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Abstract- We address a neural oscillator based control scheme 

to achieve biologically inspired motion generation. In general, it is 
known that humans or animals exhibit novel adaptive behaviors 
regardless of their kinematic configurations against unexpected 
disturbances or environment changes. This is caused by the 
entrainment property of the neural oscillator which plays a key 
role to adapt their nervous system to the natural frequency of the 
interacted environments. Thus we focus on a self-adapting robot 
arm control to attain natural adaptive motions as a controller 
employing the neural oscillator. To demonstrate the excellence of 
entrainment, we implement the proposed control scheme to a 
single pendulum coupled with the neural oscillator in simulation 
and experiment. Then this work shows the performance of the 
robot arm coupled to neural oscillators in various tasks that the 
arm traces a trajectory. Exploiting the neural oscillator and its 
entrainment property, we experimentally verify an impressive 
capability of biologically inspired self-adaptation behaviors that 
enables the robot arm to make adaptive changes corresponding to 
an unexpected environmental variety. 

I. INTRODUCTION 

Recently biologically inspired systems and control methods 
have been studied widely, in particular in robotics field. Thus, 
a number of virtual human or animal-like robots and control 
approaches have been yielded for the last decade. Owing that 
such approaches enable robots to embody autonomous 
dynamic adaptation motion against unknown environmental 
changes, its attraction has become generally gained and issued. 
This is because that the musculo-skeletal system is activated 
like a mechanical spring by means of the central pattern 
generators (CPGs) and their entrainment property [1]-[3]. The 
CPGs consist in the neural oscillator network and produce a 
stable rhythmic signal. Entrainment of the neural oscillator 
plays a key role to adapt the nervous system to the natural 
frequency of the interacted environments incorporating a 
sensory feedback. Hence, the neural oscillator in the nervous 
system offers a potential controller, since it is known to be 
robust and have an entrainment characteristic as a local 
controller in humans or animals. 

Relating these previous works, the mathematical description 
of a neural oscillator was presented in Matsuoka’s works [1]. 
He proved that neurons generate the rhythmic patterned output 
and analyzed the conditions necessary for the steady state 
oscillations. He also investigated the mutual inhibition 

networks to control the frequency and pattern [2], but did not 
include the effect of the feedback on the neural oscillator 
performance. Employing Matsuoka’s neural oscillator model, 
Taga et al. investigated the sensory signal from the joint angles 
of a biped robot as feedback signals [3]-[4], showing that 
neural oscillators made the robot robust to the perturbation 
through entrainment. This approach was applied later to 
various locomotion systems [5]-[7]. In addition to the studies 
on robotic locomotion [8], more efforts have been made to 
implement the neural oscillator to a real robot for various 
applications. Williamson showed the system that had 
biologically inspired postural primitives [9]. He also proposed 
the neuro-mechanical system that was coupled with the neural 
oscillator for controlling its arm [10]. Arsenio [11] suggested 
the multiple-input describing function technique to evaluate 
and design nonlinear systems connected to the neural oscillator.  

As above, existing works in field of biologically inspired 
system based on neural oscillators have yielded notable results 
in many cases. However approaches for a proper behavior 
generation and complex task were not clearly described due to 
the difficulty in application considering a real robotic 
manipulator coupled with the neural oscillator. Yang has 
presented simulation and experimental results in controlling a 
robot arm and humanoid robot incorporating neural oscillators 
[12]-[15]. This work addresses how to control a real system 
coupled with the neural oscillator for a desired task. For this, 
real-time feedback is implemented to exploit the entrainment 
feature of the neural oscillator against unpredictable 
disturbances. 

In the following section, a neural oscillator is briefly 
explained and its entrainment property is described and verified. 
Details of the dynamic stability of the developed methodology 
are discussed in Section III. The experimental results are 
presented in Section IV. Finally, conclusions are drawn in 
Section V. 

