lifetimes of each operation and data, respectively, (i.e. 7(of) N 7(o¥™!) = 0, 7(d*) N
T(di™) =0, Vk € 7).

Moreover there exists does not exist a data dependency between operation p(f) im-
mediately preceding fork node f and operation s(j(f)) succeeding its corresponding join
node j(f) but a precedence constraint between these operations. A set Agy of arcs which
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reflect these precedence constraints are represented as follow.

Ase = {@(f),sGU)ISf € Ve,
Es(p(d), si(d)) = e(p(f)), Ds(p(f), s(i(f))) = D((f), 57 (f)))-

A scheduling graph Gg = (Vs = Vo, As = Ag1 U Ago U Ag3 U Agy) is called “initial
scheduling graph” for a dependence graph with conditional branches. Fig 5.2(b) shows
the initial scheduling graph constructed from the dependence graph with conditional
branches in Fig. 5.2(a).

5.3 Disjunctive Arc Approach

In this chapter, we propose an approach using a scheduling graph with variable disjunctive
arcs generated from assignment information in a loop pipeline scheduling problem for
a dependency graph with conditional branches. Especially, if two operations (data),
which are mutually exclusive to each other, are assigned to the same functional unit
(register), then it should be satisfied either that their lifetimes do not overlap or that either
of the operations (data) is executed (stored) after the decision operation is completed.
Section 5.3.1 and Section 5.3.2 present disjunctive arc approach in two cases to obtain a
feasible schedule, respectively.

5.3.1 Collision-Free of Lifetimes

If two operations o; and o; in G, which are mutually exclusive to each other, are assigned
to the same functional unit (i.e. p(o;) = p(0;)), then one feasible solution is that the
lifetimes 7(0;) and 7(0;) are not overlap, which is satisfied if and only if there exists an
integer F; ; such that;

k)—Fi,]‘

; ), that is,

(1) 7(oF) precedes (o

O'(Oj) + (k — Fz‘,j)Tr > O'(OZ') + G(Oi) + KT...

(2) T(O?iFi’j) precedes 7(oft!), that is,

o(o) +(k+ 1T, > o(o;)+e(oj) + (k— F;;)T,.

On the scheduling graph Gg, these two constraints can be represented by adding a pair
of arcs (0;,0;) and (0, 0;) with
_-F'i,ja

Es(05,0) = el0;), Ds(o,0) =1+ F;.

0y
95}
—
S
Q
)
~
I
Q
—
S
~—~
n
—
S
Q
)
~
I

Fig. 5.3(a) shows an example of these disjunctive arcs.

Similarly, if two data d; and d; which are generated by mutually exclusive operations
o; and o;, respectively, are assigned to the same register, then one feasible solution is that
the lifetimes 7(d;) and 7(d;) are not overlap. On G, these constraints are represented by
adding disjunctive arcs (s;(0;),0;) for every operation s,(0;) which uses d; as its input,
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e(0y1)-e(0i)-(-ur+1+Rij)Tr

. e(0j)-u2Tr
" e(0j)-u1Tr

e(0j)-(A+Fij)Tr

(a)

........ > disjunctive arc

e(0><1)-e(01')+(t1+Ri’j)Tre(oxz)-e(oj)+(t2+R‘J)TIr

(b)

Figure 5.3: Pairs of disjunctive arcs induced by functional unit assignment (a) and by
register assignment (b).

and (sy(0j),0;) for every operation s,(o;) which uses d; as its input, and their weight
functions are given as,

(sz(0i)) — €(0j), Ds(sz(0i),05)=—t,—Rij,
(sy(07)) — e(0i), Ds(sy(0),0i) =—u,+1+R;

where t, = Dg(0;, 5,(0;)), uy = Dg(0j, sy(05)), and R; ; is an unknown integer to be fixed
(Fig. 5.3(b)).

Note that, in a dependence graph with conditional branches, data dependency arcs
between conditional operations (which are executed depending on the result of a decision
operation) contain no delay. Thus if two mutually exclusive operations o; and o; assigned
to the same functional unit, the lifetimes should not overlap by either of integers {—1,0}
for F; ;. Similarly if two mutually exclusive data d; and d; assigned to the same register,
the lifetimes should not overlap by either of integers {—1,0} for R, ;.

5.3.2 Execution after Decision Operation

If two operations o; and o, which are mutually exclusive to each other, are assigned to
the same functional unit (i.e. p(0;) = p(0;)), the other feasible solution is that either of
the following constraints must be satisfied;

(1) The lifetime of kth execution of the decision operation o4 (i.e. 7(0k)), which decides
which operation is executed, precedes the lifetime of kth execution of the operation
0; (i.e. 7(0F)), and the lifetimes of kth executions of these two operations o; and

0j (i.e. 7(0f) and 7(0k)) precede the lifetimes of (k + 1)th executions of these two
M) and 7(0%)) (see Fig. 5.4(1)).

operations o; and o; (i.e. 7(0; ;

(2) The lifetime of kth execution of the decision operation o4 (i.e. 7(0k)), which decides

which operation is executed, precedes the lifetime of kth execution of the operation
k

oj (i.e. 7(0})), and the lifetimes of kth executions of these two operations o; and
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k+1.

1(0i

e(0))
:G(Oj)+kTr: : o(0j)+(k+1)Tr : control step
0(0d)+KTr o(0i)+KTr () +0(0i)+(k+1)Tr
1
Tr
T(Ola) ~ '[(Oléj-'-1 )
CTew N .
' \ ~

IG(Oi)-l-lkTr: Z 'o(0i)+(k+1)Tr control step
o(0d)+kTr  o(0)+kTr 0(0j)+(k+1)Tr
)

Figure 5.4: Precedence constraints between conditional operations assigned to the same
functional unit and the corresponding decision operation.

