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Abstract

Belief fusion, instead of AGM belief revision, was first proposed to solve the problem of
inconsistency, that arose from repetitive application of the operation when agents’ knowl-
edge were amalgamated. However in the theory, all the sources must be totally ordered
and thus applicable area is quite restrictive. In this paper, the author realizes the belief
fusion of multiple agents for partially ordered sources. When the author considers such
a partial ranking over sources, there is no need to restrict that each agent has total pre-
orders over possible worlds. The preferential model allows each agent to have strict partial
orders over possible worlds. Especially, such an order is called a preferential relation, that
prescribes a world is more plausible than the other. The author introduces various rep-
resentation of beliefs of agents, that is, belief states, generalized belief states, preferential
relations, and generalized preferential relations, and formalizes an operation which com-
bines multiple beliefs of agents. In addition, the author shows that this operation can
properly include the ordinary belief fusion.
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Chapter 1

Introduction

The problem of knowledge representation is one of the main theme in artificial intelligence
and epistemology. What is belief? How do we formalize epistemic attitude? In mathemat-
ical logic and philosophy, Hintikka’s formalization is well-known [19]. Using modal logic,
he supposed that KD45 modal operator had the properties of belief. However, Géardenfors
[14] did not only study the static properties of belief, but also the dynamic properties of
belief. He started the study of belief change or belief revision. Given an epistemic input,
a belief change operator lets an agent’s belief be changed. When an agent changes her
belief, she must decide whether information is given up. Thus she has a preference about
information. It follows that if you consider the dynamic structure of a belief, you will
define a belief to be an ordering over a language or a set of possible worlds.

Such studies was purchased by many issues from the point of Gardenfors’s view [3, 14].
However, the main theme of these studies has concerned with the belief of single agent.
Therefore, when we consider the dynamic structure of multi-agents’ beliefs, we can not
use the single agent revision. Given a situation in which each agent has a belief, how do
we decide a belief which all agents should have?

If we do not assume anything else, we must consider whether all agents believe it
(unanimity), whether some ones believe it (respecting minority), or whether most of agents
believe it (decision by majority), and decide a preference which all agents should believe.
However, if we want to judge the information about technology, medicine, etc., then we
should ask experts, for example, scientists, doctors, etc., because they are more reliable
than novices. Therefore, when we can assume a credibility over information sources, we
should decide a belief which all agents should have, considering the credibility.

Belief fusion, instead of AGM belief revision [3, 14], was first proposed by Maynard-
Reid IT and Shoham [29], to solve the problem about the multi-agent case. Suppose each
agent has a total preorder on possible worlds [23], based on the semantic work (cf. [18, 20]).
It represents the priority over possible worlds, and each agent considers that a world is
more plausible than the other world with her preorder. Maynard-Reid II and Shoham
called it belief state, and they considered that each agent has informational source, and
each source has a belief state. Also they assumed the strict total order over the sources
as the credibility of sources, and considered that if a source has higher credibility than
others, then her opinion dominates other’s opinion.



However, the total credibility ranking is a very strong constraint for the application in
the multi-agent case. If two sources has same credibility or are not comparable, then we
cannot formalize such a case. In [28], using the modular and transitive relation, called by
generalized belief state, Maynard-Reid II proposed the model with the total preorder over
the sources. However, he did not propose the model with the partial order. Therefore,
my purpose is to expand the model for the strict total order to the model for the strict
partial order, and to expand the model for the model for the total preorder, to the model
for the partial preorder.

Describing the model for the strict partial order, in Suzuki and Tojo [44], T used
preferential model as the representation for agent’s belief. It is famous for the research
of nonmonotonic reasoning [42, 22, 31], and allows each agent to have the strict partial
orders over possible worlds. Especially, I called such an ordering preferential relation,
which represents plausibility over possible worlds. It is different with a belief state and a
generalized belief state at the point that the equivalence sets of possible worlds are not
total. Therefore, it allows us to formalize more various type of beliefs than the previous
two. In this paper, I will show that Maynard-Reid II's approach with belief states and
generalized belief states also can be used for the partially preordered sources. Moreover,
I will study coherency of belief aggregation for various types of belief.

1.1 the problem on the pedigreed belief fusion

Considering the aggregation of beliefs, I encounter the problem about the refinement
operator. I call the refinement of an agent’s belief state by the other’s belief state, the
process in which a belief state with higher credibility determines a belief state that two
agents should believe commonly. Now suppose that (S is a refinement operator. I regard
‘<4x (& <p’ as the result of the refinement of <4; by <p where <, is the order of Agent
A, that is more reliable than that of Agent B, and the result of ‘(S ’ is the refined
order. However, the iterated aggregation (X4 (J =<¢)(Q =p is spurious in case = is
more reliable than both of <, and <p.

In order to solve this problem, Maynard-Reid II and Shoham introduced the pedigreed
belief state. They considered that each belief state had a pedigree, that is, each belief
state was regarded as an informational source which provided information to an agent
who aggregated all sources’ information. Each source was assigned credibility, which was
determined by the strict total order over sources, and the agent determined a belief state,
which should be owned by all sources commonly, observing the credibility ranking and
applying the refinement operator in order. Thus the belief fusion was defined by the union
of two pedigreed belief states.

However, I do not want to consider that the strict total order is a unique credibility
ranking for the application of such an operator. Let me consider the following piece of
detective story.



Example 1.1 A criminal is said to be one of the four: P, Q, R, and S. Two inspectors A
and B had common information from an identification (s1), but A had other information
from an old man (sy), and B had other information from a child (s3). They uttered as
follows:

s1 “there are fingerprints of them except for S at the crime scene.”
sy “Q) bought the weapon, but R was not at the crime scene.”

sz “P remained at the neighborhood of the scene.”

The investigation headquarter wants to amalgamate all these information, considering
the reliability of each source. si is more credible than sy and s3, but sy is incomparable
with s3. Who should the police investigate first?

[ cannot directly apply the belief fusion to this case because sources s; (i = 1,2, 3) are
only partially ordered. That is to say, belief fusion does not show the process in which
the agents aggregate the beliefs from sources, when I can not compare the credibility of
sources.

I give another example to show that the totality of the ranking of sources is too strong
to hypothesize.

Example 1.2 Suppose that two TV productions make a TV program cooperatively. Di-
rectors A and B belong to one production, and A has higher rank than B. Directors C and
D belong to another production, and C has higher rank than D. It is already determined
that the master of TV program is one of P,(), and R. However, they do not select who s
one, and they have different opinions.

A. “R is more suitable than P, but I don’t know whether @ is more suitable than P and

R- »”
B. “R is more suitable than @), and P is more suitable than R.”

C. “R is more suitable than @, but I don’t know whether P is more suitable than R and

R- ”

D. “Q) is more suitable than P, and P is more suitable than R.”
How do we solve the confliction?

In this example, I consider the ranking of directors as the credibility ordering over
sources s; (i = 1,2,3,4), and each opinion is regarded as ordering over possible worlds.

By [29, 28], the problem is considered as the opposition of four directors. However,
I will consider that the problem arises from the opposition of a chain of A and B, and
another chain of C and D. Because I know the comparability about A and B, and the one
about C and D, I can regard each chain as a total order. Therefore, I can consider the
following strategy:

e For each chain, we apply the refinement operation, and induce a belief which all
sources in the chain should have commonly.



e If we calculates induced beliefs from all chains, then we take the information which
all induced beliefs have, and we regard it as the induced belief which all sources
should have in common.

Using such a strategy, I deal with the partiality of the credibility of sources. Note that
if I use belief states or generalized belief states, then I cannot use this strategy, because
the result of this process may not be a belief state nor a generalized belief state. Thus the
principle of unanimity is not applicable to (generalized) belief states. Therefore, I use
preferential relations, and also I can use transitive relation over possible worlds. I will
call it generalized preferential relations.

By the way, Example 1.1 also can be represented by the model of [28]. However,
Examle 1.2 can not be represented by the model, because in [28], the sources are totally
preordered. How do I use belief states and generalized belief states for the case of partially
ordered sources? I can consider the following strategy:

e For each chain, I apply the refinement operation, and induce a belief which all
sources in the chain should have commonly.

e If I calculates induced beliefs from all chains, then we take the information which
some induced beliefs have, and I regard it as the induced belief which all sources
should have in common.

That is to say, the principle of respecting minority is applicable.

1.2 Belief Revision

Belief fusion is a variation of belief revision. Therefore, I briefly introduce the studies
of belief revision in this section. This is the study about changes in the beliefs of minds
and in the data of datadases. This subject grew out of two research areas. one of these
is computer science. Since the beginning of the research, programmers have constructed
databases and procedures by which they can be updated. Doyle [10] developed Truth
Maintenance System (TMS), and then Fagin, Ullman and Vardi [11] introducced the no-
tion of database priorities. The second of the research is philosophy. In the twentieth
century, philosophers of science have discussed the mechanisms by which scientific the-
ories develop, and they have proposed criteria of rationality for revisions of probability
assignements. In 70’s, the formal framework of rational belief change was provided by
Levi [25].

In 1985, Alchourrén, Gérdenfors, and Makinson (AGM) published the very influential
paper of this field [3]. They constructed the operations which incorporate the epistemic
input with eliminating the inconsistent knowledge, and the postulates which it should
satisfy. They call such operations revisions. The most important point of this paper is
that they proved the representation theorem about the constructions and the postulates.
Gérdenfors’s motivation was to prove that whether a scientific explanation (or conditional)
was accepted or not was decided by the epistemic circumstances. He considered that



conditionals accepted by Ramsey test [37]' were analyzed by belief revision operators.
However, Ramsey test by belief revision was not comparable with the famous axiomatic
system of conditional logic [27]. For details, see [14]. Whereas AGM only formalized the
syntactical operation, Grove [18], and Katsuno and Mendelzon [20] studied the semantic
versions of belief revision, and proved the representation theorem. Moreover, Katsuno
and Mendelzon [21] formalized the another semantic operator with respect to the dynamic
world, whereas revision is an operator with respect to the static world. They call it update.
Grahne [17] showed that update was compatible with the axiomatic system of conditional
logic.

In 90’s, the various paper is concerned with the problem of the iterated belief revision,
where the epistemic input is not a formula , but a sequence of formulae [8, 9, 12]. Ac-
cording to these studies, it is recognized that a belief state, which includes the strategy
of revision operation, is more plausible representation than the AGM’s belief set, which is
a logically closed set. In semantic version of belief revision, belief states were considered
as total preorder over possible worlds. Whereas old studies considered that revision op-
erators accepted a belief state and a proposition, and returns a new proposition, studies
about iterated belief revision considered that revision operators accepted a belief state
and a proposition, and returns a new belief state. For details, see [40]. However, in all
these studies, multi-agent case was not considered. Belief fusion is the studies about the
aggregation of belief states of multi-agents [29, 28]. In this paper, I will represent an
expansion of belief fusion.

1.3 Outline

In this paper, I propose a framework for the belief change in the multi-agent case. At
first, I supply a preliminary for the discussion in Chapter 2.

I introduce the refinement operator for preferential relations in Chapter 3; although
the same operator was mentioned rather easily in [29], my definition of the refinement
includes various problems, and thus I spare one chapter for the explanation. That is to
say, I will discuss the following points in this chapter:

e The tentative definition of the refinement operator of preferential relations and the
problem about the definition.

e The revised definitions of the previous one and the various proposition.

e The definition of the refinement operator of generalized preferential relations

In Chapter 4, T construct the aggregation operator. This operator is shown by [28]
with generalized belief states. In [29, 44], this operation was regarded as the process which
constructs the induced relation. Therefore, I can rewrite the process of [29, 44] with the
aggregation. In this chapter, I formalize the various aggregations as follows:

!Accept a conditional ‘If A, then C’ in an epistemic state K iff the minimal change of K needed to
accept A also requires accepting C.



e Various operations for constructing an aggregator of the beliefs given a set of equally
ranked sources.

e Various operations for constructing an aggregator of the beliefs given a set of total
strictly ranked sources.

e Various operations for constructing an aggregator of the beliefs given a set of totally
preordered sources.

e Various operations for constructing an aggregator of the beliefs given a set of par-
tially preordered sources.

In Chapter 5, I describe fusion operators of pre-aggregated belief states, generalized
belief state, preferential relations and generalized preferential relations. Therefore, the
following points will be discussed:

e introducing the pedigreed belief state, the pedigreed generalized belief state, the pedi-
greed preferential relation and the pedigreed generalized preferential relation.

e the fusion operators with the pedigreed belief states, the pedigreed generalized belief
states, the pedigreed preferential relations and the pedigreed generalized preferential
relations.

In Chapter 6, I show that the aggregation operators have various somethings in com-
mon. Especially, I can show the following points:

e the propositions about the relation between the operation for belief state and pref-
erential relation.

e the propositions about the relation between the operation for belief state and gen-
eralized preferential relation.

Finally in Chapter 7, I summarize our contribution and discuss various issues of my
formalization. If the proof of a proposition or lemma is very short, I will write it under
the proposition or lemma. Otherwise, I will show the proof in Appendix A.



Chapter 2

Formal Preliminaries

As the previous study [44], my research is related with possible world semantics. 1 denote
the non-empty set of worlds as W. I will assume that W is finite. This assumption is not
necessary, but this restriction will let the discussion be simple.

Syntactically, I assume a language £. A world w is an interpretation over £. In
addition, I can define such satisfaction relation |= that, for a world w € W and a sentence
p € L, w | p iff p is evaluated to be true in w. Given a sentence p, I denote the set
{w € W|w = p} as |p|. Let p = ¢q dente Vw € |p|, w = ¢q. We use < as an arbitrary
relation, but it usually means an order. If (z,y) satisfies <, I denote z < y or (z,y) €<,
interchangeably. Otherwise, I denote x < y or (x,y) ¢<. I will write the set of all the
relations 2"V as R.

In this paper, I will use various restrictions over relations. I define some of them which
will be useful for the discussion. I will call arbitrary relations simply relations except the
special case.

Definition 2.1 Suppose that < is a relation over a set §2, i.e., <C ) x Q. The relation
< 1s:
1. serial iff for all x € Q) there exists y € Q) such that v < y.

2. reflexive iff x < x for all x € Q2. It is irreflexive iff x < x for all x € ).

co

symmetric iff x <y =y <z for all x,y € Q. It is asymmetric iff t <y =>yL
for all x,y € Q. It is antisymmetric iff r <y Ay <z =z =1y forall x,y € (.

Euclidean iff x <yANx < z=y <z forall x,y,z € Q.

the strict version of a relation <" over Q iff v <y < x <" yAy<L x for all z,y € .
total iff vt <yVy <z forall z,y € Q. It is partial iff it is not total.

connected iff x <y for all x,y € Q. It is disconnected iff v <L y for all x,y € €.

modular iff x <y=x<2Vz<y foralxy ze.

© % RS &

transitive iff t <yANy <z =2 <z forall x,y,z € Q.
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10.

11.

the transitive closure of a relation <' over Q iff x < y implies Jwy, ..., w, € Q.x =
wy <"+ -+ <"w, = y. for some integer n, for x,y € Q.

acyclic iff Ywg, ..., w, € Quuy < -+- < w, implies w, < wy for all integers n.2 It is
cyclic ioff it is not acyclic.

Definition 2.2 Suppose that < is a relation over a set §2, i.e., <C ) x Q. The relation

< 1s:
1.

2.

4.

a partial order uff it is refliexive, anti-symmetric, and transitive.

a partial preorder iff it is reflexive and transitive. It is a total preorder iff it is also
total. It is total order iff it is also anti-symmetric.

a strict partial order iff it is the strict version of a partial order. It is a strict total
order iff it is the strict version of a total order. It is a strict total preorder iff it s
the strict version of a total preorder.

an equivalence relation iff it is reflexive, symmetric, and transitive.

I can show the following proposition.

Proposition 2.1

1.

NS & e

The transitive closure of a relation is transitive.

The transitive closure of a modular relation is modular.

The transitive closure of a cyclic relation is not irreflecive.

A relation is a strict partial order iff it is irreflexive and transitive.

A relation is a total order iff it is a partial order and total.

If a relation s a strict total order, then it is a strict partial order and modular.

If <* s the transitive closure of a modular relation < over set Q, then v <* and
xLy imply y <t x for z,y € Q.

If a relation s the strict version of some relation, then it is irreflexive.

If a relation is a strict version of a transitive relation, then it is acyclic and transi-
tive.

IThe definition of transitive closure depends on the assumption that  is infinite. It is not sufficient
if  can be infinite.

2The definition of acyclicity also depends on the assumption that € is finite and is not sufficient and
is not sufficient if Q2 can be infinite.



Proof. See Appendix A. [

Given a relation over a set of alternatives and a subset of these alternatives, I often
want to select the set of best elements with respect to the relation. I define the set of
best elements to be the set’s choice set:

Definition 2.3 If < is a relation over a finite set I, < 1is its strict version, and X C €,
then the choice set of X with respect to < is

min(X,<)={r € X :Va' € X' < z}.

A choice function is a function which accepts every subset X and returns a non-empty
subset of X:

Definition 2.4 A Choice function over a finite set Q is a function f : 22\() — 2°\0 such
that f(X) C X for every X C Q.

Now, every acyclic relation defines a choice function, one which assigns to each subset
its choice set:

Proposition 2.2 Given a relation < over a finite set ), the choice set operation min
defines a choice function iff < is acyclic.

Proof. See [41]. O

If a relation is cyclic, elements involved in a cycle are said to be in a conflict because
I cannot order them:

Definition 2.5 Given a relation < over a finite set ), x and y are in a conflict w.r.t. < iff
there exist Wy, ..., Wy, 20y vy 2m € Q such thatx =wy < -+ <w, =y =20 <+ < zypy, = T,
where all x,y € €.



Chapter 3

Refinement

3.1 Introduction
Formalizing the examples in Chapter 1, I should consider two following requirements.

1. An appropriate knowledge representation not only for individual beliefs, but for
collective beliefs as well that accommodates conflicting opinions.

2. A process for constructing an agent’s belief state by aggregating the information
from informant sources, accounting for the relative credibility of these sources.

However, before discussing collective beliefs, I will prepare the knowledge represen-
tation for individual beliefs, and the operation which accepts two individual beliefs and
generates one individual belief. For the knowledge representation, I will introduce pref-
erential relation and generalized preferential relation. They represent opinions on the
relative likelihood of worlds. Preferential relation is used in the semantic works of the
nonmonotonic reasoning community [42, 22, 31|, but generalized preferential relation is
my innovation for dealing with conflicting information. I will declare the strict version of
a generalized preferential relation to be a preferential relation. Therefore, I can consider
that a generalized preferential relation also can be viewed as the semantics for nonmono-
tonic reasoning. The connection of the two representations is an analogy of the connection
of belief states and generalized belief states [28], because generalized belief states are not
different from the belief states much. As we already discussed, using preferential relations
and generalized preferential relations, the equivalence sets of possible worlds are not total.

For the aggregating process, I introduce an operation which combines two preferen-
tial relations (or generalized preferential relations) of agents, where one of them is more
reliable than another one, in the similar way of the refinement of belief states( or general-
ized preferential relations), naming refinement of preferential relations (or refinement of
generalized preferential relations). Note again that preferential relations are strict partial
orders whereas belief states are total preorders. Naturally, the operation would become
more complicated than the operation of belief states.

10



3.2 Representation of individual beliefs

I begin with the problem on knowledge representation for individual beliefs. My represen-
tation is owed to the representation developed in the nonmonotonic reasoning community.
In addition, my formalization is related with Maynard-reid IT and Shoham’s formalization,
and they use the representation developed in the belief revision community. It follows
that I review the research about nonmonotonic reasoning and the relation between belief
revision and it. Then I will consider whether my representation is plausible.

3.2.1 Nonmonotonic reasoning

Gabbay [13] is the first researcher who examined the important properties which, even
in the absence of monotonicity, may still sometimes be satisfied. He noticed that even if
monotonicity was not satisfied by a consequence relation, an important property might
still be satisfied by it. He called it cumulativity. Makinson [30] also studied about cumu-
lativity deeply.

In addition to the two studies, various researchers tried to list up the property for
nonmonotonic reasoning. Now the following properties are regarded as usual and useful
properties [7, 31].

