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Abstract

This paper shows that weakly-non-overlapping, non-collapsing and shallow term
rewriting systems are confluent, which is a new sufficient condition on confluence
for non-left-linear systems.
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1. Introduction

Confluence, which guarantees the uniqueness of a computation, is an impor-
tant property for term rewriting systems (TRSs). This property is undecidable
not only for general TRSs, but also for flat TRSs [Mitsu06] and length-two string
rewrite systems [Sakai08]. It becomes decidable if TRSs are either right-linear
and shallow [Godoy05], or terminating [KB70].

For left-linear TRSs, many sufficient conditions have been studied: non-
overlapping [Rosen73], parallel-closed [Huet80], and their extensions [Toyama87,
Oostrom95, Gramlich96, Oyama97, Okui98, Oyama03].

However, the analysis of non-left-linear TRSs is difficult and only few suf-
ficient conditions are known: simple-right-linear TRSs (i.e., right-linear and
non-left-linear variables do not appear in the rhs) such that either non-E-
overlapping [Ohta95] or its conditional linearizations are weight-decreasing join-
able [Toyama95]. Without right-linearity, Gomi, Oyamaguchi, and Ohta showed
sufficient conditions: strongly depth-preserving and non-E-overlapping [Gomi96],
and strongly depth-preserving and root-E-closed [Gomi98].

This paper shows that weakly-non-overlapping, non-collapsing and shallow
TRSs are confluent, which is a new sufficient condition for non-left-linear and
non-right-linear systems.

2. Basic notion

We assume that readers are familiar with basic notions of term rewriting
systems. The precise definitions are found in [Baader98].
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2.1. Abstract reduction system
For a binary relation→, we use ↔, →+ and→ ∗ for the symmetric closure,

the transitive closure, and the reflexive and transitive closure of→, respectively.
We use ◦ for the composition operation of two relations.

An abstract reduction system (ARS) G is a pair 〈V,→〉 of a set V and a
binary relation → on V . If 〈u, v〉 ∈ → we say that u is reduced to v, denoted
by u→ v. An element u of V is (G-)normal if there exists no v ∈ V such that
u→ v. We sometimes call a normal element a normal form.

Let G = 〈V,→〉 be an ARS. We say G is finite if V is finite, confluent if
← ∗ ◦ → ∗ ⊆ → ∗ ◦ ← ∗, and Church-Rosser (CR) if ↔ ∗ ⊆ → ∗ ◦ ← ∗. It is well
known that confluence and CR are equivalent.

We say G is terminating if it does not admit an infinite reduction sequence.
We say G is convergent if it is confluent and terminating. A cycle of G is a
reduction sequence t →+ t. An edge v → u is called an out-edge of v and
an in-edge of u. Note that a node v having no out-edge is normal. We say G
is connected if u ↔ ∗ v for every u, v ∈ G. We say G′ (⊆ G) is a connected

component of G if G′ is connected and u 
↔ ∗ v for any u ∈ G′ and v ∈ G \G′.

2.2. Term rewriting system
Let F be a finite set of function symbols with fixed arity, and X be an

enumerable set of variables where F ∩X = ∅. By T(F, X), we denote the set of
terms constructed from F and X . Terms in T(F, ∅) are said to be ground.

The set of positions of a term t is the set Pos(t) of strings of positive integers,
which is defined by Pos(t) = {ε} if t is a variable, and Pos(t) = {ε} ∪ {ip | p ∈
Pos(ti), 1 ≤ i ≤ n} if t = f(t1, . . . , tn) (0 ≤ n). We call ε the root position.
For p ∈ Pos(t), the subterm of t at position p, denoted by t|p, is defined as
t|ε = t and f(t1, . . . , tn)|iq = ti|q. The term obtained from t by replacing its
subterm at position p with s, denoted by t[s]p, is defined as t[s]ε = s and
f(t1, . . . , tn)[s]iq = f(t1, . . . , ti−1, ti[s]q, ti+1, . . . , tn). The size |t| of a term t
is |Pos(t)|. We use Args(t) for the set of direct subterms (or arguments) of a
term t defined as Args(t) = ∅ if t is a variable and Args(t) = {t1, . . . , tn} if
t = f(t1, . . . , tn) (0 ≤ n). For a set T of terms, Args(T ) =

⋃
t∈T Args(t).

