JAIST Repository

https://dspace.jaist.ac.jp/

Title goodooooooouooooon

Author(s) oo, 00

Citation

Issue Date 2004-06

Type Thesis or Dissertation

Text version aut hor

URL http://hdl.handle.net/ 10109/ 957
Rights

Description Supervisor: oo 04, ooooooo o0

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Proof—Search in Modal and Temporal Logics

by

Toshimasa MATSUMOTO

submitted to
Japan Advanced Institute of Science and Technology
in partial fulfillment of the requirements

for the degree of
Doctor of Philosophy

Supervisor: Professor Hiroakira Ono

School of Information Science

Japan Advanced Institute of Science and Technology

June 2004

Copyright (©) 2004 by Toshimasa Matsumoto

Abstract

This thesis investigates proof—search procedures for modal and temporal logics. A
proof—search procedure is a decision procedure which gives us a proof of a give formula if
it is provable. Main target of the present thesis is to give a proof-search procedure for the
temporal logic K;. Since the study of temporal logics is now applied to various branches
of computer science including software engineering and artificial intelligence, to find an
efficient proof—search procedure for K; will be an important problem as K; is the most
basic one among them. Our study will be a prototype of further studies for logicians who
utilize temporal logics for their researches.

In proof-search, we usually need to check whether there are repetitions of the same
sequents (or formula sets) or not in proofs. This is called loop—checkings. Naturally,
loop—checking causes inefficiency. The most desirable way of avoiding loop—checkings is
to introduce such a proof system that loops never occur in its proofs. In standard systems
for Ky, several kinds of loops will occur. To get a proof-search procedure for K¢, we begin
with finding one for each of modal logics S4, KB and K4B. For, the modal operator [
of each of these logics behaves like tense operators [F] and [P] in K¢. Our study goes

along as follows:

1. proof system for S4,
2. proof system for KB,
3. proof system for K4B,

4. proof system for K.

Techniques of getting loop—free proof systems for first three modal logics will be applied
to K¢, and thus we can get a loop—free proof for it. To avoid several kinds of loop, we
introduce an auxiliary modal operator Bl and histories, which are pairs of sets of [
formulas, to standard proof systems for S4, KB, K4B and K;. We will see that H
and histories enable us to avoid loop—checkings. Then, we show that our proof-search
procedure using each of these proof systems terminates eventually, and gives a loop—free
proof if our proof-search of a given sequent is successful.

On the other hand, when our proof-search procedure fails to find a proof of a given
formula, we will give a way of constructing a (finite) counter—-model for it. In order to
construct counter-models, we introduce finite Kripke frames called model graphs which
facilitate construction of counter-models. We can easily get a counter-model from a
model graph when we construct it. From this, both completeness and the finite model

property of each of these four systems follow.

Acknowledgments

I would like to express to my supervisor, Professor Hiroakira Ono of Japan Advanced
Institute of Science and Technology, my deepest gratitude for his kind guidance and

constant encouragement during this work.

I wish to express to my advisor in master’s course, Professor Yoshihito Toyama of
Tohoku University, my heartfelt gratitude for his many invaluable comments and sugges-
tions throughout this dissertation. It is no exaggeration to say that I owe what I am much
to Professor Toyama as well as Professor Ono.

I am really grateful to Professor Yuichi Komori of Chiba University, and Professor
Atsushi Ohori, Research Professor Mizuhito Ogawa and Associate Professor Hajime Ishi-
hara of Japan Advanced Institute of Science and Technology for their useful comments
and informative suggestions.

I am sincerely thankful for all members of Computational Logic Laboratory in Japan

Advanced Institute of Science and Technology.

Finally, I express my sincerest thanks and appreciation to Professor Michio Takano of
Niigata University, who read the first draft of this dissertation carefully and pointed out
some flaws in original proofs of completeness of our sequent systems. I could not have

finished this dissertation without his invaluable remarks and suggestions.

i

Contents

Abstract i
Acknowledgments ii
1 Introduction 1
1.1 Backgrounds 1
1.2 Outline of this thesis 2

2 Preliminaries 5
2.1 Modallogics o 5t
2.2 Kripke semantics 6
2.3 Tableau system 7
2.4 Sequent system 9
24.1 Wang'ssystem L 11

2.5 Proof-search procedure based on tableau systems and sequent systems . . 13
2.6 Construction of the finite model property 13

3 Proof-search procedure for S4 based on tableau system 14
3.1 Tableau system for S4 14
3.2 Loop—checking 15
3.3 A modal tableau system for S4 L. 15
3.4 Completeness theorem of CS4+ 18
3.5 Conclusion 23
3.6 Note e 23

4 Proof-search procedures for KB and K4B based on sequent system 24

4.1
4.2

Sequent systems for KBand K4B 24
A sequent system for KB oo L oo 26
421 SKB. . . . 26
4.2.2 Model graphsfor SKB oo oo 26
4.2.3 Completenessof SKB o000 32
4.2.4 Conversion of proofsof SKB 34

il

4.3 Asequent system for K4B o 36

431 SK4AB 37
4.3.2 Model graphs for SK4B o000 39
4.3.3 Completeness of SK4B 40
4.3.4 Conversion of proofsof SK4B 43
4.4 Conclusion 45
4.5 Note 45

5 Termination and upper bounds of proof—search procedures for K4, KB, K4B
and S4 47
5.1 Preliminaries e 47

5.2 Termination and the upper bound of Mouri’s sequent system for K4 49

5.2.1 Mouri’s sequent system for K4 50
5.2.2 Termination of Mouri’s sequent system for K4 51
5.2.3 Upper bound of Mouri’s sequent system for K4 52
5.3 Termination and the upper bound of SKB 55
5.3.1 Terminationof SKBo o0 25
5.3.2 Upper bound of SKB o7
5.4 Termination and the upper bound of SK4B 58
5.4.1 Terminationof SK4B 58
5.4.2 Upperbound of SK4B 59
5.5 Termination and the upper bound of CS4+. 60
5.5.1 Termination of CS4+ 60
5.5.2 Upper bound of CS4+ 62
5.6 Conclusion 62
0.7 Note o 62

6 Proof-search procedure for temporal logic K; based on sequent system 63

6.1 Temporal logic Ky 63
6.2 Sequent systems for K¢ Lo 65
6.3 Our sequent system SK¢ for Ky 65
6.4 Model graph for SKyo 72
6.5 Completeness of SK¢ 74
6.6 Termination of SKy. 79
6.7 Conclusion 81
6.8 Note 82
7 Related works 83

iv

8 Conclusions and further work 85

8.1 Conclusion 85
8.2 Further work 86
References 91
Publications 92
A Implementation of our proof-search procedure 93
A1 Introduction 93
A2 Syntax 94
A.3 Hello, good-bye 96
A3.1 Startingup 96

A3.2 Quittingo 96

A4 Proof-search 96
A.4.1 Selecting logic 96

A.4.2 Sampledialogue 97

A5 Source codes 98
A5l sources.cm e e 98

A5.2 load.sml 99

Ab.3 utility.sml 100

A5.4 formula.sml 101

A5.5 tableau_tree.sml 103

A5.6 tableau_prover.sml 105

AbB.7T example.sml 111

B Theorem provers 112
B.1 The Logics Workbencho 112
B.2 The Stanford Temporal Prover 112
B.3 X window system Proof Editor 113

Chapter 1

Introduction

1.1 Backgrounds

This thesis investigates loop—free proof-search procedures for modal and temporal logics.
We approach modal and temporal logics proof-theoretically. Proof-theory is a study
which clarifies syntactical properties of logics, in particular, properties of proofs, and is
discussed on systems formalizing logics, for example tableau systems, sequent systems
and so on. By analyzing them, it is possible to show important properties such as the
subformula property, cut elimination theorem, Craig’s interpolation theorem and so on.

In such a syntactical approach to logics, as is often the case, we need to show whether
a given formula is provable or not. However, most theorem provers tell only whether a
given formula is provable or not. It does not suffice for our approach to logics. When
a given formula is provable, we need a proof which shows us why it is provable. That
is why we desire a procedure which gives us a proof of a provable formula. We call
such a procedure a proof-search procedure, that is a decision procedure which decides
whether a given formula is provable or not, and gives us a proof of it when it is provable.
In addition, when a proof-search procedure always returns proofs in which there is no
repetition, it is called loop—free. On the other hand, when a given formula is not provable,
we need a counter-model which shows us why it is not provable. Such a construction of
counter—-models is also desirable.

Our first goal is to give loop—free proof-search procedures for some of modal and
temporal logic. In proof-search, from computational point of view, we definitely need
techniques to reduce search space. For example, we have to avoid repetitions in proofs,
we have to check whether there are loops in proof—search or not. When cut rule is applied
in proof-search, since there are infinite possibility of cut formulas, we need to restrict
them strictly. That is why we are required to reduce the number of candidates for cut
formula, otherwise applications of cut rule would cause a big inefficiency.

