JAIST Repository

https://dspace.jaist.ac.jp/

Title	遊脚収縮現象を考慮したロバスト擬似仮想受動歩行
Author(s)	浅野,文彦;羅,志偉
Citation	日本ロボット学会誌, 27(8): 892-899
Issue Date	2009-10-15
Туре	Journal Article
Text version	publisher
URL	http://hdl.handle.net/10119/9507
Rights	Copyright (C) 2009 日本ロボット学会.浅野文彦,羅 志偉,日本ロボット学会誌,27(8),2009,892-899.
Description	

Japan Advanced Institute of Science and Technology

学術・技術論文

遊脚収縮現象を考慮したロバスト擬似仮想受動歩行

浅 野 文 彦^{*1} 羅 志 偉^{*1*2}

Robust Pseudo Virtual Passive Dynamic Walking Considering Swing-leg Retraction

Fumihiko Asano^{*1} and Zhi-Wei Luo^{*1*2}

It was clarified that energy-efficient dynamic bipedal walking can be achieved by effectively applying the principle of passive dynamic walking. Approaches based on virtual gravity are typical methods for generating efficient level dynamic gait. These methods, however, had the problem that the specified control input includes a singular point which causes complicated motion. This paper then proposes a new method, which is termed as the pseudo virtual passive dynamic walking, to solve this problem. We first formulate the basic method for a planar underactuated biped model with an upper body by introducing the concept of pseudo center of mass. We also consider to inhibit swing-leg retraction by constraining the impact posture to achieve the maximum efficiency condition. In addition, we discovered that the constraint on impact posture strongly extends the stable domain and improves the convergence speed to the steady gait through numerical simulations. We report the detailed analysis results and theoretically investigate how the constraint affects the gait properties.

Key Words: Dynamic Bipedal Walking, Gait Generation, Swing-leg Retraction, Stable Domain, Bifurcation

1. はじめに

リミットサイクルを規範とした歩容生成アプローチは,移動効 率の高い2脚動歩行を達成する上で有効な手法であるとして,近 年盛んに研究されるようになってきた.特に受動歩行をベースと してこれにわずかな駆動力を加えるアプローチでは,主として

▶ 片脚支持期に与える効率的な制御入力の生成法

 ロボットの身体形状や機械要素などハードウェアの工夫 といった点に議論が集中していたと言えるだろう. Zero moment point を指標とする手法が歩行系を床面に固定されたマニピュ レータとして扱うのに対して、リミットサイクルを規範とする 手法は歩行系特有の力学的性質を積極的に利用しており、より 合理的な歩行制御理論を構築するものとして期待が寄せられている.

そのなかで,筆者らが過去に提案した仮想受動歩行[1]は,受 動歩行のエネルギー回復メカニズムを模倣した高効率平地歩容 生成手法の一つであるが,対象とするモデルに応じて異なる形 式の制御入力が定まり,多くの場合に角速度に関する特異点を 持つ(この点で制御入力が発散するため定義できない)という 問題点を有していた.特に受動歩行を規範とした歩容において は、立脚終期の遊脚収縮現象(Swing-leg retraction [2])によ り特異点に接近することが多く、これを回避するための対策が 必要であった[1][3].劣駆動仮想受動歩行の場合には、制御入力 を厳密な連続時間信号として与えることができれば、システム がこの点を自動的に回避するものの、結果として複雑な挙動を 示すことが知られている[4][5].これらの例から分かるように、 受動歩行が持つ力学的エネルギーの回復メカニズムを平地歩行 において精密に再現すると、必ず制御入力が特異点を含むこと になる.この問題を抱えながら精密なメカニズムの再現にこだ わることに対しては、筆者らも再検討すべきではないかと考え ていた.

以上の背景を踏まえ筆者らは、文献[6]において劣駆動仮想受 動歩行をより簡略化した歩容生成手法(擬似仮想受動歩行)を 提案した.本論文ではさらに擬似重心の概念を導入することで、 立脚期も含めたより簡明かつ精密な定式化を行う.また、仮想 受動歩行から引き継がれるエネルギー変化の特徴を利用したロ バスト安定化手法を提案し、その有効性を数値シミュレーショ ンにより検証する.

その一方で近年,上述の遊脚収縮現象が歩容の安定性にとって 重要であるという主張がなされてきている [7] [8]. 遊脚(正確に は股関節の相対角度)を収縮させながら支持脚交換の衝突へ移 行する,という振る舞いがリミットサイクルの安定性を向上させ るという主張であり,数値シミュレーションや実機実験において

原稿受付 2008 年 12 月 10 日

^{*1}北陸先端科学技術大学院大学情報科学研究科

^{*2}神戸大学大学院工学研究科情報知能学専攻

^{*&}lt;sup>1</sup>School of Information Science, Japan Advanced Institute of Science and Technology

^{*&}lt;sup>2</sup>Department of Computer Science and Systems Engineering, Graduate School of Engineering, Kobe University

[■] 本論文は学術性で評価されました.

も信頼性のあるデータが得られている.これに対して筆者らは, 逆に遊脚収縮を抑制し1自由度の剛体として倒れ込む(ただし 股関節角度の大きさは指定しない)ことで,歩容生成可能領域 が大幅に拡大されることを,数値解析を通して見出した.本論 文の後半では,その解析結果について詳しく報告するとともに, 歩容の安定性を向上させるメカニズムを数理的に考察する.

なお、本論文ではロバストという単語を以下の二つの意味で 用いる。

● 定常リミットサイクルへの収束が速い

●歩容生成可能な物理パラメータ領域が広い

前者は文字どおり、1 周期の定常歩容に速やかに収束するかど うかの意味であるが、本論文ではこれを実現する二つの制御則 (目標エネルギー軌道追従制御・準衝突姿勢拘束)を提案する. 後者については、本論文では特に2脚ロボットの上体の長さに ついて、安定歩容生成が可能となる領域の広さを指標として解 析する.