II. RHYTHMIC MOVEMENT USING NEURAL OSCILLATOR 

A. Matsuoka’s Neural Oscillator 
Matsuoka’s neural oscillator consists of two simulated 

neurons arranged in mutual inhibition as shown in Fig. 1 [1]-
[2]. If gains are properly tuned, the system exhibits limit cycle 
behaviours. The trajectory of a stable limit cycle can be derived 
analytically, describing the firing rate of a neuron with self-
inhibition. The neural oscillator is represented by a set of 
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nonlinear coupled differential equations given as 
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where xe(f)i is the inner state of the i-th neuron which represents 
the firing rate; ve(f)i represents the degree of the adaptation, 
modulated by the adaptation constant b , or self-inhibition 
effect of the i-th neuron; the output of each neuron ye(f)i is taken 
as the positive part of xi, and the output of the whole oscillator 
as Y(out)i; wij (0 for i≠j and 1 for i=j) is the weight of inhibitory 
synaptic connection from the j-th neuron to the i-th neuron, and 
wei, wfi are also weights from the extensor neuron to the flexor 
neuron, respectively; wijyi represents the total input from the 
neurons inside the network; the input is arranged to excite one 
neuron and inhibit the other, by applying the positive part to 
one neuron and the negative part to the other; Tr and Ta are 
time constants of the inner state and the adaptation effect of the 
i-th neuron, respectively; si is the external input, and gi 
indicates the sensory input from the coupled system which is 
scaled by the gain ki. 

 

Figure 2 shows two types of mechanical systems connected 
to the neural oscillator. The desired torque signal to the i-th 
joint can be given by 

,)( iiiviii bk θθθτ &−−=                               (2) 
where ki is the stiffness of the joint, bi the damping coefficient, 
θi the joint angle, and θvi is the output of the neural oscillator 
that produces rhythmic commands of the i-th joint. The neural 
oscillator follows the sensory signal from the joints, thus the 
output of the neural oscillator may change corresponding to the 
sensory input. This is what is called “entrainment” that can be 
considered as the tracking of sensory feedback signals so that 
the mechanical system can exhibit adaptive behavior 
interacting with the environment.  

B. Entrainment Property of Neural Oscillator 
Generally, it has been known that the Matsuoka’s neural 

oscillator exhibits the following properties: the natural 
frequency of the output signal increases in proportion to 1/Tr. 
The magnitude of the output signal also increases as the tonic 
input increases. Tr and Ta have an effect on the control of the 
delay time and the adaptation time of the entrained signal, 
respectively. Thus, as these parameters decrease, the input 
signal is well entrained. And the minimum gain ki of the input 
signal enlarges the entrainment capability, because the 
minimum input signal is needed to be entrained appropriately 
in the range of the natural frequency of an input signal. In this 
case, regardless of the generated natural frequency of the 
neural oscillator and the natural frequency of an input signal, 
the output signal of the neural oscillator locks onto an input 
signal well in a wide range. 

Figure 3 illustrates the entrainment procedure of the neural 
oscillator. If we properly tune the parameters of the neural 
oscillator, the oscillator exhibits the stable limit cycle 
behaviors. In Figure 1, the gain k of the sensory feedback was 
sequentially set as 0.02, 0.2 and 0.53 such as Figure 3 (a), (b) 
and (c). When k is 0.02, the output of the neural oscillator can’t 
entrain the sensory signal input as shown in Figure 3 (a). The 
result of Figure 3 (b) indicates the signal partially entrained. If 
the gain k is properly set as 0.53, the neural oscillator produces 
the fully entrained signal as illustrated in Figure 3 (c) in 
contrast to the result of Figure 3 (b).  