0j (i.e. 7(0f) and 7(0k)) precede the lifetimes of (k + 1)th executions of these two

operations o; and o; (i.e. 7(0j™") and 7(0}*")) (see Fig. 5.4(2)).

From above two constrains, we obtain the following inequalities, respectively.

(1)
o(o;) + kT, > o(og) + e(oq) + kT,
o(o;)) > o(o4) + e(04). (5.1)
MIN{o(0;),0(0;)} + (k + 1)T, > MAX{o(0;) + e(0;),0(0;) + e(0;)} + kT,
MIN{o(0;),0(0;)} > MAX{0(0;) + e(0;),0(0j) + €e(0;)} — T;. (5.2)
(2)
o(o;) + kT, > o(oq) + e(0q) + kT,
o(0;) > o(oq)+ e(0q). (5.3)

MIN{o(0;),0(0;)} + (k + 1)T, > MAX{o(0;) + e(0;),0(0;) + e(0;)} + kT,
MIN{o(0;),0(0;)} > MAX{0o(0;) + e(0;),0(0j) + €e(0;)} — T;. (5.4)
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e(0j)-Tr e(0j)-Tr

(1) (2)

-------- > disjunctive arc

Figure 5.5: Disjunctive arcs to execute after the decision operation o4 induced by func-
tional unit assignment.

On the scheduling graph Gg, these two constraints are represented by adding disjunctive
arcs as following, respectively.

(1) The constraint is respected by adding (o4, 0;) with

Es(04,0;) = e(0q)
and a pair of arcs (0;,0;) and (o;, 0;) with

Es(0i,05) = €(0i), Ds(04,05) =1,
ES’(Ojvoi) = 6(0j), DS(OJ7Oi) =1

(2) The constraint is respected by adding (o4, 0;) with
Es(04,0;) = €e(0q)
and a pair of arcs (0;,0;) and (o;, 0;) with

Es(0i,05) = €(0i), Ds(04,05) =1,
Es(0j,0;) = e(0), Ds(0j,0;) =1

Examples of disjunctive arcs representing these two constraints (1) and (2), respectively,
are shown in Fig. 5.5.

Similarly, if two data d; and d;, which are generated by mutually exclusive operations
o; and o;, respectively, are assigned to the same register (i.e. £(d;) = £(d;)), then the
satisfaction of either of the following constraints may derive feasible solution.

(1) The lifetime of kth execution of the decision operation o4 (i.e. 7(0%)), which decides
which data is used, precedes the lifetime of data d; which is generated by kth
execution of the operation o; (i.e. 7(d¥)). And the lifetimes of these two data d;
and d; which are generated by kth executions of these two operations o; and o,
respectively, (i.e. 7(dy) and 7(d})) precede the lifetimes of these two data d; and
d; which are generated by (k + 1)th executions of these two operations o; and o,
respectively, (i.e. 7(dj*") and 7(dj*")).
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(2) The lifetime of kth execution of the decision operation o4 (i.e. 7(0%)), which decides
which data is used, precedes the lifetime of data d; which is generated by kth
execution of the operation o; (i.e. 7(d})). And the lifetimes of these two data d;
and d; which are generated by kth executions of these two operations o; and o,
respectively, (i.e. 7(df) and 7(d})) precede the lifetimes of these two data d; and
d; which are generated by (k + 1)th executions of these two operations o; and o,
respectively, (ie. 7(df*") and 7(d5*")).

When operation s,(0;) uses d; as its input and t, = Dg(0;, s.(0;)), and at the same time
operation s,(o0;) which uses d; as its input and u, = Dg(0;, s,(0;)), we obtain the following
inequalities from the above two constraints.

(1)

O'(OZ') + 6(02') + kTr

o(0i)

U(Od) + 6(0,1) + kTr

>
> 0(0a) + e(04) = e(0:). (5.5)

MIN {o(0;) + €(0;),0(0;) + e(0j)} + (k + 1)T,
> MAX {Méx (0(50(01)) + e(50(05)) + taT,}
MAX {r(sy 07)) + (s, (01)) + wy T} + KT,
MIN{o(0:), 0 (0;)}
> MAX {MQ\X {o(s2(0:)) + e(sz(0:)) —e(0j) + (tx — 1)T},

MAX {r(sy(07)) + (s, (01)) — €(01) + (1w, = DT} }. (5.6

o(o;) + e(oj) + kT,

(o)

o(oq) + e(oq) + kT,

>
> o(04) + e(oq) —e(0;). (5.7)

MIN {o(0) + e(0r), a(0;) + el0)} + (k + 1T,
> MAX {M?X (0(5.(01)) + e(s2(00)) + taT, ),

MAX {r(sy(07)) + (s, (01)) + u, Tr} | + KT,
MIN {0(0:), o(0;)}
> MAX {MQ\X {o(s2(0:)) + e(s2(0:)) — e(o;) + (tx — 1)T,},

MAX {o(s,(0) + (s, (09) = e(o) + (u, = VT }} . (5.8)

On (g, these two constraints are represented by adding disjunctive arcs as following,
respectively.
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e(od)-e(0i) " ".g(0d)-e(0))
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e(oy2)-e(0i)+(u2-1)Tr e(oy2 e(o|)+(u2 A)Tr

e(oj)-u2Tr
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(1) (2)

........ » disjunctive arc

Figure 5.6: Disjunctive arcs to execute after the decision operation o4 induced by register
assignment

(1) The constraint is represented by adding arc (og4, 0;) with
Es(04,0:) = e(0q) — €(0;)
and pairs of arcs (s,(0;),0;) and (s, (0;), 0;) with

Es(s:(0:),05) =e(s2(0:)) — e(0;), Ds(s:(0i),05) =tz +1,
Es(sy(0), 00) =e(sy(07)) — €(0i), Ds(sy(05),0i)=—u,+1.

