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Abstract. Given a binary image, Euclidean distance transform is to
compute for each pixel the Euclidean distance to the closest black pixel.
This paper presents a linear-time algorithm for Euclidean distance trans-
form without using any extra array. This is an improvement over a known
algorithm which uses additional arrays as work storage. An idea to re-
duce the work space is to utilize the output array as work storage. Im-
plementation results and comparisons with existing algorithms are also
included.

1 Introduction

There are increasing demands for highly functional peripherals such as printers,
scanners, and digital cameras. To achieve intelligence they need sophisticated
built-in or embedded softwares. One big difference from ordinary software in
computers is little allowance of working space which can be used by the soft-
ware. In the sense space-efficient algorithms are requested. A number of in-place
algorithms have been studied [1-4, 6]. In this paper, we propose another in-place
algorithm used for image processing. Especially, we present an algorithm for
Euclidean distance transform, which is one of the central problems in image
processing. Given a binary image, a distance transform algorithm computes for
each pixel how close it is to the closest black pixel.

This paper presents a linear-time in-place algorithm for Euclidean distance
transform without using any extra array in addition to a given image matrix.
The Euclidean distance transform is to compute a distance map in which each
element is the Euclidean distance from the element (pixel) to the closest black
element. A number of different algorithms have been proposed and implemented
for the Euclidean distance transform [5,7,9,8,10, 11]. It has been widely applied
in many different problems, especially in medical image analysis [12-14].

2 Distance Transform

Distance Transform is one of the most important operations in image processing.
Given a binary image G, our target is to compute a matrix D of the same
size such that each element D(z,y) is the distance from each corresponding
pixel (z,y) to the closest black pixel (including itself). A simple example of
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a binary image is given in Figure 1(a) in which black pixels and white pixels
are expressed by black disks and white circles, respectively. The closest black
pixel from each white pixel is indicated by an arrow. Figure 1(b) is a matrix of
distance transform in which each element is the distance transformation value,
the Euclidean distance from the corresponding pixel to the closest black pixel.
Note that the distance is 0 for every black pixel.
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Fig. 1. Euclidean distance transform. (a) Closest black pixel (black disk) from each
white pixel (white circle) in an binary image G. (b) The corresponding distance matrix
D.

A brute-force algorithm for distance transform is a breadth-first search sim-
ulating a wave propagation. Starting from a white pixel, we propagate a wave
in the increasing way of the distances from the starting pixel until it encounters
some black pixel. It is easy to implement using a queue, but unfortunately, it
takes quadratic time in the worst case.

3 Known Algorithms

It was open for many years whether the Euclidean distance transform [8] can be

computed in linear time or not, but it was finally solved in an affirmative way in

1995 and 1996 by two different groups [10, 11]. They are based on different ideas,

but both run in linear time in the number of pixels. In this paper we implement

the algorithm [11] by Hirata et al. using constant amount of working space.
Their algorithm is described in a pseudo-code as follows.

Input: h x w bit array G for an input binary image with n = hw pixels.
array: h X w array D of squared distances.
Phase 1: Vertical Scan
for each z. =0tow—1
d=0.
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for eachy. =1toh—1
if G(ze,y.) >0 thend=d+ 1 else d = 0.

D(zc,yc) = d.
for each z. =0tow—1
d=0.

for each y. =h—1to 0
if G(ze,y.) >0 thend=d+ 1 else d = 0.
D(zc,y.) = min{D(z.,y.),d}.
Phase 2: Horizontal Scan
for each y. =0to h—1
Initialize a stack.
Push (0, D(0,y.)) and (1, D(1,y.)) into the stack.
for z, =2tow—-1
repeat_forever{
(X5, Ys) = the rightmost intersection among parabolas in the stack.
if Y, < (X, — z.)? + D(z.,y.)? then exit the loop.
else remove the top element out of the stack.
}
Push (2., D(z.,y.)) into the stack.
for . =w — 1 down to 0
repeat_forever{
(Xs,Y5) = the rightmost intersection among parabolas in the stack.
if X, < . then exit the loop.
else remove the top element out of the stack.
}
(z¢,9:) = top_element(stack).
D(-Tca yc) = (-Tc - xt)Q + th
// squared distance to the closest black pixel

The algorithm is divided into two phases. The first phase is to compute the
vertical distance to the closest black pixel by two vertical scans, one from bottom
to top and the other from top to bottom, while keeping the one-directional
distances from black pixel. If we take the smaller distance at each pixel, it is the
vertical distance required.