A mapping θ : X → T(F, X) is called a substitution if its domain Dom(θ) =
{x | θ(x) 
= x} is finite. A substitution θ is naturally extended to the mapping
on terms by defining θ(f(t1, . . . , tn)) = f(θ(t1), . . . , θ(tn)). The application θ(t)
of a substitution θ to a term t is denoted by tθ.

A rewrite rule is a pair 〈l, r〉 of terms such that l 
∈ X and every variable in
r occurs in l. We write l → r for the pair. A term rewriting system (TRS) is a
set R of rewriting rules. The reduction relation →

R
on T(F, X) induced by R is

defined as follows; s→
R

t if and only if s = s[lσ]p and t = s[rσ]p for a rewriting

rule l → r ∈ R, a substitution σ, and p ∈ Pos(s). We sometimes write s
p→
R

t
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A. G1 = 〈V1,→1〉

f(a, b) f(a, a)g(b) f(b, b)

f(b, a)2
2 2

g(a)22 2

B. G2 = 〈V2,→2〉
Figure 1: R1-Reduction graphs

to indicate the rewrite step at the position p. Let s
p→
R

t. It is a top reduction

if p = ε. Otherwise it is an inner reduction, written as s
ε<→
R

t.

A term is shallow if |p| is 0 or 1 for every position p of variables in the term.
A rewrite rule l → r is shallow if l and r are shallow, and collapsing if r is a
variable. A TRS is shallow if its rules are all shallow. A TRS is non-collapsing
if it contains no collapsing rules.

Let l1 → r1 and l2 → r2 be rewrite rules whose variables have been renamed
so that variables in the former rule and those in the latter rule are disjoint.
Let p be a position in l1 such that l1|p is not a variable, and let θ be a most
general unifier of l1|p and l2. 〈r1θ, (l1θ)[r2θ]p〉 is a critical pair except that p = ε
and the two rules are identical (up to renaming variables). A TRS is weakly
non-overlapping if every critical pair consists of the identical terms.

3. Reduction graph

In this section, we introduce the notion of reduction graphs: finite graphs
that represent reductions on terms. We will show confluence by a transformation
(in Section 4) from a given reduction graph into a connected and confluent
reduction graph that contains nodes of the former reduction graph.

Definition 1. Let R be a TRS over T(F, X). An ARS G = 〈V,→〉 is an R-
reduction graph if V is a finite subset of T(F, X) and → ⊆→

R
.

Example 2. Consider a weakly-non-overlapping non-collapsing shallow TRS
R1 = { f(x, x)→ g(x), a→ b, b→ a }. The R1-reduction graph G1 = 〈V1,→1〉
shown in Figure 1 A. is terminating but is not confluent. The R1-reduction
graph G2 = 〈V2,→2〉 shown in Figure 1 B. is convergent.

We say a mapping δ : V → V is a choice mapping of G = 〈V,→〉 if v → ∗ δ(v)

and v ↔ ∗ v′ ⇒ δ(v) = δ(v′) for all v, v′ ∈ V .

Proposition 3. Let G = 〈V,→〉 be an R-reduction graph. Then,

(1) G is confluent if and only if it has a choice mapping.
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(2) G is terminating if and only if it has no cycles.
(3) If G is convergent then it has a unique choice mapping whose range is the

set of G-normal forms.

Proof. (1) Since “⇐-direction” trivially holds from the definition of choice map-
pings, we show “⇒-direction”. First we show the following claim:

Let G = 〈V,→〉 be a non-empty, connected and confluent reduction
graph. Then there exists a node v with ∀v′ ∈ V.v′ → ∗ v.

Let ||v|| = |{w | w ∈ V, w 
→ ∗ v}|, i.e., the number of nodes that cannot
reach v. Assume that the claim does not hold. Let v be a minimal node with
respect to ||v||, then ||v|| > 0 and there exists a node w such that w 
→ ∗ v.

There exists a node u such that w → ∗ u ← ∗ v from confluence. Since every
node having a path to v has a path to u, and w has no path to v but a path to
u, we obtain ||u|| < ||v||, which is a contradiction to the minimality of v.

