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Abstract

The aim of the thesis is to prove a lexicographical separation theorem and to give
its applications to linear inequality systems, lexicographic expected utility, and extensive
measurement.

The main theorem of the thesis is a lexicographical separation theorem stating that
a convex cone and its convex complement in F” can be separated by linear functions
and a lexicographic order, where F stands for an ordered field such that Q C F C R.
We also give several other versions of lexicographical separation theorems, all of which
are obtained from the main theorem. We provide a proof of the main theorem from
our original standpoint, which makes use of the fact that a lexicographic order can be
described by polynomials whose variable is an infinitesimal.

As one of the applications of the lexicographical separation theorem, we give a nec-
essary and sufficient condition for the existence of solutions to infinite systems of linear
inequalities, where the solutions are allowed to be polynomials whose variable is an in-
finitesimal. The result is a generalization of the well-known “theorem of the alternatives”
for linear inequality systems. We also give a Farkas type theorem for lexicographical in-
equality systems.

As other application of the lexicographical separation theorem, we presented two kinds
of lexicographic utility representations: one is about lexicographic expected utility, and
the other is about lexicographic extensive utility. The lexicographic expected utility
representation given in this thesis is a modification of Hausner’s lexicographic expected
utility theory, by omitting the existence of irrational-valued probabilities: we restrict our
attention to rational-valued probabilities, and show that lexicographic expected utility
theory can be founded on the domain of rational-valued lotteries. On the other hand,
the lexicographical extensive utility representation given in this thesis is a modification
of classical Hahn’s embedding theorem: we establish a scheme of conditions which is
necessary and sufficient for the existence of extensive utilities on indivisible items.
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Chapter 1

Introduction

In the past century, the importance of lexicographic orders was recognized by several au-
thors, including Hahn [14], Hausner and Wendel [18], Chipman [4], Martinez-Legaz and
Singer [30]. These authors showed that a variety of relations can be represented by lexi-
cographic orders, and proved lexicographical representation theorems without continuity
or an Archimedean condition. The present thesis is written along the line of this litera-
ture. In this thesis we prove another lexicographical representation theorem, and provide
its applications to linear inequality systems, lexicographic expected utility, and extensive
measurement.

The main result of this thesis strengthens the lexicographical representation theorems
of the above mentioned literature. The result is concerned with separation of two convex
sets in a finite-dimensional vector space over F, where F denotes an arbitrary ordered
subfield of real numbers including the field of rational numbers. We present applications
of the main result to linear inequality systems and to lexicographic utility theory. Some
of the results in this thesis are presented in terms of a polynomial ring whose variable is
infinitely small, which gives us a clear picture of lexicographic orders.

In Section 1.1 we first explain the backgrounds of the thesis. In Section 1.2 we give
an overview of our results, and in Section 1.3 we mention the organization of the thesis.

1.1 Backgrounds

In this section, we survey (i) separation theorems, (ii) finite systems of linear inequali-
ties, (iil) extensive measurement of preference, (iv) von Neumann-Morgenstern utility
functions. In each subsection we also mention our contributions in this thesis.

Separation Theorems

The notion of separation is one of the most fundamental notions in convexity theory. We
say that two disjoint sets C; and C5 in R are separated if there exists a hyperplane such
that C' is contained in one of the closed half-spaces associated with the hyperplane and
(5 lies in the opposite closed half-space. It is known that there exist several separation
theorems stating that two disjoint convex sets' in R” can be separated by a hyperplane.
Here we shall present a version :

1See Section 2.2 for the definition of convex sets.



Proposition 1.1.1 (Separating Hyperplane Lemma) Let B be a closed convex set
in R”, and let © = (x1,---,2,) be a point not in B. Then there exist real numbers
Pls- -+, DPny Ppr1 such that

Z PiTi = DPn+1, (1.1)
i=1

and n
Z PiYi > Ppy1 forall y= (yh : ",yn) €B. (1-2)
i=1

( Geometrically, this means that there exists a hyperplane through z such that B lies
entirely “above” the hyperplane. )

Proof. See Appendix. O

There are many other versions of separation theorems. See Rockafellar [39]. This author
provides comprehensive information about the role of separation theorems in convexity
theory and their applications. We will see in the next subsection that the separating
hyperplane lemma can directly be applicable to the theory of finite linear inequality
systems.

The separating hyperplane lemma (Proposition 1.1.1) relys on the assumption that a
given convex set should be closed. However, it is sometimes difficult to verify whether a
given set in a topological space is closed or not; so that from a theoretical point of view
it is important to examine the consequences of removing this assumption. As will be seen
next, dropping this assumption modifies the separating hyperplane lemma (Proposition
1.1.1) by allowing “lexicographical” separation. Let R = R U {—o0,00}. (In the
following, the elements of R” will be regarded as column vectors, and the superscript ”
will mean transpose.) We consider the lexicographic ordering? <, on R", that is, given
= (r1,...,2)7, y = (y1,...,yn)" € R* with o # y, we have x <, y if x; < y; for
k =min{i | x; #y; } . We also write x <, y if © <, y or x =y. The following theorem
is due to Martinez-Legaz [27]:

Proposition 1.1.2 Let B be a convex set in R?, and let = = (z1,---,z,)" be a point
not in B. Then there exist an orthogonal matrix A of order n and a vector ¢ € R" such
that

Ar <, t (1.3)
and Ay >, t forall y=(yi, -+, yn)’ €B. (1.4)
(]

That is to say, a convex set and a point not in the convex set can be separated by a linear
operator and the lexicographic ordering on R™. For a proof see Martinez-Legaz [27], who
provided a simple induction proof of Proposition 1.1.2.

Other theorems on lexicographical separation in R" can be found in Hausner and
Wendel [18], Klee [23], Martinez-Legaz and Singer [30]; all these theorems are essentially
equivalent, in the sense that they are all concerned with lexicographic separation of two

2See Definition 2.1.2 for the precise definition of the lexicographic ordering.



convex sets in R”. In Chapter 3 we will prove a modification of the above lexicographical
separation theorems, by considering not only the real numbers R but also other ordered
fields F: we will show that a convex cone and its convex complement in F" can be
separated lexicographically (where F stands for an ordered field such that Q@ CF C R).

Finite Systems of Linear Inequalities

In this subsection, we present an application of the separating hyperplane lemma (Propo-
sition 1.1.1) to finite system of linear inequalities. Let A be a finite set of points in R™.
Consider the following system of (strict) linear inequalities:

a1xy + agy + - -+ apz, > 0 forall (ag,as,...,a,) € A. (1.5)

If A includes (0,0,...,0), for example, then obviously the system (1.5) has no solutions
x1,%2,...,T,. This indicates that the solvability of the system (1.5) depends on the
structure of A.

It is known that the following proposition, called “the theorem of the alternatives,”
gives a necessary and sufficient condition for the existence of solutions z,...,z, to (1.5).
Let (x,y) denote the inner product of z and y, i.e. (z,y) = x1y; + -+ + Ty, where

x=(x1,...,2,) and y = (y1,...,Yn) -

Proposition 1.1.3 (Theorem of the Alternatives) Let a; € R" for i =1,...,m. Then
exactly one of the following alternatives holds:

(i) There exist nonnegative real numbers py,...,p,, such that > p; =1 and

m
sz'az' = 0.
=1

(ii) There exists a vector x € R™ such that

(a;, ) > 0 for i=1,...,m.

Proof. This can be proved as a consequence of the separating hyperplane lemma (Propo-
sition 1.1.1). See Appendix. O

There are several versions of linear existence theorems which give solutions to finite
system of linear inequalities ; they are known by various names, including the theorem of
the alternatives, Farkas’ lemma, Motzkin’s lemma, Gordan’s lemma, and so on. See Gale
[12], Rockafellar [39], Slaka [42] for more comprehensive information on finite systems of
linear inequalities. In Chapter 4, we will treat infinite systems of linear inequalities, and
give a generalization of the theorem of the alternatives by allowing an “infinitely small”
solution.

We shall introduce another linear existence theorem known as Farkas’ lemma. An
inequality (ag, ) < 0 is said to be a consequence of the system

(a;, ) < 0 for i=1,...,m (1.6)

if it is satisfied by every = which satisfies the system (1.6).

3



Proposition 1.1.4 (Farkas’ Lemma) Let a; € R” for i =0,1,...,m. Then, (ay, z) <
0 is a consequence of the system

(a;, z) < 0 fori=1,...,m

if and only if there exist nonnegative real numbers py,...,p, such that

m
Z pia; = agp.
i=1
O

For a proof see e.g. Rockafellar [39]. The role of Farkas’ lemma in linear programming
theory was discussed in Kuhn and Tucker [24]. In Chapter 4, we will give a generalization
of Farkas’ lemma for lexicographical inequality systems.

Extensive Measurement of Preference

In this subsection, we introduce the theory of fundamental measurement of preference. For
more detailed discussion, see Roberts [38]. Measurement of preference is considered as an
analog of measurement of temperature or mass: in the case of temperature, measurement
is the assignment of numbers that preserve the observed relation “warmer than;” in the
case of mass, the relation preserved is the relation “heavier than.” Thus, measurement
of preference is assignment of numbers preserving the observed relation “preferred to.”
If S is a set of alternatives and a < b holds if and only if you prefer a to b, then we would
like to assign a real number u(a) to each a € S such that for all a,b € S,

a<b iff wu(a) < u(d). (1.7)

The function u is called a wutility function or an ordinal utility function or an order-
preserving utility function, and the value u(a) is called the utility of a.

To give a concrete example, let { coffee, tea, juice} be a set of alternatives, and
suppose we have a preference order “coffee > tea > juice” (that is, coffee > tea,
tea > juice, and coffee > juice). Then, there exists a utility function u preserving the
order >, such as wu;(coffee) = 3, wui(tea) = 2, and wuy(juice) = 1, or wuy(coffee) = 100,
us(tea) = 10, and uy(juice) = 0.

As observed in the above example, there are several different utility functions pre-
serving the same preference order. Hence, it comes into question which function is to be
adopted. The answer depends on how demanding we want to be in our measurement.

In the case of mass, we actually demand more of our measure. We want it to be
“additive” in the sense that the mass of the combination of two objects is the sum of
their masses. Formally, we speak of a binary operation o on the set S of objects. We want
a real-valued function f on S that not only satisfies (1.7) but also preserves the binary
relation o, in the sense that

flaob) = f(a) + f(b). (1.8)

There might be a comparable operation in the case of preference ; we might want to allow
compound alternatives, such as coffee and suger (a o b), and we might want to require
utility to be additive, that is, to satisfy

u(aob) = u(a) + u(b). (1.9)

4



A utility function that is also additive is often called a cardinal utility function.

Additive properties, such as mass, have traditionally been called eztensive in the liter-
ature of measurement, and so the problem of finding (necessary and) sufficient conditions
for the existence of a cardinal utility function is called the problem of eztensive measure-
ment. See Roberts [38], Narens [36] for the developments on extensive measurement.

It is well-known that classical Holder’s Theorem gives sufficient conditions for extensive
measurement. A system (A, R, o,e) is called an Archimedean ordered group if it satisfies
the following conditions:

O1 (A, o,e) is a group,
02 R is a total order on A,

O3 (Monotonicity) for all z,y,z € A,

zRy iff (xoz)R(yoz) iff (zox)R(zoy),

O4  (Archimedean) for all x,y € S, if eRy then there is a positive integer k such
that = Rky.

[t can easily be verified that (R <,+,0) is an Archimedean ordered group. A system
(A, R, 0,e) is said to be homomorphic to (R, <,+,0) if there exists a real-valued function
u on A such that (1.7) and (1.9) hold for all a,b € A.

Proposition 1.1.5 (Ho6lder’s Theorem) Every Archimedean ordered group is homo-
morphic to (R, <,+,0). O

For a proof see e.g. Birkhoff [1]. See also Roberts [38] for other modifications of Holder’s
Theorem giving sufficient conditions for extensive measurement.

Hahn’s Theorem [14] gave a non-Archimedean extension of Holder’s Theorem. Hahn
[14] showed that it is possible to omit the Archimedean condition O4 by introducing lexi-
cographically ordered vectors in place of real-values. In Chapter 5 we will give a modifica-
tion of Hahn’s Theorem, giving a necessary and sufficient condition for “lexicographical”
extensive measurement.

von Neumann—Morgenstern Utility Functions

In this subsection, we consider measurement of preference in the context of decisions
under risk. In brief, we think of a risky situation by assigning “probabilities” to the
alternatives. For example, if there are two alternatives a, b to be chosen under risk, we
assign a probability A to a, and (1 — \) to b, and therefore the situation is expressed
by the combination Aao (1 — A)b. If there exists a preference < on such a situation, we
would like to find a utility function u which preserves the combination, in the sense that

u(Aao (1 —A)b) = Au(a) + (1 —N)u(b). (1.10)

This means that utility of the combination of two alternatives is equivalent to the “expected
value” of the utilities of the alternatives. Such expected value of utilities is called ezpected
utility.



Von Neumann and Morgenstern [45] were the first to develop the theory of expected
utility, establishing necessary and sufficient conditions for the existence of a utility func-
tion satisfying (1.7) and (1.10). Their expected utility theory has been modified by several
authors, including Herstein and Milnor [19], Jensen [21], Fishburn [6]. Let us summarize
their results as follows:

Let S be a set of items. A probability distribution on S with finite support or, more
briefly, a lottery on S is a mapping A : S — [0, 1] with the following properties :

(i) Z)\(s) =1, (ii) there is a finite S’ C S such that A(s) =0 for all s € S\ S".

SES

Let A(S) denote the set of all lotteries. Given A, € A(S) and 60 € [0,1], we define the
convex combination OA + (1 —0)u by

[OAN+(1—0)p](s) = OA(s)+(1—0)u(s) forallseS.

One can easily verifies that the convex combination #\ + (1 —#)p also belongs to A(S).
Let < be a preference relation on A(S), where 2 < y means “y is preferred to z.”
Consider the following axioms: For all x,y,z in A(S),

L1 < is a weak order® on A(S),
L2 if <y then fz+(1—-0)z < Oy+ (1 —0)z forall 0 €(0,1),
L3 if <y and y < z, then there are 0,£ € (0,1) such that

r+(1—-0)z <y and y < &x+(1—-¥§z.

These axioms L1, L2 and L3 are refered to as the ordering, independence, and Archimedean
axioms, respectively.

Proposition 1.1.6 (Jensen [21]) A preference relation < on A(S) satisfies L1-L3 if
and only if there is a utility function u: S — R such that for all A\, u € A(S),

A=<p o iff Z)\(s)u(s) < Zu(s)u(s). (1.11)

Moreover, u is unique up to a positive affine transformation, i.e. if v :.S — R is another
function with the same property, then there exist real constants a > 0 and b such that

v(s)=au(s)+b forallsesS.
Proof. See e.g. Jensen [21], Fishburn [6], Hammond [16]. O

That is to say, if we assume the axioms LL1-1.3, we can obtain a utility function v : S —
R satisfying (1.11) for all A\, u € A(S), which preserves both the relation < and the
“comvex combination.” See Fishburn [6] [9] [10], Hammond [16] for more information
about the foundations of expected utility and its role in decision theory.

3See Section 2.1 for the definition of weak orders.



It has sometimes been pointed out in the literature that the role of the Archimedean
axiom L3 in single person decision theory is merely technical, namely, to ensure the
existence of a real-valued utility function. Hausner [17], Chipman [4], Fishburn [7] [10],
Nakamura [33] [34] developed lexicographic extensions of the classical expected utility
theory without the Archimedean axiom L3, introducing lexicographically ordered vectors
in place of real-values. Readers should consult the excellent survey paper of Martinez-
Legaz [29] for the recent developments on lexicographic utility.

As can be seen in the definition, the expected utility theory is founded on the domain of
real-valued lotteries. In Chapter 5, we will give a modification of Hausner’s lexicographic
expected utility theory by omitting the existence of irrational-valued lotteries.

1.2 Overview

In this section, we give an overview of our results in this thesis. Let <, (or >, ) denote
the lexicographic order on R™, that is, given = = (x1,...,2,), y = (y1,.-.,Yn) € R* with
x#y,wehave x <,y if zp <y, for k=min{i | z; #y; }.

The main result of the thesis is the following lexicographical separation theorem (see
Theorem 3.1.1 in Chapter 3):

Main Theorem Let F" be the n-dimensional vector space over I, where F stands for an
ordered field such that Q CF C R. Let P be a positive cone* in " with its complement
F*\ P being a convex cone in F". Then, there exist real-valued linear functions g, ..., gy
on F" such that for all ©x € F" |

zeP iff (gi(x),...,gn(x)) >, (0,...,0). o
This means that, in any finite-dimensional vector space over F, a convex cone P and its
convex complement "\ P can be separated by a set of linear functions and a lexicographic
order. We also show a kind of uniqueness of the linear functions.
In case F = R, equivalent versions of this theorem was proved by Hausner and
Wendel [18], Klee [23], Martinez-Legaz and Singer [30]; so that the above theorem is
a generalization of their theorems, considering an ordered field F other than R.

We give a proof of the lexicographical separation theorem from our original standpoint,
using an infinitely small number, or an infinitesimal €, that is, 0 < ¢ and ¢ < 1/k for
all positive integer k. Let us introduce R[e] the smallest ring containing both R and an
infinitesimal ¢, i.e.

Rle] = {ro+rme+---+re" | neN, ro,rq,...,7, € R}.

In this thesis, we use the following fact that the lexicographic order on R" can be described
by the polynomials in R[e] (see Definition 2.1.5 in Chapter 2):
Proposition Let € be an infinitesimal. For all ag,aq,...,a,, by,by,...,b, € R,
(ao,al,...,an) <z (bg,bl,...,bn) iff (112)
ag + a1+ -+ ae" < bg+be+---+bye.

4In this thesis, a positive cone is defined as a convex cone in which the origin is not contained. See
Section 2.2.



|

We shall call R[e] the set of lexicographically ordered polynomials. The correspondence
(1.12) between the lexicographically ordered vectors and the lexicographically ordered
polynomials will play an important role in this thesis: the lexicographical separation
theorem will be proved in terms of the lexicographically ordered polynomials, rather than
the lexicographically ordered vectors. The use of the polynomials makes the proof easier,
since they allow both addition and multiplication (different from the lexicographically
ordered vectors, which allow only addition ).

The correspondence (1.12) also enables us to give a new role to an infinitesimal : in this
thesis, we adopt an infinitesimal € as a solution to infinite systems of linear inequalities
(as will be seen below ) .

As one of the applications of the lexicographical separation theorem, we obtain a
generalization of the well-known “theorem of the alternatives,” giving a necessary and
sufficient condition for the existence of solutions to strict linear inequality systems (see
Theorem 4.1.2 in Chapter 4):

Theorem Let P be an nonempty subset of R". Then, the origin 0 is not contained in
the convex hull of P if and only if the inequality system

)\11‘1+)\21'2+"'+)\n1'n > 0 for all (>\17>\27---;)‘n) e P

has solutions w1, s, ..., 2, in Rle].
(|

In Chapter 4 we will provide several examples of strict linear inequality systems, from
which we will see that it is not unreasonable to obtain such an infinitesimal ¢ in our
solutions. As another application, we also obtain a generalization of Farkas’ lemma for
lexicographical inequality systems. Further, we applied these results to game theory,
giving a generalization of von Neumann’s minimax theorem for semi-infinite games.