At the beginning of the second phase the vertical distances are calculated in
the matrix D. This phase consists of two horizontal scans, one from left to right
and the other from right to left. The idea to compute the Euclidean distance is
the following. A value D(z.,y.) means that the vertically closest black black pixel
from the pixel at (xcayc) is either at (xcayc - D('Tcayc)) or (-Tcayc + D('Tcayc))a
both in the distance D(z.,y.) from (z.,y.). It is not important whether the
black pixel is above or below it, but the distance D(z.,y.) is meaningful. The
black pixel at (z.,y. £ D(z.,y.)) may be the closest black pixel for a different
white pixel at (zs,y.) in the same row. Its squared distance is given by (z. —
z5)% + D(ze,y.)?. So, if we define a parabola y = (z — x.)? + D(z.,y.)? for each
pixel (z.,y.) in the row y = y. then the squared distance from a pixel (z.,y.)
to the closest black pixel is equal to the lower envelope of those parabolas.
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It is rather easy to compute the lower envelope of those parabolas since
every parabola has the same shape and thus any two intersect at a single point.
We construct the lower envelope for the row y = y. using a stack as follows.
The stack initially consists of two elements (0, D(0,y.)) and (1, D(1,y.)), which
define parabolas y = (z — x.)? + D(z,y.)?, = = 0,1. Then, for each z, from 2
to n — 1 we take the top two elements (parabolas) from the stack and compute
their intersection (X,,Ys) that is the rightmost intersection among parabolas in
the stack in the algorithm above. It is indeed easy to compute the intersection
of two parabolas, P, : y = (z — 7,)?> + D(%,,y.)? and Py : y = (z — xp)% +
D(zp,y.)%. If the intersection (X,,Y;) lies above the current parabola P, : y =
(x — z.)? + D(zc,y.)?, that is, if Y; > (X5 — 2.)® + D(zc,yc)?, then the top
element (parabola) in the stack never contributes to the lower envelope since
the right part of the parabola P, lies above the current parabola P, and its left
part is above P,. That is why the top element of the stack must be removed.
In this way we remove top elements of the stack until the rightmost intersection
associated with the stack lies below the current parabola. Then, we push the
current parabola into the stack.

Once we have constructed the lower envelope using the stack, we scan the
same row of the matrix D from right to left, that is, from x., = w — 1 down
to z. = 0. At each pixel (z.,y.) in the row, we want to compute the vertical
distance to the lower envelope. Since the envelopes in the stack are arranged in
the increasing order of the x coordinates of their peaks, we can take out those
parabolas in the decreasing order of their z-coordinates by popping up the stack.
If the parabola just above a pixel (z.,y.) is y = (z — x;)?> + g7 then the vertical
distance to the lower envelope is given by (z. — x;)? + g? (see Figure 2).

y:(m_xc)2+gt2

Fig. 2. Influence of the white element closest from a black element over other black
elements in the same row.

Theorem 1 (Hirata et al. [11]). There is a linear-time algorithm for com-
puting the distance transform for a binary image.

4 Constant-Working-Space Algorithm

The algorithm given above is not space-efficient. It uses two working spaces,
one for distance matrix D of size n = h x w and the other for a stack of size
max{h,w}. It is rather straightforward to reduce the space for the matrix D.
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It suffices to use the input binary matrix as D. Just rename D as G, the input
image matrix in the algorithm. It causes no problem at all since all the black
pixels remain 0 and all the white pixels have positive distances.

