
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Practical and Secure Recovery of Disk Encryption

Key Using Smart Cards

Author(s) OMOTE, Kazumasa; KATO, Kazuhiko

Citation
IEICE TRANSACTIONS on Information and Systems,

E93-D(5): 1080-1086

Issue Date 2010-05-01

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/9505

Rights

Copyright (C)2010 IEICE. Kazumasa OMOTE, Kazuhiko

KATO, IEICE TRANSACTIONS on Information and

Systems, E93-D(5), 2010, 1080-1086.

http://www.ieice.org/jpn/trans_online/

Description

1080
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

PAPER Special Section on Information and Communication System Security

Practical and Secure Recovery of Disk Encryption Key Using Smart
Cards∗

Kazumasa OMOTE†a), Nonmember and Kazuhiko KATO††, Member

SUMMARY In key-recovery methods using smart cards, a user can re-
cover the disk encryption key in cooperation with the system administrator,
even if the user has lost the smart card including the disk encryption key.
However, the disk encryption key is known to the system administrator in
advance in most key-recovery methods. Hence user’s disk data may be read
by the system administrator. Furthermore, if the disk encryption key is not
known to the system administrator in advance, it is difficult to achieve a key
authentication.
In this paper, we propose a scheme which enables to recover the disk en-
cryption key when the user’s smart card is lost. In our scheme, the disk
encryption key is not preserved anywhere and then the system administra-
tor cannot know the key before key-recovery phase. Only someone who
has a user’s smart card and knows the user’s password can decrypt that
user’s disk data. Furthermore, we measured the processing time required
for user authentication in an experimental environment using a virtual ma-
chine monitor. As a result, we found that this processing time is short
enough to be practical.
key words: user authentication, key recovery, smart card

1. Introduction

Information leakage has recently become a serious problem.
Because a user’s disk might contain a lot of confidential in-
formation, it should be encrypted and the disk encryption
key is protected securely. Hence, it is important not only to
encrypt the disk data but also to store the disk encryption
key securely. Disk security has been improved by storing
the encryption key in a hardware token such as a smart card
or USB device. We need to have some methods to recover
the disk encryption key when the token is lost. For example,
it is necessary to keep a backup copy in a safe place such as
another key management server.

In key-recovery methods using smart cards, a user can
recover the disk encryption key in cooperation with the sys-
tem administrator, even if the user has lost the smart card in-
cluding the disk encryption key. However, the disk encryp-
tion key is known to the system administrator in advance in
most key-recovery methods. Hence user’s disk data may be
read by the system administrator. Furthermore, if the disk
encryption key is not known to the system administrator in
advance, it is difficult to achieve a key authentication.

Manuscript received July 31, 2009.
Manuscript revised December 18, 2009.
†The author is with Japan Advanced Institute of Science and

Technology, Nomi-shi 923–1292 Japan.
††The author is with University of Tsukuba, Tsukuba-shi 305–

8573 Japan.
∗The preliminary version of this paper was presented at

ITNG’08 [1].
a) E-mail: omote@jaist.ac.jp

DOI: 10.1587/transinf.E93.D.1080

In this paper, we propose a scheme which enables to re-
cover the disk encryption key when the user’s smart card is
lost. In our scheme, the disk encryption key is not preserved
anywhere and then the system administrator cannot know
the key before key-recovery phase. Only someone who has
a user’s smart card and knows the user’s password can de-
crypt that user’s disk data. Hence, our scheme enables a user
to not only prevent user’s disk data from being stolen from
user’s PC but also recover his disk encryption key without
his smart card. Furthermore, we measured the processing
time required for user authentication in an experimental en-
vironment using a virtual machine monitor. As a result, we
found that this processing time is short enough to be practi-
cal.

This paper is organized as follows. In Sect. 2 we briefly
review some related works. We then in Sect. 3 explain our
preliminaries, in Sect. 4 describe our scheme in detail, and
in Sect. 5 present the results of an experimental evaluation of
our scheme. In Sect. 6 we discuss our scheme and in Sect. 7
we conclude by briefly summarizing the paper.

