JAIST Repository

https://dspace.jaist.ac.jp/

K Constant - Work-Space Algorjthm for a
in a Simple Polygon

Author(s) Asano, Tetsuo; Mulzer, Wo]fgang,; Wat

o Lecture Notes in Computer| Science, !

Citation
20

Issue Date 2010-02-03

Type Journal Article

Text version aut hor

URL http://hdl . handle.net/ 101119/ 9513
This is the author-createfd version ¢
Tetsuo Asano, Wolfgang Mu] zer and Y

Rights Lecture Notes in Computer| Science, !

: 2010, 9-20. The original publicati ol
at www. springerlink.com,
http://dx.doi.org/10.21007(978-3-642-
WALCOM: Al gorithms and Computati on,

Description I nternati onal Wor kshop, WALCOM 2010,
Bangl adesh, February 10-1p, 2010. P

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Constant-Work-Space Algorithm for a Shortest
Path in a Simple Polygon

Tetsuo Asano!, Wolfgang Mulzer?, Yajun Wang?

! School of Information Science, JAIST, Japan
2 Department of Computer Science, Princeton University, USA,
? Microsft Research, Beijing, China.

Abstract. We present two space-efficient algorithms. First, we show
how to report a simple path between two arbitrary nodes in a given tree.
Using a technique called “computing instead of storing”, we can design
a naive quadratic-time algorithm for the problem using only constant
work space, i.e., O(log n) bits in total for the work space, where n is the
number of nodes in the tree. Then, another technique “controlled recur-
sion” improves the time bound to O(nH'E) for any positive constant e.
Second, we describe how to compute a shortest path between two points
in a simple n-gon. Although the shortest path problem in general graphs
is NL-complete, this constrained problem can be solved in quadratic time
using only constant work space.

1 Introduction

We present two polynomial-time algorithms in a computational model which we
call constant-work-space computation, which is also known as “log-space” algo-
rithms. In this model, the input is given as a read-only array, and the algorithm
can access an arbitrary array element in constant time, This is a difference from
the strict data-streaming model where the input can be read only once in a se-
quential manner. Chan and Chen [7] give algorithms in different computational
models varying from a multi-pass data-streaming model to the random access
constant-work-space model in our paper.

One of the most important constant-work-space algorithms is a selection al-
gorithm by Munro and Raman [9] which runs in O(n!*¢) time using work space
O(1/¢) for any small constant ¢ > 0. A polynomial-time algorithm for determin-
ing connectivity of two arbitrarily specified nodes in a graph by Reingold [10]
is also another breakthrough in this area. See also [2-5] for applications to im-
age processing. Constant-work-space algorithms for geometric problems are also
known. Asano and Rote [1] give efficient algorithms for drawing Delaunay tri-
angulation and Voronoi diagram of a planar point set, and they also show how
the Euclidean minimum spanning tree for a planar point set can be constructed
quickly in this model.

Here, we focus on the efficiency of algorithms in the constant work space
model. Using two geometric problems we showcase some techniques for design-
ing space-efficient algorithms. One technique, named “ computing instead of

2 T. Asano et al.

storing” is applied to the problem of finding a simple path between two nodes
in a tree. A simple solution in a standard computational model with linear work
space goes as follows: compute an Eulerian path between the two nodes and
count how often each edge appears on the path. Removing those edges that
appear more than once gives us a desired simple path. We can implement this
idea without using any extra array. Instead of storing a count in each edge, we
compute it whenever it 1s needed, which takes linear time. In this way we can
compute a simple path in quadratic time without using any extra array.

Then we describe another technique named “controlled recursion” which
limits the depth of recursion by a predetermined value determined by the amount
of work space. Using this technique the running time of the algorithm is improved
into O(n'*) for any small positive constant ¢ using work space of size O(1/e).

The above algorithms can be extended to an algorithm for finding a short-
est path between two points in a simple polygon. A naive application leads
to a polynomial-time algorithm, but a more careful implementation yields a
quadratic-time algorithm.

2 Finding a Simple Path on a Tree Using Eulerian Tours

As a warm up, consider a simple problem: Let 7" be a tree with n nodes. Given
two nodes s and ¢, find a simple path with no node visited more than once from
s to t. This is our first problem.