C. Verification of Entrainment Property through Experiment 
In this subsection, we experimentally verify the entrainment 

capability of the neural oscillator and its validation addressed 
in above subsection. As illustrated in Fig. 2, the single 
pendulum is tightly coupled with the neural oscillator. This 
means that the neural oscillator observes and entrains the 
encoder value of the motor in terms of the sensory feedback 
and, the output of the neural oscillator drives the motor directly. 
Hence, the pendulum is excited periodically by the output 
generated in the neural oscillator. And also the coupled 
oscillator-pendulum exhibits natural adaptive motions even 
though we swing the pendulum arbitrary 22s to 38s and 56s to 
74s sequentially as shown in Fig. 5. It can be confirmed from 

 
Fig. 2.  Mechanical system coupled to the neural oscillator

 
Fig. 1.  Schematic diagram of Matsuoka Neural Oscillator 
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the experimental result that entrainment of the neural oscillator 
enables the coupled system to show naturally self-adapting 
motions against unpredictable disturbances. 

 

 

 
III. CONTROL SCHEME BASED ON NEURAL OSCILLATOR 

 
The neural oscillator is a non-linear system, thus it is 

generally difficult to analyze the dynamic system when the 
oscillator is connected to it. Therefore we only analyze the 
stability of the inner dynamics of the neural oscillator (see 
Appendix). Also a graphical approach known as the describing 
function analysis has been proposed earlier [16]. The main idea 
is to plot the system response in the complex plane and find the 
intersection points between two Nyquist plots of the dynamic 
system and the neural oscillator. The intersection points 
indicate limit cycle solutions. However, even if a rhythmic 
motion of the dynamic system is generated by the neural 
oscillator, it is usually difficult to obtain the desired motion 
required by the task.  This is because many oscillator 
parameters need to be tuned, and different responses occur 
according to the inter-oscillator network. Hence, we propose 
the control method that enables a robot system to perform a 
desired motion without precisely tuning parameters of the 
neural oscillator within the range of its well-known stable 
condition.  

Figure 6 illustrates a schematic model of a robot arm whose 
each joint is coupled to the neural oscillators. And a virtual 

Fig. 6. Schematic robot arm control model coupled with neural oscillators

 
Fig. 4.  Experimental setup for driving the single pendulum coupled with 
the neural oscillator; This operating system runs at 200Hz in real time.
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(c) 

Fig. 3. Simulation results on the entrainment property of the neural 
oscillator. The solid line is the output of the neural oscillator and the 
dashed line indicates the sensory signal input.  
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Fig. 5. Experiment result on self-adapting motions of the coupled 
oscillator -pendulum. The red line is the encoder value and the dashed line 
indicates the output of the neural oscillator. 
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force leads the coupled robot arm to a given motion. The 
virtual force inducer (VFI) such as springs and dampers which 
is supposed to exist virtually at the end-effector of a 
manipulator can be transformed into equivalent torques. This 
causes the end-effector of a robot arm to draw according to the 
desired trajectory calculating position error. Also, it is shown 
that ill-posedness of inverse kinematics can be resolved in a 
natural way using without introducing any artificial 
optimization criterion [17]-[18]. However, even in such a 
method kinematic configurations including redundant joints 
may not be guaranteed, even though the posture of a robot arm 
could be set only within a certain boundary.  

From this point of view, it would be advantageous if neural 
oscillators are hardly coupled to each joint of a robot arm. 
When the oscillators are implemented to a robotic arm, they 
provide a proper motor command considering the movements 
of the joints with sensory signals. Since biologically inspired 
motions of each joint as described in section II are attained by 
entrainment of the neural oscillator, the coupled joint can 
respond intuitively according to environmental change or 
unknown disturbance inputs performing an objective motion. 
In addition, each neural oscillator can be tuned in order to give 
the criterion for limitation of motion within a driving range to 
the joints considering the amplitude of the sensory feedback 
signal. 

In general, dynamics of a robot system with n-th DOFs could 
be expressed as   
 

1( ) ( ) ( , ) ( ) ,
2

H q q H q S q q q g q u⎧ ⎫+ + + =⎨ ⎬
⎩ ⎭

&&& & &                 (3) 

 

where H denotes the n×n inertia matrix of a robot, the second 
term in the right hand side of Eq.(3) stands for coriolis and 
centrifugal force, and the third term is the gravity effect. Then 
a control input for a rhythmic motion of the dynamic system 
shown in Eq. (3) is introduced as follows;   
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where k and ς0 is the spring stiffness and damping coefficient, 
respectively for the virtual components. C0 is the joint damping. 
ko and qodi are the stiffness gain and the output of the neural 
oscillator that produces rhythmic commands, respectively.  