It is not so straightforward to reduce the space for the stack. An idea in
this paper is to use the distance matrix itself as the stack. When we are com-
puting the distance transform values in the row y = y., the matrix elements
D(0,yc),...,D(n —1,y.) keep the vertical distances to the closest black pixels.
First of all we push two elements (0, D(0,y.)) and (1, D(1,y.)) into the stack.
Instead of using the stack, we put them at D(0,y.) and (0, D(0,y.)), that is, we
set,

D(0,y.) =0+ w x D(0,y.), and
D(1,y.) =1+4+w x D(1,y,.).

Of course, the original values D(0,y.) and D(1,y.) are lost, but they can be
restored by dividing the new value D(0,y.) and D(1,y.), and then taking their
integral parts. We maintain the number of stack elements by a variable, say t¢.
Whenever we want to push an element (z., D(z.,y.)) into the stack, we simulate
it by setting

D(t,yc) = zc +w x D(zc,ye),
t=t+1 (increment the value of t).

Removing the top element out of the stack is easy. Just decrement the value of
t. Whenever we need an element of a stack, we take the top element D(t —1,y,).
Then, the corresponding z and D(z,y.) values can be calculated by

x=D(t—-1,y.) modw, and
D(l‘,yc) = |_D(t - layc)/wJ

An important observation is that once we have constructed a stack, the orig-
inal values of the distance matrix D are not needed anymore. One thing we have
to worry about is that whenever we compute the vertical distance at z = x.
we can safely store the value at the corresponding matrix element, D(z.,y.). In
other words, whenever we store the vertical distance at D(z.,y.), the element
D(z.,y.) must not be a part of the stack. If it is a necessary element of the
stack, then it destroys the stack.

It is not so simple to guarantee the safeness. To easily convince ourselves of
the safeness we apply an operation called redundancy removal to the resulting
stack. The operation of redundancy removal is to remove redundant elements
from stack. Let (xo,90),(%1,91),---,(2i—1,9:—1) be a content of a stack. Each
element (z;,g;) corresponds to a parabola

Piiy=(zx—x)?+g?, i=01,...,t—1. (1)

Any two consecutive parabolas P; and P;;1 intersect at a single point, which is
denoted by (X;,Y;). Now, we have some basic observations.
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Observation 1: (g, 21,...,2;—1) is an increasing sequence, that is, zo < z1 <
e & Ti_1-

Proof. Immediate from the construction of the stack.

Observation 2: A sequence of intersections (Xg, X1,...,X; 2) is also an in-
creasing sequence, that is, Xo < Xj < --- < X;_».

Proof. For contradiction suppose X;_1 > X;. By the definition, (X;_1,Y;_1) is
the intersection of two parabolas P;_1 : y = (z —x;—1)> +¢? , and P, : y =
(z —x;)? + g7. If the third parabola P;1; : y = (x —zi11)* 4+ g7,, passes through
the intersection (X;_1,Y;_1) then we have X; = X, ;, which never happens
since it means P; coincides with P;;1. Thus, the inequality X;_; > X; implies
that the point (X;_1,Y;—1) lies above the parabola P;1. If it is true, then the
parabola P; must have been removed from the stack when P; is pushed into the
stack. This is a contradiction requested.

Now we define redundant stack elements. As is stated before, the stack gives a
sequence of parabolas appearing in the lower envelope. An important notice here
is that our goal is not to compute the lower envelope but the vertical distance
from each pixel in the current row to the lower envelope. Since each pixel had
an integral xz-coordinate, a stack element is meaningful only if its corresponding
parabola appears in the lower envelope at some integral z-coordinate. Otherwise,
that is, if the interval in which a parabola P; appears in the lower envelope
contains no integral z-coordinate, the parabola P; is useless or redundant,
which can be safely deleted from the lower envelope (or from the stack) without
affecting the calculation of vertical distances.

Observation 3: If X, < 0 then the bottom element (zg,go) in the stack is
redundant.