(2) The constraint is represented by adding arc (o4, 0;) with
Es(04,05) = e(0q) — €(0;)
and pairs of arcs (s;(0;),0;) and (s,(0;), 0;) with
Es(54(0:),0) =e(s.(0:)) — e(0;), Ds(5:(0i),0;) =—ts+1,

Es(sy(05), 00)=e(sy(07)) — e(0i), Ds(sy(05),0i)=—u,+1.

Examples of disjunctive arcs representing these two constraints (1) and (2), respectively,
are shown in Fig. 5.6.

5.3.3 Problem Transformation

A variable F;; is introduced into G'g for every pair of operations o; and o; which are
assigned to the same functional unit. A variable R, ; is also introduced into G'g for every
pair of data d; (generated by o;) and d; (generated by o;) which are assigned to the
same register. Especially, A variable F,; (R} ;) is used for every pair of mutual exclusive
operations o; and o; (mutual exclusive data d; and d;). We denote the set of all variables
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F; ;s as F, the set of all variables Fi’yjs as F', the set of all variables R; ;s as R and the

set of all variables R} ;s as R'.
Finally, our assignment constrained scheduling problem is transformed into the prob-

lem to determine which disjunctive arcs are added so that the resultant scheduling graph

contains no positive cycles;
e for two mutually exclusive operations o; and o; assigned to the same functional unit,

F1. a pair of arcs (0;,0,) and (0j,0;) with
Es(0, 05) = €(0), Ds(0i,05) = —Fj;,
Es(o0j, 01) = e(0;), Ds(0j,0;) =1+ F;.
where Fj; is fixed as a single integer.
F2. a arc (od,oz) and a pair of arcs (0;,0;) and (0;,0;) with
Es(04,0;) = e(0a), Ds(04,0:;) =0,
ES(OZ',OJ') = G(Oi), Ds(Oi, Oj) = 1,
)

Es(0j,0;) = e(0j), Ds(0;,0;) = 1.

F3. a arc (04,0;) and a pair of arcs (0;,0;) and (0;, 0;) with

e for the other two operations o; and o; assigned to the same functional unit,
F1. a pair of arcs (0;,0;) and (0;,0;) with
Es(0i,05) = e(0i), Ds(0;,05) = —Fij,
Es(0j,0:) = €(0;), Ds(0j,0;) =1+ Fy.
where F; ; is fixed as a single integer.
e for two mutually exclusive data d; and d; assigned to the same register,
R1. pairs of arcs (s,(0;),0;) and (s,(0;),0:),
Es(s:(01), 0) =e€aj, Ds(52(0;),0;) =t —Rj;,
Es(sy(05),00) =eyi, Ds(sy(05),0)=—uy+1+1;;,
where It} ; is fixed as a single integer.
R2. a arc (od,ol) and pairs of arcs (s,(0;),0;) and (s,(0;), 0;) with
Es(04,0;) = €e(04) — €(0;), Dg(04,0;) =0,
Es(ss(0), 0 )_ewa DS(S:E(Oz) 0j)=—ts+1,
Es(sy(05), 01) = Ds(sy(05), 0) = —uy+1,
R3. a arc (o4, 0;) and pairs of arcs (s ( i), 05) and (s, (0;), 0;) with
Es(04,05) = €(04) — €(0;), Ds(0a,05) =0,
Egs(s2(0:), J):ema s(s2(0i), 0j) =—tz+1,
Es(sy(05), 01) = eyi, Ds(sy(05),0i) = —uy+1,

o

41



e for the other two data d; and d; assigned to the same register,
R1. pairs of arcs (s,(0;),0;) and (s,(0;),0:),

Es(s4(0i),0)) =¢€4j, Ds(5:(0:),05)=—tz—R;;,
ES(Sy(Oj): 0;) = Cyi, DS(Sy(Oj)a 0;) = —uy+1+R;;,

where R; ; is fixed as a single integer.
Note that, when the candidate disjunctive arcs 2 (R2) for variable F} (R} ;) € F'(R')
are added in the scheduling graph G, variable F;(R; ;) is assumed to be fixed as oo.
Similarly, when the candidate disjunctive arcs F3 (R3) for variable F (R} ;) € F'(R’)
are added in the scheduling graph G, variable F} (R} ;) is assumed to be fixed as —oo.

5.4 Scheduling Algorithm for Exact Solution

We show the scheduling (iteration period constraint scheduling) algorithm for iterative
algorithm with conditional branches based on branch-and-bound exploration of the solu-
tion space for 3. The outline of the algorithm is described in Fig. 5.7. An initial solution
space for X is formed from a set of possible integers (possible range), which are calculated
by using Theorem 2, for every unknown variables (FFU RU F’ U R'). Also these ranges
are updated using Theorem 2 to increase bounding opportunities, whenever a branching
is proceeded. Once the corresponding scheduling graph Gg which contains no positive
cycles is found, the scheduling o is obtained by calculating the longest path lengths from
a reference node to all nodes on GG.

In our disjunctive arc approach, a variable arises for each pair of operations which are
assigned to the same functional unit and data which are assigned to the same register.
Thus the number of variables is the largest when all the operations are assigned to one
functional unit and all the data are assigned to one register. When we let NV be the number
of operation nodes, |[FURUF’U R’| is at most N?. Moreover if we let f be the maximum
number of integers in a ranges over all variables in FF U RU F’U R’, the total number of
integer assignments to FURU F’U R’ is at most (f + 2)|FURUF,UR,‘ = (f+2)V". The
time complexity of seeking the longest path length is O(N?) if we use Floyd’s algorithm.
Therefore the time complexity of this algorithm is O(N3(f + 2)V°).