The control inputs as seen in Eq. (4) consist of two control 
schemes. One is based on Virtual spring-damper Hypothesis 
[17]-[18] and the other is determined in terms of the output of 
the neural oscillator as illustrated in Eq. (2). In the control 
input of Eq. (4), the first term describes a joint damping for 

restraining a certain self-motion which could be occurred in a 
robot system with redundancy, and the second term means PD 
control in task space by using of Jacobian transpose, and also a 
spring and a damper in the sense of physics. Appropriate 
selection of  the parameters such as joint damping factors C0, 
stiffness k and damping coefficient ς renders the closed-loop 
system dynamics convergent, that is, x is converged into xd and 
both of x&  and q&  are become 0 as time elapses. In general, the 
neural oscillators coupled to the joints perform the given 
motion successively interacting with a virtual constraint owing 
to the entrainment property, if gains of the neural oscillator are 
properly tuned [12]-[13]. In the proposed control method, the 
VFI is considered as a virtual constraint. Also, the coupled 
model enables a robotic system to naturally exhibit a 
biologically inspired motion employing sensory signals 
obtained from each joint under an unpredictable environment 
change.  

Then, closed-loop dynamics with Eq. (3) and Eq. (4) is 
expressed as   
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The inner product between q&  and the closed-loop dynamics 

of Eq. (5) yields   
 

0
1( ) ( ) ( , )
2

0

T T

T
o

q H q q H q S q q C q J k x

J k x k qς

⎡ ⎧ ⎫+ + + + Δ⎨ ⎬⎢ ⎩ ⎭⎣
⎤+ + Δ =⎦

&& && & &

&

              (6) 

 
and 
 

0 0,T Td E q C q x k x
dt

ς= − − ≤& & & &                     (7) 

 
where E stands for the total energy 

 
2 21( , , ) ( )

2 2 2
T okkE q x q q H q q x qΔ Δ = + Δ + Δ& & &         (8) 

 
In Eq. (8), the first term of the quantity E describes the 

kinetic energy of the robot system, the second term means an 
artificial potential energy caused by the error xΔ  in task space 
and the error qΔ  gives rise to an artificial potential energy 
corresponding to the third term in joint space. As it is well 
known in robot control, the energy balance relation of Eq. (7) 
shows that the input-output pair ( , )u q&  related to the motion of 
Eq. (6) satisfies passivity. 

IV. EXPERIMENTAL VERIFICATION: OPENING AND 
CLOSING A DRAWER 

For considering the possibility of the proposed control 
scheme described in Section III, a real robot arm with 6 
degrees of freedom (see Fig. 7 (b)) are employed and a real 
time control system is constructed. This arm controller runs at 
200Hz and is connected via IEEE1394 for data transmission at 
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4kHz. ATI industrial automation’s Mini40 sensor was fitted to 
the wrist joint of the arm to detect external disturbances. The 
appropriate parameters in Table I were used for the neural 
oscillator. Also Table I illustrates the parameters on the arm 
dynamics of the real robot. Since the desired motions are 
generated in the horizontal plane, q1 and q3 are set to 90°. The 
initial values of q5 and q6 are set to 0°, respectively. q2 and q4, 
corresponding to θ1 and θ2 in Fig. 7 (a), respectively, are 
controlled by the neural oscillators. We performed extensive 
experiments to evaluate the proposed control scheme described 
in section III.  

