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Abstract

Thisthesi s proposes an approach for extracting concurrent execution sequences from concurrent
objects. Recently, object-oriented development methods have played an important role in the
domain of practical software engineering and have been adapted into devel opments of real-time
systems. However, while object-oriented technol ogies have been maturing as a diagrammatical
description language of systems, less technical tools and supports have been developed for
analysing or verifying real-time properties of systems.

This thesis aims to clarify a logical foundation for analysing significant information for a
real-time property: "How many and what kind of threads are concurrently executed in asystem’.
A thread here means a execution sequencein asystem; and since real systemsusually have strict
physical constraints on the number of CPUSs, real-time performance of a system greatly depends
on the number of concurrent threads are being executed in the system. Therefore, for analysing
the real-time properties of asystem it isimportant to obtain such information. However, existing
object-oriented devel opment methodol ogies do not give enough support to obtain threads from
object-oriented models.

This thesis presents a solution of this problem; a transformation method from an object-
oriented model into a thread-based model. In our approach, we clearly define two kinds of
model. Oneisthe concurrent object model which represents atypical object-oriented behaviour
model based on concurrent state machines. The other is the concurrent thread model that is
modelled as a set of explicit threads. It is easy to obtain information about the number of con-
current threads from the latter model. Then, we provide a method for transforming a concurrent
object model into a concurrent thread model. This approach is formalised by using Basic Con-
current Regular Expressions (BCRESs), which are an extension of regular expressions. There
are two extending operators that represent concurrency and communication of concurrent state
machines. As alogical base for the transformation method, we propose and use an axiom sys-
tem for equivalent transformation of BCRES. It is then confirmed that this system is both sound
and complete. We present our transformation procedure based on the equivalent transforma-
tion of BCRESs. By using our axiom system, we also prove that our method is both sound and
terminating.
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Chapter 1

| ntroduction

1.1 Motivation

A number of software development methods have been proposed, with object-oriented devel-
opment methods recently playing an important role in the domain of practical software engi-
neering. Object-oriented technologies have been widely adopted, not only for large enterprise
software but also for real-time embedded software because the complexity of recent embedded
systems has dramatically advanced. There are a number of tools and environments that sup-
port object-oriented analysis, design and implementation. However, the current object-oriented
methods still do not pay enough attention to the verification of real-time software. Little is
known on how to guarantee the correctness of real-time software through object-oriented devel-
opments. The concern with this problem domain has been growing for a decade and a number
of researchers have come to work on it.

Our research is concerned with object-oriented real-time system development. There are
some earlier research that handles real-time constraints in object-oriented developments. For
example, Real-Time UML[10], which is known as an extension of UML[13] can denote real-
time constraints in object-oriented models. Some methods for real-time software devel opments
have also been proposed[3, 4, 5]. However, these methods are roughly defined in anatural lan-
guage. To verify real-time properties of systems, much knowledge and experience is needed.
Because of the lack of a systematic way to check the properties, it is not possible to support
verification efforts for computer systems; thus, there is not a way to avoid human errors and
mistakes. Thisisasignificant problem for the current object-oriented development methodolo-
gies, and it needs to be solved to acheive more dependabl e real-time software devel opments.

This thesis aims to clarify alogical foundation for analysing properties of object-oriented
real-time software. We focus on the issue of information of concurrency: 'How many and



what kind of threads are concurrently executed in asystem’. A thread here means an execution
sequence in a system. Such information is essential because real-time properties of a system
greatly depend on the number of simultaneousthreads. A concurrent systemis generally imple-
mented as a set of concurrent threads. Logically speaking, all threads in a system are executed
concurrently. However, real systems are often implemented in adifferent way; some threads are
allocated to asingle or afew CPUSs, and then are executed under time-sliced context switching.
In such a pseudo concurrent execution, CPU resources are shared by multiple threads. There-
fore performance of a system slows down relative to the number of threads. It is thusimportant
for analysing real-time properties to clarify how many and which threads are executed at the
same time in a system.

1.2 Concurrent Thread Model

To obtain the information of concurrency, this thesis focuses on the concurrent thread model,
which consists of a set of threads and a global automata shown in Figure 1.1. In this model, a
global automata controls global execution timing of concurrent threads. In Figure 1.1, a dotted
arrow denotes athread. A set of threadsis assigned to each of the states of the global automata.
When the system isin aparticul ar state, threads assigned to that state are executed concurrently.
The model in Figure 1.1 denotes the following behaviour. The system begins with the state0
and a single thread named A is executed in this state. The system state is changed to the next
state after the all assigned threads are terminated. When the thread A terminates in the state O,
the state is changed to states 1 or 2 (non-deterministic). We here assume that the state has been
changed to state 2. Then, in state 2, threads D,E and F are executed concurrently. Then, the
state is changed to state3 when al threads assigned to state? are stopped, and then threads in
the state3 wake up executed, and ..., the execution is then continued in asimilar way. Using the
concurrent thread model, it is clear that how many and which threads are executed concurrently
with respect to states of a system.

In system design, using a concurrent thread model is a reasonable way when thereis aneed
to analyse real-time properties because information of concurrency is clear in the model. How-
ever, the problem is that analysis models generally used in a object-oriented devel opment have
quite different architecture from the concurrent thread model. Unfortunately, it is very compli-
cated to extract concurrent threads from an object-oriented model. Although an object is also
considered as a concurrent entity like a thread, there generally is not a one-to-one relationship
between an object and athread. Let us consider that a system consists of many objects. Since
there is alimit on the number of CPUs, performance may become very slow if all objects are
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Figure 1.1: Concurrent thread model

mapped to concurrent threads. A typical designisto construct each thread according to agroup
of objects or part of objects that will never be executed concurrently.

A reasonable way toidentify an object group for athread isalong acommunication sequence
between objects. Figure 1.2 depicts asystem that has three objects: A, B and C. In thisfigure, a
round square represents an object. The enclosing box around objects are the boundary between
the inside and the outside of the system. A dotted arrow represents the communication between
objects. Communication here means an abstraction of an event or a method invocation. A
number next to an arrow line represents the order of occurrence of the communication. For
example, once event 1 reaches from the outside of the system, event 1.1 occurs. Then, event 1.2
occurs and goes out of the system. In the same manner, the event sequence2 — 2.1 — 2.2 —
2.3 occurs for the incoming event 2. For event 3, 3 — 3.1 — 3.2 occurs. A group of objectsis
constructed through such a sequence. From the system depicted in Figure 1.2, three groups are
obtained. The objects A and B are grouped from a sequence for event 1. The objectsA, B and C
arefor event 2 and, the objects B and C arefor event 3. Each thread isimplemented sequentially
as a procedure for executing objects of agroup . For example, athread for responding to event
1 isimplemented as a procedure that invokes objects A then B. The whole system behaviour
can be modelled as a set of threads.
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Figure 1.2: Object and Thread

Some obj ect-oriented devel opment methods for embedded systems, for example, SES approach[ 3]

and OCTOPUS method[ 4] adopt athread-based model astheir design model for asystem. Since
an object-oriented model is adopted as their analysis model, it is necessary to obtain a concur-
rent thread model from an analysis model at the beginning of the design phase. However, these
methods do not propose any systematic way of grouping objects and constructing threads from
an object-oriented model. Therefore, developers need to extract threads by their heuristics;
however, thisisinefficient and there is a'so some risk of human mistakes. Moreover, if alarge
number of objects are given, it isamost impracticable to exhaust al possible threads by hand.

1.3 Approach

The objective of thiswork isto propose a systematic way to transform an object-oriented model
called a concurrent object model to a concurrent thread model. This objective is accomplished
according to the following approach.

1. We formalise the concurrent object model and the concurrent thread model using Basic
Concurrent Regular Expressions(BCRES).

2. We propose a complete axiom system £, for BCREs. This axiom system can prove the



equivalence of BCRES.

3. We present amethod of how to transform aconcurrent object model to aconcurrent thread
model. The axiom system F, is used to prove that our method preserves the behaviour of
atarget system between before and after the transformation.

1.4 Thesisoutline

This thesis is organised into 8 chapters as follows. In Chapter 2, the definition of Basic Con-
current Regular Expressions isintroduced. In Chapter 3, a complete axiom system £ is given.
Equivalence of BCREs can be proven utilizing this system. Chapter 4 describes how to for-
malise the concurrent object and thread models using BCREs. In Chapter 5, a transformation
method from a concurrent object model to a concurrent thread model is proposed. Chapter 6
describes some transformation examples using our transformation method. Chapter 7 compares
our work to some related researches. Chapter 8 presents some conclusions and future directions
for our work.



Chapter 2
Basic Concurrent Regular Expressions

In this chapter we define the syntax and semantics of Basic Concurrent Regular Expressions
(BCRES), which is a behaviour description language for concurrent systems. It is based on
Concurrent Regular Expressions (CRES)[2] that is an extension of Regular Expressions. There
are four extending operators in CREs: interleaving, alpha-closure, synchronous composition
and renaming. The interleaving operator represents concurrency between a finite number of
state machines. The apha-closure operator denotes concurrency between an infinite number
of state machines. The synchronous composition operator represents communication between
state machines. The renaming operator can rename transition labels in state machines. In this
thesis, we adopt the interleaving and synchronous composition operators. We do not adopt
the other two operators as they are not essential for modelling our software in the remaining
chapters of the thesis.

Before giving the exact definition of BCRES, let uslook at an example expression.

((a+b).c) [](a.(c][d).e)

a,b,--- are symbols. The operator ., + and = are similar to the ones of regular expressions.
The operator . represents a sequence of action and + a choice of actions. The operator x,
called closure, means zero or moreiteration. The operators || and | | are to describe concurrent
behaviours. The expression «||# meansthat oo and 3 occur concurrently. On the other hand, the
operator [ | represents not only concurrency but also communication. « [ | 3 isinterpreted as
that o« and (3 occur concurrently and communicate with each other.



2.1 Syntax

Let us define the syntax of BCRES. We assume that o isafinite set of symbolsand usea, b, - - -
to range over o. Then, the syntax of BCRES on ¢ is defined as follows.

DEFINITION 2.1 (Syntax)
1 acoU .l isaBCRE.

2. Assumethat o and  are BCREs. Then, a + 3, .3, o, a|| 5, a[ s ] and (o) are also
BCREs

where s isaset of actions (s C ¢). The symbol | isaspecial character that means an empty
word. The operator || is called interleaving and [s] is called synchronous composition. The
only difference between BCREs and the standard regul ar expressionsisthat these two operators
exist. The other operators +,. and x are similar to the onesin regular expressions.

2.2 Semantics

The semantics of BCRESs are defined as a set of sequences on symbols. Such aset isalso called
the language of BCREs. L is used as a projection from a BCRE to its language. The definition
of L, that is the semantics of BCREs, isas follows.

DEFINITION 2.2 (Language of BCRES)
Leta beino, o and f are BCREson o and, w, w; and w, be sequenceson o. Then,

1. L(L) = ¢, L(e) = {e}, L(a) = {a}
2. L(a.}) = {w; - wo |wy € L(a), wy € L(B)}

3. L(a+ B) = L(a) U L(B)

6. L(a|| B) = {w]|w € L(a),ws € L(B),w € intl(wy,ws)}
7. Lla[s]f) ={w|w e (o(a) Ua(B))", w/(o(a)US) € L(a), w/(a(B)US) € L(B)}
whereintl is defined as follows.

e intl(a,e) =intl(e,a) = {a}



e intl(a-wy,b-wy) ={a wlw € intl(w,b-wy)} U{b-wl|w € intl(a-w,ws)}

o* represents a set of all sequences on o, o(«) isaset of al the symbols that appear in L(«)
and ¢ is an empty word (a zero length sequence).
€-w=uw-e=wfollowsforal w. a’means ai times sequence of a:

=¢ o' =a, a® =aq, & =0,

For s C o, w/s means arestriction of w over s. Any symbol not in s is removed from w. For
instance,

a-b-c-d/{a,ct=a-c
w/s = e if w contains no symboal in s. In the remainder of thisthesis, we omit some parenthesis
around a restricting operation if it does not make the expression ambiguous. For example, we
denote w; - wy /o () U o(B) instead of (w; - we)/(o(a) U a()).

2.3 Modelling behaviour

In this section we illustrate some brief examples of software behaviour and explain an intuitive
meaning of BCRES, what behaviour is, and what systems can be modelled with BCREs.

2.3.1 Action

We use the term action as the atomic behaviour of a system. An action can be considered as an
atomic behaviour of a system such as an event, a method invocation, a line of source code and
so on. We do not discuss in depth what is an appropriate relationship between an action and its
implementation. A real program instance corresponds to an action that can be settled according
to a design decision that is different among various software developments. An action in this
thesisis akind of abstract concept

and isloosely defined as an atomic behaviour that is considered as afragment of behaviour
that can not be divided into any smaller actions.

Syntactically, an action is described as a string that is an identifier for a single action. We
denote an action as a string with lower-case characters. Such a string sometimes has subscripts.
For example, a, b, ¢, ag, a4, ..., a,, open, close, post and get are used as denotations of an action.

2.3.2 Action sequence

Every possible behaviour of a system is regarded as a sequence of actions. Let us consider a
system whose behaviour is defined by a state machine shown in Figure 2.1.

9



Figure 2.1: State Machine Example

This state machine begins with the initial state s,. After the action open occurs, its state
changesto s;. Then after the action read or write, the system reaches the state s,. Finaly, the
action close occurs and the system reaches the final state s3. Such behaviour can be denoted as
action sequences open - read - exit Of open - write - exit.

2.3.3 Behaviour

Whole behaviours of a system can be defined as a set of action sequences. Figure 2.2 depicts a
state machine with aloop of transition. The initial state s, is also afinal state. The behaviour

Figure 2.2: State Machine with loop

of state machine of Figure 2.2 is that
open - read - exit,
open - write - exit,
open - read - exit - open - read - exit, - - -

open - write - exit - open - read - exit, - - -

If a system has infinite repetitions of behaviour, infinite action sequences may be observed. It
isimpossible to write such a set of infinite sequences directly as a set of sequences. To describe

10



such behaviour, a higher notation that can handle infinity is required. The closure operator (*)
can be used as such notation. The expression o* represents an arbitrary time repetition of «.

It is easy to define behaviour of a single state machine as a BCRE. In a similar way, to
transform a state machine to a regular expression, we can obtain a BCRE that corresponds to
a state machine. All actions are mapped to symbols of BCREs. For example, the behaviour of
the state machine shown in Figure 2.2 can be described by the regular expression:

(open.(read + write).close)*
The set of action sequences that this expression meansisits language:

L((open.(read + write).close)™)

2.3.4 Concurrency

Concurrent behaviour can be denoted by using the || operator of BCRES. In the semantics of
BCREs, concurrency is modelled by interleaving semantics. Interleaving means a serialization
of concurrent sequences. With interleaving semantics, concurrent behaviour is not distinguished
from achoice of their possible serialization. For example, a||b isnot distinguished from achoice
of ab and ba. ab||cd isnot distinguished from a choice among abed, acbd, acdb, cabd, cadb and
cdab. Thefollowing definition intl isa projection from concurrent sequences to an interleaving
sequence.

e intl(a,€) =intl(e,a) = {a}
o intl(a-wy,b-wy) ={a-w|w € intl(w,b-wy)} U{b-w|w € intl(a-w,ws)}

The following is an example of a state machine with internal concurrency. There are two
sub state machines inside the round square. They are executed concurrently after the action
open iscompleted. Thusactionsread and write are executed concurrently, then action close is
executed. This state machine can be denoted by BCREs as follows.

open.(read||write).close
The behaviour is

L(open.(read||write).close) = {open - read - write - close, open - write - read - close}

11



read
open close

Figure 2.3: State Machine with Concurrency

2.35 Communication

Assume that there is a system that consists of two concurrent state machines, and o and 3 are
defined as the behaviour of these machines, respectively. Suppose that these state machines are
executed concurrently and communicate with each other. Then, the behaviour of this system
canbedefinedasa | | 5.

The operation | | represents both communication and concurrency. If there is no commu-
nication between o and 3, o[ | 3 has the same language as «| 3. In the expression o[ ] 3, the
same symbols appearing in both oz and  are called communication symbols. These symbols
mean actions for synchronous communication between « and 3. Synchronous communication
is a communication that satisfies the rule that all participants are blocked until the end of the
communication and that communications never fail.

Figure 2.4 depicts two concurrent state machines. These two state machines can be defined

4 N . )
OO OO
4 N | )
i . P . . close .j

Figure 2.4: Concurrent State Machines with Communication

as open - read - close and open - write - close. open and close are communication symbols

between them. If these state machines are executed concurrently without communication, the

behaviour of this system can be represented with a set of fully interleaved sequences asfollows.
{ open -read - close - open - write - close, open - read - open - close - write - close,

open - read - open - write - close - close, open - write - open - read - close - close

12



open - write - open - close - read - close, open - write - close - open - read - close,
open - open - read - close - write - close, open - open - read - write - close - close,

open - open - write - read - close - close, open - open - write - close - read - close }

Some of these sequences violate the rule of synchronous communication. If a sequence has
a communication symbol that does not adjoin with the corresponding communication symbol,
such a sequence is regarded as violating the rule of synchronous communication. For example,

open - open - read - write - close - close
does not violate the rule but the following does.
open - read - open - write - close - close

If communication succeeds, there must be no other symbols between two corresponding com-
munication symbols in a sequence. The latter sequence represents the behaviour where the
communication open did not block until the end of the communication. There is an action
read between two communication symbols open. This sequence shows a behaviour where
open.read.close performs the action read before open.write.close finishes open. In other
words, open.read.close performs read without waiting for open of open.write.close. Such
behaviour clearly violates synchronous communication.

The [ | operation eliminates such sequences from its language. Only the following two
sequences are left as behaviour of open.read.close | | open.write.close

{open - open - read - write - close - close, open - open - write - read - close - close }

It is clear in the set above that once open occurs, the neighbour symbol is also open. The [ |
operation eliminates such redundancy. open-open isreplaced with asingle open and close-close
isreplaced with close. Thus, the exact language is as follows.

{open - read - write - close, open - write - read - close }

According to the rule of synchronous communication, communications never fail. However,
we can write expressions that never satisfy thisrule. For example, let us consider a.b.a [ ] a.b.c.
The second occurrence of a in a.b.a fails to communicate with a.b.c because a.b.c has only one
occurrence of a. Thereis no other sequence that satisfies the rule of communication, and so the
whole behaviour of such a system becomes an empty set, that is, L(a.b.a| |a.b.c) = ¢
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2.4 Abbreviations

In the remainder of thisthesis, we use some abbreviations to describe more precise expressions.
Firstly, the sequential operator (.) is omitted unless this makes the expression ambiguous. For
example, .3 will be ssmply denoted as 5.

We will omit some redundant parenthesis according to the binding power of the operators.
Thefollowingisalist of operatorsin order of their ascending binding power.

.+ || [s]

So we can denote
a*b[s]be|lde

((@)b) [s]((be)[[(de))

According to the associative property of the operator (.), that is L((«3)y) = L(«(37)), we
will omit some parenthesis. For example, we simply write a3~ instead («3) or a(/37). Since
+ and the [ | operator are also associative, we will omit parenthesisin asimilar way unless it
makes the expression ambiguous.

Especially for aseries of + operations, the following summation symbol is used.

DEFINITION 2.3 (Summation)
Letay,---,a, be BCREsS. Then,

Zajzcn%—ag—l—---%—a,
j=1

where> = o, forr =1
7=1

2.5 Summary

In this chapter, we presented the concept of Basic Concurrent Regular Expressions and gave
a concrete definition of the syntax and semantics of BCRESs, which are an extension of the
regular expressions known so far. There are two extending operators || and [s]. The former
represents concurrency and the latter represents communication between state machines. In
the semantics of BCRESs, concurrency is modelled by interleaved semantics between, and can
be represented by, BCRES. Synchronized communication is assumed for the semantics of the
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[s] operator. Such adefinition of semantics for concurrent systemsis almost similar to that in
process algebra. We will discuss on the relationship between process algebra and our BCREs
in Chapter 7.