As an application of the lexicographical separation theorem to expected utility theory,
we show that a similar form of the lexicographic expected utility representation considered
by Hausner [17] is valid even if we omit the existence of irrational-valued probabilities :
in this thesis we restrict our attention to rational-valued probabilities, in order not to
consider situations in which an event occurs with an irrational-valued probability. Let
Sp = {ai,...,an} be a finite set of items, and let A(S,) denote the set of all rational-
valued probability distributions on S, , i.e.

n
A(Sn):{plal + .- —i—pnozn |pi€Q, plZO forizl,...,n with szzl}
=1

Suppose there exists a weak order® < on A(S,) satisfying the following independence
conditions: for all z,y,z € A(S,) and all 0 <# <1 in Q,
I1 if <y then fz+(1—-0)z < Oy+(1—0)z,

I2 if v~y then Oz +(1—-0)z ~ Oy+ (1 —0)z.

5See Section 2.1 for the definitions of a weak order < and its associated indifference relation ~ .



As will be seen next, these independence conditions for a weak order < on A(S,) are
necessary and sufficient for the existence of a finite-dimensional linear utility function on
A(S,,) whose lexicographic order preserves the ordering < (see Theorem 5.1.2 in Chapter
5):

Theorem A weak order < on A(S,) satisfies the independence conditions (I1 and 12)
if and only if there exists an (n—1)-dimensional utility function U = (uy,...,u, 1) on

A(S,) such that for all > " pioy, D0 gy in A(S,),

Zpiai < Z(h‘ai iff ZPiU(Oéi) <z Z%U(Oéi)-
i—1 i—1 i—1 i—1

We also show that the first component u; is unique up to a positive affine transforma-
tion. Thus, when all the events are guaranteed to occur with rational-valued probabilities,
we do not need to assume the existence of “irrational-valued probabilities.” The above
lexicographic expected utility representation can be derived as a consequence of the lexi-
cographical separation theorem, considering lexicographical separation of two convex sets
in a finite-dimensional vector space over Q.

|

Lastly, we obtain the following lexicographical extensive measurement theorem, giving
a necessary and sufficient condition for the existence of extensive utilities on indivisible
items. Let S, = {aq,...,a,} be a finite set of indivisible items, and let ©(S,,) denote
the set of all consumption plans on S, , i.e.

Q(Sn) = {klal +k20é2 + .- +knan|k1,k2...,kn€N}.

(A consumption plan kjoq + keas + -+ - + ko, means that, intuitively, a consumer
consumes k; pieces of «; for each i = 1,...,n.) Suppose there exists a preference
relation < on Q(S,,) satisfying the following conditions:

Al < is a weak order on €(S,),
A2 forall z,y,2 € Q(S,), <y implies z+2z < y+z,
A3 forall z,y,2 € Q(S,), z~y implies z+2 ~ y+z.

The following theorem states that the scheme of conditions A1-A3 is necessary and suf-
ficient for extensive measurement of preferences (see Theorem 5.2.1 in Chapter 5):

Theorem A preference relation < on €(S,) satisfies A1-A3 if and only if there are lexi-
cographically ordered polynomials qi, ..., q, € R[e]| such that for all ky, ... ky, l1,...,1l, €

N,

n n n n

i=1 i=1 i=1 i=1 (]
This means that the conditions A1-A3 ensure the existence of utilities ¢i,...,¢q, of the
items aq, ..., q,, respectively, which can be added one another freely. In Chapter 5, we

will discuss the meaning of the conditions A1-A3 in the context of economics.



1.3 Organization of the Thesis

In Chapter 2, we define algebraic concepts which will be needed in the subsequent chap-
ters. The main theme of this chapter is to show that (i) a weak order on a vector space
can be described by a convex cone, (ii) a lexicographic order can be described by poly-
nomials whose variable is an infinitesimal ( which will be called lexicographically ordered
polynomials in this thesis). These results are well-known in the literature, but we rear-
ranged them for our later convenience. The description of a lexicographic order by means
of an infinitesimal will play an important role in this thesis: we use an infinitesimal not
only for the description of a lexicographic order but also as a useful tool of proving a
lexicographical separation theorem in Chapter 3.

In Chapter 3, we present our main results of the thesis. The main theorem is a lexico-
graphical separation theorem stating that a convex cone and its convex complement in
F” can be separated by linear functions and a lexicographic order, where F stands for an
ordered field such that Q C F C R. We also give several other versions of lexicographical
separation theorems, all of which are obtained from the main theorem. We provide a
proof of the main theorem from our original standpoint, using the lexicographically or-
dered polynomials introduced in Chapter 2. The proof is a bit lengthy, in order to derive a
kind of uniqueness result. Applications of the main theorem will be discussed in Chapter
4 and Chapter 5.

In Chapter 4, we apply the lexicographical separation theorem to linear inequality systems.
We give a necessary and sufficient condition for the existence of solutions to infinite
systems of linear inequalities, where the solutions are allowed to be polynomials whose
variable is an infinitesimal. The result is a generalization of the well-known theorem of
the alternatives for finite linear inequality systems. We also give a Farkas type theorem
for lexicographical inequality systems. Further, we apply these results to game theory,
giving a generalization of von Neumann’s minimax theorem for semi-infinite games.

In Chapter 5, we present two kinds of lexicographic utility representations: one is about
lexicographic expected utility, and the other is about lexicographic extensive utility. These
two representations are derived in similar manners from the lexicographical separation
theorem. The lexicographic expected utility representation given in this thesis is a mod-
ification of Hausner’s lexicographic expected utility theory, by omitting the existence of
irrational-valued lotteries. On the other hand, the lexicographical extensive utility repre-
sentation is a modification of classical Hahn’s (purely mathematical) embedding theorem,
by giving a necessary and sufficient condition for the existence of extensive utilities on
indivisible items.

In Chapter 6, we summarize our results and suggest future work.

Throughout this thesis, “Theorem” signifies our original contribution.

10



Chapter 2

Algebraic Preliminaries

In this chapter we shall define some algebraic concepts which will be needed in the sub-
sequent chapters. In Section 2.1 we define weak orders and lexicographic orders. Also
we introduce a new concept called the lexicographically ordered polynomial ring (Defini-
tion 2.1.5), showing that lexicographic orders can be described by the polynomial ring in
which a variable is infinitely small. The ring of lexicographically ordered polynomials is
considered as a substructure of the ordered field of hyperreal numbers (Remark 2.1.7).
In Section 2.2 we define the notion of convex cones in linear spaces, and discuss the rela-
tionship between convex cones and weak orders. Section 2.3 is a counterpart of Section
2.2 for Abelian group theory. Section 2.4 is a brief review of standard linear algebra. For
the understanding of the algebraic concepts in this chapter, readers are assumed to have
the knowledge of groups, rings, fields, and vector spaces (see e.g. Lang [25]).

2.1 Lexicographically Ordered Polynomials

Let us begin with the standard definitions of orderings (see e.g. Roberts [38]). A binary
relation < on S is called a weak order if it satisfies the following conditions:

(i) forall z,y € S, =z <y implies not(y < ),
(ii) for all z,y,z€ S, not(x <y) and not(y < z) imply not(z < z).
Let < be a weak order on S. Its associated indifference relation ~ is defined by
r~y iff not(xr <y) and not(y <z).

We also write x Zy iff © <y or x ~y. A weak order < on S is said to be nontrivial
if there exist x,y € S such that z < y.

Proposition 2.1.1 Let < be a weak order on S'. Then, for all z,y,z € S,
(a) exactly one of x <y, y <z, =~y holds,
(b) <y and y <z imply = < z,
(c) ~ is an equivalence relation, i.e. (i) =z ~x,

(ii) x ~y implies y~z, (iii) x~y and y~z imply z~ z,
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(d) <y and y~z imply z < z; x~y and y <z imply z <z,
(e) = satisfies the following conditions :
(i) 223y and y Sz imply 32, (ii)) 23y or y S .

Proof. (a) Since < is a weak order, we cannot have both z < y and y < z. If
not (z < y) and not (y < ) then this is equivalent to = ~ y.

(b) Suppose there exist z,y,z € S such that x <y, y < z, and not (z < 2). From
y < z we have not (2 < y) . Therefore, not (x < z) and not (2 < y) yield not (z < y), a
contradiction.

(¢) (i) For any x € S, we cannot have = < z: for, if x < z then not(z < z), a
contradiction. Hence not (z < x) for all x € S, and therefore z ~ z for all x € S. Both
(i) and (iii) are straightforward from the definition of ~.

(d) Suppose there exist z,y,z € S such that * < y, y ~ 2z, and not (z < 2). Then,
x~z or z=<x by (a). If x ~ 2z then, with y ~ 2, we have = ~ y, a contradiction. If
z < x then, with = < y, we have z < y by (b), a contradiction. The second half of (d)
is similarly proved.

(e) (i) is a consequence of (b), (¢), and (d); (ii) is a consequence of (a). 0

A weak order < is called a total order if its associated indifference relation ~ reduces
to the identity,! that is, # ~ y only if # = y. An example of a total order is the
lezicographic order on R™ as defined below.

Definition 2.1.2 Let < be the usual strict order on the set of real numbers R. A vector
x = (r1,...,%,) in R" is said to be lezicographically less than y = (y1,. .., y,) if we have
x < 1y for the least k such that xj # yr. In other words,

x <,y iff z#y and =z <y, for k=min{i | z; #y; },

where <, denotes “lexicographically less than.” We also write « <, y iff * <, y or

T=1y. d
It can easily be verified that the lexicographic order <, is a total order on R".

Let R[¢] be the set of all polynomials over the real numbers, and let (R[¢],+, -,0,1)
denote the polynomial ring. We shall show that a lexicographic order on R[#]| can be
defined in the same manner as Definition 2.1.2. To begin with, let us recall the standard
definition of ordered rings (see e.g. Lang [25]).

A ring (R, +, -,0,1) is said to be ordered if there exists a subset P of R, called the
set, of positive elements, satisfying the following properties:

(1) For all zx € R, exactly one of x € P or x =0 or —x € P holds.
(2) Forall z,y € R, z,y € P implies x+y, -y € P.

We define © < y to mean y —xz € P. By (1), for all z,y € R, exactly one of x <y or
x =1y ory <z holds. By (2), for all z,y,2',y,z € R,

LA total order < on S is also defined by the following conditions: for all z,y,z € S, (i) not (z < )
(ii) z <y and y < z imply & <z (iii) ¢ <y or y <z or z =y. It is easy to check that these two
definitions are equivalent.
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(a) x <y and 2’ <y imply z+4+2' < y+y,
(b) z<y and z>0 imply z-2 < y-z.

It is easy to verify that < is a total order on R.

Conversely, every total order < on R satisfying (a) and (b) defines a set of positive
elements: we put P = {x € R |z > 0}. Thus we say that a total order < on R is
compatible if it satisfies (a) and (b).

Definition 2.1.3 Let p(t) = ap + a1t + - - - + a,,t™ and q(t) = by + byt + - - - + b,t" be
polynomials in R[¢] with m < n. We shall express p(t) = ag + ait + - -+ + a,t" with
Umy1 = - =ap, = 0. p(t) is said to be lezicographically less than q(t) if we have ay < by
for the least k such that a, # by . In other words,

. p(t) # q(t) and
ag+ayt+---Fapt" <p bg+bit+---+b,t" iff
0 ! " b ! " {ak<bk for k:mln{2|al7ébz},
where <, denotes “lexicographically less than.” O

It can easily be verified that the lexicographic order <, is a compatible total order on
R[¢]. It also holds that, with respect to the lexicographic order <, on R[¢], the monomial
t is infinitely small in the sense that

0<,t and t <, 1/k for all positive integer k.
We can show its converse:

Lemma 2.1.4 Let (R[t],+, -,0,1) be the polynomial ring, and let < be a binary relation
on R[¢]. Suppose that

(i) < is a compatible total order on R[],
(ii) the restriction of < to the subring R is the usual strict ordering of the real numbers,

(iii) ¢ is infinitely small with respect to <, i.e. 0 <t and ¢ < 1/k for all positive integer
k.

Then < is the lexicographic order <, on R[¢].

Proof. To derive the conclusion, it is sufficient to show the following equivalence :
cotet+--+et" <0 <= ¢ <0 for k=min{i|¢ #0}, (2.1)

because, if this is satisfied, the following holds for all ay,...,a,, by,...,b, € R,

ag—l—alt—i----—i—ant" < b0+b1t++bntn
< (ap—by) + (a1 — b))t + -+ (ap — by)t" < 0  (by the compatibility of <)
< ap <b; for k=min{i|a; #0b;} (by (2.1))
<~ ag—l—alt—i----—i-ant” <z b0+b1t++bntn

(2.1) is equivalent to the following two conditions:
if ¢p>0 for k=min{i|c¢#0}, then co+cit+---+c,t" > 0, (2.2)
if ¢, <0 for k=min{i|¢ #0}, then co+cit+---+¢,t" < 0. (2.3)
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Hence it is enough to show (2.2). We can derive (2.3) in a parallel way with (2.2).

Suppose p(t) = ¢o + 1t + -+ + ¢,t™ is a nonzero polynomial with ¢, > 0 for k =
min{ i | ¢; # 0}. We shall show p(t) > 0.

First we consider the case k=0, 1i.e. ¢ > 0. If ¢; >0 for all i > 0, then p(¢) >0
is trivial. Suppose there exists ¢; < 0 for some 7 > 0. Let ¢ = max{|¢;| | ¢; <0}. Then
there is a sufficiently large integer M such that 0 < 1/M < ¢q/nc. Thus

p(t) =co+ct+ --+cyt" > co—c(t+---+1t") > cg—nc/M > 0.

[ Note that, under the assumptions (i)-(iii), #* is also infinitely small: for, we have 0 < ¢*
from 0 < ¢ with the compatibility of <, and ¢* < (1/m)t < 1/mn for all positive integers
m,n. For the same reason, ¢3, t*, - - - are all infinitely small. ]

For the case k> 0, let ¢(t) be the polynomial q(t) = ¢ + cgyit + -+ + c,t"F such
that p(t) = q(t)t*. Then ¢; > 0 and hence it is enough to apply the above argument to

q(t) . a

That is to say, the lexicographic order <, can be described in terms of the ordered
polynomial ring satisfying (i)—(iii) of Lemma 2.1.4.

Definition 2.1.5 Let ¢ be a variable, and let R[e]| be the set of all polynomials over R,
i.e.
Rle] = {ro+me+--+re" | neN, ro,ry,...,7, € R}.

Let (R[e],+, -,0,1) denote the polynomial ring . We say that the polynomial ring is
lezicographically ordered iff there is a relation < on R[e] satisfying the following condi-
tions:

(i) < is a total order on Re],
(ii) for all z,y,2',y', 2z € Rle],

(a) z <y and 2’ <y imply z+2' < y+y,
(b) <y and z>0 imply z-2 < y-z,

(iii) the restriction of < to the subring R is the usual strict order on the real numbers,

(iv) 0 < e and € < 1/k for all positive integer & .

By Lemma 2.1.4, the relation < satisfying (i)—(iv) is the lexicographic order on Re], i.e.

(ag,al,...,an) §£ (bg,bl,...,bn) and

ap+a e+ - +ae” < byg+bie+---+b,e™  iff o
o o { ap < by for k=min{i | a; #b;}.

Such polynomials are called lezicographically ordered polynomials. O
Throughout this thesis, we denote by R[e] the set of lexicographically ordered poly-
nomials (as in Definition 2.1.5), assuming that there is a total order < on it satisfying the

conditions (i)—(iv) of Definition 2.1.5. Also, in this thesis, the notation ro+rie+---+r,e"
always stands for a lexicographically ordered polynomial in R[e].
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Definition 2.1.6 Let n be a positive integer. We denote by R[e], the set of lexico-
graphically ordered polynomials whose degrees are less than n, i.e.

Rle], = {ri+me+--+re" | r, -, m €R}.

n—1

Note that a polynomial r{ +ree+---+r,c can be identified with the lexicographically
ordered vector (ry,rs,...,r,) as was defined in Definition 2.1.2. a

Our notation ro+7r£+---+r,e™ can be understood in a parallel way with the decimal
number system. The decimal number system is indeed a lexicographical order; readers
should compare 2.13, 3.1 and 3.13 say. (Recall that 2.13 is identified with the real
number 2 + 1 x & + 3 x (5)?, and so on.)

Remark 2.1.7 In our notation ro + rie +---+ r,e” we use the expression “c” for the
variable. This is because the lexicographically ordered polynomial ring R[e] is a proper
subring of the hyperreal numbers.

The ordered field of hyperreal numbers is usually constructed as an ultrapower of
the real numbers, and hence it has such properties as (1) including R as a subfield, (2)
containing an infinitesimal £, (3) satisfying the transfer principle, i.e. satisfying the same
first-order sentences as R. For more details, see e.g. Goldblatt [13]. It is easy to verify
that the lexicographically ordered polynomial ring R[e] can be embedded into the ordered
field of hyperreal numbers, identifying the variable £ with an infinitesimal.

Hammond [15] introduced the smallest subfield containing both R and an infinitesi-
mal e, which is a simplified substructure of the field of hyperreal numbers. The lexico-
graphically ordered polynomial ring R[e] is, therefore, a bit smaller substructure than
Hammond’s one. O

2.2 Convex Cones and Weakly—Ordered Spaces

Let F be an ordered field (e.g. the rational numbers Q, or the real numbers R), and let
V' be a vector space over F. A subset C' of V' is said to be convez if \x + (1 — )y € C
whenever z,y € C' and A € F with 0 < A < 1. Let S be an arbitrary subset of
V and let x € V. We say that x is a conver combination of S if there exist finite
Y,y €5 and Ay, ..., A\, € F with \; >0 for i =1,...,k and Zle)\i =1 such
that x = A\y; + -+ + Agyr - The convez hull of S is the set of all convex combinations of
S.

Let P be a subset of V. We say that P is a convex cone if for all z,y € V and all
Ael,

(i) x,y€ P implies z+y € P, (ii)) z€P and A >0 imply Az € P.

(It is easy to check that a convex cone P is a convex set.) A positive cone P is a convex
cone in which 0 is not contained, i.e. (iii) 0 ¢ P (where O denotes the origin of V).
We denote by P the complement of P, that is, P = V \ P. We write —P to mean
{—x | x € P}. For a positive cone P, its associated indifference subspace I is defined
by I =V \ (PU—P). Note that the indifference subspace is nonempty, since it contains
at least 0.
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Definition 2.2.1 Let V be a vector space over F. Suppose there is a weak order < on
V. We say that a weak order < is compatible with the vector space structure of V', or
briefly, compatible, if for all x,y,z €V and all A € IF,

(i) x <y implies z+2z < y+ 2z,
(i) <y and A>0 imply Iz < \y.
Such a vector space V' is called a weakly—ordered vector space. O

We shall show that a weakly—ordered vector space can be described by a positive cone
and its convex complement :

Lemma 2.2.2 Let V be a vector space over F, and suppose there is a subset P of V
such that P is a positive cone and P is a convex cone. Define a binary relation < on V
by

r<y ff y—xeP

Then < is a compatible weak order on V.

Proof. First we show (i) and (ii) in Definition 2.2.1. (i) If z < y, then y —z =
(y+2z) — (x + z) € P, therefore z+2z < y+ z. (ii) Suppose z <y and A > 0. This
means y —x € P and A > 0. Hence Ay — z) € P and therefore Az < \y.

Next we show that < is a weak order: Suppose there exist z,y € V such that
x <y and y < . Then y —x € P and * —y € P, hence (y — )+ (x —y) =
0 € P, a contradiction. Thus, for all z,y € V', z < y implies not(y < x). Now,
suppose not (z < y) and not (y < z). This means y —x € P and z —y € P. Hence
(y— )+ (2 —y) = 2 — x € P. Therefore not (z < z). O

The converse of Lemma 2.2.2 can also be shown :

Lemma 2.2.3 Let V be a vector space over ', and suppose there is a compatible weak
order < onV. Let P={z €V |z>0}. Then P is a positive cone and P is a convex
cone.