2. Related Work

BitLocker Drive Encryption is a security feature integrated
into the Windows Vista operating system for full disk en-
cryption [2]. It works in combination with a TPM chip that
encrypts the key used in encryption and saves the encrypted
key on the disk. The Secure File System [3], on the other
hand, provides filesystem-level encryption.

A lot of authentication schemes based on smart cards
have been proposed recently [4]–[8]. In them a user’s se-
cret information that is shared with servers is stored in the
user’s smart card. It is protected by a password and by the
difficulty of computing discrete logarithms. There is also
a scheme that improves security by combining the use of a
smart card and the Virtual Machine Monitor (VMM) [9].

Several papers about key recovery have been pub-
lished [10]–[14]. Of the four kinds of key recovery meth-
ods (key escrow, trusted third party, commercial key backup
and key encapsulation), key encapsulation is the only one in
which the key is not known to the system administrator [11],
[12]. When key encapsulation is used, however, it is hard to
confirm that the recovered key is the legitimate user’s key
because the system administrator does not know the key in
advance. This means that the encryption key can be recov-
ered by a malicious user inside the system. Although we
can easily consider a method that uses the key with a cer-

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

OMOTE and KATO: PRACTICAL AND SECURE RECOVERY OF DISK ENCRYPTION KEY USING SMART CARDS
1081

tificate, in that case the key would be known to the system
administrator in advance.

Key-recovery methods using a smart card have been
proposed [13], [14], but they are fundamentally different
from the one in our scheme. Although the disk encryption
key in [13] is not stored anywhere as well as our scheme, it
does not consider the security against the system administra-
tor, hence the system administrator can always compute the
disk encryption key which is distributed to the smart card
and the card reader. In [14], the smart card with the tamper-
resistance is turned over to an escrow agent for safekeeping.
These approaches are different from ours.

There is also a method in which secret keys are man-
aged safely by using blind signatures and passwords [15].
In that method a user’s secret key is encrypted by the value
of the blind signature and the source of the signature is en-
crypted by the password. Both the encrypted key and the
encrypted source are kept on a local disk. This double en-
cryption protects the password from brute force attacks.

3. Preliminaries

3.1 Requirements

In this section, we describe some requirements of our
scheme.

• Weakened authority. Although system administrators
have high access authority, they should not know the
disk encryption keys of users because they may not be
authorized to read a user’s sensitive information. Thus,
it is important not to leak a private data to the system
administrator.
• Authenticated recovery of disk encryption key. If

the disk encryption key is known to the system ad-
ministrator in advance, we can achieve a key authen-
tication. Otherwise, it is difficult to achieve the key
authentication. Although there are also some meth-
ods in which the user’s disk encryption key need not
be known to the system administrator in advance, with
them it is difficult to ensure that a key can be recov-
ered only by the legitimate user. We therefore want to
conduct an authenticated recovery without letting the
system administrator know the disk encryption key in
advance.

3.2 Full Disk Encryption

There are two kinds of disk encryption: full disk encryp-
tion, in which all the byte data on the disk is encrypted; and
filesystem-level encryption, in which what are encrypted are
the files or directories on the disk [16]. We employ full disk
encryption. An advantage of full disk encryption is that ev-
erything, including the swap space and the temporary files,
is encrypted and the decision of which files to encrypt is
not left to users [16]. Our scheme uses a symmetric-key en-
cryption algorithm such as AES because it is a high-security

algorithm and can encrypt/decrypt a disk quickly. In a full
disk encryption, the OS is encrypted in a hard disk. So some
program would start up the OS by decrypting the hard disk
data.

3.3 Definition and Assumption

We define function to break the Computational Diffie-
Hellman (CDH) assumption over Zn [17].