Main target of this thesis is to give a loop—free proof—search procedure for a temporal

logic K. For, it would be quite convenient to have such a procedure, since Ky is very

useful for formalizing various notions which appear in computer science, and is applied
by combining with other modal logics. The temporal logic Ky is a bimodal logic in which
there are the future operator [F| and the past operator [P] as modal operators. For
our purpose, we first discuss proof-search procedures for monomodal logics S4, KB and
K4B, since the modal operator [J of these logics behaves like [F] and [P]. We note here
that cut elimination theorem does not hold for the standard sequent systems for KB and
K4B.

Our second goal is to give a way of constructing a counter-model for a given formula
when it is not provable. To do that, we use model graphs which are introduced in tableau
system. In tableau systems, completeness is shown via model graphs, that facilitate con-
structing counter—-models. We will apply model graphs to show completeness of sequent

systems.

1.2 Outline of this thesis

This thesis discusses proof—search procedures for tableau systems and Gentzen’s sequent
systems of modal and temporal logics. To facilitate introducing a proof-search procedure
for Ky, we first discuss proof—search procedure for S4, KB and K4B. The techniques
used in our proof systems for S4, KB and K4B will be applied to a proof system for K.

Chapter 2 reviews propositional modal logics, in particular, S4, KB, and K4B. Kripke
semantics, tableau systems and sequent systems are introduced for them in Section 2.2,
Section 2.3 and Section 2.4, respectively. In Section 2.5, we show what soundness and
completeness mean from point of view of proof-search procedures . In Section 2.6, it will

be clear that our proving completeness construct the finite model property.

Chapter 3 is devoted to a study of proof-search procedure for the modal logic S4 based
on tableau system. In Section 3.1, a tableau system for S4 is introduced. Then, some
deficiency of the system is pointed out, if we use it for proof-search. In Section 3.2, the
notion of histories is introduced in order to avoid loops In Section 3.3, we will introduce
a tableau system, called CS4+, for S4 with history. In Section 3.4, model graphs will be
defined for CS4+. Model graphs will be used as a tool to show completeness of CS4+-.

In Chapter 4, we discuss monomodal logics KB and K4B. In Section 4.1, standard
sequent systems for KB and K4B will be introduced. It is known that though cut
elimination theorem does not hold for them, they enjoy the subformula property. In
Section 4.2, a sequent system, called SKB, for KB will be introduced, and completeness
of SKB will be shown via model graphs. In addition, a sequent system, called SK4B,
for K4B will be introduced, and completeness of SK4B will be shown via model graphs
in Section 4.3. We will see that each cut formula in each proof of SKB and SK4B can

be restricted to one among finitely many formulas of special form.

Chapter 5 discusses termination and upper bound of proof—search procedure. Termi-
nation is one of important property for proof-search procedures. Here, the upper bound
of proof—search procedure means the total number of applications of rules in proof-search
in the worst case. In Section 5.2, we will discuss termination and the upper bound of
the proof—search procedure determined by Mouri’s sequent system for K4. In Section 5.3
and Section 5.4, termination and upper bounds of proof—search procedures for SKB and
SK4B will be discussed. In Section 5.5, we will show that the proof-search procedure de-
termined by CS4+ terminate always, and the upper bound of the proof—search procedure

will be discussed.

Chapter 6 puts all techniques obtained in previous chapters to trial for introducing
a loop—free sequent system for K;. This is a new approach to K;. In Section 6.1, tem-
poral logic K¢ and its Kripke semantics are introduced. In Section 6.2, we introduce a
sequent systems for K, which enjoy the subformula property. However, there are infinite
possibilities of cut formula in proofs of the sequent system. In Section 6.3, a sequent
system, called SKy, for K¢ will be introduced. Each cut formula is a proof of SK; can
be restricted to one among finitely many formulas of special form. In order to show the
completeness, we introduce modal graphs for SK; in Section 6.4. In Section 6.5, we show
completeness of SK; by giving a way of construction of counter-models via modal graph.
In Section 6.6, termination of the proof-search procedure determined by SKj; is shown

explicitly. In Section 6.7, some concluding remarks will be given.

The dependencies among chapters are given by the following diagram :

Chapter 2

A 4 y A4

Chapter 3 Chapter 4 Chapter 6

Chapter 5

Our study goes along the following arrows in Figure 1.2.

Modal Temporal
Tableau system S4 Chapter 3
g KB K4B Ky
equent systems
Chapter 4 Chapter 4 Chapter 6
Figure 1.1: Outline of this thesis

Chapter 2

Preliminaries

In this chapter, we introduce notations and basic notions of modal logics, and give a brief
survey. In Section 2.1, we will give a brief survey for modal logics, in particular ones which
we discuss in our thesis. In Section 2.2, Kripke semantics will be given. In Section 2.3 and
Section 2.4, we will introduce tableau systems and sequent systems. In Section 2.5, we
will explain how tableau systems and sequent systems gives us proof-search procedures.
In Section 2.6, it will be clarified that our proof of completeness gives us the finite model

property and also decidability.

2.1 Modal logics

The language £ of propositional modal logic consists of propositional variables, denoted
by p, q etc. and logical connectives A, V, D, = and [J. Formulas are defined in the usual
way and denoted by A, B etc., Sometimes, we use propositional variables and formulas
with subscripts. A literal is either an atomic formula (a positive literal) or negation of
an atomic formula (a negative literal). A pair (p, —p) of literals of this form is said to be
complementary. Greek capital letters I', A, IT etc. denote finite (possibly empty) sets of
formulas. The notation OJI" denotes the set {{JA|A € I'}, and Sub(I") denotes the set of
all subformulas of all formula in I". For a set ' of formulas, |T'| denotes the cardinality of
r.

A set L of formulas is a modal logic, if the following conditions are satisfied:

e all tautologies belong to L,
e if Aand A D B € L, then B € L (modus ponens), and

e if A€ L, then A € L (rule of necessitation).

Let L a modal logic and Q be a set of formulas. The symbol K denotes the least model

logic containing the following axiom

K : 0O(A > B) > (0OA>OB).

5

Any modal logic with the axiom K is called a normal modal logic. Historical names for

some well-known axiom schemes are

T : OADA,
4 : OADOOA,
B : ADUOOA,

where the symbol ¢ is the abbreviation of =[J—. In our thesis, the following modal logics
can be discussed. Here, KU {X,Y} for axiom schemes X,Y denotes the smallest modal

logic containing K and axiom schemes X, Y.

KT = K& ({T},
K4 = Ko {4},
S4 = Ko ({T,4},
KB = K& {B},

K4B = K& {4,B}.

2.2 Kripke semantics

Kripke semantics is an important semantics for modal logics. It is defined by using Kripke
frames, where a Kripke frame is a pair (W, R) such that W is a non-empty set and R is
a binary relation on W. Sometimes, each member of W is called a possible world and
R is called an accessibility relation. We say that a possible world w' is accessible from a
possible world w if and only if wRw’. Let (W, R) be a Kripke frame and V' be a mapping
from propositional variables to 2", called a valuation on (W, R). A Kripke model is a
triple (W, R, V). For a given Kripke model (W, R, V'), a relation = between an element
of W and a formula is defined inductively as follows:

wEp iff weV(p),

wEAANB iff wEAandw B,
wEAVB iff wEAorwfE B,

wkEADB iff wpE Aimpliesw E B,
wE—A iff wlE A,

w = OA iff for all w', wRw' implies w' = A.

The relation = is defined uniquely by valuation V. Therefore, = and (W, R, =) are
also called a valuation and a Kripke model, respectively, as far as there is no confusion.
If wE A we say that A is true at w or w makes A true. A formula A is satisfiable in a
model (W, R, =) if there exists some w € W such that w = A. A formula A is true in a
model (W, R, =), written as = A, if w = A for any w € W. A formula A is satisfiable in
a frame (W, R) if there exists some valuation = and some world w € W such that w | A.
A formula A is valid in a frame (W, R) if, for any valuation = and any w € W, w | A.

Suppose that (W, R) is a frame. Then, the binary relation R satisfies one of the
following first—order conditions if and only if the axiom schemes corresponding the con-
dition is valid in (W, R). The study of correspondence of this kind between conditions on

accessibility relations and axiom schemes is called a corresponding theory.