 
TABLE I 

PARAMETERS OF THE NEURAL OSCILLATOR & ROBOT ARM MODEL 

Initial parameters 
Neural oscillator(1) Neural oscillator(2) 

Inhibitory weight (w1) 1.7 Inhibitory weight (w2) 1.7 
Time constant (Tr1) 0.68 Time constant (Tr2) 0.7 
Time constant(Ta1) 1.36 Time constant(Ta2) 1.4 
Sensory gain  (k1) 3.1 Sensory gain  (k2) 15.6 

Tonic input   (s1) 1.0 Tonic input   (s2) 1.0 

Robot Arm Model 
Mass 1 (m1) 2.347kg Mass 2 (m2) 0.834kg 
Inertia 1 (I1) 0.0098kgm2 Inertia 2 (I2) 0.0035 kgm2

Length 1 (l1) 0.224m Length 2 (I2) 0.225m 

A. Experimental System 

 
Figure 8 conceptually illustrates the objective tasks with 

experimental setup for the validation of the proposed control 

scheme. We evaluate the entrainment capability of the neural 
oscillator that enables a manipulator to implement and sustain 
the given task under various environmental changes. Hence, in 
order to verify the possibility of such adaptation performance, 
we apply various circumstances to the coupled oscillator-robot 
arm with the tasks with respect to opening and closing a drawer 
as seen in Fig. 8. We tightly joined the end-effector of the robot 
arm to the drawer. The end-effector’s direction of the robot 
arm is designed in accordance with the direction to open or 
close the drawer under the condition that the drawer is not 
rotated but fixed. In Figs. 8 (b) and (c), the drawer was rotated 
clockwise and counter-clockwise about 12° for considering 
unknown environmental changes. Then, the end-effector of the 
robot arm brings about various collision problems with the 
drawer due to a different direction between the end-effector of 
the robot arm and the drawer. Now, we will examine what 
happens in the arm motion on performing the objective task if 
additive external disturbances exist. 

B. Experimental Results 
Figures 9 and 10 illustrate the experimental results as the 

sensory feedback of the neural oscillator is turned off and on, 
respectively.  In the first case, if the drawer isn’t moved during 
0s to 20s, the desired motion of robot arm is not changed. The 
first joint (q2) and the second one (q4) are actuated to move to 
the distance corresponding to external forces. Hence, if the 
drawer rotates about +12° and -12° during 20s to 40s and 40s 
to 60s, the robot arm’s motion is autonomously altered. As 
shown in Figs 9 and 10, the end-effector of the robot arm 
draws the trajectories corresponding to the desired motion for 
opening and closing the drawer. The straight dotted lines 
indicate the desired trajectories of the robot arm generated by 
simulation. The blue lines show the measured trajectories of 
the end-effector of the robot arm in experiments. In Fig. 9, 
movements of the robot arm are identical with the expected 
performance although there exist inefficient motions due to 
unknown disturbances. This is because that the desired input of 
each joint is modified adequately by the impedance model (see 
Figs. 6 and 7(a)) even though the sensory information of the 
neural oscillators isn’t fed again. In comparison with this, the 
robot arm coupled with the neural oscillator exhibits the 
superior potential in a self-adapting motion exploiting the 
sensory feedback of the neural oscillator for the capability of 
entrainment. This means that a proper desired motion 
according to environmental changes is yielded and more 
efficient motions are led. Such the effect could be 
accomplished owing that the oscillator based control 
reproduces the desired joint input entraining the coupled joint 
motion through the sensory feedback with regard to joint 
information. The snap shots in Fig. 11 show the robot arm 
motions implementing the proposed control based on neural 
oscillator, where we can observe that the end-effector traces the 
rotated drawer direction. 