We aso illustrated how to define the behaviour of software by using BCREs with some
brief examples. By using BCRES, we can define the behaviour of a concurrent system as an
expression that represents a set of observable action sequences from concurrent state machines.
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Chapter 3
Complete Axiom System

In this chapter we introduce the axiom system F., that provides a systematic way to prove the
language equivalence of BCREs. We also show that our axiom system F, is complete, that
is, a proof always is derivable in F, if two BCREs have the same language. According to
the completeness, we can check equivalences between any BCRESs systematically. The main
purpose of introducing the system F. isthat we use F, asalogical baseto ensure the correctness
of our thread extraction method realized as an iterative equivalent transformation process of
BCREs in Chapter 5.

3.1 Axiom system F,

The axiom system F, consists of 21 axioms and two inference rules. Each axiom denotes an
atomic relationship between two expressions in terms of language equivalence. All axioms are
formed in aschemaa = , and L(«) = L(/3) holds for every axioms. The table 3.1 isalist
of all axiomsin the system F.. Inthistable «, 3, - - - aale BCREsand a, b, - - - are symbols. The
axiom A; to A, are known as algebraic properties of regular expressions. They are originally
from the axiom system F7 proposed by A.Salommain [6]. The inference rules of F, are also
the same as F:

e R1 (Substitution). Assumethat « = $ and v = §. Then one may infer the equation
v[B/a] = § where y[3/a] isthe result of replacing an occurrence of «in+ by £.

e R2 (Solution of equations). Assume that $ does not possess an empty words prop-
erty(ew.p.). Then one may infer the equation o = 3*+ from the equation o = fa + 7.

where it is stated that o possesses an ew.p. if and only if € € L(«). We simply writet « = 3
if an equation o = 3 can be derivablein F..
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(67) = (aB)y

a+f = f+a

a(B+7) = af+ay

(a+B)y = ay+ 0y

a+a = a

al” = a

al = 1

a+ 1 = a

o = 1*+aa*

o = (L*+a)

als]L _—

ols] L _ a ifola)Ns=2¢
= otherwise.

als]p = 5[8]04
z(a[sU{z}]B) ifo=y

valslys = z(a[s]ypB) ifz#y, e go(B)Us, y€o
z(als]yB) +y(zals]p) fo#y vgo(B)Us y¢
s ife£y, xco(f)Us, y€o

)

(@+0)[s]y = alsu(e(B)na()]v+BlsU(o(@)nal(y))]y
af L = 1

alf L* = «

allp = Blla

vl yps = z(allyp) +ylzal B)
(a+B)lly = allv+8l~

(a)Us

ola)Us

Table 3.1: Theaxiomsin F,
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3.2 Soundness

An eguation o =  issaid to bevalid if and only if L(a) = L(3) holds. The axiom system F,
issaid to be sound if and only if al derivable equations are valid.

THEOREM 3.1

The axiom system F, is sound.

PROOF

It isobviousthat the axioms A, to A;; arevalid and therule R1 preservesvalidity. It iswell
known that if aregular expression 3 does not possess an e.w.p, then a = fa + v hasonly one
solution o« = B*v (cf. [7] or [8]). Therefore, R2 aso preserves vaidity. Asfor C; to Cyg, new
in the system F.,, they are also valid. Thus the Theorem 3.1 follows. O

See the Appendix for detailed validity proof for C'y to Cl.

3.3 Completeness

It is stated that F, is complete if and only if = o« = (3 can be derivable for any o and 5 which
satisfies L(«) = L(/3). This section proves the completeness of F..

In the reminder of this section, a proof is described in three parts. First, in the Section 3.3.1,
we set out some important definitions and lemmas that are referred from other parts. Then
in the Section 3.3.2, we prove that all BCREs are equationally characterized as Theorem 3.2.
Finally, in Section 3.3.3, we prove that the system F., iscompleteif the BCRES are equationally
characterized (Theorem 3.3).

3.3.1 Preiminary

The following lemma describes the basic properties of BCREs.

LEMMA 3.1
Suppose that o, 3, and 6 are BCREsS, then the following holds.

lL. Fa=«
2 Fo*=p"and- f=q,ifra=0
B Fa=v,ifra=pand- =7y

4 Fa+y=0F+dad-ay=p00,ifra=pgad-y=4§
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5 FFla=1
6. F 1*a =«

7. FylBlal =7, ifFa=0

It is easy to show that these are derivable in F,. by using therules R1, R2 and the axioms A; to
A11. Inthe remainder of this section, we use the above equations and the substitution rule R1
without explicitly referring to them.

DEFINITION 3.1
Let¢ beafiniteset of BCRES: £ = {ay, aw, - - -, . } for some natural number r. x (&) is defined
asfollows.

X(€) = { >

wherel <r,1 <i<randl <j <r. Forexample

Wiy .owy €&, w; #wj forali # j. }

x({a, 8,7} ={a+B+v,a+v+8,8+a+y,8+y+a,y+a+0,7v+ 0+ a}

DEFINITION 3.2
Let ¢ beafinite set of BCREs and £ # ¢, then«)(€) is defined as the following.

w(f)E{w‘weX(Q),Qe%}

LEMMA 3.2
Assumethat ¢ is anon-empty finite set of BCRES. Then& C ().

PROOF

Let x be a BCRE that belongs to ¢. Such a BCRE always exists because £ is non-empty
(by hypotheses). It follows that the set {«} belongs to the power set of ¢ (i.e, {z} € 29),
and z € x({z}). By the definition of 1), it follows that = € (&). Therefore, £ C (&) thus
completing the proof. O

LEMMA 3.3
Suppose that § = {av, - -+, o, } andw € x(€), then,

r
I—w:Zaj
j=1

19



PROOF

According to the definition of y, somew,, -+, w, € ¢ existand, w = w; + - -+ + w, Where
w; # wj foral i # j. Therefore, al wy, - - -, w, are r numbers of BCRESs being different from
each other. Since ¢ hasjust » number of elements, a4, - - -, . can be obtain by properly sorting
wy, -+, wy. Hence, by A; and Ay,

Fo=wi++w=a1+ - +a,

LEMMA 3.4
Let & and & be non-empty finite sets of BCRES and, assuming w; € x(&) andwy € x(&).
Then, somews; exists, ws € x(& U &) and

F W1 + Wy = ws
holds.

PrROOF
1. Supposethat £ = &, then, somer existsand &; = & = {ay, - - -, a,}. By lemma3.3,
l—w1 :CUQZCU;),:ZCY]'
j=1
Hence, - w; + wy, = w3 holds obvioudly.

2. Suppose&; # &. Let us prove the lemma from the following three cases.

(@ Inthecase&; C &, there are some m and n such that
glz{alv'”7a77’L}7 gzz{ala"'aamaﬂla'”aﬁn}
holds. By lemma 3.3,
Fwp :Zaj, F wo :w3:Zaj+Zﬂj,
j=1 j=1 j=1
Therefore,

l—w1+w2:Zaj+Zﬁj:w3
7=1 7=1

(b) Suppose that &, C &. By using a similar approach to case (@), it is easy to prove
thatl—u)1+w2 = W3
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(c) Inanother case, let v, -+, v, € & N &, then, some m and n exist and

gl = {ala"'aamaf)/la"'af)/?}v 52 :{517"'7677’“717"'777"}

holds. Hence, by lemma 3.3,

For=Y 0+, Fwa=d B+ vy, Fws=) a4+ B+,
7=1 7=1 7=1 7j=1 7j=1 7j=1 7=1

Therefore - wy + wy = ws.

From 1 and 2, the lemma clearly holds.

LEMMA 3.5
Let ¢ be afinite set of BCRES and w, and w, bein ) (&). Then, there is some w; € (&) and
Fwi+ws = w3 holds.

PROOF

By the definition of 1, there are some Q, Q, € 2¢ such that w; € x(Qy) and wy € x ()
holds. By the Lemma 3.4, some w3 € x(; U Q) existsand - w; + ws = w3 holds. Be
reminded that Q; U Q, € 2¢ because both Q,, 2, € 2¢ by a property of power sets. According
to the definition of v, x(2) € ¥ (&) holdsfor al 2 € 2¢. Therefore, ws € ¥(§). O

LEMMA 3.6
Assuming that ¢ is afinite set of BCRES on o. Supposethat for al o € £ and 3 € (&) some
x1,To, ..., T, € o eXist such that

Fa= ixjﬂ—iré(a)
j=1
holds. Then, for all o/ € (&) some ' € ¢(€) existsand

Fo' =Y z;8 + ()
7=1
PROOF
Assume that for al « € £, some 3 € ¢(¢) and 21, xo, ..., z, € o exist and

l—a:i:%ﬂ—i—é(a)

j=1
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holds, and assume that o/ € (&). By the definition of ¢, there are some a, . .., ay, € € such

that o/ = Zai holds. By the assumption, some j; exists for al a;(1 < i < n) that satisfies
=1

o = Zycjﬁi + (). Thus,

J=1

I—O/:i (Zx]@—l—é ozl> ZZJ:]@—%Z(S ;)

i=1 \y=1 i=1j=1

Be reminded that ¢ isdefined as L or L*,F )" 6(a;) = L or L* holds. Hence, we can replace

=1
n

> 6(ey) with 6(c). Therefore,

=1

ka’:i(z%ﬁz)jt& Zx] (;ﬁz>+6

=1

holds. Since 5; € (&) holds for al i, by the Lemma 3.4, There is some 3’ € (&) and
> 6; = 4" holds. Thus,

+ O/ = Zl‘]ﬂl + (S(Oé,)
j=1

LEMMA 3.7
Suppose that oy, - - -, o, @d 31, -+ -, 3, ae BCREsono, s €eC andxy,---,x, € o. Then, the
following holds.

Fi%@j[s]i%ﬂj:i%%‘
j=1 j=1 j=1
where~y; € (&) forl < j <r and, & isafinite set defined as follows
S = {aj[s]B|1<j<nrl1<k<rse27}
U {ojls]aefe|1<ji<nrl1<k<rse2’}
U {zjo,[s]B|1<j<rl1<k<rse2’}
u {Ll}

PROOF
By theaxiom C, and Cs, some s;;, existsforall j =1,---,randk =1, -- -, r such that

- é%’%’ [s] é%ﬂj = XT: XT:(%’%’ [sjk ] Tk Br)

j=1k=1
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By the axiom C;, some s, existsforal j =1,---,randk = 1,---,r such that

zj (v [ 85 ] Ok) or
zj (o [ sty ] 2n k) or

=iy [sie]anbe = N wi(ja;] s}, 6) or
zj(oy [ i) anBe) + wr(joy [ ] Be)  or
L

By the axiom Ag and Ay, any termsincluding | can be added. Thus,

4

w0 [ 8] Bk) + wp L or
zj( [ 85 ] vk Bk) + 2k L or
w0y skl onbe = @ L + (w0 [ 851 Or) or

zj(ay [ i ] okBr) + an(zjoy [ s3] Bk)  or

l‘jJ_ + 2L

\

Therefore, some pux, v, € § existforal j =1,---,randk =1, - -- such that

F IL‘jCYj [Sjk]xkﬁk = l‘j,ujk + l‘kl/jk

holds. Hence,
YD (way [s]anBe) = D> (wipe + wwvie) = D w5 Y (uik + Vi)
j=1k=1 j=1k=1 j=1 k=1

By the Lemma 3.2, juji, vj € (&) holds since p, v, € &. Then, by the Lemma 3.4,
vik € (&) existsforall j=1,---,randk =1,---,r suchthat - u;; + vjx = ;. Hence,

> Y (ke vie) = Y w5 > vk
1

i=1 k=1 =t k=

therefore,

=Y wey[s] Y wiB =)y
=1 =1 =1

wherev; = Y v O
k=1
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3.3.2 Equationally characterized

DEFINITION 3.3

It is stated that the expression « is equationally characterised if there is a finite number of the
symbol z, - - -, x, and the expression a1, - - -, a,, such that o = «; and,

F o; = ijaij + 5(0[2) (31)
j=1

whered(«;) = L ord(«;) = L* foral i and, for eachi and j thereissomek (1 < k < n) such
that QG = Q.

THEOREM 3.2

All BCREs are equationally characterized.

PROOF

We will prove this lemma by induction of the syntax of BCRES. The first step of the proof
isfor the base case. By Ag to Ay,

j=1
Fz, = o l+ 4l 4+ + L (1<i<r)
L1t o= > p L4+ L
j=1
Therefore, L, 1 *andz; (i = 1,---,r) are equationally characterized.
The next step is the induction. Assume that o and 5 are BCREs and equationally charac-
terized. That is, assume that o, ..., o, and (i, ..., 3, exist for some finite numbers m and n.
a=apand g = (3. Then,

Foay =) mjan + 6(ay) (3.2
7=1
I_ ﬁv = ijﬁvj + (S(ﬁv) (33)
j=1
holdsforall u=1,---,mandv =1,---,n wherea,,; = o, and g3,; = g, forall j =1,---,r.

Then, we provethat o + 3, a8, o*, a [ s] f and «| are equationally characterized.

(1) PROOF FOR a + 3

Let £ be afinite set of BCREs as follows.
E={ay+ 06,11 <u<n,1<v<m}
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Assumethat w € &, then by (3.2) and (3.3), some « and v exist such that

Fw= zr:l‘j(auj + ﬂvj) + (5(0@) + 6(6@)

=1

Because we have
Fl+l=1, Fl+l*=1*+1=1, FLl*+1*=1*
weobtain for all w € &,

Fw = wj(au + By) +0(w)
7=1
where §(w) = L or §(w) = L* and dl of the expressions ov,,; + f3,; aein&. Sincea + =
ay + fy € €, thisimpliesthat o + 3 is equationally characterized.

(2) PROOF FOR a3

Let &£ be aset of regular expressions.

E={auf+ 0+ 40 | 1<u<n0<hl<vy <vy<---<uv, <m}

h
Assumethat w € &, that is, thereissome u, h and vy, - - -, v, suchthat w = auﬁ+Zﬁvi. Since
=1

o, and j3,. are equationally characterized, by A; to Ag,

j=1 =1 \y=1

Fw = (zr: TjOlyj + 5(0411,)) B+ zh: (zr: xjﬂvij + 6(6%))

T h h
S IICWIRS SEMERTREES o (N @4

where (o) = L or L*,and 6(3,,) = L or L* for al i. Suppose first that 6(a,) = L. Then
d(ay) = L holds. Hence by (3.4) and Ao,

r h
Fw= Za:j (aujﬂ + Zﬂ””) + d(w) (3.5

whered(w) = L or L*. On the other hand, if 6(a,,) = L*, by (3.4),
h

r h r
- (aujﬂ " Zﬂm) EY By 0+ 3005
j=1 i=1 j=1

=1

Therefore,

r h
Fu=Y (amwﬁmm) +8(w) 36)
=1

j=1

25



where d(w) = L or L*. (3.5) and (3.6) impliesthat thereissomew’ € (¢ and b w = )z’ +

j=1
d(w) holds for dl w € £ Since aff = a1 € &, it is concluded that o is equationally
characterized. O

(3) PROOF FOR a*
Since a = «; isequationally characterized,

o=z +0(a)

=1

Faof = (Z xjalj)

=1

Henceby Ag or Ay,

Then by Alo,

(o) () oo
7j=1

7=1 7=1
Let £ be aset of regular expressions.

E={(ay, +- - Fay)" [ 1<hl<u <uy<---<u,<n}

h h
Assume that w € £. Then some h exist such that w = (Z aui> o*. Supposethat > «,, does
=1 =1
not possess an ew.p. Then,

h r r h
Fw= Z ( Tjouy,j + J_) o = Za:j (Z Ozuijo/‘> + 1 (3.8)
J=1 j=1 =1

=1

h
If Z v, POSSESSES an e.w.p., we obtain
i=1

r h
_ ) ok *
o = Yo Y awa’ +a
7j=1 =1
r h r
* * *
= D7) oy 0t + ) e et + L
j=1 =1 j=1

r h
= Z l‘j (Oélj + Z auij> Oé* + 1* (39)

j=1 i=1
By (3.7), (3.8) and (3.9), it follows that for al w € £ U {a*}, somew’ € £ U {a*} existsand
w=> zjw +6(w)
7=1
where j(w) = L or L*. Henceit is concluded that o* is equationally characterized. a
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(4) PROOF FOR ar[s] 3

&1, ..., & arefinite sets of BCRESs defined as follows.

& = {au[s]B|l1<u<<ml<v<nandse?27}

& = {rjau[s]Bh|l<u<ml1<v<nl<j<randsec?2%}
& = {aw[s]zify|l1<u<m1<v<nl<j<randsec?2%}
& = {ay]s]L[1<u<m,se27}

& = {L'[s]f]1<v<n,se2%}

& = {ay |1 <u<m}

67 = {6v|1§'l}§n}

where o isafinite set of symbols.
First, we provethefollowing: if w € & (1 <i < 5),thensome~,,---,7, € Y(§U---U&s)
exist and

Fw= Zxﬂj + §(w)

7j=1
Assumethatw € &, by thedefinition of &, somew, v and s existssuchthat w = o, [ s] 3, holds.
Since a and  are equationally characterized, o, and 3, are also equationally characterizedfor
every v and v. Hence, the following holds.

oy, [S] By = (XT: Ty  + 5(0%)) [S] (Xr: xjﬁvj + 5(511))

j=1

By the axioms C, and (s, the following equation can be derived.

Fayl[s] B, =m + 7o+ 73+ my

where
™= i%%y’ [51] ixjﬂvj
j=1 j=1
Ty = Zr;%'auj[sﬂfs(ﬂv)
=
m o= o) (5] Koy
m = 8o (11605
and sy, ---,s4 € 27. Then, for 7, by the Lemma 3.7, some v, € &, exists (Assuming that &,

hereis the same as the one in the Lemma 3.7) and it follows that
F ™ = ijauj [81] ijﬂvj = Z.’L’j’ylj (310)
j=1 7j=1 7=1
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According to the definition of &, - - -, &, it clearly followsthat £, = & U & U &3. Hence, by the
Lemma3.2, Y1j - 1/)(51 U 52 U 53)

For 75, by the axiom C to (s,

r 1 if 0(By,) =1
oy = Uy (By) = r

T ]Z::ll']a][SQ] (Bv) S ual if 56 = L
=1

where oy, = L if ; € sy, otherwise o, ; = ;[ s] L*. By the axioms Ag and Ag,

FL=> 1= z;1
7=1 7=1
Hence,
j=1

wherey,; € &, U {L} holdsforall j =1,---,r. Thefollowing also holdsin the similar way to
(3.11):

= T3 = Zl‘j’)/gj (312)
7j=1

whereforall j =1,---,r, v3;, = Lorvs,; € & U{L}.