T : Yu(uRu) (reflexive)
4 : VYuVoVw(uRv and vRw imply uRw) (transitive)
B : VuVu(uRv implies vRu) (symmetric)

For a logic L, every frame with the conditions corresponding to the axioms is called L—
frame. For example, a frame (W, R) is called S4—frame if R is reflexive and transitive.
For a modal (W, R, =) we say it is an L-model when (W, R) is L—frame. An L-model
(W, R,) is an L-model for I if there exists some w € W such that w = A for all A € T,
which is denoted w =T

For a given finite set I' and a formula A, we say that A is a logical consequence of ' in
L if, for every L-model (W, R, =) and for every w € W, w = I then w = A. We write
[' Er A if A is a logical consequence of I' in L. It is clear that the following proposition

holds from the definition of logical consequence.

Proposition 2.2.1 T' =, A iff T U{—=A} is L-unsatisfiable.

2.3 Tableau system

A tableau system consists of a set of tableau rules. Each tableau rule consists of a
numerator above the line and a (finite) list of denominator below the line. It is of the

following form, in general:

N
D1|D2||Dk
The denominators Dy, Dy, -, D, are separated by vertical bars. The numerator N is

a finite set of formulas and so is each denominator D;. We will introduce the tableau
system CPC for classical logic. Rules of CPC are given in Figure 2.1.

The punctuation “,” of numerator and denominator and the vertical bar “|” intuitively
mean “and” and “or”, respectively. The formula shown explicitly in the numerator of
each static rule is called the principal formula, and formulas shown explicitly in the
denominators of each static rule is called the side formulas. We note that each rule
decomposes its main formula except rule (f) into simpler formulas.

A tableau for T' is a finite upside—-down tree with the root I' each of whose nodes
carries a finite set of formulas. A tableau is constructed by repeated applications of
tableau rules. A tableau rule with numerator IV is applicable to a node carrying a set A

if A is an instance of N. When we want to test whether I' = A or not, we construct a

7

T, A A T,AAB
— (f) TAD (A)
LAVE LASB
T,A|T,B I,-A|TL,B
T, (A A B) T =(AV B)
roarp M r-a-p V)
ri-g (2 ra)

Figure 2.1: The tableau system CPC

tree whose root is I' U {=A} by repeated applications of tableau rules. The rule (f) is
meant to have priority over any other rule.

We say that the tableau system has the analytical superformula property if for any
finite set of formulas I' we can assign a finite set of formulas, which contains all formulas

that may appear in any tableau for T'.

Proposition 2.3.1 The tableau system CPC has the analytical superformula property.
That is, for any finite set of formulas T, we can assign a finite set T°PC* = Sub(T") U

=Sub(T) U {f}, which contains all formulas that may appear in any tableau for T.

A branch of a tableau is closed if its leaf node carries {f}, otherwise it is open. A
tableau is closed if all its branches are closed, otherwise it is open. A finite set I is
consistent if no tableau for I' is closed, otherwise I' is inconsistent. We write down I' = A
if ' U {—A} is inconsistent.

We say that a tableau rule (r) is invertible in CPC if there is a closed tableau for an in-
stance of the numerator N of (r) then there is a closed tableau for an appropriate instance
of each of the denominators D; of (r). For instance, (—A) is invertible if I', 7(A—B) has a
closed tableau then both I', = A and I', =B have closed tableaux. Note that the converse

holds always because of then rule (=A).
Proposition 2.3.2 Fach static rule of CPC s invertible in CPC.
Proof) Similarly to the proof in [10]. O

As for further information on tableau systems, see [10].

2.4 Sequent system

In this section, we introduce a Gentzen’s style sequent system LK for classical logic. Let
Greek capital letters I, A I, 3, © etc. be sequences (may be sets, possibly empty set) of
formulas. Any expression of the form I' — A is called a sequent, where the left hand side
I’ the antecedent and the right hand side A the succedent. Let Sy, Sy and S be sequents.
An inference rule is of the form either

S S1 5
S; or S

In the inference rule, S; and S, are called the upper sequents, and S the lower sequent.
In particular, S; and Sy are called the left and right upper sequent of the inference rule,
respectively. The sequent system LK for classical logic consists of initial sequents and
inference rules in Figure 2.2.

Inference rules (w —) and (— w) are called weakening rules, (¢ —) and (— c¢),
contraction rules, and (e —) and (— e), exchange rules. The formula A in cut rule (cut)
is called the cut formula of the rule. The formula shown explicitly in the lower sequent
of each rule is called the principal formula, and formulas shown explicitly in the upper
sequents of each rule is called the side formulas.

In a sequent system S, proofs of S and end sequent of the proof are defined as follows:

1. Each initial sequent is a proof of S, and the end sequent of the proof is itself.

2. Let P, and P, be proofs of § with the end sequents S; and Sy, respectively. If
Si Sy Sy

S or S

is one of the inference rules in S, then

Py P P
S or S

is a proof of S, and the end sequent is S. A sequent S is provable in S if there exists

a proof of § whose end sequent is S.

If a sequent S is provable in a system &, then it is often denoted by S = S. For a
formula A, A is said to be provable in a sequent system if the sequent — A is provable in
the sequent system.

Cut elimination theorem for a given sequent system S says that any sequent S which
is provable in § has a proof of S containing no applications of cut rule. Such a proof is
a called a cut—free proof. When cut elimination theorem holds for S, we say that S has

the cut elimination property.

initial sequent

A— A
inference rules
(1) structural rules
- A - A
AT oA @) FoA (W
AT — A r—-AA
AATSA) FSAAAY
T, A BT — A I = A A B,Y
T BATSA) rSAB Ay 9
—->AA AIll—X ;
T,1— A, S (cut)
(2) logical rules
AT = A (A =) B,I' - A (A =)
AANB,T = A ! AANB,T - A 2

r-LAA I'-AB A Al'-A BT —A y
r>aarg N T averoa V7

- AA
r—-AAVBEB

r—-AB
'—-AAVBEB

(—> \/)1

(—> \/)2

r-AA BII—=% NA—AB

AS5BTIoAy O Toaa58)
r—-AA AT —- A
AT A7) ro A7)

Figure 2.2: The sequent system LK

10

Theorem 2.4.1 (cut elimination theorem for LK) The system LK has the cut elim-
wnation property. In fact, every proof in LK can be translated, without changing the end

sequent, into a cut—free one.

As a corollary of Theorem 2.4.1, the following can be shown by checking all inference

rules except cut rule (cut).

Corollary 2.4.2 (subformula property) In any cut—free proof of a sequent S in LK,

only subformulas of formulas in S appear.

2.4.1 Wang’s system

In 1963, Wang introduced alternative system for classical logic. Wang’s system is given in
Figure 2.3. Here, each side of sequent consists of a set of formulas. By this, we do not need
exchange rules. Weakening rules are incorporated into initial sequents. Also, contraction
rules are incorporated implicitly into logical rules. Thus, Wang’s system has no structural
rules. As we can see, each rule decomposes its principal formula into simper formulas.
That is why we can say that Wang’s system is suitable for implementing proof-search

procedure.

initial sequent
Lip—p A

inference rules

IA,B— A A r-AA I'>AB A

TArBEoSA N7 r>AaArg N
NNA—-A I''B— A v - AAB v

rAvBoA V) rSaAvE (V)
r-AA I'NB—-A NA—AB

rAisB=Aa 7 T5aa-5p (72

I —-AA LA— A

F Ao A) TS A A7)

Figure 2.3: Wang’s system

Proposition 2.4.3 Fach rule of Wang’s system is invertible.

11

Proof) Suppose that I' — A which is (an instance of) the lower sequent of (r) in Wang’s
system, where (r) is any of the static rules. We have to prove that there are proofs of
corresponding (instance of) the upper sequents of (r) in Wang’s system. By induction on
the height of the given proof for I' — A.

Base Case The base case for the induction step is when the height of the given proof
for I' — A is 1, that is there is some propositional variable p such that p € I' and p € A.
The corresponding upper sequents of () must also contain p in both sides of them since p
can not be the principal formula of (7). Therefore, there are proofs of instances of upper

sequents.

Induction Step The induction hypothesis is that lemma holds for all proofs of height

less that n. Suppose that the given proof of I' — A is of the height n. We show only the
case (A —), as other cases can be proved similarly.

When I' — A is (an instance of) the lower sequent of (A —), I' — A is of the form
I, ANB — A. We will provide a proof of the upper sequent I, A, B — A. Consider the
application of (r') which is the lowest application in the given proof of I'; AA B — A.

1. If AA B is not the principal formula C of ('), the each of upper sequent(s) of (r')
is of the form II, AA B — X, since C' must be some formula from I or A. Because
there is a proof of I, A A B — A, there must exist a proof of each I[I, AANB — X
of the height less than n. Then, by the induction hypothesis, there is a proof if the
height less than n for each II, A, B — X --- (1).

If we now start a separate proof of I, A, B — A and use (r') with the same principal
formula C' € T" U A, we obtain II, A A B — ¥ as the upper sequent(s) of (r'). By
(1), there is a proof of IV, A, B — A as desired.