            (a)                               ( b)                                  (c) 
Fig. 8.  Schematic figure on the experiments that robot arm opens and closes a 
drawer repeatedly. (a) fix the drawer in accordance with the robot arm motion, 
(b) rotate the drawer clockwise about 12°, (c) rotate the drawer counter-
clockwise about 12° 

    
                                (a)                                              (b) 
Fig. 7.  (a) Schematic robot arm model and (b) real robot arm coupled 
with the neural oscillator for experimental test 

x 

y 
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For showing the superiority of the biologically inspired 

control approach, we perform more complex task employing 6-
DOF motion of the robot arm. Fig. 12 shows the behavior of 
the robot arm with respect to opening a door. In the same 
manner, the task can be attained simply regardless of the 
desired motion generation for each joint of 6-DOF robot arm 
coupled with neural oscillators. Because the arm is so 
compliant, the tracking error is absorbed in the arm compliance. 
Thus, the robot can open the door easily even under an 
imprecise desired motion and the unfixed mechanical 
constraint between the knob of the door and the end-effector of 
the robot arm as seen in Fig. 14. In addition, though a desired 
task changes unexpectedly, the entrainment function of the 
neural oscillator adjusts the control commands in an adaptive 
way so as to maintain given movements. 

V. CONCLUSION 

We have presented a control scheme for technically 
achieving a biologically inspired self-adapting robotic motion. 
In contrast to existing works that were only capable of 
rhythmic pattern generation for simple tasks, our approach 
allowed the robot arm to precisely trace a trajectory correctly 
through entrainment. With this, the proposed method is verified 
through more complex behaviors of the real robot arm under 
unknown environmental changes. Also our approach causes 
appropriate desired motions irrespective of precisely modelling 
with respect to external disturbances. For such reason, it was 
observed from experimental results that the novel adaptive 

motions corresponding to an external force appear clearly. This 
approach will be extended to a more complex task toward the 
realization of biologically inspired robot control architectures. 

 

 

 

(a) 

(b) 

(c) 
Fig. 11. Snap shots of the robot arm motion in the proposed control 
method, (a) under 0° rotation of the drawer, (b) under -12° rotation of the 
drawer, (c) under +12° rotation of the drawer 

 
Fig. 10. Trajectories of the end-effector of the robot arm in case that the 
sensory feedbacks are turned on 

 
Fig. 9. Trajectories of the end-effector of the robot arm in case that the 
sensory feedbacks are turned off 

Fig. 12. Snap shops of 6-DOF robot arm motion in experiment of opening 
a door 
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APPENDIX 
Matsuoka neural oscillators have nonlinearities such as max(x, 0) 

and min(x, 0). Here, we analyze the dynamics of the neural oscillator 
on stability in time domain analysis. Equation (1) of the neural 
oscillator gives as 
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where ge, fe, gf and ff are nonlinear functions of xe, ve, xf and vf = x&  = 
dxe/dt. Eq. (9) can be rewritten as 
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The solutions of Eq. (10) are expected to be geometrically similar to 
those of Eq. (9). We assume the solution of Eq. (10) in the form 

 
e e

e e t
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v V

e
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v V
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⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

                                   (11) 

where Xe, Ve, Xf, Vf and λ are constants. Substitution of Eq. (11) into 
Eq. (10) leads to the eigenvalue problem 
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                   (12) 

 
The eigenvalue λ1, λ2, λ3 and λ4 can be found by solving the 

characteristic equation as 
 

2
1 2 3 4

1, , , ( 4 )
2

p p qλ λ λ λ = ± −                           (13) 

 
Let’s consider the four cases: 

 
Case (1) − xe≥0, xf≥0, ge=gf =1 

 
Using Eq. (12), we can obtain eigenvalues λ1, λ2, λ3 and λ4  

2
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2

1 1( (1 ) ) ( (1 ) ) 4( 1 )
2 2

1 1 1 1 1 1 4( 1 )( ) ( )
2 2

r a r a r a
r a r a

a r a r r a

T wT T wT b wTT
TT TT

w w b w
T T T T TT

λ∴ =− + − ± + − − + −
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where p1,2=Tr+(1-w)Ta, and q1,2=(b+1-w)TrTa,  
2

3,4
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where p3,4=Tr+(1+w)Ta, and q3,4=(b+1+w)TrTa,  
We can notice that 

i) if (p2  –  4q) < 0, the motion is oscillatory; 
ii) if (p2  –  4q) > 0, the motion is aperiodic; 
iii) if p > 0, the system is unstable; 
iv) if p < 0, the system is stable; 
 

Investigating the stability of the inner dynamics of the neural 
oscillator exploiting above four conditions,  
Case (1-1) − λ1 and λ2, λ3 and λ4 are Real and Distinct (p2 > 4q).  
 