5.5 Simple Heuristic Method

As we have mentioned in chapter 4, our final goal is to find the minimum iteration period
T, but we also need to find integer for variables FF U RUF’'U R’ to confirm the feasibility
of T*. Our basic strategy is the alternate updates of the iteration period and the solution
for variables FU RU F' U R/.

5.5.1 Heuristics to Find Solution for F'UR’

In chapter 4, we have proposed heuristics to find a solution for variables F' U R based
on the reduction of possible ranges using sensitivity to iteration period. However, this
heuristics is not applied directly to F’ U R/, since we choose only one among disjunctive
arcs with a variable (F1 or R1) and disjunctive arcs without any variable (F2 and F3 or
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SCHEDULING(G, p, &, T,)
1. Construct initial scheduling graph Gg, from G.
2. Construct variable list FF U RU F’ U R’ from p and &.
3. if (BAB(Gs,, FURUF'UR' T,) == 1) “SUCCESS”
else “FAIL”

BAB(Gs, FURUF'UR'T,)
Step 1: Calculate the longest path length of every pair of nodes on scheduling graph G
If positive cycles are detected, return(0).
Step 2: If there is no un-fixed variables in FURU F’U R/, print the longest path lengths
from the reference node to all other nodes, and return(1).
Step 3: Calculate the possible ranges of remained variables in F U RU F’ U R'. If some
range contains no integer in F' U R, return(0).
Step 4: If there are un-fixed variables in F'U R whose ranges contain exactly one integer,
then fix them, add the corresponding disjunctive arcs (F1 or R1) in Gg, and go to
Step 1.
Step 5: If, for F}; (or R;;) € F' (or R’), operation o; (or data d;) is executed (stored)
after the decision operation o4 is completed in the same iteration period, then fix
00, add the corresponding disjunctive arcs F2 (or R2) in G5, and go to Step 1.
Step 6: If, for F}; (or R} ;) € F' (or R’) and operation o; (or data d;) is executed (stored)
after the decision operation oy is completed in the same iteration period, then fix
—00, add the corresponding disjunctive arcs F3 (or R3) in G5, and go to Step 1.
Step 7: Select one un-fixed variable X ¢ FURU F'U R'.
for (each integer contained in its range)
7-1. fix the value, and add the corresponding disjunctive arcs (F1 or R1) in Gg.
7-2. if (BAB(Gs, FURUF'UR/,T,) == 1) return(1).
7-3. delete disjunctive arcs added in Step 7-1.
if (X € F”)
7-4. fix oo, and add the candidate disjunctive arcs (F2) in Gg.
7-5. if (BAB(Gs, FURUF'UR/,T,) == 1) return(1).
7-6. delete disjunctive arcs added in Step 7-4.
7-7. fix 00, and add the candidate disjunctive arcs (F3) in Gs.
7-8. if (BAB(Gs, FURUF'UR/,T,) == 1) return(1).
7-9. delete disjunctive arcs added in Step 7-7.
else if (X € R’)
7-4. fix 0o, and add the candidate disjunctive arcs (R2) in Gg.
7-5. if (BAB(Gs, FURUF'UR/,T,) == 1) return(1).
7-6. delete disjunctive arcs added in Step 7-4.
7-7. fix oo, and add the candidate disjunctive arcs (R3) in Gg.
7-8. if (BAB(Gs, FURUF'UR/,T,) == 1) return(1).
7-9. delete disjunctive arcs added in Step 7-7.
return(0)

Figure 5.7: Outline of our assignment constrained scheduling algorithm for an iterative
algorithm with conditional branches
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R2 and R3), and the latter is independent of possible integers contained in the possible
range.

To choose one heuristically among several candidates for a variable in F’' U R/, one-
step look-ahead (or 1-opt) strategy will be adopted here. For each un-fixed variable
X € F'U R, we temporary add one of candidate disjunctive arcs and calculate the
minimum iteration period 7™". If the scheduling graph becomes to contain positive cycles
after the addition of candidate disjunctive arcs, its corresponding minimum iteration
period T™™ is set to co. Basically we are going to find the minimum 7™" over all
un-fixed variable in F’ U R’ and all their candidate disjunctive arcs and to adopt its
corresponding choice.

The routine HS(Gg, FURUF'UR'T) is the one to find the solution for FURUF'UR’
under given iteration period T'. In HS(Gs,FURUF’'UR’ T), the possible ranges under T’
are calculated by using Theorem 2 for every un-fixed variables in FURUF’'UR’. If there
are un-fixed variables for F'U R each range of which contains exactly one integer, then we
fix them without any further qualification, add the corresponding disjunctive arcs on GG,
and update the other ranges. On the other hand, for un-fixed variables in F’U R/, if there
is exactly one candidate disjunctive arc having the minimum iteration period 7" # oo
(i.e., the other candidate disjunctive arcs have the minimum iteration period T/™" = o)
for one variable X € F’ U R’, then we fix X corresponding to the finite 7" without
any further qualification, add the disjunctive arcs on Gg, and update the other ranges.
When it turns to the situation where the above two types of inevitable decisions are not
applied to any un-fixed variables, it makes a heuristic decision. That is, with respect to
F’U R/, we find the minimum 7" over all un-fixed variables in F’ U R’ and all their
candidate disjunctive arcs, and fix one variable to an appropriate value according to the
found minimum 7", With respect to F'U R, we find one variable X (un-fixed element
in FUR) which has maximum I'(X') among the minimum A(X), and fix X as the integer
which is contained in the reduced range under the iteration period T'— A(X).