Proof. If Xy < 0 holds, then the two parabolas P and P; in the stack intersect
at some point to the left of x = 0. This means that the parabola P, lies above
Py in the z-interval [0,w — 1]. This means that the parabola Py never appears
in the lower envelope in the x-interval.

Observation 4: If | X; ;| + 1 = [X;] then the element (z;,g;) in the stack is
redundant.

Proof. Recall that (X;_1,Y;—1) (resp. (X;,Y;)) is intersection of two consecutive
parabolas P;_; and P; (resp., P; and P;;1). The equation |X;_1] +1 = [X;]
means that the z-coordinates of the two intersections are between two consec-
utive integers as shown in Figure 3. This means that the middle parabola does
not contribute to the lower envelope at any integral z-coordinate.

Based on the observations above, we remove all redundant elements from the
stack. The first kind of redundant stack elements can be removed by repeatedly
applying Observation 3 so that the bottom element gives the lower envelope at
x = 0. The second kind of redundant stack elements are those which have no
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Fig. 3. Three parabolas and their intersections.

contribution at integral z-coordinate. We check two consecutive stack elements
and if | X;_1]| + 1 = [X;] holds then we remove one stack element as described
in Observation 4.

Now the algorithm using only constant amount of working space is given as
follows.

Constant-Working-Space Algorithm for Euclidean Distance Transform
Input: h x w binary image G with n = hw pixels.
Phase 1: Vertical Scan
for each z. =0tow—1
d=0.
for eachy. =1toh—1
if G(x.,y.) >0 thend=d+1else d=0.

G(ze,yc) = d.
for each z. =0tow—1
d=0.

for eachy, =h—-1to 0
if G(ze,y.) >0 thend=d+ 1 else d = 0.
G(z¢,ye) = min{G(z.,y.),d}.
Phase 2: Horizontal Scan
for each y. =0to h—1
G(0,G(0,y.)) =0+ w x G(0,y.).
G(1,G(1,y.) =1+ w x G(1,y.).
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t =2 // Initialize a stack with two elements.
for z, =2tow-—-1
repeat_forever{
(Xi—2,Y; o) = the rightmost intersection among parabolas in the stack.
ifY; 2 < (X; 2 —1z.)%+ G(we,9y.)? then exit the loop.
else t =t — 1 (remove the top element out of the stack).

}
G(t,y.) = e +w x G(xe,y.), t=1t+1.
// Push (z., D(z.,y.)) into the stack.
Phase 3: Redundancy Removal.
Remove the top element of the stack while it does not contribute to the lower
envelope at x = 0.
Remove any stack element whose corresponding parabola has no contribution
to the lower envelope at any integral z-coordinate.
Phase 4: Final Distance Calculation.
for . =w —1 down to 0
repeat_forever{
(Xi—2,Y;_») = the rightmost intersection among parabolas in the stack.
if X;_5 < z. then exit the loop.
else t =t — 1 (remove the top element out of the stack).
}
z, =Gt —1,y.) modn, g, = |G(t—1,y.)/w]
// top element of the stack.
G(we,ye) = (o — 14)> + g2. ]/ the squared Euclidean distance

Theorem 2. Given a binary image G with n pizels, the algorithm above com-
putes the Euclidean Distance Transform in O(n) time without using any extra
array, that is, it outputs a distance matriz of the same size as that of the input
image such that each element is the distance from the corresponding pizel to its
closest black pizel. Moreover, the largest possible integer stored in the distance
matriz during the implementation of the algorithm is bounded by (n — 1)2.

Proof. Tt is clear that the algorithm does not use any extra array in addition
to an input image array and one for distance map. It is also clear that the
largest possible integer stored in the matrix is at most (n —1)2, which is greater
than the squared distance between two corner pixels of an input image with n
pixels. The correctness of the algorithm follows from the fact that the squared
Euclidean distance from each pixel p to its closest black pixel ¢ is given by the
squared sum of their horizontal distance (defined by their y-coordinates) and
their horizontal distance (defined by their z-coordinates), which is equal to the
vertical distance between the pixel p and the parabola defined by the pixel q.
The algorithm consists of double loops, but in each iteration of the inner loop
the top element of the stack is removed. Since any pixel is popped more than
twice, the total number of iterations in the double loops is bounded by the total
number of pixels, that is, O(n).



