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1. Introduction

Humans or animals exhibit natural adaptive motions against unexpected disturbances or
environment changes. This is because that, in general, the neural oscillator based circuits on
the spinal cord known as Central Pattern Generators (CPGs) might contribute to efficient
motor movement and novel stability properties in biological motions of animal and human.
Based on the CPGs, most animals locomote stably using inherent rhythmic movements
adapted to the natural frequency of their body dynamics in spite of differences in their
sensors and actuators.

For such reasons, studies on human-like movement of robot arms have been paid increasing
attention. In particular, human rhythmic movements such as turning a steering wheel,
rotating a crank, etc. are self-organized through the interaction of the musculoskeletal
system and neural oscillators. In the musculoskeletal system, limb segments connected to
each other with tendons are activated like a mechanical spring by neural signals. Thus
neural oscillators may offer a reliable and cost efficient solution for rhythmic movement of
robot arms. Incorporating a network of neural oscillators, we expect to realize human
nervous and musculoskeletal systems in various types of robots.

The mathematical description of a neural oscillator was presented in Matsuoka’s works
(Matsuoka, 1985). He proved that neurons generate the rhythmic patterned output and
analyzed the conditions necessary for the steady state oscillations. He also investigated the
mutual inhibition networks to control the frequency and pattern (Matsuoka, 1987), but did
not include the effect of the feedback on the neural oscillator performance. Employing
Matsuoka’s neural oscillator model, Taga et al. investigated the sensory signal from the joint
angles of a biped robot as feedback signals (Taga et al., 1991), showing that neural oscillators
made the robot robust to the perturbation through entrainment (Taga, 1995). This approach
was applied later to various locomotion systems (Miyakoshi et al., 1998), (Fukuoka et al.,
2003), (Endo et al., 2005), (Yang et al., 2008).

Besides the examples of locomotion, various efforts have been made to strengthen the
capability of robots from biological inspiration. Williamson created a humanoid arm motion
based on postural primitives. The spring-like joint actuators allowed the arm to safely deal
with unexpected collisions sustaining cyclic motions (Williamson, 1996). And the neuro-
mechanical system coupled with the neural oscillator for controlling rhythmic arm motions
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was proposed (Williamson, 1998). Arsenio suggested the multiple-input describing function
technique to control multivariable systems connected to multiple neural oscillators (Arsenio,
2000).

Even though natural adaptive motions were accomplished by the coupling between the arm
joints and neural oscillators, the correctness of the desired motion was not guaranteed.
Specifically, robot arms are required to exhibit complex behaviors or to trace a trajectory for
certain type of tasks, where the substantial difficulty of parameter tuning emerges. The
authors have presented encouraging simulation results in controlling the arm trajectory
incorporating neural oscillators (Yang et al.,, 2007 & 2008). This chapter addresses how to
control the trajectory of a real robot arm whose joints are coupled to neural oscillators for a
desired task. For achieving this, real-time feedback from sensory information is
implemented to exploit the entrainment feature of neural oscillators against unknown
disturbances.

In the following section, a neural controller is briefly explained. An optimization procedure
is described in Section 3 to design the parameters of the neural oscillator for a desired task.
Details of dynamic responses and simulation and experimental verification of the proposed
method are discussed in Section 4 and 5, respectively. Finally, conclusions are drawn in
Section 6.

2. Rhythmic Movement Using a Neural Oscillator

2.1 Matsuoka’s neural oscillator

Our work is motivated by studies and facts of biologically inspired locomotion control
employing oscillators. Especially, the basic motor pattern generated by the CPG of inner
body of human or animal is usually modified by sensory signals from motor information to
deal with environmental disturbances. The CPGs drive the antagonistic muscles that are
reciprocally innervated to form an intrinsic rhythm generating mechanism around each
joint. Hence, adapting this mechanism actuated by the CPGs which consists of neural
oscillator network, we can design a new type of biologically inspired robots that can
accommodate unknown interactions with the environments by controlling internal loading
(or force) of the body.