本論文は以下の構成からなる.まず第2章で、制御対象とす る上体付き2脚ロボットのモデルの概要をまとめる.第3章で は、擬似仮想受動歩行の基本的概念とその応用について述べる. 第4章では、遊脚収縮現象に関する議論、およびこれを抑制す る制御法の効果について、数値解析を通して検証する.第5章 では、エネルギー損失係数の解析を通して、その安定性への影 響をより深く考察する.最後に第6章で本論文をまとめ、今後 の研究の方向性について述べる.

2. 上体と半円足を有する劣駆動 2 脚ロボット

Fig.1 に本論文で扱う上体付き劣駆動 2 脚ロボットのモデル を示す.上体の付加には股関節二分機構(Bisecting hip mechanism:以下 BHM [5])を用いており,角度と角速度に関して つねに関係式

 $\label{eq:Fig.1} {\bf Fig.1} \quad {\rm Model \ of \ planar \ underactuated \ biped \ robot \ with \ upper \ body \ and \ semicircular \ feet }$

$$\theta_3 = \frac{\theta_1 + \theta_2}{2} + \psi, \quad \dot{\theta}_3 = \frac{\dot{\theta}_1 + \dot{\theta}_2}{2}$$
(1)

が満たされているものとする. なお, ψ [rad] は上体のオフセッ ト角度を表す定数であるが,本論文では簡単のためゼロとする. 一般化座標ベクトルを $\boldsymbol{\theta} = [\theta_1 \quad \theta_2 \quad \theta_3]^{\mathrm{T}}$ とすると, BHM の拘束力を含めた立脚期の運動方程式は

$$\boldsymbol{M}(\boldsymbol{\theta})\ddot{\boldsymbol{\theta}} + \boldsymbol{h}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \boldsymbol{S}\boldsymbol{u} + \boldsymbol{J}_{H}^{\mathrm{T}}\lambda_{H}$$
(2)

となる. 制御入力ベクトル $Su \in \mathbb{R}^3$ と BHM による拘束力の ヤコビアンは、それぞれ次式で定まるものである.

$$\boldsymbol{S}\boldsymbol{u} = \begin{bmatrix} 1 & 0\\ 0 & 1\\ -1 & -1 \end{bmatrix} \begin{bmatrix} u_1\\ u_2 \end{bmatrix}, \quad \boldsymbol{J}_H^{\mathrm{T}} = \begin{bmatrix} 1\\ 1\\ -2 \end{bmatrix} \quad (3)$$

ー見すると 2 入力 3 自由度の劣駆動システムと捉えられるが, BHM を導入することで θ_3 の自由度が消え $u_1 \ge u_2$ が同じ股 関節の冗長駆動力となるため,実質的には 1 入力 2 自由度のシ ステムへと低次元化される.以下,本論文では $u_2 = 0$ とする. これより,BHM を持つ歩行機の力学的エネルギーの時間変化 は,次の関係式

$$\dot{E} = \frac{\dot{\theta}_H u_1}{2} \tag{4}$$

を満たすこととなる.ただし, $\theta_H := \theta_1 - \theta_2$ は股関節の相対角 度である.なお,BHM を用いて付加した上体は,カウンター ウェイトとして遊脚の自然な振り運動を妨げるように作用する ため [5] [6],その物理パラメータをあまり大きく設定できない, という制約がある.

支持脚交換の衝突には非弾性モデルを導入する. 詳細については文献 [5] で説明しているので、ここでは概要だけ述べる. 拡大系の一般化座標ベクトルを $q \in \mathbb{R}^9$ とすると、非弾性衝突モデルは次式で与えられる.

$$\bar{\boldsymbol{M}}(\alpha)\dot{\boldsymbol{q}}^{+} = \bar{\boldsymbol{M}}(\alpha)\dot{\boldsymbol{q}}^{-} - \boldsymbol{J}_{I}(\alpha)^{\mathrm{T}}\boldsymbol{\lambda}_{I}$$
(5)

$$\boldsymbol{J}_{I}(\alpha)\dot{\boldsymbol{q}}^{+} = \boldsymbol{0}_{7\times 1} \tag{6}$$

となる.ただし,

$$\boldsymbol{q} = \begin{bmatrix} \boldsymbol{q}_1^{\mathrm{T}} & \boldsymbol{q}_2^{\mathrm{T}} & \boldsymbol{q}_3^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}}$$
(7)

であり、 $\boldsymbol{q}_i \in \mathbb{R}^3$ はそれぞれ衝突直前の支持脚(i = 1)、遊脚 (i = 2)、上体(i = 3)の各リンクの一般化座標ベクトルであ る.また、 $\bar{\boldsymbol{M}} \in \mathbb{R}^{9 \times 9}$ は拡大座標系の慣性行列、 $\boldsymbol{J}_I \in \mathbb{R}^{7 \times 9}$ は速度拘束のためのヤコビ行列、式(6)は衝突直後の速度拘束 条件式である. α [rad] は衝突時の股関節の半角であり、

$$\alpha := \frac{\theta_1^- - \theta_2^-}{2} = \frac{\theta_2^+ - \theta_1^+}{2} > 0 \tag{8}$$

で定まるものである.行列 \bar{M} , J_I はいずれも α のみを変数 とするため、式(5)(6)のように表記している.