Proof. (P is a positive cone.) It is clear that P does not contain 0. Suppose = > 0
and y > 0. This implies z +y > y and y > 0. Hence, by Proposition 2.1.1, we have
x4y > 0. Suppose x > 0 and A > 0. Then, obviously Ax > 0.

(P is a convex cone.) Suppose not (z = 0) and not (y = 0). The first condition implies
not (x +y > y): for, if v +y > y then (x +y)—y > y —y, which means = > 0, a
contradiction. Thus, both not (z +y > y) and not (y > 0) yield not (x +y > 0). Now,
suppose not (x > 0) and A > 0. If Az > 0, then, by multiplying 1/A, we have = > 0,
a contradiction. Therefore not (Az > 0). O

That is to say, Lemma 2.2.2 and Lemma 2.2.3 show that there is one-to-one corre-
spondence between a compatible weak order on V' and a positive cone with its convex
complement.

Lemma 2.2.4 Let V be a vector space over F, and suppose there is a subset P of V
such that P is a positive cone and P is a convex cone. Let I be the associated indifference
subspace. Then,
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(a) I is asubspace of V', ie. forall z,y € V and all A €T,
(i) z,y €I implies x+y €l ; (ii) x €l implies \x €1,

(b) forall x € V', exactly oneof x € P, x € I, and x € —P holds,

(c) forall x,yeV, € P and ye€ PUI imply z+y € P.

PN (—P)=PnN—P. (Hence, if x € I then —z € I.) Since P is a convex cone, —P
is also a convex cone; hence their intersection [ is also a convex cone. Therefore (i) is
obvious. It remains to show that (ii) holds for all z € V' and all A # 0. But, if A > 0
then (ii) is obvious; if A < 0 then both € I and —\ > 0 yield —Az € I, which implies
Avel.

(b) It is enough to show that P, I, and —P are mutually disjoint. P NI = () and
—P N1 =10 are clear from the definition of I. Suppose PN —P # (. Let x € PN —P.
Then z € P and —z € P, hence z + (—z) = 0 € P, a contradiction. Therefore
PN-P=0.

(c) It is enough to show that, for all z,y € V., x € P and y € [ imply x +y € P.
Suppose there exist 2,y € V such that x € P, y € I and z+y ¢ P. Then x+y € —PUI
by (b). If z +y € —P, then this means —(z +y) € P, and therefore, with x € P, we
have —y € P, contradicting to y € I. If x +y € I, then, with y € I, we have x € |
by (a), contradicting to = € P. O

Proof. (a) First we note that (ii) is trivial in case A = 0. By the definition, I =

2.3 Weakly—Ordered Groups

As we have seen, a weakly—ordered vector space can be described by a positive cone and
its convex complement. In this section we show that a similar description can also be
applied to weakly—ordered Abelian groups, which we shall define below.

Definition 2.3.1 Let (S,+,0) be an Abelian group, and suppose there is a weak order
< on S. We say that a weak order < is compatible with addition , or briefly, compatible,
if

forall x,y,z€ S, x <y implies v+2z < y+ 2.
Such an Abelian group (S, +,0) is called a weakly—ordered Abelian group. a

Let (S,4+,0) be an Abelian group. Consider a pair of subsets P, I (C S) satisfying
the following conditions:

Cl1 (I,+,0) is a subgroup of (S,+,0),i.e. forall z,y € S,
(i) z,y €I implies x+ye€ [l ; (ii) x €l implies —x €1,

C2 forall z €S, exactlyoneof x € P, x € [, and x € —P holds,
C3 forall z,ye S, xr€P and ye PUI imply x+y € P.

Note that these conditions are variations of (a), (b), and (c¢) in Lemma 2.2.4.
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Lemma 2.3.2 Let (S,+,0) be an Abelian group, and suppose there is a pair of subsets
P, I (C S) satisfying C1-C3. Define a binary relation < on S by

r<y iff y—xzeP.
Then < is a compatible weak order on (S, +,0).

Proof. The compatibility is obvious: if # < y, then y —z = (y+2) — (v + 2) € P,
therefore z+2z < y+z. We shall show that < is a weak order on S'. It is easy to verify
that P=—PUI by C2, and for all z,y € 5,

(i) z€ P implies —zx ¢ P (by C2),
(i) € —-PUI and ye€ —PUI imply z+ye€ —-PUI (by Cl and C3).

By (i), for all z,y € S, # <y implies not (y < z). By (ii), for all z,y € S, not (z < y)
and not (y < z) imply not (z < 2). O

The converse of Lemma 2.3.2 can also be shown:
Lemma 2.3.3 Let < be a compatible weak order on (S,+,0). Define P, I (C S) as
P={zeS|0=<x}, I={zeS|0~ua}.
Then the pair P, [ satisfies C1-C3.

Proof. Left to readers. O

Thus Lemma 2.3.2 and Lemma 2.3.3 show that, for an Abelian group (S, +,0), there
is one-to-one correspondence between a compatible weak order on it and a pair of subsets
P, I satisfying C1-C3.

Lemma 2.3.4 Let (S,+,0) be an Abelian group, and P, I be subsets of S satisfying
C1-C3.

(1) For any x € S, if nz € P for some positive integer n, then z € P.
(nxz denotes x4+ ---+x for n times)

(2) For any x € S, if nz € I for some positive integer n, then x € I.

Proof. (1) If z ¢ P, then x € —P U by C2, and hence —x € PUI by C1 (ii).
Applying C3 or C1 (i) repeatedly, n(—z) = —nax € PUI. Therefore —nxz ¢ —P by C2,
and thus nx ¢ P.

(2) The proof is similar to (1). O

Let F be an ordered field, and let V' be a vector space over F. In Section 2.2 we have
seen that a compatible weak order on V' can be described by a positive cone and its convex
complement. We shall show that, in case F is the rational numbers Q, a compatible weak
order on V' can also be described by a pair of subsets P, [ satisfying C1-C3.
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Lemma 2.3.5 Let V be a vector space over the rational numbers Q, and let P, I be
subsets of V' satisfying C1-C3 (where V' is considered as an additive group (S,+,0)).
Then, P is a positive cone and P is a convex cone.

( Conversely, suppose P is a positive cone and P is a convex cone. Let I be the associated
indifference subspace of P. Then P and I satisfy C1-C3.)

Proof. Note that the latter statement follows from Lemma 2.2.4.
Let P, I be subsets of V satisfying C1-C3.

(P is a positive cone.) It is enough to show that, for all x € V and all A € Q, z € P
and A > 0 imply Az € P. Suppose x € P and X\ > 0. Then, there are positive integers
m,n such that A = m/n. By applying C3 repeatedly, = € P yields mxz € P. Hence,
by Lemma 2.3.4 (1), we get (m/n)xz € P.

(P is a convex cone.) By C2, we have P = —P UTI. We show that for all z,y € V and
all A€ Q,

(1) z,y€ —PUI implies z+ye€ —-PUI,

(2) z€—-PUI and A>0 imply \x € —PUI.
For (1), suppose z,y € —PUI. Then —x,—y € PUI by C1 (ii). Hence —(z+y) € PUI
by C3 or C1 (i). Therefore z+y e —P UI by C1 (ii).
For (2), suppose z € —P U and A > 0. Then —x € PUI by C1 (ii), and also there
are positive integers m,n such that A = m/n. By applying C3 or C1 (i) repeatedly,

—x € PUI yields m(—x) € PUI. Hence, by Lemma 2.3.4, we get —(m/n)z € PUI.
Therefore (m/n)x € —P U I by C1 (ii). O

Lemma 2.3.5 may not hold for another ordered field than Q. Here we give an illustra-
tive example. Let Q(v2) = {z +yv2 | z,y € Q}. Then Q(v/2) is an ordered subfield
of R. We consider Q(v/2) as a I1-dimensional vector space over Q(v/2). Let us define a
pair of subsets Py, Iy (C Q(v/2)) by

Py={z+y/2 | z—yv2 >0}, I, = {0}.

One can easily verifies that Py and I, satisfy C1-C3. However, P, is not a positive cone:
for, we have 1 € Py and v/2 >0, but v2 ¢ P,.

2.4 Linear Spaces

Let F be an ordered field, and let V' be a vector space over F. A function u on V is said
to be linear if (i) u(x +y) = u(z) + u(y) for all xz,y € V', (ii) u(Az) = Au(z) for all
x €V and all A € F.

Here we recall some standard results in linear algebra (see e.g. Lang [25]). Let F),
denote the n-dimensional vector space over F with the basis eq,..., e, , i.e.

Fo={ le1+- -+ en | A,--- N\, eF}.
The inner product of A = Aje1 +---+ A\yen and p = p1ey + - - - + ppen is defined by
Aop = A+ Agpig + oo+ Ap iy
A set of nonzero vectors d1,d2,. .., 0 is called an orthogonal system if §;-d; = 0 for all

i1, with @« # 7.
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Proposition 2.4.1 Let d;1,4d2,...,d0; be an orthogonal system and let A = Zle i 0;
(Ai € F). Then

A4
Aj = I for j=1,...,k,
0 - 0
and hence the orthogonal system 41, d2, ..., dg is linearly independent.
Proof.
k
X-bj = > Ndi-d; = N0,
i=1
and if A =0 then 0= \; d;-9; therefore \; =0 for j =1,...,k. O

Proposition 2.4.2 Let Hy be a k-dimensional subspace of F,, for 0 < k£ < n (i.e.
there are linearly independent vectors mq,...,m, in F, such that Hy = { A\ +--- +
MMk | A1, ..o, A € F}). Then, there is an orthogonal system 81, dz, ..., 8 in Hy such
that

H, = {)\161++ A Ok | )\1,...,)\k EIF}

Proof. This can be proved by the following well-known method called “the orthogonal-
ization of Schmidt”. It suffices to show that “ if dy,...,d; is an orthogonal system in
Hy for | < k, then there is d;41 € Hj such that &1,...,d;, 0141 is also an orthogonal
system in Hy.”

If [ <k, then there is 6’ € H, which is not a linear combination of dy,...,d;. Let

!
d - 5;
41 = 0 — (Z s 51) )

=1

Then 6l+17é0,and
6i ’ ’
0|8 = 0008 =0

!
o -
Oi41-0; = 065 — (Z(S—
=1

for j =1,...,1. Therefore dy,...,0d;,0;41 is an orthogonal system. O
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Chapter 3

Lexicographical Separation in [F"

In this chapter, we shall present our main results of this thesis. Let F be an ordered
field such that Q C F C R. In Section 3.1 we introduce our main theorem, called the
lezicographical separation theorem (Theorem 3.1.1), stating that a convex cone and its
convex complement in " can be separated by linear functions and the lexicographic order.
We also provide an equivalent version of the lexicographical separation theorem (Theorem
3.1.2) in terms of the lexicographically ordered polynomial ring which was introduced
in the previous chapter. Further, we show that the lexicographical separation theorem
has another interpretation that any compatible weak order on F" can be embedded into
the lexicographic order on R" (Corollary 3.1.3). Lastly, we present a counterpart of the
lexicographical separation theorem in Abelian group theory (Theorem 3.1.5). Applications
of the lexicographical separation theorem will be discussed in the subsequent chapters. In
Section 3.2 and Section 3.3 we give a proof of the lexicographical separation theorem by
using the lexicographically ordered polynomial ring.

3.1 Lexicographical Separation Theorems

Throughout this chapter, F stand for an ordered field such that Q C F C R. Also we
denote by F;, the n-dimensional vector space over F with the basis ey, ..., ey, i.e.

Fn == {)\161—|—"'+)\n6n | Al,...,)\nEF}.
This chapter will be devoted to prove the following theorem :

Theorem 3.1.1 (Main Theorem) Let F), be the n-dimensional vector space over F,
and let P be a nonempty subset of F,, . Suppose P is a positive cone and P is a convex

cone. Then, there exist real-valued linear functions g¢i,...,g, on F,, where ¢, is not
constantly zero, such that for all © € F},,

zeP iff (gi(x),...,g0.(x)) >, (0,...,0). (3.1)
Moreover, g, is unique up to a positive scalar multiple,* that is, if g},...,q, are other

functions with the same property, then there is a real constant a > 0 such that
g1(x) = agi(x) forall z€F,. (3.2)

|

!The other functions ¢s,...,g, are entirely indefinite in almost all cases.
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In case F = R, equivalent versions of this theorem was proved by Hausner and Wendel
[18], Klee [23], Martinez-Legaz and Singer [30].

Theorem 3.1.1 can also be stated in the following way :

Theorem 3.1.2 Let F, be the n-dimensional vector space over F, and let P be a
nonempty subset of F,, . Suppose P is a positive cone and P is a convex cone. Then there
are lexicographically ordered polynomials® q,...,q, € Rle] such that for all \,...,\, €
F

Y

ML+ Mg > 0 I Ner+---+ \en € P (3.3)
Further, qi,...,q, can be written as the following form :
a1 i " Tin 1
SR o
dn Tpi *** Ton gn 1

where {r;}1<ij<n IS an n x n matrix of real numbers such that the first column vector
is nonzero, i.e. (ri1,...,m1)7 # (0,...,0)T.
Moreover, the first column vector is unique up to a positive scalar multiple, i.e. if {s;; }1<ij<n
is another matrix with the same property, then there exists a positive real number a > 0
such that

S11 11

Snl 'n1
O

That is to say, in any finite-dimensional vector space over I, a positive cone and its
convex complement can be separated by a set of lexicographically ordered polynomials.
We will prove Theorem 3.1.2 in the next section. Here we briefly check the equivalence of
Theorem 3.1.1 and Theorem 3.1.2:

Suppose there exist real-valued linear functions g¢i,...,¢, on F,, where g; is not
constantly zero, such that (3.1) holds for all x € F,, . Let the corresponding n x n real
matrix {Tij}lgi,jgn be defined as Tij = g]'(t?i) for all 4,5. Let ¢1,...,q, € R[S] be
defined by (3.4). Then one can easily verifies that (ry1,...,7,1)" # (0,...,0)", and for
all A,...,\, €T,

Aer+---+ \en € P

rmy - Tin
ror -+ Ton

e O | LT e 00y (3)
Tn1 - Ton
i 0 Tin 1
ror =+ Ton €

= (A, ) . . . > (0,...,0)
1 Tnn 57171

= g +---+A\g > 0.

2See Definition 2.1.5 for the definition of lexicographically ordered polynomials.
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Conversely, suppose there exist ¢i, ..., ¢, € R[e] such that (3.3) holds forall Ay,..., A, €
F, where ¢i,...,q, are represented by an n x n real matrix {r;;}1<ij<n of the form (3.4)
such that (ri1,...,7.1)T # (0,...,0)T. Let the corresponding linear functions ¢y, ..., g,
on F,, be defined as

gi (Mer+ -+ Ajen) = Ay 4+ Aty for all A,...,\, € F.

Then ¢y is not constantly zero, and also, by a similar argument to the above, (3.1) holds
for all x € F,,.

It is also easy to verify the correspondence of the uniqueness parts of Theorem 3.1.1
and Theorem 3.1.2.

We shall present a corollary of Theorem 3.1.1, which states that every compatible weak
order on a finite-dimensional vector space over F can be represented by linear functions
and the lexicographic order:

Corollary 3.1.3 Let F,, be the n-dimensional vector space over F, and let < be a
nontrivial weak order on F, . Suppose < is compatible with the vector space structure

of F,, (as in Definition 2.2.1). Then, there exist real-valued linear functions ¢, ..., gy,
on F,, , where ¢, is not constantly zero, such that for all x,y € F,, ,

r<y W (0@ 0a@) < (@) ). (3.5)
Moreover, g, is unique up to a positive scalar multiple, that is, if ¢i,...,g, are other

functions with the same property, then there is a real constant a > 0 such that (3.2)
holds.

Proof. Let < be a nontrivial weak order on F},, and suppose < is compatible. Let
P={x€F,|r>0}. Then, by Lemma 2.2.3, P is a positive cone and P is a convex
cone. Since < is nontrivial, P is nonempty. By Theorem 3.1.1, there exist real-valued
linear functions g¢i,...,g, on F,, where g; is not constantly zero, such that (3.1) holds
for all x € F,,. Therefore, for all z,y € F},,

y-r <= y—2>-0 <= (qly—2x),...,9.(y—2)) >, (0,...,0) (by (3.1))
= (1), o)) > (91(2),. .., gu()).

For the uniqueness, let gq,...,g, be real-valued linear functions on F),, where ¢}
is not constantly zero, such that (3.5) holds for all z,y € F,. Then, = > 0 iff
(91(z), ..., gn(x)) >, (0,...,0); hence (3.1) holds for all = € F},. Therefore the unique-
ness part of Corollary 3.1.3 follows from the corresponding one of Theorem 3.1.1. O

Remark 3.1.4 Martinez-Legaz and Singer [32] discussed compatible weak orders on R"
in terms of the lexicographic order and linear operators. They proved the lexicographical
representation theorem in their Theorem 1.1 from the viewpoint of lexicographical separa-
tion of two convex sets in R”, whose idea is similar to Corollary 3.1.3 in the present paper.
In brief, Theorem 1.1 of Martinez-Legaz and Singer [32] can be presented as follows: For
any compatible weak order < on R™, there exist unique r € {0,1,...,n} and a linear
operator ¢ : R* — R" such that for all y,y’ € R”,

y <y it gy <. g¢).

Also they showed the uniqueness of the linear operator. O
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Here we shall present another separation theorem for weakly—-ordered Abelian groups,
which can be derived as a consequence of Theorem 3.1.2. The first half of the following the-
orem is essentially equivalent to classical Hahn’s Embedding Theorem (see Remark 3.1.6) ;
but the latter (uniqueness) part doesn’t follow from Hahn’s Theorem. Let (G,,+,0) be
the Abelian group generated by «q,...,q,, i.e.

Gn = {k'1011+"'—|—k'n&n | kl,...,knGZ}

such that kjaq+---+kya,, =0 implies &y = --- =k, = 0. (In other words, let (G, +,0)
be the Z-free module with the basis aq,...,a,.)

Theorem 3.1.5 Let (G, +,0) be the Z-free module generated by vy, ..., oy, , and let P,
I be nonempty subsets of G,, satisfying C1-C3.> Then there are lexicographically ordered
polynomials q,...,q, € R[e] such that for all ky,... k, € Z,

where the polynomials qi,...,q, are represented by an n X n matrix of real numbers
{rij}1<ij<n of the form (3.4) such that the first column vector is nonzero. Moreover, the
first column vector is unique up to a positive scalar multiple.

Proof. Let (), be the vector space over Q with the basis ey,...,e,, i.e.

Qn={qer+ - +aen|q,....q. €Q}.

It is clear that (G,,+,0) is naturally embedded in @, , the generator «; corresponding
to the base e; forz=1,...,n.

Suppose P, I is a pair of nonempty subsets of GG, satisfying C1-C3. Define a pair of
subsets P’, I' in @),, as follows: for all = € @, ,

x € P iff kx e P for some positive integer k >0, (3.7)
zel iff kx el for some positive integer k£ > 0. (3.8)

Clearly, these subsets P', I' of @), are extensions of the original subsets P, I of G, ,
respectively. Since the subsets P, I of G, satisfy C1, C3, and by Lemma 2.3.4, the
following hold for all z in @, :

if ke € P for some positive integer k > 0 (3.9)
then gz € P for all positive rational number ¢ > 0 such that ¢z € G, ,

if kx € I for some positive integer k > 0
then qx € I for all rational number ¢ such that gz € G,,. (3.10)

We shall show that the pair of subsets P, I' in @, satisfies C1-C3 (where @, is
regarded as an additive group (S, +,0)); the verification of C1 is left to readers.