For 74, by the axiom C-C5,

1* 4 S(a) = 6(8,) = L*
7y = () [51]6(8,) = / (@) = 6(8,)

1 otherwise

Hence, 6 can bedefinedforal w =1,---,r,v =1,---,r and s, asfollows.
=y = (o [s4] B)
s, can be replaced with s since s, does not effect the definition of §. Hence,
Fory=0(a[s]5y) (3.13)
By (3.10), (3.11), (3.12) and (3.13),
Fay[s]B, = m+m+m+m

= Zazﬂlj + Zxﬂgj + Zl"ﬂ?,j +d(au[s]5)

=1 j=1 j=1
= >z (v + 725+ s5) + (e [5] Bo)
j=1
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where 6(a, [s] 3,) is L* if 6(ay) = 0(6,) = L*. Otherwise, L. Since v, v25, v3; € (& U
~-U&U{L}) and by the Lemma3.5, Thereissomey; € (& U... U & U {L}) such that

oy 4+ 25 3 =
holdsforall j =1,---,r. Hence,

Fw= Xr: z;7v; + 0(w) (3.14)

J=1

Assumethat w € &, that is, w = z;a,, [s] 8, € &. Since 3, is equationaly characterized,
it follows that

Fw=za,[s] (27": xjByj + 5(511))

By the axiom C}, there are some s; and s, such that

x| 5] (27": ZjBj + 5(@])) =T + T
j=1

where
™ = xiau[sl]zxjﬂvj
j=1
Ty = Ty [52]0(8y)

For ,, suppose thet ov,,; = o, for j =4 and ay,,; = L for j # <. Then,

r r r
Far = a0 [81] Zl"jﬂuj = ijO‘Uj [51] ijﬂvj
e j=1

J=1

By the Lemma 3.7, some v, € &, exists and
F Y [si] Y @b = D wimy (3.15)
j=1 j=1 j=1
holds[] e reminded that &, = &, U & U &3, and by the Lemma 3.2,

T € P& U...UE)

holds.
For 75, by using asimilar process in the proof for w € &, v2; € (&) U {L} existsfor al
j=1,---,rsuchthat

= S g (3.16)
7j=1
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By (3.15) and (3.16),
Fw =Y wmny o wie = Y wi(ny + )
7=1 7j=1 7=1

Sinceyy; € ¥(§1U&UES) and yy; € 1 (&y) U{L}, itfollowsthat 715, v2; € 1(&1U- - -UEU{L}).
By theLemma3.3, v, € ¢(§U- - U U{L}) existsforall j = 1,---,rsuchthat - ;472 =
7; holds. Thusy; € ¢(& U---U& U {L}) existssuch that

Fw=2 %
j=1
for every w € &. By theaxiom A,,
Fw=> ;7 +0(w)

j=1

where j(w) = L.

Assume that w € &. Then, foral w € &, somey; € (& UE U E U {L)) exist and
Fw =Y x;v; + d(w) aso holds where §(w) = L. This can be proved following the same

j=1
approach as the proof for w € &,.

Next, let usconsider w € &,. Since «,, is equationally characterized, we have
Fw=> zja, +6w)[s] L= (Zajjauj [5] J_*> +0(w)[s]L"
j=1 j=1

According to C;-Cj,

r r
FY may[s] L = ) @al,
j=1 j=1

Fo(w)[s]L" = LYor L

where oy, = L if z; € sy, otherwise a;; = ay;[s] L*. Hence, it follows that some ; €
r
& U{L} existsandw = ) x;7; +6(w) holds. Inasimilar way it is easy to show that the same

j=1
equation followsfor w € & and v; € &.

Finally, in the case of w € &g, &7, sSince o, and (3, are equationally characterized, it is clear
that

Foa, = ijauj + (), FpBu= ijﬁuj +6(6)
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where a,; € {6 and 3, € &r.

Thus, according to the results of the discussion above for w € & ---&;, it is proved that
v €& U---U& U{L}) existssuch that
Fw=>Y ;7 +0(w)
j=1
forw € §U---U&U{L}. By theLemma3.6, thisalsofollowsfor all w € (£ U- - -U&U{L}).
Therefore, every w € (& U- - -U&;U{ L}) can be characterized with finite number of equations.
Thus, al w € Y(&U---U&U{ L)) areequationally characterized. By a[s] 8= a1 [s] 5 € &
and & C Y& uU---U&U{LY}), itfollowsthat a[s]f € ¥(& U---U& U {L}). Hence,
a[s]pisequationally characterized.

(5) PROOF FOR «f| 3

Assume that « and 3 are equationally characterized. Then (3.2) and (3.3) hold and, x4, - - -, z,
exist for some ay, - - -, m, B, - -+, B, SUch that

Fallf = (i 0ty +5(0éu)> | (éxjﬂvj +5(ﬁv)>

J=1

Given that
& = {alfl <u<m,1<wv<n}
& = {rja)lfl <u<m,1<v<n1<j<r}
& = {aullzifl <u<m1<v<n 1 <5<}

Then, in the same way as the proof for [ s] 3, the following can be derived for all w € & U
52 U 53 U {J_} that S w(& U 52 U 53 U {J_}) exists such that - w = Zl‘j’Yj + (5(&))

7j=1
holds. Therefore, every w € (& U & U & U {L}) are equationally characterized. Since

al|3 = i) € Y(&U---UEU{ LY}, itclearly followsthat «| 3 is equationally characterized.

According to the proofs (1) to (5), the induction is completed and it can be concluded that
all BCREs are equationally characterized. O

3.3.3 Proof for Completeness

In the reminder of this section, we prove that - o = [ is dways derivable if o and 5 are
equationally characterized and o« =  isvalid. Since all BCREs are equationally characterized,
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the same proof strategy in the completeness theorem for Regular Expression can also be used.
The proof shown in this section is based on the proof in A. Salomaa’ s completeness theorem[6].
We start with the following two lemmas (Lemma 3.8,3.9). Then we prove the completeness
theorem (Theorem 3.3).

LEMMA 3.8

Let n be a natural number and assumethat forali=1,---,n

o =) vijag 4 i (3.17)
7=1
6= %58 + (3.18)
7j=1
where none of r;; possessan ew.p. Then, - «; = g; forali=1,---,n.

PROOF

The proof is by induction on the number n. If n = 1, then (3.17)(3.18) has the form:

Fap =y +v, EBl=yub+m
Hence By R2,

Far = (7)) = B

Assuming that 2 < n and that the lemma holds for the numbers 1,---,n — 1. Given that
(3.27)(3.18) holdsfor i = n, then it clearly follows that

n—1

= a, = Z TnjCj + TnnQn + Tn
7=1
n—1

J=1

By applying therule R2,
n—1
Fa, = ('Vnn)* (Z YnjQj + 771) (3.19)
j=1
n—1
O = (’Vnn)* (Z ’anﬁj + %L) (3.20)
j=1

According to (3.19)(3.20), «,, can be eliminated from (3.17) and, (3, so isfrom (3.18). Then,
forali=1,---,n—1

n—1 n—1

Foi = > vy 4 Yin(Yan) (Z YVl + %) + 7%

n—1 n—1
FBi o= > 7B + Yin(an)® (Z TnjBi + %) + 7
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By applying the axioms A3 to As, it holdsforali=1,---,n — 1 that
= Q; = Z Vij + Yin ann) an)aj +71{
7j=1

n—1
=B = Z Vij T Yin (Vnn)* ’an)ﬁy +%

where v! = v; + Yin(Yan)* V- 1t isobviousthat v;; + in(7an)*7n; dOES NOt possess an ew.p.
By the induction hyp.,
Fa; = 6

itfollowsforali:=1,---,n — 1. Hence, by (3.19) and (3.20),

an:ﬂn

This completes the induction and also the proof of the lemma. O

LEMMA 3.9
Assuming that o and 3 are BCRES, o = 3 isvalid and

Fa = zr:xjaqu&(a), (3.21)
j=1

F6 = Y x8+4(8), (3.22)
7j=1

whered(a) = L oré(a) = L* and, §(3) = L oré(B) = L*. Thend(a) = 0(8) and o = f3;
foralj=1,---r

PROOF
Assumethat o = fisvalid and, (3.21) and (3.22) hold. Itisclear that Y z;c; and Y z;3;

j=1 j=1
do not possess an e.w.p. Hence,

1. If « and 3 possess an e.w.p, it followsthat () = 6(3) = L*.
2. If aand 3 do not possess an e.w.p, it followsthat () = 6(3) = L.
3. If either a or 3 possesses an e.w.p, it contradictsthat o = 5 isvalid.

Therefore, §(«) = §(5) always holds.
Now, assume that some j exists such that a; # 3;. Then, by the definition of L, the sets
L(zja ) for j = 1,---,r aredigoint. In other words, foral j = 1,---,randk = 1,---,r,

33



L(zjo) N L(zpoy) = ¢ holdsif j # k. The same holds with L(z;5;). This implies the
following:

>z # )T
j=1 j=1
Thiscontradictsthat oo = g isvalid. Hence, o; = g forall j =1,---,r. O

Now, we can show the completeness of the axiom system F... The following proof is similar
to A.Salomaa's completeness proof [6].
THEOREM 3.3

F. iscomplete.

PROOF

Assume that o and § are BCREs and o« = 3 isvalid. By the theorem 3.2 o and  are
equationally characterized. Hence, for some a4, -- -, a,, and gy, -- -, 3,, (3.2) and (3.3) hold
where o = a7 and 3 = ;. Then, by thelemma 3.9,

Fa=o = ) x5+ 0(a)
=1

FB=p = Y B +6(a)
j=1

where for al o and 3}, some k and | exist such that o = oy, and 3; = (3. By thelemma 3.9
again,fordl j=1,---,r,

r
- 04]1. = Z@-Oxi + (5(04}),
j=1

B = > xif +6(e),
=1

where for al o and 37, some £ and [ exist such that o = oy and 37 = (3. This procedure is
carried on until no new pair of a;? and ﬁ]’? appears. Thus, thereis some u < mn and o and 3
fori =1,---,u can be defined asfollows.
ol = Yzl 4
j=1
g = Z%ﬂ; + %
7=1

where for all o and 3i, some k < u and | < u exist such that o, = o* and ! = j' holds.

Sincewehaveal = 1,fordli=1,---,u,

Fa = Z%’ja‘j + %,
7=1
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=B = vl + v
o1

where for each i and j, either v;; = L orv;; = xj, + -+, forsomel <vand1l < j; <
-++ < jp < r. Thus, none of the expressions ;; possess an ew.p. Thisimplies, by the lemma
3.8,

Fal=6" (i=1,--,u)

In particular, we have - o = ( for i = 1. Thus, the theorem 3.3 follows. O

The next theorem follows immediately from the completeness of F..

THEOREM 3.4
If « is a BCRE, then there is at least one expression 3 that does not contain the [s] and ||
operators, andt o = (3 follows.

PROOF

It is obvious by the semantics of BCRES that their language class is equivalent to that of
regular expressions. Therefore, for every BCRE « thereis aregular expression 5 that does not
contain [s] and ||, and L(«) = L(3) holds. Then by the completeness of F., it is derivable that
Fa=p. O

3.4 Theorems

This section describes some important equivalence relationships of BCRESs as theorems. We
omit the proof here but detailed proofs for each of the theorems can be seen in the thesis ap-
pendix .

THEOREM 3.5 (Associative L aw)

Assumethat o(a) Uo(B) Co(af |8)ando(f)Ua(y) Ca(B] |v) then

Note that associative law on the [ | operator does not generally follow. For example, +
(@[ ](b[ J(a+b)) =albbutt (a[ ]b)[ ](a+0b) = (allb)[ ](a+b) =L

THEOREM 3.6 (Associative Law (2))

Assumethat s 2 (o(a) No(B)) U (a(B) Na(y)) U (a(y) No(w)) then



This theorem means that if a common set of communication symbols s is used over the entire
system, then associative law is followed.

THEOREM 3.7 (Operator swapping)

Fals]f=allfifo(e)no(f)Us=¢

Thistheorem illustrates the condition where we can exchangethe [ s| and || operators. We can
do so even if thereis no communication symbol between o and 3.

THEOREM 3.8 (Extraction)

= (axf) [s](vyd) = ([ ]9)(xB[s]y0)
wherez,y € (o(xzf)No(yd)) Us and (o(axB)Us)No(y) = (o(yyd) Us)No(a) =¢

Thistheorem meansthat if x and y are communication symbols and, « and v do not possess
communication symbols, then « and ~ can be extracted as concurrent threads ([ |v). Note
that - ([ ]v) = «||y holds by the Theorem 3.7since o and - has no communication symbols.

3.5 Summary

This chapter presented the axiom system F,, for the language equivalence of BCRES and proved
that F, is sound and complete. As aresult of the soundness and completeness, with our system
we can prove equivalence for any two expressions if the expressions have the same language;
that is, they represent the same behaviour. In the last section, we proved some important theo-
rems in respect to BCRES.
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Chapter 4
Modelling Concurrent Systems

In this chapter, we formally define amodel of concurrent system in two different ways. Oneis
a concurrent object model that is defined as a set of concurrent objects. The other is a concur-
rent thread model that is constructed by a global state machine and sets of concurrent threads
assigned to a state in the global state machine.

4.1 Concurrent object mode

The concurrent object model is a behaviour model which represents composite behaviour of
concurrent objects. Assume that there are n number of objects for some n > 1. Then, the
concurrent object model for these objects is defined as follows.

Oy [s1](O2[s2] (- (On-1[80-1]0n)--+)) (4.1)

where s; isaset of communication symbols between O; and the composition of O; 1, -+, O,.
Notethat if weomit s;; that is, if s; = ¢ isgiven, the language of the resulting concurrent object
model isthe same as that if we define

si=0(0;) No(Oit1 [Si+2] (Oisa [Si43] (- (On-1[50-1104) -+ )))

Behaviour represented by the concurrent object model is sensitive of the order of object
occurrence O, ---,0,,. For example, let us consider three objects; a, b and a + b. Then
Fal J(0[ [(a+0b)) =al ]b=allbwhilet (a+b)[ [(a[ ]b) = (a+b)[ ] (allb) = L.

Now, we show an example model of an auto-locking door system. This system consists of
three objects: Card-Reader, Door and Timer as depicted in Figure 4.1,4.2 and 4.3

This model can be formalised as follows.

(un.th.(to + op.te.cl).lo)* [ ]| (ca.un.lo)* [ ] (tb.tb*.(to + te))*
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Figure 4.1: Door Figure 4.2: Card Reader Figure 4.3: Timer

Note that some of the parenthesises for the binding priority of [ | are omitted because | ]
operators in this context satisfy the associative law according to theorem 3.5.

4.2 Concurrent thread model

We begin this section with an intuitive explanation of a concurrent thread model. Then, we
provide the definition of a concurrent thread model, which is a model of a concurrent system
that focuses on a switching set of concurrent threads according to the transitions of a global
statein asystem. A concurrent thread model is constructed with aglobal state machine and sets
of threads assigned to each state. Figure 4.4 depicts an example of a concurrent thread model.
In this Figure, there isaglobal state machine with some threads assigned; one or more threads
can be assigned to a state. For example, the 'statel’ in Figure 4.4 contains two threads that are
executed concurrently.

An expression representing a concurrent thread model in Figure 4.4 can be obtained as
follows. First, we define a global state machine using BCRES. Although there is no transition
labelsin the global state machine in Figure 4.4, state identifiers can be used as transition labels
and so it is easy to obtain an expression for the global state machinein Figure 4.4 as follows.

(statey.(state; + stateq).states)” (4.2)

Then we define a state as a BCRE that represents threads that are allocated in each state. Itis
clearly obtained from Figure 4.4 that

stateg, = (a.b)

state;, = ((e.d) || (e.f + g))

state, = (h.1)*

states = J (4.3)

By substituting (4.3) to (4.2), it is derived that
((a.b).((c.d ][ (e-f + ) + (h.i)").5)"
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state0 a b

statel 4 c d N\ state2

CREARCRe

state3

e

Figure 4.4: Concurrent Thread Model

Thisisan expression of the model in Figure 4.4.

Syntactically, the concurrent thread model is defined as an expression that hasno [s] op-
erator. However, such a definition with respect only to syntax is over-simplified. We should
focus on a concurrent thread model that correctly corresponds to a concurrent object model,
and aso on a semantic level. Some additions to the definition are needed to illustrate what the
correspondenceis. The following is a definition of a concurrent thread model that corresponds
to a concurrent object model. Informally, a concurrent thread model is an expression that has

1. no [s] operator
2. nointerleaving expression
3. no over-concurrency

An interleaving expression is an expression that contains any interleaving of symbols from
two or more different objects. For example, assume that there are two objects defined by the
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expressions ab and cd respectively. Then the concurrent object model for these objects are
defined as ab | ] cd. In this case, the corresponding concurrent thread model is exactly ab||cd;
however there are some other equivalent expressionssuch asa(b || ¢d) 4 c(ab||d), and ac(b|| d)+
abed + cdab + ca(b || d). Inthese expressions, some of concurrent behaviour between ab and cd
is serialised. Such sequences are called interleaving expressions. Be reminded that the purpose
of focusing on the concurrent thread model isto clarify the essential concurrency in asystem. If
there isany interleaving expression, it means that some information of the concurrent behaviour
islost. On the other hand, the over-concurrent expression indicates internal concurrency of an
object that is not alowed in concurrent object models. For example, there is an object defined
with an expression ab + ba; by the semantics of BCREs, it is equivalent to a||b. However, we
should not consider a||b asaconcurrent thread model for ab+ba because thereis no concurrency
intheoriginal ab+ ba. A concurrent thread model should not contain any excess of concurrency
that is not implied in the corresponding concurrent object model.

We now define the concurrent thread model in aformal way. We begin by clarifying which
symbols belong to which objects. The following definition is a projection from a symbol to an
object to which the symbol belongs.

DEFINITION 4.1
Assume that there are n number of objects Oy, - - -, O,, and a concurrent object model defined
asOq[s1](Og[s2] (- (On-1[80-1]0n) --+)). Then, for asingle symbol x

(0, x) = ful{om € 0(0))}
and,

b C(O’O‘*) = C(O’O‘)

* ((0,0a]|B) =¢(O0,a+ B) = (0, af) =¢(0,a) U0, B)

For example, assumethat O; = x+y and Oy = yz. Then (O, z) = {01}, (0, y) = {01,045}
and (O, z) = {0,}.

Next, we formalise interleaving expressions as I (O) that denotes a set of all possible sets of
interleaving expressions of O. Notethat by this definition of 7(0), an expression that possesses
one or more interleaving expressions as its sub-expressions is also regarded as an interleaving
expression.

DEFINITION 4.2 (Interleaving Expressions)
Assume that O is a concurrent object model. Then a set of interleaving expressions I(O) is
defined as follows.

I(0) = {af|¢(0,0)N((O,B)=¢oracI(O)orpel(O)}U
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{a"|a e I(O)}U
{a+pB|laeI(O)orpelI(O)}U
{al|faecl(0)orsel(0)}

For example, if O = O, [ ] O,, ((0,z) = {O1} and (O, y) = {O-} then, zy and = + y are
interleaving expressions.

On the other hand, a set of all the possible over-concurrent expressions of O can be defined
as follows. Notice that by the definition of H(O), an expression which possesses one or more
over-concurrent expressions is also an over-concurrent expression.

DEFINITION 4.3 (Over-concurrent Expressions)
Suppose that O is a concurrent object model. Then a set of over-concurrent expressions H (O)
is defined as follows.

HO) = {all3] <(0,0)1 (0, 8) # 6} U
{a"|a€e HO)}U
{af|lae€ HO)or g€ HO)}U
{a+plae HO)or e HO)}

For example, a||bisin H(O) for O = ab + ba because (0O, a) = ((O,b) = {O}
Now, we finally define the concurrent thread model.