For more details, please refer to Fig. 5.8.

5.5.2 Overall Scheduler

Fig. 5.8 shows the outline of the proposed assignment constrained heuristic scheduling
based on the alternate updates of the iteration period and the solution for FURUF'UR/,
and the imaginary decrement of the iteration period with A, I' priority in the latter. In
the algorithm, we begin with HS(Gs,F U RU F’ U R'.T) for the upper bound of the
iteration period (7" = T,™**). Once every variable is fixed so that the resultant scheduling
graph G contains no positive cycles, we calculate the minimum iteration period 77 on
G, and update T, as 7). Executing HS(Ggs,,FF U RU F' U R'\T, — 1) repeatedly with
updating 7, as 7, until it returns “FAIL” we obtain the minimum iteration period 7,
under given G, p, and £&. When o is required, we apply ASAP scheduling under the 7,
using the solution for FURUF’U R’ obtained in the last HS(Gg,, FURUF'UR'T, —1)
which returns “SUCCESS”.

5.6 Experiments

The performance of our heuristic scheduling algorithm is evaluated using 1000 different
resource assignments for dependence graph with conditional branches, which contains 13
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SCHEDULING(G,p,€)

T, < T/ 4+ 1 (T)™* is the upper bound of the iteration period).
Construct the initial scheduling graph G, from G.

Construct variable list F U RU F’ U R’ from p and &.

while (HS(Gs,, FURUF'UR'T, — 1) = “SUCCESS”)

Using the solution for FURUF'UR’ obtained in HS(Gs,, FURUF'UR' T, —1),
calculate minimum iteration period 77.

T, < T).
5. if (T, = T/ 4 1)
return(oo). /x No feasible schedule x/

- W=

else
return(7,). /* T, minimum iteration period */
/* Apply ASAP scheduling under the T}, when o is required. */

HS(Gs,F URUF'UR'T)

Step 1: Calculate the longest path length of every pair of vertices on Gg under the iter-
ation period T. If positive cycles are detected, return(“FAIL”).

Step 2: If there is no un-fixed variables in F U RU F’ U R', return(“SUCCESS”).

Step 3: Calculate the possible ranges, A, and I" of remained variables in FURUF'UR’.
If some range contains no integer, return(“FAIL”).

Step 4: If there are un-fixed variables in F'U R whose ranges contain exactly one integer,
then fix them, add the corresponding disjunctive arcs (F1 or R1) in Gg, and go to
Step 1.

Step 5: If, for F}; (or R} ;) € F' (or R’), operation o; (or data d;) is executed (stored)
after the decision operation o4 is completed in the same iteration period, then fix oo,
add the corresponding disjunctive arcs F2 (or R2) in Gg, and go to Step 1.

Step 6: If, for F}; (or R} ;) € F' (or R') and operation o; (or data d;) is executed (stored)
after the decision operation o4 is completed in the same iteration period, then fix
—00, add the corresponding disjunctive arcs F3 (or R3) in Gg, and go to Step 1.

Step 7: For the candidate disjunctive arcs having the minimum iteration period 7™ in
un-fixed variables F’ U R/, the corresponding variable is fixed as the corresponding
integer, add the corresponding disjunctive arcs in Gg, and return to Step 1.

Step 8: For the un-fixed variable X € F U R which has the maximum I'(X) among the
minimum A(X), fix X as one integer which is contained in the reduced range under
T — A(X), exceptionally |(XupPer — X'lower) /9| in case (C1), or X PP or X'ower in
case (C2), add the corresponding disjunctive arcs in G, and return to Step 1.

Figure 5.8: Outline of our assignment constrained heuristic scheduling algorithm.
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Table 5.1: Results of our scheduling.

method Heuristics B&B

difference +0 | +1 | +2 | +3 | +4 | +5| 46 | NS -

1st iteration || 646 | 178 | 91 | 39 | 16 | 10 | 2 | 18 average
2nd iteration | 118 | 34 | 3 1 2 0 0 0 4.47
3rd iteration || 17 1 0 0 0 0 0 0 | iterations
4th iteration 1 0 0 0 0 0 0 0
5th iteration 0 0 0 0 0 0 0 0

final result 7821 97 | 44 | 33 | 16 | 8 2 | 18

runtime(s] 0.068 1.132

additions, 4 multiplications, 15 variables, 2 fork nodes and 2 join nodes. The proposed
scheduling algorithm is implemented using C programming language on a 1GHz Pentium
III personal computer.

Table 5.1 lists the numbers of instances as entries of the matrix whose column corre-
sponds to the difference between the minimum iteration period 7} calculated using the
solution for FURUF’'U R’ obtained in HS(Gs,, FURUF'UR’T, —1) and the optimum
solution obtained by branch-and-bound method and whose row corresponds to the turn
of HS(Gs,, FURUF'UR' T, — 1) repetition. The number which appears in ith iteration
row, +j column denotes the number of instances among 1000 for which 7, = “optimum
iteration period +;” is obtained in ith turn of HS(Gg,,FURUF’U R’ T, — 1) repetition.
NS column denotes the number of infeasible schedules. As we can see from this table,
HS(Gs,,FF URU F'U R',T, — 1) is repeated at most 5 times (including the final one to
decide no solution for a smaller iteration period) until the procedure terminates, while
branch-and-bound method needs to update 7, 4.47 times in average. As for the quality
of solutions, our heuristic method produces optimum solutions for at least 78% of test
instances. Table 5.2 shows solution distribution generated by our heuristic method. The
last row of each sub-table shows average runtimes of our proposed heuristic method and
of branch-and-bound method, both of which are for one input instance. The proposed
heuristic method runs about 16 times faster than the exact solution method on average.