Definition 3.1 A binary relation v on £ x L is a rational consequence relation if for
all p,q,r € L, it satifies

pp REF  (Reflezivity)

il q;ﬁ:q( Er LLE  (Left Logical Equivalence)

PMOIET  pwp (Right Weakening)
phrr

a0

p}v qAT

P g, g
L1 OR

pVrhk g

ph g, pAghr CUT

phrr

p}v q,p}v T . .
— 27— CMO Cautious Monotonicit
pAgh T ( y)

pb g, phe - : o
RMO Rational Monotonicity).
pPATR g ( Y

A binary relation v on L X L is called a preferential consequence relation if it satisfies
all the above except, possibly, RMO. A binary relation o on L x L is called a cumulative
consequence relation if it satisfies all the above except, possibly, OR and RMO.

ph ¢ means “If p, then naturally ¢.” The combined rule of CUT and CMO are also
called cumulativity. REFs show that premise must be included in the conclusion. LLE
shows that the conclusion can not be affected by the syntax of premise. RW and AND

11



show that a classical consequence relation is included in the relations. OR show that
if a conclusion can be derived from both premises, then it also can be derived from the
disjunction of the premises. Cumulativity showed that adding or deleting medium lemmas
should not affect the result of reasoning. RMO showed that if the negation of a formula
is not derived, then adding it does not affect the result of reasoning. In fact, CUT is not
necessary for rational and preferential consequence relation.

Proposition 3.1 The rules REF,LLE,RW,AND,and OR imply CUT.

Proof. See [22]. O

Kraus, Lehmann, and Magidor [22] showed that the rules were able to be used to
criticize, through the failure of one or more of them, the main alternative approaches of
circumscription [33], autoepistemic logic [34, 35], and default reasoning [38]. For details,
see [4]. Makinson [31] extended the consequence relation to the consequence operation,
dealing with the infinite set of formulae, and he classified the approaches of defeasible
inheritance net [45], default reasoning and its kin, maxiconsistent set [36], epsilon/delta
approach [1, 2], and preferential model.

Preferential model is the semantics which is proposed by Shoham [42, 43] for a gen-
eralization of circumscription [33]. Let me define anonymous preferential (or rational)
relations and preferential (or ranked) models.

Definition 3.2 A (anonymous) preferential relation <P (over W) is a strict partial order
over W. A preferential model is a triplet MP = (W, =, <P).

Definition 3.3 A (anonymous) rational relation <" (over W) is a strict total order over
W. A ranked model is a triplet M™ = (W, =, <").

When (w,, w;) is neither w, <P w, nor w, <P w,, I denote it by w, ~F w,. I also
denote the set of preferential relations by P. I interpret w, <P w, to mean “there is reason
to consider w, as more plausible than w,.”

[ can define a nonmonotonic consequence relation with a preferential (or ranked)
model.

Definition 3.4 Given a triplet M = (W, =, <), the consequence relation defined by M
will be denoted by v ,, and is defined by pt~ \q iff for any w € min(|p|, <), w = q.

[ show some example for the interpretation. Suppose that an agent has an preferential
relation <? in the left side of Figure 3.1. In this figure, she regards w; as more plausible
world than w,y, but she thinks that ws, wy, ws are not comparable with w;. Each possible
world wy, ..., ws is an interpretation of the propositions ¢, ¢, and x, which is at the right
side of Figure 3.1. For example, in wy, ¢ and v are true, but y is false. In this model, the

agent considers that ¢p 1, =~ @, x|~ ¢ are true, but Y ¢, xp~ ¥, =xp~ ¢ are false.

For example, w; and w, are all worlds in min(|¢|, <P), and ¢ is true for w; and wy. It

12



w5

w2

o ¥ X

w1 1 1 0

paw Wa 1 0 1

wi Wws 0 1 0
wy 1 1 1

wooows 10 0

Figure 3.1: The example of the interpretation for a consequence relation.

follows that ¢pv v is true in this model. However, ws is some world in min(|y|, <P), but
¢ is false in ws. It follows that ¢ ¢ is false.

Kraus, Lehmann, and Magidor showed the following representation theorems.

Proposition 3.2 A consequence relation is a preferential consequence relation iff it is
defined by some preferential model.

Proof. See [22]. O

Proposition 3.3 A consequence relation is a rational consequence relation iff it is defined
by some ranked model.

Proof. See [26]. O

However, Makinson [31] considered that RMO was unsuitable for the application, be-
cause all the approaches of default reasoning and its kin, maxiconsistent set, epsilon/delta
approach might not satisfy this rule. In addition, the ranked relation cannot be used to
formalize the examples in Chapter 1. Therefore, the ranked relation is not useful for my
purpose. I will concentrate on the preferential relation and its extension.

Whereas preferential relations are used for the study of nonmonotonic reasoning, belief
states are used for the study of belief revision.

Definition 3.5 A (anonymous) belief state <* (over W) is a total preorder over W.

When (w,,ws) is both w, <* wy, and w, < w,, we denote it by w,o0w,. We also
denote the set of belief states by B.

[ can not only interpret the minimal worlds of a belief state as actual belief, which is
believed now, but also interpret a belief state as conditional belief. That is to say, a belief
state represents what would be believed if other conditions were the case. According to
this criteria, the conditional belief “if p then ¢” holds, when for any w € min(|p|, <?),
w k= ¢, as well as the nonmonotonic reasoning. I write Bel’(p?q) when the conditional

!Note that I restrict VW to be finite, and then it is not necessary to assume that a relation is stoppered
[31].
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belief holds. b denotes the belief state <’. Therefore, given a preferential relation <7, I
write Bel?(p?q) as the abbreviation that ppk ¢ is defined by M? = (W, &, <P). If neither
the belief p?q¢ nor its negation hold in the belief state <, it is said to be agnostic with
respect to p?q in the belief state <°, written Agn®(p?q). In the same way, if neither the
belief p?q nor its negation hold in the preferential relation <?, it is said to be agnostic with
respect to p?q in the preferential relation <P, written AgnP(p?q). Note that Agn®(p?q)
implies Agn?(p?q).

From the above discussion, I can consider the semantic version of belief revision. Given
a belief state <° let K be min(W, <°). Then I can define the AGM belief revision in the
semantic works [18, 20].

Definition 3.6 Given a belief state <. A revision operator * defined by <° is such that
K s p =min(|p|, <").

It is already proved by [18, 20] that a belief revision operator is defined by some belief
state iff it satisfies the famous AGM postulates [3].

Makinson and Gérdenfors [32, 15] studied the relation between nonmonotonic rea-
soning and belief revision. Comparing these studies with my notation, the translation
between the two is performed by the following condition.

ph gq iff for allw € K «p,w = g

They indicated the correspondence between many of AGM postulates and many rules
of rational consequence relation. For details, see [16].

Maynard-Reid II [28] also discussed the relation between the aggregation operation
of belief states and aggregation operation of social choice functions [5, 41]. However, I
concentrate on the relation between the aggregation operation of belief states and the
aggregation operation of preferential relation. Besides, see Rott [39] about the relation
about the properties of belief revision, nonmonotonic reasoning, and choice function.

3.2.2 Generalized preferential relations

Maynard-Reid IT [28] defined generalized belief states for representing conflict information
and solving the problem on the aggregation operation of social choice functions.

Definition 3.7 A generalized belief state <9 is a modular, transitive relation over W.
When (w,, w,) is neither w, <9% wy, nor w, <9 w,, I denote it by w, ~9 wy, and I call
the relationship agnosticism. When (w,,w,) is both w, <9% wy, and w, <9 w,, I denote

it by w,00%w, and I call the relationship conflict. (Note Definition 2.5. In fact, I can
easily show that co% represents conflict in the sence of the definition.) I also denote the
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set of generalized belief states by GB. 1 interpret w, <% wj to mean “there is reason to
consider w, as strictly more likely than wy.”

The following proposition is given by [28].

Proposition 3.4 <9c GB iff there is a partition W of W and a total order < over W
such that:

1. Every W €W s either fully connected (w <9 w' for all w,w' € W) or fully
disconnected (w L% w' for all w,w' € W ).

2. For every WW'eW, w e W, and w' € W, W < W' iff w <% w'.

Proof. See [28]. O

Note that we also can show the following proposition.

Proposition 3.5 <’c B iff there is a partition W of W and a total order < over W
such that:

1. Every W €W s fully connected (w < w' for all w,w' € W).
2. For every W\W' eW, w e W, andw' € W', if W £ W' then W < W' iff w <9 w'.

Proof. See Appendix A. [

Thus, generalized belief states are not much different from the strict versions of total
preorders. Besides, there is a straight translation between strict versions of total preorders
and the total preorders. Therefore, generalized belief states are not much different change
from the belief states. Let B. be the set of strict total preoreder over W.

Proposition 3.6 There is a bijection from B to B-.

Proof. See Appendix A. [

From the proposition, I can understand that belief states have no difference between
agnostic and conflict information.

As belief states, I can define generalize preferential relations.

Definition 3.8 A generalized preferential relation <9 is a transitive relation over V.

Following the above discussion, when (w,,w;) is neither w, <% w, nor w, <% w,, I
denote it by w, ~% w,. When (wg,, wp) is both w, <% w, and w, <% w,, I denote it by
wa00%w,. 1 also denote the set of generalized preferential relations by GP. I interpret
we <9 wy to mean “there is a reason to consider w, as strictly more plausible than w.”

Now I can distinguish between agnostic and conflicting conditional belief with a gen-
eralized beliet state (or a generalized preferential relation). A generalized beliet state <9
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(or a generalized preferential relation <9) is agnostic about conditional belief p?q (i.e.,
Agn9 (p?q) (or Agn9(p?q))) if for some w,w’ € min(|p|, <) (or min(|p|, <)) which is
fully disconnected, w = ¢ and w’ = —q. A generalized beliet state <9 (or a general-
ized preferential relation <9) is conflict about conditional belief p?q (i.e., Con?®(p?q) (or
Con9(p?q))) if for some w,w’ € min(|p|, <?°) (or min(|p|, <)) which is fully connected,
w = q and w' = —q.

I can show the following property:

Proposition 3.7 Let <% be a generalized belief state (or <9 be a generalized preferential
relation,).

1. 009 (or 00%) is a symmetric and transitive relation.

2. ~% is a symmetric and transitive relation.

Proof. See Appendix A. [

Now I compare the power of the class of various representations. Maynard-Reid II
already showed the following properties [28].

Proposition 3.8
1. BC GB, and is the set of reflexive relations in B.

2. B C GB, and is the set of irreflexive relations in B.
Proof. See [28]. O

I also can show the following properties.

Proposition 3.9
P CGP.
gB C gP.
PNgGB=kB._.
Proof. See Appendix A. [

Finally, I will show that Example 1.1 and 1.2 in Chapter 1 can be formalized by the
preferential relations.

Example 3.1 See Example 1.1. Let P, Q, R, and S be possible worlds representing that
the P, @, R, and S are criminals, respectively. The preferential relations for the three
sources are shown in Figure 3.2.

Example 3.2 See Fxample 1.2. Let P, QQ, and R be possible worlds representing that the

P, Q, and R are musters, respectively. The preferential relations for the four sources are
shown in Figure 3.35.
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s R Q\ R ° S
P Q R P
Q
S1 S2 S3

Figure 3.2: The preferential relations of sq,s5, and s3 in Example 3.1.

R Q R

eQ R eF Q
P P 0 R
S1 S2 S3 S4

Figure 3.3: The preferential relations of sq,s9, s3, and s4 in Example 3.2.

3.3 Refinement of Preferential Relations

3.3.1 A problem about the definition of the refinement operator

If we know that an agent (A) is more credible than another agent (B), then it is natural
to consider that A’s judgment dominates B’s. I will define the refinement operator which
accepts two preferential relations and produce another, where one agent (A) is more
credible than the other (B) and A’s judgment dominates B’s.

At first, I consider the following tentative definition of refinement. This definition is
an analogy of the definition of the refinement of belief states.

P\%ﬁnition 3.9 Suppose <B\,<B.ec P. The tentative refinement of < by <h is <
@ SpB: {(waawb) L W SIA wy V (wa NZ wp N\ We SpB wb)}

In other words, to construct the refined relation, whenever the more credible agent
prefers one world to another, I side with this preference. In case the most credible agent
has no preference, I follow the ranking of the less credible agent. However, this definition
has problems, because the produced relation may not be a preferential relation. At first,
a produced relation may not be transitive. In Figure 3.4, w3 <%, wy and wy <% wy, but

(ws, wy) ¢<% él)\p <% by the definition. Secondly, even if a produced relation would be
transitively closed, the relation might not be irreflexive. See Figure 3.5 where (wy,w;) €

<k /@\p <B]* is not irreflexive.
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wil
w2 wil

w3 w2

Figure 3.4: Example : the produced relation is not transitive.

w3 wl
w2

w3
w2

The Transitive
Closure of A& B

Figure 3.5: Example : the transitive closure of the produced relation is not irreflexive.
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3.3.2 Revision of the refinement operator

Thus, if we want to define the refiment operator for preferential relation, then it is not
sufficient that when agent A has no preference, we obey agent B’s preference, and then
we must consider the way to eliminate a cause of cyclicity. Therefore, I will consider the
two way of the definition.

1. Avoiding cyclicity with a fixed-point equation.
2. Using strict version of the tentative refinement.

I will discuss the merit and demerit of the two ways in the following discussion. Now,
I construct the first way. We will write the transitive closure of the relation < as <*. If
SW is a subset of W, I let SW™ be the set of transitive closures of SW.

Definition 3.10 Suppose <!, <t.€ P. A relation <€ R is a primitive refinement of <%,
by <% iff < satisfies the following equation.

=, (e )+ 0~ w0y Ay 0y
/\(wbawa) ¢§+}

PRF (<%, <%) is the set of all primitive refinements of <% by <%.
Proposition 3.10 For any <%, <%e P, for some <€ R, <€ PRF (<, <%).

Proof. See Appendix A. [

From the proof, I can show the following corollary.

Corollary 3.1 For any <", <%€ P, we can construct <€ R by finte steps such that
<€ PRF(<, <)

Proposition 3.11 For any <", <%e P, if <€ PRF (<, <), then <* is irreflezive.

Proof. Suppose that for some w € W, w <* w. Thus, I can show (w,w) €<* by finite
steps. However, I can not show (w,w) €<* with only the elements of <*,. For if I can do
so, then (w,w) €<% =<%, and it cotradicts the fact that <P is irreflexive. Therefore, I
must use at least one element to show (w,w) €<*. Let the element be (w/,w;). Then I
can construct the following sequence with <.

/ /
w,...,wa,wb,... ,w

However, I can also construct the following sequence with <.

!

!
wb,...’w,...,wa

It contradicts (wj, w)) ¢ <T. Therefore, there is no w € W such that w <* w. O

Now, I define the set of refinement.
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Definition 3.11 Suppose <!, <€ P. The set of refinement of < by <% is RF (<"
<h) = PRE(<%, <h)"

Note that there can be multiple elements in the set of refinement of <%, by <%. For
example in the top of Figure 3.6, two relations satisfy the condition of Definition 3.10
and thus in the middle of Figure 3.6, there are two elements in the set of refinement of
< by <% by Definition 3.11. Therefore, I need a rationale to decide a unique result of
fusion. If I assume an authority who choice an element within multiple candidates, I can
formalize the selection function which accepts multiple preferential relations and returns
one preferential relations. However, I propose that the result is the common relations in
those multiple candidates, because agents A and B do not have the selection criteria for
multiple candidates.

Definition 3.12 Suppose <\, <F,€ P. The refinement of <%, by <% is
<1 @"<h=NRF(<", <b).

From the definition, the result of the example in Figure 3.6 is shown at the bottom of
this figure. This operator is well defined.

Proposition 3.12 If <!, <% e P, then <" @P<Le P.

Proof. From Proposition 3.10 and Definition 3.11, for any <%, <%.€ P, there is an
element in RF (<, <I). Therefore, it suffices to show that if <e RF(<, <) < is
a strict partial order over W. Transitivity is straightforward. Irreflexivity is shown by
contradiction. If T suppose there is w € W such that w < w, then from Definition 3.11
there exists <'¢ PRF(<", <%) such that w <'* w, and it contradicts Proposition 3.10.
From Proposition 2.1, < is a strict partial order. [J

Obviously, <E, C<E @P<E.

Although this definition of refinement is reasonable, this definition has an important
problem. It is about computational cost. When I calculate all elements of the set of
primitive refinement of <, by <% if N is the number of elements in <., the complexity of
enumeration O(N!) times for generating (wq,, wy, ), (Way, Wpy ), + * + (Way , wpy ). Therefore, I
must consider more rapid refinment operator. I will define the simple refinement operator.

Definition 3.13 Suppose <), <€ P. The simple refinement of </ by <%, written by
<P Q" <Y is the set of the strict version of [<5, @p <B]t.

This operator is well-defined as follows.

Proposition 3.13 If <!\, <be P, then <!, @ <Le P.
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w3 wl w2

w2
PRF(Owl “”):{ . W3}
w3 ’ w2 w3 ’ wil
A B PRF(A,B)
wi w2
"2 or w3
wa wi
RF(A,B)
w2
[ J
" w3
A <& B

Figure 3.6: Example : there are two refinements of < by <%.

w4 w3
w2
wa
P
° o < =
w4 wl
w3 w2 W 3
Conflict!
i +
A B A <dB
/K
wil w2 w3
AdB

Figure 3.7: Example : the example of the simple refinement.
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— . . . /\p —
Proof. <% @" <% is the strict version of [SZ/SD <B]t. Therefore, < @ <%
is irreflexive from Proposition 2.1. Moreover, [<f, €@ <B]* is the transitive closure of
—p —p . . = . .
<" @ <%. Hence, [<P\ @ <E]T is transitive. Therefore, <f| @ <% is transitive from
Proposition 2.1. [

However, this operator has a problem. See 3.7.In the top of Figure 3.7, there are
conflictions in the transitive closure of the tentative refinement of agent A’s preferential
relation by agent B’s preferential relation. Thus in the bottom of Figure 3.7, to solve this
confliction, I take the strict version of the operation. However, this simple refinement of
agent A’s preferential relation by agent B’s preferential relation does not preserve agent
A’s preferential relation. Therefore, <, C<? @" <% may not be satisfied.

I put the merits and demerits of the above operators as follows.

e The merit of refinement is that this operator preserves information from sources
which have high credibility. The demerit of it is that it has high computational
cost.

e The merit of simple refinement is that it has low computational cost. The demerit of
it is that it may not preserve information from sources which have high credibility.

3.4 Refinement of Generalized Preferential Relations

In the last section, I can not get an efficient and preservative refinement operation. I
consider that it is because preferential relations are irreflexive, and do not allow conflict
information. Therefore, if I find out confliction in the process of an operation, I must
consider the way of eliminating it. In Definition 3.9, introducing a fixed point equation, I
avoided confliction. In Definition 3.12, calculating the strict version, I eliminated conflic-
tion.

Therefore, if T allow agent’s belief to be a conflict, I do not need the techniques for
eliminating it. Generalized preferential relations do not require us irreflexibity and such
an elimination. Now I define the refinement operator of generalized preferential relations.

Definition 3.14 Suppose <%, <%c GP. The tentative refinement of <% by <% is <Y

Q" <= {(wa, wy) : wy <T wy V (wy ~F wy A wy <P wy)}.

However, this definition is not well-defined. For example, let W = {w,, wy, w.}, <=

{(wa,wp)}, and <¥= {(wp,w.)}. Then <Y a” <P= {(wa, ws), (wp,w.)}. It is not

transitive. Hence, I will take the transitive closure of the result of @\ .

Definition 3.15 Suppose <%, <%€ GP. The refinement of <% by <% is <%V Q" <¥=
<7 @" <#*.

Thus, this operation is well-defined.
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Confliction is okey!

A B A B

Figure 3.8: Example : the example of the refinement of generalized preferential relations.

Proposition 3.14 If <%, <%ec GP, then <% Q@ "<¥ec GP.

: . —-gp .
Proof. <% @9<% is the transitive closure of <% @ <%. From Proposition 2.1,
<P @IP<P is transitive. O

See Figure 3.8. This figure is similar with Figure 3.7. Because preferential relations are
generalized preferential relations, beliefs of agent A and B must not be changed. However,
I can abbreviate the process of the strict version, because generalized preferential relations
are allowed to be a conflict. In addition, it preserve agent A’s preferential relation. In
fact, it is easy to show that <% C<% Q<% for any <Y, <¥€ GP. Therefore, whereas
the definition of this operator is a curtailment of the definition of the simple refinement
of preferential relations, this operator has an important property which the refinement of
preferential relations also has.