2. If A A B is the principal formula C of (r’) then (') is (A —). Ounly one upper
sequent of the form IV, A A B — A and there is clearly a proof of it. This is the

proof we have to show. O

In this thesis, tableau or sequent systems are used to give proof-search procedures.
As long as we use each of them as such a tool, there seem to be no substantial difference
between them. Actually, each of rules of the tableau systems can be obtained from a rule
of the sequent systems by moving all formulas in the right hand side into the left hand
side with —. For instance, (—A) of CPC can be obtained from (— A) of Wang’s system

as follows:

r-AA I'->A,B A r-A-A— TI,-A-B— F,ﬁ(A/\B)()
r>Aaarg N & T,-A,~(AAB) — —~ T,-A|T,-B

12

where =A denotes the set {=A | A € A}. Recall that the direction of proof-search
by tableau system proceeds top down, on the other hand, that by sequent system does
bottom up.

2.5 Proof-search procedure based on tableau systems

and sequent systems

We give proof-search procedures based on tableau system and sequent system. To do
that, we are required to show soundness, completeness of them and also termination of
proof—search procedures determined by them.

e Soundness means that our proof-search procedures gives us only correct proofs.
e Completeness means that our proof-search procedures gives us all correct proofs.

e Termination means that our proof-search procedures terminates for all formulas.

2.6 Construction of the finite model property

It is quite useful to obtain a finite model in which a given unprovable formula is false. A

logic L has the finite model property if the following condition is satisfied,
if A ¢ L, then there is a finite L-model such that = A.

A logic L is finitely aziomatizable if L is defined by adding finite axiom schemes to the logic
K. If there exists a finite procedure which decides whether a given formula is provable in
L or not, L is said to be decidable, and such a procedure is called decision procedure. By
the Harrop’s theorem (see [8] for the details),

if a finitely axiomatizable logic has the finite model property, then it is decidable.

Therefore, we can say that the finite model property of finite axiomatizable logic L leads
to the decidability of a logic L. In Chapter 3, Chapter 4 and Chapter 6, we will show
a way of giving counter-models. That brings us the finite model property, completeness
and decidability for S4, KB, K4B and K; simultaneously.

13

Chapter 3

Proof—search procedure for S4 based

on tableau system

We will give an proof-search procedure for S4 based on the tableau system introduced in

this chapter.

3.1 Tableau system for S4

In this section, we will discuss modal tableau systems for S4. Usually the modal tableau
systems for S4 has the following rules called (7) and (S4):

r,04

T, 0A, -0A
T,04, A

(T) A, A

(54)

In this application of (T), the denominator I',[JA, A is not always simpler than the
numerator I',JA. Therefore, (T') may be applicable once again for this JA. Moreover,
alternating applications of (7') and (S4) may cause redundant repeated applications. It
arises from that A in numerator of (S4) remains in its denominator. Any loop—checking
for avoiding such redundant repeated applications of (7') and (S4) would obviously cause
a big inefficiency.

The decision procedure for S4 have been proposed [13, 14, 11, 23]. Strictly speaking,
they give proof-search procedures. However, the procedure of [13, 14] holds only for
formulas in a certain normal form. That is why we are interested in Heuerding, Seyfried
and Zimmermann’s system [11] and Mouri’s one [23]. In order to store the necessary
information, the notion called histories was introduced in [11]. In [23], an auxiliary modal
operator [22] and histories have been applied to sequent systems. The procedure in [23] is
not only a proof—search procedure but also a procedure of construction of counter—-models.

In our work, by introducing an auxiliary modal operator and histories to the ordinary
modal tableau system for S4, we give a proof-search procedure for S4, which returns not

only a closed tableau as its output when a given formula is a theorem of S4, but also gives

14

us a counter—model for it when it is not the case. Our work is the continuation of Mouri’s
work in [23]. We show completeness by giving a way to construct of counter—models via
model graphs introduced later. It is easily seen that our proof of completeness is simpler

than Mouri’s proof of completeness.

3.2 Loop——checking

There are two kinds of loops that will occur in proofs of the tableau systems for S4.

Examples are given as follows:

I 04 C-0A, <[IA, - A
.04, A g; 014, A E‘;;l)
LO4d g OOA-OAA o)

Usually, loop—checking cause a big inefficiency in the proof—search, for, in each time
when a new formula set is generated, we have to check whether this is generated already
in a tableau or not. To do so, we need to compare it with every formula sets generated so

far. To avoid this kind of loop checking, we will introduce the following two techniques:

1. In the left example above, a loop is caused by redundant repeated applications of
(T). In fact, a single application of (T) suffices for each formula of the form [JA.
In order to avoid this kind of loop, we introduce an auxiliary modal operator M,
which has the same meaning as [but plays a different syntactical role. That is,
WA means that the rule (7) is already applied to this CJA.

2. While, in the right example, a loop is caused by an alternate application of (7') and
(S4). We can see that a O-formula occurs [1-CJA in both denominator and numer-
ator of both (S4) and (7). To avoid loops of this kind, we introduce tableaux with
histories, which will be defined at the beginning of next section. Once [-formula
appear, they never disappear by any application of (S4) and (7). In addition, a
formula of the form —[JA is fixed in every application of (S4). That is, as long as
new [J-formulas never appear, we do not need to apply (S4) by fixing same formula

of the form —[JA. This is an intuitive meaning of histories.

3.3 A modal tableau system for S4

Our tableau rules are different from the standard tableau rules only in the following point.
Each of numerators and denominators also carries a pair of sets of formulas (OIT|-0OX).
Any pair (OII|-0%) is called a history. A CS4+-tableau for a finite set with history
['(OI|-0OX) is a finite tree with the root I'(OII|-0OX) each of whose nodes carries a finite

15

set of formulas and a history. A tableau is constructed by repeated applications of tableau

rules.
The tableau rules of CS4+ are given in Figure 3.1. In (S4+), and (S4+),; we suppose
that {p1,---,pn} and {—q1, -+, 7¢n} do not contain any complementary pair. We call

each of (A), (V), (D), (=A), (=V), (= D), (=) and (T+) a static rule, and each of (S4+);
and (S4+); a transitional rule. The upper sequent of (S4+), and (S4+), is taken ’or’-
branch, though it should be understand as ’and’-branch in other rules. It means that if
one of the upper sequent of (S4+), and (S4+), is provable then the lower sequent of it is
provable. In order to emphasize ’or’~branch, double lines are used in (S4+), and (S4+);.
The idea of using 'or’-branch was introduced in Pinto and Dyckhoff [29].

Note that histories change only by the application of transitional rules. In proof-
search of CS4+, we have only to check history only in each application of (S4+), and
(S4+);. In other words, CS4+ cuts down the number of loop—checking.

Theorem 3.3.1 The modal tableau system CS4+ has the analytical superformula prop-
erty. For a given formula set T', we can put IS4 = Sub(l') U {—=A|A € Sub(l')} U
{WA|OA € Sub()} U{f}.

Lemma 3.3.2 There are only a finite number of CS4+—tableaux for a finite set T'.

Proof) Since CS4+ has the analytical superformula property, it is clear. O

Now, to see whether I' |=g4 A or not, we apply tableau rules to (TU{=A}){e|e). As we
see, the tableau procedure is a refutation procedure. From the form of (S4+), or (S4+)s,
it is easily seen that we can see that we can apply (S4+); or (S4+), only after static
rules are applied as many time as possible. In fact, as is discussed in Section 5.5, to show
the termination of proof-search of CS4+, it is essential in which order rules of CS4+ are
applied. By checking histories in every application of (S4+); and (S4+);, we can see
whether same formula set appear so far or not in a tableau. In other words, histories tells
us whether a loop is caused or not, hence we can avoid any loop. We note that same
formula set with history never appear on each branch from the root to any node in every

CS4-+-tableau for any given finite set I'.

Example 1 The left tableau is a closed CS4+-tableau for —(Cp D OOp), while the right
one is an open CS4+—tableau for =—JA, where A denotes —(Op V O—p).

In the right tableau below, (A, =[dp and —[-p are included in the lowest history.
That is, since neither (S4+); nor (S4+), is applicable, proof-search stops. Even if we
apply (S4+); or (S4+), by fixing any of =[p and —=O-p, formula sets generated so far

appear again.