Here is a simple naive algorithm. It is well known that any tree has an
Eulerian tour visiting every edge exactly twice. Let A be such a tour. A simple
path between s and ¢ is obtained by considering the portion of A between s and
t and removing redundant edges where an (undirected) edge is redundant if it
appears twice on A. Thus, if we know how to generate an Eulerian tour, it is
easy to reform a part of the tour into a simple path by counting the number of
occurrences of each edge. Unfortunately, in our constant work space model no
extra array can be used for the counts.

Thus, we apply the technique “computing instead of storing” in which
whenever we need a value we compute it instead of storing it. Whenever we
extend a path by an edge e to generate an Eulerian path between two nodes, we
generate the Eulerian path to count how often the edge e appears. If it appears
exactly once, we report the edge.

We introduce some terminology for a formal description of the algorithm. We
assume that a tree is given by adjacency lists on a read-only array. Let Adj(u)
be the adjacency list of a node u. The following two functions suffice to generate
an Eulerian tour.

FirstNeighbor(u): given a node wu, return the first node in the adjacency list
Adj(u).

NextNeighbor(u, v): Given a node u and one of its adjacent nodes, say v,
return the next node in its adjacency list Adj(u). If v is the last node, return
the first node in the list.

Constant Work Space Algorithm 3

The function FirstNeighbor can easily be performed in constant time, but
the time required for NextNeighbor depends on which data structure we as-
sume. If the tree is given by a doubly-connected edge list [6], then it takes
constant time. If a naive data structure is assumed, we may need to search all of
Adj(u) for the next element, which takes time O(A) where A is the maximum
degree of a node in the tree.

Given a tree T a starting node s, and a target node ¢, the following function
FindFeasibleSubtree finds the subtree of s which contains ¢, in other words, it
tells us which edge to follow toward the target ¢. In the algorithm we successively
find the next edge following an Eulerian path starting from s. We start from an
edge (s, u) incident to s and follow an FEulerian path by applying the function
NextNeighbor. If we come back to its twin edge (u, s) before finding the target
node ¢, it means the subtree of s rooted at u does not contain the target node ¢.

Algorithm 1: Finding a simple path from s to ¢.

Input: A tree T and two nodes s and ¢ in 7.
Output: A simple path from s to ¢.
begin

currentNode = s;

repeat
report currentNode;

currentNode = FindFeasibleSubtree(currentNode);
until currentlode =1t

end
function FindFeasibleSubtree(u,t) // returns a child of « whose
subtree contains ¢
begin
for each node v in Adj(u) do
| if SubtreeSearch(u,v,t) then return v;

end
function SubtreeSearch(u,v,t) // checks whether the subtree of u
rooted at v contains ¢
begin
currentNode = u; neighbor = v;
repeat
nextNode =NextNeighbor(neighbor, currentNode);
currentNode — neighbor; neighbor = nextNode;
until (currentlode =t or (currentNode = v and neighbor=u))
return (currentNode = t);
end

Lemma 1. Given a tree T, a starting node s, and a target node t, Algorithm 1
reports a simple path from s to t in O(n%d) time using only constant work space,
where n is the number of nodes of T and depends on which data structure is
used: if the tree is given by a doubly-connected edge list then d = O(1). If a naive
data structure is assumed then d = O(A), where A is the mazrimum node degree
T

4 T. Asano et al.

Figure 1 illustrates how the search proceeds.

Adjacency lists:
A (D)
B (D
(
(
(

)

)

. B, E, H)
D, F

Slclele!
Qx4

s

(
G (H
H (D, G, I, M)

F J K Goal

Fig. 1. Canonical traversal of a tree given by adjacency lists.

We have shown that a simple path on a tree can be found in quadratic time
if a tree is represented by an appropriate data structure. Further improvement
on its running time is possible. A key idea is a “controlled recursion,” which
was also used by Munro and Raman [9] for finding a median . The controlled
recursion is an algorithmic technique which controls the recursion depth so that
the depth never exceeds a predetermined constant, which reflects the amount of
work space.

Suppose O(k) work space is available. Then, we design algorithms, A;, As,
.., Ag such that A; calls A;_; for i = k, k—1,...,2. As describe above, the
algorithm A, finds a simple path between two nodes in a tree by removing
redundant edges in quadratic time.