C2: For all z € @, , there exists a positive integer £ > 0 such that kx € G,,. Since
C3 holds for P, I in G,,, we have exactly one of kx € P, kx € I, and —kxz € P.
Therefore z € P’ or z € I' or —z € P'. By (3.9) and (3.10), these conditions are
exclusive.

3Recall that, to any pair of subsets P, I in G,, satisfying C1-C3, there corresponds a compatible weak
order on GG,,. See Section 2.3.

24



C3: Suppose « € P’ and y € P'UI'. Then, by definition, there are positive integers
k, m such that kz € P and my € PUI. By (3.9) or (3.10), we can assume
m = k. Since C2 holds for P, I in G,,, kxz € P and ky € PUI yields kx + ky =
k(r+y) € P. Thus  +y € P'.

Now we are in a position to establish (3.6). Let P, I be nonempty subsets of G,
satisfying C1-C3. Then, as we have mentioned above, they are extended to the subsets P’,
I' of Q, satisfying C1-C3. By Lemma 2.3.5, P’ is a positive cone and P’ is a convex cone
in (), . Hence, by Theorem 3.1.2, we obtain a desired solution of polynomials ¢;,...,q, €
R[e] satisfying (3.3) for all Ay, ..., A, € Q, which clearly satisfies (3.6) for all ki,...,k, €
7.

For the uniqueness part, suppose there is a set of polynomials ¢y, ...,q, satisfying
(3.6) with respect to the subsets P, I of G, . We show that ¢,...,q, also satisfy (3.3)
with respect to the extension P’, I' in Q,,: for all \,..., \, € Q,

ey +--+N\en, € P

(kA1) ar + -+ (EXp) oy € P

= o (by (3.7))
for some positive integer k£ > 0 such that kA\,... k), € Z
(kX)) @+ -+ (kAn) gn >0

= L (by (3.6))
for some positive integer £ > 0 such that kA, ... k), € Z

— Mg+ o+ Ag, > 0.

Therefore the uniqueness part of Theorem 3.1.5 follows from the corresponding one of
Theorem 3.1.2. O

Remark 3.1.6 Theorem 3.1.5 (except for the uniqueness part) can be derived also as a
consequence of Hahn’s Embedding Theorem. A system (S, <,+,0) is called an ordered
Abelian group if it satisfies the following conditions:

O1 (S,+,0) is an Abelian group,
02 < is a total order on S,
03 forall z,y,z€ S, x<y implies z+2z < y+=z.

Hahn [14] showed that any ordered Abelian group (S, <,+,0) can be embedded into a
lexicographically ordered vector space over the real numbers. (For a proof see e.g. Fuchs
[11].) Moreover, if the group is generated by n generators, then the n-dimensional vector
space R™ is sufficient for the embedding. (For a proof see e.g. Teh [43].) The following is
an outline of how to obtain the existence part of Theorem 3.1.5 from Hahn’s Theorem :

Let (G, <,4+,0) be a weakly-ordered Abelian group generated by ay,...,ay,. It
can easily be verified that the associated indifference ~ satisfies the following property
for all x,2',y,y' € G,:

!

if z~2" and y~y', then 24y ~2'+y and 23y & 2/ 3y
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Let I ={xz € G, |0~ x}. Then one can obtain the quotient (G,/I,<,+,0). Let ¢
be the natural projection:
e G, — G,/I.

(G,,/I,<,+,0) is an ordered Abelian group with [ generators for some [ < n. Let
(R, <,,+,0) be the I-dimensional lexicographically ordered vector space. By Hahn’s
Embedding Theorem, there is a mapping

Y G/l — R
satisfying the following conditins for all z,y € G, /I :

v=y iff Y@) <, Y@); YE+y) = ) + Py).
We shall show that
¢ = vop(w) for i=1,....n

is a desired solution: For all kq,...,k, € Z,

Yop(kiar+ -+ kpoy) = ki-(Wop(ar)) + -+ + ke (Yo p(an))
- le1+"'+kn(_Ina

and hence
k1a1++knan>‘0 lff qu1++ann >L 0

Thus, we obtain (3.6) of Theorem 3.1.5. Note that ¢; is a vector (r;,...,r;), and hence
we need to translate it into a polynomial 7 + 706 4« 4+ ryel=t. O

3.2 Proof of Theorem 3.1.2 (for n = 2)

The proof of Theorem 3.1.2 will be given by a series of lemmas. We start with the case
n = 2. Let F5 be the 2-dimensional vector space over F with the basis ey, ez, i.e.

F, = {)\161 + Agez | )\1,)\2 S IF}

Let P be a nonempty subset of F, such that P is a positive cone and P is a convex cone,
and let I be the associated indifference subspace.

We shall identify an element \jeq + A\ye2 € F, with a point (A1, A2) in 2-dimensional
space F2. (Also we assume that F? is naturally embedded in R? .) Accordingly, we shall
use the notation “ (A, \y) € P” instead of “\je; + Asez € P,” and so on.

Note that P, I, and —P are mutually disjoint (by Lemma 2.2.4 (b)) and anti-
symmetric: for all x € F? ,

reP iff —xe-—-P, xel iff —zxzel.

Our goal is to show that they are divided by a line through the origin (see Figure 3.1).
The following lemma is fundamental for our proof.
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Figure 3.1: Assignment of P, I, and —P

Lemma 3.2.1 Let P be a nonempty subset of F,. Suppose P is a positive cone and P
is a convex cone. Then there is a pair of real numbers (r1,73) # (0,0) such that for all
A, A €F,

AMri+ Aorg >0 implies  Aep + \gsex € P,

A+ Aore <0 implies  Ajey + dsex € —P. (3.11)

Moreover, the pair of real numbers (ry,ry) satisfying (3.11) is unique up to a positive
scalar multiple.

Proof. It is enough to consider the case ey,es € P U I: for, if the other cases hold,
e.g. e1 € PUI and ey ¢ PU I, then, by Lemma 2.2.4 (b), e1,—e2 € P U I; hence the
following arguments can be applied by changing the bases ej,es into e, —es.

Assume (1,0),(0,1) € PUI (that is e1,ex € PUI). Then, at least one of (1,0) or
(0,1) isin P: for, if (1,0),(0,1) € I then (A, Ag) € I for all A\;, \y € F by Lemma 2.2.4
(a), contradicting the assumption P # ().

We claim that all the points in the first quadrant { (A1, A\2) € F? | A\;, A2 > 0} belong to
P . This is trivial for the case (1,0),(0,1) € P. If (1,0) € I (hence (0,1) € P ), we have
(A1,0) € I for all Ay > 0 by Lemma 2.2.4 (a), and (0,)s) € P for all Ay > 0; therefore
(A1, Ag) € P forall A\;, Ay > 0 by Lemma 2.2.4 (c). The same argument applies to the case
(0,1) € I. Accordingly, all the points in the third quadrant { (A, o) € F? | A\;, X\ <0}
belong to —P . (See the left-hand side of Figure 3.2.)

We define subsets I';, A of F as follows:

A A
F:{)\—QGF‘)\1>0, (Al,Az)E—PUI}, A:{A—zeF‘A1>0, ()\I,AQ)GP}.
1 1

(Namely, a number A\y/\; € F in these sets is the gradient of a line between the origin
(0,0) and a point (A, A2) on the right half-plane of F?.) Note that TUA = F. It can
easily be seen that

(a) if T'= (), then all the points on the right half-plane { (A;, A\2) € F? | \; > 0} belong
to P,

(b) if T'# 0, then T' has the least upper bound p in R. (Recall that Q CF C R.)
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Figure 3.2: Assignment of P, I, and —P

We shall show that, in the case (b), the least upper bound p of T is also the greatest
lower bound of A in R. First we show that p is a lower bound of A. Suppose otherwise :
there exists (1;,72) € P such that n; > 0 and p > ny/m;. Since p is the least upper
bound of T", there exists (0;,0;) € —P U such that 6; > 0 and p > 0,/6; > ny/m .
Then 631 — 6112 > 0, and hence, from the hypothesis (0,1) € PU I, we have (0,60s7m; —
01m9) € P UI. But this leads to (0,6,) € P as follows, contradicting the assumption
(91,92) e —PUlI.

(m,m2) € P = 01(n1,m2) = (Oim, 01m2) € P
= (011, 01m2) + (0,021 — 0112) € P (by Lemma 2.2.4 (c))
= (0m,0m) = m(01,02) € P
= (01,60,) € P.

Let p* be the greatest lower bound of A. It remains to show that p = p*. Suppose
p < p*. Then, by the density of F in R, there is an r € F such that p < r < p*. Hence
r ¢ I'UA, which contradicts TUA =F.

Thus, in the case (b), we get a real number p such that for all A € F,

A el implies

A< p,
AEA implies A > p. (3.12)

[t is easy to verify that such p satisfying (3.12) is unique in R. Note that p is nonpositive,
i.e. p<0,since A includes 1/k for all positive integer k£ > 0, and hence p < 1/k for
all positive integer £ > 0. Now, let r;,7y be a pair of real numbers satisfying

—rifre = p, 1 >0, 7r2>0. (3.13)

That is to say, (r1,r2) is a normal vector of the line whose gradient is p. Since p is
uniquely determined, the vector (r1,73) is uniquely determined up to a positive scalar
multiple (see the right-hand side of Figure 3.2). We shall show that for all A\;, A\, € F,

()\1, )\2) el 1mphes )\17"1 + )\27"2 =0. (314)

That is to say, the set I must be contained on the line whose gradient is p. Suppose
otherwise: there exists (6;,02) € I such that 6,71 + 079 # 0. By the symmetry of
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I with respect to the origin, we can assume 6#; > 0. If 6; > 0, then 6,/0, € T,
which implies 65/60; < p by (3.12), and therefore 6;r; + fyry < 0. Since we assumed
0171 + O # 0, we have 017y + fry < 0. If #; = 0, we can assume fy < 0 by the
symmetry of I with respect to the origin, so that 6,7, +6sry < 0. Thus, in both cases, we
have 0171 + 0or9 < 0. Let e := —61r1 — 0315 > 0. Then, by the density of F in R, there
exists n € F such that 0 <7 — p < e/2ry. This means n < p and hence (1,7) € P. By
the hypothesis #; > 0 we have 6; +1 > 0. Therefore,

By +1n O+n 1
1 P T a1
(0171 + Oo13) + (11 + nra)
(01 4 1)ry
(—e)+(n—p)r
(01 4 1)ry
(—e+¢€/2)

< — < 0.
(91+1)T2

This implies (0;+1,6,+n) € —PUI . But we also have (6;+1,0,+n) = (61,05)+(1,1) € P
by Lemma 2.2.4 (c), a contradiction.

Now we are in a position to establish (3.11): there exists a nonzero real vector (r1,73)
such that for all A\, Ay € F,

AiT1 + Aare >0 implies ()\1, )\2) € P, (315)
A+ Aoy <0 implies (A, A2) € =P, (3.16)

and also (ry,ry) is uniquely determined up to a positive scalar multiple.

In the case (a), all the points on the left half-plane { (A, \2) € F? | \; < 0} belong
to —P. Therefore, any vector (r1,72) = (s,0) with s > 0 is a solution of (3.15) and
(3.16). One can easily verifies that (r1,73) is uniquely determined up to a positive scalar
multiple.

In the case (b), let (ry,r2) be the vector which was defined by (3.13). We shall show
that this vector (ry,re) satisfies (3.15) and (3.16) for all A, Ay € F: It is enough to
verify (3.15), since (3.16) can be treated in a similar way. Suppose A, Ay € F satisfy
A1ry 4+ Aorg > 0. We shall divide the case according to the sign of A .

()\1 > 0) A17T1 + Agrg > 0 implies T1/7”2—|—>\2/)\1 = )\2/>\1 —p > 0. Hence )\2/)\1 e A
by (3.12). Therefore (A, \y) € P.

()\1 < 0) AT+ Agrg > 0 1mphes 7“1/7"24‘)\2/)\1 = )\2/)\1 —]5 = (—)\2)/(—)\1) —]5 < 0.
Hence (—X3)/(—=A1) € T' by (3.12), and therefore (—\;, —X2) € =P UI. Suppose
(—=A1,—A2) € I. Then, by (3.14), this yields A\;r; + Aory = 0, contradicting Ayry +
Aarg > 0. Hence we must have (—A;, —X\2) € —P, which means (A, \2) € P.

(A1 =0) Ari+Xarg >0 means Ay > 0. Assume (A1, \y) = (0, \2) € —PUI (which will
lead to a contradiction). Let d be a sufficiently large integer such that —dXy < p.
Then (1,—d)y) € —P UI: for, if (1,—d\;) € P then —d)y € A and hence
—dXy > p by (3.12), a contradiction. Thus (—1,d\;) € PUI. Now, the assumption
(0,\2) € =P U I means (0,—Xy) € P U I, which implies (0,—2d)\;) € PUI.
This and (—1,d\y) € PUI yield (—1,—d)\;) € PUI by Lemma 2.2.4. Hence
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(1,d)s) € —P U I. However, we have (1,d)\;) € P because P includes all the
points in the first quadrant, a contradiction. Thus we must have (A, Ay) € P.

To show that (r,79) is unique up to a positive scalar multiple, suppose there is another
vector (7} ,75) # (0,0) satisfying (3.15) and (3.16) for all A, Ay € F. First we show
that rh, > 0. Assume 7, < 0. If 7, = 0, then obviously r; > 0; hence, by (3.15),
A1 > 0 implies (Mg, A2) € P for all A\, \y € F. This means I' = (), a contradiction. If
ry, < 0, then, by (3.16), there is a sufficiently large Ay € F such that (1,)\2) € —P, which
contradicts that all the points in the first quadrant belong to P. Thus we have shown
rly, > 0. Let p:=—r}/rl. By (3.15) and (3.16), for all A\;, s € F with \; >0,

)\2/)\1 >D 1mphes ()\1,)\2) € P, )\2/)\1 <p 1mphes ()\1,)\2) e —P.
Let us consider their contrapositions: for all A;, Ay € F with \; >0,
()\1,)\2) e —PuUl 1mphes )\2/)\1 S D, ()\1,)\2) e Pul 1rnphes )\2/)\1 Z D -

Thus p satisfies (3.12) for all \ € F; therefore p = p. That is, r|/rl =ri/re, and hence
there is a positive real number a > 0 such that (r},7,) = a(ry,79). O

Let us continue the proof of Theorem 3.1.2 to find a pair of polynomials ¢, ¢» € Rle],
satisfying (3.3) for all Aj, A\ € F. Suppose we obtained a nonzero real vector (ry,rs)
satisfying (3.11) in Lemma 3.2.1. We consider the following two different cases:

Case 1. There is no (A1, \y) € P such that \jrqy + Aaro = 0.

In this case, there is no (A, Ag) € —P such that A;ry + Aore = 0. Hence, for all
A, A2 € Fy Airy + Agrg = 0 implies (A, Ag) € . Therefore, along with (3.11) in Lemma
3.2.1, the following holds for all (A, \y) € F?:

Ay + Aoy >0 implies (A, Ag) € P,
AT+ Aare =0 implies ()\1, )\2) el,
A+ Aoy <0 implies (A, Ag) € —P.

Then, one can easily verifies that these implications are actually equivalences. Thus
(q1,q2) = (r1,79) is a solution of (3.3).

Case 2. There is (61,0:) € P such that 6,11 + 63ro = 0.
We divide this case according to the sign of 617 — 67 .
We cannot have 01y — 6y = 0: for, if 0179 — ;1 = 0 then, with the hypothesis

0171 + 6319 = 0, one can easily obtain (#,6,) = (0,0), which contradicts (6;,6s) € P.
Suppose 619 — o1 > 0. We shall show that for all A\, Ay € F,

“AMri+Xrg =0 and Ay — Agry > 07 1mp11es ()\1, )\2) e P. (317)

If A\ir1+ Agry =0 then, with the hypothesis 671 + 0215 = 0, we have (A1, \y) = p(6,02)
for some p € F. If we have also A;ry — Agry > 0, then p is positive, i.e. p > 0: because
AMra—Aory = (pby)ra—(pba)r1 = p(O173—0571) > 0, which implies p > 0 by the hypothesis
011y — Br1 > 0. Thus we have shown that, if both A7y + A\gro =0 and A\jry — Aoy > 0
are satisfied, (A, A\o) = p(01,0) for some p > 0. Therefore the hypothesis (6,6,) € P
yields ()\1,)\2) eP.
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We claim that (g, ¢2) = (r1,7r2) + ¢ (r9, —71) is a solution of (3.3): for all A\;, A\ € F,

M@+ g >0 = (A7 4+ Aarg) + 2 (Ao — Agry) >0
= Mri+Xry>0 or
“Nry A+ Aorg =0 and Ajrg — Agry > 07
= (A, \) €P (by (3.11) or (3.17)),

and similarly

Aqr + Aage <0 implies (A, \g) € =P,
)\1(]1 + )\2(]2 =0 1mphes ()\1, )\2) = (0, 0) el.
These implications are actually equivalences.

In case 01ry — Or; < 0, a similar argument shows (g1, ¢2) = (r1,72) + (=712, 71) iS a
solution of (3.3).

Thus, in both Case 1 and Case 2, the pair of polynomials (g;,¢s) is written in the
matrix form (3.4), in which the first column vector (ry,79)" is nonzero.

For the uniqueness part of Theorem 3.1.2, suppose there is a pair of polynomials
¢, q5 € Rle] satisfying (3.3) for all A\j, Ay € F. Suppose also the pair of polynomials
¢, gy is represented by a 2 x 2 real matrix {r{;}1<;j<2 of the form (3.4) such that the
first column vector (r};,r5;)” is nonzero. Then the following holds for all Aj, A, € F:

if A7l 4+ Aorh; >0 then Mgl + Aogh = (Ml + Aarhy) + e (Mrly + Aarby) > 0
hence Mej + Mes € P, (by (33))
if A\irj; + Aarh; <0 then Ay + Aagy <0 hence Aej + \eq € —P.

By Lemma 3.2.1, the vector (r},,75,)T is unique up to a positive scalar multiple. Q.E.D.

3.3 Proof of Theorem 3.1.2 (for general n)

First we shall prove a generalization of Lemma 3.2.1:

Lemma 3.3.1 Let F;, be the n-dimensional vector space over F with the basis ey, ..., e,
for some n > 2, and let P be a nonempty subset of F,, . Suppose P is a positive cone
and P is a convex cone. Then there is a tuple of real numbers (ry,...,7,) # (0,...,0)

such that for all \q,..., A\, € F,

Ary 4o+ A, >0 implies Ajep + -4+ A\pen, € P

AT+ 4 AaTn <0 implies  Ajeg + -+ Apen € —P. (3.18)

Moreover, the tuple of real numbers (rq,...,r,) satisfying (3.18) is unique up to a positive
scalar multiple.

Proof. We have already treated the case n =2 in Lemma 3.2.1. Hence it is enough to
verify the remaining cases n > 2. For this, we will use the result of Lemma 3.2.1.

Let F, be the n-dimensional vector space over F for some n > 2, and let P be a
nonempty subsets of F), such that P is a positive cone and P is a convex cone. We shall
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denote by F@) the 2-dimensional subspace of F}, having the basis e;, e; (1 <14,j < n,
i #7j), ie. B
FU) = {)Ne;+ Njej | \i, \j EF}.
One can easily verifies that the restriction of P in the subspace FU9) is a positive cone;
also the restriction of P is a convex cone in FU9) _ Hence, by the result of Lemma 3.2.1,
there is a pair of real numbers (r\?, 7"](-”)) such that for all \;, \; € F,
)\Z-rgij) + )\jrj(-ij) >0 implies \e; + Ajej € P,

At 4 A <0 implies  Aei + Ajej € —P.