16

T, p, ~p(OM|-0%) L, AABON-0%)
S () T, A, B(OMN|-0%))

I, Av B(OI|-05) I, A > B{ON|-0x)
(V) ()
I, A[OI-0x) | T, B(O[-0x) T, -A(O0-0x) | T, B{0Om|-0x)

T, =(A A B)(OI|-05) () F,—|(AVB)<DH|—|[]E)(v
T, -AON-0%) | T, -~B(00-0%) T,-A,-B(OO-0%)

I, —|(A D) B)<DH|—|DE> 5 r, —|—|A<DH|—|DE>
T, A, -B({OI|-05) (=2) T, A(OI|-0%) (=)

I, JA(OI|-05)
I, WA, A(OI[-0%)

(T'+)

.Fa _'DAla T 7_'|:|Ala _'DAapla 5y Pmy G, 00 7_'QTL<|:|F|_'|:|E>
Or, A, (O |-0%, =06) | - --| 0T, —A/(0r|-0x, -06)

(S4+)s

(-06 = -04,,--- ,-04;, -06 N -0% = §, ~0A C -0

.Fa _'DAla T 7_'|:|Alap17 y Pmy, TG, 7_'Qn<|:]H|_'DE>
O, A, (O0|-06) | ---| O, = A, (00| -06)

(S4+),

(-06 = -0A4,,---,-04,, OII ¢ Or)

Figure 3.1: Tableau system CS4+

17

——0A (ele)

OA (ele)
WA A (ele)
WA, -Op, -O-p (ele)
0A, —p (OA|-Op)
WA, A —p (OA|-0p)

WA, -Op, -O-p, ~p (OA|-Op)
DA, —=—p (HA|-O-p, -0Op)
DA, p (0A|-0O-p, -Op)
WA, A p (OA|-0O-p, -0Op)
WA, -Op, ~O-p, p (OA[=O-p, =Op)

—(0p D O0p) (ele)
Op, -00p (ele)
Wy, p, ~0O0p (ele)

Op, =Op (Cp[-000p)
Hp, p, ~Op (Op|-00p)
Op, =p (Op|-0p, -000p)
Mp, p, —p (Cp|—-Cp, -00p)
f

3.4 Completeness theorem of CS4-+

In this section, we show soundness and completeness of CS4+. We say that CS4+ is
sound with respect to S4—frames if, for any I" and A, there is a closed CS4+—tableau for
' U {—A} then any S4-model that makes I' true at any possible world w must make A
true at w. We say that CS4+ is complete with respect to S4—frames if, for any I and A,
every S4-model that makes I' true at any possible world w also makes A true at w, then
some CS4-+-tableau for I' U {—A} is closed. We have to define the semantics of A in
Kripke frames. For a given Kripke model (W, R, |=),

wERA iff wpEDOA
This means that B has the same semantics as 0.

Theorem 3.4.1 (soundness) The modal tableau system CS4+ is sound with respect to
S4—frames.

Proof) The soundness of CS4+ is equivalent to the condition that if there is a closed
CS4+-tableau for ' U {—A} then 'U {—A} is S4-unsatisfiable. But, the latter is shown
by using induction on the length of CS4+—tableau. O

Next, we show the completeness of CS4+-. Taking the contraposition, it suffices to that
if there is no closed CS4+-tableau for I'U{—=A} then there is an S4-model for I'U {—A}.

To show completeness, we need some machinery.
Lemma 3.4.2 FEach static rule of CS4+ 1is invertible in CS4+.

Proof) Similarly to the proof in [10]. O

Definition 3.4.3 A finite set I' is closed with respect to a tableau rule if whenever
(an instance of) the numerator of the rule is in T', so is (a corresponding instance of) at

least one of the denominators of the rule.

18

Definition 3.4.4 A finite set I' is CS4+-saturated if it is CS4+—consistent and closed
with respect to every static rule of CS4+.

Lemma 3.4.5 For a each finite CS4+-consistent [' there is an effective procedure for
constructing a finite CS4+-saturated I'* with I C I'* C IS4+,

Proof) Similarly to the proof in [10]. O

As far as there is no confusion, we call this process just saturation. Such sets generated

by saturation are called downward saturated sets in [12].

Definition 3.4.6 (model graph) Let W be a nonempty set and R be a binary relation
on W, that is R C WtimesW . Then, an S4-model graph for a finite set of formulas T is
a finite S4—frame (W, R) such that all w(COI|-O%) € W and every w is CS4+-saturated
set with w C T°54* gnd

1. T C wy for some wo(Olly|-O%g) € W,

2. if "0A € w; then there exists some w;(0IL;|-0%;) € W with

As long as there is no confusion, we write down S4-model graph just as model graph. It
remains to construct a model for I' from model graph for I'. By the following lemma, we

can obtain a model immediately from a model graph.

Lemma 3.4.7 (satisfiability lemma) If (W, R) is a model graph for a finite set T" then

there exists an model for T.

Proof) Similarly to the proof in [10]. Let I" be CS4+—consistent set and w(OII|-0O%) €
W. For any propositional variable p, we define a valuation as follows: w(OII|-0O%) = p
iff p € w. Then, we show

1. A € w implies w(OII|-0O%) = A,
2. = A € w implies w(OII|-0OX) = A
by using simultaneous induction. 0

Our completeness proof is based on Goré’s in [10]. The proof is based on Goré [10].
Recall the definition of the completeness of CS4+4. We prove the contraposition. That is,
we assume that there is no CS4+—tableau for 'U{—A}. Then, there are open tableaux for
IF'Uu{—A}. We pick and choose formula sets with history from each of them. The formula
set with history is used as possible worlds to construct an S4-model M for I' U {—=A}.

19

The model M is deliberately constructed so as to contain a possible world wqy such that
wo E T U{=A}. Hence we demonstrate by construction that I" g4 A. That is, proving
completeness boils down to the following: if there is no closed CS4+—tableau for TU{—-A}
then there is an S4-model for I' U {=A} on an S4-frame (W, R).

As we have stated above, we shall associate sets of formulas with possible worlds. In
our completeness proof of CS4+, the difference with Goré’s method is that we adopt a set
of formulas with history II{{13|-0Q) as a possible world. As we have stated previously,
proving completeness boils down to the following: if there is no closed CS4+-tableau for
' U {—A} then there is an S4-model for I' U {=A} on an S4-frame. Now, we give the
sketch of completeness proof of CS4+. It goes as follows:

1. Suppose I' Hesqy A.

2. Create a CS4+-saturated (I' U {—A})® from I U {—A} (By Lemma 3.4.5) and put
wo (Ol |-0O%0) = (C U {=A})* (ele).

3. Construct a finite model graph for I' U {—=A} (By Theorem 3.4.8).
4. Construct an S4-model for ' U {=A} (By Lemma 3.4.7).

5. Thus, I'U {—A} is S4-satisfiable, hence T" j£g4 A.
The following property holds for histories.

Remark 1 Let I" be of the form {p,--- ,pn, 2q1, -+, 2Gm, DA, --- ,-0A;} and
(' U MA)(OI|-0X%) be any node of a CS4+-tableaux. Then, OII C OA holds.

Proof) Clear from how to update histories by applications of rules of CS4+. O

Theorem 3.4.8 (completeness) IfT is a finite set of formulas and is CS4+—consistent
then there is an S4—model for I' on a finite S4—frame.

Proof) We give a way of constructing a finite model graph (W, R) for I'. The first
step is to create a CS4+-saturated I'* from I' with I' C I'* C T'°S4t*. We can create
I'* by Lemma 3.4.5. Put wy(OIly|-0%,) = T'*(ele), which is a possible world of W,
and add wo(OIly|-0%p) to W. We construct a model graph for I based on the node
wo (M| —~%0) as follows:

1. If no formula of the form —=JA occurs in wy then ({wy(ele) }, {(wo(e|e), wo(ele))}) is
the desired model graph for I" since this is a S4-frame and satisfies conditions of

model graphs.

20

2. Otherwise, we give show how to define the immediate successors of any wy (I |-O%) €

W. Do the following as many times as possible:

If no formula of the form —[JA occurs in wy then then we do not create any successor
of wg. Otherwise, let Oy = {4, Ay, .-+, A;} be the set of all formulas such that
—B € w, and =B ¢ wy. Since wy is CS4+-—consistent, MA, U =[O, C w; also
must be CS4+-—consistent. We have two cases by Remark 1.

(a) If OII, C OAy, apply (S4+), to (BA, U -006y) (O, |-0%) with each =04,
chosen, and we can obtain (OA, U {=A;})(0A,|-06y). Put

Wi (O | ~O%;) = (OA, U {=A4;})*(0A,|-00y).
Then, add wy; (O |70O%%;) to W and put
(we (O, |[2O%%)) R(wp; (O g | 20X)).
Here, let OAg; = {OB|MB € wy;}. In addition, if OA, = OAg;, put
(Wi (O | =04)) R(wy (O | -0O%)).

(b) If OII, = OAy, we can write BA, U -0, as WA, U -0, U =€y, where
-0, = -0r, u-0Q,, -0, N =02, = 0 and —0Q, C —O%,. We have two

cases.

i If _||:|Fk 7£ @, apply (54+)s to (.AkUﬁDFkU_'DQk)G:‘HH_'DZk% and we
can obtain (A, U {—A;})(0O1I;|-0%, -OC). Similarly to the previous
case, below.

ii. Otherwise, do nothing. In this case, wy(CII;|-[%) is an end node of the
model graph.