DEFINITION 4.4 (Concurrent Thread Model)
For any concurrent object model O, an expression T'(O) is a concurrent thread model of O if

1. T(O) hasno [ s] operator.

3 T(0) & 1(0) U H(O)

For example, assume that O = O, [ |O,, O; = axb and Oy = ayb. Then a(z||y)b and
a(xy + yx)b are equivalent to O. However, a(zy + yx)b isnot a concurrent thread model of
O because (O, z) = {0y} and ((O,y) = {O2} hence zy + yx € I(O). On the other hand,
a(x||y)b is exactly aconcurrent thread model of O.
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43 Summary

In this Chapter we presented how to model concurrent object and concurrent thread models
using BCREs. The semantics of these models are given as the language of BCREs. We also
defined the correspondence between these models based on language equivalence. In the next
Chapter wefocus on the method of how to transform a concurrent object model into aconcurrent

thread model.
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Chapter 5
Extracting Threads

Let O be an object model and let 7'(O) be athread model of O. If O and T'(O) represent the
same system behaviour, L(O) = L(T(O)) holds. Here we are concerned with transforming an
object model to athread model, that is, to derive 7'(O) from O in a systematic way. According
to the completeness of our axiom system, - O = T(0O) can always be proved. If T(0) is
known, a derivation path of = O = T'(O) can always be obtained. However, our problem here
isdifferent. The problem is how to derive a unknown 7°(O) from O. It isnot atrivial problem,
and is more complex than proving = O = T'(0O) with the axiom system. In this chapter, we
propose a systematic way to solve the problem. First, we define the idea of thread-extractable
form. Then we prove that any object model can be transformed to thread-extractable form.
Finally, we present away of transforming athread model from a thread-extractable form.

5.1 Thread-extractableform

Consider an expression that begins with a sequence of non-communication symbols, succeeded
by a communication symbol. Thread-extractable form is a set of such expressions defined as
follows.

DEFINITION 5.1 (Thread-extractable form)

Let{xy,---,z,} beaset of symbols. Then, it is stated that « is thread-extractable if following
thereare some oy, - - -, v, for {zy,- -+, 2z} C{xy,---,2,.}. Itisalso stated that o, is athread-
extractable form of «.

h(a;)
Fa =Y 0 g)2(es Dnlas, §) + 0(es, 0) (1)
7j=1

wheret o = oy, andthereare somek(1 < k < n) for ali and j suchthat o, = n(«;, j) holds.
h(c;) isanatural number decided by «;. 6(«;, j) € © and z(«;, j) € {z1, -+, 2z} U L forj =
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0,---,h(a;) © isaset of expressions, and it followsthat 0 € © implies{zi,- -, z.}No(0) = ¢
for any expression . That is, © is a set of expressions that do not contain any symbol in
{#z1,---,2~}. Notethat | and L* arealsoin®

Now, let us show that any expression is thread-extractable if the expressionhasno [ s] and
|| operators. In the remainder of this chapter, we use the axiom A; to Ay; in proofs without it
being explicitly referred to.

THEOREM 5.1
All BCRES are thread-extractable.

PROOF

We will prove the theorem by induction on the syntax of BCREs. Let {zq,---,z,} beaset
of symbolsand assuming {zy, - - -, 2~} isan arbitrary subset of {z1,-- -, x,}. We start with the
base step.

1. Base step

It clearly followsthat |, 1 * and any symbol z; € {z1, - -, x, } arethread-extractable according
to the following equations.

1 = 111+1
Fo1l* = 1114+ 1*
Fox o= Lol 4+ L difa€{z,-, 2}
Fox o= Lll 4w difxi {2

Next, suppose that oo and 3 are thread-extractable then we will provethat o + 3, o and o*
are thread-extractable.
2.Fora+p
By induction hypothesis, a isthread-extractable; therefore (5.1) holds. Therearesome 3y, - - -, B,

+pB =3 ad

h(Bi)
Z ﬂla ﬂl? ) (ﬂla )+9(ﬂ17 ) (52)

Jj=1



holdsforall i = 1,---,m where §(,j) € © and n(5, j) isamong 3;(1 < i < m). By (5.1)
and (5.2), it follows that

h(B1)
- Oé—'_ﬂ = Z 9 al; al; )77(0417]) + Z 9(617].)2/(617 ) (617 )+9(a17 )+9(ﬂl70)
=1
(a1+51) ’
= > tlar+ B, j) +0(cn + 51,0) (5.3)
7j=1

where h(oq + 61) = h(oa) + h(61), 6(aq + 1,0) = 0(ay,0) + 6(51,0), and ¢ is defined as
follows.

t(aq + (1, 1) = Olayg,i)z(aq,i)n(aq,i) for 1<i<h(a)

t(al +ﬂlaj + h(al)) = 9(617])2(617])77(617]) fOT 1 <j S h(ﬂl)

The structure of theform (5.3) issimilar to the definition of the thread-extractable form such
as (5.1). Hence, it is concluded that o 4 (3 isthread-extractable.
3. For af

By induction hypothesis, « isthread-extractable. Thusby (5.1), it followsfor all «; (1 <1< n)
that

h(ai)
- aiﬁ = 9(a17])z(a17]) (ala )ﬂ—l—@(a“())ﬂ
7=1
h(a;) h(B1)
= 9(0&1,])2(@2,]) (azaj 6_'_ Z 9 aza 617 ) (517 ) (617 )+9(aza )9(5170)
j=1
Sincen(ay, j)isamong sy, - - -, ay, n(ay, j)Fisasoamong oy 3, - - -, oy, 3. Therefore, the struc-

ture of the above expression is similar to (5.1). Hence, «; 3 is thread-extractable. Considering
that = a8 = a3, it isconcluded that o3 is thread-extractable.
4. For o*

By induction hypothesis, « is thread-extractable; therefore, there are some «, ..., such that
- a =y and (5.1) holds. Hence,

F of=1"4+aa*

h(a1)
= 1*+ Z O(c1, j)z(cr, j)n(ar, j)a” + 0(aq, 0)a* (5.4)
7j=1
It also followsfor 1 < ¢ < n that
h(a;)
F o = Z O(cv;, j)z(ay, )n(ay, j)a” + 0(ay, 0)a* (5.5)
7j=1
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By (5.4) and therule R2, it is proved that

h(a1)
Faf = > (0'(a1,0))*0(cr, j)z(eu, j)nlea, j)a’ + (6 (a1,0))* (5.6)

j=1
where ¢'(«,0) = 6(«,0) if € ¢ L(#'(«,0)). Otherwise #'(«,0) is an expression such that
F6(,0) =0'(«r,0) + L*and e & L(¢'(a, 0)) holds. By substituting (5.6) to (5.5),

h(ai)
F aia* = Z e(ai;j)z(aiaj)n(aiaj)a*

h(j:)
+ 2_:1 9(0@,0)(9’(a1,0))*9(a1,j)2(a1,j)77(041,j)a*
+ 0(, 0)(0'(c1,0))"

Since n(ay, j) isamong ay, - - -, oy, (e, j)a* isaso among a o, - - -, . Therefore, the
structure of the expression above is similar to (5.1). Thus, it is clear that o;a* is thread-
extractable. According to this result, it is also proved that the structure of (5.6) is likewise
similar to (5.1). Hence, o* isthread-extractable.

From what has been discussed above, it is concluded that all expressions without [s] and
|| operators are thread-extractable. By this result, the rest of the proof is mostly clear. By the
semantics of BCREs, there are some equivalent expressions without [s| and || operators for
any BCRE. By the completeness of our axiom system, we can always derive such an expression.
It is already proved that all expressions without [s] and || operators are thread-extractable.
Hence any expression with [s] and || operators are also thread-extractable. O

5.2 Transformation method

In this section, we present a systematic way of how to transform a concurrent object model
into a concurrent thread model. This method is defined as a procedure with three steps. First,
a concurrent object model is transformed into a thread-extractable form without interleaving
and over-concurrent expression. Next, the thread-extractable form is transformed into a BCRE-
labeled automata. Finally, a BCRE-labeled automata is transformed into a concurrent thread
model. We describe the details of these stepsin the following sections.

5.2.1 Object model to thread-extractable form

We begin with a method for transforming an object model that consists of two objects into a
thread-extractable form. It has already been shown that any concurrent object model « [ s] 3 is
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athread-extractable form. However, such athread-extractable form may have someinterleaving
or over-concurrent expressions which should not appear in a concurrent thread model. In this
section, we will show away of transformation from an object model into a thread-extractable
form without interleaving or over concurrent expressions.

LEMMA 5.1

Let O be an arbitrary concurrent object model. Assume that there are some thread-extractable
formsfor each o« and 3 such that o, 3 ¢ 1(O)U H(O) holds. Then there is a thread-extractable
formfora[s] 3 whichisnotinI(O) U H(O).

PROOF

By the semantics of BCREs, it clearly followsthat - «[s] 3 = a[(c(a) No(B)) U s] 5.
Thus in the remainder of this proof, we assume that o(«) N o(3) C s instead of using an
arbitrary s.

Assume that there is a thread-extractable form for each o and § such that o, 3 & I(O) U
H(O) holds. Therefore (5.1) and (5.2) holds for {z;,---,2.} = s. Thus, it follows for all

1<u<nandl <v < mtha

h(ew) h(g.)
Foay[s]B, = (Z T(au,j)+9(%,0)> [5] (Z T(By, ) + 0By, ))

=1

where T(Oéu,j) = e(au,j)z(%,j)n(%,j) and T(ﬂva]) = 9(@”])2(@“])77(@”]) Then by
the axioms C; and C5,

hlaw) BBy h(a)

= Oéu, (ﬁva )) ; (T(au,j)[s]g(ﬁmo))
h(Bv)

T ; (0(, 0) [8]T(By, §)) + (B, 0) [5]0(B,,0))

By the theorem 3.7, 3.8 and the axiom C'y,

> 2 (Oaw, D108y, 3)2(E, ) (0w, 1) [s]0(By, 7)) + (00w, 0)[10(B,,0))  (5.7)

where z(i,7) = z(a, i) if z(ay, i) = 2z(8,, ), otherwise z(i,j) = L. Since o, and 3, are
thread-extractable, n(«a,, i) [ s|n(5,,j) areasoamong o, [s] 5, (1 <u <n,1 <v <m).By
Fal=1la=1ladFa+ L =_1+a«a=a«a(cf[6]),dl z(i,j) = L can be eliminated from
(5.7). Then the structure of (5.7) issimilar to (5.1). Hence dl «, [ s | §, are thread-extractable.
By the assumption, and the definition of I and H, 0(«v, i), 6(5,,7) and n(ay, i) [ s]n(5,, j) are
notin I(O)U H(O). Therefore, itisobviousthat (5.7) isnotin I(O) U H(O). Hence, a; [s] (1

47



isathread-extractable form for o[ s] S and notin I(O) U H(O). Therefore, thelemmafollows.
O

The Lemma 5.1 ensures that thread-extractable formfor o [s] 5 asay [ s] 31 exists and that
itisnotin I(O)U H(O); namely it is neither an interleaving nor an over-concurrent expression.

5.2.2 Transforming function

According to the result of Theorem 5.1 and Lemma 5.1, we can define a systematic transforma-
tion function X, which is a morphism from an expression into a closed set of equations as in
the schema o = (3 that represents equations in a thread-extractable form.

Let o and 3 be expressions that do not contain [s| and || operators. z is aset of symbols.
Let h(«) beanatural number,and 0(c, j) be an expression. z(«, j) isamember of z and n(«, j)
is an expression. They are obtained from a thread-extractable form of «. In other words, it

follows that

h(a)
o= 0(a,j)z(e, j)n(a,j) + 0(a,0) € X, (a)

j=1
Thusfordl 1 < j < h(a), o(f(c,j)) Nz = ¢ ando(z(a, j)) C z holds. Now, together with
the above assumptions, X, can be recursively defined as a minimal set as follows.

1 X, (L)={lL=111+1}

2. X, () ={Ll*=111+1*}UuX,(L)

3 X.(z)={r=L1l1l+2}UX,(L)ifz ¢ 2.

4 X, (z)={o =L+ L} UX,(L")ifz € 2.

h(a) h(B)
5 X,(a+8)={a+p=pas) }U U X.(n(a,j)) U U X.(n(B,7))

j=1 j=1
h(8)
6. X.(af) = { aB = p(ap) }UUX 7)B)u U X.(n(B,1))
=1
if thereisno ~ such that 5 = 7* holds ’

()
7. X, (o) ={a" }UUX (a, ), 2)

h(e) h(B)
B. X.(0a") = { fa” = p(8a) }u U X(nfenf)a") U U X.(n(8, o)
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h(a) h(B)

9. X.(a[s]B)={als]B=plals]B)}U U U X.(n(a,i) [s]n(8,]))

where p is defined as follows.
h(a) h(B)
pla+p) = 2} 0(cv, j)z(a, j)n(e j) + Z 0(8,7)z(8,7)n(B, ) + 0(c, 0) +6(3,0)
h(a) h(8)
plaf) = Z 0(a, j)z (o, 7)8 + Z 0(c, 0)0(5, 7)2(8,5)n(B, j) + 0(a, 0)0(5,0)
h(a)
pla”) = 3 (8'(a,0))"8(a )z( )n(er H)a” + (¢'(«, 0))"
h(B) h(a)
plB’) = 3 08.7)x(8.(B. 3)a + 3 08.0)0' (2, 0 Blex ) z(ev Pinfen ) +
9(6, 0)(6' (e, 0))*
h(a) h(B)
plafs]f) =

> X (60 1005, )20, 3) (0 ) [s10(5,9)) + (61, 0)16(5.0)
=1 j=
where 0'(«,0) = 0(a,0) if € & L(0'(«,0)). Otherwise ¢'(«,0) is an expression such that
F0(a,0) = 0 (c,0) + L*and e ¢ L(0'(«,0)) holds. Z(i,7) = z(«, i) if 2(a, i) = 2(5,7),
otherwise Z (i, j) = L.

Note that the sub z of X, represents a set of communication symbols. If the concur-
rent object model o[ s] 5 is given, the thread-extractable form for o[ s| 5 can be calculated

X.(a]s]B)wherez = (o(a) No(B)) Us.

5.2.3 Thread-extractable form to automata

In this section, we show how to transform a thread-extractable form to an automata representa-
tion called a BCRE-|abelled automata. Assume that a thread-extractable form consists of a set
of equations Q = {ay = (1, -+, @, = B, } such that

= 3 0w (o e )+ 000

Then, a BCRE-labelled automata of Q: G(Q) =< N, B, T, S, F > isdefined asfollows.
1. N={o, -, a,,(}
2. B={0(c;,j) |1 <1< n,0<j < h()}

3. T ={<a;0(,j)z(a;,j),n(as7) > |1 <i<n, 1 <j<h(wy)}U
{< @i, 0(;,0), ¢ >}
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d*ax

(blic)y \\_l/‘

d*
Figure 5.1: BCRE-labelled automata

4. S:Oél

5. F = {¢}

where N represents a set of states, B is a set of labels, S istheinitial state and F' is a set of
terminal states. T isa set of transitions. Each transition is defined as < t,,[,t, >: t, isastate
from which the transition leaves, ¢, is a state to which the transition heads, and [ is atransition
label. The following is an example of a thread-extractable form of (ax(b || ¢)y + d)* where x
and y are communication symbols.

Q= { a=dazray+d,
az = (b cJyor + L}
where oy = (az(b|| ¢)y + d)* and ae = (b || ¢)y(az(b|| ¢)y + d)*. From this thread-extractable

form by the procedure 5.2.3, the automata for G/(()) can be constructed as follows, and is
depicted in Figure 5.2.3.

= {a, 05}
{< o, d"ax a9 >, <y, d*,( >, < ayg, (b]l )y, a1 >, <ag, L, (>}

= {¢}

Ny N =2
[l

5.24 Automatato Thread model

Let us begin with transforming a BCRE-labelled automata to a BCRE. We can directly apply a
transformation method from an automata to aregular expression. Since this transformation isa
problem well-known and solved in the automata domain, we are not concerned here with details
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of thistransformation. For example, onetraditional solution can beseenin[9]. A corresponding
BCRE of BCRE-labelled automatais not uniquely determined. One or more expressions may
be obtained from one BCRE-|abelled automata.

For example, (d*ax(b||c)y)* +dx+d*ax_L isone such expression obtained from an automata
in Figure5.2.3. Themeaning of theresulting BCRE from the BCRE-labelled automataisclearly
equivalent to the thread-extractable form that the BCRE-Iabelled automata is based on. Hence
F (ax(b||c)y + d)* = (d*ax(b||c)y)* + d * +d*axL holds.

5.2.5 Transformation Procedure

Assumethat O = «/[ s ]  isaconcurrent object model. Then, aconcurrent thread model 7'(O)
can be obtained by the following procedure.

PROCEDURE 5.1
1. Cdculate X ,(O) according to Section 5.2.2 where z = (o(a) N o (5)) U s.

2. Calculate G(X,(0)) according to Section 5.2.3.

3. TransformG(X,(0)) toT(O) according to Section 5.2.4

The following theorem guarantees that such a7'(O) is exactly a concurrent thread model of
0.
THEOREM 5.2
Let T(O) be obtained from a concurrent object model O according to procedure 5.1. Then, it
follows that

1. T(O) hasno [ s] operator.
2. L(T(0)) = L(O) holds.
3. T(O) ¢ I(0) U H(O).

PROOF

First, sincethereisno | s| operator in each of the objects, it follows that the labelled set of
G(X,(0)) doesnot contain [s]. Therefore T'(O) doesnot have [ s ], either. Itisfairly obvious
that the language of O is preserved through the transformation procedure. Hence T'(0) = O.
Finally, it is clear from the definition of X, that 3 ¢ I(O) U H(O) forany a = € X,(0);
thus, it can be proved that the results of the procedure in Section 5.2.3 and 5.2.4 do not contain
any interleaving or over-concurrent expressions. Hence 7'(O) ¢ I(O) U H(O). O
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5.2.6 Transformation for morethan three objects

It is possible to adopt our transformation method to a model of more than three objects in the
following way. Assume that («[s;]3) [s2] 7 isaconcurrent object model. First, obtaining a
thread-extractable form ¢ for « [ s; | 3. Then, calculating a thread-extractable form for § [ s, | .
In asimilar way, we can obtain a thread-extractable form for any number of concurrent objects.
However, if there are three or more objects, there are cases where a thread-extractable form can
not be obtained. For example,

(axB] Jvyd)[ Jzy

where z and y are communication symbols. By transforming axz3 [ | yyd into athread model,

(cxBlyyd) [ Jzy

Our method can not transform this expression any more. To handle such an expression, a way
is needed for transforming any expression that possesses || operators; thisis part of our future
work.

5.2.7 Terminating Property

Our transformation procedure is aways terminated. This is proved easily by the following.
First, since athread-extractableform consists of afinite number of o4, - - -, o, athread-extractable
form can be obtained by finite steps. Second, since athread-extractable form consists of afinite
number of expressions, then, BCRE-Iabelled automata can be obtained in finite steps. Hence, it
isobvious that our transformation always terminates in a finite number of steps.

5.2.8 Complexity

This section looks at the complexity of our transformation method by discussing the number of
states and transitions of BCRE-|abelled automata generated by our transformation method.

Assume that o and 3 be expressions which have no [ s] and || operators. Then we consider
aBCRE-labelled automata G( X, (a [ s] 5)) where z = (o(a) No(3)) Us). There are states less
than |al.|3]. + 1 and transitions less than ||| 5| (||| B¢ + 1). |al. iSthe number of equations
in X, (a) and ||, is defined asfollows

[zl = 1
la+ 6l = |apl = |al + 6]
|y = 2|al;
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where 2 isasymbol, « and § are expressions. Intuitively, ||, issimilar to thelength of o except
that |o*|, is considered to be twice its length. If thereis an n depth of nested closure operators,
||, isrelative to 2" timesits length in the worst case. For example, |((a*)*)*|; = 23|a;.