However, no schedules are obtained for 18 instances among 1000, for which, feasible
schedules are obtained by using the exact solution method. An analysis of the feasible
schedule for assignment constrained scheduling is left for a future problem.

5.7 Conclusion

In this chapter, we have discussed a loop pipeline scheduling problem for a dependence
graph with conditional branches, and have extended our variable disjunctive arc approach
using a scheduling graph with disjunctive arcs generated from the specified assignment
information. After transforming our assignment constrained scheduling problem into the
problem to determine which disjunctive arcs are added, we have proposed a branch-and-
bound method and a simple heuristic method incorporated with successive refinement of
parameter space.
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Table 5.2: Tteration period distribution of our scheduling.

NS 2] 2 1] 1 5 3 4
21 1
20 2 1 1
19 8 1] 3 1 -
18 13] 5[ 17[ 1] 15] | -
17 15] 3] 12[ 3] [ | -
16 15] 4] 28] [ - | -
15 37 16 - -] -] -] -
Heuristic| 14 1 1284 - - - - - R
13 2 6] - -| -| -| -] - -
12 1 2 7 - - - - -] -]
11 1 23 - - - - - - - A
10 AR R
9 a2l - - o -
8 71125 - - | | - - - - - - -] -
AIREIEEE ..
6 - - - - - - - - - - - - - -
Exact T, [ 6] 7] 8[ 9] 10[ 11] 12] 13| 14] 15] 16] 17] 18] 19] 20|
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Chapter 6

Assignment-Driven Approach Based
Data-Path Synthesis System

6.1 Introduction

Most of the conventional high-level synthesis aim mainly to minimize the number of
control steps and the number of functional units, and they first decide the schedule and
the number of functional units by resource constrained scheduling or time constrained
scheduling, which are followed by resource assignment. However, the connectivity between
modules is also an important metric for VLSIs for its connection with wire complexity,
transmission delay, power consumption, testability, etc. In the stepwise design; scheduling
and resource assignment in this order, it may be hard to make a decision on operation
schedule with regarding connectivity, which shall be fixed only after resource assignment.

In contrast to the conventional approaches starting the scheduling following by the re-
source assignment, we are going to present assignment-driven approach in order to handle
interconnection-related metric more accurately in this chapter. The number of intercon-
nections is considered as the objective to be minimized, while the scheduling feasibility
is treated as one of design constraint together with the number of available modules and
iteration period. We incorporate the proposed scheduling method into Simulated Anneal-
ing (SA) exploration of assignment solution space. Each assignment solution visited in
SA is a complete resource assignment, and each assignment solution is evaluated in its
scheduling feasibility and the number of interconnections. Syntheses of data-path with
the reduced number of interconnections are demonstrated by experimental results for a
number of synthesis examples.

6.2 SA Based Assignment Space Exploration

As an application of the proposed scheduling under given resource assignment, we in-
corporate our scheduler into data-path synthesis based on assignment space exploration,
which can respect connectivity between modules (functional units and registers) explicitly
throughout the synthesis process.

We will treat multiplexer-type architecture, which consists of adders, non-pipelined
multipliers, ALUs, registers, multiplexers and interconnections between modules (or ter-
minals). Operation chaining is not considered here. We will consider data-path synthesis
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SA Based Assignment Space Exploration

pi, & < initial assignment

o; + initial schedule

Phests gbesta Obest < Piy 6727 0;

while stopping criteria are not satisfied do

pj, & < neighbor assignment

¢ costl(p &) - cost(pi, &)

y < min(1, exp(—c/T))

r < random(0,1)

call SCHEDULING(G, p;, &, T}))

if scheduling feasibility & (r < y) then
Pis &ir 0i < pj, &, 0
if cost(ppest, Epest) > cost(p;, &;) then

Pbests Ebests Ovest < Piy iy Oi

update temperature

Figure 6.1: Outline of our SA approach.

problem to find the data-path with minimum number of point-to-point interconnections
under given set of available modules (functional units and registers) F, R, and iteration
period T,. We adopt the resource assignment space exploration using Simulated An-
nealing (SA). Figure 6.1 shows the outline of SA based assignment space exploration.
Each assignment solution visited in SA is a complete resource assignment (p, §), and each
assignment solution is evaluated in its scheduling feasibility (“SUCCESS” or “FAIL” by
SCHEDULING(G, p, &, T,)) under given T, and the number of point-to-point interconnec-
tions (by cost(p,£)). Neighbor assignment solution is generated by any of the following
operations;

(1) change assignment of a single operation,
2) change assignment of a single data,
)

(
(3) exchange assignment of two operations,
(4) exchange assignment of two data.
And it is accepted stochastically depending on evaluations of current and neighbor assign-
ment solutions. Note that if an assignment solution is evaluated in no feasible schedule
(“FAIL” by SCHEDULING(G, p, &, T})), we never accept the solution in our SA approach.
If an assignment solution is accepted, the number of interconnections, cost(p;,&;),
is compared with the minimum number of interconnections so far, cost(ppest,Epest). If
the cost(p;, &) is better than the minimum cost(ppest, Epest), the best assignment solution
(Prests Epest) 1s updated. Thus we can always obtain the best explored assignment solution
while maintaining the ability to escape form local minima.
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Figure 6.2: Differential equation benchmark

Table 6.1: Experimental results for differential equation (7

:4)

| System | T, | FU | R [ Mx [ Mi | ME || #CON |
Ours 4 | 1+,1—-1<,2x | 5] 3 7 4 16
HAL || 4 [1+,1-,1<,2x[5] 4 |[10] 6 -
SE [[4]1+1-1<2x|5] 4 9] 5 -

6.3 Synthesis Examples

The proposed method is implemented using C program language on a 1GHz Pentium 111
personal computer. We present experimental results for a number of synthesis examples
from the literature for comparison with results reported by other systems.