Next, we show that this construction terminates. Since CS4+ has the analytical

superformula property, we can express the set of all formulas in any CS4+-tableau for I'
as [¢S4+*_ For each node w(OI|-0X), we define the degree ndeg(w(OII|-0X)) € N? as

follows:
ndeg(w(OI|-0OL)) = (|04 — |OI01|, |T54| — |-0%)).

We note that [[¢S4+*| — |OI1], [T°54+*| — |=0X| > 1. We define a lexicographic order <

over pairs of positive integers as follows:

(r1,29) <€ (y1,92) iff 1 <wyp or (x; =1y and xe < ys).

21

Every successor of a node w{{JI1|-Y) is generated by an application of (S4+); or (S4+),
after CS4+—saturation. We can see (S4+); strictly decreases |[°S4+*|—|OI1|. On the other
hand, (S4+), leaves |[['°S4+*|—|OII| unchanged but strictly decreases |T¢S4+*|—|-0%|. We
note that the CS4+-saturation does not increase ndeg(w(CI|-X)). Hence, immediate
successors are finite, that is this construction terminates.

Finally, the set W consisting of all the nodes created in this process and take R* as
the reflexive and transitive closure of R. The construction shows that (W, R*) is a model
graph for I'. Thus, by Lemma 3.4.7, we can obtain an S4-model for I" with the root
wo(€le). O

Our completeness proof of CS4+ actually gives a way of constructing a counter-models
for S4 when the proof—search fails. Therefore, we can say that the procedure determined
by CS4+ is not only a proof—search procedure for S4 but also a procedure of construction
of counter-models for S4 when the proof-search fails. In addition, S4-models constructed
by our completeness proof are always finite. It means that our completeness proof con-

structively shows that S4 has the finite model property.

Example 2 Now we give a counter-model for =(0—=(Cp vV O-p). The following figure is
a counter—model of S4 for ——=—=(Op V O-p), where A denotes =(Cp V O—p).

A WA

vy = {——-0A, WA, -Op, ~O-p}(ele)
v1 = {0A, BA, -Op, =O-p, ~p}{OA|-Op, -O-p)
Vg = {DA, .Aa _'Dpa _'D_'pa _'_'pap}<|:|A|_'|:|p7 _'D_'p>

vy P

Figure 3.2: A counter-model for =O—(0p v O-p)

In the completeness proof, it is obvious that clusters are generated by constructing model
graph and the clusters form a tree.

As a matter of fact, our proof of completeness tells us that it is possible to construct a
counter-model directly from open tableaux. Mouri has given a construction of counter—
model of S4, which is based on sequent system, directly from failed proof figure in [23].
The following is a failed proof figure for —-[JA in Mouri’s system:

22

WA, p — Op,0O-p (0A | Op,O-p)
HA — p,0Op,0-p (OA | Op,0O-p) WA, p —» Opv O-p (OA | Op,O-p)

HA - p,0p v O-p (OA | Op, O-p) WA A, p—» (OA | Op,0O-p)
WA, A — p (OA | Op,0O-p) 0A,p —» (OA | Op,O-p)
0A — p (OA | Op, O-p) 0A - —-p (OA | Op,O-p)

HA - Op,0-p (OA | €)
HA - OpvO-p (OA | €)
WA, A— (OA|e€)
OA — (e]| €)

— —0A (e | €)

Mouri’s method goes as follows: each part between double lines denotes a possible world.
If the number of formulas of the form B of the left hand side of the top sequent in the
upper part u is more than that of the left hand side of the top sequent in the lower part w,
put wRu. Otherwise, put wRu and uRw. Repeat this process. Finally, take the reflexive
and transitive closure of R. In this case, we can obtain the same counter—model as one

in Figure 3.2.

3.5 Conclusion

In this chapter, we gave a proof-search procedure determined by the tableau system
CS4+, and termination of it was also shown. Since the proof—search procedure needs loop—
checking only in each of applications of (S4+), and (S4+);, we can say that CS4+ cuts
down the number of loop—checking. This would contribute to technique for implementing

of proof-search procedure for S4.

3.6 Note

Tableau system is used to formulate some logics like classical logic, intuitionistic logic,
modal logics, substructural logics [28] and so on [9, 10]. Tableau became widely known
by the book [32] of Smullyan. Smullyan used tableaux as the basis of a general treatment
of classical logic. Then, the method is applied to several modal logics by Fitting [4] and
temporal logics by Rescher and Urquhart [30]. In [5], tableau systems for both normal
and non—normal modal logics extensively discussed.

The author gave a tableau system for KT in [20]. It avoids loops generated by redun-
dant applications of (T) by using an auxiliary modal operator. The technique of using an
extra modal operator as a blocked version of [] has previously been used in the work by
Hudelmaier [14].

The proof-search procedures for S4 have been proposed in [13, 14, 11, 23]. In [11],
Heuerding, Seyfried and Zimmermann have introduced histories. The procedure by Hudel-
maier [13, 14] holds only for formulas in a certain normal form. In [23], Mouri gave not
only a proof-search procedure for S4 but also a way of construction of counter-model of

S4, though it is hard to follow his proof of completeness.

23

Chapter 4

Proof—search procedures for KB and

K4B based on sequent system

In this chapter, we will give sequent systems for KB and K4B. Then, we will show their
completeness by giving a way of construction of counter-model as we gave in the previous
chapter. This chapter is organized as follows. In Section 4.2, we will introduce a sequent
system for KB, and will show its completeness via modal graph. In Section 4.3, similarly,
we will introduce a sequent system for K4B, and will show its completeness via modal

graph.

4.1 Sequent systems for KB and K4B

Throughout this section, I', ¥ etc. denote (finite, possibly empty) sequence of formulas.
Standard sequent systems for KB and K4B are obtained from LK by including the
following rules in LK, (— Op) in LK and (— Oypg) in LK, respectively:

F-004 o r,00 — 06,00, A
or 5 o.04 s Or - 00,0, A

(— O)use

The sequent system obtained from LK adding (— Op) is called GKB, and the sequent
system obtained from LK adding (— [ypg) is called GK4B. We note that in each of
GKB and GK4B the cut elimination theorem does not hold. This means that we can
not obtain the subformula property for these sequent systems from the cut elimination

theorem. For example, a sequent p — [1=[]—p has a proof in the following:

U=p — U-p
— O=p, 20-p =D
— —p,U=-0-p (cut) —p,p —
p — Dﬁ[]—lp

But it is not provable without any application of cut rule, Therefore, proof-search

procedures determined by GKB and GK4B would cause an inefficiency because there

24

are extremely many choices of cut formulas in proof-search. In [34], Takano succeeded
to introduce sequent systems for KB and K4B, which have the subformula property.
Takano’s sequent systems for KB and K4B, called KB* and K4B"* respectively, are
obtained by adding the following restrictions to each of the rules (cut),(— O)p and
(— O)une:

- AA All—-X

T A% (ac)
Ae Sub(TUITUAUY)

—-00A
orso.04 (7 Hs

0O C Sub(T'U {A})

LOr— 06,004
Or 500,004 - Dse
O C Sub(OT U QU {A})

We say that a cut rule is acceptable if the cut formula A is a subformula of a formula
occurring in the lower sequent, that is A € Sub(TUITUAUZX). Also, we say that (— O)p
and (— O)upr are acceptable, if 0O C Sub(I' U {A}) and OQ C Sub(l' U Q U {A}),

respectively.

Proposition 4.1.1 FEvery proof of GKB or GK4B can be transformed, without changing
the end sequent, into another proof such that every cut, (— O)p and (— O)4pr applied in
it, is acceptable. Thus, every proof of GKB or GK4B can be transformed into Takano’s
sequent system KB* or K4B*.

It is easy to see that KB* and K4B* have the subformula property. Moreover, another
sequent system for K4B is also given by adding the following rules to LK :

LOM—0AA AT = AOB
ar s oa.oa CPxe gar 5 anp (B

This system is also due to Takano. In [15], Kobayashi restricted cut formula to a
formula A such that [JA occurring in both sides of sequent of this sequent system for K4B,
by introducing an alternative cut rule, which restricts cut formula more strictly. That
contributes to techniques for reducing choices of cut formulas in proof-search. However,
Takano’s acceptable cut rule and Kobayashi’s cut rule have a certain deficiency in applying
them. In fact, cut rules can be applied repeatedly and redundantly, which will cause
inefficient proof-searches. To avoid them and to make proof-search procedures more
efficient, we are required to modify Takano’s sequent system for KB and K4B. To
construct counter—models, we use model graphs in proofs of completeness of our sequent
systems for KB and K4B.