Now, we focus on some details. Suppose that |«|. and |3|. are a number of eguations in
X, («) and X, (3) respectively. According to (5.3) in Lemma 5.1, the transformation process
ends when it completes exploring all possible n(«, i) [s]n(03, j) that areamong v, [s] 3, (1 <
u < |ale, 1 <wv < |Ble) Thatis, X, («[s] ) isasubset of the following set of equations:

Xz(a[s]ﬁ) - {au [S]ﬁv = P(CYU [S]ﬂv) | Qy € Xz(a)aﬁv € Xz(ﬂ) }
where X, isaset of L.H.S. of amember of X, such that
X.(a)={a|Ip.a=p e X, ()}

See Lemma C.4 in the Appendix for a proof of this property. Since the number of equations
in athread-extractable form follows the number of o, [ s] 3, being explored, that is clearly less
than |«|.||.. According to the definition of &, the number of statesin G(X,(a[s]3)) isthe
same as the number of equationsin X, (« [ s] ). Hence, it is concluded that the BCRE-labelled
automata also possess less than |a.|3|e + 1 number of states. Note that +1 is for the terminal
state that does not appear among (v, [ s] 5,)-

On the other hand, we discuss the number of transitions in G(X,(«[s]3)). Firs, lets
consider Figure 5.2 that depicts an equation in X, («[s] /). From Figure 5.2, it is clear that
the number of transitions from an each state o, [ s] 3, equals h(«,)h(8,) + 1. Therefore, the
number of transitionsin X, (« [ s] 3) islessthan the summation of h(«a,)h(53,)+ 1 for al » and

v, thatis
lale |B]e

S>> h(ow)h(By) + 1

u=1v=1

Now, we consider the upper-bounds of h(c«,) and h(f,). According to the definition of X, it
is easy to prove the following inequations.

h(z) = 1

hla+B) < hia)+h(B)
h(aB) < h(a)+ h(B)
ha®) < hla)

where x isasymbol, L or L*. « and 3 are expressions. Hence, it is easy to prove that h(«) <
||, for any «v. ||, isthe length of « defined as follows.

o) = 1
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9(0,0) among O(u[S] Bv,
max |O(.|e|B|epatterns

9(1,1)2(1,1) @ e K ’I
T—0(1,2)2(1,2) 2

1

1

! )
1

I

6(n() h(B:)2(h(0) N(B)
T ~{nhiown@) |

where  8(i,)) = 6(0wi)|[6(Bvj) and M(i,j) =n(owi)[s|n(Bv))

Figure 5.2: thread-extractable form as a BCRE-|abelled automata

o+ 6l = lafli = lal +[6l:

| = ol

The following lemmais useful for analyzing the upper-bound of the length of the expressions.

LEMMA 5.2
Let~ and § be expressions without | s| and || operators then, for any z,

0], < ||, if 6 € X.(v) follows.

See the Appendix for a proof of thislemma.
By Lemmab.2, itisclear that h(a,)h(5,) < |a|i|B]; < ||| 5. Therefore, it can be proved

that
. 18-
> D h(aw)h(By) +1 < |ale|Ble(al|Bl: + 1)

u=1v=1

Hence, it isconcluded that the number of transitionsin G( X, («[ s ] 5)) islessthan |a.|3e (||| 5]+
1).

529 Summary
This Chapter presented a method for transformation from a concurrent object model to a con-

current thread model. The method is valid and has a terminating property. The function X,
in Section 5.2.2 represents the systematic transforming function, which is useful as a logical
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basis for implementation of automatic transformation engines. In the last section, we discussed
the cost of our transformation method with respect to a number of states and transitions in a
resulting BCRE-labelled automata of transformation. In the worst case, our method generates
automata that includes |a|.|3|. + 1 numbers of states for transforming « [ s | 3 where ||, isthe
number of equationsin athread-extractable form of «.
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Chapter 6
Examples

In this chapter we demonstrate our approach with three examples.
1. A mediaplayer
2. An automatic locking door

3. A PCM devicedriver

These three examples have different characteristics. The first, Media player, is an example
of the equivalent transformation of BCRESs by the axiom system F.. In the second, the Auto-
matic locking door example, the transformation is performed by the method shown in Chapter
5. The third example, the PCM device driver, demonstrates that it is possible to derive real
implementation from our concurrent thread model. We show a heuristic mapping from the con-
current thread model to C implementation. The detailed transformation way is omitted in this
example.

6.1 Mediaplayer

This example begins by obtaining a concurrent object model from scenarios, then deriving a
concurrent thread model.

6.1.1 Modelling objects

L et us begin with the scenarios that represent requirements of a simple video and audio player;
they are smaller than the behaviour of real software, but adequate for showing the essence of

our transformation.
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Scenario 1. Playing a video file with audio data.

The following actions should be performed when the media player

receives a play request for a file that contains both video and audio data.
A) The Main Thread creates instances of Audio and Video Threads.

B) Video Thread and Audio Thread play video and audio synchronously.

C) The Main Thread deletes the instance of the Audio and Video Threads.

Scenario 2. Playing a video file without audio data.
The following actions should be performed when a video file without audio
data is given to the media player.
A) The Main Thread creates instances of Audio and Video Threads.
B) The Audio Thread confirms that no audio data exists in the target file.
Then it should send NO_AUDIO events to The Main Thread and the Video Thread.
C) The Main Thread deletes the instance of the Video Thread. The Video Thread
plays the video data. The Main Thread should also play dummy sound data.
D) The Main Thread deletes the instance of the Video Thread when
the Video Thread finishes playing.

Scenario 3. Playing an audio file without wvideo data.

The following actions should be performed when an audio file without wvideo

data is given to the media player.

A) The Main Thread creates instances of Audio and Video Threads.

B) The Video Thread confirms that no video data exists and it should send
NO_VIDEO events to the Main and Audio Threads.

C) The Main Thread deletes the instance of the Video Thread. The Audio Thread
plays the audio data. The Main Thread should also play dummy video data.

D) The Main Thread deletes the instance of the Audio Thread when
it finishes playing.

Table 6.1: Example scenarios

Figure 6.1 shows the sequence diagrams obtained from the scenarios in Figure 6.1. There
are 3 objects in the scenarios; Main Thread, Video Thread and Audio Thread. In this figure,
Main, Video, Audio are the representations for each of the objects, respectively.

Since any communication between objectsis synchronised, The directions of the communi-
cations are ignored when we turn these diagrams into BCREs. However, in Figure 6.1, arrows
are used to help understanding.

In our approach, all communications between objects are defined by event symbols, such as
CREATE_AUDIO, SYNC_PLAY inFigure 6.1. The meaning of eventsis shownin Table 6.2.

We can systematically transform the sequence diagrams in Figure 6.1 into state machines.
First, we extract the behaviour of an object as a BCRE from each sequence diagram. The
extraction procedure is as follows.

1. Collect al events directed from/to the object in the sequence diagram.
2. Jointheeventswith’. operatorsin the order of event occurrencein the sequence diagram.

For example, the following expressions are obtained as a set of partial behaviours of object
MAIN.

e Cy.Cy.Dy.Dy, (obtained from the scenario 1)
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MAIN

The sequence diagram for Scenario 1.

MATIN

VIDEO

CREATE_VIDEO

Y

CREATE

| AUDIO

<
<

Y

SYNC_PLAY

Y

DELETH

_AUDIO

DELETE VIDEO

VIDEO

[2up1o]

AUDIO

CREATE_VIDEO

CREATE

<

| AUDIO

Y

Y

NO_VIDEO

NO_VIDEO

DELETE VIDEO

DUMMY PI(

'TURE

<

PLAY AUDIO

DELETE

| AUDIO

\

MATIN

4

Y

The sequence diagram for Scenario 2.

AUDIO

VIDEO

CREATE |

»

[VIDEO

CREATE_AUDIO

<

»

NO_AUDIO

NO_AUDIO

DELETE AUDIO

DUMMY SO

A

IND

<

PLAY VIDEO

DELETE

| VIDEO

\

4

The sequence diagram for Scenario 3.

Figure 6.1: Sequence diagrams
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CREATE VIDEO Create Video Thread.
CREATE _AUDIO Create Audio Thread.
DELETE VIDEO Delete Video Thread.
DELETE AUDIO Delete Audio Thread.

SYNC PLAY Play video and audio data with synchronize.
PLAY AUDIO Play audio data.

PLAY VIDEO Play video data.

NO_AUDIO An event which represents no audio data exists
NO_ VIDEO An event which represents no video data exists

DUMMY_ VIDEO Play dummy video data.
DUMMY SOUND Play dummy sound data.

Table 6.2: Event Descriptions

o (.C4.Ny.Dy.Dp.Dy (from the scenario 2)
o Cy.C4y.Ny.Dy.Dg. Dy (from the scenario 3)

where each symbol; CYy, Cy4, D4, -- denotes abbreviations of CREATE_VIDEO, CRE-
ATE_AUDIO, DELETE_AUDIO;- - -, respectively.

Then, we define the behaviour of the object MAIN as a summation of these sequences. The
state machinefor MAIN can be generated by connecting all the expressionswith the + operator,
that is,

Cyv.Cy.Dy.Dy + Cy.Cy.Ny.Dy.Dp. Dy + Cy.Cy.Ny.Dy.Dg. Dy,

The state machine represented by this expression has non-deterministic transitions with re-
spect to Cy.C'4. To remove such transitions, we use the distributive property of the operation
+ of aregular expression such as the axioms A, and A5;. Then, the above expression can be
turned into the following expression by applying the axiom.

Cv.CA.(DA.DV + Nv.Dv.Dp.DA + NA.DA.DS.Dv)

The state machines for VIDEO and AUDIO can be obtained in a similar way. Table 6.3
shows the expressions for all objects and Figure 6.2 shows the corresponding state machines.

6.1.2 Transformation

Returning to the state machines in Figure 2.1. The concurrent object model for our Media
Player is defined as
MAIN|[ |(VIDEO[ |AUDIO)
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MAIN = Cv.CA.(DA.DV—|—Nv.Dv.Dp.DA—|—NA.DA.D5.D\/)
VIDEO = Ov.(Sp+Nv+NA.Pv).DV
AUDIO = OA.(SP+NA—|—Nv.PA).DA

Table 6.3: Expressions for Each Objects

MAIN VIDEO AUDIO

C

<

C

>

NV sp NA

SP

D

<

D.

>

®
®

Figure 6.2: Objects
where MAIN, VIDEO and AUDIO are defined as in Table 6.3. Note that the order of the
composite pairing does not effect the result because Theorem 3.5 holds in this case; that is,
MAIN[ ](VIDEO[ JAUDIO) = (MAIN [ ]VIDEO)[ |AUDIO

holds.
Now, we begin by first transforming (VIDEO | | AUDIO).

- VIDEO[ |AUDIO = Cy.(Sp + Ny + Nao.Py).Dy [ ]Ca.(Sp 4+ Na+ Ny.Pa).Dy
By Theorem 3.8
= (Cyv || Ca).((Sp+ Ny + Na.Py).Dy [ | (Sp+ Na+ Nv.Py).Dy)
By Axiom As,
= (Cy ||Ca).(Sp.Dy + (Ny + Na.Py).Dy [ | (Sp + Na+ Ny.P4).Dy)
By Axiom Cf,
= (Cy||Ca).((Sp.-Dy [ Na, Ny | (Sp+ Nag+ Ny.P4).Dy) +

((NV + NA.P\/).DV [Sp] (Sp 4+ Ny + NVpA)DA))
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By Axiom (s,

- (CV || CA)((SPDV [NA,N\/] SP.DA) + (SP.DV [SP,NA, Nv] NA.DA) +
(SP.DV [Sp, NA, Nv] Nv.PA.DA)) + ((NV + NA.Pv).DV [Sp] (Sp + NA + NVpA)DA))

By Axiom (Y,
= (Cv[|Ca).((Sp.(Dv [Sp, Na,Nv|Da) + L+ 1) +
((Nv + Na.Py).Dy [Sp](Sp+ Ns+ Ny.P4).Dy))
By theorem 3.8,
= (Cv[[Ca)-(Sp-(Dv [ Da) +
((Nv + Nao.Py).Dy [Sp| (Sp+ Na+ Nyv.Pa).Dy))
By the Axiom A5,
= (Cv[[Ca)-(Sp-(Dv || Da) +
(Ny.Dy 4+ Na.Py.Dy [Sp|Sp.Da+ Na.Dy+ Ny.Ps.Dy))
By Axiom Cf,

= (Cv[[Ca).(Sp.(Dv || Da) +
((Nv.DV [Sp, NA] Sp.Dy+ Npo.Dy+ Nv.PA.DA)) +
((No.Py.Dy [ Sp, Ny 1 Sp.Da + Na.Da + Ny.Pa.D1)))

By Axiom (s, Cy and Cs,

= (CV || CA)(SP(DV || DA) + (Nv.DV [Sp, NA] Nv.PA.DA) +
(N4.Py.Dy [Sp, Ny | No.D1))

By Axiom C'y,

= (CV || CA)(SP(DV || DA) + (NV(DV [Sp, NA, Nv] PADA)) +
(Na.(Py.Dy [ Sp,Na, Ny | Dy))

By Axiom C'; and the Theorem 3.8,

= (Cy ||Ca).(Sp.(Dy || Da) + (Ny.(Dy || PA.D4)) + (Na.(Py.Dy || Da))
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DA DS DV DP

Figure 6.3: Concurrent Thread Model of Media Player

Then, we can aso compose M AIN and (VIDEO|[ |AUDIO) in a similar way. The
following expression can be derived from M AIN [ | (VIDEO|[ | AUDIO).

Cy.Cs.(Sp.Da.Dy + Ny.(Dy.Dp || Pa).Ds + Na.(Da.Ds || Py).Dy)
Since there is no interleaving expression or over-concurrent expression, this expression repre-
sents a concurrent thread model of M AIN [ | (VIDEO]| | AUDIO). Figure 6.1.2 depicts the
model represented by this expression.

6.2 Automatic locking door system

In this section, we show an example of our transformation method that was described in a
previous chapter.
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6.2.1 Modelling objects

The target model is an automatic locking door system, which consists of three objects. a Key-
card Reader(0O,), a Door(O-) and a Timer(O3) The behaviour of each object is depicted asin
Figure 6.4. Table 6.5 represents the behaviour of each object defined by BCRES and 6.4 has
brief descriptions of the symbols.

This door system behaves as follows. The door is open after the key-card object is inserted
to the Key-card Reader object. Then, the door is locked once the door is open and closed. If a
timeout event comes from the Timer object before the door is open, then the door is automati-
cally locked.

4 N 4 N
tb ‘\»
tc
lo ca
N ) oo O
te+to
kKeycard Reader ) lemer )

Figure 6.4: Concurrent objectsin the automatic locking door system

6.2.2 Transformation

Let us begin by transforming O; [ ] O,. Note that in the remainder of this section, - | + o =
a + L = a isused without being referred to to eliminate L in the expressions.

In a thread-extractable form on a set of communication symbols s = {un, lo} that are
between O, and O, is derived as follows. By Theorem 5.1, - O; = L*.un.070, + L* where
= O} = tb.(to + op.te.cl).lo. Sinceit clearly followsthat - OO, = (tb.(to + op.te.cl)).lo.Oy,
athread-extractable form of O, isderived as

O = L*'un.Opp+ LF
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ca | Key-cardisinserted

un Unlock the door

lo Lock the door
tb Start Timer
to Timeout

te Stop Timer
te Timer Clock

op Open the door

cl Close the door

Table 6.4: Symbol Descriptions

O; = (un.tb.(to+ op.te.cl).lo)*
Oy, = (ca.un.lo)*

O3 = (th.tc*.(to+ te))*

Table 6.5: Object definitionsin BCREs

O = tb.(to+ op.te.cl).lo.Oy

where - O, = Oq;. In asimilar way,a thread-extractable form between O, and O3 it can be
found that

091 = caun.Oyp + L*
022 = J_*.Z0.0gl

where = Oy = O,;. Next, we calculate a thread-extractable form of O [ | O,. Assume that
s = {un, lo}, then it follows that

0[]0 = 011[5]09
= (L*un.Or[s] ca.un.Os)
+(L*[s] ca.un.Og)
+(L*un.Op [s] L)
+(L[s] 1Y)
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= ca.un.(O13[s]Oq) + L*
Inasimilar way, it is derived that
F O [s]Ogp = tb.(to + op.tf.cl).lo.(O11 [ s] On)

Itisobviousthat Oy, [ s] Oz and Oq5 [ s] O are thread-extractable forms of Oy | | Os.

Now, we derive a thread-extractable form of O; [ | O, and O3 from a set of communication
symbols: s = {tb,to,te} By Lemma 5.1, a thread-extractable form of O, [ | O, is easy to
obtain as P, asfollows.

P, ca.un.tb.Py + L*

P,

1*.to.P3 + op.te.Py
P; = lo.caun.th.Py+lo
Py

cl.lo.ca.un.tb.Py, + cl.lo
Similarly, athread-extractable form of O3 can be derived as Oj;:

031 = J_*.tb.032 + J_*.tb.033 + 1*
032 = tC*.t0.0gl
033 = tc*.te.031

Then according to Lemma5.1, athread-extractableformof (O, [ |Os) [ |O3 = P [s'] O3 can
be derived as follows.

F P [s'] O3 = ca.un.th.(Py [ s'] O32)
+ca.un.th.(Py[s] Os3) + L*

F Py[s']) O35 = tc* to.(Ps[s'] O3)

F Py [s"] O3 = (oplltc”).te.(Py[s"] Os1)

F o P3[s'] O3 = lo.caun.th.(Py[s'] O32)
+lo.ca.un.th.(Py[s'] Os3) + lo

F Py[s] O3 = cl.lo.caun.th.(Py [ s'] Os3)
+cl.lo.ca.un.th.(Py[s'] Os3) + cl.lo

By applying Procedure 5.1, the state machine as in Figure 6.5 can then be obtained. The lan-
guage of this state machineis

ca.un.tb.(tc* .to.lo + (tc*||op).te.cl.lo +
(tc*.to.lo.ca.un.tb + (tc*||op).te.cl.lo.ca.un.th)*)
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ca.un.tb 1o

cl.lo.un.to

P4 [sS’]031

P2[S’]033

ca.un.tb cl.lo

((te)*||op) .te

Figure 6.5: Thread-extractable form of (O, [ ] O2) [ ] O3

; thisis a concurrent thread model. By applying our axiom system for compaction of the state
machine, it is then represented by

(ca.un.tb.(tc".to + (tc*||op).te.cl).lo)*

Figure 6.6 depicts a concurrent thread model corresponding to this expression.

6.3 PCM devicedriver

In this section we show a PCM device driver devel opment to ascertain how our approach works
in the development of areal application. We also set out how to map a concurrent thread model
into real source codein C. The mapping processis heuristic; however, it illustratesthat an actual
implementation based on a concurrent thread model is aredlity.

Thetarget driver isasynthesiser of aPCM data stream. It synthesises some PCM dataon the
fly so that some PCM channels can be played through just a single digital to analog converter
called a DAC or D/A converter. The PCM channel is an abstraction of a PCM data stream in
which the volume and frequency can be controlled.

6.3.1 Environment

It is assumed that the target system for this driver has the following hardware.

- A single CPU
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ool &

Figure 6.6: Concurrent Thread Model for (O] | O2) [ | Os

- A hardware clock oscillator
- A digital to analog converter (DAC)

In addition, it is assumed that an operating system that has at least the following functions is
running on the system.

- 1/O function
Thisis used to write values from the driver to the DAC.

- Interrupt handler
This function is used to notify an event from the hardware clock to software.

- Semaphore
Thisis used to implement the mutual exclusion of threads in the driver software.

We implement this driver in C language.
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6.3.2 Specification

The requirement specification for the PCM driver softwareis as follows.

- It can play and stop up to 3 PCM channels concurrently.

- The frequency can be changed for each channel.

- The volume can be changed for each channel.

- Both frequency and volume can be changed on the fly.