Second we construct a mapping δ : V → V . By the preceding claim, for
every connected component Gi of G there exists a node ui reachable from all
nodes in Gi. Thus it is enough to define δ as δ(v) = ui for nodes v of Gi.
(2) The statement follows from the finiteness of V .
(3) Assume that δ1 and δ2 are different choice mappings. Then there exists a
node u such that δ1(u) 
= δ2(u). From termination property these terms δ1(u)
and δ2(u) are both normal forms, which contradicts confluence.

From the previous proposition, if a reduction graph G = 〈V,→〉 is conver-
gent, then the choice mapping is equal to the function that returns the G-normal
form of a given term. We denote the choice mapping by ↓; sometimes we also
denote v↓ instead of ↓(v). We use this notation also for substitutions σ: σ↓ is
defined by x(σ↓) = (xσ)↓ for x ∈ Dom(σ) and xσ ∈ V .

Proposition 4. Let 〈V,→ 1〉 be a convergent reduction graph. If v, v′ ∈ V

satisfies that v is → 1-normal and v′ 
→ ∗
1 v, then → 1 ∪ {(v, v′)} is convergent.

Proof. Let → 1′ = {(v, v′)} and → 2 = → 1 ∪→ 1′ . First we show the termina-
tion. Assume that → 1 ∪→ 1′ is not terminating. Since V is finite and → 1 is

terminating, any cycle contains the edge (v, v′) and hence v′ → ∗
1 v, which is a

contradiction to (2).
Second we show the confluence. Let s→ ∗

2 ti (i = 1, 2). Each sequence s→ ∗
2

ti contains the edge→ 1′ at most once (from (2)). We can assume that only one

sequence contains (v, v′) from confluence of → 1; t1 ← ∗
1 s→ ∗

1 v → 2 v′ → ∗
1 t2.

Then t1 → ∗
1 v from the confluence of → 1 and (1). Therefore t1 → ∗

2 t2.

4



(del):
→1; →2

→1 \ {(lσ, rσ)}; →2

if l → r ∈ R, (lσ, rσ) ∈ → 1, l(σ↓) ↔ ∗
2 r(σ↓)

(mov): →1; →2

→1 \ {(lσ, rσ)}; →2 ∪ {(l(σ↓), r(σ↓))} if
l → r ∈ R, (lσ, rσ) ∈ → 1,

l(σ↓), r(σ↓) ∈ V2, l(σ↓) �↔ ∗
2 r(σ↓)

Figure 2: Basic-transformation rules

b a
1’

1’

b a
2’

A. G1′ = 〈V1′ ,→1′〉 B. G2′ = 〈V2′ ,→2′〉
Figure 3: R1-Reduction graphs in the transformation

4. Confluence of weakly-non-overlapping shallow systems

Theorem 5. Weakly-non-overlapping, non-collapsing and shallow TRSs are
confluent.

This is the main theorem, which directly follows from the next key lemma
proven in Section 5 based on a transformation Conv. The transformation gives
convergence to a given reduction graph, but neither removes nodes nor divides
connected components. (See Example 12)

Lemma 6. Let R be a weakly-non-overlapping non-collapsing shallow TRS. For
any R-reduction graph G1 = 〈V1,→1〉, there exists a convergent R-reduction
graph G2 = 〈V2,→2〉 such that V2 ⊇ V1 and ↔ ∗

2 ⊇ ↔ ∗
1.

4.1. Basic transformation
Let 〈V1,→ 1〉 and 〈V2,→ 2〉 be R-reduction graphs, and let ↓ be a partial

function on terms. A basic transformation step [→ 1 ; → 2] � [→ 1′ ; → 2′ ] is an
application of a rule shown in Figure 2. We sometimes display the name of a
rule at the suffix of �.
Example 7. Consider→2 of G2 in Figure 1 B. Let ↓ be the choice mapping of
G2′ in Figure 3 B. Then

[{(f(a, a), g(a)), (f(b, b), g(b))},→2 \ {(f(b, b), g(b))}]
�(mov) [{(f(b, b), g(b))},→2] �(del) [∅,→2].

Lemma 8. Let 〈V1,→1〉 and 〈V2,→2〉 be R-reduction graphs of a TRS R. For
a basic transformation [→ 1 ;→ 2] � [→ 1′ ;→ 2′ ], the following statements hold.