For implementing this, we use Matsuoka’s neural oscillator consisting of two simulated
neurons arranged in mutual inhibition as shown in Fig. 1. If gains are properly tuned, the
system exhibits limit cycle behaviors. Now we propose the control method for dynamic
systems that closely interacts with the environment exploiting the natural dynamics of
Matsuoka’s oscillator.
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where x,;and x5 indicate the inner state of the i-th neuron for i=I~n, which represents the
firing rate. Here, the subscripts ‘¢ and ’f denote the extensor and flexor neurons,
respectively. v.p; represents the degree of adaptation and b is the adaptation constant or self-
inhibition effect of the i-th neuron. The output of each neuron v, is taken as the positive
part of x; and the output of the oscillator is the difference in the output between the extensor
and flexor neurons. wj; is a connecting weight from the j-th neuron to the i-th neuron: wj;are
0 for i# and 1 for i=j. wjjy; represents the total input from the neurons arranged to excite one
neuron and to inhibit the other, respectively. Those inputs are scaled by the gain k;. T, and T,
are the time constants of the inner state and the adaptation effect, respectively, and s; is an
external input with a constant rate. we(p; is a weight of the extensor neuron or the flexor

neuron and g; indicates a sensory input from the coupled system.
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Fig. 2. Mechanical system coupled to the neural oscillator

Figure 2 conceptually shows the control method exploiting the natural dynamics of the
oscillator coupled to the dynamic system that closely interacts with environments. This
method enables a robot to adapt to changing conditions. For simplicity, we employ a
general 2nd order mechanical system connected to the neural oscillator as seen in Fig. 4. The
desired torque signal to the joint can be given by

7, =k, (0, _gi)_biéﬂ (2)
where k; is the stiffness of the joint, b; the damping coefficient, 0; the joint angle, and 0,; is the
output of the neural oscillator that produces rhythmic commands of the i-th joint. The
neural oscillator follows the sensory signal from the joints, thus the output of the neural
oscillator may change corresponding to the sensory input. This is what is called
“entrainment” that can be considered as the tracking of sensory feedback signals so that the
mechanical system can exhibit adaptive behavior interacting with the environment.

2.2 Entrainment property of the neural oscillator

Generally, it has been known that the Matsuoka’s neural oscillator exhibits the following
properties: the natural frequency of the output signal increases in proportion to 1/T,. The
magnitude of the output signal also increases as the tonic input increases. T, and T, have an
effect on the control of the delay time and the adaptation time of the entrained signal,
respectively. Thus, as these parameters decrease, the input signal is well entrained. And the
minimum gain k; of the input signal enlarges the entrainment capability, because the
minimum input signal is needed to be entrained appropriately in the range of the natural
frequency of an input signal. In this case, regardless of the generated natural frequency of
the neural oscillator and the natural frequency of an input signal, the output signal of the
neural oscillator locks onto an input signal well in a wide range.

Figure 3 illustrates the entrainment procedure of the neural oscillator. If we properly tune
the parameters of the neural oscillator, the oscillator exhibits the stable limit cycle behaviors.
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sensory signal input as shown in Figure 3 (a). The result of Figure 3 (b) indicates the signal

partially entrained. If the gain k is properly set as 0.53, the neural oscillator produces the

In Figure 1, the gain k of the sensory feedback was sequentially set as 0.02, 0.2 and 0.53 such
as Figure 3 (a), (b) and (c). When kis 0.02, the output of the neural oscillator can’t entrain the
fully entrained signal as illustrated in Figure 3 (c) in contrast to the result of Figure 3 (b).
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Fig. 3. Simulation results on the entrainment property of the neural oscillator. The solid line
is the output of the neural oscillator and the dashed line indicates the sensory signal input.

3. Optimization of Neural Oscillator Parameters

The neural oscillator is a non-linear system, thus it is generally difficult to analyze the
dynamic system when the oscillator is connected to it. Therefore a graphical approach
known as the describing function analysis has been proposed earlier (Slotine & Li, 1991).
The main idea is to plot the system response in the complex plane and find the intersection
points between two Nyquist plots of the dynamic system and the neural oscillator. The
intersection points indicate limit cycle solutions. However, even if a rhythmic motion of the
dynamic system is generated by the neural oscillator, it is usually difficult to obtain the
desired motion required by the task. This is because many oscillator parameters need to be
tuned, and different responses occur according to the inter-oscillator network. Hence, we
describe below how to determine the parameters of the neural oscillator using the Metropolis
method (Yang et al., 2007 & 2008) based on simulated annealing (SA) (Kirkpatrick, 1983),
which guarantees convergence to the global extremum (Geman & Geman, 1984).

For the process of minimizing some cost function E, X=[T;, T,, w, s, -]T is selected as the
parameters of the neural oscillator to be optimized; the initial temperature T is the starting
parameter; the learning rate v is the step size for X. Specifically, the parameters are replaced
by a random number N in the range [-1,1] given by;

X, =X_+v-N 3)
If the change in the cost function AE is less than zero, the new state X; is accepted and stored

at the i-th iteration. Otherwise, another state is drawn with the transition probability,
Prob;(E) given by
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1
Z(T)

Prob,(E) = ( )exp(—%) > 7, @)

where y is a random value uniformly distributed between 0 and 1. The temperature cooling
schedule is c;=k-ci; (k is the Boltzmann constant or effective annealing gain) and Z(T) is a
temperature-dependant normalization factor. If AE is positive and Prob;(E) is less than y or
equal to zero, the new state X; is rejected. Here the lower cost function value and large
difference of AE indicate that X; is the better solution. If temperature approaches zero, the
optimization process terminates.