25

4.2 A sequent system for KB

Now, we will introduce our a sequent system SKB for KB, which is based on Takano’s
sequent system for KB. (See [34].) In our sequent system SKB, the form of cut formulas
is restricted more strictly than that of Takano’s sequent system KB*. Actually, our
sequent system SKB gives us a proof-search procedure for KB which avoids redundant

applications of the cut rule.

4.2.1 SKB

In the following, we will introduce our sequent system for KB, called SKB, which has
auxiliary modal operators B and f. Initial sequents of SKB are sequents of the form
')A — A, A. Rules of inference of SKB are given in Figure 4.1. Both sides of sequent
are sets of formulas.

Here, BII and £ etc. denote the sets {MA|A € II} and {{A|A € Q}, respectively. In
(cut)r, and (cut)r, we assume that the sets A and = are disjoint, respectively. We call
(O) g transitional rule and call others static rules. We note that (— A), (V —) and (D—)
have three upper sequents. The upper sequents of ((J) 5 must be regarded as ’or’~branch,
while in other rules those should be understood as ’and’-branch. Here, by ’or’-branch
we mean that if one of upper sequents of ({J) is provable then the lower sequent of it is
provable. In order to emphasize 'or’~branch, double lines are used in ((J)p (similarly to
CS4+ in Section 3.3). We note that cut formula is taken always from a [-formula in the
lower sequent of (cut)y, or (cut)r. The subformula property in the strict sense does not
hold in SKB, but we can see that for a given sequent I' — A, any formula occurring in
all proofs of ' = A is in ([’ U A)KB* where

(D UA)SKB = Subp(DUA) U {MA | OA € Sub(TUA)} U {#4 | OA € Sub(l'UA)}.

The proof-search procedure determined by SKB proceeds by generating one or two
instances of the upper sequent of each rule from a given instance of the lower sequent
of the rule. In other words, proof-search proceeds from bottom to top. Hereafter an
application of a rule is meant to get upper sequents from a given lower sequent of this

rule.

4.2.2 Model graphs for SKB

In order to show completeness of SKB, we need to introduce some technical machinery
as we defined model graphs for CS4+ in Section 3.4. We will define model graphs for
sequent system SKB.

A rule (r) of SKB is invertible in SKB if there is a proof of (an instance of) the
lower sequent of (r) in SKB then there are proofs of (appropriate instances of) the upper

sequents of (r) in SKB, respectively.

26

initial sequent

TA— A A
static rule
INA,B— A A - AAB v NA—AB 5
rAnBoa N7 rSaaAvE (V) rSAA5E (2
- AA NA—A
F-A-a ™) FoA,-4)
r-AAB I'N'B—->AA I'"A—-AB A
T > AAANB (=N
A, B—-A I'B—>AA T'’"A—>AB v
T.AVEB = A (v =)
'N'A,B—-A I'B—>AA I'>AAB 5
T A>B = A (5-)
OF, WA, BT, A — OA, WY, 40, 84,5, A A,DF,IA,IH,A%DA,IE,W,E()
OC, JA, I, A — OA, B, £, = curL
O, W1, A — OA, A WY, £Q, 64,5, A A, O, B A — OA, BA B, 10,5 (cut)
R

O, WL A — OA, A, B, 1Q, =

AEpla"'apna EEq17"'7Qm

transitional rule

F-)Al,DQI I‘_}Am’DQm
B, p,--,p, — WA, - BA,IQ q, -, q

(>

Figure 4.1: Sequent system for KB : SKB

27

Lemma 4.2.1 FEvery static rule of SKB is invertible in SKB.

Proof) Suppose that I' — A which is (an instance of) the lower sequent of (r) in SKB
where (r) is any of static rules. We will show that there are proofs of corresponding
(instance of) the upper sequents of (r) in SKB, by using induction on the height of the
given proof for I' — A.

Base Case Trivial.

Induction Step The induction hypothesis is that lemma holds for all proofs of the height

less that n. Suppose that the height of a given proof of I' — A is n. For simplicity’s sake,
throughout this proof, we assume that (cut);, and (cut)y are applicable even if each lower
sequent of them contain formulas which can be principal formulas of static rules other
than (cut); and (cut)g.

1. When I' — A is (an instance of) the lower sequent of any of static rules except (cut),
and (cut)g. Consider the application of (r') which is at the lowest application in the
given proof of I' — A. Here, we note that (r') is none of (O)g, (cut);, and (cutg)
because the lower sequents of any of (), (cut), and (cutg) do not contain any
formula which can be a principal formula of a static rule of SKB other than (cut),

and (cut)g. In this case, we can show like Proposition 2.4.3.
2. When I' — A is the lower sequent of (cut)r, I' — A is of the form
O, 04, B8, A — OA', BIL:Q,E - (1),

where A and = denote sets of propositional variables. We will provide proofs of the

following upper sequents:

O, A, B, A — OA', B, $4,2 4 - (2)
A O B, BA A — OA, BT 1), = o (3)

Consider the application of (') which is the lowest application in a given proof of

(1). Here, we note that (') must be either (cut);, or (cut)p because of the form (1).

(a) If (r") is (cut) with the cut formula A then the upper sequents are of the form
(2) and (3). Since there is a proof of (1), there are clearly proofs of (2) and
(3). These are proofs that we want.

(b) If (r') is (cut)r with a cut formula B such that 0B occurs in the right hand
side of (1) then (1) is of the form

O, 1A, m%, A — OA”, (1B, W1, £Q, =,
where A" = OA” U {OB}. The upper sequents are of the forms

Or',0A, B, A — OA”, BB, WL $Q, ¢B,Z, B --- (4)
B,0OI",0A, B, A —» DA”, BB, BILEQLE - (5)

28

Because there is a proof (1), there must exist proofs of (4) and (5) of the height
less than n. Then, by the induction hypothesis, there are proofs of the height

less than n for

O, mA,EY, A — OA” BB, WL, 4B, =, B, 1A, A
A,OT,MA BS, A — OA" BB, WL Q. :B, =, B

B, O, MA NS, A — OA” BB, W1, (0,5, 1A, A

A, B, O, A, EY, A —» OA", BB, W11, :Q, =

6
7
8

(
(
(
(9

)
)
)
)

They are of the form upper sequents obtained from (4) and (5) by applying

(cut)r, with the cut formula A. In other words,

6) (7
(4)

(cut), (cut)r,

If we now start separate proofs of (4) and (5), and apply (cut)g with the same

principal formula (OB, we can obtain the following:

(6) (8) (1) (9)
0 (cut)p 8 (cut)p

Since there are proofs of (6), (7), (8) and (9), there are proofs of (2) and (3) as

desired.

If (r') is (cut), with cut formula C such that OC € OIY, that is OC # OA
then (1) is of the form

O, 0C,0A, B8, A — OA', BT, 2, =,

where O = O U {OC'}. Similarly to the above case, below.

3. We can show the case (cut)g similarly to the case (cut)y,. O

Suppose that I' — A is given. Then, let a(I' — A) and s(I' — A) denote I' and A,
respectively. For sequents I'y — A; and I'y — Ay, when I'y C T’y and A; C Ay, we say
that 'y — Ay is in 'y — Ay, and we write also as 'y — Ay C T's — A,. A sequent
[' — A is closed with respect to a rule (r) if whenever (an instance of) the lower sequent
of (r)isin I' — A, so is (a corresponding instance of) at least one of the upper sequents
of (r). A sequent I' = A is SKB—saturated if it is not provable in SKB and closed with
respect to all rules of SKB except (Op).

Lemma 4.2.2 (saturation lemma) Suppose that a sequent I' — A is not provable in
SKB. Then, there is an effective procedure of constructing a SKB-saturated (I' — A)*
such that T'— A C (I' = A)*, and that a((T' — A)*), s((I' = A)*) C (I U A)SKB*,

29

Proof) We will give the procedure for getting such a SKB-saturated sequent. Let
sp = — A and (r) be a static rule of SKB with respect to which sg is not closed. If
there is no such static rule, let (I' = A)* = sq.