3.5 Refinements of Belief States and Generalized Be-
lief States

In the above discussion, I defined the refinement operators of preferential relation and
generalized preferential relation. However, I did not construct the refinement operators
of belief state and generalized belief state. Therefore, I will define them now. At first,
I define the operator of belief states as Maynard-Reid II and Shoham did [29]. In the
following definition, <’ is the strict version of <°

Definition 3.16 [29] Suppose <%, <be B. The refinement of <Y by <% is < Q@ "<b=
{(wg,wp) + wy <b wy V (weocbwy A w, <8 wy)}.

For the following discussion, I expand this operation. Remember Proposition 3.6. The
following definition of the refinement of the strict version of belief states is very similar
with Proposition 3.6.

Definition 3.17 [29] Suppose <, <% e B., whe:e <b, <% are the strict version of <Y
, <Y€ B. The refinement of <% by <% is <% Q 2<p= {(wa, ws) : wo <O wy V (0, ~%
wy A we <G wy)}, where wy ~%° wy is neither w, <® wy nor wy, <® w,.

I can show the similarity of these two operators. For the verification, I use Ref : B. —
B which is a function such that Ref(<®) =< U{(wq, wp)|wa ~* wy}, where w, ~*° wy iff
we L0 wy A wy L0 w,.
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Proposition 3.15 Ref is a bijection from B. to B. Ref(<®) =<°.
Proof. See the proof of Proposition 3.6. []
Ref shows that the iterated refinement of belief states is similar with the iterated

refinement of the strict versions of belief states.

Proposition 3.16 Suppose <?, <4 ..., <8 € B., where <®, <5,..., <% are the strict ver-
sion of <b <4 ..,<h€ B. Therefore, (<! @°<HR@ - <) = Ref((<b @L<t

)@ L <R).
Proof. See Appendix A. [

Corollary 3.2 Suppose <®, <4 ..., <b.€ B, where <4, <5, ..., <8 are the strict version of
<b <b o <he B Then (<4 @L<+ <) is the strict version of (<8 & <!

)@ " <R,

Proof. Ref is is a bijection from B to B. from Proposition 3.15. ((<! & "<}
)R <h) = Ref((<h @2<)R@°L--+ <%) from Proposition 3.16. Therefore, ((<
R 2<5)@ .- <b) is the strict version of (<} @ "< - <%). O

Therefore, these operators are interchangeable. I can also define the operator of gen-
eralized belief states in the similar way with the operator of the strict versions of belief
states.

Definition 3.18 Suppose <%, <%c GB. The refinement of <% by <% is <% (Q <P =
b b b
{(wa, wp) : we <K wy V (we ~ wy A wg <5 wy)}.

They are well-defined operator.

Proposition 3.17
1. If <, <he B, then <, @ "<he B.

2. If f’j],b<’}3€ B., where <%, <% are the strict version of <%,<%€ B, then <b
S L<pE B-.

9. If <P <%c GB, then <% & *<§Pe GB.

Proof. See Appendix A. [

At this point, I can define the following general refinement operator.

Definition 3.19 Suppose <4, <€ R. The refinement of <, by <p is <4 & <=
{(was wp) : wa <awp V (wa ~a wp Awy <p wp)}

Note that this operator is also the tentative refinement of preferential relation, the
refinement of the strict versions of belief states, and the refinement of generalized belief
states, the tentative refinement of generalized preferential relations.
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Table 3.1: The truth table.

cC S FE
wy 1 1 1
we 1 1 0
w3 1 0 1

3.6 Why do I use preferential relations?

In the above discussion, I understood that the construction of the operator for preferential
relations was more difficult than that for other representations. In fact, the definition of
the aggregation of preferential relations will be complicated. In spite of the troubleness,
I think that it is useful to define the operators for preferential relations, because the
conditional beliefs generated by belief states satisfy the rule of RMO. For details, see [16,
39]. We already have explained that the conditionals generated by preferential relations
may not satisfy RMO. I think that RMO is too strong to formalize the reasoning about
incomplete information. The following example is reprinted from Antoniou [4].

e Typically, in case a child is in danger, I will try to save it even if this is risky.

e [f my life could be endangered by helping, then typically I call the emergency.

In this example, the reasoner will want to save a child if it is in danger. However, he
do not think that his life will not be endangered by helping even if a child is not safe.
Unfortunately, if he think that RMO is a reasonable rule, he conclude that even if a child
is in danger, and his life could be endangered by helping, he will still try to save it.

Therefore, RMO is unreasonable in this case. Using preferential relations, I can for-
malize this case. Let the proposition C' mean “a child is in danger,” S mean “I try to save
a child,” and F mean “my life can be endangered by helping.” Also let wq, wo, w3 € W.
Table 3.1 is the interpretations of wy, ws, w3.

Suppose that <P= {(wq,ws)}. Thus, C S, C / =E, but C A E j S. Such an
incomplete information can not be formalized by belief states.

25



Chapter 4

Aggregations

Because refinement operators are not symmetric operators, I encounter the same problem
as we already mentioned at the top of Chapter 2 when I iteratively apply the operators.
Consider <%, <% and <¥, with increasing order of dominance (<%, dominated by <%,
both by <¥,). Presumably, the above definition would give meaningful interpretation
to (=% @ =%)Q =", since all the information in <¢, dominates all the information in
=’ and <%. However in case (2{; @ =%)&Q =<}, some of the information in <7, @ =)
would dominate the information in <% (because they originated from <7,) and others are
dominated by =<, (because they originated from =<%).

In the similar way to [29], I introduce ‘pedigree.” The sources can be thought of as
pedigrees with fixed relations. That is to say, each source has a relation from R as a
belief. In this paper, I assume that the sources places a “credibility” preordering on the
sources, but I do not assume that the preorder is total as the previous study [28].

Given such a credibility ordering, I can define the aggregation operator, by which an
agent computes the induced belief from the informant sources. In this chapter, I will
formalize the aggregation operators in the case of equally ranked sources, total strictly
ranked sources, totally preordered sources, and partially preordered sources, respectively.

Whatever I use as the agents’ beliefs, when I formalize the aggregation operators, [
think that it is natural to define them as follows.

e [f the credibility of an agent’s belief is not comparable with, or as same as, that
of an another agent’s one, apply the principle of unanimity, respecting minority, or
decision by majority.

e If an agent’s belief is more credible than an another agent’s belief, the former belief
dominates the latter belief.

The second slogan is accomplished by using refinement operators. My problem is
the first slogan. When I select (generalized) belief states, or (generalized) preferential
relations, Which principle I can use? The main purpose of this chapter is to solve this
problem, and to show that the aggregations constructed by these two slogans are well-
defined.
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4.1 Sources

As I discussed in the beginning of Chapter 1, if we can decide the credibility of sources,
we tends to obey the opinion of experts. Therefore, before I formalize the aggregation
operation, let me begin the formal development by defining sources:

Definition 4.1 & s a finite set of sources. Fach source s € & is associated with a
relation <,€ R.

I denote the agnosticism and conflict relations of a source by ~; and ooy, respectively.
<, is the strict version of <. If neither w, <, wp nor w, <, w,, then I denote it as
w, ~ wy. If the relation is either belief state, generalized belief state, preferential relation,
or generalized preferential relation, I denote it as <%, <9 <P or <%, respectively.

As I have already mentioned, I assume that the credibility ranking over the sources is
a partial preorder:

Definition 4.2 R 4\« is a finite set of ranks partially ordered by a relation >.
Definition 4.3 rank : & — Ry assigns to each source a rank.

Definition 4.4 1 is the partial preorder over & induced by the ordering over R ani.
That is, s 3 s" iff rank(s) > rank(s'); we say s' is as credible as s. g is the restriction
of JdtoSCG.

[ use 7 and = to denote the asymmetric and symmetric restrictions of 1, respectively.

Proposition 4.1 Suppose that 3 is the partial preorder over & induced by the ordering
over Ranic. Then 3 is a partial preorder over G.

Proof. T will show transitivity. Suppose that s J s" and ' 3 s”. Then rank(s) >
rank(s') and rank(s') > rank(s"). Because > is a partial order, rank(s) > rank(s").
Then s Js"”. O

I will define some concepts, i.e., mazximal prechain, and equivalence subset. Let S C G.
Spe is a prechain of S iff S, C S, and Tg,. is a total preorder. Given the notion of
prechains, we can define the following concept.

Definition 4.5 Let S C &. Sy, @5 a maximal prechain of S iff

1. Sype @5 a prechain of S, and

2. for all Sy C S such that Sy is a prechain of S, if Sype C Spe, then Spe = Spype.
MPC(S) is the set of all mazimal prechain of S.
Definition 4.6 Suppose that S C &. S, is an equivalence subset of S iff

1. S, is nonempty,
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2. Seqg C©S, and
3. foralls € Sey, if s=5s" €S, then s € S,,.

EQ(S) is the set of all the equivalence subsets of S.
When S C &, S,5" € EQ(S), s€ S, s € S”, and s O ', we denote it as S" 1 5".

In the case that S C &, Jg is a total preorder, and FQ(S) = {Si,...,Sx} such
that S; 3 Sjyy for all 1 <V i <V N I denote Rvx” = {ri,...,7n} as a sequence of
ri € Ranxk such that S; = {s € S : rank(s) = r;} forall 1 <V i <N N,

4.2 Aggregation of equally ranked sources

In this section, I will consider the aggregation operator with equally ranked sources.
In such a case, I will take the principle of unanimity, respecting minority, or decision
by majority, because I do not have any criteria in which I believe who. Suppose all the
sources have the same rank. Therefore, Jg is fully connected. At first, I take the union
of the relations:

Definition 4.7 If S C &, then Un(S) is the relation | J, 4 <,.

That is to say, this is the principle of respecting minority. Even if only one believes
some preference, we should take it for the aggregation.

Assuming various restrictions to relations <y, I can show various preservative powers
of the aggregation, but they are not sufficient.

Proposition 4.2

1. Suppose that for all s € &, <b is a belief state. If S C &, then Un(S) is total and
reflexive but not necessarily transitive.

2. Suppose that for all s € &, <9 is a generalized belief state. If S C &, then Un(S)
15 modular but not necessarily transitive.

3. Suppose that for all s € &, <P is a preferential relation. If S C &, then Un(S) is
wrreflexive but not necessarily transitive.

4. Suppose that for all s € &, <9 is a generalized preferential relation. If S C G, then
Un(S) is not necessarily transitive.

1< means the ordering over natural numbers. In the following discussion, I will continue to use this

notation.
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Proof. For the case 2., see [28]. I will show the case 1. At first, I will show totality. For
all s € S, w <’ w' or w' <% w. Therefore, (w,w') € Un(S) or (w',w) € Un(S). I will show
reflexivity. For all s € S, w <% w. Therefore, (s,s) € Un(S). I will show that Un(S)
is not necessarily transitive. Let S = {s1,82}, <0 = {(wa,wa), (Wa, wy), (wp, ws), (we,

wa)7 (wm wb)7 (wm ’LUC)} and S(;Q: {(wm wa)7 (wIH wa)7 (wb7 wb)7 (wb7 w6)7 (wm wa)7 (wm wC)}'
Then (w,, wy), (wp, w.) € Un(S) and (w,, w.) ¢ Un(S).

[ will show the case 3. At first, I will show irreflexivity. For all s € S, w <% w.
Therefore, (s,s) ¢ Un(S). I will show that Un(S) is not necessarily transitive. Let
S = {51,802}, <8 = {(a,b), (¢,a), (¢,b)} and <’ = {(b,a), (b,¢), (¢c,a)}. Then (a,b), (b, c) €
Un(S) and (a,c) ¢ Un(S).

In the similar way to case 3, I can show the case 4, because a preferential relation is
a generalized preferential relation. [

In the above discussion, it is important that the aggregation operator does not satisfy
transitivity. Therefore, I will define the following operator.

Definition 4.8 If S C &, then AUn(S) is the relation Un(S)*.

Thus, I can show the following proposition.

Proposition 4.3
1. Suppose that for all s € &, < is a belief state. If S C &, then AUn(S) € B.

2. Suppose that for all s € &, <9 is a generalized belief state. If S C &, then
AUn(S) € GB.

3. Suppose that for all s € &, <9 is a generalized preferential relation. If S C &, then
AUn(S) € GP.

Proof. For the case 2, see [28]. I will show the case 1. AUn(S) is the set of the
transitive closure of Un(S), and then transitive from Proposition 2.1. Un(S) C AUn(S),
and then AUn(S) is reflexive and total.

I will show the case 3. AUn(S) is the set of the transitive closure of Un(S), and then
transitive from Proposition 2.1. [

However, for the case of preferential relations, we have a problem.

Proposition 4.4 Suppose that for all s € &, <P is a preferential relation. If S C &,
then Un(S) is transitive but not necessarily irreflexive.
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Proof. AUn(S) is the set of the transitive closure of Un(S), and then transitive
from Proposition 2.1. Let S = {s1,s0}, <! = {(wq, ws), (we, wa), (we, wy)} and < =
{(wy, wy), (wy, we), (We, we)}. Then (wq, wy), (wy, we), (We, we) € Un(S) and (wq,w,) €
AUn(S). Therefore, AUn(S) is not irreflexive. O

Therefore, the principle of respecting minority is not applicable to preferential rela-
tions. Thus I will consider an another operator which eliminates confliction for preferential
relations. I will consider that AUn(S) is not applied to preferential relations, because of
the strictness. When there is a strictness condition, adding elements and transitively
closing is a bad strategy. Thus, when mixing strict beliefs, it is better to eliminate beliefs
which is not agreed by someone than the previous strategy. That is to say, [ will take the
principle of unanimity.

Definition 4.9 If S C &, then AIn(S) is the relation (g <;.

According to the definition, the result of aggregation must be the belief with which
everyone agree.

Proposition 4.5

1. Suppose that for all s € &, <% is a generalized preferential relation. If S C &, then
AlIn(S) € GP.

2. Suppose that for all s € S, <P is a preferential relation. If S C &, then AIn(S) € P.

3. Suppose that for all s € &, <b is a belief state. If S C &, then AIn(S) is transitive,
but not total.

4. Suppose that for all s € &, <9 is a generalized belief state. If S C &, then AIn(S)
18 transitive, but not modular.

Proof. See Appendix A. [

Therefore, whereas AUn is applicable with belief states, generalized belief states, and
generalized preferential relations, Aln is applicable with preferential relations and gener-
alized preferential relations. However, in section 4.4, [ encounter the problem of applying
AUn to generalized preferential relations.

About AUn, when I use belief states or generalized belief states, 1 verify that an
element is created only if conflicts get created.

Proposition 4.6

1. Suppose that for all s € &, <b is a belief state. If S C &, (z,y) € AUn(S) for
z,y €W, and (x,y) ¢ Un(S), then (y,x) € AUn(S).

2. Suppose that for all s € &, <9 is a generalized belief state. If S C &, (v,y) €
AUn(S) for z,y € W, and (x,y) ¢ Un(S), then (y,x) € AUn(S).
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Proof. For the case 2., see [28]. Let me consider the case 1. Because (z,y) ¢ Un(S) and
if s € S, then <’ is total, for all s € S, y < z, then (y,z) € Un(S), and (y,z) € AUn(S).
U

However, for the case of generalized preferential relations, such a property is not
satisfied.

Proposition 4.7 Suppose that for all s € &, <P is a generalized preferential relation.
It is not satisfied that if S C &, (z,y) € AUn(S) for x,y € W, and (x,y) ¢ Un(S), then
(y,z) € AUn(S).

Proof. Let S = {s1,52}, <%= {(wq,wp)} and <P= {(wp,w.)}. Then (w,,w.) ¢
Un(S) and (w,, w.) € AUn(S), but (w., w,) ¢ AUn(S). O

AUn process tends to be connected.

Example 4.1 Suppose that S = {s1, 52}, and <. = {(wq, w,), (we, wy), (wh, wy), (We, wy),

(wca wb)7 (w07 wc)} and SgZZ {(waa ’U]a), (U)b, wa)7 (’U]b, wb)7 (U)b, wc)7 (w07 wa)7 (wm wc)} are
belief states, and hence, generalized belief states, and generalized preferential relations.
Then (wq, wy), (wp, we) € Un(S) and (w,, w.) ¢ Un(S). However, AUn(S) is connected.

In addition, AIn process tends to be empty.

Example 4.2 Suppose that S = {s1,s2}, and <8 = {(wq, wy), (we, w,), (we,wy)} and

<P = {(wp, wa), (W, we), (We, wy)} are preferential relations, and hence, generalized pref-

erential relations. Then AIn(S) is empty.
For the following discussion, I define SAUn.
Definition 4.10 If S C &, then SAUnN(S) is the strict version of AUn(S).

Moreover, we can assume the principle of decision by majority. If the number of agents
who prefer w, to wy is more than the number of agents who do not prefer w, to wy, then
all agents should prefer w, to wy.

Definition 4.11 If S C &, then Ma(S) is the relation {(w,,wp)|the number of s €
S such that w, <; wy is more than half of the number of all elements in S}.

Definition 4.12 If S C &, then AMa(S) is the relation Ma(S)*.

As AUn(S), AMa(S) is applicable to belief states, generalized belief states, and gen-
eralized preferential relation. However, AMa(S) is not applicable to preferential relation.

Example 4.3 Suppose that S = {s1, 52,53}, and <8 = {(wa, wy), (wy, we)}, <P = {(wy, w,)

s (we, wq) }, and <P = {(wa, wy), (we, wq) } are preferential relations. Then AMa(S) is con-
nected, and hence it is not preferential relation.
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Therefore, the principle of decision by majority is not applicable to preferential rela-
tion. AMa(S) is more useful than AUn(S), because AMa(S) is more hard to be connected
than AUn(S).

Example 4.4 Suppose that S = {s1, s, 53}, and <! =<? = {(w,, w,), (Wa, wy), (wy, ws) },
<P = {(wq, wy), (wy, wy), (wy, wy)} are belief states. Then AMa(S) is equal to <P, but
AUn(S) is connected.

Finally, we can complete the discussion of this section as follows.

Suppose that the sources are not comparable.

e [f sources’ beliefs can be partitioned by a total order, use the principle of respecting
minority or decision by majority.

e Otherwise, use the principle of unanimity.

These policies are recycled in Section 4.4 and 4.5. In the following discussion, I will
eliminate the case of decision by majority, because the formalization of such a case is
similar with that of the case of respecting minority.

4.3 Aggregation of total strictly ranked sources

In the last section, if sources have the same credibility, then aggregation tends to be
connected or empty. In this section, consider the case where the sources are strictly
ranked, i.e., Jg is a total order. In this case, I will consider that a belief which a source
with higher credibility has dominates another belief which a source with lower credibility.
I define such an operator that the beliefs of lower ranked sources refine the beliefs of
higher ranked sources. That is to say, the main purpose of this section is to show that the
definitions of various aggregation operators in the case of strictly ranked sources mean
the iterated application of the refinement operators. Because I already show that the
refinement operators are well-defined, if the aggregation steps is equal to the iterated
application of the refinements, then it is easy to show that the aggregation operators are
well-defined. Now I construct the aggregation operator for totally ordered source.

Definition 4.13 If S C &, then ARf(S) is the relation
{(wa,wp) : 3s € Scwy, <s wy A (Vs' T s € Sawy ~g wy) }-

As T have already explained, I will show the equality between the definition and the
refinement operator.

Lemma 4.1 Let S C &, Jg be a total order, and S = {s1, ..., sn} such that s; 3 s;1 for
all1 <t < N. Then

<4 it N=1
ARF(S) = { (<5, @ <5,)Q ... <4y) otherwise(ie., N >V 1)

32



Proof. See Appendix A. [

Thus, it is easy to show the following properties.

Proposition 4.8

1. Suppose that for all s € &, <b is the strict version of a belief state. If S C &, and
Jg is a total order, then ARf(S) € B-.

2. Suppose that for all s € &, <% is a belief state. If S C &, and Jg is a total order,
then ARf(S) € B.

3. Suppose that for all s € &, <% is a generalized belief state. If S C &, and Jg is a
total order, then ARf(S) € GB.

Proof. For the case 1., I can show it from Proposition 3.17 and Lemma 4.1. For the
case 2, ARf(S) =<’ is obvious. For the case 3, I can show it from Proposition 3.17 and
Lemma 4.1. [J

For the case 2., such an aggregation is not appropriate for belief states, because
ARf(S) is equal to §’;1. Therefore, I suppose another operator for belief states.