And also, we assume that the general solutions corresponding to 
eigenvalues, respectively as follows 
 

1 2

3 4
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t e t e
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                                 (14) 

 
where α0, β0, γ0 and δ0 are the initial values of α, β, γ and δ respectively. 
 

The type of motion depends on whether λ1 and λ2, λ3 and λ4 are of 
the same sign or of opposite sign. If λ1 and λ2, λ3 and λ4 have the same 
sign. 
 In (q1,2 > 0) 

( 1 ) 0 ( , 0) 1r a r ab w T T T T b w+ − > > ∴ > −Q  
and (q3,4 > 0) 

( 1 ) 0 ( , 0) 1r a r ab w T T T T b w+ + > > ∴ > − −Q  
 Namely, b > max(−w−1, w−1), the equilibrium point is called a node. 
The phase plane diagram for the case λ1 < λ2 < 0 and λ3 < λ4 < 0 
(when λ1 and λ2, λ3 and λ4 are real and negative or p1,2 and p3,4< 0) 
In ( p1,2 < 0) 
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In this case, Eq.(14) shows that all the trajectories tend to the origin 
as t→∞ and hence the origin is called a stable node. On the other hand, 
if λ1 > λ2 > 0 (p1,2 > 0) and λ3 > λ4 > 0 (p3,4 > 0), 
In ( p1,2 > 0) 

(1 ) 0 1 1r r
r a

a a

T TT w T w w
T T

+ − > ⇒ − > − ∴ > +  

and ( p3,4 > 0) 
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Namely,  

1 1r r

a a

T Tw
T T

+ + < < − −

 Therefore, the origin is called an unstable node. And if time constants, 
Tr and Ta, are both positive, this condition is impossible. 
 

Case (2) − xe≥0, xf<0, ge=1, gf =0 
The eigenvalues λ1, λ2, λ3, and λ4 can be found by solving the 

characteristic equation. And we can obtain below eigenvalues λ1, λ2, 
λ3 and λ4 

1 2

2 2
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4

1 1,

( 2 4 )
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where p3,4=Tr+Ta, and q3,4=TrTa(b+1),

  
Case (2-1) − λ1 and λ2, λ3 and λ4 are Real and Distinct (p2 > 4q). 

If λ1 and λ2, λ3 and λ4 have the same sign (q3,4 > 0) 
 

( 1) 0 1r aT T b b+ > ∴ > −
  

Namely, b > max(−w−1, w−1, −1). This equilibrium point is stable. 
 
Case (3) − xe<0, xf≥0, ge=0, gf =1. 
This case is similar to the Case (2), and the eigenvalues are the 

same. 
 
Case (4) − xe<0, xf<0, ge=gf =0. 
The eigenvalues λ1, λ2, λ3, and λ4 can be found by solving the 

characteristic equation. The stability of this equilibrium point is 
determined by the eigenvalues, 

1,2 3,4
1 1,

r aT T
λ λ= − = −  

The equilibrium point is zero, therefore all the trajectories will 
converge to this equilibrium point and the system does not oscillate. 

ACKNOWLEDGMENT 
This work was supported by Korea MIC and IITA through IT Leading R&D 
Support Project. [2009-S028-01, Development of Cooperative Network-based 
Humanoids Technology] 
 
 

REFERENCES 
[1] K. Matsuoka, “Sustained Oscillations Generated by Mutually Inhibiting 

Neurons with Adaptation,” Biological Cybernetics, Vol. 52, pp. 367-376 
(1985). 

[2] K. Matsuoka, “Mechanisms of Frequency and Pattern Control in the 
Neural Rhythm Generators,” Biological Cybernetics, Vol. 56, pp. 345-
353 (1987). 

