Title	Weakl y - non- over lapping non-collapsing shal low termrewriting systens are confluent
Author(s)	Sakai, Nasahi ko; Ogawa, M zuhi to
Citation	Inf or mati on Processing Letters, 110 (18-19): 810814
Issue Date	2010-09-15
Type	Journal Article
Text version	aut hor
URL	ht t p: //hdl . handl e. net /10119/9508
Rights	NOTI CE: Thi s is the author' s versi on of a work accepted for publication by El sevier. Changes resulting fromthe publishing process, incl udi ng peer review, editing, corrections, structural formatting and other quality control mechani sns, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently publi shed in Nasahi ko Sakai, Mzuhito Ogawa, Information Processing Letters, 110(18-19), 2010, 810-814, ht t p: //dx. doi . or g/10. 1016/j . i pl . 2010. 06. 015
Description	

IAPAN

Weakly-non-overlapping non-collapsing shallow term rewriting systems are confluent

Masahiko Sakai ${ }^{\text {a }}$, Mizuhito Ogawa ${ }^{\text {b }}$
${ }^{a}$ Graduate School of Information Science, Nagoya University, Furo-cho Chikusa-ku Nagoya, 464-8603 Japan
${ }^{b}$ Japan Advanced Institute of Science and Technology, 1-1 Asahidai Nomi Ishikawa, 923-1292 Japan

Abstract

This paper shows that weakly-non-overlapping, non-collapsing and shallow term rewriting systems are confluent, which is a new sufficient condition on confluence for non-left-linear systems.

Key words: Term rewriting systems, confluence, formal languages

1. Introduction

Confluence, which guarantees the uniqueness of a computation, is an important property for term rewriting systems (TRSs). This property is undecidable not only for general TRSs, but also for flat TRSs [Mitsu06] and length-two string rewrite systems [Sakai08]. It becomes decidable if TRSs are either right-linear and shallow [Godoy05], or terminating [KB70].

For left-linear TRSs, many sufficient conditions have been studied: nonoverlapping [Rosen73], parallel-closed [Huet80], and their extensions [Toyama87, Oostrom95, Gramlich96, Oyama97, Okui98, Oyama03].

However, the analysis of non-left-linear TRSs is difficult and only few sufficient conditions are known: simple-right-linear TRSs (i.e., right-linear and non-left-linear variables do not appear in the rhs) such that either non-Eoverlapping [Ohta95] or its conditional linearizations are weight-decreasing joinable [Toyama95]. Without right-linearity, Gomi, Oyamaguchi, and Ohta showed sufficient conditions: strongly depth-preserving and non-E-overlapping [Gomi96], and strongly depth-preserving and root-E-closed [Gomi98].

This paper shows that weakly-non-overlapping, non-collapsing and shallow TRSs are confluent, which is a new sufficient condition for non-left-linear and non-right-linear systems.

2. Basic notion

We assume that readers are familiar with basic notions of term rewriting systems. The precise definitions are found in [Baader98].

2.1. Abstract reduction system

For a binary relation \rightarrow, we use $\leftrightarrow, \rightarrow^{+}$and \rightarrow^{*} for the symmetric closure, the transitive closure, and the reflexive and transitive closure of \rightarrow, respectively. We use \circ for the composition operation of two relations.

An abstract reduction system (ARS) G is a pair $\langle V, \rightarrow\rangle$ of a set V and a binary relation \rightarrow on V. If $\langle u, v\rangle \in \rightarrow$ we say that u is reduced to v, denoted by $u \rightarrow v$. An element u of V is (G-)normal if there exists no $v \in V$ such that $u \rightarrow v$. We sometimes call a normal element a normal form.

Let $G=\langle V, \rightarrow\rangle$ be an ARS. We say G is finite if V is finite, confluent if $\leftarrow{ }^{*} \circ \rightarrow^{*} \subseteq \rightarrow^{*} \circ \leftarrow^{*}$, and Church-Rosser $(C R)$ if $\leftrightarrow^{*} \subseteq \rightarrow^{*} \circ \leftarrow{ }^{*}$. It is well known that confluence and CR are equivalent.

We say G is terminating if it does not admit an infinite reduction sequence. We say G is convergent if it is confluent and terminating. A cycle of G is a reduction sequence $t \rightarrow^{+} t$. An edge $v \rightarrow u$ is called an out-edge of v and an in-edge of u. Note that a node v having no out-edge is normal. We say G is connected if $u \leftrightarrow^{*} v$ for every $u, v \in G$. We say $G^{\prime}(\subseteq G)$ is a connected component of G if G^{\prime} is connected and $u \nprec^{*} v$ for any $u \in G^{\prime}$ and $v \in G \backslash G^{\prime}$.

2.2. Term rewriting system

Let F be a finite set of function symbols with fixed arity, and X be an enumerable set of variables where $F \cap X=\emptyset$. By T(F,X), we denote the set of terms constructed from F and X. Terms in $\mathrm{T}(F, \emptyset)$ are said to be ground.