The algorithm A, uses a decomposition of the Eulerian path from s to
t. Let s = wg,uy,...,u;, = t be the Eulerian path from s to t, which is
a sequence of nodes in which a node may appear more than once. We de-
compose the path into O(y/m) blocks, By, Ba,. -, B . For the first block
B = {s = U, Uty ooy U fg = v} we find the lowest common ancestor of v
and ¢ in By using a binary search. The binary search starts at a node x which is
the \/m/2-th step from wuy toward v. Now we have three nodes z, v, and ¢. For
each of them we compute its first occurrence and the last occurrence, denoted
by F(x), L(x), F(v), L(v), F(t) and L(t), respectively. As is easily seen, the node
z is a common ancestor of v and ¢ if and only if F(z) < F'(v) < L(v) < F(t) <
L(t) < L(x) holds. In the binary search, if F(v) < F (), that is, if we visit the
node v before & when we walk along the Eulerian path from s to ¢, then we have
to walk back to satisfy F(z) < F(v). If F(z) < F(v) but L(z) < L(t), then we
have to walk toward ¢ to satisfy L(t) < L(x). In each test we halve the number
of steps starting from /m/2. Whenever we find a common ancestor of v and ¢,
we compare it with the current lowest common ancestor of v and f. It i1s easy
since 1t suffices to compare the number of steps from s. The node of the longer
steps is lower than the other. Then, we walk toward ¢ to find a possible lower
common ancestor.

Constant Work Space Algorithm 5

In this way we can find the lowest common ancestor u of v and ¢. Each step
of the binary search is done in O(n) time for the Eulerian tour from s to s. Thus,
it is done in O(nlogn) time in total.

Finally, we compute a simple path from s to u, which is the initial part of the
simple path from s to ¢. The simple path is computed by removing redundant
edges from the Eulerian path from s to u. Here note that its length is at most
v/m. Thus, if we use the function Ay, it returns the simple path in O(\/ﬁz) =
O(m) = O(n) time.

In the next block B we can start from the lowest common ancestor we just
computed. In the same way we can extend the simple path toward . In this
way we extend the simple path O(y/m) times. Since each iteration is done in
O(nlogn) time, the total time we need is O(n%/? logn).

The algorithm A3 partitions the Eulerian path from s to ¢ into O(nl/?’) blocks
and finds the lowest common ancestor by the binary search, and finally returns
the Eulerian path from the starting node to the lowest common ancestor by using
the algorithm A,. The first part is done in O(n4/310g n) time and the second
part is done in O((n?/3)3/%log n?/3n'/3) = O(n*/3logn) time in total. Thus, it
runs in O(n*/3logn) time.

The algorithm Ay, partitions the Eulerian path from s to ¢ into n'/#*+1) parts
of length O(n*/+1) Tt runs in O(n't1/+1) Jogh =1 p).

Lemma 2. Algorithm Ay finds the simple path between any two nodes in a
tree of size n stored in a read-only storage by doubly-connected edge lists in
O(n'+1/(k+1) log" n) time using O(k) work storage.

Proof. The lemma is easily proved using induction on k. Note that the amount
of work space is now O(k) instead of constant. Tt is because Algorithm Ay
successively calls algorithms Ag_1, Ak_2, Ay in order. a

Now, if we set

1
€= k——l—l’ (1)

then the time complexity of Algorithm Ay is O(n'*® logl/a n/logn). Suppose
we have
n® = log'/¢ n. (2)

loglogn
=y ———.
log n

Now, the time complexity of Algorithm Ay is

Then, we have

O(n'+#). (3)

This means the following theorem.

6 T. Asano et al.

Theorem 1. Giwen two nodes s and t in a tree T with n nodes in a read-only
storage and any positive constant §, there is an algorithm which finds the simple
path from s tot in T in O(n'*?) time using only O(1/8) amount of work space.

In the theorem we assumed a doubly-connected edge list for a given tree. If
the tree is given in a simple list, then the basic operation to find the next or
previous edge takes time proportional to the length of the adjacency list. Thus,
the time complexity becomes O(n1+5A), where A is the maximum node degree
inT.

3 Shortest Paths in Polygons

Dijkstra’s algorithm for finding a shortest path between two specified vertices in
a weighted graph is one of the most popular and important algorithms. It can
find such an path in O(n?) time using a simple data structure that maintains
the current distance from a source vertex to each vertex during the progress of
the algorithm. Is it still possible to find such a shortest path in the constant-
work-space model where the input graph is given by a read-only array and only
a constant number of storage cells of length O(logn) is available as work space?
Unfortunately, no polynomial-time algorithm for the shortest path problem is
known in the model. In this paper we consider a restricted version of the problem:

Geometric Shortest Path within a Simple Polygon:
Given a simple polygon P with n vertices and two points s and ¢ in the interior
of P, find the shortest path between s and ¢ within the polygon P.