Definition 1 (CDH over Zn): CDH(n, g, A, B) is a function
that on input n ∈ N>1, g ∈ Z∗n, A ∈ Z∗n, B ∈ Z∗n, outputs
C ∈ Z∗n such that C = gab mod n, where A = ga mod n and
B = gb mod n, if such a C exists.

Assumption 1: CDH over Zn in Definition 1 is stronger
than or equivalnet to the RSA.

4. Our Scheme

In this section, we explain the detailed protocol of our
scheme.

4.1 Notations

In this description of the notations used in our scheme, |n|
and |ni| are assumed to be more than 1024 bits.

Ui : User i
pwi : Ui’s password
(e, d, n) : RSA keys of STTP
(ei, di, ni) : RSA keys of Ui

R : Public random number (R ∈ Z∗n)
r, ri : Random numbers (r, ri ∈ Z∗n)
ai, bi : Random numbers (ai, bi < |n|/2)
certi : Public key certificate of Ui

CERT : Public key certificate of STTP
CRL : Certificate revocation list
c : Challenge
ski : Disk encryption key of Ui

h(·) : Cryptographic secure hash function (e.g.,
SHA1)

4.2 Entities

We explain three entities in our scheme (see Fig. 1)

• STTP. We assume a semi-trusted third party (STTP).
The STTP stands for the system administrator and the
trusted server (i.e. the STTP server). The STTP server
is managed by the system administrator. The STTP
sets up the scheme, registers a user Ui, issues certi and

Fig. 1 Entities.

1082
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

CRL, and recovers lost encryption keys. The STTP has
user’s information (user identity, certi, Raibi mod ni and
Rdi mod ni), CERT , CRL and her RSA keys (e, d, n)
on her own storage. Since the STTP is “honest-but-
curious”, the preserved user information may be leaked
by the STTP.
• Smart card. A smart card is a hardware token which

stores the disk encryption key. It is also an identifi-
cation card such as an employee ID card or a student
identification card. Hence the disk encryption key is
linked to the user’s identity. Thus, only a specific user
who has the smart card is able to start up the OS in the
user’s client PC. The smart card is used for generating
the key and for user authentication. Our scheme there-
fore generates the disk encryption key with the help of
a smart card. We also assume that a PKI such as remote
authentication is used with the smart card. The private
key, the public key, the public key certificate, and the
signature calculation software in the public key cryp-
tosystem are stored in this card. User’s RSA keys and
user’s certificate are stored in this card.
• Client PC. A client PC is used by a user and can con-

nect directly with a smart card. While the user’s OS
is stored in an encrypted storage of a client PC, some
information of Raibi mod ni, (aibi)e mod n, CERT and
CRL is stored in a non-encrypted storage of a client PC.

4.3 Premises

The premises of our scheme are these:

1. The STTP is “honest-but-curious”: the STTP prevents
the information stored in its database from being falsi-
fied, but may leak user’s secret information such as the
disk encryption key.

2. The STTP can freely alter the data in user’s smart card
by using the STTP’s privileged password, but the STTP
cannot read that data.

3. The STTP is not attacked.
4. The smart card is tamper resistant, and the confidential

information is not stolen from the smart card itself or
while it is being transferred between the smart card and
the client PC.

5. The calculation algorithms (e.g., signature generation)
in the smart card are not falsified.

6. The access password of the smart card is not cracked
because the smart card is locked when a user input
a wrong password more than the predetermined fre-
quency.

7. A client PC has non-encrypted storage where some
data and programs required for the OS booting are
stored.

8. A client PC is not cracked by a malicious STTP. In
other words, the STTP does not spy on any user’s in-
formation in the client PC.

9. A client PC connected with the smart card which has
completed user authentication is not stolen.

Fig. 2 Registration phase (1).

10. A user can read data other than his private key in his
smart card by using his password, but he cannot alter
any data except for his password.

11. A user has the private key only in his smart card.

4.4 Protocol Description

The protocol in our scheme is composed of the following
six phases.