The set of positions of a term t is the set $\operatorname{Pos}(t)$ of strings of positive integers, which is defined by $\operatorname{Pos}(t)=\{\varepsilon\}$ if t is a variable, and $\operatorname{Pos}(t)=\{\varepsilon\} \cup\{i p \mid p \in$ $\left.\operatorname{Pos}\left(t_{i}\right), 1 \leq i \leq n\right\}$ if $t=f\left(t_{1}, \ldots, t_{n}\right)(0 \leq n)$. We call ε the root position. For $p \in \operatorname{Pos}(t)$, the subterm of t at position p, denoted by $\left.t\right|_{p}$, is defined as $\left.t\right|_{\varepsilon}=t$ and $\left.f\left(t_{1}, \ldots, t_{n}\right)\right|_{i q}=\left.t_{i}\right|_{q}$. The term obtained from t by replacing its subterm at position p with s, denoted by $t[s]_{p}$, is defined as $t[s]_{\varepsilon}=s$ and $f\left(t_{1}, \ldots, t_{n}\right)[s]_{i q}=f\left(t_{1}, \ldots, t_{i-1}, t_{i}[s]_{q}, t_{i+1}, \ldots, t_{n}\right)$. The size $|t|$ of a term t is $|\operatorname{Pos}(t)|$. We use $\operatorname{Args}(t)$ for the set of direct subterms (or arguments) of a term t defined as $\operatorname{Args}(t)=\emptyset$ if t is a variable and $\operatorname{Args}(t)=\left\{t_{1}, \ldots, t_{n}\right\}$ if $t=f\left(t_{1}, \ldots, t_{n}\right)(0 \leq n)$. For a set T of terms, $\operatorname{Args}(T)=\bigcup_{t \in T} \operatorname{Args}(t)$.

A mapping $\theta: X \rightarrow \mathrm{~T}(F, X)$ is called a substitution if its domain $\operatorname{Dom}(\theta)=$ $\{x \mid \theta(x) \neq x\}$ is finite. A substitution θ is naturally extended to the mapping on terms by defining $\theta\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f\left(\theta\left(t_{1}\right), \ldots, \theta\left(t_{n}\right)\right)$. The application $\theta(t)$ of a substitution θ to a term t is denoted by $t \theta$.

A rewrite rule is a pair $\langle l, r\rangle$ of terms such that $l \notin X$ and every variable in r occurs in l. We write $l \rightarrow r$ for the pair. A term rewriting system (TRS) is a set R of rewriting rules. The reduction relation $\underset{R}{\overrightarrow{~ o n ~}} \mathrm{~T}(F, X)$ induced by R is defined as follows; $s \underset{R}{ } t$ if and only if $s=s[l \sigma]_{p}$ and $t=s[r \sigma]_{p}$ for a rewriting rule $l \rightarrow r \in R$, a substitution σ, and $p \in \operatorname{Pos}(s)$. We sometimes write $s \underset{R}{\vec{p}} t$

Figure 1: R_{1}-Reduction graphs
to indicate the rewrite step at the position p. Let $s \underset{R}{\vec{p}} t$. It is a top reduction if $p=\varepsilon$. Otherwise it is an inner reduction, written as $s \underset{R}{\varepsilon<} t$.

A term is shallow if $|p|$ is 0 or 1 for every position p of variables in the term. A rewrite rule $l \rightarrow r$ is shallow if l and r are shallow, and collapsing if r is a variable. A TRS is shallow if its rules are all shallow. A TRS is non-collapsing if it contains no collapsing rules.

Let $l_{1} \rightarrow r_{1}$ and $l_{2} \rightarrow r_{2}$ be rewrite rules whose variables have been renamed so that variables in the former rule and those in the latter rule are disjoint. Let p be a position in l_{1} such that $\left.l_{1}\right|_{p}$ is not a variable, and let θ be a most general unifier of $\left.l_{1}\right|_{p}$ and $l_{2} .\left\langle r_{1} \theta,\left(l_{1} \theta\right)\left[r_{2} \theta\right]_{p}\right\rangle$ is a critical pair except that $p=\varepsilon$ and the two rules are identical (up to renaming variables). A TRS is weakly non-overlapping if every critical pair consists of the identical terms.

3. Reduction graph

In this section, we introduce the notion of reduction graphs: finite graphs that represent reductions on terms. We will show confluence by a transformation (in Section 4) from a given reduction graph into a connected and confluent reduction graph that contains nodes of the former reduction graph.

Definition 1. Let R be a TRS over $\mathrm{T}(F, X)$. An ARS $G=\langle V, \rightarrow\rangle$ is an R reduction graph if V is a finite subset of $\mathrm{T}(F, X)$ and $\rightarrow \subseteq \frac{\vec{R}}{}$.

Example 2. Consider a weakly-non-overlapping non-collapsing shallow TRS $R_{1}=\{f(x, x) \rightarrow g(x), a \rightarrow b, b \rightarrow a\}$. The R_{1}-reduction graph $G_{1}=\left\langle V_{1}, \rightarrow_{1}\right\rangle$ shown in Figure 1 A . is terminating but is not confluent. The R_{1}-reduction graph $G_{2}=\left\langle V_{2}, \rightarrow_{2}\right\rangle$ shown in Figure 1 B . is convergent.

We say a mapping $\delta: V \rightarrow V$ is a choice mapping of $G=\langle V \rightarrow\rangle$ if $v \rightarrow^{*} \delta(v)$ and $v \leftrightarrow^{*} v^{\prime} \Rightarrow \delta(v)=\delta\left(v^{\prime}\right)$ for all $v, v^{\prime} \in V$.

Proposition 3. Let $G=\langle V, \rightarrow\rangle$ be an R-reduction graph. Then,
(1) G is confluent if and only if it has a choice mapping.
(2) G is terminating if and only if it has no cycles.
(3) If G is convergent then it has a unique choice mapping whose range is the set of G-normal forms.

Proof. (1) Since " \Leftarrow-direction" trivially holds from the definition of choice mappings, we show " \Rightarrow-direction". First we show the following claim:

Let $G=\langle V, \rightarrow\rangle$ be a non-empty, connected and confluent reduction graph. Then there exists a node v with $\forall v^{\prime} \in V \cdot v^{\prime} \rightarrow^{*} v$.