(1) The convergence of → 2 is preserved if the rule (del) is applied or l(σ↓) is
→ 2-normal.
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(2) If lσ (↔ 1′ ∪↔ 2)
∗ l(σ↓) and rσ (↔ 1′ ∪↔ 2)

∗ r(σ↓), then (↔ 1 ∪↔ 2)
∗ =

(↔ 1′ ∪↔ 2′)∗.

Proof. To prove (1), it is enough to consider an application of the rule (mov).
Since l(σ↓) is→ 2-normal and l(σ↓) 
↔ ∗

2 r(σ↓), Proposition 4 implies this claim.

For (2), note that the basic-transformation holds: A.→1 =→1′ ∪{(lσ, rσ)},
B. → 2 ∪ {(l(σ↓), r(σ↓))} ⊇ → 2′ , B’. →2 ⊆ →2′ , and C. l(σ↓)↔ ∗

2′ r(σ↓).
(⊇): We have →1′ ∪→2′ ⊆ →1 ∪→2 ∪ {(l(σ↓), r(σ↓))} from A. and B. Since
l(σ↓) (↔ 1′ ∪↔ 2)

∗ lσ → 1 rσ (↔ 1′ ∪↔ 2)
∗ r(σ↓) from A., we have l(σ↓)

(↔ 1 ∪↔ 2)∗ r(σ↓) from A. Therefore (↔ 1 ∪↔ 2)∗ ⊇ (↔ 1′ ∪↔ 2′)∗.

(⊆): We have → 1 ∪ → 2 ⊆ → 1′ ∪ {(lσ, rσ)} ∪ → 2′ from A. and B’. Since

lσ (↔ 1′ ∪↔ 2)
∗ l(σ↓) ↔ ∗

2′ r(σ↓) (↔ 1′ ∪↔ 2)
∗ rσ from C., we have (lσ, rσ) ∈

(↔ 1′ ∪↔ 2′)∗ from B’. Therefore (↔ 1 ∪↔ 2)∗ ⊆ (↔ 1′ ∪↔ 2′)∗.

4.2. Procedures

For an R-reduction graph G = 〈V,→〉, let ε→ =→∩ ε→
R

and ε<→ =→∩ ε<→
R

.

Remark that an edge (s, t) ∈ → may belong to both ε→ and ε<→ . For example,

consider rules a→ b and f(x, x)→ f(b, a), and an edge (f(a, a), f(b, a)).
The monotonic extension of a reduction graph G1 = 〈V1,→1〉 is a reduction

graph G2 = 〈V2,→2〉 where

V2 = {f(s1, . . . , sn) | f ∈ F, si ∈ V1},
→2 = {(f(· · · s · · · ), f(· · · t · · · )) | s, t ∈ V1, s→1 t}.

Example 9. The monotonic extension of G2′ in Figure 3 B. is a subgraph
G3 = 〈V2,→2 \{(f(b, b), g(b))}〉 of G2 in Figure 1 (b).

We can easily show the following proposition on a monotonic extension.

Proposition 10. Let G2 = 〈V2,→2〉 be the monotonic extension of a reduction
graph G1 = 〈V1,→1〉. Then,

(1) f(· · · s · · · ) ∈ V2 and s→ ∗
1 t together imply f(· · · t · · · ) ∈ V2,

(2) V1 ⊇ Args(V ) implies V2 ⊇ V for any V ⊆ T(F, X), and
(3) both termination and confluence are preserved by this extension.

Procedure Merge is shown in Figure 4. If a TRS R is weakly non-overlapping,
the output G2 = 〈V2,→ 2〉 is convergent, V2 ⊇ V1, and (↔ 1 ∪ ↔ 3)

∗ = ↔ ∗
2

(Lemma 14).

Example 11. For a subgraph G1′′ = 〈V1,
ε→ 1〉 of G1 in Figure 1 A. and the

graph G2′ in Figure 3 B., MergeR1
(G1′′ , G2′) produces G2 in Figure 1 B. The

steps M1 and M2 are demonstrated in Examples 9 and 7, respectively.

6



Procedure: MergeR(G1, G1′)

Input: A non-collapsing shallow TRS R, an R-reduction graph G1 = 〈V1,→1〉 and
a convergent R-reduction graph G1′ = 〈V1′ ,→1′〉 such that → 1 =

ε→ 1 and

V1′ ⊇ Args(V1). Let ↓ be the choice mapping of G1′ .