• System setup phase. When the STTP starts our
scheme, she executes this phase. The STTP generates
its RS A keys, CERT , and CRL. It also generates the
random numbers R ∈ Z∗n that are the common public
information of the system. A user installs some pro-
grams concerning the registration phase and the local-
authentication phase to non-encrypted storage.
• Registration phase (1). When the STTP registers a

user, she executes the registration phases (1) and (2).
The user Ui connects his smart card with the STTP
server and initializes the card (see Fig. 2). At first, Ui

makes his RSA keys (ei, di, ni) inside his smart card,
and the smart card transfers his public keys (ei, ni) to
the STTP. The value of (ei, di, ni) are stored in the
smart card. Then, the STTP generates Ui’s certificate
certi and returns certi to the smart card. Both the STTP
and Ui store the certi. The STTP sets the pwi into the
Ui’s smart card and then the pwi is changed by Ui.
Finally, the STTP sends the public random number R
to the Ui’s smart card, and then the smart card com-
putes the value of Rdi mod ni and returns it. The STTP
confirms the validity of Rdi mod ni and stores it. Since
this procedure is securely connected with the STTP di-
rectly, the Rdi is linked with the certi of Ui.
• Registration phase (2). Ui directly connects the client

PC to the STTP server, and makes information that is
necessary for the key recovery (see Fig. 3). The com-
munication between a client PC and the STTP is a se-
cure channel using RSA signature in public key infras-
tructure. At first, the STTP sends CERT , CRL and R
to the client PC. The client PC stores CERT , CRL

OMOTE and KATO: PRACTICAL AND SECURE RECOVERY OF DISK ENCRYPTION KEY USING SMART CARDS
1083

Fig. 3 Registration phase (2).

and R in its own non-encrypted storage after it checks
these values. Then, the client PC selects a random
ai < |n|/2, computes Rai mod ni, and sends it to the
STTP server. On the other hand, the STTP selects a
random bi < |n|/2, computes (Rai)bi mod ni, and sends
it to the client PC. The client PC stores the Raibi mod ni

in its own non-encrypted storage. Finally, the STTP
server computes be

i mod n and sends it to the client
PC. The client PC computes (aibi)e = ae

i be
i mod n and

also stores it in its own non-encrypted storage. The
Raibi mod ni is linked with certi because Rai mod ni

corresponds to certi. The client PC uses the smart
card initialized in the registration phase (1) to get certi.
While the client PC discards ai, the STTP server dis-
cards bi and Raibi mod ni. Note that neither the client
PC nor the STTP server knows the value of aibi.
• Local authentication phase. When a user uses a client

PC, this local authentication phase and the following
key-generation phase are executed before the OS boot-
ing. The client PC confirms the validity of the smart
card in this phase. We can confirm that the smart card
was legitimately issued by the STTP. The procedure is
shown in Fig. 4. At first, the smart card authenticates
Ui by his password pwi. Only if the password is valid,
the smart card sends certi to the client PC. The client
PC verifies certi by e which is extracted from CERT .
The client PC computes c = rei

i Raibi mod ni, where ei

is extracted from certi. Finally, the client PC sends c
to the smart card as a challenge, and then the smart
card computes cdi mod ni and returns it. The client PC

verifies the value of c by checking c
?
= (cdi)ei mod ni.

In this phase we use “a blind signature” for both the
generation of the disk encryption key and the authenti-
cation of smart card. Note that Ui preserves cdi and ri

to use in the next phase.
• Key-generation phase. When a local authentication

succeeds, the client PC starts the OS by the following

Fig. 4 Local-authentication phase.

procedure.