Let $\|v\|=\left|\left\{w \mid w \in V, w \not \nrightarrow *^{*} v\right\}\right|$, i.e., the number of nodes that cannot reach v. Assume that the claim does not hold. Let v be a minimal node with respect to $\|v\|$, then $\|v\|>0$ and there exists a node w such that $w \not \nrightarrow *_{*}^{v}$. There exists a node u such that $w \rightarrow^{*} u \leftarrow^{*} v$ from confluence. Since every node having a path to v has a path to u, and w has no path to v but a path to u, we obtain $\|u\|<\|v\|$, which is a contradiction to the minimality of v.

Second we construct a mapping $\delta: V \rightarrow V$. By the preceding claim, for every connected component G_{i} of G there exists a node u_{i} reachable from all nodes in G_{i}. Thus it is enough to define δ as $\delta(v)=u_{i}$ for nodes v of G_{i}.
(2) The statement follows from the finiteness of V.
(3) Assume that δ_{1} and δ_{2} are different choice mappings. Then there exists a node u such that $\delta_{1}(u) \neq \delta_{2}(u)$. From termination property these terms $\delta_{1}(u)$ and $\delta_{2}(u)$ are both normal forms, which contradicts confluence.

From the previous proposition, if a reduction graph $G=\langle V, \rightarrow\rangle$ is convergent, then the choice mapping is equal to the function that returns the G-normal form of a given term. We denote the choice mapping by \downarrow; sometimes we also denote $v \downarrow$ instead of $\downarrow(v)$. We use this notation also for substitutions σ : $\sigma \downarrow$ is defined by $x(\sigma \downarrow)=(x \sigma) \downarrow$ for $x \in \operatorname{Dom}(\sigma)$ and $x \sigma \in V$.

Proposition 4. Let $\left\langle V, \rightarrow_{1}\right\rangle$ be a convergent reduction graph. If $v, v^{\prime} \in V$ satisfies that v is \rightarrow_{1}-normal and $v^{\prime} \not \leftrightarrow_{1}^{*} v$, then $\rightarrow_{1} \cup\left\{\left(v, v^{\prime}\right)\right\}$ is convergent.

Proof. Let $\rightarrow_{1^{\prime}}=\left\{\left(v, v^{\prime}\right)\right\}$ and $\rightarrow_{2}=\rightarrow_{1} \cup \rightarrow_{1^{\prime}}$. First we show the termination. Assume that $\rightarrow_{1} \cup \rightarrow_{1^{\prime}}$ is not terminating. Since V is finite and \rightarrow_{1} is terminating, any cycle contains the edge $\left(v, v^{\prime}\right)$ and hence $v^{\prime} \rightarrow{ }_{1}^{*} v$, which is a contradiction to (2).

Second we show the confluence. Let $s \rightarrow{ }_{2}^{*} t_{i}(i=1,2)$. Each sequence $s \rightarrow{ }_{2}^{*}$ t_{i} contains the edge $\rightarrow_{1^{\prime}}$ at most once (from (2)). We can assume that only one sequence contains $\left(v, v^{\prime}\right)$ from confluence of $\rightarrow_{1} ; t_{1} \leftarrow{ }_{1}^{*} s \rightarrow_{1}^{*} v \rightarrow_{2} v^{\prime} \rightarrow_{1}^{*} t_{2}$. Then $t_{1} \rightarrow{ }_{1}^{*} v$ from the confluence of \rightarrow_{1} and (1). Therefore $t_{1} \rightarrow{ }_{2}^{*} t_{2}$.
(del):

$$
\frac{\rightarrow_{1} ; \rightarrow_{2}}{\rightarrow_{1} \backslash\{(l \sigma, r \sigma)\} ; \rightarrow_{2}} \text { if } l \rightarrow r \in R,(l \sigma, r \sigma) \in \rightarrow_{1}, l(\sigma \downarrow) \leftrightarrow_{2}^{*} r(\sigma \downarrow)
$$

(mov):

$$
\begin{aligned}
& \text {): } \quad \rightarrow_{1} ; \rightarrow_{2} \\
& \rightarrow_{1} \backslash\{(l \sigma, r \sigma)\} ; \rightarrow_{2} \cup\{(l(\sigma \downarrow), r(\sigma \downarrow))\}
\end{aligned} \text { if } \quad \begin{aligned}
& l \rightarrow r \in R,(l \sigma, r \sigma) \in \rightarrow_{1}, \\
& l(\sigma \downarrow), r(\sigma \downarrow) \in V_{2}, l(\sigma \downarrow) \not \overbrace{2}^{*} r(\sigma \downarrow)
\end{aligned}
$$

Figure 2: Basic-transformation rules

A. $G_{1^{\prime}}=\left\langle V_{1^{\prime}}, \rightarrow_{1^{\prime}}\right\rangle$
B. $G_{2^{\prime}}=\left\langle V_{2^{\prime}}, \rightarrow 2_{2^{\prime}}\right\rangle$

Figure 3: R_{1}-Reduction graphs in the transformation

4. Confluence of weakly-non-overlapping shallow systems

Theorem 5. Weakly-non-overlapping, non-collapsing and shallow TRSs are confluent.