The application interface (API) of the driver is shown in Table 6.6

Entry Function Arguments
PLAY | Start playing Number of channel,
The top address of PCM data,
The end address of PCM data
STOP | Stop playing The number of a channel
FREQ | Change frequency | The number of achannel, Frequency
VOL Change volume The number of achannel, Volume
Table 6.6: Application Interface for the PCM driver.
6.3.3 Analysis

In the analysis phase, we define the classes and behaviours of objects in the system. Then we
define the behaviour of objects with a concurrent object expression. We start by defining the

classes,

Class definition

First, we analysed the system and defined some classes as follows.

These classes cover the following part of the system.

e APl isaclassfor APl entry of the driver. Each method in API directly corresponds to a

driver entry.
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API Channel
+play +play
+stop 3 +stop
+freqg +freqg
+vol +vol
+calc
Get data
Synchronize
Clock
D/A Synth
. Write
+wrilte

Figure 6.7: Class Diagram

Channel isaclass for each channel. Methods play, stop, freq and vol mean start playing,
stop playing, change frequency and change volume for the corresponding channel. calcis
amethod for calculating the output value of the channel. Once calcis called, it generates
the output for 1 clock time.

D/A is an abstraction of Digital to analog converter. 'write’ is a method for writing a
value to the D/A converter. Thereal output of D/A follows the value.

Synth is a synthesizer for 3 channels and Clock is a class for a hardware clock. Synthis
synchronised with clock signals. Each time it synchronises, it synthesises an output value
from the output values of all channels. Then, it writes the synthesised value to the D/A
converter.

Clock directly correspondsto the hardware clock.

Behaviour definition

The behaviour of each objects is defined as in Table 6.7. API, SYN, CLK, DAC in the Table
6.7 are instances of class API, Synth, Clock and D/A. The driver plays 3 PCM channels concur-
rently, so three instances of class Channel are required. Object CH,,CH; and CH,, respectively,

represent these instances.
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Each action represents the following functions.

play, stop, freq.vol in API correspond to API entries.
pi, Si, fi, v; correspondsto play, stop, freq, vol, respectively, methods of CH;.

calc is an action that means communication between CH,,CH;,CH,. In this action, ob-
jects CHy,CH;,CH, calculate their output values using these 3 values, SY' N preparesits
output value for D/A.

clk corresponds to the event from the clock.

write corresponds to the write method of class D/A.

Object name | Behaviour definition in BCREs

API (play.(po + p1 + p2) + stop.(so + 51 + 52)+

freq.(fo+ fi + f2) +wol.(vo +v1 + v2))*

CH, (po + so + fo + vo + calc)*
CH, (p1 + 51+ f1 + v1 + calc)*
CH, (p2 + 52 + fo + va + calc)*
SYN (clk.cale.write)*

CLK clk*

DAC write*

Table 6.7: Behaviour of objects

The expression in Table 6.7 represents the following behaviour of the object.

Object API invokes an appropriate channel after one of the API entries is called. For
example, one of play methods of the channel objects (pg, p1 Or p2) is called after an API
entry PLAY (play) is called.

ObjectsCH,, C'Hy, C'H, repeatedly start playing, stop playing, change frequency, change
volume or calculate their output value.

SY N synchronises with a clock event (c/k) from the hardware clock, then calculates the
output value (calc) and sendsit to the D/A converter using the write method.
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e (C'LK repeatedly generates a clock event.

e DAC repeatedly accepts the write action from SY V.

4 N N
po+so+vo+fo+calc
play ( ( V)
\CHO J
4 N
x ijl+v1+f1+calc
\CHl Y,
S0+S1+S2 Ve
po+pi+p2 pi+si+vi+fi+calc
APT
o %
/ \ \CHz /
clk calc
4 R
éj é“il)te
SYN
\_ J \CLK DAC J

Figure 6.8: Concurrent object model for PCM device driver

Analysis Model

The design model for the PCM device driver is defined as the following concurrent object
expression.

API[|CHy[ |CH,[ |CH,[ |SYN||CLK[ | DAC

where we use the name of an object as an abbreviation of an actual expression. For example,
CLK | | DAC simply means clock* | |write*.

6.3.4 Design and implementation

The first thing to do after the analysis phase is to derive a concurrent thread model from the
concurrent object model of our PCM device driver. We omit details of the transformation here.
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A concurrent thread model for aPCM device driver can be obtained as follows.

(play.(po+p1+p2)+stop.(so+s1+s2)+ freq.(fo+ fi+ fo)Fvol.(vo+vi+v9))* || (clk.calc.write)*

Figure 6.3.4 depicts this concurrent thread model.

// \\
play
fo+fi+f2
S0+S1+S2
Po+p1+p2
clk calc
> )

Figure 6.9: Concurrent thread model for PCM device driver

Next, we implement our PCM device driver based on this concurrent thread model. Before
we implement C code, we divide the concurrent thread model into some fragments that can be
directly mapped into C source code.

Extracting u-threads

p-threadsis afragment of aconcurrent thread model that can be directly mapped into functions
in C. In this development, u-thread is roughly defined as follows.

u-threads

e u-thread is a pair of an action initiated by an external event and an succeeding action
sequence that does not contain any external events.

72



e u-threads are executed exclusively if they belong to the same thread.

where an external event is an action that indicates an incoming event from outside of the soft-
ware.

We extracted pi-threads from the concurrent thread model as 6.8. The method of how to
extract u-threadsis heuristic, asfollows. First, we obtain p-threads from

(play.(po + p1 + p2) + stop.(so + s1 + s2) + freq.(fo+ fr + f2) +vol.(ve + v1 + v2))"

In this thread play, stop, freq, vol are the external events because these actions clearly corre-
spond to the API interface of the PCM device driver. All occur when one of the API entries
is called from a client of the driver software. According to the definition of u-threads, we can
extract 4 pu-threads PLAY, STOP, FREQ,VOL asshownin Table 6.8.

Name | Expression

PLAY | play.(po + p1 + p2)

STOP | stop.(so + s1 + S2)

FREQ | freq.(fo+ f1+ f2)

VOL vol.(vy + vy + vg)

CLK clk.calc.write

Table 6.8: p-threads

Then, on the other hand, for thread (clk.calc.write)*, the action clk is regarded as the
outside event. Since clk correspondsto an event from the hardware clock, it comesfrom outside
the driver. We can extract only one sub-thread C'L K as shown in Table 6.8

Now, we can directly implement 5 yu-threads as in the Table 6.8 as C functions. See the
Appendix to view the actual implementation in C code. The names of functionsin the code are
the same as the names of threads in Table 6.8.

Interface for external event

Since p-thread is always invoked by an external event, there must be an interface that receives
the external event on the y-thread.

Since u-threads PLAY, STOP, FRE(Q and VOL correspond to API entries, function en-
tries themselves are regarded as the interface for external events. Then the arguments of these
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functions are implemented according to the API specification. For example, APl VO L hastwo
arguments. Oneisthe number of channels and the other isthe amount of volume. The definition
of function VOL isasfollows.

void VOL (int ch, int wvalue) ;

p-thread C LK is synchronised with hardware clock signals from the object CLK. We
suppose that the hardware clock interrupts the operating system and the function corresponding
to u-thread C'LK is called by the operating system. The address of C LK is registered as an
interrupt handler for the hardware clock event when the driver is initialised. (Note that this
initialisation code is omitted in the sample source code.)

I mplement the body of p-threads

The inside of the functions should be implemented considering the meaning of the p-threads.
Each function isfilled with proper code that realizes the behaviour of p-threads.

For example, VOL is athread that behaves as vol.(vy + v; + v9). We implement the body
of the function as follows.

void VOL (int ch, int wvalue)

{

volume [ch] = value;

The variable 'volume' isan array that storesthe volume of 3 channels. This code represents
the behaviour of (vy + v; + vy) but the code may seem to be different from the behaviour of
(vo + v1 + ). volume [ch] = value isregarded as an abbreviation of the following code.

switch (ch) {
case 0:

volume [0] value;

break;

case 1:
volume [1] = value;
break;

case 2:

volume [2] = value;
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break;
default:
/* ERROR */

break;

}

This code intuitively correspondsto (vg + v; + vs).

I mplement the mutual exclusion

According to the concurrent thread model, threads PLAY, STOP, FRE(Q and VOL should
not be executed concurrently. However, we implement these 4 w threads as functions so they
are capable to be executed concurrently if the external events come again before the functions
finish their process. To prevent such asituation, a binary semaphore can be used to make certain
u-threads are executed exclusively.

Some code for handling semaphores is added to the functiosn PLAY, STOP, FRE(Q and
VOL asfollows. ENTER (sem) isinserted at the beginning of the function and LEAVE (sem) IS
also inserted at the end of function. sem isabinary semaphore. ENTER is afunction that turns
the semaphore up and the caller thread of this function entersthe critical section. LEAVE isalso
afunction turns the semaphore down and the caller thread |eaves the critical section. Only one
thread can enter the critical section; so athread is blocked if the semaphoreis up when it enters.
The thread waits until the semaphore is down. For instance, function VO L isimplemented as
follows.

void VOL (int ch, int value) {
ENTER (sem) ;
volume [ch] = value;

LEAVE (sem) ;

Similarly, ENTER and LEAVE areadded to PLAY, STOP and F REQ functions. Finally,
PLAY,STOP,FREQ and VOL are always exclusively executed. Then, the implementation
is finalised and the driver correctly follows the behaviour represented by the concurrent thread
model.
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Chapter 7

Related Works

This section compares our research with works from two points of view. First, as an object-
oriented design method, we compare our approach with two real-time embedded software de-
velopment methods. OCTOPUS method[4] and the SES (synchronized execution sequences)
approach[3], which use thread-based models as their software design model. Second, as a log-
ical basis for concurrent systems, we compare our BCREs with CRES[2] and severa process
theorieq 14, 15, 17, 16]

7.1 OCTOPUS Method

The OCTOPUS method[4] isadevel opment method for real-time software. Similar to our trans-
formation method, it proposes away to extract concurrent components from an object-oriented
software analysis model. However, there are many differences between the two approaches .
An overview of OCTOPUS's procedure of extracting concurrent components follows.

1. It specifies all possible communication between objects and makes a communication
graph of the objects.

2. It specifies as synchronous or asynchronous all communicationsin the graph.

3. It divides al objects into object groups, in which each group can involve objects related
with synchronous communications with each other, but not asynchronous ones.

Then, the groups obtained by the above procedure are mapped into the task, thread or processes
provided by operating systems, and then they are concurrently executed in the real software.
Note that the groups deduced by this procedure are not deterministic. Further, a high level of
skill isrequired of the developer for deciding the object groups.
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7.2 SESapproach

The SES approach is a software design method based on the SES model! for real-time embedded
software. A SES model consists of aglobal automata and some SESs. The SESis a sequence of
internal actions of the system. The global automata controls the timing of the execution of SESs
mapped to each of the states of the automata. As well, the SES model satisfies the following
properties

e No SESs have ablocking operation.

e Any state transition in the global automata must be initiated when all executing SESs are
terminated.

This architecture of the SES model is amost similar to our concurrent thread model; the only
difference is that any state transition in the SES model is performed by deterministic events,
while there is no explicit transition events in our concurrent thread model.

7.3 Concurrent Regular Expressions

Aswediscussed in Chapter 2, our BCREs are based on Concurrent Regular Expressions (CRES).
The difference between BCREs and CRES can be summarized as below.

e BCREs do not have alpha-closure and renaming operators.
e The semantics of the synchronous composition operator is different.

CREs were proposed as a description language of the behaviour of Petri netg[12]. Since an
infinite number of concurrent sequences are observable from Petri nets, there is an operator
called apha-closure that can handle infinite concurrency. As well, CREs have a operator that
renames any symbolsin CRES. In the definition of BCRES, these two operators are omitted for
the following reasons. For the interleaving closure operator, we assumed that areal system can
be modelled with afinite number of objects or threads. Therefore we decided to eliminate the
alpha-closure from our BCREs. For the renaming operator, this can be used for hiding symbols
and observing partial behaviour of a system. We do not take this operator into BCRES in order
to ssimplify our transformation method. Although renaming is not supported, our concurrent
object and thread models can be described as set out in Chapter 4. However, we are undecided
whether the renaming operation is actually necessary for modelling concurrent object or thread
models. To clarify this problem, we will need more application examples of BCRES through
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real system developments. We will add this operator to BCREs if it should become apparent
that renaming is auseful or essential idea.

Asfor the difference of semantics, the following is the definition of synchronous composi-
tionin CREs.

Lia[]8) ={w|w/o(a) € a,w/o(B) € B}

where o («) denotes a set of symbolsin «. w /o denotes the restriction of the sequence w to the
symbol of . (Note that more precisely, w/ € (o(a) U o(f3))* isrequired as a condition.) On
the other hand, the synchronous composition in BCREs is defined as follows.

Lia[s]B) ={w|w/o(a)Us € a,w/o(B)Us € G}

The difference between these two definitionsisthat | | is not distributive. Namely, it does not
follow that

Fla+B)[]y=(al]7)+ (B[ 1)

whereasthe [ s] operator is distributive, that is,

(a+0)[s]y = alsule@B)no(y)]y+BlsUlo(@)naly))]y

follows as seen as Axiom C's. Distributiveness is very important for complete axiomatisation
of BCREs. Hence, we proposed a different definition for synchronous composition. We under-
stand that complete axiom systems for CREs have never been studied.

7.4 Process Theory

A number of theoriesfor concurrent systems have been proposed, for example, CSP[14], CCS[15],
m-calculug17] and ACP[16]. They are called process calculi. Strictly speakingan ACPiscalled
process algebra since its semantics are based on an algebraic method by a set of axioms. In this
thesis, we simply call these approaches process theory.

Process theory handles several kinds of equivalence in concurrent systems. Equivalence of
BCREs s similar to the language equivalence of automata. In process theory, such equivalence
is caled trace equivalence. It seems possible to define our model and transformation method
based on processtheory. However, thereis no processtheory that is sufficient to treat our model
and transformation method. They are suitable to denote our concurrent object model but not
for our concurrent thread model due to some limitations in their syntax. Moreover, even if we
choose the process theory, they could not be used as an immediate sol ution of our transformation
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problem. No systematic method, similar to our model transformation method in Chapter 5, has
been discussed in process theory. Thus, in this paper we have solved the problem with BCRESs.
In the remainder of this section, we explain in more detail why BCREs are preferred as our
formalism instead of process theory. The reasons why we chose BCRES follow.

1. BCREs consist of simple syntax and semantics based on trace equivalence.
2. The syntax of BCREs s appropriate for our concurrent thread model.

3. BCREsexplicitly discriminate concurrent behaviour with communication from that with-
out communication utilizing the operators || and [ s ] .

In respect of the first reason, we defined consistency between concurrent objects and con-
current threads based on trace equivalence, which is similar to language equivalence. Internal
states in a system are ignored under this equivalence; thus, in our approach, we do not need
to explicitly model states of a system. However, in process theory, a system is generally mod-
elled by a set of processes where each process explicitly represents a state in a system. Such
state-aware modelling is redundant in our approach.

Readers may think it is possible to define consistency between concurrent objects and
threads based on an another style of equivalence, for example, the strong or weak bisimulality
of process theory. Such could be the case, however, in here we have adopted trace equivalence
asthefirst step to challenge the model transformation problem, since trace equivalence is basic
and the most simple equivalence of behaviour, and thus satisfactory for tackling the problem.

In respect of the second reason, we defined a concurrent thread model to obtain information
of how many, when, and what kind of threads are executed concurrently. Let us consider a
BCRE ((z+y)z||pgx)r. Inaccord with this expression, it is easily understood that the following
actions are executed concurrently.

1. x or y isexecuted, then = is executed.
2. lteration of ¢ occurs after p.

Then, finally r isexecuted. In contrast, it isdifficult to model the system with explicit denotation
of such information using the general syntax of process calculus. We see that the following
processes define behaviour similar to ((« + y)z||pg+)r in the manner of CCS or r-calculus.

P() - P1|P2
P1 = .I'P3+yp3
P2 = pP4—|—pP5
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P3 == Z.P5
P4 = qP4—|—pP5
P5 = rod

where § denotes a terminating process. P, | P, represents concurrent process with P, and P,.
It is hard to obtain information like (&) and (b) from this process definition. According to the
syntax of CCS and m-calculus, any successive process or action is not allowed for concurrent
processes. P; | P, should appear at the end of right-hand side in a definition of process. As for
CSP, whose syntax is little different from CCS in severa areas, there is also no way to denote
successive actions after a concurrent process definition. Therefore, neither CCS, 7-cal culus nor
CSP can denote a explicit process or action that is executed just after concurrent processes, like
(x||ly)z in BCREs. Furthermore, loop or iteration of actions are denoted as recursive processes;
thus, it isdifficult to understand which set of processesis considered as aset of closed processes
t constituting the loop or iteration. On the other hand, BCRESs have the closure () operator for
loops of actions so that loop behaviour can also be denoted as simply as a sequence. Compared
with the other processtheories, ACP is based on areasonably different syntax closer to BCREs.
It allowsanotation like (x||y)z similar to BCREs but it does not have a closure operation. (Note
that there is a system BPA* [18] that is a subset of ACP with an extending closure operation.
A complete axiom system for strong equivalence of BPA* has been presented[11]. However,
BPA* has no algebraic operator for concurrency and communication.)

In respect of the third reason; it is very important for our approach to distinguish concur-
rency between objects from between threads. In BCRES, these two types of concurrency can be
handled separately by [s] and ||, respectively. Give the grace of such separation, our transfor-
mation method has been precisely defined as a procedure that eliminates all | s| operators and
replaces these with equivalent expressions defined with the || operator. By contrast, CCS and
w-calculus use the operator || for concurrent processes without regard to communication. Asfor
ACP, there are two different operations called 'free merge’ and *merge with communication’;
The latter is for concurrent processes with communication and the former is for the other pro-
cesses. However, the operation " merge with communication’ is defined as an extension of ’free
merge’ so two different operators cannot be used simultaneously. CSP has the operator || for
concurrency with communication, and the operator ||| for concurrency without communication.
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Chapter 8
Conclusion and Future Work

In this thesis, we investigated how to obtain information about concurrency: ‘How many and
what kind of thread are executed concurrently’ from an object-oriented behavioural model. We
presented the two orthogonal models for object-oriented and concurrent sequence-based as-
pects; the concurrent object model and the concurrent thread model, respectively. Then we pro-
posed a systematic method for transformation from a concurrent object model to a concurrent
thread model. Since the concurrent thread model explicitly represents information of concur-
rency, by using our transformation method it is possible to systematically obtain information of
concurrency from object-oriented models.

In Chapter 2, we presented basic concurrent regular Expressions (BCRES); which are an
extension of two operators to the regular expressions for handling communication and concur-
rency. In Chapter 3, we described an axiom system F,. for BCREs. We also proved that the
axiom system was sound and complete. Language equivalence of BCRES can be proved by
this system. In Chapter 4, we formalised the concurrent object and concurrent thread models
using BCREs. In Chapter 5, we proposed a method of how to transform a concurrent object
model to a concurrent thread model. This method is sound; that is, any behaviour represented
in a model is preserved after transformation. Moreover, we proved that our transformation
method can handle any concurrent object model that consists of two objects. An issue with
this method is that some models that contain more than three objects cannot be transformed
by our method. For completeness of transformation, we hope to extend our method to more
than three object models. In Chapter 6, we demonstrated our transformation of three example
models. a media player, an auto-locking door and a PCM device driver system. All modelsin
these examples were successfully transformed . Especially in the PCM device driver system
example, we showed a heuristic mapping from the concurrent thread model to C source code.
Thisresult showed that it is possible to implement real software that is based on our concurrent
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thread model.