Even though SA has several potential advantages over conventional algorithms, it may be
faced with a crucial problem. When searching for optimal parameters, it is not known
whether the desired task is performed correctly with the selected parameters or not. We
therefore added the task completion judgment and cost function comparison steps as shown
in Fig. 4 by thick-lined boxes. If the desired task fails, the algorithm reloads previously
stored parameters and selects the parameters that give the lowest cost function value. Then
the optimization process is restarted with the selected parameters until it finds the
parameters of the lowest cost function that allow the task to be done correctly.

4. Crank Rotation of Two-link Planar Arm

To validate the proposed control scheme, we evaluate the crank rotation task with a two-
link planar arm whose joints are coupled to neural oscillators as shown in Fig. 5. The inter-
oscillator network is not established, because the initial condition of the same sign will be
equivalent to the excitatory connection between two oscillators. We focus on the
entrainment property of the arm.

The crank rotation is modeled by generating kinematic constraints and an appropriate end-
effector force. The crank has the moment of inertia I and the viscous friction at the joint
connecting the crank and the base. If the arm end-effector position is defined as (x, y) in a
Cartesian coordinate system whose origin is at the center of the crank denoted as (xo, yo), the
coordinates x and y can be expressed as

x —rsing + x, L, +1,c,
(y] B ( rcos@+ Y, j B [lls1 +lzslzj

X\ [ rsinpp—rcospg | aJ(0) ©
(j}j_(—rcowgb—rsingz)(ﬁ}_W’

where ] is the Jacobian matrix of [x, y]T. ¢ and 0; are the crank angle and the i-th joint angle,
respectively. [; is the length of the i-th link. ¢, c12, 51 and s1» denote cos 8, cos(f1+ 02), sin 01
and sin(01+ 0>), respectively. r is the radius of the crank. Eq. (5) can be rearranged as follows:

J(O)F+J(6,0)0 =ru(@) —v(§), )

where u is the tangential unit vector and v is the normal unit vector at the outline of the
crank as shown in Fig. 5, respectively.
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Now the dynamic equations of the crank and the arm are given in the following form.

16+ Co=ru(p)' F 7)
M(O)F+V(6,0)+GO)=7-J(O) F )
T =k(6, - 0)- b0, )

where M is the inertia matrix, V is the Coriolis/centripetal vector, and G is the gravity vector,
k and b denotes the joint stiffness and viscosity matrixes, respectively (Gomi & Osu, 1998),
0, is the output of the neural oscillator (see Eq. (2)), F is the contact force vector interacting
between the crank and the end-efector. By solving Egs. (7) and (8) simultaneously using Eq.
(6), F is obtained as

F={J@OMEO)"JO) +r'I"ul@u(@)' ;L OMO) (z -V (0)+J(0.0)0+rd((@)d+CI 'u(p)}
(10)
It is very hard to properly tune parameters of the neural oscillator for attaining the
desired rotation task. Moreover, this dynamic model is tightly coupled to crank dynamics as
described in Eq. (10). Thus, the proposed parameter tuning approach is divided into the
following two steps:

1) Step 1: Find initial parameters of the neural oscillator corresponding to desired inputs
of each joint using the cost function given by:

T-T, 4,-C
o= ‘—" +v- max(u -1,0) (11)
G B
subject to
) A, <A, <A,
i) |4,-C|<B

where C=(AmaxtAmin)/2, B=(Amax-Amin)/2; Asq is the desired amplitude of the neural
oscillator for the rotation task, Amax and Amin are the maximum and minimum amplitude
constraints, respectively; T and T denote the desired and measured natural frequencies of
the output generated by the neural oscillator, respectively. v is the performance gain.

2) Step 2: Using the initial parameters obtained by Stepl, run the proposed SA
algorithm as illustrated in Fig. 4. The cost function for the crank rotation includes the
velocity of the rotation, torque, and consumed energy.

Implementing Step 1 and Step 2 in sequence, we are able to acquire the appropriate initial
and tuned parameters as seen in Table 1. Figure 6 (a) indicates a cooling state in terms of
cooling schedule. Cooling or annealing gain K is set as 0.95. It can be observed in Fig. 6 (b)
that the optimal process was well operated and a better solution at the lowest cost function
was obtained iteratively. As expected, when the tuned parameters are employed to perform
the given task, a stable motion could be accomplished as shown in Fig. 6. It is evident in Fig.
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6 (c) that initial transient responses disappear due to the entrainment property of the neural
oscillator. This property enables the arm to sustain the given task against changes in
parameters of arm kinematics and dynamics as well as disturbances.