This is the main theorem, which directly follows from the next key lemma proven in Section 5 based on a transformation Conv. The transformation gives convergence to a given reduction graph, but neither removes nodes nor divides connected components. (See Example 12)

Lemma 6. Let R be a weakly-non-overlapping non-collapsing shallow TRS. For any R-reduction graph $G_{1}=\left\langle V_{1}, \rightarrow_{1}\right\rangle$, there exists a convergent R-reduction graph $G_{2}=\left\langle V_{2}, \rightarrow_{2}\right\rangle$ such that $V_{2} \supseteq V_{1}$ and $\leftrightarrow{ }_{2}^{*} \supseteq \leftrightarrow{ }_{1}^{*}$.

4.1. Basic transformation

Let $\left\langle V_{1}, \rightarrow{ }_{1}\right\rangle$ and $\left\langle V_{2}, \rightarrow{ }_{2}\right\rangle$ be R-reduction graphs, and let \downarrow be a partial function on terms. A basic transformation step $\left[\rightarrow_{1} ; \rightarrow_{2}\right] \vdash\left[\rightarrow_{1^{\prime}} ; \rightarrow_{2^{\prime}}\right]$ is an application of a rule shown in Figure 2. We sometimes display the name of a rule at the suffix of \vdash.

Example 7. Consider \rightarrow_{2} of G_{2} in Figure 1 B. Let \downarrow be the choice mapping of $G_{2^{\prime}}$ in Figure 3 B. Then

$$
\begin{aligned}
& {\left[\{(f(a, a), g(a)),(f(b, b), g(b))\}, \rightarrow_{2} \backslash\{(f(b, b), g(b))\}\right]} \\
& \vdash_{(\text {mov })}\left[\{(f(b, b), g(b))\}, \rightarrow_{2}\right] \vdash_{(\text {del })}\left[\emptyset, \rightarrow_{2}\right] .
\end{aligned}
$$

Lemma 8. Let $\left\langle V_{1}, \rightarrow_{1}\right\rangle$ and $\left\langle V_{2}, \rightarrow_{2}\right\rangle$ be R-reduction graphs of a TRS R. For a basic transformation $\left[\rightarrow_{1} ; \rightarrow_{2}\right] \vdash\left[\rightarrow_{1^{\prime}} ; \rightarrow_{2^{\prime}}\right]$, the following statements hold.
(1) The convergence of \rightarrow_{2} is preserved if the rule (del) is applied or $l(\sigma \downarrow)$ is $\rightarrow{ }_{2}$-normal.
(2) If $l \sigma\left(\leftrightarrow_{1}, \cup \leftrightarrow_{2}\right)^{*} l(\sigma \downarrow)$ and $r \sigma\left(\leftrightarrow_{1^{\prime}} \cup \leftrightarrow_{2}\right)^{*} r(\sigma \downarrow)$, then $\left(\leftrightarrow{ }_{1} \cup \leftrightarrow_{2}\right)^{*}=$ $\left(\leftrightarrow{ }_{1^{\prime}} \cup \leftrightarrow{ }_{2^{\prime}}\right)^{*}$.

Proof. To prove (1), it is enough to consider an application of the rule (mov). Since $l(\sigma \downarrow)$ is $\rightarrow{ }_{2}$-normal and $l(\sigma \downarrow) \nleftarrow{ }_{2}^{*} r(\sigma \downarrow)$, Proposition 4 implies this claim.

For (2), note that the basic-transformation holds: A. $\rightarrow_{1}=\rightarrow_{1^{\prime}} \cup\{(l \sigma, r \sigma)\}$, B. $\rightarrow_{2} \cup\{(l(\sigma \downarrow), r(\sigma \downarrow))\} \supseteq \rightarrow_{2^{\prime}}, \mathrm{B}^{\prime} . \rightarrow_{2} \subseteq \rightarrow_{2^{\prime}}$, and C. $l(\sigma \downarrow) \leftrightarrow{ }_{2^{\prime}}^{*} r(\sigma \downarrow)$.
(〇): We have $\rightarrow_{1^{\prime}} \cup \rightarrow_{2^{\prime}} \subseteq \rightarrow_{1} \cup \rightarrow_{2} \cup\{(l(\sigma \downarrow), r(\sigma \downarrow))\}$ from A. and B. Since $l(\sigma \downarrow)\left(\leftrightarrow_{1}, \cup \leftrightarrow_{2}\right)^{*} l \sigma \rightarrow_{1} r \sigma\left(\leftrightarrow_{1} \cup \cup \leftrightarrow_{2}\right)^{*} r(\sigma \downarrow)$ from A., we have $l(\sigma \downarrow)$ $\left(\leftrightarrow_{1} \cup \leftrightarrow_{2}\right)^{*} r(\sigma \downarrow)$ from A. Therefore $\left(\leftrightarrow_{1} \cup \leftrightarrow_{2}\right)^{*} \supseteq\left(\leftrightarrow_{1^{\prime}} \cup \leftrightarrow_{2^{\prime}}\right)^{*}$.
$(\subseteq):$ We have $\rightarrow_{1} \cup \rightarrow_{2} \subseteq \rightarrow_{1^{\prime}} \cup\{(l \sigma, r \sigma)\} \cup \rightarrow_{2^{\prime}}$ from A. and B'. Since $l \sigma\left(\leftrightarrow_{1^{\prime}} \cup \leftrightarrow_{2}\right)^{*} l(\sigma \downarrow) \leftrightarrow{ }_{2}^{*} r(\sigma \downarrow)\left(\leftrightarrow_{1^{\prime}} \cup \leftrightarrow_{2}\right)^{*} r \sigma$ from C., we have $(l \sigma, r \sigma) \in$ $\left(\leftrightarrow_{1^{\prime}} \cup \leftrightarrow 2_{2^{\prime}}\right)^{*}$ from B'. Therefore $\left(\leftrightarrow_{1} \cup \leftrightarrow_{2}\right)^{*} \subseteq\left(\leftrightarrow 1_{1^{\prime}} \cup \leftrightarrow 2_{2^{\prime}}\right)^{*}$.