6.3.1 Differential Equation Example

Differential equation benchmark, which contains 5 additions, 5 multiplications, 10 vari-
ables and 4 constants (Fig. 6.2), is used as an input instance of data-path synthesis. First,

Table 6.2: Experimental results for differential equation

‘ System H T, ‘ FU

[R [ Mx | Mi [ ME [ #CON |

Ours

6 | IALUs2x | 6| 5 | 11| 6 17
7 | IALUs2x | 5 | 2 9 7 14
10 | 1ALUs,1x | 5| 4 | 10| 6 15
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Figure 6.3: Data-path and schedule under 7, =7

to compare with other systems we assume iteration period 7,, = 4, and that an addition, a
subtraction and a comparison are performed by an adder, a subtractor and a comparator,
respectively, in one control step, and a multiplication is performed by a multiplier in one
control step. However, since other systems enable to use operation chaining, additions,
subtractions and comparisons are performed by adders, subtractors and comparators, re-
spectively, in half a control step. The numbers of functional units and register are given
as 1 adder, 1 subtracter, 1 comparator, 2 multipliers and 5 registers, respectively.

Table 6.1 shows the results of our proposed system, together with results of other
systems SE and HAL quoted from [29]. In the table, FU and R show the numbers
of functional units and registers, respectively. Mx, Mi, and ME show the number of
multiplexers, multiplexer’s inputs, and equivalent two-input single-output multiplexers
respectively. #COM shows the number of point-to-point interconnections. Note that
we eliminate the interconnection between constant data (multiplier) and input terminals
of functional units in Mx, Mi, ME, and #CON. As we can see from this table, our
system provides solutions with reduced numbers of multiplexers, multiplexer’s inputs
and equivalent two-input single-output multiplexers compared to best numbers of them
from other systems. In addition, we obtained the minimum number of point-to-point
interconnections and it took less than 1 second for this example.

Next, we assume that an addition, a subtraction and a comparison are performed by
ALUs in one control step, respectively, and a multiplication is performed by a multiplier
in two control steps. Table 6.2 shows the results of our system for three specifications
of iteration period and the numbers of functional units and registers. We obtained the
minimum number of point-to-point interconnections for all instances. Under each of
specifications, it takes less than 1 second to obtain the best data-path and the best
schedule. Figure 6.3 shows the resultant data-path and schedule under iteration period
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Figure 6.4: Four-order all-pole lattice filter

Table 6.3: Experimental results for four-order all pole lattice filter

| System || ., | FU | R | Mx [ Mi]|ME | #CON | runtime][s] |

8 [3+,2x | 7] 4 ] 9] 5 21 | 15(4761)
Ours | 9 |2+,2x | 6] 5 | 11| 6 19 | 18(4100)
10 [2+,1x | 6| 3 | 7| 4 16 | 18(1336)
11 [1+,1x | 7| 3 [ 9] 6 17 19(202)

T, =7, 2 multipliers, 1 ALUs, and 5 registers.

6.3.2 Four-Order All-Pole Lattice Filter Example

Four-order all-pole lattice filter, which contains 11 additions, 4 multiplications, 16 vari-
ables and 4 constants (Fig. 6.4), is used as an input instance of second data-path synthesis.
We assume that an addition is performed on an adder in one control step, and a mul-
tiplication is performed on a (non-pipelined) multiplier in two control steps. In SA, the
temperature (7') which controls the probability of an uphill move (exp(—c¢/T)) is sched-
uled with the form 7; = 0.98 x T;_; from Ty = 15 until it reaches 0.05, and in each
temperature 500 moves are attempted.

Table 6.3 shows the results of our system for several specification of iteration period
and the numbers of functional units and registers. As the results of differential equation
benchmark, we obtained the minimum number of point-to-point interconnections for all
instances. The last column shows the runtimes of our system. The number in parentheses
denotes the runtime of branch-and-bound based assignment space exploration, which gen-
erate optimal solutions for data-path synthesis problem. From this column, we can see our
system runs 17.5 seconds on average. In addition, our system runs about 140 times faster
than the exact solution method on average. Figure 6.5 shows the resultant data-path,
which contains 3 adders 2 multiplier, 8 registers, 4 multiplexers and 21 interconnections,
and schedule under iteration period 7, = 8.

6.3.3 Fifth-Order Elliptic Wave Filter Example

Fifth-order elliptic wave filter, which contains 26 additions, 8 multiplications, 35 variables
and 8 constants (Fig. 6.6), is used as an input instance of third data-path synthesis. We
assume that an addition is performed on an adder in one control step, and a multiplication
is performed on a (non-pipelined) multiplier in two control steps. In SA, the temperature
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Figure 6.5: Data-path and schedule under 7, = 8

(T') which controls the probability of an uphill move (exp(—¢/T')) is scheduled with the
form 7T; = 0.98 x T;_; from Ty = 15 until it reaches 0.05, and in each temperature 5000
moves are attempted.