Definition 4.14 Suppose that for all s € &, < is a belief state. If S C &, then ARfL(S)
15 the relation

{(wa,wp) : s € Saw, < wy A (Vs' s € Saw, g wy) }-
Moreover, ARf*(S) = Ref(ARf4(S)).

I will show the equality between the definition and the refinement operator for belief
states.

Lemma 4.2 Suppose that for all s € &, <’ is a belief state. Let S C &, g be a total
order, and S = {s1,..., sy} such that s; 1 s;41 for all 1 <i < N. Then

<b if N=1
b — —S1
ARF(S) = { (L, @'<)R°".. <0) otherwise(ie., N >4 1)

—S1

Proof. From Proposition 3.16, it suffices to show that

) :
b _ <51 if N=1
ARfL(S) = { (<t R@°<t)Q".. <b) otherwise(ie., N >V 1)

I can show it in the similar way to prove Lemma 4.1. [J

Therefore, I can show the following corollary.
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Corollary 4.1 Suppose that for all s € &, < is the strict version of <%, where <’ is a

belief state. Let S C &, and g be a total order. Then the strict version of AGRRf®(S),
induced from belief states of sources, is equal to AGRRF(S), induced from the strict
versions of belief states of sources.

Proof. 1t is easy to show from Lemma 4.1 and 4.2, and Proposition 3.15 and 3.16. [

Thus, it is easy to show the following property.

Proposition 4.9 Suppose that for all s € &, < is a belief state. If S C &, and s is a
total order, then ARf*(S) € B.

Proof. 1 can show it from Proposition 3.17 and Lemma 4.2. []

In the above discussion, I did not mention the operators of preferential relations and
generalized preferential relations. Now [ will construct the aggregation operator of pref-
erential relations, for totally ordered sources. However, because of the partiality of pref-
erential relation of each source, the definition consists of the following multiple steps.

Definition 4.15 Suppose that for all s € &, <P is a preferential relation. Let S C &,
Jg be a total order, and S = {s1,..., sy} such that s; J s;41 for all 1 <i < N. The n-th
refinement of preferential relations OP"(S) is

(I) if n=1;
orm(S) =<r

(II) else if n > 1; Suppose that for any <€ R, <€ SOP™(S) iff
< = ori(S)U
{(wa, wy) = (wp, wa) ¢ OP"H(S)A

Wq Ssn wb/\
(wp, wa) E<F}.

Then OP™(S) = N([SOP"(S)]*).

Definition 4.16 Suppose that for all s € &, <P is a preferential relation. Let S C &,
Jg be a total order, and S = {s1,...,sy} such that s; J s;41 for all1 <i < N. Then

ARfP(S) = OPN(S).

Assuming such a complicated procedure, I can show the following lemma.

Lemma 4.3 Suppose that for all s € &, <P is a preferential relation. Let S C &, Jg be
a total order, and S = {s1, ..., s} such that s; 3 s;4q for all 1 <N i <N N. Then

< N =1
P(Q) — ) s
ARfP(S) = { (<2, @P<)QP... <) otherwise(ie., N >N 1)

S
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Proof. See Appendix A. [

Once the above lemma is shown, the following proposition is easy to prove.

Proposition 4.10 Suppose that for all s € &, <P is a preferential relation. If S C &,
and g is a total order, then ARfP(S) € P.

Proof. 1 can show it from Proposition 3.17 and Lemma 4.3. [

For the simple refinement, I will define the following aggregation operator.

Definition 4.17 Suppose that for all s € &, <P is a preferential relation. Let S C &,
Jg be a total order, and S = {s1,..., sy} such that s; J s;41 for all 1 <i < N. The n-th
simple refinement of preferential relations O} (S) is

(1) ifn=1;
ovr(S) =<t

sim —s17

(II) else if n > 1; Suppose that

TO>™ (S) = Op’”fl(S) U {(wq, wp) = (wp, wy) ¢ Op’”fl(S) N w, <, Wy}

sim sim sim

Then O (S) is the strict version of [TO%" (S)]".
Definition 4.18 Suppose that for all s € &, <P is a preferential relation. Let S C G,
Jg be a total order, and S = {s1,...,sn} such that s; J s;41 for all 1 <i < N. Then
ARf?

szm(S) = Op,N(S) :

sim

Also I can show the following lemma.

Lemma 4.4 Suppose that for all s € &, <P is a preferential relation. Let S C &, Jg be
a total order, and S = {s1, ..., sy} such that s; J s;41 for all 1 <N i <N N. Then

(5)_{§’§1 if N=1
= = = . . N
(<2 @ <t)Q"... <t ) otherwise(i.e., N >V 1)

S

ARfP

Proof. See Appendix A. [

Therefore, the following proposition is obvious.

Proposition 4.11 Suppose that for all s € &, <P is a preferential relation. If S C &,
and Jg 1s a total order, then ARf". (S) € P.

Proof. T can show it from Proposition 3.13 and Lemma 4.4. [
Now I will construct the aggregation operator of generalized preferential relations. for

totally ordered source.
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Definition 4.19 Suppose that for all s € &, <% is a generalized preferential relation.
Let S C &, Jg be a total order, and S = {s1, ..., sy} such that s; J s;y1 forall1 <i < N.
The n-th refinement of generalized preferential relations O%"(S) is

(I) if n=1;
ng,n(g) —<9p

—817

(II) else if n > 1; Suppose that

TO%™(S) = 0" 1 (S) U {(wq, wy) : (wp,ws) & OP"HS) A w, <P wy}.

Then O%7(S) = [TOP"(S)]*.

Definition 4.20 Suppose that for all s € &, <9 is a preferential relation. Let S C &,
Jg be a total order, and S = {s1,...,sy} such that s; J s;41 for all1 <i < N. Then

ARfP?(S) = O%N(S).
I can prove the following again.

Lemma 4.5 Suppose that for all s € &, <% is a generalized preferential relation. Let
S C &, dg be a total order, and S = {s1, ..., sy} such that s; 3 s,y for all 1 <V i <N N.
Then

ARfo(S) = <& it N=1
T (K2 Q@7P<r ). <P ) otherwise(i.e., N >V 1)

—351

Proof. T can show it in the similar way to prove Lemma 4.4. [J

Moreover, it is easy to show the following again.

Proposition 4.12 Suppose that for all s € G, <% is a generalized preferential relation.

If S C G, and Jg is a total order, ARf%(S) € GP.
Proof. 1 can show it from Proposition 3.14 and Lemma 4.5. [

After all, all the aggregation of beliefs for strictly ranked sources are formalized by
the iterated refinement.

4.4 Aggregation of totally preordered sources

In the last section, if sources are strictlly ranked, then several aggregations are formalized
from the refinement operators. In this section, I consider the case where the sources are
totally preordered, i.e., Jg is a total preorder. At first, I construct the following operator,
A*: First combine equally ranked sources using the principle of respecting minority or
unanimity, then aggregate the strictly ranked results using what is essentially ARf. That
is to say, this strategy of the construction is the combination of the two slogans in the
introduction of this chapter. Let rank(S) = {r € R vk : rank(s) =r}).
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Definition 4.21 Let S C G, and g be a total preorder. For any r € Rani, let <,=
AUn({s € S : rank(s) = r}) and ~,, the corresponding agnosticism relation. A(S)* is
the relation

{(wq,wy) : Ir € Ranrc-we <p wy A (V1" > 1 € rank(S).w, ~p wy)}.

I can show the relation between the definition and the refinement operator.

Lemma 4.6 Let S C S, and Jg be a total preorder. Also let EQ(S) = {51, ..., Sa} such
that S; 3 Sjyq for all1 <1 < N. Then

vy | AUR(SY) if N=1
A*(S) = { (AUN(S1)Q AUN(Sy))J ... AUn(Sy)) otherwise(i.e., N >V 1)

Proof. See Appendix A. [

That is to say, Definition 4.21 use the principle of respecting minority. Therefore, I can
expect that this operator is available to generalized belief states and the strict version of
belief states. Although this operation is also available to belief states, it is not intersting,
because the result of this operator is AUn(S}), given belief states. Once the above lemma
is proved, the following proposition is easy to show.

Proposition 4.13 Suppose that for all s € &, <% is a generalized belief state. If S C &,
and Jg is a total preorder, then A*(S) € GB.

Proof. T can show it from Proposition 4.3,3.17 and Lemma 4.6. []

As the above discussion, it seems to be not hard to formalize the operator with the
principle of decision by majority. Also I will define the aggregation operator of belief
states for the total preordered sources.

Definition 4.22 Suppose that for all s € &, gg is a belief state. Let S C &. and Jg
be a total preorder. For any r € Rank, let <,= AUn({s €: rank(s) = r}) and oo,, the
corresponding conflict relation. A% (S) is the relation

{(wa, ws) : Ir € Ranic-wa <Zwy A (V1 > 1 € rank(S).wa00bwy)}.
Moreover, A*(S) = Ref(A%(S)).

I can also show the equation between the definition and the refinement operator of
belief states.

Lemma 4.7 Suppose that for all s € &, <® is a belief state. Let S C &, and Jg be a
total preorder. Also let EQ(S) = {Si, ..., S2} such that S; 7 .S;41 for all1 <i < N. Then

o AUR(S) £ N1
AS) = { (AUn(S,)R "AUN(S,))Q "... AUn(Sy)) otherwise(i.e., N >V 1)

37



Proof. From Proposition 3.16, it suffices to show that

4 (g = { SAUn(S) if N =1
<(9) = (SAUN(S))Q “SAUN(S2))Q ... SAUn(Sy)) otherwise(i.e., N >V 1)

I can show it in the similar way to Lemma 4.6. [

That is to say, Definition 4.22 adopted the principle of respecting minority. Such an
operation is well-defined.

Proposition 4.14 Suppose that for all s € &, <% is a belief state. If S C &, and Jg is
a total preorder, then A*(S) € B.

Proof. T can show it from Proposition 4.3, 3.17 and Lemma 4.7. [

In the above discussion, I did not mention the operator of preferential relations and
generalized preferential relations. Now [ will construct the aggregation operator of pref-
erential relations for totally preordered source. The important point of the formalization
for preferential relations is that the principle of unanimity must be used. However, be-
cause of the partiality of preferential relation of each source, the definition consists of the
following multiple steps, as Definition 4.15 and 4.16.

Definition 4.23 Suppose that for all s € &, <P is a preferential relation. Let S C &,
and Jg be a total preorder. Also let EQ(S) = {Si,...,S2} such that S; 3 S;11 for all
1 <i < N. The n-th refinement of preferential relations O%7, (S) is

(I) if n=1;
Oli1,(S) = Aln(Sy),

(II) else if n > 1; Suppose that for any <€ R, <& SOP"™(S) iff
< = 04 (S)U
{(way wy) = (wy, wa) & OFF, (S)A
(W, wp) € AIN(S,)A
(wp, wa) ¢<F}
Then O%Gpra(S) = N([SOUT,(9)] ).

Definition 4.24 Suppose that for all s € &, <P is a preferential relation. Let S C &,
and Jg be a total preorder. Then

AP(S) = O%ip, (S).

The following lemma will be shown as usual.
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Lemma 4.8 Suppose that for all s € G, <P is a preferential relation. Let S C &, and Jg
be a total preorder. Also let EQ(S) = {S1,..., S2} such that S; 13 S;11 for all1 <i < N.
Then

poy _ J AIn(S1) if N=1
AP(S) = { ((AIn(S))Q@PAIn(S,))Q?"... AIn(Sy)) otherwise(i.e., N >V 1)

Proof. 1 can show it in the similar way to Lemma 4.3. [J

The following proposition is obvious.

Proposition 4.15 Suppose that for all s € &, <P is a preferential relation. If S C &,
and Jg is a total preorder, then AP(S) € P.

Proof. 1 can show it from Proposition 3.12 and Lemma 4.8. [

Now I want to show the example of the application of this operator, because my
advantage is to use preferential relations, which breaks the rule of RMO. This is the
arrangement of the example of space robot scenario in [28].

Example 4.5 The robot sends to Farth a stream of telemetry data gathered by the space-
craft, as long as it receives positive feedback that the data is being received. At some point
it loses contact with the automatic feedback system, so it sends a request for information
to an agent on earth to the data retrieval system. In the former case, it would continue
to send data, in the latter, desist. As it so happens, there has been no overload but the
computer running the feedback system has hung. The agent consults the following three
experts, aggreqgates their beliefs, and sends the results back to the robot:

1. s, is the computer programmer that developed the feedback program. She is quite
cocky and believes nothing could ever go wrong with her code, so there must have
been an overload program. However, she concedes that if it were possible for her
program to have crashed, it would have been highly unlikely for the feedback system
to have crashed simultaneously.

2. Sy 1S the manager for the telemetry division. She was also told by the engineer who
sold her the system that overloading could never happen. Not being too technical,
she has no idea whether the feedback system crashed or not. However, she does not
consider that even if the feedback system did not crash, the data retrieval system
still was okay. Moreover, she feels that if the feedback system crashed, it was hard
to say that the data retrieval system crashed simultaneously.

3. s 1s the technician working on the feedback system and, as a result, knows that it
crashed. She does not know whether there was a data-overload in the retrieval system
and, not being familiar with the system, is unable to speculate whether it could have
overload had the feedback system not failed.

This example is very important, because s,, does not satisfy RMO. Although Maynard-
Reid II’s representation did not deal with such incomplete information, I can represent
the conditional beliefs in our space robot scenario with preferential relations.

39



w2 wé wl w2

w2 w3 w3 wa

Sp Sm St

Figure 4.1: The preferential relations of s,, s,,, s; in Example 4.6.

Table 4.1: The truth table.

F D
w; 1 1
ws 1 0
W3 0 1
Wy 0 0

Example 4.6 Let F' and D be propositional variables representing that the feedback and
data retrieval system are okay, respectively. The preferential relations for the three sources
are shown in Figure 4.2. The interpretation of wy, wq, w3, wy € W are shown in Table 4.1.
They encode the following conditions in accordance with the descriptions of the sources’

beliefs:
e s,: BelP(true : F'), BelP(F : =D), Bel?(D : F), BelP(~F : D).
e s, : BelP(true : D), AgnP(true : =F), AgnP(F : D), BelP(=F : D).
e s, : BelP(true : =F), AgnP(true : D), AgnP(F : D).

He does not considered the aggregation of conditionals which does not satisfy RMO.
However, we can operate such conditional beliefs, because we will use preferential relations:

Example 4.7 In the space robot scenario of Fxample 4.10, suppose the technician is
more credible than the programmer and the manager, but the latter two are considered
equally credible. The totally preordered aggregated state, shown in Figure 4.2, gives the

wl w2

w3

Figure 4.2: The result of the aggregation in Example 4.7.
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robot correct information about the state of the system. The robot also learns for future
reference that there is some disagreement over whether or not the feed back system would
crash if the data retrieval system were not working.

However, although it is not important in this case, note that the principle of unanimity
is only allowed to be used. Instead of getting the ability of avoiding RMO, I will not be
able to use the principle of decision by majority, using preferential relations.

For the simple refinement, I will define the following aggregation operator, as Definition
4.17 and 4.18.

Definition 4.25 Suppose that for all s € &, <P is a preferential relation. Let S C &,
and Jg be a total preorder. Also let EQ(S) = {Si,...,S2} such that S; 3 S;11 for all
1 < i< N. The n-th simple refinement of preferential relations O (S) is

sim,Aln
(1) ifn =1;
Og){?n,AIn(S) = AIn(S),

(II) else if n > 1; Suppose that

TO" . (S)=0"""1 (S)U

sim,Aln sim,Aln

{(wa,wy) = (wp, wy) & OPP 1 (S) A (we.wp) € AIN(S,)}.

sim,Aln

Then O . (S) is the strict version of [TO" ,, (S)]".

stm,Aln stm,Aln

Definition 4.26 Suppose that for all s € &, <P is a preferential relation. Let S C &,
and Jdg be a total preorder. Then

Al () = O%i ara(5).

sim,Aln

I can show the following lemma as usual.

Lemma 4.9 Suppose that for all s € &, <P is a preferential relation. Let S C &, and Jg
be a total preorder. Also let EQ(S) = {S1,..., S2} such that S; 13 S;11 for all1 <i < N.
Then

o (S AIn(S,) if N=1
sim (5) = { ((AIn(S))Q@"AIn(S2)Q"... AIn(Sy)) otherwise(i.e., N >V 1)

Proof. T can show it in the similar way to Lemma 4.4. [J
Therefore, the following proposition is obvious as usual.

Proposition 4.16 Suppose that for all s € &, <P is a preferential relation. If S C &,
and Jg is a total preorder, AY. (S) € P.

sim
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Proof. 1 can show it from Proposition 3.13 and Lemma 4.9. [

Now I will construct the aggregation operator of generalized preferential relations
for pretotally ordered source, as Definition 4.19 and 4.20. First, I use the principle of
respecting minority.

Definition 4.27 Suppose that for all s € &, <9 is a generalized preferential relation.
Let S C &, and Jg be a total preorder. Also let EQ(S) = {S1, ..., So} such that S; 3 S;1
for all 1 < i < N. The n-th tentative refinement of generalized preferential relations
O (S) is

(I) if n=1;
O (S) = AUn(Sy),

(II) else if n > 1; Suppose that
TON(S) = 0% (S) U {(wa, wp) : (wy, wa) ¢ OF " (S) A (wa, wy) € AUR(S,)}.
Then 0%, (S) = [TO%, (S)]F.

Definition 4.28 Suppose that for all s € &, <% is a generalized preferential relation.
Let S C G, and g be a total preorder. Then

A (S) = 0% (S).
I may be repeating my self, but the following lemma is shown.

Lemma 4.10 Suppose that for all s € &, <% is a generalized preferential relation. Let
S C 6, and Jdg be a total preorder. Also let EQ(S) = {51, ..., Se} such that S; 1 S;11 for
alll1 <1< N. Then

ARIP(G) — AUn(Sy) if N=1
(5= (AUR(S))@ P AUR(S,))@ ... AUn(Sx)) otherwise(ic., N >V 1)

Proof. T can show it in the similar way to prove Lemma 4.4. [J
It is tedius to show the following proposition.

Proposition 4.17 Suppose that for all s € G, <9 is a generalized preferential relation.
If S C &, and Jg is a total preorder, then A*9(S) € GP.

Proof. T can show it from Proposition 3.14 and Lemma 4.10. [J
In the above definitions, we use AUn(S;) for generalized preferential relation. How-
ever, an undesirable effect is occurred by this prcedure. The problem is to introduce

superfluous conflicts during the intermediate equally ranked aggregation step, as the fol-
lowing example shows:
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NAVARIVAN

SO S1,S2 A* *({S1,52.S3)

Figure 4.3: Sources and aggregate generalized preferential relations from Example 4.8
showing that A*9 introduces superfluous conflicts if s, 1 51 = sq.

Example 4.8 Let W = {wg, wy, w.}. Suppose S C & such that S = {so, 1,52} with
generalized preferential relation shown in Figure 4.3. The result of applying A*9% to S is
also shown in the figure. All sources are agnostic over w, and w., yet they are in conflict
in the result. This unexpected development is due to the transitive closure in the lower
rank involving opinions (wy, w.) and (wy, w,) which actually get overridden in the final
result.

That is to say, if we use the principle of respecting minority, we may encounter the
unexpected conflict. Note that the relations in Figure 4.3 are also generalized belief states.
Maynard-Reid II also indicated that this problem occurs in the aggregation of generalized
belief state. Therefore, he defined another aggregation operator.

Definition 4.29 The rank-based aggregation of a set of sources S C &, where Jg is
total preorder, is A(S) = ARf(S)".

Although Maynard-Reid II did not indicate it, I can show the following lemma.

Lemma 4.11 Let S C &, and Jg be a total preorder. Also let EQ(S) = {51, ..., S2} such
that S; 3 S;yq for all1 <i < N. Then

_J Un(S)* if N=1
A(S) = { (Un(S1)& Un(S2))J ... Un(Sy))* otherwise(i.e., N >V 1)

Proof. 1t suffices to show that

[ Un(S) it N=1
ARf(S) = { (Un(S1)Q Un(S2))Q ... Un(Sy)) otherwise(i.e., N >V 1)

See the proof of Lemma 4.6. [

Thus he avoided the problem with using the less restricted principle of respecting
minority.

Proposition 4.18 Suppose that for all s € &, <% is a generalized belief state. If S C &,
and where Qg is total preorder, then A(S) € GB.
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Proof. see [28]. O

However, I did not use ARf(S) for the aggregation of generalized preferential rela-
tions, because it does not correspond the refinement operator of generalized preferential
relations. Therefore, we define the another aggregation operation of generalized preferen-
tial relations for totally preordered source. That is to say, instead of AUn(S), we use the
principle of unanimity.