式(5)(6)より衝突直後の速度が

$$\dot{\boldsymbol{q}}^{+} = \left(\boldsymbol{I}_{9} - \boldsymbol{\bar{M}}^{-1} \boldsymbol{J}_{I}^{\mathrm{T}} \left(\boldsymbol{J}_{I} \boldsymbol{\bar{M}}^{-1} \boldsymbol{J}_{I}^{\mathrm{T}}\right)^{-1} \boldsymbol{J}_{I}\right) \dot{\boldsymbol{q}}^{-}$$

=: $\boldsymbol{Y}(\alpha) \dot{\boldsymbol{q}}^{-}$ (9)

と求まる.数値シミュレーションにおいては、まず $\dot{\theta}^-$ から \dot{q}^- を計算し、これを用いて \dot{q}^+ を式(9)で求め、最後にその一部 を取り出して $\dot{\theta}^+$ として格納する、というプロセスを経る.その詳細に関しては、また第5章にて述べる.

3. 擬似仮想受動歩行と準衝突姿勢拘束

本章では、制御入力の特異点を回避する手法として、擬似仮 想受動歩行を新たに提案する.また、その簡略化およびロバス ト制御への応用についても述べる.さらには、遊脚収縮を抑制 する手法として、準衝突姿勢拘束を導入する.

3.1 劣駆動仮想受動歩行とエネルギー効率

仮想受動歩行とは、受動歩行における重力の推進メカニズム を平地において再現することで導かれる動的歩容生成手法であ る[1]. 平地において進行方向に小さな仮想的な重力場を想定し、 これがロボットに及ぼす推進力を関節トルクへと等価変換するこ とで、平地歩行が実現されるというものである. この等価変換ト ルクを力学的エネルギーの時間微分が満たす関係式 $\dot{E} = \dot{\theta}^{T} Su$ に代入することで、リンクの数や慣性モーメントの有無に関係 なく、次の関係式が成り立つことが示される [1] [4].

$$\dot{E} = Mg \tan \phi \dot{X}_q \tag{10}$$

ただし, $M := m_H + 2m$ [kg] はロボットの全質量, ϕ [rad] は 仮想傾斜角度, X_g [m] は重心の X 座標である. Fig. 1 のモデ ルの場合の制御入力は, 式 (4) (10) より

$$u_1 = \frac{2Mg\tan\phi \dot{X}_g}{\dot{\theta}_H} \tag{11}$$

と決定される [5]. 一方,式 (10)の両辺を時間積分することで, 1 歩あたりの重心の移動距離(歩幅に等しい) ΔX_g [m] と回復 エネルギー ΔE [J]の関係式

$$\Delta E = Mg \tan \phi \Delta X_g \tag{12}$$

が導かれる.ここで、定常歩行時の ΔX_g は次式で与えられることを付記しておく.

$$\Delta X_g := X_g(T^-) - X_g(0^+)$$
$$= 2 \left(R\alpha + (l-R)\sin\alpha \right)$$
(13)

ただし、 $t = 0^+$ [s] は支持脚交換の衝突直後の時刻を、 T^- [s] は 次の衝突直前の時刻(つまり定常歩行周期)を意味するもので ある.

移動効率は Specific resistance(以下, SR と略記)によって 評価される. 平均入力パワー

$$p := \frac{1}{T} \int_{0^+}^{T^-} \left| \frac{\dot{\theta}_H u_1}{2} \right| \mathrm{d}t \ge \frac{1}{T} \int_{0^+}^{T^-} \frac{\dot{\theta}_H u_1}{2} \, \mathrm{d}t = \frac{\Delta E}{T}$$
(14)

および歩行速度

$$v := \frac{1}{T} \int_{0^+}^T \dot{X}_g \, \mathrm{d}t = \frac{\Delta X_g}{T} \tag{15}$$

より、SR の定義式およびその最小値は

$$SR := \frac{p}{Mgv} \ge \frac{\Delta E}{Mg\Delta X_g}$$
 (16)

と表現される. 劣駆動仮想受動歩行は特異点 $\dot{\theta}_{H} = 0$ を自動的 に回避する性質を持ち $\dot{\theta}_{H}u_{1} > 0$ が成り立つため,不等式(14) の等号がつねに成り立つ. さらに関係式(12)を式(16)に代 入することで, SR > tan ϕ を得る.

3.2 擬似仮想受動歩行の概念と擬似重心による定式化

式(11)で定まる制御入力は $\dot{\theta}_H = 0$ に特異点を持つため、 この近傍でのリミットサイクルの挙動が不自然なものとなり、制 御入力の瞬間最大値も増大する、という問題点があった[4]. そ こで、次式で定まる制御入力 u_1 を考える.

$$\iota_1 = Mg \tan \phi \left(R + (l - R) \cos \frac{\theta_H}{2} \right) \qquad (17)$$

これを式(4)に代入し時間積分することで、次の関係式を得る.

$$\frac{\Delta E}{Mg \tan \phi} = \int_{0^+}^{T^-} \frac{\dot{\theta}_H}{2} \left(R + (l-R) \cos \frac{\theta_H}{2} \right) dt$$
$$= \left[\frac{R\theta_H}{2} + (l-R) \sin \frac{\theta_H}{2} \right]_{\theta_H = -2\alpha}^{\theta_H = -2\alpha}$$
$$= 2 \left(R\alpha + (l-R) \sin \alpha \right) = \Delta X_g \qquad (18)$$

これは離散的なエネルギーの関係式(12)を満たしている.こ の意味で,筆者らは式(17)の制御入力により実現される歩行 形態を「擬似仮想受動歩行」と呼んだ[6].