Table 6.4 shows the results of our system, together with results of other systems, for
several specification of iteration period and the numbers of functional units and registers.
Experimental results are grouped by iteration period. As we can see from this table,
our system provide solutions with 12.5% ~ 25% reduced numbers of multiplexers, mul-
tiplexer’s inputs and equivalent two-input single-output multiplexers compared to best
numbers of them from other systems in first and second groups (i.e., iteration periods 7,
are 21 and 19). Results in third and fourth groups (i.e., iteration periods 7, are 17 and
16) are the best solutions, with respect to not only the number of multiplexers but also
the number of FUs under given 7;., that ever appeared in literatures. Figure 6.7 shows the
resultant data-path and schedule under iteration period 7, = 16. The average runtime of
our system is about 60 minutes for each input instance.
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Figure 6.6: Fifth-order elliptic wave filter

Table 6.4: Experimental results for fifth-order elliptic wave filter

| System |7, FU [ R |Mx|Mi]|ME | #CON [ runtime[m] |

Ours  [[21|24,1x [11] 7 [21] 14 29 7

SE 21 [2+,Ix [11] 8 [24] 16 - -
SPLICER | 21 | 2+,1x | - | 9 [43] 34 - -
MABAL [[21[2+,2x |11] 13 | 43| 30 - -

Ours [19]2+,2x [10] 9 [24] 15 31 64

SE 19 [ 2+,2x [10 | 11 [ 31 ] 20 - -

HAL [19|2+,2x [12] - [29] - - -
EMUCS [19 ] 2+,2x [12] 12 [ 34| 22 - -
| Ouws [17]2+2x[11] 8 [23] 15| 31 | 60 |
| Ours [16]3+,2x 1112 [31[19 ] 37 [ 49 |

6.3.4 Dependence Graph with Conditional Branches Example

Finally, dependence graph with conditional branches in [35], which contains 13 additions,
4 multiplications, 15 variables, 2 fork nodes and 2 join nodes (see Fig 6.8), is used as
an input instance of data-path synthesis. In SA, the temperature (7') which controls the
probability of an uphill move (exp(—c/T)) is scheduled with the form 7; = 0.98 x T;_,
from Ty = 15 until it reaches 0.05, and in each temperature 1000 moves are attempted.
Table 6.5 shows the results of our system for several specification of iteration period
and the numbers of functional units and registers. As we can see from this table, we
obtained the minimum number of point-to-point interconnections for all instances. We
found optimal solutions for all instances by using branch-and-bound based assignment
space exploration. The number in parentheses denotes the runtime of branch-and-bound
based assignment space exploration. Our system runs about 140 seconds on average.
In addition, our system runs about 700 times faster than the exact solution method on
average. Figure 6.9 shows the resultant data-path and schedule under iteration period
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Figure 6.7: Data-path and schedule under 7, = 16
T, =4.

From the stochastic nature of SA and incompleteness of annealing schedule, the quality
of a final solution tends to vary on each run. However, we have confirmed that most of
solutions, which are obtained from multiple runs, are the minimum ones.

6.4 Conclusion

In this chapter, as an application of the proposed scheduling method, it is incorporated
with Simulated-Annealing based exploration of assignment solution space. Experimental
results for fifth-order elliptic wave filter show that our system provides data-paths with
the 12.5% ~ 25% reduced number of multiplexer’s, multiplexer’s input, and equivalent
two-input single-output multiplexers compared to results of others systems. Also, for
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Figure 6.8: Dependence graph with conditional branches in [35].

Table 6.5: Experimental results.

| System [ 7. | FU |R|Mx|Mi|ME || #CON | runtime[s] |

9 [2ALUs[3] 0 | 0] 0 7 177(40)
8 [2ALUs 3| 0 |0 0 7 129(336)
Ours || 7 [3ALUs|3] 0 | 0| 0 8 114(1769)
6 [3ALUs | 3| I | 2 | 1 9 101(8003)
5 |[4ALUs| 4| 3 | 6 | 3 12 || 80(248070)
1 [5ALUs 4| 2 | 4| 2 13 || 71(244580)

dependence graph with conditional branches, syntheses of data-path with the minimum
number of interconnections are demonstrated.
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Chapter 7

Conclusion

Most of the conventional high-level synthesis aim mainly to minimize the number of control
steps and the number of functional units, and they first decide the schedule and the num-
ber of functional units by resource constrained scheduling or time constrained scheduling,
which are followed by resource assignment. However, the connectivity between modules is
also an important metric for VLSIs for its connection with wire complexity, transmission
delay, power consumption, testability, etc. In order to handle interconnection-related met-
ric more accurately, simultaneous scheduling and assignment approach and assignment-
driven approach are proposed. In those approaches, we often encounter a scheduling
problem with specified resource assignment, which becomes the most importance core
task.

In this thesis, we have proposed an approach using a parametric scheduling graph
with disjunctive arcs generated from the specified assignment information (operation to
functional unit assignments and data to register assignments) in loop pipeline scheduling
problem. After transforming our assignment constrained scheduling problem into the
problem to assign integer to disjunctive arcs and evaluating the possible range of variables
to be fixed, we have derived a branch-and-bound method incorporated with successive
refinement of parameter space. We have proposed also a heuristic method based on the
sensitivity with respect to the iteration period to find the minimum iteration period.
Experimental results show that our heuristic method can find solution quickly, while
keeping the quality of solution.

To treat assignment constrained loop pipeline scheduling for a dependence graph with
conditional branches, we have extended our variable disjunctive arc approach. Similarly,
after transforming the scheduling problem into the problem to determine which disjunc-
tive arcs are added, we have derived a branch-and-bound method and a simple heuristic
method incorporated with successive refinement of parameter space.

As a result, for a dependence graph representing all control constructs (i.e., precedence
constraints, loops and conditional branches), we have proposed assignment constrained
scheduling method. As an application of the proposed scheduling method, it is incorpo-
rated with Simulated-Annealing based exploration of assignment solution space. Exper-
imental results show that our system provides syntheses of data-path with the reduced
number of interconnections.

For practical applications, we need to develop an efficient heuristics for the exploration
of assignment solution space concurrent with assignment constrained pipeline scheduling.
The incorporation of floorplanning into our assignment-centric approach is also an impor-
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tant future work.
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