Definition 4.30 Suppose that for all s € &, <P is a generalized preferential relation.
Let S C &, and Jg be a total preorder. Also let EQ(S) = {S1, ..., So} such that S; 3 S;1
for all 1 <i < N. The n-th refinement of generalized preferential relations O%;(S) is

(1) ifn=1;
0L (S) = Aln(Sy),

(II) else if n > 1; Suppose that
TO%in(S) = 0% (S) U {(way wy) = (wy, wa) ¢ Oy ' (S) A (wa, wy) € ATn(S,)}.
Then O, (S) = [TO, (S)]".

Definition 4.31 Suppose that for all s € &, <% is a generalized preferential relation.
Let S C 6, and g be a total preorder. Then

AP(S) = 0% (9)-
It is needless to say that I can show the following lemma.

Lemma 4.12 Suppose that for all s € &, <% is a generalized preferential relation. Let
S C 6, and Jg be a total preorder. Also let EQ(S) = {S1, ..., S2} such that S; 1 Siy1 for
all1 <1< N. Then

op | AIn(S)) if N=1
AP (S) = { ((AIn(S))QPAIn(S,))Q... AIn(Sy)) otherwise(i.e., N >V 1)

Proof. We can show it in the similar way to prove Lemma 4.4. [

In the similar way, it is easy to show the following proposition.

Proposition 4.19 Suppose that for all s € S, <% is a generalized preferential relation.
If S C &, and Jg is a total preorder, then A%(S) € GP.

Proof. We can show it from Proposition 3.14 and Lemma 4.12. [

I observe that A%, when applied to the set of sources in Example 4.8, does indeed
bypass the problem described above of extraneous opinion introduction:

Example 4.9 AssumeW, S, and C are as in Example 4.8. AP(S) = {(wq, wp), (We, wp) }.

44



I also show that A behaves well in the special cases I have already considered.

Proposition 4.20 Suppose S C G.
1. [28] If Dg is fully connected, A(S) = AUn(S).
2. [28] If Jg is a total order, A(S) = ARf(S).

3. Suppose that for all s € &, <° is a belief state. If Jg is fully connected, A°(S) =
AUn(S).

4. Suppose that for all s € &, <% is a belief state. If Jg is a total order, A’(S) =
ARFY(S).

5. Suppose that for all s € &, <P is a preferential relation. If Jg is fully connected,
AP(S) = AIn(S).

6. Suppose that for all s € &, <P is a preferential relation. If Jg is a total order,
AP(S) = ARfP(S).

7. Suppose that for all s € &, <P s a preferential relation. If Jg is fully connected,
AP, (S) = AIn(S).

sim

8. Suppose that for all s € &, <P is a preferential relation. If Jg is a total order,
Alim (S) = ARf G, (S).

9. Suppose that for all s € &, <9 is a generalized preferential relation. If Jg s fully
connected, A%(S) = AIn(S).

10. Suppose that for all s € &, <9 is a generalized preferential relation. If Jdg is a total
order, A%(S) = ARfP(S).

Proof. For the case 1. and 2., see [28]. For the case 3., 5., 7., and 9., I can show it
from the fact that for any S C &, S = [J{S1} such that for any s,s" € Sy, rank(s) =
rank(s'). For the case 4., 6., 8., and 10., I can show it from the fact that for any S C &,
S = J{Si,..., Sy} such that for any 1 <V i <V N, S; has only one element s; and If
i >N j, rank(s;) > rank(s;). O

4.5 General aggregation

In the last section, if sources are totally preordered, then several aggregations are for-
malized from amalgamating equally ranked source version and strictly ranked version. In
this section, I consider the case where the sources are partially preordered, i.e., Jg is a
partial preorder. At first, I construct the following operator, AGe: First aggregate the
totally preordered results using what is essentially A for each chain, then combine all these
results with the principle of unanimity (or respecting minority). This procedure is the
combination of the two slogans again. Now I can define the following general aggregation
operator:
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Figure 4.4: The generalized belief states of s,, s, and s; in Example 4.9.

Definition 4.32 The general aggregation of a set of sources S C G 1is

AGe(S) =1 |  ASmpl".

SmpeEMPC(S)

Proposition 4.21 Suppose that for all s € &, <% is a generalized belief state. If S C &,
then AGe(S) € GB.

Proof. 1 can show it from Proposition 4.8 and the proof of 4.3. [

For the application of this operator, I arrange the example of space robot scenario in
[28].

Example 4.10 This scenario is almost as same as Example 4.5. However, the manager’s
opinion is different with the previous one:

e s, is the manager for the telemetry division. She was also told by the engineer who
sold her the system that overloading could never happen. Not being too technical,
she has no idea what would happen if there was an overload.

I can represent the sources’ beliefs in our space robot scenario using generalized belief
states.

Example 4.11 Let F' and D be propositional variables representing that the feedback
and data retrieval system are okay, respectively. The generalized belief states for the three
sources are shown in Figure 4.4%. They encode the following conditions in accordance with
the descriptions of the sources’ beliefs:

2Each circle represents all the worlds in ¥V which satisfy the sentence inside.
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ol
Figure 4.5: The generalized belief states after aggregation in Example 4.11.

e s,: Bel®(true: F), Bel?(F : =D), Bel®(D : F), Bel*(~F : D).
e s, : Bel? (true : D), Agn®(true : =F), Agn(=F : D).
o s;: Bel%(true : —F), Agn%(true : D), Agn?(F : D).

Maynard-Reid II [28] considered the aggregation of strictly ranked case and totally
preordered case. However, the following case was not considered, because it is partially
ordered:

Example 4.12 In the space robot scenario of 4.10, suppose the technician is more credible
than the programmer, but the manager is not comparable with the two. The generally
aggregated state, shown in Figure 4.5, gives the robot correct information about the state
of the system. The robot also learns for future reference that there is some disagreement
over whether or not there would have been a data overload if the feedback system were
working.

In this case, the principle of decision by majority may be available.

I also observe that AGe behaves well in the special case I have already considered,
reducing to A when the sources are totally preordered:
Proposition 4.22 Suppose S C &. If g is totally preordered, AGe(S) = A(S).

Proof. If Jg is totally preordered, M PC(S) = {S} is obvious. Therefore, AGe(S) =
A(S). O

That is to say, I also observe that AGe behaves well in the special case [ have already
considered, reducing to AUn when the sources have an equal rank, and to ARf when the
sources are totally ranked:

Proposition 4.23 Suppose S C G.

1. If Jg is fully connected, AGe(S) = AUn(S).

47



2. If Jg is a total order, AGe(S) = ARf(S).

Proof. They are derived from Proposition 4.20 and 4.22. []

I can define the following general aggregation operator of belief states:

Definition 4.33 Suppose that for all s € &, <% is a belief state. Let S C &. AGeP(S)
15 the relation such that

AGe(S) = | U Ab(SmpC)]+-

SmpeEMPC(S)

In the definition, I use the principle of respecting minority, but that of decision by
majority also may be available.

Proposition 4.24 Suppose that for all s € &, < is a belief state. If S C &, then
AGeb(S) € B.

Proof. For every case, I can show it from Proposition 4.14 and the proof of 4.3. [

I also observe that AGe behaves well in the special case I have already considered,
reducing to A® when the sources are totally preordered:

Proposition 4.25 Suppose S C &. If Og is totally preordered, AGe®(S) = A°(S).

Proof. If Jg is totally preordered, M PC(S) = {S} is obvious. Therefore, AGe’(S) =
Av(S). O

That is to say, I also observe that AGe® behaves well in the special case I have already
considered, reducing to AUn when the sources have an equal rank, and to ARf® when
the sources are totally ranked:

Proposition 4.26 Suppose S C G.
1. If Qg is fully connected, AGe®(S) = AUn®(S).
2. If Jg is a total order, AGe®(S) = ARf(S).

Proof. They are derived from Proposition 4.20 and 4.25. [

I can define the following general aggregation operator of preferential relations:

Definition 4.34 Suppose that for all s € &, <P is a preferential relation. Let S C &.
AGeP(S) is the relation such that

AGeP(S)= [  AP(Smpo)-

SmpeEMPC(S)

48



AP (S1,52) AR (S19

AGe(S)

Figure 4.6: The preferential relations after aggregation in Example 4.12.

In the formalization, the principle of unanimity is only allowed to be used, because
the formalizations with the principle of respecting minority or decision by majority is not
well-defined from the second section of this chapter.

Proposition 4.27 Suppose that for all s € &, <P is a preferential relation. If S C &,
then AGe?(S) € P.

Proof. For every case, I can show it from Proposition 4.15 and the proof of Proposition
4.5. O

I revisit Example 1.1 and 1.2.

Example 4.13 In the detective story scenario of Example 1.1, J= {(s1, s1), (51, $2), (s1, 83)
, (82, 82), (83,83)}. See Example 3.1, for all preferential relations which sources have. In
the top of Figure 4.6, AP(Sppe) is calculated for each Sy, € MPC(S). In the bottom
of this figure, the result of aggregation AGeP(S) is given. In this figure, the investigation
headquarter should examine P and ) at first.

Example 4.14 In the TV show scenario of Example 1.2, = {(s1, s1), (s1, $2), (52, s2), (53,
s3), (83, 84), (84,54)}. See Example 3.2, for all preferential relations which sources have.
In the top of Figure 4.7, AP(Sppe) is calculated for each Sy € MPC(S). In the bottom
of this figure, the result of aggregation AGeP(S) is given. In this figure, P should be the
muster.

I also observe that AGeP behaves well in the special case I have already considered,
reducing to A? when the sources are totally preordered:
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Figure 4.7: The preferential relations after aggregation in Example 4.13.

Proposition 4.28 Suppose that for all s € G, <P is a preferential relation. Let S C G.
If 1 is totally preordered, AGe?(S) = AP(S).

Proof. If 1 is totally preordered, M PC(S) = {S} is obvious. Therefore, AGe?(S) =
Ar(S). O

That is to say, I also observe that AGeP behaves well in the special case I have already
considered, reducing to AIn when the sources have an equal rank, and to AR f? when the
sources are totally ranked:

Proposition 4.29 Suppose that for all s € &, <P is a preferential relation. Let S C &.
1. If Jg is fully connected, AGe?(S) = AIn(S).
2. If Jg is a total order, AGeP(S) = ARf?(S).

Proof. They are derived from Proposition 4.20 and 4.28. [

I can define the following general simple aggregation operator of preferential relations:

Definition 4.35 Suppose that for all s € &, <P is a preferential relation. Let S C G.
AGeL, (S) is the relation such that

AGe,;, (S) = ﬂ A (Smpe)-

SmpeEMPC(S)

Proposition 4.30 Suppose that for all s € &, <P is a preferential relation. If S C &,
then AGeP(S)im € P.
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Proof. For every case, I can show it from Proposition 4.16 and the proof of Proposition
4.5. O

I also observe that AGe®, behaves well in the special case I have already considered,
reducing to A?

«im When the sources are totally preordered:

Proposition 4.31 Suppose that for all s € G, <P is a preferential relation. Let S C G.

) s

If 3 is totally preordered, AGet, (S) = AL, (S).

Proof. If 1 is totally preordered, M PC(S) = {S} is obvious. Therefore, AGe?(S) =
Ar(S). O

That is to say, I also observe that AGe?,  behaves well in the special case I have
P

already considered, reducing to AIn when the sources have an equal rank, and to ARf;;,
when the sources are totally ranked:

Proposition 4.32 Suppose that for all s € &, <P is a preferential relation. Let S C G.
1. If Jg is fully connected, AGe?, (S) = AIn(S).
2. If Jg is a total order, AGe, (S) = ARfY, (S).

Proof. They are derived from Proposition 4.20 and 4.31. [J

I can define the following general aggregation operator of generalized preferential re-
lations:
Definition 4.36 Suppose that for all s € &, <% is a generalized preferential relation.

Let S C &. AGe?(S) is the relation such that

AGe(S) = () A(Smpe).

SmpeEMPC(S)

It is obvious that the principle of unanimity is only allowed to be assumed.

Proposition 4.33 Suppose that for all s € S, <% is a generalized preferential relation.
If S C &, then AGe%?(S) € GP.

Proof. 1 can show it from Proposition 4.17 and the proof of Proposition 4.17. [J

I assume a more powerful detective story for this operator.

Example 4.15 P and QQ are suspects of a murder case, and they are brother. s; and s,
are acquaintances. s3 is a mother of the two. s, is an anonymous telephone.
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Figure 4.8: The generalized belief states of sy, s9, s3, and s; in Example 4.15.

s1 “I think that P is the murderer, because P bought a weapon. if he is not the murderer,
Q may be it. Q hates the victim very much.”

sy “It seems to be that P is not a murderer, because I saw that P went to the opposite
side of the crime scene. However, () may be it, because () was a bad boy.”

s3 “P and @) are very good boys, and they are not murderers. But one of them cannot
be a murder, because they are friendly.”

sy “Q cannot be a murder, because he robed a jewelly shop of a valuable article at the
time. P may be accomplice. He always keep a his company.

Who are the murderer?

Example 4.16 Let P and Q) be propositional variables representing thatP and data @)
are murderers, respectively. The generalized preferential relations for the four sources are
shown in Figure 4.8. In this figure,

e For wy, P and () are true.
o For wy, P is true, and Q) s false.
e For ws, P is false, and Q) is true.

e For wy, P and @ are false.

They encode the following conditions in accordance with the descriptions of the sources’

beliefs:

e 51 : Bel% (true : P), Agn(true : =P), Agn9 (true : P).

e s : Bel% (true : =P), Bel%(true : @), Bel9?(=Q : =P), Agn (P : Q).
e s3: Bel%(true : =P), Bel%(F : =Q), Bel%(P : Q), Bel?(—Q : P).

e s, : Bel% (true : =P), Bel%(F : =Q), Bel?(P : -Q), Agn(Q : P).
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Figure 4.9: The generalized preferential relations after aggregation in Example 4.16.

I can show the step of aggregation of generalized preferential relations.

Example 4.17 In the detective story scenario of 4.14, J= {(s1, s1), (51, $2), (51, 83), (52, 51),
(s2,52), (52, 83), (S3,53), (S4,54)}. See Example 4.15, for all generalized preferential re-
lations which sources have. In the top of Figure 4.9, AP(Syp.) is calculated for each
Smpe € MPC(S). In the bottom of this figure, the result of aggregation AGeP(S) is given.
In this figure, neither P nor Q) is the murderer.

I also observe that AGe% behaves well in the special case I have already considered,
reducing to AGe% when the sources are totally preordered:

Proposition 4.34 Suppose that for all s € S, <% is a generalized preferential relation.
Let S C &. If 3 is totally preordered, AGe9(S) = A% (S).

Proof. If 1 is totally preordered, M PC(S) = {S} is obvious. Therefore, AGe(S) =
A (S). O

That is to say, I also observe that AGef behaves well in the special case I have already
considered, reducing to AIn when the sources have an equal rank, and to ARf% when
the sources are totally ranked:

Proposition 4.35 Suppose that for all s € &, <9 is a preferential relation. Let S C &.
1. If Jg is fully connected, AGe9(S) = AIn(S).
2. If Jg is a total order, AGe%(S) = ARf9?(S).
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Figure 4.10: Example : AGeP(S) is empty.

Proof. They are derived from Proposition 4.20 and 4.34. [

Note that the aggregation of preferential relations and generalized preferential relations
may be empty. For example in Figure 4.10, let s; J sq, but s1 2 s3, s3 4 s1, So 2 s3, and
s3 A sy. Then the aggregation is empty.

I need to show what kind of preferential relations induce the nonempty ordering. I
define the maximum-ordered set of sources.

Definition 4.37 Let S C &. g is maximum-ordered iff S has a maximum source S,,,
that is, for all s € S, if s Jg S, then s = s,,.

Proposition 4.36 Let S C G.

1. Suppose that for all s € &, <P is a preferential relation. If Jg is a mazimum-
ordered, <P C AGeP(S).

2. Suppose that for all s € &, <9 is a generalized preferential relation. If Jg is a
mazimum-ordered, < C AGe(S).

proof. 1 show only the case of preferential relation. For all S,,. = MPC(S),
AlIn(S;) =<? . and then <? C AP(S,,.) from Lemma 4.8. It follows that <? C
AGeP(S). O

Therefore, an aggregation of preferential relations and generalized preferential relations
is nonempty, when its maximal source’s ordering is nonempty.
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Chapter 5

Fusion

In the previous chapter, I considered the case where a single agent must construct or
update her belief state once informed by a set of sources. However, as I already see
Example 1.1, aggregation step may be multiple agents, for example, agent A aggregates
information of s; and s,, and agent B aggregates information of s; and s3. Therefore, I
must consider the multi-agent case of aggregation. Multi-agent fusion is the process of
aggregating the belief states of a set of agents, each with its respective set of informant
sources.

Example 5.1 In Ezample /.10, I consider the single agent’s aggregation. However, in
this example, I consider the multi-agent version of Example 4.10. Suppose that the experts
in the space robot scenario work at different centers or for different companies. The robot
will need to request information from different agents, one to aggregate the sources from
each center. Agent A1 consults the company of a source s,, and Agent A2 consults the
company of sources s,, and s;. How does the space robot fuse all agent’s aggregating
information?

In such a scenario, the robot needs a mechanism for combining the beliefs of multiple
agents potentially arriving at different times. Moreover, the belief state output by the
mechanism should be invariant with respect to the order of arrivals of agents. In this
chapter, a simple fusion operator will be given by the set-theoretical mechanism. Then
we will describe the procedure of computing the resulting belief.

5.1 Formalization

In the following discussion, we assume that each agent combines the beliefs of sources
with the aggregation operator from the previous chapter to compute its own beliefs.

Definition 5.1 An agent A is informed by a set of sources S C S.

1. Suppose that for all s € &, <9 is a generalized belief state. Agent A’s induced
generalized belief state is the generalized belief state formed by aggregating the gen-
eralized belief states of its sources, i.e., AGe(S).
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2. Suppose that for all s € &, <b is a belief state. Agent A’s induced belief state is
the belief state formed by aggregating the belief states of its sources, i.e., AGe®(S).

3. Suppose that for all s € &, <P is a preferential relation. Agent A’s induced pref-
erential relation s the preferential relation formed by aggregating the preferential
relation of its sources, i.e., AGeP(S).

4. Suppose that for all s € &, <% is a generalized preferential relation. Agent A’s in-
duced generalized preferential relation is the generalized preferential relation formed
by aggregating the generalized preferential relation of its sources, i.e., AGe%(S).

I will use Ay and Ag to denote special agents informed by () and &, respectively. Each
sources can be thought of as a primitive agent with fixed belief state.

Now suppose that a new agent aggregates information of, not sources, but a set of
other agents with pre-aggregated beliefs. In addition, I assume that all the agents have
the same ranking over sources, i.e., J. I will define the fusion of the set of agents to be
an agent informed by the combination of informant sources:

Definition 5.2 Let A = {Ay, ..., A} be a set of agents such that each agent A; is in-
formed by S; C &. The fusion of A, written &(A), is an agent informed by S = J;_, S;.

My formalization have the same merit as Maynard-Reid II's formalization. That is to
say, iterated fusion is formally well-defined: the output of fusion is an agent, a legitimate
input to another fusion operation. Also this operator does not depend on the order of
inputs. This point justified the discussion of Maynard-Reid II for Example 5.1 in [28].
In addition, & is idempotent, commutative, and associative. Therefore, a set of agents
A with informant sources from & and closed under @ forms a semi-lattice (see [6]).
In this formalization, agents higher in the lattice contain better information than lower
ones. @ accepts a n-tuple of agents and returns the least agent that contains at least as
much information as all of them. This semi-lattice has a “unit” element, Aym and an
“annihilator” element, Ag.

I have some advantage that Maynard-Reid II does not have. That is, my formalization
allows the sources to be partially preordered, because I expand AGR(S) into AGRGe(S)
in the previous chapter, and this expansion does not affect the definition of fusion operator.
However, this relaxation of the constraint will complicate the following discussion.

5.2 Computing Fusion

In this section, I will discuss the possibility of computing the beliefs induced by the agents’
fusion solely from their initial beliefs, that is, without having to reference to the belief
states of their sources. This is highly desirable because of the expense of storing all source
beliefs; we would like to represent each agent’s knowledge as compact as possible.
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In fact, I can do this if all sources have equal rank or incomparable. Then I will
introduce the following concept:

Definition 5.3 Let S C &. g is isolated iff for all s,s" € S, s = ', or s A s' and
s’ s.