In-place Linear-time Algorithms for Euclidean Distance Transform 9

In the algorithm above we implement a stack using the input matrix itself.
The output is a matrix with each element being the (squared) Euclidean distance
to its closest black pixel. The largest possible squared Euclidean distance is
(n —1)%, which is achieved by a 1 x n array 100 - - -00. Thus, the matrix element
must have at least 2log,(n — 1) bits.

To implement the stack, we put z-coordinate z. and a vertical distance d in
a packed manner, that is, z + w x d < n + w x h < 2n, which is less than the
largest possible value (n — 1)? in the output matrix.

5 Bidirectional Distance Transform

Now, consider an extension to a bidirectional Euclidean Distance Transform in
which we are requested to compute for each pixel p in a given binary image
the distance to the closest pixel with a different value from p, that is, distances
in both directions from 0 to 1 and from 1 to 0 are required. The bidirectional
Euclidean distance transform is rather straightforward if O(n) working space is
available. Our goal here is to compute the distance maps using only constant
amount of working space. To distinguish distances from 0 to 1 and from 1 to 0,
we use signs. For each white pixel the distance is positive, but it is negative for
each black pixel.

Idea is the following. In the first two scans we compute vertical distances
as before. It is easy to adapt the vertical scan described before to compute
bidirectional vertical distances. The resulting distances are stored over the input
binary image as before but with signs to distinguish between black and white
pixels. The resulting value d(z,y) means existence of opposite-valued pixel in
the vertical distance |d(z,y)|. If (z,y) is originally white pixel, then d(z,y) is
positive. Otherwise, d(z,y) has the minus sign.

Our algorithm is quite similar to the previous one. Suppose we are processing
a row y = y.. If the row contains no black pixel, that is, every vertical distance
in the row is positive, then we can use the same algorithm as before. So, suppose
we have a number of 0-runs and 1-runs in the row. Let [s,t] be an interval of a
maximal 1-run in the row. Without loss of generality we assume that

p(s—1,y.) =0,p(z,y.) =1, for z=s,...,t, and p(t+1,y.) =0.

Here, p(z,y) denotes the original pixel value (0 or 1) at (z,y) in the original
binary image. Then, the distance value at any pixel p(z,y.) in this interval is not
affected by vertical distances at pixels in the row in the exterior of the interval.
This means that we can compute distance values run by run. An important
observation is that a stack fits into the interval of the run (possibly using two
more elements corresponding to the black pixels in both ends).

Theorem 3. Given a binary image G with n pizels, we can compute without
using any extra array a distance map d in linear time over G such that

(1) d(z,y) > 0 means that the pizel (x,y) is white pizel and the distance to the
closest black pizel is d(x,y), and

(2) d(z,y) < 0 means that the pizel (x,y) is black pizel and the distance to the
closest white pizel is —d(z,y).
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6 Concluding Remarks and Future Works

In this paper we have presented a linear-time algorithm for Euclidean Distance
Transform which uses only constant amount of working space. We have imple-
mented our algorithm and verified that the running time is almost the same as
that of the existing algorithm using stack. An advantage of the proposed algo-
rithm is space-efficiency. It is important for applications in embedded software
for visual equipments such as digital cameras.

One of the future works is to extend the idea in this paper to a multiple
intensity image. Given an image G with intensities 0,1, ..., g for some constant,
g > 1, for each pixel (z,y) with intensity G(z,y) > 1 we want to compute the
distance to a closest pixel with intensity less than G(z,y), and also for each pixel
(z,y) with intensity G(x,y) < g we want to compute the distance to a closest
pixel with intensity greater than G(z,y).
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