4.2. Procedures

For an R-reduction graph $G=\langle V, \rightarrow\rangle$, let $\xrightarrow[\rightarrow]{\varepsilon}=\rightarrow \cap \underset{R}{\stackrel{\varepsilon}{\rightarrow}}$ and $\xrightarrow{\varepsilon<}=\rightarrow \cap \underset{R}{\stackrel{\varepsilon<}{\longrightarrow}}$. Remark that an edge $(s, t) \in \rightarrow$ may belong to both $\xrightarrow{\varepsilon}$ and $\xrightarrow{\varepsilon<}$. For example, consider rules $a \rightarrow b$ and $f(x, x) \rightarrow f(b, a)$, and an edge $(f(a, a), f(b, a))$.

The monotonic extension of a reduction graph $G_{1}=\left\langle V_{1}, \rightarrow_{1}\right\rangle$ is a reduction graph $G_{2}=\left\langle V_{2}, \rightarrow_{2}\right\rangle$ where

$$
\begin{aligned}
& V_{2}=\left\{f\left(s_{1}, \ldots, s_{n}\right) \mid f \in F, s_{i} \in V_{1}\right\}, \\
& \rightarrow_{2}=\left\{(f(\cdots s \cdots), f(\cdots t \cdots)) \mid s, t \in V_{1}, s \rightarrow_{1} t\right\} .
\end{aligned}
$$

Example 9. The monotonic extension of $G_{2^{\prime}}$ in Figure 3 B . is a subgraph $G_{3}=\left\langle V_{2}, \rightarrow_{2} \backslash\{(f(b, b), g(b))\}\right\rangle$ of G_{2} in Figure $1(\mathrm{~b})$.

We can easily show the following proposition on a monotonic extension.
Proposition 10. Let $G_{2}=\left\langle V_{2}, \rightarrow_{2}\right\rangle$ be the monotonic extension of a reduction graph $G_{1}=\left\langle V_{1}, \rightarrow_{1}\right\rangle$. Then,
(1) $f(\cdots s \cdots) \in V_{2}$ and $s \rightarrow{ }_{1}^{*} t$ together imply $f(\cdots t \cdots) \in V_{2}$,
(2) $V_{1} \supseteq \operatorname{Args}(V)$ implies $V_{2} \supseteq V$ for any $V \subseteq \mathrm{~T}(F, X)$, and
(3) both termination and confluence are preserved by this extension.

Procedure Merge is shown in Figure 4. If a TRS R is weakly non-overlapping, the output $G_{2}=\left\langle V_{2}, \rightarrow_{2}\right\rangle$ is convergent, $V_{2} \supseteq V_{1}$, and $\left(\leftrightarrow_{1} \cup \leftrightarrow_{3}\right)^{*}=\leftrightarrow_{2}^{*}$ (Lemma 14).

Example 11. For a subgraph $G_{1^{\prime \prime}}=\left\langle V_{1}, \xrightarrow{\varepsilon}{ }_{1}\right\rangle$ of G_{1} in Figure 1 A. and the graph $G_{2^{\prime}}$ in Figure 3 B., Merge ${ }_{R_{1}}\left(G_{1^{\prime \prime}}, G_{2^{\prime}}\right)$ produces G_{2} in Figure 1 B. The steps M1 and M2 are demonstrated in Examples 9 and 7, respectively.

Procedure: $\operatorname{Merge}_{R}\left(G_{1}, G_{1^{\prime}}\right)$

Input: A non-collapsing shallow TRS R, an R-reduction graph $G_{1}=\left\langle V_{1}, \rightarrow_{1}\right\rangle$ and a convergent R-reduction graph $G_{1^{\prime}}=\left\langle V_{1^{\prime}}, \rightarrow_{1^{\prime}}\right\rangle$ such that $\rightarrow_{1}=\stackrel{\varepsilon}{\rightarrow}{ }_{1}$ and $V_{1^{\prime}} \supseteq \operatorname{Args}\left(V_{1}\right)$. Let \downarrow be the choice mapping of $G_{1^{\prime}}$.
Output: An R-reduction graph G_{2}.
M1 Compute the monotonic extension $G_{3}=\left\langle V_{3}, \rightarrow_{3}\right\rangle$ of $G_{1^{\prime}}$ and set $V_{2}:=V_{3}$.
M2 Do basic transformations from $\left[\rightarrow_{1} ; \rightarrow_{3}\right]$ until the first item is empty. Let $\left[~ \emptyset ; \rightarrow_{2}\right.$] be the result.
M3 Output $G_{2}=\left\langle V_{2}, \rightarrow_{2}\right\rangle$.
Figure 4: Procedure Merge
Procedure: $\operatorname{Conv}_{R}\left(G_{1}\right)$
Input: A non-collapsing shallow TRS R and an R-reduction graph $G_{1}=\left\langle V_{1}, \rightarrow_{1}\right\rangle$.
Output: An R-reduction graph G_{2}.
C1 If $\xrightarrow{\varepsilon<}{ }_{1}=\emptyset$, output the reduction graph $G_{2}=\left\langle V_{2}, \rightarrow_{2}\right\rangle$ obtained from $\operatorname{Merge}_{R}\left(G_{1},\left\langle\operatorname{Args}\left(V_{1}\right), \emptyset\right\rangle\right)$ and stop.
$\mathbf{C} 2$ If $\xrightarrow{\varepsilon<} \neq \emptyset$, construct an R-reduction graph $G_{1^{\prime}}=\left\langle V_{1^{\prime}}, \rightarrow_{1^{\prime}}\right\rangle$:

$$
\begin{aligned}
& V_{1^{\prime}}=\operatorname{Args}\left(V_{1}\right) \\
& \rightarrow{1^{\prime}}^{\prime}=\left\{\left(s_{i}, t_{i}\right) \in V_{1^{\prime}} \times V_{1^{\prime}} \mid f\left(s_{1}, \ldots, s_{n}\right) \xrightarrow{\varepsilon<}{ }_{1} f\left(t_{1}, \ldots, t_{n}\right), s_{i} \neq t_{i}\right\} .
\end{aligned}
$$