Proposition 5.1 Let A = {Ay,..., A,} be a set of agents such that each agent A; is
informed by S; C S, and Jg be isolated.

1. Suppose that for all s € &, <% (or <9) is a belief state (or a generalized belief
state). let j&) (or jﬂ’) be agent A;’s induced belief state (or induced generalized

belief state). If A = ®(A), then (U,.ca j’j4>)+ (or (Ua,ea jf’f))*) is A’s induced
belief state (or induced generalized belief state).

2. Suppose that for all s € &, <P (or <9%) is a preferential relation (or a generalized
preferential relation). let <b (or <% be agent A;’s induced preferential relation
) )

(or induced generalized preferential relation). If A = ®(A), then (,.ca jﬂ"t) (or
Naea jf’f)) is A’s induced belief state (or induced generalized belief state).

Proof. T will show the case 1 with belief states. For all S,,,. € MPC(J._,S:),
Ab(Smpc) — [USESmpc §2]+ Therefore, AG@b(S) = [USmpCGMPC’(U;;O Si)[UsESmpc §2]+ T =
(User, s <0)F- By the way, (Uy,ea =0)" = [ULo AG(S)]T = (Useyr, s <07

We will show the case 2 with preferential relations. For all Sy, € MPC(U._, S),
Ap(Smpc) = ﬂSESmpc Sg Therefore’ AGGP(S) = mSmchMPC(U?:O Si) ﬂSESmpc Sg: USGU?ZO Si
By the way, mAieA jil): Nizo AGe(S;) = ﬂseU?:o s <t O

Unfortunately, the equal rank case is special. If I have sources of different ranks, I
generally cannot compute the induced beliefs after fusion using only the agent beliefs
before fusion, as the following simple example demonstrates:

Example 5.2 Let W = {w,,w,}. Suppose two agents A; and Ay are informed by
sources s with preferential relation <P = {(wq,ws)} and s, with preferential relation
<P = {(wy,wa)}, respectively. Ay’s preferential relation is the same as si’s and Ay’s is
the same as so’s. If sy 1 so, then the preferential relation induced by ®(Ay, As) is <z,
whereas if sy 3 sy, then it 1s <Y . Thus, just knowing the preferential relations of the
fused agents is not sufficient for computing the induced preferential relation. I need more

information about the original sources.

Thus, I need to maintain some information for computing the induced belief without
mentioning the beliefs of sources. How do I better than storing all the original sources?

I can consider the procedure which computes a credibility for each agent based on the
credibility of her sources, then simply apply AGe to the agents’ induced beliefs. However,
this does not work in general if each agent can have sources both more and less credible
than those of another agent as the following example demonstrates:
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Figure 5.1: Example : AGRGeP(S) is empty.

Example 5.3 Let W = {wy, wq, ws3}. Suppose that agent Ay is informed by source s;
and so, where the sources’ preferential relations are those in Figure 5.1. Let so 3 s1 1 sg.
Then Ay’s induce belief state is <P and Ay’s is <2 . The preferential relation induced
by ®(Ay, As) is shown in the figure. However, if I rank Ay over Ay and apply AGe to
their induced preferential relations, the result of the operator is < ; if I rank Ay over Ay,
the result is <P ; and, if I rank them equally, I get the empty relation. All of these are

S0’
obviously incorrect.

Therefore, I need more information about the source. Now I define pedigreed relations
which have more information than simple relation. This representation enable me to
compute the induced beliefs without reference to sources.

Definition 5.4 Suppose that for all s € &, <’ is a belief state. Let A be an agent
informed by a set of sources S C &. A’s pedigreed belief state is a pair (<°,1°) where
<b=ARf(S) and | :=x°— Ry such that I((z,y)) = maz{rank(s) : x <® y,s € S},
where max : 2RANK s QRANK s g function which select mazimal elements with respect
to >. We use =>4 to denote the restriction of A’s pedigreed belief state to r, that is,
<bA= {(z,y) €=’ r € I((z,y)) A (" € I((y,z)) = 7" F 1)}, and ~2* to denote its
agnosticism relation.

Definition 5.5 Suppose that for all s € &, <9 is a generalized belief state. Let A be an
agent informed by a set of sources S C &. A’s pedigreed generalized belief state is a pair
(=9°,19%) where =9°= ARf(S) and | :=29"— Rnx such that 1((z,y)) = max{rank(s) :
x <%y, s € S}, where max : 2RAVE — mag : 2RANK s q function which select mazimal
elements with respect to >. We use =94 to denote the restriction of A’s pedigreed
generalized belief state to 7, that is, <= {(z,y) €<% r € I((z,y)) A (r' € ((y, 7)) —
¥ 1)}, and ~9%4 to denote its agnosticism relation.

Note that it seems to be similar with Maynard-Reid II, but I apply ARf to the
partially preordered sources. In addition, when I defines ARf, I apply it only to the
totally preordered source, but now ARf is applied to partially preordered sources.
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The aggregation operators of preferential relations and generalized preferential rela-
tions were complicated. Hence, the definition of pedigreed ones are also complicated.

Then, I can define the pedigreed preferential relation and pedigreed generalized pref-
erential relation, as follows:

Definition 5.6 Suppose that for all s € &, <P is a preferential relation. Let A be an
agent informed by a set of sources S C &. A’s pedigreed preferential relation is a pair
(=P, 1P) where <P= Ug, cpq(s)AIn(Seq) andl :=P— R ani such that I((z,y)) = {rank(s) :
2 <Py A (VSy € EQ(S).s € Seq = (2,y) € AIn(Se,),s € S}. We use <P4 to denote
the restriction of A’s pedigreed preferential relation to r, that is, <P4= {(x,y) €xP:r €
[((z,y))}, and ~P4 to denote its agnosticism relation.

Definition 5.7 Suppose that for all s € &, <9 is a generalized preferential relation. Let
A be an agent informed by a set of sources S C &. A’s pedigreed generalized preferential
relation is a pair (29, 19) where == Ug, cpq(s)AIn(Seq) and | : 29— R ank such that
I((z,y)) = {rank(s) : & <P y A (VSe;, € EQ(S).s € Sy = (x,y) € AIn(Se,),s € S}. We
use <974 to denote the restriction of A’s generalized pedigreed preferential relation to r,
that is, <9PA= {(z,y) €=9%:r € I((z,y))}, and ~94 to denote its agnosticism relation.

I verify that a pair’s label is equal to the rank of the source used to determine the
pair’s membership.

Proposition 5.2 Suppose that for all s € &, <b is a belief state. Let A be an agent
informed by a set of sources S C & and with pedigreed belief state (X°,1°). Then

v =y iff
s € Sax <lyAr=rank(s) A (Vs Os € Sax=by).
Proof. See Appendix A. [

Proposition 5.3 Suppose that for all s € &, <% is a generalized belief state. Let A be
an agent informed by a set of sources S C & and with pedigreed belief state (=<9°,19°).
Then

z =<y iff
35 € S.x <y Ar=rank(s) A (Vs Os € Sa~Ty).

Proof. 1 can prove it as the proof of Proposition 5.2. [

Proposition 5.4 Suppose that for all s € &, <P is a preferential relation. Let A be an
agent informed by a set of sources S C & and with pedigreed preferential relation (<P, [P).
Then

z =ty iff

ds € S.or =rank(s) A (VSe; € EQ(S).s € Seq = (x,y) € AIn(Se,))-
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Proof. See Appendix A. [

Proposition 5.5 Suppose that for all s € &, < is a generalized preferential relation.
Let A be an agent informed by a set of sources S C & and with pedigreed generalized
preferential relation (<9 ,19). Then

=Pty iff

ds € S.r=rank(s) A (VSeq € EQ(S).5 € Seq = (z,y) € AIn(Se,)).

Proof. 1 can prove it as the proof of Proposition 5.4. [

I can compute the agent’s induced belief states given its pedigreed belief state (=<°, %),
as follows.

Proposition 5.6 Suppose that for all s € &, <% is a belief state. Let A be an agent
informed by a set of sources S C & and with pedigreed belief state (<°,1°). Then A’s
induced belief state is

U R U )

SmpceMPC(S) TGRAN}CSMPC

Proof.

[USmpceMPC’(S) Ref(UreRAN,CSMPc ﬁ,’f’A y)*

[USmpceMPC(S) Re f(ARf2(Smpe))]*

Us,.enpeisy ARF (Smpe) I
= AGe’(9)

To compute the agent’s induced generalized belief states given its pedigreed generalized
belief state (=9, 19%), it suffices to take the transitive closure of <9°.

Proposition 5.7 Suppose that for all s € &, <% is a generalized belief state. Let A be
an agent informed by a set of sources S C & and with pedigreed generalized belief state
(=9°,19%). Then A’s induced generalized belief state is <.

Proof.

<t = [ARf(S)]*
[USmPCEMPC(S) AR (Smpe]

= [USmpCeMPC(S)[ARf(SmPC]+]+
= AGe(S)

To compute the agent’s induced preferential relations and generalized preferential rela-
tions given its pedigreed preferential relation (<?,[?) and generalized preferential relation
<97 [9P respectively, I need more complicated process than the previous two.
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Definition 5.8 Suppose that for all s € &, <P is a preferential relation. Let A be a set of
agent, informed by some subset S C &, let Jg be a partial preorder, and let (<P, IP) be the
pedigreed preferential relation of the agent A. Given Sy, € MPC(S), let Ry e =
{r1,...,rn}. The n th ranked refinement of preferential relations O%chsmpc((jp’ IP)) is

(I) if n=1;
O%,ZNKSmpc (=P, 1)) :jgiA’

(I1) else if n >N 1; Suppose that for any <€ R, <€ SO%(S) iff

< = 0"y ((=m )
[ 103) * (wpw0) & 0P o (22, 17))A

L RS
wWe =27 wpA

(wp, wa) E<T}.
Then O%’stmpc ((=2, 7)) = N([SOY (R anic ") ).

Definition 5.9 Suppose that for all s € &, <P is a preferential relation. Let A be an
agent, informed by some subset S C &, let Jg be a partial preorder. Given Sy, €
MPC(S), let Runxmr = {r1,...,r5}. Then

Al e (32, 10) = O o (=2,17).

Proposition 5.8 Suppose that for all s € &, <V is a preferential relation. Let A be an
agent informed by a set of sources S C & and with pedigreed preferential relation (<P, [P).
Then A’s induced preferential relation is (g crrpegs) A%ANICSmPC ((=P,17)),

Proof. See Appendix A. [

I also can show that the induced generalized preferential relation is computed with
the pedigreed generalized preferential relation.

Definition 5.10 Suppose that for all s € &, <9 is a generalized preferential relation.
Let A be a set of agent, informed by some subset S C &, let Jg be a partial preorder,
and let (R97,197) be the generalized pedigreed preferential relation of the agent A. Given
Smpe € MPCO(S), let R anx "™ = {r1,...,r5}. Then th refinement O%’ﬂlcsmpc((jgp, 197))
S

(1) ifn=1;
O smae (S5 17)) =204,

(I1) else if n > 1; Suppose that for any

TOR" s (37,17) = OFIL (<, 1)U
{(tway ) : (13,100) ¢ O (2, 17))A

RanK™mPe A —
A
we =P wy}

Then OF ¢ ((2,1) = [TOR" . (=, 1)]*.
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Definition 5.11 Suppose that for all s € &, <% is a generalized preferential relation.
Let A be an agent, informed by some subset S C &, let Jg be a partial preorder. Given
Smpe € MPCO(S), let Ranx ™" = {r1,....,r5}. Then

A e (Z717) = OF L (2, 17),

Proposition 5.9 Suppose that for all s € &, <9 is a generalized preferential relation.
Let A be an agent informed by a set of sources S C & and with pedigreed general-
ized preferential relation (=X9,19). Then A’s induced generalized preferential relation

18 Nppeertpo(s) A oy smee (375 10)),

Proof. 1 can prove it as the proof of Proposition 5.8. [

Now, given only the pedigreed beliefs of a set of agents, I can compute the new
pedigreed beliefs. T use the strategy which I already developed.

Definition 5.12 Suppose that for all s € &, <’ is a belief state. Let A = {Ay,..., An}
be a set of agent, each informed by some subset S C &, let Jg be a partial preorder, and
let PY be the set of pedigreed belief state of the agents in A. The pedigreed fusion of PY,
written ®)(PY), is (X°,1") where

1. <Y is the relation
{(z,y) : 3A; € A;r € Runk.x jg’Ai yA(VA; € A r' > 1 € Ravk-x Ni;Aj )}
over YW and
2. 1°:=xP— R v such that lb((x,y)) =maz{r:z jg,Ai y, A; € A}

Proposition 5.10 Suppose that for all s € &, <’ is a belief state. Let A= {Ay,..., An}
be a set of agent such that each agent A; is informed by some subset S; C &, let J g,
be a partial preorder, and let P’ , be the set of pedigreed belief state of the agents in A.

cal

Then @®)(PY) is the pedigreed belief state of ®(A).

Proof. See Appendix A. [

Definition 5.13 Suppose that for all s € &, <% is a generalized belief state. Let A =
{A4,..., An} be a set of agent, each informed by some subset S C &, let Jg be a partial
preorder, and let Pﬂb be the set of pedigreed generalized belief state of the agents in A.
The pedigreed fusion of P, written ®3°(PY), is (<9,19) where

1. <9 is the relation
{(z,y) : FA; € A7 € Ranica PN y A (VA; € A1 > 1 € Ruyew ~i y)}
over W and

2. 19° :=9°— Rnic such that 19°((x,y)) = max{r : x <94 y A; € A}.
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Proposition 5.11 Suppose that for all s € &, <9 is a generalized belief state. Let
A = {A,..., An} be a set of agent such that each agent A; is informed by some subset
S; € 6, let Jyys, be a partial preorder, and let Pﬂb be the set of pedigreed generalized belief

state of the agents in A. Then Eng(Pﬂb) is the pedigreed generalized belief state of B(A).

Proof. 1 can prove it as the proof of Proposition 5.10. [J

Before I define the pedigreed fusion of preferential relations and generalized preferential
relations, I will prepare some concepts.

Definition 5.14 Suppose that for all s € &, <PV is a preferential relation. Let A =
{A4,..., An} be a set of agent, each informed by some subset S C &, let Jg be a partial
preorder, and let PY be the set of pedigreed preferential relation of the agents in A. Then
j?’A: ﬂA-eA <DAi

—Tr

Then I define the pedigreed fusion of preferential relations.

Definition 5.15 Suppose that for all s € &, <P is a preferential relation. Let A =
{A4,..., An} be a set of agent, each informed by some subset S C &, let Jg be a partial
preorder, and let PY be the set of pedigreed preferential relation of the agents in A. The
pedigreed fusion of P, written ®b(PY), is (=P, IP) where

1. =P={(z,y)|3r € Ranx.z <2 y} and

2. 1P :=P— Rnx such that IP((z,y)) = {r:z <PAy}.

Proposition 5.12 Suppose that for all s € &, <P is a preferential relation. Let A =
{A4,..., An} be a set of agent such that each agent A; is informed by some subset S; C &,
let J\ys, be a partial preorder, and let P be the set of pedigreed preferential relations of
the agents in A. Then @b(PY) is the pedigreed preferential relation of S(A).

Proof. See Appendix A. [

Also T can define the fusion of pedigreed generalized preferential relations.

Definition 5.16 Suppose that for all s € &, <% is a generalized preferential relation.
Let A = {Ay, ..., An} be a set of agent, each informed by some subset S C &, let Jg be
a partial preorder, and let P | be the set of pedigreed generalized preferential relation of

the agents in A. Then <@PA=(, _, <4,

Definition 5.17 Suppose that for all s € &, <P is a generalized preferential relation.
Let A = {Ay, ..., An} be a set of agent, each informed by some subset S C &, let Jg be
a partial preorder, and let P | be the set of generalized pedigreed preferential relation of
the agents in A. The pedigreed fusion of PY, written ©P(PY), is (29, 19) where

1. == {(2,9)|3r € Ranr.x =P y} and
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2. 19 :=9P— R nk such that 19°((z,y)) = {r : & <4y},

Proposition 5.13 Suppose that for all s € G, <9 is a generalized preferential relation.
Let A = {A,...,An} be a set of agent such that each agent A; is informed by some
subset S; C &, let Jys, be a partial preorder, and let PY be the set of pedigreed general-

ized preferential relations of the agents in A. Then @g”(Pfl) 15 the pedigreed generalized
preferential relation of ®(A).

Proof. 1 can prove it as the proof of Proposition 5.12. [J
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Chapter 6

The various relation of aggregations

In this chapter, I show the connection between the aggregation operator, especially, the
relation about the operator for preferential relations and the operator for belief states.

6.1 the relation about operation of preferential rela-
tions and that of belief states

Let <’c B. is the strict version of <’¢ B. By Proposition 3.8, note that B. C P. Can I
show any relation between the refinement for preferential relation and the refinement for
belief states? This answer is yes. I can use the refinement operator for the strict versions
of belief states as the refinement operator for belief states as follows:

Proposition 6.1 Suppose <Y and <4,¢€ B. Then the strict version of < & *<Y% is equal
to <% @P<l,.

The following corollary is immediate from the above proposition.

Corollary 6.1 Suppose <% and <4€ B. Then <% & °.<Y is equal to <b, @7<.

This proposition is generalized by the iterative refinement.

Corollary 6.2 Suppose <b, <8 .., <8 € B. Then the strict version of (<4 bﬁg)@ b <K
) is equal to ((<b @QP<B)QP--- <4).

I can translate not only refinement; the aggregation for belief states can also be trans-
lated to the aggregation for preferential relations.

Proposition 6.2 Suppose that for all s € &, <b is a belief state, and < is the strict
version of <. If S C & and Jg is total order, then the strict version of ARf(S), applied
to the belief states of sources, is equal to ARfP(S), applied to the strict version of belief
states of sources.
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Proof. From Proposition 3.16, and Lemma 4.2 and 4.3,

the strict version of AGRRf(S)
the strict version of (<t Q<)@ %-- <)

(<, @< )@P-- <P ) -
AGRRf?(S).

tee

Proposition 6.3 Suppose that for all s € &, <b is a belief state, and < is the strict
version of <°. If S C & and Jg is total order, then the strict version of AGe®(S), applied
to the belief states of sources, is equal to AGeP(S), applied to the strict version of belief
states of sources.

Proof. From Proposition 4.26, 4.29 and 6.2. []

6.2 the relation about operation of generalized pref-
erential relations and that of belief states

In this section, I will show some relation between the refinement for generalized preferen-
tial relation and the refinement for belief states.

Proposition 6.4 Suppose <b, and <€ B. Then the strict version of < & *<Y% is equal
to <t Q@I?P<b,.

Proof. See Appendix A. [

The following corollary is immediate from the above proposition.

Corollary 6.3 Suppose <Y and <4¢ B. Then < & °<Y is equal to <’ @<l,.

This proposition is generalized by the iterative refinement.

Corollary 6.4 Suppose <8, <5, ..., <€ B. Then the strict version of (< @ *<4)Q b -- <&
) is equal to (<6 @P<B)Q?--- <&).

I can translate not only the refinement; the aggregation for belief states can also be
translated to the aggregation for preferential relations.

Proposition 6.5 Suppose that for all s € &, < is a belief state, and <° is the strict
version of <b. If S C & and Jg is total order, then the strict version of ARf(S), applied
to the belief states of sources, is equal to ARf9(S), applied to the strict version of belief
states of sources.
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Proof. From Proposition 3.16, and Lemma 4.2 and 4.5,

the strict version of ARf(S)
the strict version of (<) @ '<)@"--<b)

(<?, @7<,)@ - <) -
ARF(S).

te e

Proposition 6.6 Suppose that for all s € &, <b is a belief state, and <® is the strict
version of <b. If S C & and Jg is total order, then the strict version of AGe®(S), applied
to the belief states of sources, is equal to AGe(S), applied to the strict version of belief
states of sources.

Proof. From Proposition 4.29, 4.35, and 6.5. [
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Chapter 7

Conclusion and Discussion

This paper’s contribution is the following. Maynard-Reid II et al. [29] proposed the
idea of pedigreed sources to solve the inconsistency of knowledge amalgamation when
the refinement operator is iteratively applied. However in the theory, all the sources
must be totally ordered and this fact restricts the area of application. Maynard-Reid
IT [28] researched the aggregation operator for the totally preordered sources. In [44],
we realized the partiality of order of sources, and showed the procedure of fusion of
preferential relations. In this paper, I showed that several operation can be formalized
with belief state, generalized belief state, preferential relation, and generalized preferential
relation.