本論文ではさらに、立脚期における定式化を試みる. 擬似重 心を

$$\hat{X}_g = \frac{R\theta_H}{2} + (l - R)\sin\frac{\theta_H}{2} \tag{19}$$

で定めると、その時間微分は

$$\dot{\hat{X}}_{g} = \frac{\dot{\theta}_{H}}{2} \left(R + (l - R) \cos \frac{\theta_{H}}{2} \right)$$
$$= \frac{\dot{\theta}_{H}}{2} \cdot \frac{u_{1}}{Mg \tan \phi} = \frac{\dot{E}}{Mg \tan \phi}$$
(20)

となる. これより次の関係式

$$\frac{\partial E}{\partial \hat{X_g}} = Mg \tan \phi \tag{21}$$

が導かれ、仮想受動歩行と同じ形式となる.なお、本手法も式(12)を満たすことから、移動効率を表す SR の最小値は、SR > $\tan \phi$ となり、仮想受動歩行のそれに一致する.

3.3 線形近似に基づく簡略化および移動効率

式 (19) (20) で定まる擬似重心,および式 (17) で定まる制 御入力を $\theta_H = 0$ 近傍で線形近似すると,それぞれ

$$\hat{X}_g = \frac{l\theta_H}{2} \tag{22}$$

$$\dot{\hat{X}_g} = \frac{l\dot{\theta}_H}{2} \tag{23}$$

$$u_1 = Mlg \tan \phi \tag{24}$$

となる. この場合も力学的エネルギーと擬似重心の間には関係 式(21)が成り立つが、一定トルクの駆動により股関節角度の 変化分に比例して力学的エネルギーが回復される、というより 簡明な意味合いとなっている.

次に SR の最小値を考える.線形近似により簡略化された場 合の回復エネルギーは

$$\Delta E = \int_{0^+}^{T^-} \frac{\dot{\theta}_H u_1}{2} dt = \frac{M lg \tan \phi}{2} \int_{-2\alpha}^{2\alpha} d\theta_H$$
$$= 2l\alpha Mg \tan \phi = Mg \tan \phi \Delta \hat{X}_g \qquad (25)$$

となる. ただし, $\Delta \hat{X_g} = 2l\alpha$ である. ここで ΔX_g が式 (18) で与えられることを考慮すると, 式 (18) (25) より SR が満た す大小関係は

$$SR \ge \frac{\Delta E}{Mg\Delta X_g} = \frac{Mg\tan\phi\Delta \dot{X}_g}{Mg\Delta X_g}$$
$$= \frac{l\alpha\tan\phi}{R\alpha + (l-R)\sin\alpha}$$
(26)

となる. さらにこの分母が $0 < \alpha < \frac{\pi}{2}$ の範囲で

$$R\alpha + (l - R)\sin\alpha < R\alpha + (l - R)\alpha = l\alpha \quad (27)$$

を満たすことを考慮すれば、下記の大小関係が結論される.

$$\operatorname{SR} \ge \frac{l\alpha \tan \phi}{R\alpha + (l-R)\sin \alpha} > \tan \phi$$
 (28)

仮想受動歩行の最小値よりも若干大きくなるものの,次章の解 析結果で示すように,その差は極めて小さいものである.

3.4 遊脚収縮現象と準衝突姿勢拘束

SR の最小値は式(28)のとおりであるが,この不等式における等号成立条件は,平均入力パワーの積分値が次の関係式

$$\int_{0^{+}}^{T^{-}} \left| \frac{\dot{\theta}_{H} u_{1}}{2} \right| \mathrm{d}t = \int_{0^{+}}^{T^{-}} \frac{\dot{\theta}_{H} u_{1}}{2} \mathrm{d}t = \Delta E \qquad (29)$$

を満たすことである [9] [5].換言すると、片脚支持期につねに $\dot{\theta}_{H}u_{1} \geq 0$ が成り立つということである.さらに擬似仮想受動 歩行の制御入力(一定トルク)が正値であることを考慮すれば、 $\dot{\theta}_{H} \geq 0$ であること、というレベルにまで換言される.つまり、 遊脚収縮現象が起こるか否か、という問題と等価になる.仮想 受動歩行では制御入力が特異点を持つことでこの現象が問題と なっていたのに対し、擬似仮想受動歩行では非効率化の意味で 問題となる.

遊脚収縮現象とは、立脚終期に股関節角度がいったん開き切っ たあと、再び収縮する現象のことを言う [2].数学的に説明する と、股関節角速度 $\dot{\theta}_H$ の符号が正から負へと変化する現象、と いうことになる.劣駆動仮想受動歩行の場合には自動的にこれ が成り立つ(つねに $\dot{\theta}_H > 0$ となる)が [4],擬似仮想受動歩行 ではこれを回避できない.特に上体を有するモデルの場合には、 カウンターウェイトとしての効果により遊脚収縮が起こりやす くなるため、このままでは非効率化が必至となる.

そこで本論文では、立脚終期に $\dot{\theta}_{H} = 0$ となる(遊脚収縮を 開始する)瞬間に股関節を機械的に拘束することで、この問題

$$\boldsymbol{J}_{Q}\dot{\boldsymbol{\theta}} = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} \dot{\boldsymbol{\theta}} = 0 \tag{30}$$

として表現され, BHM による拘束と同時に

$$\boldsymbol{M}(\boldsymbol{\theta})\ddot{\boldsymbol{\theta}} + \boldsymbol{h}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) = \boldsymbol{J}_{H}^{\mathrm{T}} \lambda_{H} + \boldsymbol{J}_{Q}^{\mathrm{T}} \lambda_{Q} \qquad (31)$$

として歩行システムに作用する. $\lambda_Q \in \mathbb{R}$ はホロノミック拘束 力を意味する未定乗数ベクトルである.また,この相では制御 入力がゼロになっていることにも注意されたい.