Input initial condition
- Optimization
Iv.ar.1a1b1e5 Modify
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Fig. 4. Flowchart of the upgraded SA for task based parameter optimization.
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Schematic robot arm model and (b) real robot arm coupled with the neural

oscillator for experimental test
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Initial parameters Optimized parameters
Inhibitory weight (w) 2.0  Inhibitory weight (w) 4.012
Time constant (T;) 0.25 Time constant (T7) 1.601
(T) 0.5 (T) 3.210
Sensory gain (k) 1 Sensory gain (k) 10.010
Tonic input (s) 60 Tonic input (s) 57.358
Robot Arm Model
Mass 1 (1), Mass 2 (my) 2.347kg, 0.834kg
Inertia 1 (I1), Inertia 2 (I2) 0.0098kgm?2,  0.0035kgm?
Length1 (1), Length2 (o) 0.224m, 0.225m

Table 1. Initial and tuned parameters of the neural oscillator with robot arm model

5. Experiments with a Real Robot Arm

To validate the proposed control scheme described in Section 4, we employed a real robot
arm with 6 degrees of freedom (see Fig. 5 (b)) and constructed a real time control system.
This arm controller runs at 200 Hz and is connected via IEEE 1394 for data transmission at 4
kHz. ATI industrial automation’s Mini40 sensor was fitted to the wrist joint of the arm to
detect external disturbances. The optimized parameters in Table 1 were used for the neural
oscillator.

Figure 7 shows the arm kinematics. Since the crank motion is generated in the horizontal
plane, giand g3 are set to 90°. The initial values of g5 and ge are set to 0°, respectively. g and
g4, corresponding to 61 and 0, in Fig. 5 (a), respectively, are controlled by the neural
oscillators and the constraint force given in Eq. (10). The constraint force enables the end-
effector to trace the outline of the (virtual) crank. Hence, the end-effector can draw the
circles as shown in Fig. 8 (see the overlapping circles in the center part of the figure).

Now, we will examine what happens in the arm motion if additive external disturbances
exist. Arbitrary forces are applied to the end-effector at 15s, 28s, 44s, 57s, 73s and 89s
sequentially as shown in Fig. 9. We first pushed the end-effector along the minus x direction.
The force sensor value in the x and y direction are added to Eq. (10). Then, the joint angles
change according to the direction of the applied force, which makes the neural oscillators
entrain the joint angles as shown in Fig. 10. The solid line is the output of the neural
oscillator connected to the first joint (g2) and the dashed line indicates that of the neural
oscillator connected to the second one (g4). Hence a change in the output of the neural
oscillator causes a change in the joint torque. Finally the joint angles are modified as shown
in Fig. 11, where the bottom plot is the output of 4> and the top one is the output of g4. Fig.
12 shows the snap shots of the simulated crank motion by the robot arm, where we can
observe that the end-effector traces the circle well, and adapts its motion when an external
force is applied to it.

Table 2 compares the power consumption of the robot arm performing the above task with
different parameters of the neural oscillator. The parameters were drawn arbitrary among
the ones that guarantee a successful completion of the task. If the optimized parameters (set
D) were employed, the most energy-efficient motion was realized.
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Parameter set

Parameter set

Parameter set

Parameter set

A B C D (optimized)
Inhibitory
weight (w) 2.0 2.503 4.012 4.012
Time constant 0.25 0.896 1.601 1.601
(Ty) 0.5 5.0 3.210 3.210
() 1.0 1.241 15.010 10.010
Sensory gain (k) 60.0 60.660 57.358 57.358
Tonic input (s)
Measured
1.871 0.794 0.591 0.572
current [A]
Power [W] 89.808 38.112 28.368 27.456
consumption

Table 2. Power Consumption according to the selected parameter set of the neural oscillator

i |
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Fig. 7. Kinematic parameters of the robot arm
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6. Conclusion

This chapter presents an example of human-like behavior of a planar robot arm whose joints
were coupled to neural oscillators. In contrast to existing works that were only capable of
rhythmic pattern generation, the proposed approach allowed the robot arm to trace a
trajectory correctly through entrainment. For successfully achieving this, we proposed an
optimization approach for obtaining the parameters of the neural oscillator modifying the
simulated annealing method. Simulation and experimental results showed the effectiveness
of the proposed approach. Moreover, it was demonstrated that the robot arm could
adaptively behave responding to external disturbances keeping the shape of the trajectory
unchanged. This approach will be extended to a more complex behavior toward the
realization of biologically inspired robot control architectures.
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