A linear-time algorithm is known for the problem if O(n) work space is al-
lowed. It works as follows: Given a simple polygon P, we first partition its interior
into triangles using Chazelle’s linear-time algorithm [8]. Then, we compute the
dual graph G* of the triangulation: the vertices of G* correspond to the triangles,
and two vertices are adjacent if their corresponding triangles share a triangular
edge. Since G* is a tree, any two vertices in GG* are connected by a unique simple
path. Given two points s and ¢ to be interconnected, we locate them in the tri-
angulation and thus in G*. Consider the unique path in G* between the triangle
containing s to the triangle containing ¢. It defines a sequence of triangular edges
hit by the path. Let (eg,e1,...,en) be this edge sequence. We walk along the
sequence while keeping the visibility angle from the starting point s and two
vertices vigw and vnigh that determine the visibility.

Whenever the visibility angle vanishes at a triangular edge, we choose a vertex
v, either vioy or vnigh, depending on which direction the path bends, and output
the edge (s,v) as a part of the shortest path and repeat the same operation after
replacing s with v. Obviously, every step is done in constant time. Thus, the
algorithm runs in O(n) time.

3.1 A Shortest-Path Algorithm Using a Dual Graph

We adapt the algorithm to use constant work space. That 1s, we develop an algo-
rithm for triangulating a given simple polygon and then finding a unique path in

Constant Work Space Algorithm 7

the dual graph. The difficulty here is, of course, that we cannot store any inter-
mediate result. To overcome the difficulty, we will use a canonical triangulation
of a simple polygon and also a canonical traversal of the tree.

Our canonical triangulation is the constrained Delaunay triangulation. For a
point set S, three points of S determine a Delaunay triangle if and only if the
circle defined by the three points contains no point of S in its proper interior.
Such a circle passing through three points of S is called an empty circle. Delaunay
triangles partition the convex hull of the set S, and the resulting structure is
called the Delaunay triangulation of S.

Now we describe how to extend this notion to a simple polygon P. The
vertices of P define a set V of points and the edges define a set E of line segments.
Constrained Delaunay edges are defined using the notion of a chord. A chord is
an open line segment between two polygon vertices that does not intersect the
boundary any edge in E. A pair (p, q) of vertices defines a constrained Delaunay
edge if and only if there is a third point » in V such that(i) (p, ¢) is a chord; (ii)
(p,7) and (g, r) are chords or polygon edges; and (iii) the circle through p,q,r
does not contain any other point s € V' that is visible from r.

It is known that a constrained Delaunay triangulation DT(P) is uniquely
defined for any simple polygon whose vertices are in general position. Once we
have a DT(P), we define its dual graph DT(P)*: vertices are triangles, and two
vertices are adjacent if and only if their corresponding triangles share an edge.
Since a simple polygon is simply connected, DT(P)* is always a tree.

Fig. 2. The unique path on the dual graph and its corresponding sequence of Delaunay
edges. (a) Constrained Delaunay triangulation of a given simple polygon, (b) the dual
graph of the triangulation (a tree), and (c) the unique path between s and ¢.

Once we have a path in DT(P)*, we walk along the path while extending the
visibility angle. Let (eg,e1,...,em) be an edge sequence corresponding to the
path. We first compute the visibility angle defined by the starting point s and
the first edge ey. Then, we take the intersection between the current visibility
angle with that defined by the next edge e;. We keep the intersection as the
current visibility angle. If the intersection becomes empty, we know that the line
segment between the current vertex and previous starting point must be a part
of the shortest path. So, we output that line segment and then we start the new

8 T. Asano et al.

propagation of the visibility angle from the current vertex. Figure 3 illustrates
how this algorithm proceeds.

T L

()

Fig. 3. Finding a shortest path along a sequence of Delaunay edges. (a) The unique
path in the dual graph, (b) extension of visibility region from the starting point until
it vanishes, and (c) shortest path within the simple polygon.

Finally, we need to describe how to implement the function NextNeigh-
bor() for DT(P)*. By the definition of the dual graph and the fact that each
DT(P)* has maximum degree at most 3, the next neighbor is found by finding
the clockwisely or or counter-clockwisely next Delaunay edge as shown in Fig-
ure 4. Hence, we need to find a third vertex of a Delaunay triangle for a given
edge. Given a Delaunay edge (u,v), we want to find a vertex w such that
(1) w is visible from the edge (u,v), and
(2) the circle defined by three points u,v, and w is empty, that is, it does not
contain any other vertex visible from the edge (u,v).