衝突姿勢拘束[10]に対して、その角度の大きさまでを指定し ないという意味で、これを「準衝突姿勢拘束」と呼ぶことにする (以下、準拘束と略記する). この拘束により、負の入力パワー の発生を回避できる(つねに $\dot{\theta}_H u_1 \ge 0$ となる)ため、移動効 率の悪化を避けることができる.また、衝撃を伴わない機械拘 束であるので、実機開発においても既存のハードウェアで無理 なく実現できるものと思われる.

3.5 数値シミュレーション

Fig. 2 に準拘束付き定常歩容の一例を示す. ロボットの物理 パラメータは **Table 1** のように設定した. プログラム中では, $\dot{\theta}_H = 0$ となった瞬間に運動方程式 (2) を式 (31) に切り替 えている. Fig. 2 (a) より, BHM の効果で上体がつねに関係式 (1) を満たすように脚リンクと連動していることが分かる. (b) より, 準拘束の効果 (すべての角速度が等しくなっていること) が確認できる. (c) は重心と擬似重心の時間変化を比較してプ ロットしたものであるが, 両者の挙動が大きく異なっているこ

Fig. 2 Simulation results for pseudo virtual passive dynamic walking with quasi constraint on impact posture

と、特に \hat{X}_{g} の挙動は θ_{H} のそれと等価なので、準拘束に切り 替えたあとは一定値に保たれていること、などが確認できる.

擬似仮想受動歩行と先行研究との最も本質的な違いは,実際の重心位置に対してエネルギーや制御入力を精密に調節するのではなく,一定トルクを与えることで実現される運動に合わせて 擬似的な重心位置や制御入力を決定していく,という点である.

4. 準衝突姿勢拘束による歩行性能の変化

本章ではシステムの物理パラメータを必要としないロバスト 安定化手法として、準拘束の効果をより深く考察する.

4.1 遊脚収縮現象に関する議論

遊脚収縮現象は、受動歩行や準受動歩行において頻繁に観測 される現象である。受動歩行を規範とした歩容生成においては、 しばしば問題を引き起こし、あるいはその効果が注目され、幾 度か議論がなされてきた。

Goswami らエネルギー追従制御において [3], 筆者らは仮想 受動歩行またはエネルギー拘束制御において [1], 制御入力が持 つ特異点に接近することを回避するため, この現象を考慮した 場合分けあるいは制御則の切り替えを行った.

さらに筆者らは、劣駆動仮想受動歩行においては、制御入力 に現れる特異点の作用からこれが起こらないことを理論的に示 した[4]. ただし、これは制御入力を厳密な連続時間信号として 与えられる場合に限る. ディジタル制御系として制御入力を生 成し与えると、わずかなサンプリング時間の合間をぬって特異 点を通過することがあるためである.

近年 Wisse らは、この現象が歩行の安定性やロバスト性を向 上させる効果を持つことを主張しており [7]、Gait sensitivity norm を用いた評価も行っている [8]. しかしながら筆者らは、

Table 1 P	hysical p	oarameters	of	biped	robot
-----------	-----------	------------	----	-------	-------

m_T	10.0	[kg]	l_T	0.3	[m]
m	5.0	[kg]	$l \ (= a + b)$	1.0	[m]
I_T	0.001	$[kg \cdot m^2]$	a	0.5	[m]
Ι	0.001	$[kg \cdot m^2]$	b	0.5	[m]
			R	0.3	[m]

逆にこれを抑制することで高い安定性を獲得できることを見出 した.以下にその結果を報告する.

4.2 安定領域の拡大

本論文では歩行速度や SR だけでなく、その安定歩容生成可 能領域についても比較を行う. **Fig.3** は *l*_T に対する性能変化 を、準拘束あり・なしの場合について解析し、比較した結果であ る. なお、*l*_T 以外の物理パラメータは前章のものと同一である.

まず (a) より、上体のカウンターウェイトとしての効果 [5] に より、*l*_T に対して歩行速度が単調に減少していく様子が分かる. 両者の安定領域を比較すると、準拘束ありの場合が大幅に拡大 されていることが見て取れる.また、準拘束なしの場合は、途中 から分岐が起きている.歩容生成が急速に困難になっていく様 子を示唆するものと考えられる.また(b)より,前章で述べた ように、準拘束ありの場合のほうが SR の値がより小さく抑え られていることが確認できる.また、準拘束なしの場合はSRが 大きい歩容と小さい歩容が、つまり遊脚収縮が顕著な歩容とそ うでない歩容が交互に現れていることが分かる. 仮想受動歩行 における SR の最小値が tan 0.01 = 0.0100003 [-] であるのに 対して、この準拘束付き擬似仮想受動歩行の結果は 0.01006~ 0.01015 [-] の範囲に収まっており、その差は極めて小さいもの と認められる. (c) は歩幅 ΔX_q であるが, 準拘束なしの場合 を見ると、2周期歩容となっても分岐が起きていないことが分 かる.このことは次のように、2周期歩容の幾何学的性質から 説明することができる. α_1 , α_2 を 2 周期の定常歩行時の α と

$$\Delta X_g = R \left(\alpha_1 + \alpha_2 \right) + \left(l - R \right) \left(\sin \alpha_1 + \sin \alpha_2 \right)$$
(32)

で与えられるが、 $\alpha_1 \ge \alpha_2$ を交換しても同じものとなる. この ことは、**Fig.4**からも明快に理解できよう. ただし、同図にお いて、脚先間の距離を歩幅として定めれば、(a)(b) と同様に分 岐が起こることとなる. 何を歩幅として定めるかによって異な る分岐図が描かれるので、注意が必要である.