(3.19)

( P may be empty in the subspace F(#); but, in such a case, we put (rgij), r](-ij)) = (0,0),
which clearly satisfies (3.19) for all A;, \; € F.) By Lemma 3.2.1, the pair of real numbers
(TEZJ), 7"](-”)) satisfying (3.19) is unique up to a positive scalar multiple.

That is to say, for each pair i, j (1 < i,j7 < n, i # j), there is a real vector

(rgij),r(-ij)) satisfying (3.19) for all A\;, \; € F. We shall show that there exists i such

that 7 # 0 for all j(# 7). Suppose otherwise: for all i there exists ¢(i) such

(ip(z)) .(ip())
that (rs " 7ot ;
(TZ(ZJ), r](-”)) = (0,0) for all j then this means P is empty in F(/) for all j, which yields
I = F, by Lemma 2.2.4 (a) and thus contradicts P # (). Now, let us consider the

following sequence :

—_~

~

) = (0,5454:)); we can choose ¢(i) to satisfy s, # 0, because if

k times

. . * .
Since the dimension n is finite, there exists j such that j = o(¢(---(¢(7))---)) for some
k(< n). For simplicity, we shall assume

e(l)=2, ¢(2)=3, ... wk-1)=k ok =1.

Let d; :==1if 5, >0, and d;, := —1 if 5, <0 for 1 <1 < k. Then, by (3.19),

—d17”§12) + d2T£12) == —d1 -0+ d252 >0 implies —d161 + d262 epP
—d2r§23) + d3r§23) = —dy-0+d3s3 >0 implies —dyes + dzez € P ~ 0ecp

—dk’f‘](ckl) + dl’f‘gﬂ) = —dk -0+ d181 >0 implies —dkek + d161 e P

a contradiction. Thus, there is i such that rgij) # 0 for all j(# i). We can show,
moreover, that either r”) >0 for all j (#£i) or r?) <0 forall j (i) : for, if we have

rfik) > 0 and rl(il) < 0 for some k, [, then

l)+0-r,(fk)>0 implies l-e,+0-e,€ P
—1-r™ 407 >0 implies —1-e;+0-e€P

1. r(ik

} = 0€ P,

a contradiction. .
Without loss of generality, we shall assume rglj) > 0 for all 7 # 1. Note that this

means e; € P by (3.19). Further, by multiplying l/rglj) if necessary, we can write
(Tilj),r](.lj)) =(1,r;) for j=2,...,n.
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We claim that the tuple of real numbers (1,7,...,7,) is a solution of (3.18) : Suppose
A+ Aot A, >0 (A,..., A, € F). Weshall show \jeq+X\ea+---+A,en € P.
To simplify the situation, suppose Ag, ..., A >0 and \giq,..., A, <0 forsomek (< n).
Then, by the density of F in R, there are numbers 6,,...,60, € F such that

O <19, ... O <ri, Opi1>rgy1, ... 0,>r, and
)\1+)\292+"'+)\n9n>0-

The last condition implies
()\1 + )\292 + -+ )\ngn) et € P (320)

from the hypothesis e; € P. The rest of the conditions imply

0y 141ory >0, ooy —O 141140,
gy 141y <O, oo 0, 1411, <0,
—9261—|—162€P, SN —9k61+16k€P,
— —9k+161—|—16k+1€—P, SN —9n61+16n€—P, (by (319))
— )\2(—9261+162)EPU[, te )\k(—erl—i-lek)GPUI,
)\k+1(—9k+1€1+16k+1)EPUI, te An(—9n61+len)€PUI,
= —(Naba+---+Nb)er+ Nea+---+ Ne, EPUIL. (by Lemma 2.2.4)

Hence, with (3.20) and by Lemma 2.2.4 (c), this yields the conclusion
Aer + doea+ -+ \ye,, € P

In case A\{+ Aorg+-- -+ A\ < 0, we can show similarly Aje; + Xoea+---+ N\e,, € —P.

For the uniqueness part, suppose a tuple of real numbers (ry,...,7,) # (0,...,0)
satisfies (3.18) for all Aj,..., A, € F. We can assume, without loss of generality, that
ry # 0. Then, for each j = 2,...,n, the pair of real numbers (rq,7;) satisfies the

following conditions for all A\, \; € IF,

Ay + )\j'rj >0 implies Aer + )\jej e P, (3 21)
Ay + )\j?”j <0 implies Aer + )\je]' e —-P. '

By Lemma 3.2.1, such a pair (ry,r;) is unique up to a positive scalar multiple. Now,
!/

suppose there is another tuple of real numbers (7,...,7;) # (0,...,0) satisfying (3.18)
for all A,..., A, € F. In case r} =0, there exists j such that r; # 0. Then, the pair of
real numbers (r},7%) (= (0,77 )) also satisfies (3.21) for all A\, \; € F; hence there must
be a positive real number ¢ > 0 such that (0,7}) = ¢(r1,7;), which is impossible because
ry # 0. Therefore we have r] # 0. Thus, for each j =2,...,n, the pair of real numbers
(r1,77%) satisfies (3.21) for all A;, A\; € F. Hence there is a positive real number a > 0
such that (ry,7%) = a(ry,r;) forall j=2,...,n. Thus (ry,...,r,) =a(ry,...,m). O

Theorem 3.1.2 can be proved by inductive use of Lemma 3.3.1. The following is

the idea of the proof: Let F), be the n-dimensional vector space over ', and let P be a
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nonempty subset of F}, such that P is a positive cone and P is a convex cone. Then Lemma
3.3.1 shows that, intuitively, there is a hyperplane by which P and —P are divided. This
hyperplane is a k-dimensional subspace of F}, for some k£ < n, and hence can be regarded
as Fj,. It is easy to see that the restrictions of P and P in this subspace F}, are also
a positive cone and a convex cone, respectively. Then Lemma 3.3.1 shows that, again,
there is a hyperplane by which P and —P are divided .... Repeating this division, we
will obtain a desired hyperplane by which P, I, and —P are completely divided.
Thus, we shall prove Theorem 3.1.2 by induction on n.

(Base)

Let F} be the 1-dimensional vector space over F with the basis ey, and let P be a
nonempty subset of Fy such that P is a positive cone and P is a convex cone. Then, by
Lemma 2.2.4 (b), F; is divided into three parts P, I, and —P.

We cannot have ey € I: for, if e; € I then I = F; by Lemma 2.2.4 (a), contradicting
P+

Suppose e; € P. Then, for all \; € IF,

AL >0 1mphes Aep € P,
)\1 =0 1mp11es )\161 =0 € [,
A <0 implies Aje; € —P.

Since P, I, and — P are mutually disjoint, the above implications are actually equivalences.
Thus ¢; =1 is a solution of (3.3). One can easily verifies that any positive real number
¢; > 0 is a solution of (3.3).

If e; € — P, one can show similarly that any negative real number ¢; < 0 is a solution
of (3.3).

(Induction step)

Let F,, be the n-dimensional vector space over F with the basis ey,...,e, for some
n > 2, and let P be a nonempty subset of F, such that P is a positive cone and P is a
convex cone. Let I be the associated indifference subspace. By Lemma 3.3.1, there is a
tuple of real numbers (rq,...,r,) # (0,...,0) such that for all Ay,... ;A\, € F,

Ary 4o+ A, >0 implies Ajep + -+ A\pen € P,

Mri+--+ A, <0 implies  Ajer+---+ A\en € —P. (3.22)
Let us define a subspace H* of F;, by
H* = {)\161+"'+>\n6n € Fn | >\1T1+"'+>\nrn :0} (323)

Then H* is a k-dimensional subspace of F), for some k < n.
Suppose H* is O-dimensional, i.e. H* contains only the origin 0. This means

Airi+ o+ XN\, =0 implies  MNep 4+ +Aen = 0 €1

Then, with the implications of (3.22), one can easily verifies that these implications turn
out to be equivalences. Thus (r,...,7,) is a solution of (3.3).

Suppose H* is k-dimensional for some £ > 0. Then, by Proposition 2.4.2, there exists
an orthogonal system dy,...,d, in H*:

61 = dner+---+dien, -, 6 = dper+ -+ dipen.
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Note that, by Proposition 2.4.1, any A € H* can be written as

)\-61 A'(slc
A = 6y + - - o . 3.24
<51.6l> 1+ +<5k_6k> k (3.24)

Let P*, I* be the restrictions of P, I in the subspace H*, respectively, i.e.

P*=PnH". I*=1InH". (3.25)

It is easy to verify that P* is a positive cone and P* is a convex cone in H*.
If P* is empty,

)\ITI + e+ )\nrn =0 1mphes )\161 + -+ Anen S I.

Then, with the implications of (3.22), one can easily verifies that these implications turn
out to be equivalences. Thus (r,...,7,) is a solution of (3.3).

If P* is nonempty, then, by the induction hypothesis, there are polynomials p1,...,px €
R[e]x such that for all Ay,..., A\, € F,

AMprtotNpe > 00 Adr -+ Ay € P (3.26)
From (3.26), it also holds that for all Ay,..., A\, € F,

)\1p1+---+)\kpk < 0 iff A101 + -+ Apog E—P*,

. 3.27
)\1p1+---—|—)\kpk =0 iff )\151+"'+>\k5k el ( )
Now we claim that the following set of polynomials ¢i,...,q, € R[e] is a solution of
(3.3):

)1 T di di1

= s e | B s e ]

61 - 51 (sk . 6k

qn Tn dln dkn

One can easily verifies that the polynomials ¢i,...,q, are represented by an n X n real

matrix of the form (3.4) such that the first column vector is nonzero. We shall show that
Mg+ -+ Angn > 0 implies Ajey +---+ A\en € P forall \q,...,\, € F:
Mg+ + Ay >0

= (Mo A ) + € X ((—5);'%11>p1 + -t (%%’2,)7”9) >0

(where A = Aje; + -+ \pey )

{ AMri+--+ A, >0 or

— AMry+ -+ A, =0 and ((5)‘1'%11)191+---+<%>pk>0
AMri 4o+ A, >0 or
T ) Merd- 4 Aen € H* and (%)m+---+(%>akep*
(by (3.23) and (3.26))
— Mri+- -+ A7 >0 or “XeH* and A€ P*” (by (3.24))
— Aer+ -+ \en, € P (by (3.22) or (3.25))
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Similarly, with (3.27), one can show that for all A;,..., A\, € F,

M@+ -+ g, <0 implies  Mer +---+ M\en € — P,
Agr+ -+ Mgy, =0 implies  Mje; +--- 4+ Apen €1.

Hence, these implications are actually equivalences.

For the uniqueness part of Theorem 3.1.2, suppose a set of polynomials ¢/,...,q, €
R[e] satisfies (3.3) for all Ay,..., A, € F. Suppose also the set of polynomials ¢}, ...,q,

is represented by an n x n real matrix {r};}1<ij<n of the form (3.4) such that the first

/

column vector (r},,...,7r" )T is nonzero. Then the following holds for all A;,...,\, € F:
11 nl

if A7y 44 Apryy >0
then Aigp + -+ Ayq, = (Miryy +- -4+ Aaryy) + ep(e) > 0
(where ¢(e) = s1 + S92 + -+ -+ 5,_1€" % for some reals s; )
hence A\je; +---+ A\pen € P, (by (3.3))

then A\jq; +---+ Xoq/, <0 hence \jex + -+ \en, € —P.

By Lemma 331, the vector T‘, y o .,7"’ 1s unique up to a positive scalar multlple
11 nl
Q.E.D.
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Chapter 4

Applications to Linear Inequality
Systems

In the following chapters we shall provide some applications of the lexicographical separa-
tion theorem which was proved in the previous chapter. Here we shall deal with the topics
of infinite systems of linear inequalities. In Section 4.1 the main result of this chapter is
presented (Theorem 4.1.2), giving a necessary and sufficient condition for the existence of
solutions to infinite systems of strict linear inequalities, where the solutions are allowed
to be infinitely small. The result is a generalization of the well-known theorem of the
alternatives for finite linear inequality systems. We also give a sufficient condition for the
existence of real-valued solutions to infinite systems of linear inequalities (Theorem 4.1.5).
Further, we obtain a Farkas type theorem (Theorem 4.1.6) for lexicographical inequality
systems. In Section 4.2 we apply the results obtained in Section 4.1 to game theory, giving
a generalization of von Neumann’s minimax theorem for semi-infinite games.

4.1 Infinite Systems of Linear Inequalities

Let P be an nonempty subset of R". Consider the following system of strict linear
inequalities :

)\11‘1+)\21'2+"'+)\n1'n > 0 for all ()\1,)\2,...,)\71) e P. (41)

It is well known that, in case P is a finite set, there are several equivalent versions of linear
existence theorems which give solutions to (4.1), such as the theorem of the alternatives,
Farkas’ lemma, Motzkin’s lemma, Gordan’s lemma, and so on. Here we present a version
of these theorems:

Proposition 4.1.1 (Theorem of the Alternatives) Let P be a finite subset of R™.
Then, 0 is not a convex combination' of P if and only if the system (4.1) has solu-
tions xy,x9,...,T, in R. O

For a proof see Proposition 1.1.3. Readers should consult Gale [12], Skala [42] for other
standard results on finite linear inequality systems.

'We say that @ is a convex combination of S if there exist finite y,,...,y, € S and Ai,...,\p € R
with X; >0 for i=1,...,k and Y&, X; =1 such that & = My, + - + ey, -
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Proposition 4.1.1 cannot however be directly generalized for the infinite cases. Let

P = {(1,0), (0,1), (—1,1), (=2,1), ..., (—k,1), ... }.

One can easily verifies that (0,0) is not a convex combination of P’. Consider the
corresponding system of linear inequalities:

x>0, y>0, and —kx+y >0 forall positive integer k. (4.2)

The above system (4.2) has no real-valued solutions: for, (4.2) means “0 < z < (1/k)y
for all positive integer k,” which is impossible in R.

Let (z,y) = (g,1) be an imaginary solution to (4.2) ; that is tosay, 0 < ¢ and ¢ < 1/k
for all positive integer k. We call € an infinitesimal. Geometrically, this means that there
exists a line through 0 whose gradient is —e such that P’ lies entirely “above” the line
(see Figure 4.1).

« (a dot) belongs to P’

___________

Figure 4.1: Geometrical Interpretation of ¢
We shall show that Proposition 4.1.1 can be generalized for the infinite cases if we
adopt such an infinitesimal ¢ as a solution to the system of strict linear inequalities :

Theorem 4.1.2 Let P be an nonempty subset of R". Then, 0 is not a convex combina-
tion of P if and only if the system

)\11‘1+)\21'2+"'+)\n1'n > 0 for all (>\17>\27---;)‘n) e P (43)
has solutions xi, %y, ..., z, in Rle], . 2
Proof. (if) Suppose (4.3) has solutions x1,xs, ..., z, in Rle],,andlet & = (z1,z9,...,2,).
Suppose also 0 is a convex combination of P, i.e. there exist y;,...,y, € P and

Ay .-y A €ER with \; >0 for ¢ =1,...,k such that 0 = \yy; +---+ A\gy; . Then

0 =2-0 = :IJ(Z )\kyk) = ZAk(m'yk) > 0,
k=1 k=1

a contradiction.

2For the definition of R[], , see Definition 2.1.5 and Definition 2.1.6.
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(only if) Let P’ be a subset of R", and suppose 0 is not a convex combination of P’
We shall construct a subset P of R" in such a way that P O P’, P is a positive cone, and
P is a convex cone in R". Once the existence of such P is confirmed, by Theorem 3.1.2
there exist polynomials ¢, ..., ¢, € Rle], such that (3.3) holds for all (A,...,\,) € R",
and hence (x1,...,2,) = (q,...,¢,) is a desired solution to (4.3).

By Zorn’s lemma, there exists a maximal subset P of R” (with respect to inclusion)
such that

i) P> P, (ii) 0 is not a convex combination of P. (4.4)
Then, the following conditions hold for P:
(1) o0¢P,

forall ze R, xx€P or =0 or —xz € P,

forall z e R*, x€ P and A >0 imply Az € P,

)
(2)
(3)
(4) forall z,y e R*, x€ P and ye€ P imply z+y € P.
(1) is trivial. We shall verify (2), (3), and (4) as follows.

(2) : Let @ be a nonzero vector in R" . We shall show that either  or —z is in P. Suppose
otherwise: = ¢ P and —z ¢ P. Then, by the maximality of P with respect to (4.4), 0
is a convex combination of P U {z}, and also 0 is a convex combination of P U {—z}.
Hence, there exist py,...,p;, q4,-.-,q,, € P and Ag,..., A;, po,- -, it € R such that

l
Mz 4+ Y Mp, =0, X\ >0 fori=0,...,1, and i, N =1,

m
to (—x) + Zuqu =0, p; >0 forj=0,....,m, and Y, pu = 1.

Therefore o (Y —; Aepi)+Ao (Xjey mrar) = 0. Let &= i ( 35y Me)+ho (e 1) -
Then

[ m
%NO(Z APy ) + %AO(Z pea) = 0,
k=1 k=1

which means that 0 is a convex combination of P, a contradiction.

(3): Suppose £ € P, A >0, and Az ¢ P. Then, by the maximality of P with respect
to (4.4), 0 is a convex combination of P U { Az }. Hence, there exist p,...,p, € P and
o, - - -, iy € R such that

I
po (A\z) + Z,ukpk =0, wi >0 for i=0,...,[, and Zé:o w; = 1.
k=1

l

1
Let & := o) + 22:1 i . Then ¢ (porx + Z tepr) = 0. This means that 0 is a
k=1

convex combination of P, a contradiction.

(4) : Suppose there exist z, y such that x € P, y € P, and = +y ¢ P. Then, by (2),
we have either  +y =0 or —x —y € P; both cases contradict the hypothesis that 0 is
not a convex combination of P.
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Thus, by (1), (3), and (4), P is a positive cone in R". Now, by (1) and (2), we have
exactly one of £ € P, =0, and x € —P for all x € R*. Hence P =—-P U {0}.
Therefore P is a convex cone in R”. O

Example 4.1.3 Let P, (C R?) be
Po= {(1,-1), (-1,2), (-2,3), ..., (—k,k+1),...}.

One can easily verifies that (0,0) is not a convex combination of P; , but the corresponding
system

r—y>0, —-x+4+2y>0, 2x+3y>0, ..., —kz+(k+1y>0, ...

has no real-valued solution. By Theorem 4.1.2, the above system has solutions z,y in
R[]y : for example, (x,y) = (14, 1), where € is an infinitesimal. O

Example 4.1.4 Let P, (C R®) be

P, = {(1,0,0), (0,1,0), (0,0,1), } U {(1,—-1,0), (1,-2,0), ..., (1, —k,0), ...}
U {(0,1,-1), (0,1,-2), ..., (0,1, k), ...}

It is not difficult to verify that (0,0,0) is not a convex combination of P,. By Theorem
4.1.2, the corresponding system

z>0,y>0, 2>0, r—y>0,x—-2y>0, ..., z—ky>0, ...,
y—2>0,y—22>0, ..., y—kz>0, ...
has solutions z,y,z in R[e]3: for example, (z,y,2) = (1,¢,£?). a

Theorem 4.1.2 has the following corollary, which gives a sufficient condition for the
existence of real-valued solutions to linear inequality systems. Note that this can also
be derived as a consequence of the well-known supporting hyperplane lemma (see e.g.
Rockafellar [39]).