In my method of fusion of them, there were still several issues. First, the definition
of the aggregation operator of (generalized) belief state and (generalized) preferential
relation is very different. Although some relation about the operation of belief state and
that of (generalized) preferential relation was proved in 6, I need to generalize this relation
in order to cover the operation for partially preordered sources. Secondly, I defined the
refinement of preferential relations by the intersection of all the possible refinements. Of
course, this is not an only method to uniquely decide the refinement, and I can consider
other ways to select one refinement among other refinements.

In future, I am to study all these branches and to evaluate the adequateness, consid-
ering the applicability of practical problems.
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Appendix A

Proofs

A.1 Proofs of Chapter 2

Proof of Proposition 2.1. For 1., 2., and 7., see [28]. 5. is obvious. I will show 3. Let <
be cyclic, and <* be the transitive closure of <. Then there is some wy, ..., w, € Q such
that wy < -+ < w, and w, < wy. Therefore, wy < wy, and {wy} satisfies the condition
of partially connectedness.

I will show 4. At first, I will show if-part. Let < be irreflexive and transitive. Suppose
that <'=< U{(w,w)|w € W}. I will show that <’ is partial order. Reflexivity is obvious
from the definition. I will show anti-symmetricity. Suppose that w, <" w, and w, <’ w,.
Therefore, w, < wy or w, = wy, and w, < w, or w, = w, from the definition. Thus, it
suffices to consider the case w, < w, and w, < w,. However, from transivity, w, < w,,
and it contradicts irreflexivity of <. It follows that for every case, w, = wy. I will show
transitivity. Suppose that w, < wp and w, <" w.. Then w, < w, or w, = w,, and
wy < w, or wp, = w, from the definition.

e Suppose w, < wy and wy < w,. From transitivy of <, w, < w,. Therefore, w, <" we.

e Suppose w, < wy, and w, = w,. It is obvious that w, < w,.. Therefore, w, <" w,.

Suppose w, = wp and wy, < w,. It is obvious that w, < w,.. Therefore, w, <" w,.

Suppose w, = wy, and w, = w,. It is obvious that w, = w,. Therefore, w, <" w,.

For every case, w, <" w.. It follows that <’ is a partial order. I will show that < is
the strict version of <'. Suppose that w, < wy. w, <" w, is obvious from the definition.
If w, <" w,, then w, < w, or w, = w,. For the first case, from transitivity, w, < wg,
and it contradicts irreflexivity of <. For the second case, w, < w,, and it contradicts
irreflexivity of <. It follows that w, < w,. Suppose that w, <" wy A wy < w,. Then
w, < wy or wy, = wy, and w, < w, and w, # w, from the definition. It follows that
wy < wp.

I will show the only-if part. Suppose that < is a strict partial order. Let be <’ such

that < is a strict version of <'. T will show transitivity. Suppose that w, < w, and
wy < w,. Then w, <" wy and wy < w,, and wy, <" w, and w, < w,. From transitivity,
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w, <" w.. Suppose that w. <" w,. Then w, <" w, from transitivity, and it contradicts
wy L w,. Therefore, w. << w,. It follows that w, < w,. I will show irreflexivity. For any
we W, w<"wis true iff w << w is false. It follows that w < w.

I will show 6. Suppose that < is a strict total order. Let <’ be the relation such that
< is the strict version of <'. <’ is a total order, and it is also a partial order. Therefore,
< is a strict partial order. I will show modularlity. Suppose that w, < wy. Then w, <" w,
and wy, < w,. From totality, w, <" w. or w. <" w,, and wy, <" w, or w, <" wy,.

e Suppose that w, <" w. and w, <" w.. Then w. < w, from transitivity. Therefore,
Wo < We.

e Suppose that w,. <" w, and wy, <" w.. Then w, <" w, from transitivity. It contradicts
the supposition w, < w,.

e Suppose that w, <" w. and w, <" wy. If w. <" w,, then wy, < w, from transitivity.
Therefore, w, < w. V w, < wy.

e Suppose that w, <" w, and w, <" wy. Then wy, <" w, from transitivity. Therefore,
wWe < Wp.

For every case, w, < w, V w. < wy.

I will show 8. Suppose that < is the strict version of <'. Let w < w for some w € 2.
Then w <" w and w <" w. Contradiction. Therefore, < is irreflexive.

I will show 9. Suppose that < is the strict version of <', and <’ is transitive. Let
< be not acyclic. Then for some wy,...,w, € Q, wy < -+ < w, and w, < wy. Then
wy <" oo <" w, and w, L -+ < wy, and w, <" wy and wy < w,. However, from
transitivity, wy <" w,. Contradiction. Therefore, < is acyclic.

I will show transitivity of <. Suppose that w, < wy and wy, < w,. Then w, <" wy
and wy, < w,. Moreover, w, <" w. and w. < w,. Because <’ is transitive, w, <" w.. If
we <" w,, then w. <" wy from transitivity, and it contradicts w. << wy. Therefore,w. < w,.
It follws that w, < w,. O

A.2 Proofs of Chapter 3

Proof of Proposition 3.5. We refer to the conditions in the proposition as condition 1.
and 2., respectively. We prove Only-If-Part and If-Part of the proposition separately.

Only-If-Part. Suppose that <’c B, that is <’ is a total preorder over W. We use a
series of definitions and lemmas to show that for some partition of YW, conditions 1. and
2. is satisfied. We first show that oo® is an equivalent relation by which we will partition

W.

Lemma A.1 oo is an equivalence relation over W.
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Proof. We will show that oo’ is reflexive. <’ is reflexive. Thus, w <” w. Therefore,

’LUOOb’LU.

We will show that oo® is symmetric. Suppose that woobw’. Then w < w' and w' <® w.

Therefore, w'oobw.

b b

We will show that oo’ is transitive. Suppose that woo’w’ and w'oco’w”. From woo’w’,
w <’ w' and w' <® w. From w'oc®w”, w' <® w" and w"” <’ w'. From transitivity of <
w <’ w" and w” <’ w. Therefore, woo’w”. 0.

oo’ partitions W into its equvalence classes. We use [w] to denote the equivalence
class containing w, that is, the set {w’ € W : w = w'}. We now define a total order over
these equvalence classes:

Definition A.1 For all w,w' € W, [w] < [w'] iff w <P w'.

Lemma A.2 < is well-defined, that is, if w,o0®wy, and w!,0cbwy, then w, <b w!, iff wy, <°
wy, for all we, wy, W, w, € calW.

Proof. Let w,o0wy, and w!,ocbw,. Thus, w, <’ w, and wy, <® w,. In addition,
w! <’ wj and w), <’ w). Suppose that w, <" w!. From transitivity of <’ wy <" w.
Therefore, wy, <’ wj from transitivity. Also suppose that w, < wj. From transitivity of
< w, <’ w!. Therefore, w, <’ w! from transitivity. [J

Lemma A.3 < is a total order over the equivalence classes of W defined by oo®.

Proof. Suppose that w,w',w"” € W. We first show that < is total. By totality of <,
w <P w' or w' <® w. Hence, [w] < [w'] or [w'] < [w].

We will show that < is anti-symmetric. Suppose that [w] < [w'] and [w'] < [w]. Then
w <’ w' and w' <® w. Therefore, woo’w’, and then [w] = [w'].

We will show that < is transitive. Suppose that [w] < [w'] and [w'] < [w"]. Then
w <’ w' and w' <° w”. From transitivity of <° w <®w". Therefore, [w] < [w"]. O

Let W be the set of equivalence classes. We show that W and < satisfy conditions
1. and 2. For condition 1., suppose that W €W and w,w’ € W. It suffices to show
that w <’ w'. Since w,w’ are in the same equivalence class, xoo’y. Therefore, w <" w'.
Condition 2. is obvious from Definition A.1.

If-Part. Suppose that W is a partition of W, < is a total order over W, and <’ is
a relation over W, toghether satisfying conditions 1 and 2. We want to show that <’ is
total, reflexive, and transitive. At first, we show that <’ is total. Suppose that w € W,
w' € W and W, W' eW. From totality of <, W < W’ or W' < W. From condition 2.,
w <’ w or w' <b w.
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We will show <’ is reflexive. Suppose that w € W and W €W. From condition 1., W
is fully connected. Therefore, w <® w.

We will show <’ is transitive. Suppose that w € W, w' € W', w" € W", w <’ w', and
w' <b w". From condition 2., W < W' and W' < W". From transitivity of <, W < W".
Therefore, w <® w" from condition 2. [J

Proof of Proposition 3.6. Suppose that trans : B — B. is such that for all <’c B,
trans(<’) is the strict version of <’. Because trans(<’) is a strict total preoreder over
W, trans(<’) € B.. For all <’c B, trans(<) € B, and then trans is injection.

We will show that trans is surjection. Suppose that <**c B.. Let <'=< U{(w,, wp)|w, ~*°
wy}. We will show <’ B. From irreflexivity, for any w € W, w ~*® w. Hence, w <® w. It
follows that <’ is reflexive. Suppose that w, <° wy Awy, <° w,. Then w, L% wy Awy, L°° w,,
and it follows that w, ~*® wy. That is to say, w, <? wy, and it contradicts the supposi-
tion. It follows that <’ is total. Suppose that w, <® w, and w, <® w,. If w, <** w, and
wy <** w,, then w, <* w,, and w, <® w,.. If w, ~** w;, and w, <** w,, we can assume
that there is a total preorder < such that w, < wy, w, < w,, wy < w, and w. < wy, and
the strict version of < is <**, because <*’ is a strict total preorder. From w, < w;, and
wy, < w,., we can show w, < w.. From w, < w, and w, < wy, we can show w, < w,.
Therefore, we can show w, <** w,. If w, <** w, and wy, ~** w,, we can show w, <** w,
as well. If w, ~*® wy, and w, ~** w,, we can show w, ~** w, as well. Therefore, w, <® w,,
and it follows that <’ is transitive. Therefore, <’c B.

I will show that trans(<’) =<**. D’ is obvious from the definition. I will show
'C.” Suppose that watrans(<®)wy, and w, L wy. From wetrans(<)wy, w, <° wy and
wy L° w,. From w, <P wy, we < wy or wy ~*° wy. From w, %% wy, w, ~*° w,. However,
from wy, <° w,, wy L*° w, and wy, ~#** w,, and then w, ~** wy,. Contradiction. I proved
that trans(<®) =<®  and I also proved that trans is a surjection. []

Proof of Proposition 3.7. For the case 1., suppose that <% is a generalized belief state.
At first, I show that 0o? is symmetric. Let w,009%w,. Then w, <% w, and w, <9 w,.
Therefore, w,009’w,.

I will show that co?® is transitive. Let w,00%w;, and wyo0?®w,. Then w, <9 wy,
wy <9 w,, wy <9 w,, and w, <% w,. From transitivity of <%, w, <% w,, and w, <9 w,.
It follows that w,00%w..

In the similar way, I can show that ~9% is a symmetric and transitive relation.

For the case 2., suppose that <9 is a generalized belief state. At first, I show that
~9 is symmetric. Let w, ~9° w,. Then wy, <% w, and w, <9 wy. Therefore, wy, ~9° w,.

I will show that ~9 is transitive. Let w, ~%° w, and w, ~9 w,. Then w, <% wy,

wy L9° we, wy L9° w,, and w, L9 wy. From modularity of <9, w, <% w,, and w, L9 w,.
It follows that w, ~% w,. O
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Proof of Proposition 3.9. 1. is obvious from Proposition 2.1 that P is the set of
irreflexive and transitive relation over W. 2. is obvious from the fact that GB is the set of
modular versions of GP. I will show P NGB = B.. At first, we will show PNGB C B..
Suppose that <€ PN GB. From <€ P, it is irreflexive. Let <'=< U{(wq, wp)|w, ~ wp}.
I must show <’e B.

I will show that <’ is reflexive. From irreflexivity, w < w is obvious. Therefore, w ~ w,
and then w <" w.

[ will show that <’ is total. Suppose that for some (wg, wp) € W XW, w, <" wy Awp</
w,. From the supposition, w, < wy A wy, L w, and w, ~f wy A wy~ w,. it contradicts the
definition of ~. I will show that <’ is transitive. Suppose that w, <" w, and w, <" w,.
If w, < wp and wy < w,, then w, < w,, and w, <" w,. If w, ~ wy, and w, < w,, then
wy < w, or w, < w, from modularity, and w, < w,. from w, ~ w,. If w, < w, and
wy ~ w,, then w, < w, as well. If w, ~ wy, and wy, ~ w,, then from Proposition 3.6, ~ is
transitive, and w, ~ w,.. Therefore, w, <" w,.

I will show that < is a strict version of <’. Suppse that w, < w;,. From the definition
of <, w, <" wy. Because < is the strict version of a transitive relation, it is acyclic
from Proposition 2.1. Thus, w, < w,. From the definition of <', w, < w,. Suppose that
w, <" wyAwy < w,. From the definition of <" and w, <" wy, w, < wy or w, ~ wy. Suppose
that w, ~ wy. From Proposition 3.6, ~ is symmetric, and then w, ~ w,. Therefore, from
the definition of <', wy, <" w,. It contradicts the supposition wy, < w,. Then w, < wy. It
follows that < is a strict version of <, and <€ B._.

Secondly, I will show P NGB O B.. Suppose that <€ B.. It is obvious that < is
acyclic. From <€ B, there is some <'€ B such that < is the strict version of <'. At first,
I will show GB O B.. 1 will show the transitivity. Suppose that w, < w, and w, < w,.
Then w, <" wy, wy <L wg, wy <" w,, and w. < wy. From transitivity, w, <" w.. Suppose
that w. <" w,. Thus, from transitivty, w. <" wy, and it contradicts w. <" w,. Therefore,
we <L w,. Tt follows that w, < w.. We will show the modularity. Suppose that w, < wy.
Thus, w, <" w, and wy, < w,. <’ is total, therefore w, <" w. or w. <" w,, and w, <" w,
or w, <" wy,.

1. Suppose that w, <" w. and w, <" w,. From transitivity, if w. <" w,, then w, <" w,
and it contradicts the supposition. It follows that w. <" w,. And then w, < w.,.

2. Suppose that w. <" w, and w, <" w.. From transitivity, w, <" w,. It contradicts
the supposition.

3. Suppose that w, <" w, and w. <" wy,. From transitivity, if w. <" w,, then w, <" w,.
Therefore, w, < w,V w, < wy,.

4. Suppose that w. <" w, and w, <" wy. From transitivity, if w, <" w,, then w, < w,,
and it contradicts wy, <" w,. Therefore, wy, < w., and then w, < wy,.

For every case, w, < w. V w, < wy. Therefore, < is modular.
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[ will show P O B.. Transitivity is already shown. Therefore, it suffices to show
irrefliexivity from Proposition 2.1. Because < is the strict of <', w</w. O

Proof of 3.10. Let N be the number of all elements in <%,. Suppose that (wg, , ws, ), (Way, Wh,),
-+« (way, wpy is an arbitrary sequence of elements in <%. I define the upward permutation
<=<0C< C<C -+ <R as follows.

<i lfwai+1 7/,’11 Wp, ., OT
— + .
§i+1_ wbi_;,_l Sz wai_;,_la
<i U(wq,,,, wy,,,) Otherwise.

By the definition, it is obvious that for any <; (0 <V i <NV N)U (wy,,w,,) ¢<;.
Now, it suffices to show that <=<ye PRF(<",<%). That is to say, I will show that
for any (w!,wp) € W x W, (w),w}) €<s (wh, wy) €<l U{(wa, wp) = wg ~ wp Aw, <
wy A (wp, wa) E<T}.

(=) Let (w!,w,) €<. Then there is some minimum (0 <" i <" N) such that
(W', wh) = (Wa,, wy,) €<;. If i = 0, then (w', w,) €<4, and it is okey. If i >V 0, then it
is obvious from the definition that w! ~% wj and w, <% wj. Assume that (wj, w!) <™.
Because <™ is constructed by finite steps, there is some minimum & (i Nk <N N) such
that (w;,w)) €<;. That is to say, I can show (w;,w}) €<* with all elements in <j. It
follows that I can show the following sequence from <j.

! !
wb...wak,wbk...wa

By (w),wy) €<;C<y, I can construct the following sequence from <j.

! /

wb .. a,wb...wa

Y

k

It contradicts (wy,, w,, ) ¢<; . Therefore, (w), w}) ¢<*.

(<) If (wl, w;) €<l then </ =<F and it is okey. Suppose that (w), w;) € {(wq, wy) :
wo ~P wy A wg <Byowy A (wy, we) <} By w!, <5 w), there is some i >V 0 such that
(w:uwg) = (wai+17wbi+l) ES% By wfz Nﬁl wlln Wayy N;Zl W, 44 - It W, 44 Sj— Wa,ys> then
(Wayyys Wh,,,) €<T, and it contradict the supposition. Then (wq,,,, ws,,,) €< C<. O

Proof of Proposition 3.16. T will show that for 1 <V n <V N, (<t @ <H)@°-- <
) = Ref((<h @2<4)@°%--- <b). For the case n = 1, <’= Ref(<?%) is obvious from
Proposition 3.15. For the case N >V 1, suppose that ((<! @ °<)@°% - <b_ ) =
Ref((<! @L<)@ % <) Let <= (<) @'<H)@ -+ <7) and <= (<]
Q2<%+ < ). Twill show that <* (°<b= Ref(<* @ 2<).

(‘C’) Suppose that (w,w') €< & "<b= {(wq, wp) : wa < wyV (we00twpAw, < wy)}.
If w <® w', then (w,w') €<® (@ % <?, and then (w,w') € Ref(<® R 2<?). Also suppose

"Note that <" means the ordering over natural numbers.
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b b

that woo’w’ and w <’ w'. From woo’w’, neither w <® w' nor w' <® w. Therefore, if
w'<l w, then w <% w', and hence (w,w') €<® & %<, It follows that (w,w') € Ref(<"
Q<) I w' <b ow, (w,w') ¢<® Q<. Suppose that (w',w) €<® @ %<’. Then
w' <® w, or w' ~*® w and w' <% w. In either case, it contradicts the supposition woo’w’
and w <! w'. Therefore, (w',w) ¢<® @ %<’ Then (w,w"),(w' w) ¢<’® Q@ <t. Tt
follows that (w,w’) € Ref(<® @ %<b).

(‘D’) Suppose that (w, w') € Ref(<® R %.<,). Also suppose that (w,w') €e<®  2<t.
If w <® w', then (w,w') €<’ Q<. Suppose that w ~** w' and w <® w'. From w ~** w’,
neither w <® w’ nor w' <® w. Hence w<® w' or w' <’ w, and w’ ¢* w or w <’ w'. Because
<’ is a total preorder, w' <’ w and w <® w’. Tt follows that wootw'. From w <’ w',
w <" w'. Therefore, (w,w') €<’ °<’. Suppose that (w,w'), (w'w) ¢<’ & %<,. Then
w <’ w', and w o w' or w4 w' from (w,w') ¢<’ " <,. In addition, w' <* w, and
w' P w or w' L4 w from (w',w) €<’ Q<. If w w (or w' " w), then either
w <® w' or w <® w', and it contradicts w < w' and w' <® w. Therefore, I consider the
case w < w', w' <* w, w<? w'. and w' <° w. From w <’ w' and w' <* w, woc’w’. From
w<b w' and w' 24 w, woolw', and w < w'. Therefore, (w,w') €<’ @ '<b. O

Proof of Proposition 3.17. For the case 1., see [29]. Let me consider the case 2. From
the case 1.,<% (3 "<%€ B. From Proposition 3.15, <4 & "<f= Ref(<4% Q" <%). From
Proposition 3.17, Ref is a bijection from B, to B. Therefore, <% (J b<<'}3€ B..

Let me consider the case 3. Suppose that Silb, S%’G GB. I will show the modularity.
Suppose that (w,w') €<% Q@ P<? and (w,w") ¢<9 Q@ P<%. Then w <% w', or
w~% w and w <% w'. In addition, w <% w", and w~% w" or w <Ly w".