ところで (c) において、準拘束なしの場合は単調増加してき た歩幅が分岐点より単調減少を始めているのに対して、準拘束

Fig. 3 Gait descriptors of pseudo virtual passive dynamic walking with respect to l_T

Fig. 4 Steady 2-period gait and its constant step length

ありの場合は分岐を引き起こすことなく1周期歩容のまま安定 領域を大幅に拡大していることが分かる.筆者らは最近,2周 期歩容への分岐が歩行性能を悪化させるのではないかと考察し ているが[6][11],この結果も関連を持つ可能性があり,その検 討は今後の課題として残されている.

5. エネルギー損失係数解析

本章ではエネルギー損失係数の特性を解析することで、準拘 束の効果のより深い理解を目指す。

5.1 運動エネルギー漸化式による離散システム表現

(準) 衝突姿勢拘束を持たない歩容であっても、1 周期の定常 歩容であれば、衝突直前の運動エネルギー K⁻の漸化式によ り、必ず次のような離散システム表現が可能である [10].

$$K^{-}[i+1] = \varepsilon K^{-}[i] + \Delta E \tag{33}$$

ただし, i は歩数であり, ε [-] は K^+ を衝突直後の運動エネル ギーとして

$$\varepsilon := \frac{K^+[i]}{K^-[i]} \tag{34}$$

で定義されるエネルギー損失係数である.その値域は $0 \le \varepsilon \le 1$ であり、0に近いほど定常歩容への収束が速いこと、1に近いほ どエネルギー損失量が少ないこと、を意味するものである.つ まり、収束速度の向上と損失エネルギー緩和の間には、トレー ドオフが存在する.

なお、ここで対象としているのは $K^{-}[i+1] = K^{-}[i]$ が成り 立っている 1 周期の定常歩容であることに注意されたい、それ 以外の場合(過度期や多周期歩容)においては衝突時の位置エ ネルギーが一定にならないので、運動エネルギーのみを変数と する一つの漸化式で表現することはできない。

5.2 収束速度の比較

Fig.5 は準拘束あり、なしの場合のエネルギー損失係数の収 束の様子をプロットしたものである.いずれも同じ条件で歩行 を開始しているが,準拘束の有無により異なる定常歩容に収束 することに注意されたい.結果より,準拘束ありの場合が劇的 に速い収束の様子を示している.これらの歩容は,衝突姿勢拘 束・回復エネルギー拘束のいずれも達成していない,つまり RW と等価な歩容[10]として漸近安定性が保証されているものでは ない.しかし,1自由度の剛体として倒れ込むだけで,大幅に その安定性(収束速度)を向上させられる,ということを結果 が示している.この理由を,エネルギー損失係数と準拘束の関 係から,以下に考察していく.

Fig. 5 Convergence of energy-loss coefficients

5.3 エネルギー損失係数

衝突直前の拡大座標系の速度は、元の一般化座標系の角速度 $\dot{\theta}_1^-, \dot{\theta}_2^-$ を用いて、次のように表すことができる.

$$\dot{\boldsymbol{q}}^{-} = \boldsymbol{H}(\alpha)\dot{\boldsymbol{\theta}}^{-} = \boldsymbol{H}(\alpha) \begin{bmatrix} 1 & 0\\ 0 & 1\\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1}^{-}\\ \dot{\theta}_{2}^{-} \end{bmatrix}$$
$$=: \boldsymbol{H}(\alpha)\boldsymbol{T}\dot{\boldsymbol{\theta}}^{-}$$
(35)

式 (5) (6) より, 衝突直後の拡大座標系の速度 \dot{q}^+ は角速度ベクトル $\dot{\bar{\theta}}^-$ を用いて, 次のように表すことができる.

ただし, $\Xi \in \mathbb{R}^{3 \times 2}$ は α のみに関する行列関数である.

式(36)の関係式を用いて、エネルギー損失係数を以下に整 理する. ||・|| をベクトルノルムとすると、式(34)の衝突前後 の運動エネルギーはそれぞれ次のように整理される.

$$K^{+} = \frac{1}{2} \left(\dot{\bar{\boldsymbol{\theta}}}^{-} \right)^{\mathrm{T}} \Xi^{\mathrm{T}} \boldsymbol{M}(\alpha) \Xi \dot{\bar{\boldsymbol{\theta}}}^{-} = \frac{1}{2} \left\| \boldsymbol{M}(\alpha)^{\frac{1}{2}} \Xi \dot{\bar{\boldsymbol{\theta}}}^{-} \right\|^{2}$$
$$= \frac{1}{2} \left\| \boldsymbol{\Omega} \boldsymbol{M}(\alpha)^{\frac{1}{2}} \dot{\bar{\boldsymbol{\theta}}}^{-} \right\|^{2} \qquad (37)$$
$$K^{-} = \frac{1}{2} \left\| \boldsymbol{M}(\alpha)^{\frac{1}{2}} \dot{\bar{\boldsymbol{\theta}}}^{-} \right\|^{2} \qquad (38)$$

ただし, $\mathbf{\Omega} \in \mathbb{R}^{2 \times 2}$ は

$$\mathbf{\Omega} := \boldsymbol{M}(\alpha)^{\frac{1}{2}} \boldsymbol{\Xi} \boldsymbol{M}(\alpha)^{-\frac{1}{2}}$$
(39)

で定義される α を変数とする行列である. ここでベクトル $x := M(\alpha)^{\frac{1}{2}\dot{\theta}^-}$ を定めると,式 (34)のエネルギー損失係 数は

$$\varepsilon = \frac{\|\mathbf{\Omega}\boldsymbol{x}\|^2}{\|\boldsymbol{x}\|^2} \tag{40}$$