Theorem 4.1.5 Let P be an nonempty subset of R*. If 0 is not a convex combination
of P, then there exist ry,rs,...,r, € R such that (ry,...,r,) # (0,...,0) and

AT+ Aoy + -+ Ay, > 00 forall (A, Ag,...,\,) € P

Proof. Let P’ be an nonempty subset of R”, and suppose 0 is not a convex combination
of P'. As in the proof of Theorem 4.1.2, we can construct a subset P of R” in such a way
that P O P', P is a positive cone, and P is a convex cone in R”. By Theorem 3.1.2,
there exist polynomials ¢,...,¢, € R[e] such that (3.3) holds for all (\,...,\,) € R";
moreover, the polynomials ¢,...,q, are written as

G = T +rige+ -+ ripe (i1, -+, Tin € R) fore=1,...,n,
such that (ry1,...,7.1) # (0,...,0). Therefore, by (3.3),

MG+ 4 Mg > 0 for all (Ay,...,\,) € P. (4.5)
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Now, it is easy to verify that for all Ay,..., A\, € R,

)\lql—i—---—i-)\nqn > 0 iff ()\1T11+"'+)\nrn1)
+6(>\1T12+"'+>\nrn2)
+"'+5n71(>\lrln+"'+)\nrnn) > 07

and hence A\ig; + -+ A\, > 0 implies A7y + -+ -+ Aprn > 0. Therefore, by (4.5),
)\1T11+"'+)\nrn1 Z 0 for all ()\1,...,)\1) e P.
Thus (711,...,7,1) is a desired solution. O

Martinez-Legaz [28] presented a generalization of Farkas’ lemma (see Proposition 1.1.4)
for lexicographical consequences of linear inequality systems. Here we shall give another
generalization of Farkas’ lemma for lexicographical inequality systems. Let S be a subset
of R*. We denote by cone(S) the smallest convex cone containing S and 0; that is to
say, cone(S) consists of all the finite sums 3% | A;s; such that \; > 0 and s; € S for
1=1,...,k.

Theorem 4.1.6 Let S be an nonempty subset of R”, and let ¢ € R". Then, ¢ € cone(S5)
if and only if for all n X n real matrices A,

“Ax <, 0 forall z €S 7 implies Aec <,0. 3

Proof. (only if) Let A be an n x n real matrix, and let ¢ € R". Suppose ¢ € cone(S5)
and Az <, 0 for all z € S. Then, ¢ € cone(S) means there exist finite s;,...,s;, € S
and Aq,..., A\ € R with \; >0 for ¢t =1,...,k such that ¢ = Zle A;8; . Therefore

k

k
Ae = A(D Nsi) = D> N(As;) £, 0.
=1

=1

(if) It is well known by the standard results of linear algebra that, to any n x n matrix
A, there corresponds a linear operator g : R* — R™ such that g(z) = Az for all z € R".
Hence it is enough to show that, if ¢ ¢ cone(S), then there is a linear operator g on R”
such that

glz) £, 0 forall z €S and g(e) >, O. (4.6)

Suppose ¢ ¢ cone(S). We shall construct a subset P of R" in such a way that ¢ € P,
PnNcone(S) =0, P is a positive cone in R*, and P is a convex cone in R". Once the
existence of such P is confirmed, by Theorem 3.1.1 there exist real-valued linear functions
g1, ...,9, on R” such that for all z € R",

reP iff (gi(z),...,9.(2))" >, (0,...,0)",

and hence g(z) = (gi(x),...,gu(x))T is a desired solution of (4.6).
By Zorn’s lemma, there exists a maximal subset P of R” (with respect to inclusion)
such that

i) ceP, (i) P N cone(S) =10, (iii) P is a convex cone. (4.7)

3Here, the elements of R™ are considered as column vectors; and also the lexicographic ordering <,
of the column vectors is considered in the same manner as the row vectors (see Definition 2.1.2).
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Note that Py = {Ae| A > 0} satisfies (i)—(iii), and hence these conditions are consistent.
Now we have 0 ¢ P by (ii), and hence, with (iii), P is a positive cone. It remains to
show that P is a convex cone:

(1) forall z€eR*, 2z € P and A>0 imply \x € P,
(2) forall z,y €R*, z€P and y<€ P imply z+y € P.

(1) is an immediate consequence of (iii). To verify (2), suppose there exist a,b € R" such
that @ € P, b € P, and a + b € P. By the maximality of P with respect to (4.7),
a ¢ P means that there exist p € P and A € R with A > 0 such that

Aa + p € cone(S).
Similarly, b ¢ P means that there exist ¢ € P and g € R with g > 0 such that
pb 4+ g € cone(S).

Hence, Ay (a+b)+up+Aq € cone(S). But, by (iii) and the hypotheses a+b, p, ¢ € P,
we have A\u(a+b) +pup+ Ag € P. Therefore P Ncone(S) # 0, contradicting (ii). O

4.2 A Minimax Theorem for Semi-Infinite Games

In this section we consider semi-infinite games, i.e. zero-sum two-person games in which
one of the players has infinitely many strategies, and prove a minimax theorem using
the result of the previous section. (For the fundamentals of game theory see e.g. Owen
[37].) The minimax theorem for finite zero-sum two-person games was first proved by
von Neumann [44], and its generalizations for semi-infinite games was introduced by Wald
[46], Blackwell and Girshick [2]. In these theorems, boundedness of payoff functions are
assumed. Here we present a new minimax theorem with no assumption of boundedness.
The result can also be derived as a consequence of Sion’s minimax theorem [41] which
was proved in a more general setting, but our proof given here is rather elementary.

Consider a zero-sum two-person game in which one of the players has infinitely many
strategies. Let I = {1,2,...,m} be a set of pure strategies for player I, and let =
be an arbitrary set of pure strategies for player II. The game is denoted by [si¢]icreecz
(sie € R), where s;¢ is the outcome of the game when i € I is player I’s choice and { € =
is player II’s. Let

S = { (Sm,Sgg,...,Smg) | 565}

The game is played as follows: Player II selects s = (s1, S2,...,5,) € S, and simultane-
ously player I selects a coordinate 7. The outcome of the game is the payoff s; to player I
from player II. Such a game is called an S-game (following Blackwell and Girshick [2]).
If = is countable, an S-game can be represented by an m x oo matrix, such as

(1 1/2 1/3 1/4 1/5 )
0 1 2 3 4 -

where each row represents a strategy of player I, and each column a strategy of player II.
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Definition 4.2.1 A mized strategy for each player is a probability distribution with finite
support on his set of pure strategies.

In other words, a mixed strategy for player I is an m-dimensional vector = = (x1, ..., Zy)
satisfying x; > 0 for : =1,...,m and

m

i=1
For player II, a mixed strategy is a mapping y : = — [0, 1] with the following properties:
(i) Z y(&) =1, (ii) there is a finite © C = such that y(§) =0 forall € 2\ O.
g€z

We shall denote by X the set of all mixed strategies for player I, and let Y denote the set
of player II’s mixed strategies. Also, for y € Y and £ € =, we denote y(&) by ye in the
following. O

Suppose that players I and II are playing an S-game [s;¢|;er¢c=. If player I chooses the
mixed strategy © = (z1,...,2,) € X and player II chooses y € Y, then the expected
payoff will be

m

S(z,y) = Z Z T Sig Ye -

i=1 ¢€=

Player I’s expected gain-floor, assuming he uses z, will be

v(z) = inf S(z,y),

yey

Player I should choose x so as to maximize v(x), i.e. so as to obtain

v, = sup inf S(z,y).
¢ = sup inf (z,y)

Similarly, if player II chooses y he will obtain the expected loss-ceiling

v(y) = sup S(z,y),

reX
and he should choose y so as to obtain
vy = inf sup S(z,y).
" yey me)lz' ( y)

(Note that v, v € R U {—00,00}.) These numbers v; and vy are called the values of
the game for I and II, respectively.

[t can easily be proved that, for any function F'(x,y) defined on any cartesian product
X xY,

sup inf F(z, < inf sup F(z,y).
xe)lz yey ( y) T oyey xE)I? ( y)

Hence we have
v < g

It’s just that player I’s gain-floor does not exceed II’s loss-ceiling. Now, we can actu-
ally prove the following theorem, which is a generalization of the well-known minimax
theorem :
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Theorem 4.2.2 For any S-game,
Uy = Up.

Proof. We shall prove this theorem by way of the method of separating two convex sets
by a hyperplane. ( The method was first given by von Neumann and Morgenstern [45] for
the finite case.) Let [si]icrecz be an S-game. Let

S = {(Sm,Sgg,...,Smg) | 565}

Then S can be considered as a set of m-diminsional vectors in R™. Let ey,...,e, be
the basis of R™, i.e.

Let P=S U {e1,...,em}.
By Theorem 4.1.5, at least one of (1) and (2) must hold :

(1) There exist a finite number of vectors pi,...,pr in P and real numbers wuq, ..., uy
such that

u; > 0 fori=1,...,k,
k
ZUiPi = 0.
i=1

(2) There exists a vector r = (r1,...,7y) such that (ry,...,7,) # (0,...,0) and

r-p >0 forall peP.

Suppose (1) holds. If all pq,...,pr belong to the basis {e1,...,em }, it will follow
that 0 is a convex combination of ey, ..., e , which is obviously impossible because they
are independent vectors. Hence at least one of py,...,ps isin S. Hence, (1) means there
exist a finite number of vectors

S¢1 — (81517 sy Smﬁl) )

s¢, = (S1g0y- - Sme,)

in S and real numbers wuq, ..., u,, vy,...,v, such that
u > 0 for l=1,...,n,
v, > 0 for k=1,...,m,

n m
ZUZS,EI—F Z’Ukek = 0.
=1 k=1

The last equation can also be written as

ZUZSi§,+Uz' = 0 fori=1,...,m. (4.8)
=1
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We define a mapping y : = — [0, 1] by

Ve, = ul/Zul for [=1,...,n,
I=1

Ye = 0 fOI‘gEE\{gla"'agn}'

Then one can easily verifies that y is a mixed strategy for player II. By (4.8), we have

n n
Zygé‘zf == Zyglsigl = —U; Zul S 0 forizl,...,m.
=1 =1

e=

Hence v(y) < 0: because

m
v(y) = sup S(z,y) = Sup(z T Z ygsi§> < 0.
zeX zeX i—1 ¢ex
Therefore v; < 0.
Suppose, instead, that (2) holds. As the unit vectors ey, ..., e, arein P, we have
r-e =1 >0 fore=1,...,m,

and hence, with the hypothesis (rq,...,ry,) # (0,...,0), it follows that > r; > 0. Let

Then x = (1,...,%,) satisfies
r; > 0, fore=1,...,m,
m
D m =1,
i=1

and z-s > 0 forall s € S, i.e.
D wisie >0, for all £ € =.
i=1

Hence v(x) > 0: because

U(:B) = inf S(:B,y) = Hlf(Z Ye zm:xisig) Z 0.
1=1

yey yeYy ~
==

Therefore v; > 0.
We have shown, therefore, that it is not possible to have v, < 0 < w;. Let us
suppose, now, that the S-game is changed into the S’-game [sgg]iemeg such that

S;f = S + k.
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It can easily be checked that for any x, v,
S'(z,y) = S(x,y) + k.

Hence
v(S) = w(S) + k,

(S = w(S) + k.

(For convenience sake, we assume oo =00+ k and —oo = —oo +k forall k € R.) As
it is not possible that
v(S) < 0 < vy(S),

it is also not possible that
u(S) < —k < wvy(9).

Thus we cannot have v;(S) < vy(S) since k is arbitrary. But we have already seen that
v;(S) < wy(S). Therefore
v (S) = vy(S).

|

The common value v = v; = vy, is called the value of the semi-infinite game. It should
be noted that, different from finite games, the existence of the value of a semi-infinite
game does not necessarily imply the existence of an equilibrium pair of mixed strategies:
for, there may not exist such a mixed strategy for player I that gives him the infimum
value v, .
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Chapter 5

Applications in Utility Theory

In this chapter, we shall deal with the topic of lexicographic utility theory. In Section 5.1
we give a modified version of lexicographic expected utility theory, taking only rational-
valued probabilities into account (Theorem 5.1.2). In Section 5.2 we consider the problem
of extensive measurement on discrete spaces. We obtain a lexicographical representation
theorem for preferences on indivisible items, giving a necessary and sufficient condition
for extensive utility representation (Theorem 5.2.1). These results will be derived as
consequences of the lexicographical separation theorem in Chapter 3.

5.1 Lexicographic Expected Utility on Rational-Valued
Lotteries

In this section we shall show that a similar form of the lexicographic expected utility rep-
resentation considered by Hausner [17] is valid even if we omit the existence of irrational-
valued lotteries.

The well-known expected utility theory for decision making under risk, as developed
by von Neumann and Morgenstern [45], is based on the assumptions that a preference
relation over the lotteries is a complete preorder satisfying an independence condition and
a continuity property. The role of the continuity property in single person decision theory
is merely technical, namely, to ensure the existence of a real-valued utility function. As
Hausner [17] pointed out, dropping this assumption modifies the classical expected utility
theory by allowing lexicographic utility functions.

Hausner derived the lexicographic representation of a utility space by embedding the
utility space into an ordered vector space over R; and by using the fact, as was proved
by Hausner and Wendel [18], that any ordered vector space over R can be represented
as a lexicographic function space. His derivation also suggests that, when a utility space
is finitely generated, the dimension of a lexicographic utility function is less than that
of the utility space. Finite-dimensionality of a utility function was first axiomatized by
Fishburn [7] [10], who introduced a hierarchical axiom which ensures the existence of
a finite-dimensinal utility function lexicographically preserving an order on a mixture
space. Recently, Nakamura [33] [34] presents a preference-based hierarchical axiom as an
alternative to Fishburn’s.

All these results are founded on the domain of lotteries, that is, the domain of real-
valued probability distributions on an outcome set. In this thesis we restrict our attention

47



to rational-valued probabilities (in order not to consider situations in which an event
occurs with an irrational-valued probability ), and show that the lexicographic expected
utility can also be founded on the domain of rational-valued lotteries.

Throughout this section we shall assume that S, = {ai,...,a,} is a finite set of
items for some n > 1. A lottery is a probability distribution on S,, and is denoted by
prLoy+- -+ D, a, where p; € R is a probability of «;, so that p; >0 and Y p;=1. We
denote by A*(S,,) the set of all lotteries. Given z,y € A*(S,) and 6 € [0,1], the convex
combination Ox + (1 — )y is well defined (see Section 1.1) and also belongs to A*(S,,) .

A weak order < on A*(S,) satisfies the independence condition if = < y implies
Oz + (1 —0)z < Oy+ (1 —0)z for all z € A*(S,) and all § € (0,1). The independence
condition for the associated indifference relation ~ is defined similarly. As Hausner [17]
and Fishburn [9] pointed out, these independence conditions for a weak order < on A*(S,,)
are necessary and sufficient for the existence of a finite-dimensional linear utility function
on A*(S,,) whose lexicographic order preserves the ordering <:

Proposition 5.1.1 (Hausner [17], Fishburn [9]) Let < be a weak order on A*(S,,) and
let ~ be the associated indifference relation. Then < and ~ satisfy the independence con-

ditions if and only if there exists an (n—1)-dimensional utility function U = (u1,...,u, 1)
on A*(S,) such that for all z,y € A*(S,),

r <y iff Ulx) <, Uly), (5.1)
Ulz+(1—-0)y) = 0U@x) + (1-60)U(y) for all 6 € [0,1]. (5.2)
(]

That is to say, the assumptions of Proposition 5.1.1 ensure the existence of vector-valued
utilities ai,...,an € R*7! of the items oy,...,a, € S, , respectively, whose expected
value is to be maximized lexicographically : for, if we have a utility function U : A*(S,) —
R"! satisfying (5.1) and (5.2) then the vector-valued utility a; of each item «; can be
defined by a; :==U(«;) for i =1,...,n (where «; denotes the lottery in which «; occurs
with probability one), so that for all lotteries > " Ny, Yoo, iy in A*(S,),

zn:)\iai < zn:uiai iff zn:)\z a; <g zn:ui a; . (53)
i=1 i=1 i=1 i=1

It is also known that the vector-valued utilities can be replaced by single-valued utilities
by assuming a suitable Archimedean condition.

It should be pointed out that, from the perspective of Proposition 5.1.1, the existence
of such utilities are ultimately founded on the domain of lotteries A*(S,); hence it is
tacitly assumed that the domain of lotteries includes “irrational-valued lotteries,” such
as ? a;+(1— %) ap , which assign irrational-valued probabilities to some items. In our
real life, however, it is difficult at once to imagine such a gamble in which an event occurs
with an irrational-valued probability.! Thus we will restrict ourselves to the domain of

“rational-valued lotteries,” that is, lotteries in which all events occur with rational-valued

'Kaneko [22] presented a repetition method which yields an irrational-valued probability. But this
method is not possible to carry out when the irrational-valued probability is not calculable.

48



probabilities, and consider axioms for weak orders on the domain of such rational-valued
lotteries.

A rational lottery is a lottery p; oy +- - -+p, o, in which all probabilities are rational-
valued, that is, p; € Q and p; > 0 forall 1 <i<n, with >, p; = 1. We denote by
A(S,) the set of all rational lotteries. It is easy to verify that, for all x,y € A(S,) and
all 0 <0 <1 in Q, the convex combination 0z + (1 — )y also belongs to A(S,,).

Let < be a weak order on A(S,,), and let ~ be its associated indifference relation. The
independence conditions for < and ~ on A(S,,) is defined in a parallel way to A*(S,):
for all x,y,z € A(S,) and all 0 < f <1 in Q,

I1 if <y then z+(1—-0)z < Oy+(1—0)z,
I2 if x~y then Oz +(1—0)z ~ Oy+ (1 —0)z.

Now we state the main result of this section as follows, which is just a counterpart of
Proposition 5.1.1 on the domain of rational lotteries:

Theorem 5.1.2 Let < be a nontrivial weak order on A(S,) and let ~ be the associated
indifference relation. Then < and ~ satisfy the independence conditions (I1 and I2,
respectively ) if and only if there are real-valued functions u,,...,u, 1 on A(S,), where
uy is not a constant function, such that for all x,y € A(S,),

r <y iff (ur (), up_1(z)) <p (ur(y),. .- un_1(y)) (5.4)
and, foreach 1 <j<n-—1andall 0 <#<1 inQ,
w00+ (1= 0)y) = Ou(e) + (1-0)uy(y) 5.5)

Moreover, u, is unique up to a positive affine transformation,? that is, if vi,...,v,_1 are
other functions with the same property, then there exist real constants ¢ > 0 and d such
that

vi(z) = cug(x) +d  forall x € A(S,).

|

Thus, by a similar argument below Proposition 5.1.1, the assumptions of Theorem 5.1.2

also ensure the existence of vector-valued utilities a1, ..., a, € R* ! of theitems a;, ..., €

Sy, respectively, satisfying (5.3) for all " | Ny, D0 piey in A(S,) . In other words,
when all the items are guaranteed to occur with rational-valued probabilities, we do not
need to assume the existence of “irrational-valued lotteries.”

Remark 5.1.3 It should be noted that the assumptions of Theorem 5.1.2 do not ensure
the existence of rational-valued functions wuy, ..., u,—; on A(S,) satisfying (5.4) and (5.5) .
Here we give an illustrative example: Let < be a binary relation on A(S3) defined by

prai+pag+p3as < qror+qaz+gyoas iff —p1+\/§p3 < —(]1—1—\/5(]3- (5.6)

2The other functions us,...,u,—1 are entirely indefinite in almost all cases.
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It is easy to check that < is a weak order on A(S;) satisfying the independent conditions.