Future work will include completing a model transformation method for three or more ob-
jects. We plan to implement a system for automatic transformation because it is hard to perform
the transformation manually.

We aso plan to introduce specific real-time information into our concurrent thread model
so that we can discuss the satisfiability problems of real-time constraints.
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Appendix A
Proof for Soundness of F

This appendix provides the proof for soundness of F,. It is enough for proving soundness to
show all theaxiomsin F, arevalid. However, here we only prove that the axioms C, and C’5 are
vaild. For the other axioms, it is easy to prove straightforward from the semantics of BCRES,
therefore we omit the detailed proofs for them. In this appendix, We begin with some lemmas
that are useful in the succeeding proofs. Then, we provide the proofs for C, and Cs.

A.l Préiminary

LEMMA A.1

e o(af) = o(0) Uo(B) if L(a) # ¢ ad L(B) #
e o(a+8) = o(a) Uo(8)

o(a)) meansaset of symbolswhich occurin L(«). Itisalmost clear from the definition of o and
L. We omit a detailed proof. In the remainder of this section, we will use this lemma without
explicit reference to.

LEMMA A.2
Assumethat w/o(a) Us Ut € L(a) wheres andt are sets of symbols, o isaBCRE andw isa
sequence. Thent No(w) = ¢ impliesw/o(a)UsUt =w/o(a) U s.

PROOF
tNo(w) = ¢ meansthat w has no symbol among ¢. Hence, ¢ will not effect the result of the
restriction of w. Then the lemma clearly holds. O
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LEmMmMA A3
w/{z}Uo(a)Us € L(a) impliesx ¢ o(w) orz € o(a). wherex isasymbol, s is a set of
symbol, o isa BCRE and w is a sequence.

PROOF

Assumethat w/{z}Uc(a)Us € L(a). If z € o(w/{z} Uo(a) U s)theno(w/{z} Uo(a)Us) C
o(«) clearly holds. Hence, = € o(«). On the other hand, if = & o(w/{z} Uo(a) U s), thenit
isobviousthat x ¢ o(w).Therefore, LemmaA.3 holds. O

LEMMA A4
L(z(a[s]yB)) C L(za[s]yB) wherex # y andx ¢ o(5) U s.

PROOF
Assumethat z # y,z ¢ o(f)Usandw € L(xz(a[s]yf3)). Then, according to the definition
of L, somew’ exists such that w = xw’ such that

w' € (a(a) Ua(yp)), (A.1)
W'/o(a)Us € L(w), (A.2)
W'fo(yB) Us € L(yp) (A.3)
It clearly follows by (A.1) that
aw' € (o(za) Uo(yp))* (A.4)

Assumethat x € o(w'). Then By (A.1), it clearly holdsthat = € o(«) U o(/3). By the assump-
tion, x ¢ o(f) holds. Thusz € o(«) and thisimpliesw'/{z} Uo(a) Us = w'/o(a) U s. In
opposite, assumethat = ¢ o(w'), itisclear that w'/{z} Uo(a)Us = w'/o(a) Us. Accordingly,
by (A.2),w'/{z} Uo(a)Us € L(«) follows. Therefore,

rw'/o(za)Us € L(xza) (A.5)

By the assumption, it isobviousthat « ¢ o(y5) U s. Therefore, x/o(y3) U s isaempty word.
Accordingly, by (A.3),

1w [o(yB) Us € L(yp) (A.6)
By (A.4), (A.5) and (A.6), zw' € L(za[s]ypB). Thisimplies

L(z(a[s]yp)) C L(zals]yB) (A7)



A.2 Axiom C4

We prove that the axiom C, is vaild through the following four cases.

Cp wvals]zf = z(a[sU{z}]f)

Ci walslyf = z(a[s]yph) ifz#y, 2 &o(B)Us, yeo(a)Us
Ci zals]yb = xz(als]yf)+y(zals]f) fzfy z&o(B)Us, ydola)Us
Cu zafs]yp = L ife £y zco(f)Us, ycola)Us

Proof for C'yy

Letw bein L(za [ s]xB). Then by the definition of L, it follows that

w € (o(za)Uo(zf)), (A.8)
w/o(ra)Us € L(za), (A.9)
w/o(zB)Us € L(zp) (A.10)

By (A.9) and (A.10), it is obvious that the first symbol of w isz. Hence, w = zw' for some
w'. Since x/o(za) U s = x 0 aw'/o(za) Us = z(w'/o(a) Us) € L(zxa). Therefore,
w'/o(za) Us € L(«). Inthe same way, it followsthat w’/o(z3) U s € L(B). Thus

W'/o(a)U{z} Us e L(a) (A.11)
W [o(B) U {r} Us € L(9) (A12)

By (A.8), zw' € ({z} Uo(a)Ua(pB))*. Hence ' asoin ({z} Uo(a)Uo(3))*. Assume that
z € o(a) Uo(f) thenw' € (o(a) Ua(B))* clearly follows. On the other hand, in the case
where z ¢ o(a) U o(f), assumethat x € o(w'). Then, it contradict with (A.11) and (A.12).
Therefore, x ¢ o(w'). Thisimplies,

W' € (o(a) Ua(B))* (A.13)
By (A.11), (A.12), (A.13), according to the definition of L,

w' e L{a[{z} Us] )
Thusw = zw' € L(z(a[{z} U s] 3) follows. Therefore, it follows that

L(za[s]zf) C L(z(a[{z} Us]f)) (A.14)
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Next, let w bein L(z(a[sU {z}]F)). Thenw = zw’ for somew’ and

W € (o(0) Uo(B))" (A.15)
W/o(a)UsU{x} € L(a) (A.16)
W'/o(B)UsU{z} € L(B) (A.17)
By (A.15),
zw' € {2} Uo(a)Uo(B))" (A.18)

By (A.16) and the definition of L, z(w'/o(a) U s U {z}) € L(z«). Therefore, since z /o () U
sU{x} = z, it follows that

2w’ [o(@) Us U {z} € L(za) (A.19)
In the same way,
2w’ [o(B)UsU {z} € L(zB) (A.20)
By (A.18)(A.19) and (A.20), and the definition of L, 7w’ € L(za [ s] z3) follows. Therefore,
L(z(a[sU{z}]B) C L(za[s]xp) (A.21)
By (A.14) and (A.21),
w(a[sU{z}]B) = za[s]ap

that is, Cy; isvalid. O

Proof for Cy»

Assumethat x # y, 2 ¢ o(f)Usandy € o(a) Us. Letw bein L(za[s]yf), that is,

w € (o(xa)Uays))", (A22)
w/o(za)Us € L(za), (A.23)
wlolyHUs € L(yp) (A.24)

Suppose that the first symbol of w isy. Then by the assumption y € o(a) U s, the first symbol
of w/o(a) U s isy. It contradict with A.23. Hence, the first symbol of w isnot y. If the first
symbol of w isnot z, it aso contradict with A.23. This implies that some ' exist such that
w = zw' holds.
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From (A.23), zw'/{z}Uc(a)Us € L(xza) holds. According to the definition of L, w'/{z}U
o(a) Us € L(a). By (A.23) and LemmaA.3, z ¢ o(w') or x € o(a). Inthe both cases, it
clearly follows from (A.23) that

w'/o(a)Us € L(w) (A.25)

Sincez # y and x ¢ o(f3) U s by the assumption, z/o(y/5) U s isan empty word. Hence,
aw'/o(yB)Us = (x/o(yf)Us)(w'/o(yB) Us) = w'/o(yh) Us. Then by (A.24)

w'/o(yB) Us € L(yp) (A.26)
Bereminded againthat « ¢ o(w') or x € o(«) holds. Then it is clear from (A.22) that
w' € (o(a) Ua(yp))” (A.27)

By (A.25), (A.26), (A.27) and the definition of L, v’ € L(«a[s]yp) holds. Therefore, zw' €
L(z(a[s]yp)). Hence, L(za[s|yB) C L(z(a[s]yB)). On the other hand, by the as-
sumption and Lemma A4, L(z(a[s]yfB)) € L(za|s]yp) clearly holds. Consequently,
L(z(a[s]yB)) = L(za[s]yp) follows. O

Proof for Cys

Assumethat x # y,x € o(f) U s,y € o(a) Usandw bein L(za [ s]yf). Then, suppose that
x isthefirst symbol of w. In the same way of the proof for C,,, it follows that

w e Lz(as]yl))

On the other hand, assuming that y isthe first symbol of w, then in the similar way to the proof
for Cys, it is easy to see:

w € L{y(za[s]F))

Thusw € L(z(a[s]yB)) U L(y(za | s]3)) follows. According to the definition of L,

L(z(a[s]yB)) U L(y(za[s]B)) = L(z(a[s]yf) +y(ra[s] F))

Therefore,

L(za[s]yb)) € L(z(a[s]yf) + y(zals]F)) (A.28)
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Now, assumethat = # y, x ¢ o(f) Us andy & o(a) U s again. According to the definition
of L,

L(z(a[s]yp) + y(za[s]B)) = L(z(a[s]yB)) U L(y(za[s] 5))
Then, by LemmaA .4,
L(z(a[s]yp)) € L(za[s]yp)
By (5 and LemmaA .4 again,
L(y(za[s]B)) C L(zals]yps)
Hence,
L(z(a[s]yB) + y(zals]B)) C L(za[s]ys) (A.29)

By (A.28) and (A.29),

L(z(a[s]yB) +y(vas]B)) = L(za[s]yp)

Proof for Cyy

It is almost obvious from the definition of L that L(za[s]|yB) = ¢. Therefore the axiom is
valid.

A.3 Axiom Cj

This section proves the validity of the axiom C5. Assumethat w € L((a + ) [s] 7). Then by
the definition of L,

w € (o(a)ua(F)Ua(y)) (A.30)
w/o(a)Uo(B)Us € L(a+pf) (A.31)
w/o(y)Us € L(y) (A.32)

By (A.31), w/o(a) Uo(B) Us € L(a) or L(3). We consider by first for the case where
w/o(a)Uo(B)Us € L(a). Sinces(a)Uo(B) = o(a)U(a(B)No(a)), wehavew /o (a)U(o(B)N
o(a)) Us € L(a). Thenby Lemma A.3 foral » € o(B) No(a), » ¢ o(w) or z € o(a). By

the assumption it is obviousthat » ¢ o(«a) because x € o(3) No(a). Thus, only just z & o(w)
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holds. Thisimpliesthat o(w)N(o(3)No(a)) = ¢, thereforeo(w)—(o(F)No(a)) = o(w) holds.
Sinceo(w) = o(a)Uo(B)Ua(y) by (A.30), thuso(w) = o(w) — (o(B)No(a)) = o(a)Na(y)
follows. Therefore,

w € (o) Na(y))” (A.33)
Now, considering the following equation:

w/o(@)Uo(B)Us = w/o(a)U(

Remind that o(w) N (o(8) N o(a)) = ¢, itisclear that o(w) N (0(B) Na(7) No(a)) isaso ¢.
Therefore by LemmaA.2

w/o(a)U(a(B)Na(y)
= w/o(a) U (o(8) Naly)
= w/o(@)U(a(B)Na(y)Us

Hence, w/o(a)Uo(f)Us =w/o(a)U(a(B)No(y))Usfollows. Thisand by (A.31) we have
w/o(a)U(a(B)No(y)) Us € L(a) (A.34)

Sinceo(y) U (tNa(y)) = o(y), w/o(y) Us = w/a(y) U (tNo(y)) U s for any set of
symbolst. Hence by (A.32),

w/o(y)U (o(B) No(y))Us € L) (A.35)

By (A.33), (A.34), (A.35) and the definition of L, w € L(a[s U (o(8) Na(7y))]~) holds.
On the other hand, for the case where w/o(a) U o(5) U s € L(3), then in the similar
way to the proof above, it is easy to seethat w € L(3[s U (o(a) Na(y))]v). Thusw €

L((a[sU (a(8) na(y))]7)) UL((B[sU (o(a) N o(y))]7)). Hence,
L(e+B) [s]7) € L(a[sU(e(B) o)) UL(Bs U (o(@) No(7)]7)) (A-36)

Next we look at the case where w € L(a[s U (o(3) Na(vy))] ). By this assumption, we
have

w € (o(a) Uo(v))" (A.37)
w/o(a)U (a(f)Na(y)) Us € La) (A.38)
wlo(y)U(o(a)no(y))Us e L(v) (A.39)
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From (A.37), we can obtain

we (e()Ua(f)uo(y)) (A.40)

By (A.37), o(w) C o(a) Uo(y) follows. Hence, o(w) N (a(8) No(a) No(v)) = ¢ clearly
holds. Therefore, by LemmaA.2

w/o(a)U(e(B)Na(y))Us = w/o(a)U(o(f)Naola)naly))Us
= w/o(a)U(o(f) Nala) Na(y) U(e(B)nola)no(y))Us
= w/o(a)U(o(f) Nola)) Us
= w/o(a)Uo(f)Us

Thus by (A.39), w/a(a) Ua(B) Us € L(). Since L(a) C L(a + ), it follows that
w/o(a)Uo(f)Us e L(a+ f) (A.41)
Sinceo(y) U (o(a) Na(y)) = o(7), thenby (A.39),
w/o(y)Us € L(v) (A.42)
Therefore by (A.40),(A.41) and (A.42),

we L((a+p)[s]7)

In the similar way, the above equation aso follows where w € L(G[s U (o(a) No(y))]7)-
Therefore,

L(a[sU (a(B) Na(y)) 1) ULB[sU(o(a) Na(y))]7) € L(a+08) [s]y)  (A.43)

Then by (A.36) and (A.43),

L((a[su (o(B)Nna(y)) 1)U LB s U (o(a) No())]7)) = L(a+ B)[s]7)

From the definition of L, thisclearly implies

L((a[su(o(B)Nna(y))]7)+ (BLsU(o(@)Na()]7)) = Lila+ B)[s]7)
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Appendix B

Proofsfor Section 3.4

This appendix provides the proofs for theorems in Chapter 3 and the lemmas which required
for proving those theorems. Since our axiom system F,. iscomplete, it is possible to prove these
theorems utilizing the derivation rules of F,.. However, in this section, we prove the theorems
directly based on the semantics of BCREs in order to make our proofs precise.

B.1 Preiminary

Preceding to the theorems, we prove some lemmas which are required to prove the theorem in
the next section. The following Lemma B.1 represents the basic properties of restriction. Note
that in the reminder of this appendix we use these properties without being explicit referred to.

LEMMA B.1
Let s,t and u be a set of symbols, o be an BCRE and w be a sequence.

1 w/s/t=w/sNt

2. w/s/t=w/t]s

3 w/s/t=w/tifs Dt

4 w/sUu=w/tUuifw/s=w/t
5 w/o(a) =wifw e L(a)

6. wes ifw=w/s

It is easy to prove these properties. We omit the proof here. O
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The next Lemma B.2 and B.3 also represent simple properties between restriction and the
language of BCREs.

LEMMA B.2
1 w-z/s € Llaz) impliesw/s € L(a).

2. w/o(a)Us € L(a) impliesw/o(a) € L(a).

PrROOF
It is obvious from the definition of L and restriction. O
LEMMA B.3
w/o(a)Uo(y) =w/o(a)if we (o(a)Ua(B))" and o(y) No(B) = ¢
PrROOF

Assumingthat w € (o(a)Uo(B))*ando(y)No(F) = ¢. Thenassumethatw/o(a)Uo(y) #
w/o(a). By this assumption, thereissome z inw such that « ¢ o(«) and z € o(7). By the
assumption w € (o(a) U a(f))*, € (o(a) Ua(B)). Henceby = ¢ o(«), it follows that
z € o(f). Therefore x € o(3) N o(y). However, o(y) No(B) = ¢ clearly holds from the
assumption. and clearly contradicts x € () N o(y). Hence it is concluded as proof by
contradiction that w/o (o) U o(y) = w/o (). O

LEMMA B.4
Assumethat w, - wy € L(axf3), z € o(a), w; hasonly onex andthex isat the end of w,. Then
wy € L(ax).

PROOF
Suppose that

Wi Wy =@ " Qp-T by~ b
whereag - - -a, € L(A) and by - - - b,, € L(B). Then let us consider the following three cases.
1 ifwy =ap--a,- zthenw € L(ax).
2. ifwy =ap a5 (0 <k <n)thena; = z. It contradictsz ¢ o(A).

3 ifwy =ag--ap-z-by---b (0 <k < m)then b, = z. It contradicts the assumption
where w; hasasingle z.
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Therefore, it isconcluded that w; = ag - - - a,, - © € L(ax) and the lemma holds. O

LEMMA B.5
Let o, 5 andy be BCREs. Thenw € (o(a) Uo(7))* ifw € (o(a) Ua(B))", w/a(B) € L(v)
ando(v) € o(f).

PROOF
Assumethat w € (o(a)Uo(f3))*,w/o(B) € L(y) ando(y) C o(F). Sincew/a(B) € L(7),
w/o(fB) =w/o(B)/o(v) holds. Then by o(v) C o(8), w/o(8) = w/o(v) follows. Hence, w

does not have asymbol ino(v) No(F). Sincew € (o(a) Ua(f))*, itfollow that w € ((o(a) U

a(B))N(a(y)Na(B) = ((o(a)na(B)) Ua(y))" Itisclear that ((o(a) No(F)) Ua(y))" <
(o(a)Uo(y))*. Thusw € (o(a) U o(v))* and thelemma holds. O

B.2 Theorem 3.5 (AssociativeLaw (1))

Assume that o(a) U o(8) C o(a| ] 8) and o(8) Ua(v) C o(3] ] ) then

Pr oof

Assumethat o(B)Uao(y) Co(B] |v),thena (B[ ]v) = o(B)Uao(y) holdssinceit isclear that
a(B)Uao(y) 2 a(B] ]v). Fromthisand the semantics of BCREs, it follows that

L[ (B[ ]7)) = {wlw € (o(a) Ua(B) Ua (7)),
w/o(a) € L(a),

wlo(B)Ua(y) € L(B[ ]7)}

By the semantics again,

Thus it follows that
L(a[ ] (B] ]7) ={w|w € (c(a)Ua(B) Ua(v))",

93



w/o(a) € L(a),
w/o(B)Ua(y) € (o(B) Uo(7))
w/o(B)Ua(y)/o(B) € L(B)
wlo(B)Uo(v)/a(y) € L(7)}

It is clear that the condition w/o(3) U a(y) € (o(8) U a(y))* a thethird line in the above
equation holdsfor every w. Thereforeit can be eliminated from the above conditions. Moreover,
it followsfor al o and 3 that w/o(a) U o(f)/o(a) = w/o(a). Hence,

Lia[ (B[ ]7) ={w|w € o(@) Uo(B) Uo(7),
w/o(a) € L(a),
wlo(B) € L(B),
w/o(v) € L(7)} (B.1)

) €
)€

In the similar way, it isalso proved that L((a[ | 3) [ |v) equals (B.1) by assuming L(«) U
L(B) C L(«] | ). Thusthe theorem follows. O

B.3 Theorem 3.6 (Associative Law (2))

Assumethat (o(a) No(B)) U (a(B) Na(y)) U (a(y) No(a)) C s then,

Pr oof

Let usprovethat L(a[s](8]s]7)) = P where

(o() Na(B)) U (a(B)No(y)U(e(y) No(a)) Cs

and
P={w | we(ola)ua(B)Ua(y), (B.2)
w/o(a)Us € L(a) (B.3)
w/o(B)Us e L(B), (B.4)
wlo(y)Us € L(y) } (B.5)
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Assumethat (o (o) o () U (a(B)Na(v))U(a(y)No(e)) € sandw € L(a[s](6]s]7)).
Then, from the definition of L, it is easy to show that