Output: An R-reduction graph G2.

M1 Compute the monotonic extension G3 = 〈V3,→3〉 of G1′ and set V2 := V3.

M2 Do basic transformations from [→1 ; →3] until the first item is empty.
Let [∅ ; →2] be the result.

M3 Output G2 = 〈V2,→2〉.
Figure 4: Procedure Merge

Procedure: ConvR(G1)

Input: A non-collapsing shallow TRS R and an R-reduction graph G1 = 〈V1,→1〉.
Output: An R-reduction graph G2.

C1 If
ε<→ 1 = ∅, output the reduction graph G2 = 〈V2,→2〉 obtained from

MergeR(G1, 〈Args(V1), ∅〉) and stop.

C2 If
ε<→ 1 �= ∅, construct an R-reduction graph G1′ = 〈V1′ ,→1′〉:

V1′ = Args(V1)

→1′= {(si, ti) ∈ V1′ × V1′ | f(s1, . . . , sn)
ε<→ 1 f(t1, . . . , tn), si �= ti}.

C3 Invoke ConvR(G1′) recursively. Let G2′ be the resulting reduction graph.

C4 Output G2 = 〈V2,→2〉 obtained from MergeR(〈V1,
ε→ 1〉, G2′) and stop.

Figure 5: Procedure Conv

Procedure Conv is shown in Figure 5. If a TRS R is weakly non-overlapping,
the output G2 = 〈V2,→2〉 is convergent, V2 ⊇ V1, and ↔ ∗

2 ⊇ ↔ ∗
1 (Lemma 6).

Example 12. For G1 in Figure 1 A., the steps ConvR1(G1) are as follows.

1. The step C2 constructs the reduction graph G1′ in Figure 3 A..
2. The step C3 produces a convergent R-reduction graph G2′ (in Figure 3 B.)

from G1′ by applying ConvR1 recursively.
3. The step C4 obtains G2 by MergeR1

(G1′′ , G2′) as shown in Example 11.

5. Proof of Lemma 6

Proposition 13. Let R be a weakly-non-overlapping shallow TRS, and let G3 =
〈V3,→ 3〉 be the monotonic extension of a convergent R-reduction graph G1′ =

〈V1′ ,→ 1′〉 having the choice mapping ↓. A node v ∈ V3 is a G3-normal form if

v = l(σ↓) for some l → r ∈ R and a substitution σ such that l(σ↓) 
→ 3 r(σ↓).

7



Proof. Assume that l(σ↓) is not a G3-normal form. Since l is shallow and
G3 is a monotonic extension, ti → 1′ s for some ground direct subterm ti of

l = f(t1, . . . , tn) and s ∈ V1′ . Since weakly-non-overlapping, we have l(σ↓) =
f(· · · ti · · · )(σ↓) ε<→ 3 f(· · · s · · · )(σ↓) = r(σ↓), contradicting the premise.

Lemma 14. Let R be a weakly-non-overlapping non-collapsing shallow TRS.
If G1 and G1′ satisfy the input conditions of Merge, the reduction graph G2 =
〈V2,→2〉 obtained by MergeR(G1, G1′) is convergent and satisfies V2 ⊇ V1 and
(↔ 1 ∪↔ 3)

∗ =↔ ∗
2, where G3 = 〈V3,→3〉 is the monotonic extension of G1′ .

Proof. First we have V2 ⊇ V1, since V2 = V3 and V3 ⊇ V1 by Proposition 10 (2).
Second we show that the transformation in Step M2 of Merge continues until

the first item empty. Since G1 is an R-reduction graph with → 1 = ε→ 1, every

pair in → 1 is represented as (lσ, rσ) for some l → r ∈ R and a substitution

σ. Thus, it is enough to see that l(σ↓) and r(σ↓) are in V3 (= V2 ⊇ V1). This
follows from shallowness of l and r, xσ → ∗

1′ x(σ↓), and Proposition 10 (1).

Now we can represent the sequence as [→1 ; →3] = [→10 ; →20 ] � [→11 ;
→21 ] � · · · � [→1k

;→2k
] = [∅ ;→2]. Note that V1′ ⊇ Args(V1) and→ 3 ⊆ → 2i

.