1. The case of w <% w', w <% w", and w ~¥% w". From w <% w" and w ~% w",

w" <% w. From transitivity, w” <% w’. Tt follows that (w”,w') €<% [ <%,

b b b b b :

2. The case of w ~% w', w <% w', w L% w", and w~*% w". From w ~% w', neither
b b b b b b

w Sib w' nor w' <Y w. From w <% w" and w~¥ w", w" <% w. From w"” <% w,

w' <% w and modularity, w"” §§1b w'. It follows that (w”, w’) egi{’ S gbgg’.

n

b b b b b :
3. The case of w <% w', w L% w", w Ly w". From w <% w", w <% w'" and modularity,

w” <% w'. Tt follows that (w",w') €<% & <.

4. The case of w Nilb w', w g%” w', wﬂi‘b w”, and wﬂ%b w”. Suppose that w” gi{’ w.
Then w” <% w' from w' <% w and modularity. It follows that (w”,w') €<%
S gbggf’. Suppose that w” <% w. Then w N?qb w"”. From Proposition 3.7,w’ Nib w”.
Froril wbg%b w', w L% w”, and modularity, w” <% w'. Tt follows that (w”,w’) €<%
@ <

"o, gb gb_-gb
For every case, (w",w’) €< & "<%.

n

I will show the transitivity. Suppose that (w,w') €<% & <% and (w',w") €<%
& <%, From modurality, (w", w') €<% Q@ 9<% or (w,w") €<$ Q@ <?, and (w,w") €<
Q<P or (w',w) e<P <. Suppose that (w",w'), (w',w) e<P [ ®<P®. Then
(w', w"), (", w'), (w,w"), (W', w) €< Q<. From the definition of <% ( <GP,
(w', w"), (w",w'), (w,w"), (W', w) €LY or (w', w"), (w",w"), (w,w'), (w',w) ¢<% and (w',w"),
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(w", w'), (w,w"), (', w) €<P. For the first case, (w,w") €<% from transitivity. For the
second case, (w,w"”) ¢<% from modularity, and (w,w") €<% from transitivity. There-
fore, (w,w") €<% Q<GP O

A.3 Proofs of Chapter 4
Proof of Proposition 4.5. For the case 1. and 2., it suffices to show the following properties.

e For any transitive relation <,, <g€ R, <, N <p is tranisitive.

e For any irreflexive relation <4, <p€e R, <, N <p is irreflexive.

For the case of transitivity, Let <4, <€ R be transitive. Suppose that (w,, w,) €<y
N <p and (wp,w.) €<4 N <p. Then w, <4 w, and w, <p wy, and w, <4 w, and
wy <p w,. From tranisitivity, w, <4 w. and w, <p w,.. Therefore, (w,,w.) €<4 N <p.

For the case of irreflexivity, Let <4, <€ R be irreflexive. Then neither w <, w nor
w <p w. Then (w,w) ¢<,4 N <g.

For the case 3. and 4., Let S = {s1, 52}, <s,= {(a,a), (a,b), (b,b)} and <,,= {(a,a), (b,a), (b,b)}.
Then AIn(S) = {(a,a),(b,b)}. However, (a,b),(b,a) ¢ AIn(S), and it is neither total
nor modular. [J

Proof of Lemma 4.1. T will show that for 1 <i < N,

(Ssl S SSQ)@ Ssn) =

(
{(wq, wp) : s € S\{Sis1, ., SN} wq <5 wp A (V" s € S\{Sit1,..ry SN }Wo ~g wp)}

The base case i = 1 obviously holds. For the case i >V 1, let

((Ssl S §52)@ Ssi_l) =

{(wq, wp) : s € S\{Si, ..., SN} wq <5 wy A (Vs' Ts € S\{si .0, SN }wWg ~g wp)}

Then it suffices to show

(Ssl @ Sm)@ Ssl) —

(
{(wq, wp) : s € S\{Sis1, ., SN} wq <5 wp A (V" s € S\{Sit1,..ry SN }Wo ~g wp)}

() Lot (10, 13) € (S0 @ <)@ o <o1)- Then (we,w3) € (S0 B )@ o oy
) and (wbvwa) ¢ ((§81 @ §82)@ SSi—l)’ or (wavwb) ¢ ((§81 @ Ssz)@ SSi—l)’
(wy, we) & (<, R <4,)Q ... <s,,), and w, <, wy. For the first case, For some j <V i,
w, <y, wy and for all s" 3 s; € S\{si41,..., sy }.w, ~g wy) from the assumption. For the
second case, It suffices to show that for all s T s; € S\{s;11, ..., SN }.w, ~g wyp). Suppose
that for some least s; 3 5; € S\{si41, ..., S8} wa <y, Wy V wy <y, wa). If we <y wy,
then for all s' 7 s; € S\{Sj41,..., SN }.w, ~g wy, because s; is a least element such that
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wy <y wy V wy <y we. Then (wq,wy) € (<5, @ <4) & ... <y,_,), and it contradicts
the supposition (w,, wy) ¢ ((<5;, Q <s,)& ... <,_,). In the similar way, I can show that
wy <,; w, is not possible. Therefore, for all 5" 3 5; € S\{si41, ..., sn }.we ~o wy).

(‘D) Let (wq,wp) € {(wa,wp) @ s € S\{sit1,-,Sn}wa <5 wp A (Vs T s €

S\{Sit1y -y SN} Wq ~g wy)}. If for some k <N, w, <5, WpA (Vs T's € S\{Sit1,-.y SN} W4 ~

wy), then (wq, wp) € (<5, Q <s,)& ... <s,_,) from the assumption. (wg,wy) ¢ ((<g,
R <) ... <,,_,) is derived from the definition. Hence (w,,w,) € (<5, Q& <s,
)& ... < ). Suppose that w, <;, w, A (Vs" T s € S\{sit1,..., SN} Wa ~g wp). Then
(Wa, wp) ¢ (< Q <s,)Q ... <s,_,) from the definition. Therefore, (w,, wy) € ((<s,
@'<)@ - <) O

Proof of Lemma 4.3. 1 will show that for 1 <V i <V N, OP¥(S) = (2?2, @F<,
)P <B). Ifi = 1 then OP1(S) =<? is obvious. If i >V 1, suppose or—1(8) =

((<z, @”<1’ )QT... <b_)). If you want to show OP*(S) = (<8 @P<2)Q7"... <2 ), then
it suffices to show that SOPH(S) = PRF(((<2, @P<2))QF... <! 71) <P ). That is, it

suffices to show that for any <e R, <e SOP*(S) iff <Pe PRF(((<?, @pgp )@p. . g’;ﬁl
), <?.). Then,

<€ S0i(S) -
<= 0P L(S)U |
{(wa, wp) = (wy, we) ¢ OV H(S)A
Wq Sp. wy € CI)S A\ (wb,wa) ¢§+} =

= (<2, @"<L)@"... <V _)U
{(wa,wb) (wnwa) ¢ (<2, @< )Q... <, A

wq <P wy A (wy, we) ¢<+} &
r € PRE(((<?, @P<P)@P... <V _,),<)

Proof of Lemma 4.4. 1 will show that for 1 <V i <V N, O%' (S) = ((<? @

sim —sz

)@"... <P). If i =1, then O% (S) =<7 is obvious. If i >N 1, suppose Of;m (S) =

(<2, @" <2)@"... <L _)). If I want to show O%. (S) = ((<?, @" <2 ))Q"... <), then
it sufﬁces to show that TOp’ ()= (<2, Q" <)" ... g’;i_l)@p <P.. Then,

stm

TOG.(S) = 04,'(S ) U {(wa, ws) + (wy, wa) ¢ Ol (S) A wa <E, wp}

= (<5, 0" <2,)0"... <X, ) i}
{(warws) < (wp,w,) ¢ (<, S Sé’z)@p--- Seio1) A Wa <E wp}
= ((<p @p—sz)@p"' —sn—l)@ —sn

Proof of Lemma 4.6. Let Runi® = {r1,...,ry}. T will show that for 1 <i < N,

(AUn(S1)Q AUn(S:))& ... AUn(S;)) =

(
{(wg,wp) : Ir € Ranc\{Tix1s s v fwa <o wpy A (V7' > 1 € Ranic \{Tig1y ooy TN }-Wq ~opr wp) }

7
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. The base case i = 1 obviously holds. For the case i >V 1, let

{(wg, wp) : Ir € Ranc\{7s, o0y TN}y <p wp A (V1" > 1 € Ranic\{Tiy oy N} Wo ~opr wp)}

Then it suffices to show ((AUn(S;)Q AUn(S2))& ... AUn(S;)) =

{(wa, wp) : Fr € Ranic\{Tists - N }wa <p wp A (V7' > 17 € Ranic\{Tis1, -y TN }Wa ~pr wp) }-

(‘C’) Let (wq, wp) € ((AUN(S1)Q AUN(S2))& ... AUR(S;)). Then (w,, wy) € ((AUN(S:)

(K AUR(S2))& ... AUn(S;-1)), or (we,wp) ¢ ((AUN(S1)(Q A Un(S2))Q ... AUn(S;-1)),
(wp, wy) & ((AUN(S1)Q AUN(S2))Q ... AUn(S;-1)), and w, <,, wy. For the first case,
For some j < i, w, <y, wy and for all " > r; € Ranxc\{rig1, s "N} Wa ~p wy)
from the assumption. For the second case, It suffices to show that for all ' > r; €
Ranvk\{Tit1, - TN }-Wq ~p wy. Suppose that for some least r; > r; € Ranic \{Tis1, - 'v}-Wa <p,)
wy V wy <y, w,). If w, <, owy, then for all ' > r; € R\ {71, s "v}wa ~p wy,
because r; is a least element such that w, <, w,V w, <, w, Then (W, wy) €
((AUn(S1)Q AUn(Ss))( & ... AUn(S;-1)), and it contradicts the supposition (wg,w;) ¢
((AUn(S))& AUN(S,))& ... AUn(S;-1)). In the similar way, I can show that wy <,, w,

is not possible. Therefore, for all 7' > r; € R anic\{rit1, -y TN }-Wa ~opr wy).

(‘D7) Let (wq,wp) € {(wq,wp) : Ir € Rang\{Tit1,-rn}we <, wp A (V1" > 1r €
Ranic\{Tis1, oo TN }Wa ~pr wy) . If for some & <V i, w, <, wyA(YF 37 € Rank\{rit1,
oy TN FWq ~pr wyp), then (we,wy) € ((AUR(S1)Q AUN(S:))(Q ... A Un(S;_1)) from the
assupmption. Hence (w,,w,) € ((AUn(S1)Q AUn(S2)) & ... AUn(S;)). Suppose that
Wa <p, WpANVT T35 € Ranc\{Tit1y s N} Wa ~r wp). Then (we, wy) € ((AUNR(S1)Q AUN(S,))
< ... AUn(S;)) is obvious. O

A.4 Proofs of Chapter 5

Proof of Proposition 5.2. Now suppose that for all s € S, if r = rank(s), then z <% y,
or, for some s O s € S, v~/ y. Suppose that © <’ y. Then there is some Sy, €
MPC(S) such that (z,y) € ARFE(S,pe), because if there is no S,,,. € MPC(S) such
that (z,y) € ARfY(Simpe), then (z,y) ¢ ARf(S), and it contradicts  <* y. Suppose
that r = rank(s). From the supposition, if z < y, then for some s’ 3 s € S, x < y or
y <% x. For the case z < y, we can say rank(s') > rank(s), and then r ¢ (*((x,y)). For
the case y <’ =z, there is some ' € [((y,z)) such that ' > rank(s’), and then, even if
r € 1°((z,y)), r' > r. Therefore, z 24 y.

Now suppose there exists s € S such that z <® y, r = rank(s), and, for every

s 3seS,z by Then z < y. Moreover, since for every s' € S, z <% yor x <% y
implies s J s’ which implies rank(s) > rank(s'),
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I((z,y)) = maz{rank(s') : <% y,s' € S} D {rank(s)} = {r}.

and if 7' € [((y, 1)), r'>/r. Therefore, z <4 y. O

Proof of Proposition 5.4. I will show only-if-part. Suppose that z <4 3. Then x <? y
and r € [((x,y)). By Definition 4.6, there is some s € S such that r = rank(s) Az <*
YA (VSey € EQ(S).s € Seq = (x,y) € AIN(Sey).

We will show if-part. Suppose that there exists s € S such that r = rank(s) and for
all Seq € EQ(S), if s € Seq, then (z,y) € AIn(S,). 3 is a partial preorder, then s = s.
Therefore, there is a S,, € EQ(S) such that s € Se,. Hence, (z,y) € AIn(S,,). It follows
that <y, and x <P y. Therefore, r € I((z,y)). O

Proof of Proposition 5.8. 1 will show that for all S,,,. € MPC(S), AP(Smpc) =

A%ANKSmPC((jp,l”)). Let Ronc™™ = {r1,...,rn} such that r; > r;,; for all 1 <V i <V
N. Also let S; = {s € Sppe|r; = rank(s)}. Then it suffices to show that for all 1 <V § <V
N, O‘Zf;n(smm) = O%,ZN Smpc((<p lp))- If + = 1, Then O‘Zf;n(smm) = AI”(SI) :jgﬂjiA:
O%:NKSmpc((jp,lp)). If n >N 1, suppose O%r (Spe) = Ofé:\;csmpc((jpalp))- we must

show for any <€ R,

< = OfL(S)V |
{(wa, wy) = (wy, wa) ¢ O, (S)A
(wgq, wy) € AIn(S;)A

(wy, wq) E<T}

iff
S (I
(s wn) : (wp, ) & OB o (221N

W, jb A Wp/\
(wp, wa) E<Y.

It suffices to show that <"4= AIn(S;). Suppose that # <%* y. Then there is some
s € S such that r; = mnk( )N (VSeq € EQ(S).s € Seq = (x y) € AIn(S.,). From
S; = {s € S|r; = rank(s)}, S; € EQ(S). Therefore, (z,y) € AIn(S;). Suppose that
(z,y) € AIn(S;). Then there is some s € S such that r; = rank(s) A (VS; € EQ(S).s €
S; = (z,y) € AIn(S;). Therefore, z <24 y. O

Proof of Proposition 5.10. Let S = |JSi, ®5(PYy) = (2%1"), == ARf(S), and
1" =Y~ R nk such that 1”((z,y)) = maz{rank(s) : z <® y,s € S}. It suffices to show
that <b=<" and [* = I*".

Suppose that = <% y. 1 show that z < y, i.e., there exists s € S such that = <’y
and, for every s’ O s € S, x &% y, and that I¥((z,y)) = (*((z,y)). Since x <’ y, there
exists A; and r such that x <%% ¢ and, for every A; € A and r' > r € R vz N?iAj Y.
Suppose that RANK;Z(-CE"U) = {ri,...,rx} is the set of 7, € R vk such that z <14 y and,
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for every A; € Aand v’ > 1, € Ruyic.x ~, b.A;j y. We will discuss each of r, € RAN,Q wy),

Since x jﬁkA y, there exists s € S; such that x <2k y, rank(sy) = ry, and, for every
s dsp €S, v~ y. S; C8S,so there exists sy € S such that z <’;k y. Now suppose that
s' is a maximal rank source of S with # <% y or y <% x. Such an ¢’ exists since z <’ .
Since J is a partial preorder, it suffices to show that s j Sg. Suppose s’ € S Since

S; C S, s is also a maximal rank source of S; with z <% y or y <% z, so x <mnk( Ny

b’A’( »y ©. But since z <0y rank(s') # rank(sy) = rg, so s' 4 sx. Furthermore,

"((z,y)) = {rank(sy),...,rank(sg)} = {ri, ....,r} = 1°((z,v)).

Now suppose that z < y, i.e., there exists A; and r such that x <%% y and, for
every A; € Aand 1’ > r € Ruanvk, © ~5 y, and that I°((z,y)) = I"((z,y)). Since
x <" y, there exists s € S such that z <? y and, for every s O s € Sz =% .
Suppose that S(“"’y) = {s1,..., sk} is the set of s, € S such that x <gk y and, for every
s' s, €Sl 2 y. We will discuss each of s, E S@)  Suppose s € S;. Since S; C S, it
is also the case that for every s’ J s, € S;, v &b y, 50z <bAi oY Now let A; and ' be

—rank(s
such that x jr, y or y jr, 4 2. Tt suffices to show that r "¥ rank(sy). By Proposition
5.2, there exists s’ € S; such that * <% y or y <% z and rank(s’) = r’. But then
s' 1 sg, so rank(s') = r' ¥ rank(s;). Furthermore, (°((x,y)) = {rank(s,), ...,rank(sg)} =
" ((2,y)). O

Proof of Proposition 5.12. Let S = J S;. ®5(P4) = (=P, IP), =¥'= Us,,cpq(s)AINn(Se)
and [”" :=<P— R qyr such that I”((z,y)) = {rank(s) : x <P y A (VS € EQ( ).5 € Seq =
(z,y) € AIn(Se,),s € S}. It suffices to show that <P==P" and 7 = [P".

Suppose that = <P y. I show that x <" y, i.e., there exists S, € EQ(S) such
that (z,y) € AIn(Se) and "' ((z,y)) = P((x,y)). Since z <P y, for some r € R vk,
x =<PA ¢ and then for some r € Ry, for all A; € A, x <P4 y. Suppose that

RAN,C(‘”’?’) = {ry,...,rx} is the set of rpy € R nk such that for all A; € A, « j{f;cAi Y.

We will discuss each of r, € RANK;EI’y). Then for some r, € Rvik, for all A; € A,
x j’T’LAi y. Therefore, for some r, € R vk, for all A; € A, there is a s € S; such that
ri = rank(s) and (VSe, € EQ(S;).s € Seq = (x,y) € AIn(Se,). We suppose that SF C S;
such that s € S¥ and SF € FQ(S;). Also we suppose that S¥ = |JS¥. T will show that
Sk e EQ(S). For all A; € A, SF C S;, then S¥ = |JSF C |JS; = S. For all 5,5 € S*,
ri = rank(s) = rank(s') is obvious. Let s € S such that r, = rank(s). Then for some i,
s € S;. From ry = rank(s) and s € S;, s € SF. Hence, s € S*. Therefore, S* € EQ(S). In
addition, AIn(S*) = Nyege <P= Nyeugr <B= NaseaNsest <h=Na, eAAIn(Sk) Therefore,
(z,y) € AIn(S¥). In addltlon P ={ry, ..t} =10".

Suppose that x <P’ y. I show that = <P y, i.e., there exists r € R qyx such that
z <A y and IP((2,y)) = IP((z,y)). From z <’ y, there exists S., € FQ(S) such that
(z,y) € AIn(S,,). Suppose that S@¥) = {s;,..., sk} is the set of s, € S such that for
all S, € EQ(S), if sg € Seq, then (z,y) € AIn(S,,). I will discuss each of s, € S@¥),
Suppose s € S;, S¥ = {s € Si|s = s}, and S¥ = {s € S|s = s;}. SF C S* is obvious.
Therefore, AIn(S*) C AIn(SF). Since S* € EQ(S), (z,y) € AIn(SF). Then z <y, and
if r, = rank(sy), e € I((z,y)). Hence x <4 y. Since for all S;, we can show x <P4i ¢,
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z <24y In addition, I = {ry,...,rk} = {rank(s1), ...,rank(sg)} = » O

A.5 Proofs of Chapter 6

Proof of Proposition 6.1. Suppose < is the strict version of < ( ”g’g, From Proposition
3.16, leqg =<’ (2 % <%. It suffices to show that < is the only one element of PRF (<Y, <%).
At first, T use

IN

= <4 u
{(wa, wy) + (wa, wp) g<h A
(wp, wg) €< A
(wq, wy) €<}
by Definition 4.2, and <€ PRF(<%, <%) iff

<
= <bu
(Wa, wy)  (wa, wp) E<Y A
(wp, we) E<Y A
(wq, wp) E<YB)IA
V(wy, w,) ¢<T Y,
by Definition 2.3. It suffices to show that

<
c <hu
{(wa, ws) : (wa, wy) E<b A
(wy, w,) €< A
(wq, wy) €<BIA
V(wy, wq) €<},
Suppose that (w,, wp) €< and (wp, w,) €<T. Then (wy, w,) €<T=<, and it contra-
dicts the fact that < is irreflexive. Therefore, ’C’ is satisfied. [

Proof of Proposition 6.4. Suppose < is the strict version of <% (J bg%, From Propo-
sition 3.16, <=<’ (& %<%. Tt suffices to show that < is equal to <’ @%<%. Then

< = <4U
{wg, wy) 1 (wa, wy) E<b A
(wp, w,) €< A
(wq, wy) €<}

by Definition 4.2, and

Wa, wy) €<Y)},
by Definition 2.3. [J
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