と書き直される. 歩容が 1 周期の定常リミットサイクルに収束 するとき, ε もまた一定値に収束するが, その値域は次のよう に行列 Ω の特異値で決定される [13] [14].

$$0 \le \sigma_2(\mathbf{\Omega})^2 \le \varepsilon \le \sigma_1(\mathbf{\Omega})^2 \le 1 \tag{41}$$

ただし, σ₁ は行列 **Ω** の最大特異値, σ₂ は最小特異値である. (準) 衝突姿勢拘束を持つ場合, 衝突直前の角速度は次の関係

$$\dot{\boldsymbol{\theta}}^{-} = \boldsymbol{T} \begin{bmatrix} 1\\1 \end{bmatrix} \dot{\boldsymbol{\theta}}_{1}^{-} \tag{42}$$

を満たす. これを式(36)に代入することで、衝突前後の運動 エネルギーが

$$K^{+} = \frac{1}{2}\bar{M}^{+} \left(\dot{\theta}_{1}^{-}\right)^{2}, \ K^{-} = \frac{1}{2}\bar{M}^{-} \left(\dot{\theta}_{1}^{-}\right)^{2}$$
(43)

と求まる. ただし, \bar{M}^+ と \bar{M}^- は α を変数とする正値のスカ ラ関数であり, それぞれ次式で定義されるものである.

$$\bar{M}^{+} := \begin{bmatrix} 1\\1 \end{bmatrix}^{\mathrm{T}} \boldsymbol{\Xi}^{\mathrm{T}} \boldsymbol{M}(\alpha) \boldsymbol{\Xi} \begin{bmatrix} 1\\1 \end{bmatrix}$$
(44)
$$\bar{M}^{-} := \begin{bmatrix} 1\\1 \end{bmatrix}^{\mathrm{T}} \boldsymbol{M}(\alpha) \begin{bmatrix} 1\\1 \end{bmatrix}$$
(45)

以上より,式(34)は

$$\varepsilon = \frac{\bar{M}^+}{\bar{M}^-} =: \varepsilon_0 \tag{46}$$

と整理される. ε_0 は衝突直前の角速度に影響されない, α のみ に依存する関数である.

5.4 特異値解析

Fig.6 は σ_1 , σ_2 , ε_0 の値の (a) l_T に対する変化, (b) α に 対する変化をプロットしたものである. (a) における l_T 以外の すべての物理パラメータは, Table 1 のものと同一である.

結果より、以下のことが分かる.

- (A) 式(41)の大小関係が成り立っている:(a)(b)
- (B)全重心位置が上昇することでエネルギー損失係数が増大する(1に近付く)[12]:(a)
- (C) αの減少に伴いエネルギー損失係数が増大する(1に近付く)[13][14]:(b)
- (D) ε₀ ≈ σ₁(Ω) になっている,つまり準拘束が衝撃緩和効果
 をほぼ最大限に引き上げている: (a)(b)

ここで(D)の性質とFig.6に示した解析結果より,準拘束が 歩容の収束性の向上とエネルギー損失の緩和を同時に達成して いる,と結論することができる. RWの離散ダイナミクスを考

Fig. 6 Plots of σ_1 , σ_2 and ε_0 with respect to l_T and α

えれば、前述のように衝突時の衝撃緩和効果と収束速度の間に トレードオフがあることは明白である.しかし準拘束がこれを 解消し、エネルギー損失が少なく、かつ収束性に優れた 2 脚動 歩行を実現しているという事実は注目すべき結果と考える.ま た Fig. 6 (b) が示しているように、 α に対する ε の変化も同時 に起こるため (ただし、実際に取り得る値域は狭い)、精密でな くとも極力 α を一定値に調節するような工夫が必要となるはず である.しかしながら、準拘束が収束性を飛躍的に向上させる ため、この問題も解消される結果となる.

これまでに行った数値解析の限りでは、以下の性質が確から しい事実として観測されているので述べておく、衝突直前の角 度比を $\nu := \dot{\theta_2}/\dot{\theta_1}$ とすると、 ε の値の変化は $\nu > 1$ の範囲 で激しく、 $\nu < 1$ の領域では安定する、特に ν が 1 を超える と、 ε は急速に減少し始める、今後は、角速度比を用いた一般 的な ε の定式化とその解析を通して、これらが事実であること を理論的に示す必要がある、また、衝突姿勢拘束と回復エネル ギー拘束を同時に持つ動的歩容においては、そのポアンカレ写 像のヤコビアンの固有値(および最大特異値)が ε と等価であ る、この観点から筆者らは、Wisse らの遊脚収縮が安定性を向 上させるという主張は、「遊脚収縮が ε を減少させ定常歩容へ の収束速度を上昇させる」という性質から導かれた結果ではな いかと考察している。

6. まとめと今後の課題

本論文では、制御入力に特異点を含まない擬似仮想受動歩行 を提案するとともに、歩容のロバスト安定性を向上させる手法 およびその効果について検討した。特に、立脚終期の遊脚収縮 に対して準拘束を適用することで、歩容生成可能領域が大幅に 拡大されることを、数値解析を通して示した。適度な遊脚収縮 効果[7][8]や衝突時の股関節角度を一定に保つこと[15]が歩行 の安定性にとって重要であるという主張もあるが、角速度に影 響されない安定したエネルギー損失特性を実現する(εの変化 を小さく抑える)ことのほうが、歩容の安定化にとってはより 重要であると筆者らは考えている。

準拘束を持つ歩容は、受動歩行(一切の拘束を持たない歩容) と RW(衝突姿勢拘束と回復エネルギー拘束を同時に持つ歩容) の中間に位置するものと捉えられる.後者は自然なリミットサ イクルに強い拘束を与えるものであるのに対して、準拘束は弱 い拘束を与えるだけで RW に匹敵する高い効果を生む.衝突姿 勢や回復エネルギーを一定になるよう制御するためには、つま り RW として振る舞うためには、歩行システムの全状態(物理 パラメータ・重心位置・力学的エネルギーなど)を正確に知る必 要がある.ダイナミクスを有効に利用して漸近安定性を保証す るためには、精密な数学モデルを得なければならない、つまり ダイナミクスベースト制御を実現するためにモデルベースト制 御を行っている、ということである.これに対して準拘束は、た んに股関節を固定するだけでモデルの情報を必要としない.こ の意味で、より巧妙にダイナミクスの特長を引き出した手法で あると評価できよう.