A vertex w is visible from the edge (u, v) when there is no edge intersecting
a line segment ww or vw. Thus, we can find in O(n?) time a vertex with which
a Delaunay edge forms a Delaunay triangle.

Fig.4. Walking along a path in the dual graph while finding the clockwisely next
Delaunay edge (solid or blue arrow) or counterclockwisely next edge (dotted or red
arrow).

Theorem 2. There is a constant-work space algorithm for finding a shortest
path between arbitrary two points in a simple n-gon P in time O(n3*¢) for any
small constant € > 0.

Constant Work Space Algorithm 9

Proof. Such a shortest path can be found by applying the function NextNeigh-
bor() O(n*¢) times. Since it takes O(n?) time for each call of the function, we
obtain the bound in the theorem. a

3.2 A Shortest-Path Algorithm Using Point Location

The algorithm given above is obtained by a direct adaptation of the algorithm
for reporting a simple path between two nodes in a tree. The dual graph, which
is a tree, gives us a correct direction toward a given target point. In this section
we show that there is a more direct way to find a correct direction. Suppose
we are in some triangle A in DT(P). Removing A divides P into at most 3
parts. We need to find the part that contains ¢. For this, we find an edge e; just
above the target point ¢, which is the first polygon edge hit by the vertical ray
emanating upward from ¢. Then, the part containing ¢ is the one whose boundary
contains the edge e;, which 1s found by walking along the boundary. This kind
of operation is called point location in computational geometry. It takes O(n)
time since the total length of the boundary is O(n).

Now, we know which way to go from any triangle. Unfortunately, finding
adjacent triangles in a canonical triangulation can be slow. The next idea for
efficiency is to use the trapezoidal decomposition instead of the constrained De-
launay triangulation. That is, we partition the interior of a given simple polygon
by drawing a vertical chord at each vertex toward the interior of the polygon.
This decomposition is canonical and easy to compute. Moreover, 1t inherits the
same property as the triangulation used to have for shortest paths.

Fig.5. Trapezoidal decomposition of a simple polygon for finding a shortest path
in a simple polygon. (a) A simple polygon and two internal points s and ¢ to be
interconnected within the polygon. (b) Trapezoidal decomposition of P. (c) A sequence
of trapezoids between two containing s and ¢.

The trapezoidal decomposition defined above is uniquely determined for any
simple polygon. In general, degeneracies can cause one trapezoid to be adjacent
to arbitrarily many trapezoids, as shown in Figure 6. Hence, we perform a sym-
bolic perturbation to avoid this issue: each vertex of P and the two points s
and t all have integral coordinates with O(logn) bits. Then, each integral point

10 T. Asano et al.

(z,y) is treated as a point (x + ye,y), ie, it is shifted to the right by ye for a
small parameter ¢ such that y*¢ < 1 for the largest y-coordinate y* of a vertex.
After this perturbation, no two vertices share the same x-coordinate, as shown
to the right in Figure 6.

Fig. 6. Removing degeneracies by shifting vertices to the right. An original polygon is
given to the left. The conversion results in the right polygon in which no two vertices
share the same z-coordinate.

From now on, we assume that no two vertices have the same x-coordinate.
This implies that any trapezoid is adjacent to at most four other trapezoids. Our
first goal is to find a sequence of trapezoids between the two containing s and
t. For the purpose, it suffices to find a correct neighbor at each trapezoid. More
formally, suppose we are in a trapezoid T of which we know that it appears in the
sequence. Since 7' 1s adjacent to at most four trapezoids, we want to determine
which one lies on the correct path.

A characterization of a trapezoid is given in Figure 7. For a trapezoid T', two
polygon edges e,(7) and e,(T) bound T from above and below, respectively.
The vertical sides of T' are denoted by v (T) and v, (T'), the left and right sides,
respectively. At a trapezoid T' we have to determine which way we should go
toward the target point ¢. To that end, we traverse the corresponding boundary
to find which part contains the edge e; just above .

(b)

Fig. 7. Characterization of a trapezoid T by two polygon edges bounded from above
and below and two vertical sides. (a) A trapezoid adjacent to three trapezoids. (b) A
polygon edge e, just above the point s and a polygon edge e; just above ¢.