Lia[s](Bls]7) ={w | welola)ua(Bls]y)), (B.6)
w/o(a)Us € L(a), (B.7)
wlo(Bls]y)Us € (a(8) Ua(7))",
wlo(Bls]y)Us/a(B)Us e L(B), (B.8)
wlo(Bls]y)Us/o(y)Us e L(y) }

Now, we consider the following two cases:

1. Assumethat o(G[s]v) 2 o(B). Itisobviousthat o(3[s]y) Us D o(f) Us. Thenit
followsthat w/o(8[s]v) Us/o(B)Us =w/o(f) U s. Therefore by (B.8),

w/o(B)Us € L(F)

2. Assumethat o (5 [s]vy) C o(f).
Sincew € (o(a) Ua(B[s]y))* itfollowsthat w = w/o(a) U (B ]s]v) Therefore,

wlo(Bls]y)Us
= w/o(@)Ua(Fls])/o(B[s]y)Us
= w/(o(a)Ua(Bls]7)N(a(Bs]7)Us)
= w/o(B[s]7) U(o(a)Ns)
= w/o(B[s]y) U (a(e) N ((o(a) No(B)) U (a(8)Na(y))U(e(y) No(a))Us))
= w/o(Bs]y)U(o(a) No(B)) Ulo(a)na(y)U(o(a)ns) (B.9)

where s’ is a set of symbols such that

s=(o(@)Na(B))U(a(B)No(7)U(o(y) No(a))Us)
holds. In the similar way, it also follows that
w/o(B)U s
= w/o(@)Uo(B[s]v)/o(B)U
= w/(e(a)no(B))U(o(B[s]v)Nao(B))U(a(a)Ua(Bs]y))Ns)

Sinceo (B [s]y) Ca(B),o(B[s]y) Nao(B) =o(3[s]v) and according to the assump-
tion of s,

(cl@)Uo(B[s]y)Ns
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= (o(@)Ua(B[s]) N ((e(a)na(B) U(a(B) Na(y) U (o(y) No(a) Us)
= (o(@)naofa)no(B)) U (o) No(f)Naly))U
(o(a)No(y)No(a))U(ola)ns)u
(e(B[s]v)Nnola)no(B))U(e(Bls]y)Na(B)No(y)) U
(e(Bls]v)No() Nnao(@)U(e(Bls]v)Ns)
= (o(a)no(f)) U(o(a)no(B)No(y)) U
(o(@)No(y) U (o(a)ns)U
(e(B[s]7)No(a))U(e(Bs]y)Na(y))U
(e(Bls]v)No() Nno(@)U(e(Bls]y)Ns)
= (o(@)na(B)) U(o(e) No(y) U (o(a)ns)U
(e(B[s]y)no()U(a(Bls]7)Ns)
Therefore,
w/(o(a) No(B)) Us
= w/(o(a)no(B))Ua(Bs]7)U((o(e)Ua(B[s]7))Ns)
= w/o(B[s]7) U(o(a) Na(B)) U (o(a) Na(y))U(o(a)Ns)
By (B.9),

w/o(B)Us=w/o(G[s]y)Us
Henceby (B.8), w/a () Us € L(3).

Accordingly, it follows from the cases 1 and 2 that

w/o(B)Us € L(F)

In the similar way, it can be proved that

wlo(y)Us € L(y)

By (B.6), it clearly follows that

we (e()Ua(f)uo(n))

Then by (B.7), (B.10), (B.11) and (B.12), w € P holds. Therefore it is concluded that

Lia[s](B[s]v) < P
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Now, on the other hand, we start with assuming w € P, namely, (B.2) to (B.5) follow. Then
sincec(B) Uo(y) 2 o(p), itfollowsthat w/o(5)Us =w/o(B)Uao(y)Us/o(3)U s. Hence
by (B.4),

w/o(B)Ua(y) Us/a(8) Us € L() (B.14)

In the similar way, it follows from (B.5) that

wlo(B)Uo(y)Us/o(y)Us € L(7) (B.15)

By (B.4) and (B.5), it can be proved that

w/o(B)Uo(y) Us € (a(8) Uo(7)" (B.16)

Then by (B.14),(B.15), (B.16) and the definition of L, we can obtain that

wlo(B)Uo(y)Us € L(B[s]7) (B.17)

By (B.16), it isobviousthat w/o () Uo(y) Us = w/o(5) Uo(y). Therefore, By (B.17),

wlo(B)Uo(y) € L(B[s]7) (B.18)

By (B.2),(B.18) and LemmaB.5
we (o(@)Ua(B[s]7)) (B.19)

By (B.17) again, w /o (B)Uo(y)Us = w/o(B)Uo(y)Us/a(B[s]v) = w/o(B[s]7) holds.
Thus,

wfo(B[s]v) € L(B[s]7) (B.20)

Assumethat s  o(f[s]v). Thenby (B.17) and o(GF[s]v) C o(8) U a(y), w clearly has no
symbol ins N o(3[s]7). Hence, w/a(B[s]7) = w/a(8[s]7) U s holds. On the other hand,
if we supposethat s C o(3[s]~), itisobviousthat w/o(3[s]vy) = w/o(B[s]y) U s. Then
by (B.20),

w/o(Bs]v)Us e L(B[s]7)
Accordingly, by the definition of L,

w/o(Bls]y)Us € (a(B)Ua(v)) (B.21)
w/o(Bls]y)Us/o(B)Us € L(B) (B.22)
wlo(B[s]y)Us/o(y)Us € L(v) (B.23)
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By (B.3), (B.19), (B.21), (B.22), (B.23) and the definition of L, itholdsthatw € L(a[s](8[s]7)).
Hence,

Pc Llal[s](B[s]7) (B.24)
By (B.11) and (B.24), itisproved that P = L(«[s](3[s]7)).
In the similar way, it also can be proved that P = L((a[s]3)[s]7)). We omit a detailed

proof since it isjust a symmetry of the proof for P = L(«[s](5[s])). Itisthus concluded
that L((«[s]B)[s]v)) = L(a[s](8]s]~)) and the theorem holds. O

B.4 Theorem 3.7

Fals]f=al it (c(a)no(B))Us =9

Pr oof

Assuming that (o(a) N o(5)) U s = ¢, then in such case the axiom (', to C; are regarded as

O als]L _—
Cy als]L® = a

C3 als]p = Bls]a

Cy zalslys = wz(a[s]yf)+ylzals]f)

Cs (a+pB)[s]ly = als]y+08[s]y

Then by comparing this to the axiom Cj to C},

Cs alL _—
¢ olr = a

Cs  afp = Ol

Co zallys = =z(allyB) +y(zalB)

Cio (a+B)llv = aly+8lly

it is obvious that they can simulates each other by replacing || with [s] or vice versa. Since
the F, is complete, we can say that all possible equivalent relationshipon [s] and || operation
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can be represented only with these axioms. This implies that we can swap «[s] 5 to «|| 3 or
viceversain any expressionsif o(a) N o () N's = ¢. Hence the lemmafollows. O

B.5 Theorem 3.8 (Extraction)

= (axf) [s](vyd) = ([ ]7)(xBs]y0)

wherez,y € (o(zf) No(yd)) Usand (o(axf)Us)No(y) = (o(yyd) Us)No(a) =¢
This theorem means that if = and y are communication symbols and, o and v does not
possess communication symbols, then oz and ~ can be extracted as concurrent threads, namely

([ ]7)-

Proof

Assumethat z,y € (o(xf) No(yd)) Usand (o(axB)Us)No(y) = (o(yyd) Us) No(a) = ¢.
Then let us consider the following two cases.

1. Assumethat w € L((a [ |v)(z3[s]yd)). Thenitisclear that
w € (o(axpf)Uo(yyd))* (B.25)

According to the definition of L, there are some w; and w, such that w; € L(a| |7v)),
wy € L(zf]s]yd) and w = w; - we hold. By the definition of L, it follows from w; €
L(a| |v) that wy/o(a) € L(«). By the assumption, (o(axzf) U s) No(y) = ¢. Thusby
LemmaB.3, w;/o(azf) Us = wi/o(a). Hence,

wi/o(axB)Us € L(a) (B.26)
In the similar way, it is proved that
wi/o(yd) Us € L(y) (B.27)

By thedefinitionof Landw, € L(zf[s]yd),ws € (o(zfB)Uo(xd))* andwy/o(xf)Us €
L(z3) follows. Hence by Lemma B.3, wy/o(a) U o(zf3) U s = wy/o(z) U s holds.
Therefore,

wa/o(axB)Us € L(xf) (B.28)
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holds. In the similar way, it also follows that

wa/o(yyd) Us € L(yd) (B.29)

By (B.26),(B.27),(B.28) and (B.29),

w/o(azf)Us = (wi/o(azf)Us) - (wa/o(axf)Us) € L(axf) (B.30)
w/o(yxd)Us = (wi/o(yzd) Us) - (we/o(yxd) Us) € L(yxd) (B.31)

By (B.25),(B.30) and (B.31), w € L(ax3[s]yyd). Henceit is concluded that
L((a[ 1) (zB[s]yd)) € LlazB[s]yyo) (B.32)

2. Assumethat w € L(axf3[s]|yyd). If x # y isassumed it is obvious from the definition
of L,

L(oxf3[s]yyd) = L((a[ ]7)(zB8]s]yd)) = ¢
Hence in the remainder of this proof we only focus on the case where = = y holds. Then
the definition of L, it is obvious that

w € (o(axf)Uo(yxd))* (B.33)
w/o(azf)Us € L(azxf) (B.34)
w/o(yxd)Us € L(yxd) (B.35)

By (B.34) and the definition of L, there are some w; and w, such that

W= wi-w (B.36)
wi/fo(azB)Us € L(ax) (B.37)
wa/o(axB)Us € L(B) (B.38)

Last(w)) = (B.39)

holds where Last(w) means the last symbol of the sequence w. Then by (B.35) and
(B.36),

wy - wefo(yxd)Us € L(yxd) (B.40)

By the assumption (o(az3) U s) Ny = ¢, it followsthat ¢ L(v). Hence by Lemma
B.4, (B.39) and (B.40),

wi/o(yzd) € L(yz) (B.41)
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Accordingly, there is some ) such that w; = W} - x and W} - x/o(yxd) € L(yx). Thus
by LemmaB.2, it iseasy to provethat w/o(yzd) € L(y). Hence, by LemmaB.2,

wy/o(y) € L(y) (B.42)

In the similar way, it followsthat w} /o (axf) € L(«) sincew; - z/o(axf) € L(ax) by
(B.37). Thusby LemmaB.2,

wi/o(a) € L(a) (B.43)

By (B.42) and (B.43)

wy € L(af ]7) (B.44)

Now, it is clear that w = W - = - wj, and thereisno z in w;. Then by (B.33), (B.34) and
(B.35), it can be proved that

z-wy € (o(xf)Uo(xd))”
r-wy/o(xB)Us € L(zf)
r-wh/o(zd)Us € L(xd)

Therefore, by the definition of L,
z-wy € L(xf[s]xd) (B.45)
Sincew = wj] - = - wy, By (B.44), (B.45) and the assumption of = = y,

we L((a[ |7)(=8[s]yd))

Hence,
L(axB[s]vyd) C L{(e[ ]v)(zB[s]yd)) (B.46)
By (B.32) and (B.46),

L(ax[s]vyd) € L{(a[ 17)(zB[s]yd))

Hence, it is concluded that

L(axf[s]vyd) = L{(a[ [7)(x8[s]yo))

and the theorem holds. O

101



Appendix C

Proof for Lenma 5.2

C.1 Preiminary

In this section, we assume that z is a set of symbolsand h(«) and n(«, j) isfrom R.H.S. of the

member of X, («) such that
h(a)
o =73 0(a,j)z(e, j)n(e, ) + (e, 0) € Xz ()

j=1
We also useaset X, to obtain L.H.S. of amember of X,.
X.(a)={a|3Fb.a=pec X, (a)}

LeEmmA C.1
n(a, ) € X, (o) for1 < j < h(a).

PROOF

It isobviousfrom the definition of X, that X, (n(«a, j)) C X,(«)foral j. Thus X, (n(«, 7)) C
X. (). Thenit is also clear by the definition of X, that o € X,(«). Therefore, n(a, j) €
Xz(n(a,j)) - Xz(a)- O

LEMMA C.2
) h(p)
Xo(ap) C {5 = p(d’B) | o' € Xi(e) }U U Xa(n(B, 1))

where p(c/' 3) is defined in the definition of X ,.
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PROOF

Let {a,- -, } = X, () for somen and a; = «. According to the definition of X, for
all <u<n,
h(au) . h(B) _
X (wB) = {auf = pla.fB)} U U X.(n(ow,7)B) U U X.(n(8,7))
j=1 j=1

Sincen(a, j) € {ou, - --an} = X, (a) by LemmaC.1, we can obtain the following equations.

h (o) h(B)
Xz(auﬂ) = {auﬂ = p(auﬂ)} U Ul Xz(aujﬂ) U Ul Xz(n(ﬂaj))

where o,; € {a,---,}. According to the definition, X, (o) isaminimal set. Thusit is
obvious that

)
X.(awf) € {a;f=plyf) |1 <7 <n}uU J X.(n(B,7))

7j=1

and the lemma holds. O

LEMMA C.3

X.(Ba) C { fla” = p(F'a”) | B € X.(a) UX.(5) }
where p(3'a*) is according to the definition of X ,.

PROOF
Supposethat X, (o) = {, -, an} and X, (8) = {B1,-- -, Bm} Wherea = o, and 8 = 4.
Then by the definition of X, it followsforal 1 <u <nand1 < v < m that

h(a) h(ow)

X, (o) = {a,0" = pla,a)} U Ul X.(n(a,j)a™) U gl X, (n(ay, 5)a")
h(a) h(B)

Xil') = (" = plhe)} 0 U Xelotes o) 0 U X))

Sincen(auaj) < {Oél, ’ an} and 77(6117 ) = {617 o 7671} by LemmaC.1,

h(ar) h(aw)
X, (o) = {aua” = playa)} U U X, (ay;0") U Xz Q0
Jj=1 J=
h(an) h(ﬂ
Xz(ﬂva*) = {51104*:/0(5@04)}U U Xz(alj U U Xz 611]
Jj=1 Jj=1
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where a,,; isamong {«;, - -, o, } and 3, isamong {3, - - -, 5, }. By the definition of X, X,
isaminimal set, therefore it follows that

X.(B,0%) C {ajo" = plaja®) |1 <j<n}u

{Bja" = p(Bja*) [ 1 < j <m}

foral 1 < v < m. Remindthat X,(5a*) = X,(51a*). Thusthe lemmafollows. O

LEmMMA C.4

Xo(a[s]8) C{a'[s]18 = p(/[s]5) | o € X(a), B € X(8) }

PROOF
Supposethat X, (o) = {ay, -+, anyand X, (8) = {B1,- -, B} Wherea = a; and 5 = ;.
Then by the definition of X, it followsforal 1 <u <nand1 <wv < m that

Sincen(auaj) < {ala o '7an} and 77(6117]) = {ﬂla o 7671} by LemmaC.1,

Xo(aw[5]By) = {au[s] By = plau[s]B) } U U U (avug) [ 8] Buj)

i=1 j=1

where a,,; isamong {«;, - -, o, } and 3, isamong {3, - - -, 5, }. By the definition of X, X,
isaminimal set, therefore it follows that

X (on [5]8,) € {o [5] B = ploy [5]0) | 1 <G <n,1 <k < m}

C.2 Lemmab.2

Let v and § are expressions without | s | and || operatorsthen, for any z,
0], < |7],if 6 € X,(v) follows.

PROOF
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In this proof, we assume h(«), 6(«, j) and n(«, j) are expressions such that

h(e)
a=Y 0(a,j)z(a, j)n(a,j) + 0(a,0) € X, (a)

j=1

Then we prove this lemma by induction on the structure of BCREs. Asthe base step, itis

obvious by the definition of X, that the lemmaholdsfory = 1,y = 1*andy = x (z isa

symbol). Next, asinduction steps, assume that the lemma holds for v = o and v = 3 and then
let us consider the following cases.

1. Supposethat § € X,(a + 3). Then, from the definition of X, it followsthat § = a + 3,
§ € X.(n(e,j)) or 6 € X.(n(B,k)). Itisclear that | + 3|, < |a + B];. By induction
hypothesisand X, (1(«, j)) C X, () foral1 < j < h(a), |d], < |al,if 6 € X.(n(a, §)).
In the similar way, it can be proved that |, < |5], if § € X.(n(8,7)). Thus, it is
concluded that & € X, (« + ) implies that |0, < |a + ], and the lemma holds for

v=a+ 5.

2. Assumethat § € X,(af3). Thenby LemmaC.2, 6 = o/Boré € X,(n(5,7)) where
o € X,(a)and1 < j < h(B). By induction hypothesis, |o/|, < |« clearly holds.
Hence, if 6 = o/f then, [0]; = [o/Bl; = ['[i + Bl < |ele + Bl < |af + (8] = |aBl:
follows (Note that it immediately follows by the definition that ||, < |a], for any «). On
the other hand, if § € X.(n(3,7)) then, it isclear that 6 € X, (). Thus by induction
hypothesis, ||, < |3]: < |af|; holds. Thereforeit is conluded that |6]; < |a/|, in the all
Ccases.

3. Supposethat 0 € X, (Ba*). Thenby LemmaC.3, § = 'a* where §' € X, (o) U X, (3)
If 3 € X.(a) then by induction hypothesis, | 3’|, < ||;. Therefore |3|, = |'a*| =
18+ el < faul + [al < o]

4. Supposethat & € X,(a*). Then by the definition of X, § = a* or § € X.(n((,a), 7))
(1 < j < h(a). If 6 = o, itisobvious that ||, < |a*|;. On the other hand, if
5 € X.(n((, ), j)o*), we can provethat |5]; < |a*|, in the similar way to 3.

By 1to 4, the lemma.clearly holds. O
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Appendix D
A PCM devicedriver implementation

/* Clock Frequency (Hz) */

#define INPUT CLOCK 50000

#define CH MAX 3

static int £[CH MAX], v[CH MAX];
static short *start adr [CH MAX];
static short *current adr [CH MAX] ;
static short *end adr [CH_MAX] ;
static double counter [CH_MAX] ;
static double counter step[CH MAX] ;
static int playflag[CH MAX];

static Semaphore sem=0;

/* play. (p_O+p_l+p_2) */

void PLAY (int ch, short *start, short *end){

ENTER (sem) ;
playflag([ch] = 1;
start adr[ch] = start;
end adr [ch] = end;
LEAVE (sem) ;

}

/* stop. (s _0+s 1l+s 2) */

void STOP (int ch) {
ENTER (sem) ;
playflag([ch] = 0;
LEAVE (sem) ;
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}
/* freq. (f 0+f 1+f 2) */
void FREQ (int ch, int value) {
ENTER (sem) ;
f[ch] = wvalue;
counter[ch] = 0.0;
counter step[ch] = f[ch]/INPUT CLOCK;
LEAVE (sem) ;
}
/* vol. (v _0+v_1+v 2) */
void VOL (int ch, int wvalue) {
ENTER (sem) ;
v [ch] = wvalue;
LEAVE (sem) ;
}
/* clock.calc.write */
void CLK() {
short mix = 0;
int i;
for (1=0;1i<3;i++) {
if (playflagli]) {
/* calcurate the address counter */
counter [i] += counter stepl[i];
if (counter[i]>=1.0) {
counter[i]-=1.0;
current adr[i]++;
}
/* check the end of data */
if (current adr[i]==end adr[i])
playflag[i] = 0;

mix += (*(current adr[i]) * vI[i]) >> 4;

}
/* I/0 Access */
DAC_WRITE (mix) ;
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