1. The client PC derives the legitimate disk encryp-
tion key ski of size |ni| by calculating cdi/ri mod
ni:

ski = Raibidi (mod ni). (1)

2. The client PC divides the disk encryption key ski

by the block size of the symmetric-key encryption
algorithm, and then uses some chopped keys from
the head of byte data of ski, which is shown in
practice as follows: ski = ski1||ski2|| · · · , where ||
denotes concatenation. The first chopped key is
ski1. For instance, when the symmetric-key en-
cryption algorithm is AES-128, you can obtain
eight disk encryption keys because |ni| =1024 bits.
In this case you use only the first key, ski1.

• Key-recovery phase. When you accidentally lose your
smart card or your password, you execute the key-
recovery phase by connecting your client PC with the
new smart card to the STTP server directly (see Fig. 5).
This new smart card is used for user authentication. Ui

has to obtain the new smart card from a system ad-
ministrator before starting key-recovery phase. If Ui

loses his smart card, a new smart card needs to be reis-
sued for him. On the other hand, if Ui forgets his pass-
word, he executes the registration phase (1) to initial-
ize his smart card. Then, Ui has to execute the key-
recovery phase using such new smart card. Here, the
STTP possesses two kinds of Ui’s certificates (certi
and cert′i). The certi stands for the previous certifi-
cate and the cert′i stands for the new certificate. Note
that only the STTP has the previous certificate certi
as a valid certificate for key-recovery although certi is
already added to CRL. At first, the client PC sends
the key-recovery request message to the STTP. Then,
the STTP checks whether both certi and cert′i exist in
the STTP server. If two kinds of certificates exist, the

1084
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

Fig. 5 Key-recovery phase.

STTP sends a random number r to U’s new smart card
through the client PC as a challenge. The new smart
card calculates rd′i mod n′i and sends rd′i mod n′i to the
STTP. The new secret key d′i is related to cert′i . The
STTP checks rd′i mod n′i using cert′i . If rd′i mod n′i is
valid, the STTP returns the message of OK to the client
PC. Otherwise, the STTP returns the message of NG.
Then the client PC exposes (aibi)e mod n to the STTP
server, and the STTP server decrypts it to aibi by us-
ing her decryption key d. Then, the STTP selects the
value of Rdi mod ni corresponding to Ui. The STTP
computes (Rdi)aibi mod ni and sends it to the client PC.
After recovering the disk encryption key, you discard it
and start from the registration phase (2) again. Finally,
the STTP adds the previous certificate certi to CRL.

5. Experiment

Our scheme uses a smart card with a low processing abil-
ity, so its processing time might be long because two
kinds of phases (the local authentication phase and the key-
generation phase) are executed every time the client PC is
used. We therefore measured the processing time required
for each function in both phases in order to confirm that the
smart card can complete the processing within a reasonable
time.

For a full disk encryption, it is necessary for a program
to decrypt the disk data before booting up the OS. We use
a Virtual Machine Monitor (VMM) as this program. The
VMM encrypts/decrypts the disk data by using it own en-
cryption engine by which the disk access data is compul-
sorily hooked. After the smart card is authenticated, the
client PC acquires the disk encryption key and then boots
up the OS on the VMM. The values of (aibi)e mod n and
(Rdiaibi) mod ni are saved to the non-encrypted storage that

Table 1 Experimental results.

Measurement items Time
1. Acquisition of user’s public key certificate 2140 ms
2. Verification of user’s public key certificate 19.4 ms
3. Generation of challenge 19.2 ms
4. Generation of blind signature 420 ms
5. Verification of blind signature 11.7 ms
6. Generation of disk encryption key 0.202 ms
Total time 2610 ms

the VMM manages.
We used as the client PC a ThinkPad X60 (CPU: Core

2 Duo 2 GHz, Memory: 1 GB), used as the smart card an eL-
WISE (NTT Communications), and used as the smart card
reader an ASE drive IIIE (Athena Smartcard Solutions).
This smart card is equipped with a CPU, RAM and ROM,
and corresponds to PKCS#11. We used Linux Fedora Core
6 as a host OS and Windows XP as a guest OS. The software
we used was a smart card library group, the encryption li-
brary OpenSSL 0.9.8 b, the multiple-precision arithmetic li-
brary GMP 4.1.4-9, and the virtual machine monitor QEMU
0.8.2.