Constant Work Space Algorithm 11

By the observation above we now know that we can find the correct next
trapezoid toward the target ¢ in O(n) time without using any extra array. Since
the length of the trapezoid sequence is O(n), the total time we need to find the
sequence is O(n?).

We still need to describe how to find the shortest path from s to ¢, but this
just works as in the previous algorithm: we know how to walk on the sequence
using O(n) time at each step. To find a shortest path we just maintain the visible
part of vertical sides of those trapezoids in the sequence. Whenever the entire
side becomes invisible, we create a new bending point and recompute the visible
part.

Given an arbitrary point ¢ in the interior of P, we can determine a trapezoid
containing ¢ as follows: first find the polygon edges which are hit by a vertical
ray emanating from ¢ upward. If we find the edge among them that is closest to
q, it is the top edge e, (7T") of the trapezoid T containing ¢. In a similar fashion
we can find a polygon edge e,(T) just below ¢ which is the bottom edge of the
trapezoid that contains ¢. Then, we compute the left and right vertical sides of
the trapezoid T, denoted by v (T) and v, (T'), respectively. We start with four
endpoints of e, (T) and e (7). v;(T) is initially determined by the rightmost of
the two left endpoints of e,(7") and ep(7). The initial value of v, (T') is similarly
determined. Then, we scan each polygon vertex. If it lies in the current trapezoid
and 1ts incident polygon edge enters the trapezoid from its left, then we update
the value v;(T) to be the z-coordinate of the vertex. If it lies in T and its incident
edge enters T from the right, we update v, (7). In this way we can obtain the
trapezoid in O(n) time.

A trapezoid is specified in this way. Then, how can we find trapezoids adjacent
to a given trapezoid? Suppose we want to find a trapezoid 7, which shares a right
boundary with 7". To do this, take a point ¢ which is located to the right of the
side at a small enough distance. Using the point ¢, the trapezoid T, is computed
in the same manner is described above. Thus, once we have a trapezoid, we can
find trapezoids adjacent to it in O(n) time.

Theorem 3. Gwen an n-gon P and two arbitrary points in P, we can find a
shortest path between them within P in O(n?) time in the constant work space
model.

4 Concluding Remarks

We have presented a constant-work-space algorithm for finding a shortest path
between two arbitrary points in a simple polygon in polynomial-time. A number
of geometric problems are open in the constant work space model. For example,
does there exist an efficient constant-working-space algorithm for computing the
visibility polygon from a point in a simple polygon. Another interesting direction
is to investigate time-space trade-offs: how much work space is need to find a
shortest path in a simple polygon in linear time?

12

T. Asano et al.

Acknowledgments

This work of T.A. was partially supported by the Ministry of Education, Science,
Sports and Culture, Grant-in-Aid for Scientific Research on Priority Areas and
Scientific Research (B).

References

10.

. T. Asano and G. Rote, “Constant-Working-Space Algorithms for Geometric Prob-
lems,” Proc. CCCG, pp.87-90, Vancouver, 2009.

T. Asano, “Constant-Working-Space Algorithms: How Fast Can We Solve Prob-
lems without Using Any Extra Array?,” Invited talk at [SAAC 2008, p.1, Dec.
2008.

T. Asano, “Constant-Working-Space Algorithms for Image Processing,” Mono-
graph: “ETVCO08: Emerging Trends and Challenges in Visual Computing,” ETVC
2008: pp.268-283, edited by Frank Nielsen, 2009.

. T. Asano, “Constant-Working-Space Image Scan with a Given Angle,” Proc. 24th
European Workshop on Computational Geometry, March 18-20, pp. 165-168, 2008,
Nancy, France.

T.Asano, Constant-Working Space Algorithm for Image Processing, Proc. of the
First AAAC Annual meeting, Hong Kong, April 26-27, p. 3, 2008

. M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, “Computational Ge-
ometry: Algorithms and Applications, Third Edition” Springer-Verlag, 2008.

T. M. Chan, E. Y. Chen, “Multi-Pass Geometric Algorithms. Discrete & Compu-
tational Geometry 37(1), pp.79-102, 2007.

. B. Chazelle, “Triangulating a simple polygon in linear time,” Discrete and Com-
putational Geometry, 6(1), pp.485-524, 1991.

J. I. Munro and V. Raman, “Selection from read-only memory and sorting with
minimum data movement,” Theoretical Computer Science 165, pp.311-323, 1996.
O. Reingold, Undirected connectivity in log-space, J. ACM 55, (2008), Article
#17, 24 pp.