Third we show the convergence of G2 and (↔ 1∪↔ 3)∗ =↔ ∗
2. By induction

on i, we will prove the following claims for each 0 ≤ i ≤ k:

(1) → 2i
is convergent,

(2) (↔ 1 ∪↔ 3)
∗ = (↔ 1i

∪↔ 2i
)∗, and

(3) → 2i
\ ε→ 2i

⊆ → 3 ⊆ → 2i
.

(Case i = 0): G3 = 〈V3,→3〉 is convergent by Proposition 10 (3). Thus, the
claims (1), (2), and (3) follow from →3 =→20 and →1 =→10 .
(Case i > 0): Let [→1i−1 ;→2i−1 ] � [→1i ;→2i ]. Then →2i−1 is convergent by
induction hypothesis. To prove the claim (1), from Lemma 8 (1) it is enough
to consider when (mov) is applied, and show that l(σ↓) is →2i−1-normal. From
the side condition of (mov), we have l(σ↓) 
→2i−1 r(σ↓) and hence

• l(σ↓) has no out-edges in ε→ 2i−1
, since R is weakly non-overlapping,

• Since →3 ⊆ →2i−1 , we have l(σ↓) 
→3 r(σ↓). From Proposition 13, l(σ↓)
is G3-normal. By the induction hypothesis → 2i−1

\ ε→ 2i−1
⊆ → 3, l(σ↓)

has no out-edges in → 2i−1
\ ε→ 2i−1

.

The claim (2) follows from Lemma 8 (2), if lσ ↔ ∗
2i−1

l(σ↓) and rσ ↔ ∗
2i−1

r(σ↓). Since xσ → ∗
1′ x(σ↓), → 3 is the monotonic extension of → 1′ , and l and

r are shallow, we have lσ → ∗
3 l(σ↓) and rσ → ∗

3 r(σ↓). Then, lσ → ∗
2i−1

l(σ↓)
and rσ → ∗

2i−1
r(σ↓) follow from the induction hypothesis →3 ⊆ →2i−1 .

8



The claim (3) holds if → 2i
\ ε→ 2i

⊆ → 2i−1
\ ε→ 2i−1

and→ 2i−1
⊆ → 2i

. The
former holds, since only top reductions can be added. The latter also holds,
since no edges are removed from → 2i−1

.

Proof. (of Lemma 6) It is enough to show that the reduction graph G2 obtained
by invoking ConvR1(G1) satisfies V2 ⊇ V1 and ↔ ∗

2 ⊇ ↔ ∗
1. This is proved by

induction on the total size of terms in V1.
Case 1. Assume that edges of G1 are all due to top reductions of R. Then, C1 of
Conv occurs and we obtain G2 = 〈V2,→2〉 by invoking MergeR(G1, 〈Args(V1), ∅〉).
From Lemma 14, G2 is convergent and V2 ⊇ V1. Since the monotonic extension
of 〈Args(V1), ∅〉 has no edges, we have ↔ ∗

2 =↔ ∗
1 from Lemma 14.

Case 2. Assume that some edges are due to inner reductions of R. Then,
C2-C4 of Conv occur. By induction hypothesis G2′ = 〈V2′ ,→2′〉 is convergent
and satisfies the conditions that A. V2′ ⊇ V1′ and B. ↔ ∗

2′ ⊇ ↔ ∗
1′ . Note that

V2′ ⊇ V1′ = Args(V1) from A. From Lemma 14, G2 is convergent, V2 ⊇ V1, and
( ε↔ 1 ∪↔ 3)

∗ =↔ ∗
2, where G3 = 〈V3,→3〉 is the monotonic extension of G2′ .

Now we show that ↔ ∗
3 ⊇ ε<↔ 1. Let s = f(· · · , s′, · · · ) ε<→ 1 f(· · · , t′, · · · ) = t.

From s′ → 1′ t′ and B., we have s′ ↔ ∗
2′ t′. Thus, we obtain s↔ ∗

3 t.

Therefore ↔ ∗
1 = ( ε↔ 1 ∪ ε<↔ 1)∗ ⊆ ( ε↔ 1 ∪↔ ∗

3)∗ = ( ε↔ 1 ∪↔ 3)∗ =↔ ∗
2.
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