In the local authentication phase and the key-
generation phase, we measured the processing time for the
six items listed in Table 1. The six items are processed in
both phases. Items 1 and 4 were executed in the smart card,
and the others were executed in the VMM. The measure-
ment was conducted by inserting the gettimeofday function
in the VMM. We assume that the timer of VMM is correct.
Each of the times for the items listed in Table 1 is the av-
erage of five measurements. The total time is discussed in
Sect. 6.

The processing times for acquiring the user’s public
key certificate and for generating the blind signature were
both comparatively long, and that for acquiring the public
key certificate was the longest. Additionally, the processing

OMOTE and KATO: PRACTICAL AND SECURE RECOVERY OF DISK ENCRYPTION KEY USING SMART CARDS
1085

time for generating the blind signature contains not only the
calculation but also the transfer of the signature data. That
is, the transfer between the smart card and the client PC took
longer than the signature calculation in the smart card. The
discussion related to the experimental results will be con-
ducted in Sect. 6.

6. Discussion

6.1 Protection of Disk Data

We assume that a malicious STTP and a non-STTP adver-
sary try to acquire Ui’s disk encryption key ski.

Theorem 1: A malicious STTP cannot acquire ski before
the key-recovery phase, unless she obtains both Ui’s smart
card and pwi.

Proof: A malicious STTP knows Raibi mod ni and Rdi mod
ni in Ui’s registration phase. If the STTP obtains Ui’s smart
card without pwi, she can do nothing but conduct the dic-
tionary attack against Ui’s smart card owing to tamper re-
sistant. However, it is difficult for a malicious STTP to get
ski because of its lock function (see Sect. 4.3). Conversely,
even if the STTP obtains pwi without Ui’s smart card, she
cannot take advantage of pwi to obtain ski because ski is
independent of pwi. Furthermore, the STTP cannot com-
pute the disk encryption key ski = Raibidi mod ni from both
Raibi mod ni and Rdi mod ni by Assumption 1. Therefore, a
malicious STTP cannot acquire ski. �

If the STTP cracks Ui’s client PC or get both Ui’s smart
card and pwi, she can obtain ski, although she cannot derive
Ui’s secret key di. When the STTP cracks Ui’s client PC, she
can get the values of Raibi mod ni and (aibi)e mod n. Note
that only the STTP can know ski after the recovery phase.

Theorem 2: A non-STTP adversary cannot acquire ski un-
less she obtains all of Ui’s smart card, pwi and the cracking
ability of Ui’s client PC.

Proof: If a non-STTP adversary obtains Ui’s smart card
and the cracking ability of Ui’s client PC, she can get
(aibi)e mod n from Ui’s client PC. However, since a non-
STTP adversary cannot decrypt (aibi)e mod n to aibi, she
can eventually do nothing but conduct the dictionary attack
against Ui’s smart card owing to tamper resistant. Hence, it
is difficult to get ski because of its lock function. If a non-
STTP adversary obtains the cracking ability of Ui’s client
PC and pwi, it is difficult for such an adversary to get ski for
the same reason as the above-mentioned. Furthermore, if a
non-STTP adversary obtains Ui’s smart card and pwi, she
can access Ui’s smart card. However, she cannot acquire
Raibidi mod ni, since she does not know Raibi mod ni. There-
fore, a non-STTP adversary cannot acquire ski. �

If a non-STTP adversary obtains all of Ui’s smart card,
pwi and the cracking ability of Ui’s client PC, she can obtain
ski from both Raibi mod ni and Ui’s smart card. A non-STTP
adversary can get Raibi mod ni from Ui’s client PC.