C3 Invoke $\operatorname{Conv}_{R}\left(G_{1^{\prime}}\right)$ recursively. Let $G_{2^{\prime}}$ be the resulting reduction graph.
$\mathbf{C} 4$ Output $G_{2}=\left\langle V_{2}, \rightarrow_{2}\right\rangle$ obtained from $\operatorname{Merge}_{R}\left(\left\langle V_{1}, \stackrel{\varepsilon}{\rightarrow}{ }_{1}\right\rangle, G_{2^{\prime}}\right)$ and stop.
Figure 5: Procedure Conv

Procedure Conv is shown in Figure 5. If a TRS R is weakly non-overlapping, the output $G_{2}=\left\langle V_{2}, \rightarrow_{2}\right\rangle$ is convergent, $V_{2} \supseteq V_{1}$, and $\leftrightarrow_{2}^{*} \supseteq \leftrightarrow_{1}^{*}($ Lemma 6).

Example 12. For G_{1} in Figure 1 A., the steps $\operatorname{Conv}_{R_{1}}\left(G_{1}\right)$ are as follows.

1. The step C 2 constructs the reduction graph $G_{1^{\prime}}$ in Figure 3 A ..
2. The step C 3 produces a convergent R-reduction graph $G_{2^{\prime}}$ (in Figure 3 B .) from $G_{1^{\prime}}$ by applying Conv ${ }_{R_{1}}$ recursively.
3. The step C4 obtains G_{2} by $\operatorname{Merge}_{R_{1}}\left(G_{1^{\prime \prime}}, G_{2^{\prime}}\right)$ as shown in Example 11.

5. Proof of Lemma 6

Proposition 13. Let R be a weakly-non-overlapping shallow TRS, and let $G_{3}=$ $\left\langle V_{3}, \rightarrow_{3}\right\rangle$ be the monotonic extension of a convergent R-reduction graph $G_{1^{\prime}}=$ $\left\langle V_{1^{\prime}}, \rightarrow{ }_{1^{\prime}}\right\rangle$ having the choice mapping \downarrow. A node $v \in V_{3}$ is a G_{3}-normal form if $v=l(\sigma \downarrow)$ for some $l \rightarrow r \in R$ and a substitution σ such that $l(\sigma \downarrow) \not \not_{3} r(\sigma \downarrow)$.

Proof. Assume that $l(\sigma \downarrow)$ is not a G_{3}-normal form. Since l is shallow and G_{3} is a monotonic extension, $t_{i} \rightarrow_{1^{\prime}} s$ for some ground direct subterm t_{i} of $l=f\left(t_{1}, \ldots, t_{n}\right)$ and $s \in V_{1^{\prime}}$. Since weakly-non-overlapping, we have $l(\sigma \downarrow)=$ $f\left(\cdots t_{i} \cdots\right)(\sigma \downarrow) \xrightarrow{\varepsilon<}{ }_{3} f(\cdots s \cdots)(\sigma \downarrow)=r(\sigma \downarrow)$, contradicting the premise.

Lemma 14. Let R be a weakly-non-overlapping non-collapsing shallow TRS. If G_{1} and $G_{1^{\prime}}$ satisfy the input conditions of Merge, the reduction graph $G_{2}=$ $\left\langle V_{2}, \rightarrow_{2}\right\rangle$ obtained by $\operatorname{Merge}_{R}\left(G_{1}, G_{1^{\prime}}\right)$ is convergent and satisfies $V_{2} \supseteq V_{1}$ and $\left(\leftrightarrow_{1} \cup \leftrightarrow{ }_{3}\right)^{*}=\leftrightarrow{ }_{2}^{*}$, where $G_{3}=\left\langle V_{3}, \rightarrow_{3}\right\rangle$ is the monotonic extension of $G_{1^{\prime}}$.

Proof. First we have $V_{2} \supseteq V_{1}$, since $V_{2}=V_{3}$ and $V_{3} \supseteq V_{1}$ by Proposition 10 (2).
Second we show that the transformation in Step M2 of Merge continues until the first item empty. Since G_{1} is an R-reduction graph with $\rightarrow_{1}={ }^{\varepsilon}{ }_{1}$, every pair in \rightarrow_{1} is represented as $(l \sigma, r \sigma)$ for some $l \rightarrow r \in R$ and a substitution σ. Thus, it is enough to see that $l(\sigma \downarrow)$ and $r(\sigma \downarrow)$ are in $V_{3}\left(=V_{2} \supseteq V_{1}\right)$. This follows from shallowness of l and $r, x \sigma \rightarrow{ }_{1}^{*}, x(\sigma \downarrow)$, and Proposition 10 (1).