Also
ay < pa;+ (1 —p)as if 0<pc< V2

y: V2L (5.7)
ay = pa;+ (1 —p)as if ﬁi1<p§1'
Suppose there exist rational-valued functions us, ..., u,—1 on A(S,) satisfying (5.4) and

(5.5). This means that there exist utilities (ai,as), (b1, bs), (c1,co) € Q* of the items
a1, g, a3 € Sy, respectively, satisfying

prog+proag+p3az < qrog+qeop+qyag iff (5.8)
p1 (ar,a2) +po (b1, b2) + ps (c1,02) <o qi (a1, a2) + g2 (b1, b2) + g3 (c1, ¢2) -

Then we get a contradiction as follows. By (5.6), we have (ai,a2) <, (b1,b2) <, (c1,c2).

First we shall show that a; = b; = ¢;. Assume a; < ¢;. Then, by # % a; + ﬁ cy

because the right-hand side is an irrational number. Consider the case b; < \/\561 a; +
ﬁ ¢y . By the density of Q in R, there is a d; € Q such that
by < di, (5.9)
V2 1
di < Vo a; + ol ci - (510)

Note that a1 < by < dy < ¢;. By (5.9), we have (by,by) <, (dy,dy) for any dy € Q,
and hence (b1, b2) <, ¢=2 dl (a1,a2)+ 4U=01 (¢, ¢) . Therefore, by (5.8), ap < 9=% ay +

c1— c1—al ci—a1

‘2 —:- az, and hence, by (5.7), we must have 0 < % < \/\5/1' However, by (5.10),
V2 c1—d st 2 1
we obtain - < —c;ai , a contradiction. The other case b; > o 1 + T O can

be treated in a parallel way with the above. Thus we have shown that ¢; = by = ay.
Similarly we can show that ¢, = by = ay . But this contradicts the hypothesis (a1, as) <,
(b1,b2) <, (c1,¢2)- 0

The “if” part of Theorem 5.1.2 is easy to check, so we omit the proof. The “only if”
part and the uniqueness part of Theorem 5.1.2 will be proved by a sequence of lemmas.

Hausner [17] derived the lexicographic representation of utility spaces by the following
method: he first show that any utility space can be embedded into an ordered vector
space over R, and then he uses the fact, which was proved by Hausner and Wendel [18],
that any ordered vector space over R can be represented as a lexicographic function space.
Following Hausner, we first show that any weak order on A(S,) can be embedded into an
ordered vector space over Q. Let

V(Sn) = { Mo+ -+ Xan | A, N, €QF,
H(S,) = {Mar+-+ Xy | A,..., A, €Q and D7 A\ =0}.

V(S,) is the n-dimensional vector space over Q which is generated by {a4,...,a,}, and
(Sn) is an (n—1)-dimensional subspace of V(S,). Also, A(S,) is naturally embedded
in V(S,). It is easy to verify that, for any =,y € A(S,), we have y —xz € H(S,).

Lemma 5.1.4 For any z € H(S,), there exist A > 0 and z,y € A(S,) such that
z=ANMy —x).
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Proof. Suppose z is in H(S,), and let 2 = oy + -+ + * a, € A(S,) be fixed. Let
y = o + pz for some pu € Q with g > 0. Then, if p is sufficiently small, we have
y € A(S,). Let A =1/p, and we get the conclusion. O

Let L(S,) = {Aa1+ -4+ Ay, | A € Q}. Then L(S,) is a 1-dimensional subspace of
V(S,) . The following lemma shows that V' (S,) is the direct sum of H(S,) and L(S,):

Lemma 5.1.5 For any = € V(S,), there are unique xy € H(S,) and zy € L(S,) such
that x = xg + 2, .

Proof. Let z = Ao+ -+, € V(S,),and let A= > | A;. We define z;, € L(S,)
as rp, = 2oy +---+2q,. Let oy = x—x;. Then 2y belongs to H(S,) . The uniqueness
of 7, and xp is obvious. O

By Lemma 5.1.5, we can define the projection py from V(S,) to H(S,) as pu(x) = vy
for all x € V(S,). It is easy to check that py is a linear mapping.

Lemma 5.1.6 Let < be a weak order on A(S,). Then, for all z,y,z € A(S,), © 3y
and y < z imply x < z.
Proof. By Proposition 2.1.1 (b), (d). O

Lemma 5.1.7 Let < be a weak order on A(S,) satisfying I1 and I2. Then, for all
x,y,z,w € A(Sy) and all 0 < 0 <1 inQ, Sy and w < z imply 0z + (1 — O)w <
Oy + (1 —0)z.

Proof. Suppose x 3y and w < z. Then, by I1 and 12, z Xy implies Oz + (1 —0)w 3
0y + (1 —6)w. By I1, w < z implies Oy + (1 —0)w < Oy + (1 — 0)z. Hence, by Lemma
5.1.6, we get Oz + (1 —0)w < Oy + (1 —0)z. O

Lemma 5.1.8 Let < be a weak order on A(S,) satisfying I1 and I2. Then, for all
z,y,z,w € A(S,) and all 0 < 0 < 1 in Q, not(y < x) and not(z < w) imply
not(Qy+ (1 —0)z < Oz + (1 —Q)w).

Proof. By Proposition 2.1.1 (a), it is enough to show that, for all z,y,z,w € A(S,)
andall 0 <0 <1inQ, 2 2y and w Xz imply z+ (1 —Q)w 3 Oy+ (1 —0)z. If
either © <y or w < z (or both) holds, then this is clear from Lemma 5.1.7. Suppose
z ~y and w ~ z. Then, by I2, we have 0z + (1 —-0)w ~ Oy+(1—0)w ~ Oy+(1—6)z.
O

Lemma 5.1.9 Suppose < is a weak order on A(S,,) satisfying I1 and I2. Let
P={Xy—=x) €¢H(S,) | A€Q, z,ye A(S,) with A>0 and z <y}.
Then, for all z,y € A(S,), v <y if y—x € P.

Proof. Recall that if z,y € A(S,) then y —x € H(S,). Hence, if © < y then, by
the definition, y — 2 € P. For the converse, suppose y — x € P and not(x < y).
By the definition of P, there are A > 0 and z,w € A(S,) with z < w such that
y—z = A(w—2). Let § =1/(1+ A). Then we have 0 < 6 <1 and fy+ (1 —60)z =
Oz + (1 — 0)w. Now, not (z < y) yields y S x. Hence, by Lemma 5.1.7, y X x and
z < w imply Oy + (1 —0)z < 0z + (1 —0)w (= Oy + (1 —60)z). This is impossible
because < is asymmetric and hence there is no v € A(S,) such that v < v. O
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Lemma 5.1.10 Suppose < is a nontrivial weak order on A(S,,) satisfying I1 and I2, and
let P be as in Lemma 5.1.9. Then, P is a nonempty positive cone in H(S,), and P is a
convex cone in H(S,).

Proof. (P is a nonempty positive cone in H(S,).) Since < is nontrivial, it is easy to
see that P is nonempty. Also P does not contain the origin, because < is asymmetric and
hence there isno x € A(S,) such that x < x. It remains to show that P is a convex cone.
It is clear, from the definition of P, that x € P and A > 0 imply Az € P. Now we shall
show that x,y € P implies x+y € P. Let x,y € P. Then, by the definition of P, there
are A\, ;>0 and z,w,u,v € A(S,) with z < w and v < v such that + = X (w—2) and
y = p(v—u). Let # =X/(A+ ). Then we have 0 < § < 1. Hence, by Lemma 5.1.7,
z < w and u < v yield 0z+(1— H)u < Bw+(1—0)v. Therefore (w—z)+(1—0)(v—u) €
P. This means i (v+y) = 335 (w—2) 4+ (v—u) = O(w—2)+(1-0)(v—u) € P;
thus we obtain x +y € P.

(P is a convex cone in H(S,).) First we shall show that x € P and A > 0 imply

Ar € P. Suppose A\v ¢ P and X\ > 0. This means \z € P and 1/\ > 0. Hence
x € P (since P is a convex cone). Therefore x ¢ P. Now we shall show that z,y € P
implies  +y € P. Let z,y € P. Then, by Lemma 5.1.4, there are A,z > 0 and
z,w,u,v € A(S,) such that z = A(w —2) and y = p(v— u) Moreover, not (z < w)
and not (u < v): for otherwise, by the definition of P, we have x € P or y € P, a
contradiction. Let 6 = A\/(\+ u). Then we have 0 < § < 1. Hence, by Lemma 5.1.8,
not (z < w) and not (u < v) yield not (02 + (1 — 0)u < 6w+ (1 —0)v). By Lemma
5.1.9, we obtain #(w — z) + (1 — 0)(v — u) € P. Since - Lty = )\j\r# (w—2) +
/\“Tu(v—u):9(w—z)+(1—9)(v—u)EP,Weget x—l—yEP. O

Now we are in a position to prove Theorem 5.1.2 by way of the lexicographical sepa-
ration theorem (Theorem 3.1.1).

Proof of the “only if” part of Theorem 5.1.2 : Suppose < is a nontrivial weak
order on A(S,,) satisfying I1 and I12. Let P be defined as in Lemma 5.1.9. Then, by
Lemma 5.1.10, P is a nonempty positive cone in H(S,), and also P is a convex cone in
H(S,). By Theorem 3.1.1, there are real-valued linear functions g,...,g,—1 on H(S,),
where ¢; is not constantly zero, such that for all x € H(S,),

reP it (gi(z),...,9n-1(x)) >, (0,...,0). (5.11)
Let py be the projection from V' (S,,) to H(S,,) (as was defined below Lemma 5.1.5) . Note
that py(z) = = for all z € H(S,), and the composite functions g¢; o py, ..., gn_1 © Dy
are real-valued linear functions on V'(S,,) . We see that gy opy, ..., gn—10py satisfy (5.4)
for all z,y € A(S,):
y-=x

&~ y—xz€P (by Lemma 5.1.9)

= (qily—2), ..., gy —2)) >r (0,...,0) (by (5.11))

— (qropuly—2), ..., gnropaly—2x)) >, (0,...,0)

= (910opa(Y), -5 gn10pa(y)) >r (gropa(), -, gna o pu(e))

Also gy opy is not constant on A(S,,): for, if giopg(z) = giopy(y) forall x,y € A(S,),
gopyly—2z) = q1(y —x) = 0 for all z,y € A(S,), and hence, by Lemma 5.1.4,
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g1(2) =0 for all z € H(S,), contradicting the hypothesis that g; is not constantly zero.
Since g o py is linear on V(S,), it satisfies (5.5) for all z,y € A(S,) andall 0 <0 <1
in Q. Thus the restrictions of ¢ o py, ..., gn_1 © py to A(S,) are desired solutions of
the existence part of Theorem 5.1.2.

Proof of the uniqueness part of Theorem 5.1.2 : Suppose uy,...,u, 1 are real-
valued functions on A(S,,) satisfying (5.4) and (5.5) for all z,y € A(S,) andall 0 <6 <1
in Q. We also assume that u is not constant on A(S,). Let us define linear functions
g1y, gn1 on V(S,) as follows: for j=1,...,n—1,

gi(Aog + - 4+ X)) = Auj(on) + -+ Auj(ay,)  forall A, ..\, €Q. (5.12)

Then g;(z) = u;(z) for all x € A(S,); that is, g; is a (unique) linear extension of u; to
V' (S,). We can see that g; is not constantly zero on H(S,): for, by the assumption that
uy is not constant on A(S),), there must be some oy, and «; such that ui(ag) < ui(ay),
hence a; — oy, € H(S,) and g1(oq — ag) = ui(ay) —ui(ay) > 0.

Let P be defined as in Lemma 5.1.9. We shall show that ¢i,..., g, 1 satisfy (5.11) for
all x € H(S,). First suppose x € P; we will show (g1(x),...,g,-1(x)) >, (0,...,0).
By the definition of P, there are A\ > 0 and y,z € A(S,) with y < z such that
x = A(z—y). Then g](x) = Agj(2) —Agj(y) = Auj(z) —Au;(y) for j=1,...,n—1, and
also (u1(y),...,upn—1(y)) <. (u1(2),...,un—1(2)) by the assumption (5.4). Therefore
)

) = Al(w(2), s una(2)) = (wa(y), - una(y)) ]
>, (0,...,0).

Suppose x ¢ P, (that is, € H(S,) \ P). Then, by Lemma 5.1.4, there are A > 0 and
y,z € A(S,) such that x = A(z —y). Moreover, not (y < z) (for otherwise x must
be in P ). Therefore, a similar argument to the above leads to (g1(z),...,g, 1(2)) =,
(0,...,0). Thus we have shown that the subset P of H(S,) and the restrictions of
g1,---,9n_1 to H(S,) satisfy the conditions of the existence part of Theorem 3.1.1.

Suppose there are other functions vq,...,v,_1 on A(S,) with the same property as
Uy ..., U, 1. We define linear functions ¢i,...,g,_, on V(S,) in a similar way to (5.12)
for j =1,...,n=1; hence gj(v) = v;(x) for all ¥ € A(S,). By a similar argument
to the above, the restrictions of ¢i,...,q, | to H(S,) also satisfy the conditions of the
existence part of Theorem 3.1.1. Hence, by the uniqueness part of Theorem 3.1.1, there
is a real constant a > 0 such that ¢{(z) = agi(z) for all x € H(S,). This means
g1y —2) = agi(y — z) for all y,z € A(S,). Therefore, for all y,z € A(S,),

(gl(x)a"'agn 1(

vi(y) —vi(2) = gi(y) —g1(2) = gy —2)

= aq (y - Z)

= agl(y) - agl(z) = aul(y) - aul(z).
Let z be fixed for some zy € A(S,), and let b = wvi(z) — aui(2p). Then, for all
y € A(Sy),

vi(y) = au(y)+[vi(z) —aui(z)] = au(y)+0b.
Q.E.D.

Remark 5.1.11 Let F be an ordered field such that Q C F C R. (For example, F may
be the field of algebraic numbers.) It is easy to check that the above proof remains valid

even if Q is replaced by F. Therefore the lexicographic expected utility representation
can also be founded on the domain of F-valued lotteries. O
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5.2 Extensive Utility on Indivisible Items

In this section, we shall give a necessary and sufficient condition for lexicographic exten-
sive measurement. (See Section 1.1 for the notion of “extensive measurement.” ). Our
formulation will be suitable to describe a preference on indivisible items.

Throughout this section we assume that S, = {ay,as,...,a,} is a finite set of in-
divisible items for some n > 1. Let N be the set of all natural numbers (including
zero). A consumption plan of the items is denoted by kjay + kaao + - - - + kpay, with
ki, ko, ..., k, € N, where each natural number k; is a consumption of a;; . A consumption
plan is also denoted by > | k;a;. (Intuitively, the expression kjoy + kacs + -+ + kpay,
means that a consumer consumes k; pieces of «; for each i = 1,...,n.) We denote by
Q(S,,) the set of all consumption plans, i.e.

Q(Sn) = {k1a1 +I€2&2 + . +I€n&n|k‘1,k‘2"',knEN}.

The additive operation + is naturally applied to consumption plans:

(kroy + - + know) + (hor + - +loow) = (ki 0)ox + -+ + (b + ).
[ This is the reason why we use the additive notation &y +ksas+- -+ kpay, to denote a
consumption plan, instead of (ki, ks, ..., k,).] Let 0 denote Ocy + Ocvg + - - -+ Ocx,, . Thus
we established the system (€Q(S,), +, 0), which can be considered as the nonnegative
part of an Abelian group.

Let < be a preference relation on the set of consumption plans Q(S,,), where = <y
means “y is preferred to x.” Consider the following conditions:

Al < is a weak order on €(S,),
A2 forall z,y,z€ Q(S,), x <y implies z+2z < y+ 2z,

A3 forall z,y,z2€ Q(S,), x~y implies z+2z ~ y+z.

(See Section 2.1 for the definitions of a weak order < and its associated indifference
relation ~.)

The condition A1 means that a preference relation is an ordering. The monotonicity
condition A2 asserts that a preference relation should be preserved by adding the same
items to both sides of the relation. For example, suppose there are two kinds of items
(o, ) = (orange , apple) and also we have a preference

2 - orange < 1 - apple |,

meaning that we like an apple better than two oranges. Then, by A2, the following
preferences are inferred :

= 3 - orange < 1 - apple + 1 - orange,
= 1. apple + 3 - orange < 2 - apple + 1 - orange,

by adding an orange to both sides, then adding an apple, and so on. The meaning of A3
can be described in a similar way.

The following theorem states that the scheme of conditions A1-A3 is necessary and
sufficient for extensive measurement of preferences. (See Remark 5.2.3 for the verification
that the following theorem actually gives extensive measurement ).
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Theorem 5.2.1 A preference relation < on $(S,) satisfies A1-A3 if and only if
there are lexicographically ordered polynomials ® qy,...,q, € R[e] such that for all
U N R S \ S

=1 =1 =1 =1

Further, qi,...,q, can be written as the following form :
q T11 Tin 1
q2 _ 7“?1 : T?n 6 (5.14)
an - Fon et

where {ri;}i<ij<n IS an n x n matrix of real numbers such that either (1) r;; =0 for all
i,j, or (2) the first column vector is nonzero, i.e. (riy,...,rn1)% # (0,...,0)T.
Moreover, the first column vector is unique up to a positive scalar multiple, i.e. if {s;; }1<ij<n

is another matrix with the same property, then there exists a positive real number a > 0
such that

S11 r11
= a
Sn1 T'n1
(|
That is to say, the conditions A1-A3 ensure the existence of utilities ¢;,...,q, of the
items aq,...,q,, respectively, which can be added one another freely. The proof of this

theorem will be given later.

It should be remarked that the utilities ¢y, ..., q, obtained by Theorem 5.2.1 may not
be real-valued, but may include an infinitely small number . [ At first glance, it seems
absurd to get such an infinitely small number ¢ in our perspective. The readers who
are not familiar with an infinitely small number should compare Remark 5.2.3 where the
above theorem will be restated in terms of the lexicographic order on R™.] The following
example tells us the reason why an infinitely small number ¢ get into our consideration :

Example 5.2.2 Let (o, a3) = (sesame, diamond ), and let < be a preference relation
defined by

kIOél + kgag < 11041 + lQOéQ iff kg < lg or kQ = 12 and kl < ll J

It is not difficult to verify that the above preference satisfies the conditions A1-A3. In
essence, we have
0<a; and kay <ay forall k>0,

where 0 means the zero consumption 0 a;+0 as, the item «; isidentified with 1 a;+0 as,
and the item as is identified with Oy + 1ay. That is to say, a grain of sesame is
better than nothing, and a diamond is better than any finite grains of sesame. Such a

3To put it simply, R[e] is the smallest ring containing both R and e, where ¢ is an “infinitely small
number”, i.e. 0 < e and € < 1/k for all positive integer k. See Definition 2.1.5
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preference cannot be represented by real numbers extensively,* because there is no pair of
real numbers ¢, ¢o such that 0 < ¢; and kq; < ¢o forall £ > 0. Nevertheless, by Theorem
5.2.1 there exist extensive utilities ¢, ¢» in R[e]: for example, (¢1,¢2) = (£, 1). In other
words, a grain of sesame has infinitely small utility in comparison with a diamond. a

Remark 5.2.3 The existence part of Theorem 5.2.1 can be stated also in the following
way: A preference relation < on (S,) satisfies A1-A3 if and only if there exist real-
valued functions wuy,...,u, on §(S,) such that for all x,y € Q(S,),

z<y Mf (uw(z),...,u.(2)) <, (ur(y),...,un(y)), (5.15)
uj(x+y) = uj(x) + u;(y) foreach j=1,...n. (5.16)

(This is also a consequence of Hahn’s Theorem. See Remark 3.1.6.) That is to say,
the conditions A1-A3 for a preference relation < on Q(S,) are necessary and sufficient
for the existence of a finite-dimensional utility function on Q(S,) whose lexicographic
order preserves the relation < ; moreover, the utility function preserves the addition + .
Therefore the scheme of conditions A1-A3 is necessary and sufficient for “lexicographical ”
extensive measurement of preferences.