6.2 Authentication of Recovered Key

A user has to reissue or initialize his smart card before re-
covering the disk encryption key. Hence he conducts the
user authentication using such new smart card before the
user starts the key recovery. This means that if the user Ui

does not have the new smart card then an adversary cannot
launch the key-recovery phase by impersonating Ui.

The STTP knows the values of Raibi mod ni and
Rdi mod ni corresponding to user Ui in the registration
phase. In key-recovery phase, she can verify Raibidi mod
ni using both Rdi mod ni and aibi. The STTP obtains
(aibi)e mod n from Ui’s client PC and then decrypts it to
aibi. Therefore, the recovered disk encryption key can be
authenticated by the STTP.

6.3 Revocation of Disk Encryption Key

The STTP can revoke the RSA private key di by using the
CRL. The disk encryption key includes user’s private key di.
Therefore the STTP can revoke Ui’s disk encryption key by
revoking di. As a result, the user whose disk encryption key
is revoked cannot decrypt his disk data even with his smart
card. Of course, he cannot also use the PKI authentication
with the same card after revocation. Note that it is necessary
to have the CRL stored in the client PC updated.

6.4 Time until the OS has Booted Up

The time until the OS has booted up is the total time re-
quired for the local authentication phase, the key-generation
phase, and the OS booting. Our experimental results showed
that execute both the local authentication phase and the key-
generation phase took about 2.6 seconds. On the other hand,
booting up the OS (Windows XP) on the QEMU took about
60 seconds on the same machine. So the processing time
for both phases was less than 5% of the time required for
booting up the OS. We therefore think that the time which
is required for both phases is short enough to be practical.

6.5 Length of Disk Encryption Key

The standardization of full disk encryption is discussed in
[18], [19]. In these documents, two kinds of standardiza-
tion of narrow-block encryption and wide-block encryption
are advanced at the same time. In these standardizations,
some encryption modes are elected as a candidate. Among
these modes the key length of XTS mode and TET mode
is two block lengths and the key length of EME* mode is
three block lengths. Hence the mechanism of our scheme is
meaningful because it generates the disk encryption key of
two or more block lengths.

7. Conclusion

We proposed a scheme which enables to recover the disk

1086
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

encryption key when the user’s smart card is lost. In our
scheme, the disk encryption key is not preserved anywhere
and then the STTP cannot know the key before key-recovery
phase. Furthermore, we showed in experiments that it took
about 2.6 seconds for the smart card to execute both the lo-
cal authentication phase and the key-generation phase. Both
phases are used every time the OS boots up. This time is
a short time compared with the OS booting time. There-
fore, we found that this processing time is short enough to
be practical.

In our key-recovery phase, the disk encryption key is
exposed to the STTP. Hence the security against semi-
honest STTP seems weak. We would like to execute the key-
recovery phase without exposing the disk encryption key to
the STTP as a future work.

Acknowledgments

This work is supported by Special Coordination Funds for
Promoting Science and Technology of Ministry of Educa-
tion, Culture, Sports, Science and Technology, Japan.

References

[1] K. Omote and K. Kato, “Protection and recovery of disk encryption
key using smart cards,” Proc. 5th International Conference on Infor-
mation Technology: New Generations – ITNG’08, IEEE, pp.106–
111, 2008.

[2] N. Ferguson, “AES-CBC +Elephant diffuser: A disk encryption al-
gorithm for windows vista,” Microsoft Corp., 2006.

[3] J. Hughes and C. Feist, “Architecture of the secure file system,” Proc.
18th IEEE Symposium on Mass Storage Systems and Technologies
– MSS’01, IEEE, pp.277–290, 2001.

[4] W.C. Ku and S.M. Chen, “Weakness and improvements of an effi-
cient password based remote user authentication scheme using smart
cards,” IEEE Trans. Consum. Electron., vol.50, no.1, pp.204–207,
2004.

[5] C.C. Chang and J.S. Lee, “A smart-card-based remote authentication
scheme,” Proc. 2nd International Conference on Embedded Soft-
ware and Systems – ICESS’05, IEEE, pp.445–449, 2005.