Now we can represent the sequence as $\left[\rightarrow_{1} ; \rightarrow_{3}\right]=\left[\rightarrow_{1_{0}} ; \rightarrow_{2_{0}}\right] \vdash\left[\rightarrow_{1_{1}}\right.$; $\left.\rightarrow_{2_{1}}\right] \vdash \cdots \vdash\left[\rightarrow_{1_{k}} ; \rightarrow_{2_{k}}\right]=\left[\emptyset ; \rightarrow_{2}\right]$. Note that $V_{1^{\prime}} \supseteq \operatorname{Args}\left(V_{1}\right)$ and $\rightarrow{ }_{3} \subseteq \rightarrow_{2_{i}}$.

Third we show the convergence of G_{2} and $\left(\leftrightarrow_{1} \cup \leftrightarrow \leftrightarrow_{3}\right)^{*}=\leftrightarrow{ }_{2}^{*}$. By induction on i, we will prove the following claims for each $0 \leq i \leq k$:
(1) $\rightarrow_{2_{i}}$ is convergent,
(2) $\left(\leftrightarrow_{1} \cup \leftrightarrow_{3}\right)^{*}=\left(\leftrightarrow 1_{i} \cup \leftrightarrow 2_{2}\right)^{*}$, and
$(3) \rightarrow{ }_{2_{i}} \backslash \stackrel{\varepsilon}{\rightarrow}_{2_{i}} \subseteq \rightarrow{ }_{3} \subseteq \rightarrow{ }_{2_{i}}$.
(Case $i=0$): $G_{3}=\left\langle V_{3}, \rightarrow_{3}\right\rangle$ is convergent by Proposition 10 (3). Thus, the claims (1), (2), and (3) follow from $\rightarrow_{3}=\rightarrow_{20}$ and $\rightarrow_{1}=\rightarrow_{10}$.
(Case $i>0$): Let $\left[\rightarrow_{1_{i-1}} ; \rightarrow_{2_{i-1}}\right] \vdash\left[\rightarrow_{1_{i}} ; \rightarrow_{2_{i}}\right]$. Then $\rightarrow_{2_{i-1}}$ is convergent by induction hypothesis. To prove the claim (1), from Lemma 8 (1) it is enough to consider when (mov) is applied, and show that $l(\sigma \downarrow)$ is $\rightarrow_{2_{i-1}}$-normal. From the side condition of (mov), we have $l(\sigma \downarrow) \not{\nrightarrow 2_{i-1}}^{r}(\sigma \downarrow)$ and hence

- $l(\sigma \downarrow)$ has no out-edges in $\xrightarrow{\varepsilon} 2_{2_{i-1}}$, since R is weakly non-overlapping,
- Since $\rightarrow_{3} \subseteq \rightarrow_{2_{i-1}}$, we have $l(\sigma \downarrow) \not_{3} r(\sigma \downarrow)$. From Proposition 13, $l(\sigma \downarrow)$ is G_{3}-normal. By the induction hypothesis $\rightarrow_{2_{i-1}} \backslash \stackrel{\varepsilon}{\rightarrow}_{2_{i-1}} \subseteq \rightarrow_{3}, l(\sigma \downarrow)$ has no out-edges in $\rightarrow{ }_{2_{i-1}} \backslash \stackrel{\varepsilon}{\rightarrow} 2_{i-1}$.

The claim (2) follows from Lemma $8(2)$, if $l \sigma \leftrightarrow{ }_{2_{i-1}}^{*} l(\sigma \downarrow)$ and $r \sigma \leftrightarrow{ }_{2_{i-1}}^{*}$ $r(\sigma \downarrow)$. Since $x \sigma \rightarrow{ }_{1^{\prime}}^{*} x(\sigma \downarrow), \rightarrow{ }_{3}$ is the monotonic extension of $\rightarrow{ }_{1^{\prime}}$, and l and r are shallow, we have $l \sigma \rightarrow{ }_{3}^{*} l(\sigma \downarrow)$ and $r \sigma \rightarrow{ }_{3}^{*} r(\sigma \downarrow)$. Then, $l \sigma \rightarrow{ }_{2_{i-1}}^{*} l(\sigma \downarrow)$ and $r \sigma \rightarrow{ }_{2_{i-1}}^{*} r(\sigma \downarrow)$ follow from the induction hypothesis $\rightarrow_{3} \subseteq \rightarrow_{2_{i-1}}$.

The claim (3) holds if $\rightarrow_{2_{i}} \backslash \stackrel{\varepsilon}{\rightarrow}_{2_{i}} \subseteq \rightarrow_{2_{i-1}} \backslash \stackrel{\varepsilon}{\rightarrow}_{2_{i-1}}$ and $\rightarrow_{2_{i-1}} \subseteq \rightarrow_{2_{i}}$. The former holds, since only top reductions can be added. The latter also holds, since no edges are removed from $\rightarrow_{2_{i-1}}$.