Let us briefly check the equivalence of the existence part of Theorem 5.2.1 and the
above statement. Suppose there exist ¢q,...,¢, € Rle]| such that (5.13) holds for all
ki,...,kn, l1,...,l, € N, where ¢,...,q, are represented by an n X n real matrix
{rijhi<ij<n of the form (5.14). Let the corresponding functions wus,...,u, on €(S,)
be defined as

wj (kron + -+ kpoy) = kiryy+ -+ kg for all kq,...,k, € N.
Then, one can easily verifies that for all z,y € Q(S,),
uj(r+vy) = uj(r) + u;(y) foreach j=1,...n.
Also, for all ki,...,k,, l1,...,0l, € N,

kiog + -+ kpay, < Loy + -+ oy

1 - Tin 1
PN (kl,___,kn) Tor -+ Top 5
Tn1 **° Tnn 5n._1
1 Tin 1
< (e | T ;
Tni Fun ent
11 T1in T11 Tin
= bk | < et | o
Tn1 T'nn T'n1 T'nn

40Of course, there can be non-extensive ways to represent such a preference by real numbers.
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<~ (ul(k1a1+---+knan),...,un(k1a1+---+knan))
<y (wllhog +- -+ lhayn), ..., up(liay + -+ lhay) ).
Conversely, suppose there exist real-valued functions uy, ..., u, on Q(S,) such that (5.15)
and (5.16) hold for all z,y € Q(S,). Let the corresponding n x n real matrix {r;;}1<i j<n

be defined as r;; := u;(a;) forall i,5. Let ¢1,...,¢, € Rle] be defined by (5.14). Then,
by a similar argument to the above, (5.13) holds for all kq,..., kp, l1,...,0, € N. O

Example 5.2.4 Suppose there is only one-type of item S; = {ay}. Then Q(S;) =
{0,014, 201, ..., kaq, ...} . Consider the following conditions:

Cl < is a weak order on Q(S;),

C2 exactly one of (a), (b), and (c) holds:
(a) 0 < a1 < 20p < -+ < kay <
(b) ONOllN2011N"'NI€CY1N
(¢) 0 = ay = 200 = -+ = kay =

Let < be a preference relation on €(S;). We shall show that < satisfies A1-A3 if
and only if < satisfies C1 and C2. Suppose < satisfies A1-A3. Then, by Al, < is a
weak order on €(S;). By Proposition 2.1.1 (a), exactly one of 0 < a3, 0 ~ «;, and
0 > oy holds. Hence, by using A2 or A3 repeatedly, exactly one of (a), (b), and (c) holds.
Conversely, suppose < satisfies C1 and C2. Then obviously A1-A3 hold.

Therefore, in the case n = 1, Theorem 5.2.1 can be reduced to the following state-
ment: A weak order < on (S)) satisfies one of (a), (b), and (c) if and only if there
exists a real number ¢, such that (5.13) holds for all ky, ... k,, li,...,l, € N ; moreover,
¢ Is unique up to a positive scalar multiple. It can easily be checked that if (a) holds
then ¢; =1 is a solution of (5.13). Similarly, if (b) holds then ¢; = 0 is a solution ; if (c)
holds then ¢; = —1 is a solution.

Also, a similar argument to Remark 5.2.3 follows: A weak order < on 2(S;) satisfies
one of (a), (b), and (c) if and only if there exists a real-valued function u; on €(S;) such
that for all z,y € Q(5),

r=<y it wu(r) < u(y); w(z+y) = w(r) + uw(y). (5.17)

The left-hand side of (5.17) means that the real-valued function u; represents the ordering
<, and the right-hand side of (5.17) ensures that u, is extensive. One can easily find such
an extensive utility function wu, .

We note that a preference relation < on Q(S) satisfying A1-A3 (and hence C1 and
C2) also admits a non-extensive representation. For example, let < be a weak order on
Q(S)) satistying (a), i.e.

0 < g < 200 < -+ < kg <
Then there exist several different kinds of utility functions on €(S;), such as

(i) wi(kay) = k, (il)) wug(kay) = logk,
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Figure 5.1: Indifference Curves

which preserve the ordering <. The former function u; is an extensive utility function,
in the sense that the right-hand side of (5.17) holds, while the latter uy is not extensive.
In economics, the latter function us is considered as an example of the principle of dimin-
wshing marginal utility, which means that the utility of an additional item will diminish
as one obtains more items. O

A similar discussion to Example 5.2.4 can also be presented for the case n = 2 in
terms of indifference curves: if there is a preference relation on the consumption space
Q(S,) satisfying A1-A3, it is possible to assign indifference curves by straight lines whose
gradients are fixed everywhere. (See the left-hand side of Figure 5.1. The gradient of the
lines is nothing other than the marginal rate of substitution ¢»/q;, the numbers ¢; and
g2 being the extensive utilities of a; and as, respectively. Note that the gradient may
not be real-valued.) Since our formulation of A1-A3 presumes that the items oy, o are
indivisible, the consumption space is discrete, i.e. each consumption plan is an isolated
point on the space, and therefore the meaning of indifference curves turns out: “any
consumption plan above an indifference curve is preferable to any consumption plan below
the curve.”

In our discrete formulation, there exist several different ways to assign such indifference
curves. Under the conditions A1-A3, indifference curves can be assigned by straight lines
(as we mentioned above), but also not by straight lines; for example, indifference curves
can be downwards convex as illustrated in the right-hand side of Figure 5.1. This means
that the conditions A1-A3 do not necessarily violate the principle of diminishing marginal
rate of substitution (see Hicks [20]) as is usually presumed in economics.

As we mentioned above, the conditions A1-A3 do not always violates the principle
of diminishing marginal rate of substitution, in the sense that indifference curves can be
downwards convex. Nevertheless, in the true sense of the word, the principle means that
“combination is preferred to monotonicity” as illustrated in the following example :

41 »

orange < apple, 7  but “ orange + apple > apple + apple.

In other words, we should restate the principle of diminishing marginal rate of substitution
in our discrete terms as follows: For any different items oy, ay with oy 3 ay, there exists
a positive integer k > 0 such that oy + kas > (k + 1)ay. Under such principle, the
condition A2 or A3 must be violated. Hence, by Theorem 5.2.1, utilities of the items
cannot be extensive; that is to say, the sum of the utilities of the items may be different
from the utility of the sum of the items.
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Therefore the conditions A1-A3 are usually not satisfied in preferences. The role of
the conditions A1-A3 is, rather, to make precise the distinction between possibility and
impossibility of extensive utility representation: if A1-A3 hold, then, by Theorem 5.2.1,
it is possible to have extensive utilities of items (while it is also possible to have non-
extensive utilities ) ; if the conditions A1-A3 are violated, it is impossible to have extensive
utilities of items.

Now we shall prove Theorem 5.2.1 by way of Theorem 3.1.5. Let (G,,+,0) be the
Abelian group generated by ay,...,a,, i.e.

Gn = {k'1011+"'—|—k'n&n | kl,...,knGZ}

such that kyoq + -+ + kpa, = 0 implies ky = -+ =k, = 0. (In other words, (G,,+,0)
is the Z-free module with the basis aq,...,a,.) In the following, the set of consumption
plans (S,,) is identified with the nonnegative part of the Z-free module (G, +,0).

Lemma 5.2.5 For any z € G,,, there exist =,y € Q(S,) such that z =y — x.
Proof. This is trivial. O

Lemma 5.2.6 Let < be a preference relation on Q(S,) satisfying A1-A3. Then, for all
r,y,2,w € QS,), v<y and z Iw imply v +z < y+w.®

Proof. Suppose x <y and z 2 w. Then, by A2, © <y implies z 4+ 2z < y+ 2. Also,
by A2 or A3, z X w implies y+z = y+ w. Hence, by Proposition 2.1.1 (b) (d), we get
rT+z < ytw. d

Lemma 5.2.7 Let < be a preference relation on €(S,,) satisfying A1-A3. Let
P={y—zecG,|z,ycQS,), x<y}.
Then, for all x,y € Q(S,), x <y iff y—x € P.

Proof. If z <y then, by the definition, y—x € P . Conversely, suppose y—x € P . This
means that there exist z',y" € Q(S,) with 2’ < ¢' such that y —xz = ¢y’ — 2’. Suppose
also not (z < y). Then, by Proposition 2.1.1 (a), we have y < x. Hence, by Lemma
5.2.6, ' <y and y 2z yield ' +y < ¢y +2x (= 2’ +y). This is a contradiction
(because < is a weak order and hence there is no v € (S,) such that v < v). O

Lemma 5.2.8 Let < be a preference relation on (S,) satisfying A1-A3, and let ~
be its associated indifference relation. Let P be as in Lemma 5.2.7, and let [ = {y—x €
G, | v,y € QS,), z~y}. Then, the pair of subsets P, I (C G,,) satisfy C1-C3.5

Proof. C1: Left to readers.

C2: By Lemma 5.2.5, for all z € G, there exist z,y € (S,) such that z = y — z.
By Proposition 2.1.1 (a), we have * < y or & ~ y or y < x ; therefore 2 € P or
z €l or z € —P. It remains to show that P, I, and —P are mutually disjoint. First

SRecall that 2z 2w iff z <w or z ~w. See Section 2.1.
6See Section 2.3 for the definition of C1-C3.
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we show that PN —P = (). Suppose there is 2 € PN —P. This means that there exist
T1,Y1, T2, Y2 € G, with 21 < y; and x5 < yo such that 2 = y; —x1 = 29 —1ys. By Lemma
5.2.6, 1 < y; and xy < yo yield 1 +29 < y1+y2 (= 21+ 22 ). This is a contradiction
(because < is a weak order and hence there is no v € Q(S,) such that v < v ). Similarly
we can prove PNI =0 and —PNI=40.

C3: Suppose z € P and y € PUI. This means that there exist 2y, wy, 29, ws € G,, with
z1 < wy and zy = wy such that © = wy —2; and y = wy — 25 . By Lemma 5.2.6, z; < w;
and zy S wy yield z; + 22 < wy + wy. Therefore x +y = (w; +wy) — (21 + 22) € P. O

Proof of Theorem 5.2.1: The “if” part is obvious. For the “only if” part, suppose
there is a preference relation < on Q(S,,) satisfying A1-A3. First we consider the trivial
case, i.e. there exist no z,y € Q(S,) such that < y. Then, one can easily verifies that
¢ =¢qy=---=q, =0 is the (unique) solution of (5.13). In the following, therefore, we
shall assume that < is nontrivial, i.e. there exist z,y € Q(S,) such that x < y.

As we mentioned above, the set of consumption plans €2(S,) is identified with the
nonnegative part of the Z-free module (G, +,0). We define subsets P, I of G,, by

P = A{y—2ecGlzyeQ(S), <y},

5.18
I = {y—2eG,|z,yeQ(S,), v~y}. ( )

Note that both P and I are nonempty. By Lemma 5.2.8, the pair of subsets P, I (C G,,)
satisfy C1-C3. Hence, by Theorem 3.1.5, there exist ¢1,...,q, € R[e], satisfying (3.6)
for all ky,...,k, € Z. Thus the following holds for all kq,...,k,, l,...,l, € N:

=1 =1 =1
— Z(lz —ki)gi > 0 (by (3.6))

=1
= ) kg < > lg.
i=1 i=1

For the proof of the uniqueness part, suppose there exist qi,...,q, € R[e], satisfying
(5.13) in the nonnegative part Q(S,) of the Z-free module (G,,+,0). Let P, I be
the subsets of GG, defined by (5.18). We shall show that g¢,...,q), also satisfy (3.6) of
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Theorem 3.1.5 with respect to P, I in G,,: For all ky,... )k, € Z,
Zkiai e P
i=1
( n n
lio; < m;o;

for some l;,m; € N with k;=m; =1, (i=1,...,n)
(by Lemma 5.2.5 and Lemma 5.2.7)

\

4 n n
lLig; < mig;
- X
for some l;,m; € N with k;=m; =1, (i=1,...,n)
(by (5.13))

\

=1

Therefore the uniqueness part of Theorem 5.2.1 follows from the corresponding one of
Theorem 3.1.5. Q.E.D.
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Chapter 6

Conclusion

In this chapter, we summarize our results and suggest future work.

The main theorem of this thesis is a lexicographical separation theorem stating that
a convex cone and its convex complement in " can be separated by linear functions and
the lexicographic order on R", where F stands for an ordered field such that Q C F C R.
The main theorem is a modification of the lexicographical separation theorems due to
Hausner and Wendel [18], Klee [23], Martinez-Legaz and Singer [30], by considering not
only the real numbers R but also other ordered fields ', and moreover by proving a kind of
uniqueness result. We also provided applications of the main theorem to linear inequality
systems, lexicographic expected utility, and extensive measurement.

It may be possible to generalize the main theorem for an arbitrary ordered field F': the
author conjectures that a convex cone and its convex complement in " can be separated
by linear functions and the lexicographic order on [, where F stands for an arbitrary
ordered field and F denotes the completion of F. If such a generalization of the main
theorem is obtained, its applications will also be generalized in similar manners.

In this thesis, we presented the main theorem and its applications not only in terms
of the lexicographic order but also in terms of the polynomial ring Rle], where Re]
denotes the smallest ring containing both R and an infinitesimal £ . We used the fact that
the lexicographic order on R” can be described by the polynomial ring R[e], in the sense
that

(ao,al,...,an) <z (bg,bl,...,bn) iff
ag + a1+ -+ ape” < bg+bie+ -+ bue™.

Such a description is well-known in the literature, but we gave a new role to an infinitesimal
in this thesis: (i) We used an infinitesimal as a useful tool of proving the main theorem.
The use of an infinitesimal makes the proof easier because it allows both addition and
multiplication. (ii) We adopted an infinitesimal as a solution to linear inequality systems.
The use of an infinitesimal enable us to give a necessary and sufficient condition for the
existence of solutions to infinite systems of linear inequalities.

It should be noted that the lexicographic order can also be described by an infinitely
large number w, i.e. k < w for all positive integer k, together with an infinitesimal ¢ .
More precisely, one can show that, as the direct analogy of decimal number system,

(an,...,al,ag,a_l,...,a_m) <z (bn,...,bl,bo,b_l,...,b_m) iff
apw" o awtagFa_je+ o Fapg™ < b -+ bw+by b g+ Fb g™
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Therefore the main theorem and its applications in this thesis can also be presented in
terms of an infinitely large number w, as well as an infinitesimal £. As will be mentioned
below, the use of an infinitely large number w together with an infinitesimal ¢ enables us
to obtain a generalized solution to linear inequality systems.

As an application of the main theorem to linear inequality systems, we gave a nec-
essary and sufficient condition for the existence of solutions to infinite system of linear
inequalities: we showed that the origin O is not contained in the convex hull of a subset
P of R™ if and only if the inequality system

MTy+ Aoy + -+ Nz, > 0 forall (A, Ag,...,\,) € P

has solutions z1, xs,...,z, in R[e]. The result is a generalization of the well-known the-
orem of the alternatives for finite linear inequality systems. Also, we gave a generalization
of Farkas’ lemma for lexicographical inequality systems.

The author obtains a further generalization of the above result, using an infinitely
large number w together with an infinitesimal €: Let

Rlw,e] =
{rpw"+- - +riw+ro+r_e+-+r, " | neEN ry, .. v, 0,71, Ty ERY

and let P be a nonempty subset of R"™!. Then, the origin 0 is not contained in the
convex hull of P U (0,...,0,—1) if and only if the inequality system

)\11’1 + )\2372 + -t )\nxn > )\n+1 for all ()\1, )\2, ceey )\n, )\n+1) e P

has solutions 1, xs,...,2, in Rlw,e]|. This result will be presented in a future paper.

As other application of the main theorem, we presented two kinds of lexicographic
utility representations: one is about lexicographic expected utility, and the other is about
lexicographic extensive utility.

The lexicographic expected utility representation given in this thesis is a modification
of Hausner’s lexicographic expected utility theory, by omitting the existence of irrational-
valued probabilities: in this thesis we restricted our attention to F-valued probabilities,
where F stands for an ordered field such that Q C F C R, and showed that lexicographic
expected utility theory can be founded on the domain of F-valued lotteries. The author
plans to apply the result to game theory: it will be interesting to determine in each
game what kind of field ' is needed, as the domain of probabilities, to obtain a Nash
equilibrium.

For lexicographical extensive utility representation, we established a scheme of condi-
tions which is necessary and sufficient for the existence of extensive utilities on indivisible
items. The scheme of conditions throws a new light on the distinction between possi-
bility and impossibility of “addition of utility.” The scheme of conditions may also be
applicable to physical sciences, whenever one wants to obtain extensive measurement.
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Appendix

Proof of Proposition 1.1.1: Let z be the point in B whose distance from z is minimum.
(Such a point exists because B is closed.) Let

Pi = Z; — X fore=1,---,n,
n

n

_ 2

Pn+1 = 2i Ty — Z; .
i=1

=1

Clearly (1.1) holds. We shall show (1.2) also holds. By the above conditions,

n n n

_ 2
E Pizi = E Z; — E 2i Ty
i=1 i=1 i=1

and hence
zn:pizi = Pnt1 = zn:?f? - Qizixi + ixf
i=1 i=1 i=1 i=1
= zn:(zz —z;) >0
i=1
Therefore

n
Z Di % > Pntl-
i=1

Suppose now that there exists y € B such that

n
Zpiyi < Dngt-
i=1

Because B is convex, the line joining y to z must be entirely contained in B, i.e. for all
0<r<1 wehave w, = ry+ (1 —r)z € B. The square of the distance from z to w, is
given by

n

p*(z,w,) = Z(xl —ry; — (1—1)z)?.

i=1
Therefore
op? &

3, = 2 > (z— y)a — ryi — (1-1)2)

=1
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n

:22 ;. — ) l—QZ(zi—xi)ziwL?zn:?”(Zi—yi)Z
i=1

=1
— QZplyz - QZplzlﬂLQ?”Z :— Yi)’

Let us evaluate this at r =0 (i.e. w, = 2):

= 22]%,% - 2Zpizi-
i=1 i=1

But the first term on the right-hand side of this equation was assumed to be less than or
equal to 2p, ., while the second is greater than 2p, ;. Therefore

op?

P < 0.
87" r=0

It follows that, for r close enough to zero,

plz,wy) < plw,2).

But this contradicts the way in which z is chosen. Thus (1.2) must hold.

d
Proof of Proposition 1.1.3: Suppose both (i) and (ii) hold. Then
0 = <l‘, 0> = <IL', (Zplal)> = Zpi<ai7 IL'> > 07
i=1 i=1
a contradiction. It remains to show that if (i) does not hold then (ii) holds.
Suppose (i) does not hold. Let B be the convex hull! of the m points ay,...,a, in

R™. Applying Proposition 1.1.1, there exist numbers py, .

n
Z 0-pj = Pt
7=1

.y Pn, Pne1 such that

(this means p,+1 = 0) and
> vipi > 0
=1

for any y = (y1,--+,y,) in B. In particular, this holds when y is one of the vectors
ai, -+, ay,. Hence, p= (p1,...,p,) satisfies

(a;, p)y > 0 fori=1,...,m.

1See Section 2.2 for the definition of the convex hull of a1,...,am
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