[6] E.J. Yoon and K.Y. Yoo, “More efficient and secure remote user
authentication scheme using smart cards,” Proc. 11th International
Conference on Parallel and Distributed Systems – ICPADS’05,
pp.73–77, IEEE, 2005.

[7] M.S. Hwang and L.H. Li, “A new remote user authentication scheme
using smart cards,” IEEE Trans. Consum. Electron., vol.46, no.1,
pp.28–30, 2000.

[8] H.M. Sun, “An efficient remote user authentication scheme using
smart cards,” IEEE Trans. Consum. Electron., vol.46, no.4, pp.958–
961, 2000.

[9] Y. Wang and P. Dasgupta, “Remote user authentication using
VMM-based security manager,” http://cactus.eas.asu.edu/PARTHA/
Papers-PDF/2006/authentication yw.pdf, 2006.

[10] S. Lim, S. Kang, and J. Sohn, “Modeling of multiple agent based
cryptographic key recovery protocol,” Proc. 19th Annual Computer
Security Applications Conference – ACSAC’03, pp.119–128, IEEE,
2003.

[11] M.J. Markowitz and R.S. Schlafly, “Key recovery in secretagent,”
Digital Signature, 1997.

[12] R. Gennaro, P. Karger, S. Matyas, M. Peyravian, A. Roginsky, D.
Safford, M. Willett, and N. Zunic, “Secure key recovery,” IBM
Thomas J. Watson Research Center, 1999.

[13] K. Narimani and G.B. Agnew, “Key management and mutual au-
thentication for multiple field records,” Proc. 3rd International Con-
ference on Information Technology: New Generations – ITNG’06,
pp.568–569, IEEE, 2006.

[14] M. Blaze, “Key management in an encrypting file system,” Proc. the
USENIX Summer 1994 Technical Conference, pp.27–35, 1994.

[15] M. Kwon and Y. Cho, “Protecting secret keys with blind compu-
tation service based on Discrete logarithm,” Proc. 18th International
Workshop on Information Security Applications, pp.312–315, 2003.

[16] Wikipedia, “Full disk encryption,” http://en.wikipedia.org/wiki/
Full disk encryption, 2007.

[17] M. Manbo and H. Shizuya, “A note on the complexity of break-
ing Okamoto-Tanaka ID-based key exchange scheme,” IEICE Trans.
Fundamentals, vol.E82-A, no.1, pp.77–80, Jan. 1999.

[18] SISWG, “P1619: Standard architecture for encrypted shared storage
media,” IEEE Project 1619 (P1619), 2007.

[19] SISWG, “P1619.2: Standard for wide-block encryption for shared
storage media,” IEEE Project 1619.2 (P1619.2), 2006.

Kazumasa Omote received his M.S. and
Ph.D. degrees in information science from Japan
Advanced Institute of Science and Technology
(JAIST) in 1999 and 2002, respectively. He
joined Fujitsu Laboratories, LTD from 2002 to
2008 and engaged in research and development
for network security. He has been a research as-
sistant professor at the Japan Advanced Institute
of Science and Technology (JAIST) since 2008.
His research interests include applied cryptogra-
phy and network security. He is a member of the

IPS of Japan.

Kazuhiko Kato received the BE and ME
degrees from the University of Tsukuba, Japan,
in 1985 and 1987, respectively. He received
the PhD degree from the University of Tokyo,
Japan, in 1992. From 1989 to 1993, he was a re-
search associate in the Department of Informa-
tion Sciences, Faculty of Sciences at the Uni-
versity of Tokyo. He is currently a professor
in the Department of Computer Science, Grad-
uate School of System Information Engineering
at the University of Tsukuba. His research inter-

ests include operating systems, distributed systems, and secure computing.
He received the distinguished paper awards from JSSST and IPSJ in 2004
and 2005, respectively.