Proof. (of Lemma 6) It is enough to show that the reduction graph G_{2} obtained by invoking Conv ${ }_{R_{1}}\left(G_{1}\right)$ satisfies $V_{2} \supseteq V_{1}$ and $\leftrightarrow{ }_{2}^{*} \supseteq \leftrightarrow_{1}^{*}$. This is proved by induction on the total size of terms in V_{1}.
Case 1. Assume that edges of G_{1} are all due to top reductions of R. Then, C1 of Conv occurs and we obtain $G_{2}=\left\langle V_{2}, \rightarrow_{2}\right\rangle$ by invoking $\operatorname{Merge}_{R}\left(G_{1},\left\langle\operatorname{Args}\left(V_{1}\right), \emptyset\right\rangle\right)$. From Lemma 14, G_{2} is convergent and $V_{2} \supseteq V_{1}$. Since the monotonic extension of $\left\langle\operatorname{Args}\left(V_{1}\right), \emptyset\right\rangle$ has no edges, we have $\leftrightarrow{ }_{2}^{*}=\leftrightarrow{ }_{1}^{*}$ from Lemma 14 .
Case 2. Assume that some edges are due to inner reductions of R. Then, $\mathrm{C} 2-\mathrm{C} 4$ of Conv occur. By induction hypothesis $G_{2^{\prime}}=\left\langle V_{2^{\prime}}, \rightarrow_{2^{\prime}}\right\rangle$ is convergent and satisfies the conditions that A. $V_{2^{\prime}} \supseteq V_{1^{\prime}}$ and B. $\leftrightarrow 2_{2^{\prime}}^{*} \supseteq \leftrightarrow{ }_{1^{\prime}}^{*}$. Note that $V_{2^{\prime}} \supseteq V_{1^{\prime}}=\operatorname{Args}\left(V_{1}\right)$ from A. From Lemma $14, G_{2}$ is convergent, $V_{2} \supseteq V_{1}$, and $\left(\stackrel{\varepsilon}{\leftrightarrow}{ }_{1} \cup \leftrightarrow_{3}\right)^{*}=\leftrightarrow \stackrel{2}{2}_{2}^{*}$, where $G_{3}=\left\langle V_{3}, \rightarrow_{3}\right\rangle$ is the monotonic extension of $G_{2^{\prime}}$.

Now we show that $\leftrightarrow{ }_{3}^{*} \supseteq \stackrel{\varepsilon<}{\leftrightarrow}{ }_{1}$. Let $s=f\left(\cdots, s^{\prime}, \cdots\right) \stackrel{\varepsilon<}{\longrightarrow}{ }_{1} f\left(\cdots, t^{\prime}, \cdots\right)=t$. From $s^{\prime} \rightarrow{ }_{1^{\prime}} t^{\prime}$ and B., we have $s^{\prime} \leftrightarrow{ }_{2}^{\prime} t^{\prime}$. Thus, we obtain $s \leftrightarrow{ }_{3}^{*} t$.

Therefore $\left.\left.\leftrightarrow{ }_{1}^{*}=\left(\stackrel{\varepsilon}{\leftrightarrow}_{1} \cup \stackrel{\varepsilon<}{\leftrightarrow}\right)_{1}\right)^{*} \subseteq\left(\stackrel{\varepsilon}{\leftrightarrows}_{1} \cup \leftrightarrow{ }_{3}^{*}\right)^{*}=\left(\stackrel{\varepsilon}{\leftrightarrow}_{1} \cup \leftrightarrow\right)_{3}\right)^{*}={ }_{2}^{*}$.

References

[Baader98] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, 1998.
[Godoy05] G. Godoy and A. Tiwari. Confluence of shallow right-linear rewrite systems. CSL 2005, LNCS 3634, pp.541-556, 2005.
[Gomi96] H. Gomi, M. Oyamaguchi and Y. Ohta. On the Church-Rosser property of non-E-overlapping and strongly depth-preserving term rewriting systems. IPSJ, 37(12), pp.2147-2160, 1996.
[Gomi98] H. Gomi, M. Oyamaguchi and Y. Ohta. On the Church-Rosser property of root-E-overlapping and strongly depth-preserving term rewriting systems. IPSJ, 39(4), pp.992-1005, 1998.
[Gramlich96] B. Gramlich. Confluence without termination via parallel critical pairs. CAAP'96, em LNCS 1059, pp.211-225, 1996.
[Huet80] G. Huet. Confluent reductions: abstract properties and applications to term rewriting systems. J. ACM, 27, pp.797-821, 1980.
[KB70] D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. Computational Problems in Abstract Algebra (Ed. J. Leech), pp.263297, 1970.
[Mitsu06] I. Mitsuhashi, M. Oyamaguchi and F. Jacquemard. The Confluence Problem for Flat TRSs. AISC 2006, LNCS 4120, pp.68-81, 2006.
[Ohta95] Y. Ohta, M. Oyamaguchi and Y. Toyama. On the Church-Rosser Property of Simple-right-linear TRS's. IEICE, J78-D-I(3), pp.263-268, 1995 (in Japanese).
[Okui98] S. Okui. Simultaneous Critical Pairs and Church-Rosser Property. RTA'98, LNCS 1379, pp.2-16, 1998.
[Oostrom95] V. van Oostrom. Development closed critical pairs. HOA'95, LNCS 1074, pp.185-200, 1995.
[Oyama97] M. Oyamaguchi and Y. Ohta. A new parallel closed condition for Church-Rosser of left-linear term rewriting systems. RTA'97, LNCS 1232, pp.187-201, 1997.
[Oyama03] M. Oyamaguchi and Y. Ohta. On the Church-Rosser property of left-linear term rewriting systems. IEICE, E86-D, pp.131-135, 2003.
[Rosen73] B. K. Rosen. Tree-manipulating systems and Church-Rosser theorems. J. ACM, 20, pp.160-187, 1973.
[Sakai08] M. Sakai and Y. Wang. Undecidable Properties on Length-Two String Rewriting Systems. ENTCS, 204, pp.53-69, 2008.
[Toyama87] Y. Toyama. Commutativity of term rewriting systems. Programming of future generation computer $I I$, pp.393-407, 1988.
[Toyama95] Y. Toyama and M. Oyamaguchi. Church-Rosser property and unique normal form property of non-duplicating term rewriting systems. Kokyuroku, Kyoto University, 918, pp.139-149, 1995.