今後の課題として,分岐後に歩幅(歩行性能全般)が減少す る理由の解明,および準拘束が持つ分岐の抑制メカニズムの検 討,などが挙げられる.筆者らは最近,歩容の分岐が歩行性能の 低下を引き起こす幾つかの例を観測している[6].本論文でも類 似する解析結果を得たわけだが,これが一般的な歩行系に共通 する性質であるならば,準拘束の意義がより高いものとなろう. また前章でも述べたように,遊脚収縮が安定性を向上させると の主張[7][8]との比較検討も重要な課題として残されている.

参考文献

- [1] 浅野,羅,山北: "受動歩行を規範とした2足ロボットの歩容生成と 制御",日本ロボット学会誌,vol.22, no.1, pp.130-139, 2004.
- [2] A. Seyfarth, H. Geyer and H. Herr: "Swing-leg retraction: a simple control model for stable running," J. of Experimental Biology, vol.206, pp.2547–2555, 2003.
- [3] A. Goswami, B. Espiau and A. Keramane: "Limit cycles in a passive compass gait biped and passivity-mimicking control laws," Autonomous Robots, vol.4, no.3, pp.273–286, 1997.
- [4] 浅野、羅: "半円足の転がり効果を利用した劣駆動仮想受動歩行—(I) コンパス型モデルの駆動力学—",日本ロボット学会誌,vol.25, no.4, pp.566-577, 2007.
- [5] 浅野,羅: "股関節二分機構を用いて上体を付加した劣駆動 2 脚ロボットの動歩行解析",日本ロボット学会誌,vol.26, no.8, pp.932-943, 2008.
- [6] F. Asano and Z.W. Luo: "Pseudo virtual passive dynamic walking and effect of upper body as counterweight," Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp.2934–2939, 2008.

浅野文彦(Fumihiko Asano)

2002 年東京工業大学大学院理工学研究科制御工学 専攻博士後期課程修了.同年理化学研究所バイオ・ ミメティックコントロール研究センター環境適応ロ ボットシステム研究チーム研究員.2008 年 10 月 より北陸先端科学技術大学院大学情報科学研究科 准教授,現在に至る.博士(工学).ロボティクス,

制御工学の研究に従事.計測自動制御学会,システム制御情報学会, IEEE の会員. (日本ロボット学会正会員)

- [7] M. Wisse, C.G. Atkeson and D.K. Kloimwieder: "Swing leg retraction helps biped walking stability," Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots, pp.295–300, 2005.
- [8] D.G.E. Hobbelen and M. Wisse: "Swing-leg retraction for limit cycle walkers improves disturbance rejection," IEEE Trans. on Robotics, vol.24, no.2, pp.377–389, 2008.
- [9] 浅野,羅,山北: "力学的エネルギー回復に基づく動的歩容生成と制 御",日本ロボット学会誌,vol.23,no.7,pp.821-830,2005.
- [10] 浅野,羅,山北: "Rimless Wheel の安定原理に基づくコンパス型 2 足ロボットの漸近安定歩容生成",日本ロボット学会誌, vol.26, no.4, pp.351-362, 2008.
- [11] 浅野,羅:"非対称な動的歩容の性能について",第9回計測自動制 御学会システムインテグレーション部門講演会論文集,pp.423-424, 2008.
- [12] F. Asano and Z.W. Luo: "Asymptotic stability of dynamic bipedal gait with constraint on impact posture," Proc. of the IEEE Int. Conf. on Robotics and Automation, pp.1246–1251, 2008.
- [13] F. Asano and Z.W. Luo: "The effect of semicircular feet on energy dissipation by heel-strike in dynamic biped locomotion," Proc. of the IEEE Int. Conf. on Robotics and Automation, pp.3976–3981, 2007.
- [14] F. Asano and Z.W. Luo: "Energy-efficient and high-speed dynamic biped locomotion based on principle of parametric excitation," IEEE Trans. on Robotics, vol.24, no.6, pp.1289–1301, 2008.
- [15] 池俣, 佐野, 藤本: "平衡点の大域的安定化原理に基づくロバストな 受動歩行", 日本ロボット学会誌, vol.26, no.2, pp.178–183, 2008.

羅 志偉(Zhi-Wei Luo)

1984年中国華中工学院自動制御と計算機学部卒業. 同年中国蘇州大学教師,1986年より愛知工業大学 客員研究員.1991年名古屋大学大学院工学研究科 情報工学専攻博士課程前期課程修了.1992年同大 学大学院博士課程後期課程修了.同年豊橋技術科学 大学助手.理化学研究所フロンティア研究員,山形

大学工学部助教授,理化学研究所バイオ・ミメティックコントロール 研究センター環境適応ロボットシステム研究チーム・チームリーダー を経て,現在,神戸大学大学院工学研究科情報知能学専攻教授.ロボ ティクス,制御工学の研究に従事.博士(工学).計測自動制御学会, 日本神経回路学会,IEEE などの会員.(日本ロボット学会正会員)