Title	有限次元ベクトル空間の辞書式分離とその応用
Author(s)	池田,潔
Citation	
Issue Date	2003-03
Туре	Thesis or Dissertation
Text version	author
URL	http://hdl.handle.net/10119/936
Rights	
Description	Supervisor:小野 寛晰,情報科学研究科,博士

Lexicographical Separation in Finite-Dimensional Vector Spaces and its Applications

Kiyoshi lkeda School of Information Science, Japan Advanced Institute of Science and Technology

February 14, 2003

Abstract

The aim of the thesis is to prove a lexicographical separation theorem and to give its applications to linear inequality systems, lexicographic expected utility, and extensive measurement.

The main result of the thesis is the following lexicographical separation theorem: Let \mathbb{F}^n be the n-dimensional vector space over \mathbb{F} , where \mathbb{F} stands for an ordered field such that $\mathbb{Q} \subseteq \mathbb{F} \subseteq \mathbb{R}$, and let P be a nonempty subset of \mathbb{F}^n . Suppose P is a convex cone not containing $\mathbf{0}$, and also suppose its complement $\mathbb{F}^n \setminus P$ is a convex cone in \mathbb{F}^n . Then, there exist real-valued linear functions g_1, \ldots, g_n on \mathbb{F}^n such that $x \in P$ if and only if $(g_1(x), \ldots, g_n(x)) >_L (0, \ldots, 0)$ for all $x \in \mathbb{F}^n$, where $<_L$ (or $>_L$) denotes the lexicographic order on \mathbb{R}^n , that is, given $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{R}^n$ with $x \neq y$, we have $x <_L y$ if $x_k < y_k$ for $k = \min\{i \mid x_i \neq y_i\}$. This means that, in any finite-dimensional vector space over \mathbb{F} , a convex cone P and its convex complement $\mathbb{F}^n \setminus P$ can be separated by a set of linear functions and a lexicographic order. Moreover, we show that the first function g_1 is unique up to a positive scalar multiple. In case $\mathbb{F} = \mathbb{R}$, equivalent versions of this theorem was proved by Hausner and Wendel, Klee, Martínez-Legaz and Singer; so that the above theorem is a generalization of their theorems, considering an ordered field \mathbb{F} other than \mathbb{R} .

We give a proof of the lexicographical separation theorem from our original standpoint, using an infinitesimal ε , that is, $0 < \varepsilon$ and $\varepsilon < 1/k$ for all positive integer k. The proof given in this thesis makes use of the fact that the lexicographic order on \mathbb{R}^n can be described by a polynomial ring whose variable is an infinitesimal: $(a_0, a_1, \ldots, a_n) <_L (b_0, b_1, \ldots, b_n)$ if and only if $a_0 + a_1\varepsilon + \cdots + a_n\varepsilon^n < b_0 + b_1\varepsilon + \cdots + b_n\varepsilon^n$. Although such a description is known in the literature, we gave a new role to an infinitesimal in this thesis: (i) We used an infinitesimal not only for the description of a lexicographic order but also as a useful tool of proving the lexicographical separation theorem. (ii) We adopted an infinitesimal as a solution to infinite systems of linear inequalities (as will be seen below).

As one of the applications of the lexicographical separation theorem, we obtain a generalization of the well-known "theorem of the alternatives," which gives a necessary and sufficient condition for the existence of solutions to linear inequality systems. Let P be an nonempty subset of \mathbb{R}^n . Then, $\mathbf{0}$ is not contained in the convex hull of P if and only if the inequality system " $\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n > 0$ for all $(\lambda_1, \lambda_2, \ldots, \lambda_n) \in P$ " has solutions x_1, x_2, \ldots, x_n in $\mathbb{R}[\varepsilon]_n$, where $\mathbb{R}[\varepsilon]_n = \{r_1 + r_2\varepsilon + \cdots + r_n\varepsilon^{n-1} \mid r_1, \cdots, r_n \in \mathbb{R}\}$. We provide several examples of infinite systems of linear inequalities, showing that it is not unreasonable to obtain such an infinitesimal ε in our solutions. As another application, we also obtain a generalization of Farkas' lemma for lexicographical inequality systems. Further, we applied these results to game theory, giving a generalization of von Neumann's minimax theorem for semi-infinite games.

As other application of the lexicographical separation theorem, we presented two kinds of lexicographic utility representations: one is about lexicographic expected utility, and the other is about lexicographic extensive utility. The lexicographic expected utility representation given in this thesis is a modification of Hausner's lexicographic expected utility theory, by omitting the existence of irrational-valued probabilities: we restrict our attention to \mathbb{F} -valued probabilities, where \mathbb{F} stands for an ordered field such that $\mathbb{Q} \subseteq \mathbb{F} \subseteq \mathbb{R}$, and show that lexicographic expected utility theory can be founded on the domain of \mathbb{F} -valued lotteries. On the other hand, the lexicographical extensive utility representation given in this thesis is a modification of classical Hahn's embedding theorem: we establish a scheme of conditions which is necessary and sufficient for the existence of extensive utilities on indivisible items.

Key Words: separation theorem, lexicographic orders, linear inequality systems, lexicographic utility theory