[3] G. Taga, Y. Yamagushi and H. Shimizu, “Self-organized Control of 
Bipedal Locomotion by Neural Oscillators in Unpredictable 
Environment,” Biological Cybernetics, Vol. 65, pp. 147-159, (1991). 

[4] G. Taga, Y. Yamagushi and H. Shimizu, “Self-organized Control of 
Bipedal Locomotion by Neural Oscillators in Unpredictable 
Environment,” Biological Cybernetics, Vol. 65, pp. 147-159, (1991). 

[5] G. Taga, “A Model of the Neuro-musculo-skeletal System for Human 
Locomotion,” Biological Cybernetics, Vol. 73, pp. 97-111 (1995). 

[6] S. Miyakoshi, G. Taga, Y. Kuniyoshi, and A. Nagakubo, “Three-
dimensional Bipedal Stepping Motion Using Neural Oscillators-Towards 
Humanoid Motion in the Real World,” Proc. IEEE/RSJ Int. Conf. on 
Intelligent Robots and Systems, pp. 84-89 (1998). 

[7] Y. Fukuoka, H. Kimura and A. H. Cohen, “Adaptive Dynamic Walking 
of a Quadruped Robot on Irregular Terrain Based on Biological 
Concepts,” The Int. Journal of Robotics Research, Vol. 22, pp. 187-202 
(2003). 

[8] G. Endo, J. Nakanishi, J. Morimoto and G. Cheng, “Experimental Studies 
of a Neural Oscillator for Biped Locomotion with QRIO,” Proc. 
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 598-604 
(2005). 

[9] M. M. Williamson, “Postural Primitives: Interactive Behavior for a 
Humanoid Robot Arm,” 4th Int. Conf. on Simulation of Adaptive Behavior. 
MIT Press, pp. 124-131 (1996). 

[10] M.  M. Williamson, “Rhythmic Robot Arm Control Using Oscillators,” 
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 77-83 
(1998). 

[11] A. M. Arsenio, “Tuning of neural oscillators for the design of rhythmic 
motions,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1888-
1893 (2000). 

[12] W. Yang, N. Y. Chong, C. Kim and B. J. You, “Optimizing Neural 
Oscillator for Rhythmic Movement Control,” Proc. IEEE Int. Symp. on 
Robot and Human Interactive Communication, pp. 807-814 (2007). 

[13] W. Yang, N. Y. Chong, Jaesung Kwon and B. J. You, “Self-sustaining 
Rhythmic Arm Motions Using Neural Oscillators,” Proc. IEEE/RSJ Int. 
Conf. on Intelligent Robots and Systems, pp. 3585-3590 (2008). 

[14] W. Yang, N. Chong, C. Kim and B. J. You, “Entrainment-enhanced 
Neural Oscillator for Rhythmic Motion Control,” Journal of Intelligent 
Service Robotics, pp. 303-311 (2008). 

[15] W. Yang, N. Y. Chong, SyungKwon Ra, ChangHwan Kim and B. J. You, 
“Self-stabilizing Bipedal Locomotion Employing Neural Oscillators,” 
Proc. IEEE-RAS Int. Conf. on Humanoid Robots, pp. 8-15 (2008) 

[16] Jen-Jacques E. Slotine, Weiping Li, “Applied Nonlinear Control,” 
Englewood Cliffs, N. J., Prentice Hall. (1991). 

[17] S. Arimoto, M. Sekimoto, H. Hashiguchi and R. Ozawa, “Natural 
Resolution of ill-Posedness of Inverse Kinematics for Redundant Robots: 
A Challenge to Bernstein’s Degrees-of Freedom Problem,” Advanced 
Robotics, 19: 401-434 (2005). 

[18] S. Arimoto, M. Sekimoto, J.-H. Bae and H. Hashiguchi, “Three-
dimensional Multi-Joint Reaching under Redundancy of DOFs,” Proc. 
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 1898-1904 (2005). 

168