Suppose that a sequent s; which is not closed with respect to the static rule (r) is
given. Apply (r) to s; and we can obtain the corresponding upper sequent(s). Since s;
is not provable in SKB, at least one of these upper sequents do not have any proof in
SKB. Let t; be one of such an upper sequent, i.e. an upper sequent which has no proof
in SKB. Suppose that the principal formula of the application of (r) is A and A € a(s;).
Let T'; = a(s;) and A; = s(s;). Below, the sets of formulas IT, ¥, A, 0, ¥ and Q2 may be
empty. Then,

II, (Fi - {A}) = ALY A, (Fi — {A}) —A;,©0 U, (Fi B {A}) S ALQ
A, (T; = {4}) = A (r)a

or

A, (T; — {A}) = A, (r)a

Here, (r)4 means that A is the principal formula in the application of (r). For ¢; defined
above, put s;41 = A, a(t;) — s(t;). For example, s;.7 = A II, (I, — {A}) — AL 2. (
When A € s(s;), put siv1 = a(t;) — s(t;), A, instead.) Therefore, s;41 is closed with

respect to (r)4 and

Next, we show that s;,4 is not provable in SKB. To the contrary, we assume that s;,
is provable in SKB, that is, assume that s;,; = A, II, ([; — {A}) — A;, X is provable in

SKB. Since (r)4 is applicable also to s;;1, we can obtain the following :

I, Ty — {4}) = A, S AL (T — {AD) = A, 2,0 OI0, (T — {4}) = A, 5,Q
A7 H; (Fz - {A}) — Ai, > (T)A

or

AL (T — {A}) = A, S (r)a

Since (r) is invertible from Lemma 4.2.1 and s;,4 is provable in SKB, the sequent II, (I';—
{A}) — A;, X is provable in SKB. But this sequent none other than ¢;, which is not
provable. This is a contradiction. Hence, s;1 is not provable in SKB.

Now, repeat this procedure on s;,;. Since s;y; is closed with respect to at least one

more static rules than those of s;, the number of static rules under with respect to which

30

s;+1 is not closed becomes smaller. Furthermore, the resulting sequents s; 5 are guaranteed

to be unprovable in SKB. By iterating this, we obtain a sequence of unprovable sequents
so C 51 CspC -

This sequence terminates at some s, when s, is closed with respect to every static rule

of SKB. Of course s, is not provable in SKB. Let (I' — A)* = s,. It is clear that

' -+ A C (' = A)*. Since every formula occurring in this procedure is in (I' U A)SKB*

we can see that a((I' — A)?), s((I' — A)®) C (I'U A)SKB=, 0

A sequent T' — A is subformula—complete it A € Sub(I' U A) implies either A € T or
Ae A

Lemma 4.2.3 If a sequent I' — A 1is closed with respect to all static rules of SKB then
I' = A is subformula—complete.

Proof) Clear. O

Definition 4.2.4 Let W be a nonempty set and R be a binary relation on W, that is R C
W x W. Then o« KB-model graph for a sequent T' — A is a finite KB—frame (W, R)
such that W consists of SKB-saturated sequents w such that a(w), s(w) C (I'U A)SKB*

and
1. T' = A Cwqy for some wg € W,
2. if BA € s(w) then there exists some w' € W with wRw' and A € s(w'),

3. if wRw' and WA € a(w) then A € a(w').

As long as no confusion occurs , we write a KB—model graph simply as a model graph
in the following. For sets of formulas I' = {A4;,---,A4,} and A = {By,---, B}, let T,
denote A; V ---V A, and A* denote By V ---V B, (n,m > 0).

Lemma 4.2.5 (satisfiability lemma) If (W, R) is a model graph for ' — A then there
exists a KB-model (W, R, =) such that w =T, D A* for some w € W.

Proof) In order to show this lemma, we need to define a valuation . For any w € W
and any propositional variable p, define w = p iff p € a(w). Then, we can show the

following:
1. if A € a(w) then w = A,
2. if A € s(w) then w = A
by simultaneous induction for any formula A in a(w)Us(w). From this our lemma follows

by taking wq for w, where w, satisfies that ' = A C wy. O

31

4.2.3 Completeness of SKB

In this section, we will show soundness and completeness of SKB. We say SKB is sound
with respect to KB-frames if ' — A is provable then I', D A* is valid for any KB-
frame. We say SKB is complete with respect to KB—frames if I', D A* is valid for any
KB-frame then I' — A is provable.

We first need to define the semantics of A and $A. For a given Kripke model
(W,R,) and w € W, we define w = BA and w = §A as follows:

wE=mA iff wp DA,
wEiA if wik A

This means that Bl has the same meaning as [J and £ has no semantical role, though
each of them has an intrinsic syntactical meaning. The idea of introducing £ is due to

Nguyen [26]. We can show soundness of SKB straightforwardly.
Theorem 4.2.6 The sequent system SKB is sound with respect to KB—frames.

Proof) We can show soundness of SKB by using the length of proof-figure. OJ

Now, we will show completeness of SKB via model graphs. We show the contraposi-

tion. A sketch of completeness of L goes as follows:

1. Suppose that I' — A is not provable in L,

2. Create a SKB-saturated (I' — A)® by Saturation Lemma,
3. Put wy = (' = A)?,

4. Construct a model graph for I' — A,

5. Thus, we can obtain a L-model (W, R, |=) such that wy j= ', D A* by Satisfiability

Lemma.

The main point in this proof of completeness is to construct a modal graph. By giving
finite counter—-model, we can prove not only completeness of SKB but also the finite
model property of KB. This implies that SKB gives us a proof—search procedure for KB
and that KB is decidable.

Theorem 4.2.7 The sequent system SKB is complete with respect to KB—frames.

Proof) We give a way to construct a finite model graph (W, R) for I' — A when it is not
provable. The first step is to create a SKB—saturated wy from I' — A with I' =& A C wy,
where a(wy), s(wp) C (I' U A)SEB* This is possible by Lemma 4.2.2. We construct a

model graph for I' - A from w, as follows:

32

1. If no formula of the form WA in s(wp), then (W, R) = ({wp},0) is the desired
model graph since this is a KB—frame and all the properties of model graphs in
Definition 4.2.4 are satisfied.

2. Otherwise, let Ay, -+, Ay be all formulas such that BA; € s(wp) (1 < i < m).
Since wq is not provable in SKB, B[l — WA, --- WA, 1Qis neither provable
in SKB, where I’y consists of all M-formulas in a(wy) and £ contains of all
f-formulas in s(wp). Then, apply (0)p to By — WA, --- WA, 1Q and we can
obtain T'y — A;, 0€;, where Q; C Q, 0Q; C Sub(ToU{A4;}) and O(Q2—Q;)NSub(T'U
{A;}) =0 (1 <i<m). Since 'y — WA, --- /WA, £Q is not provable in SKB,
none of I'y — A;,[0€; is provable in SKB. Thus we can create a SKB—saturated
w; = (g — A;,09;)® by Lemma 4.2.2, and put woRw; for each i.

3. We repeat the above by taking each w;, instead of wy.

In order to show that this construction terminates, we need a modal degree introduced
in next section. In next section, we will show that each the upper sequents of ((J) has
the modal degree which strictly less than that of its the lower sequent, and the SKB-
saturation process does not increase the modal degree. Hence, each successor created by
() has the modal degree which is strictly less than that of the parent node, and hence
this construction terminates.

Let W be the set of all the nodes created in this process. Then W is finite. Take R*
as the symmetric closure of R. It remains to show that (W, R*) satisfies the properties
1,2 and 3 of model graphs in Definition 4.2.4. It is clear by the way of construction of
(W, R*) that both properties 1 and 2 are satisfied. We show (W, R*) satisfies property 3.
Let w and w' be in W. When w' is a successor of w, we can see by the form of () that
wR*w' and WA € a(w) imply A € a(w'). Since R* is symmetric, we also have to show
that w'R*w and BA € a(w') imply A € a(w). Suppose that w'R*w and WA € a(w').
Because BA € a(w'), JA must be in Sub(a(w) U s(w)). Since w is subformula—complete,
O0A € (a(w) U s(w)). Since w is closed with respect to (cut)y and (cut)r, A € a(w) or
A € s(w). Suppose that A € s(w). That implies A € s(w). In this case, when w' is
generated from w by using () g, OJA € s(w'), which is from §A € s(w). Since w' must be
unprovable, this is a contradiction. Therefore, A € a(w). Thus, (W, R*) is a model graph
for I' - A. Finally, we can get a KB-model (W, R*, =) such that wy = I, D A* from
Lemma 4.2.5. U

Example 1 The following figure is a KB—model graph for OUp — Up vV C=p.
It is easily seen that wy = OCp D Op vV O-p.

33

wo = OOp, Op, p — Op Vv O-p, Op, O—p, Bp, B—p, §00p, §-p, —p
wy = Op,Wp — fp,p

wy = Up,Mp,p — —p

Figure 4.2: A counter-model for OCp D Cp v O—p

4.2.4 Conversion of proofs of SKB

Since auxiliary modal operators B and £ occur in proofs of SKB, it is hard to read proofs
of SKB than those of KB*. Therefore, we require a way to convert proofs of SKB to
proofs which are easier for us to read, i.e. proofs of KB*. In this section, we discuss a
conversion of proofs of SKB to those of KB*. First, we will clarify the relation between
KB, KB* and SKB. The relation among them is shown in Figure 4.3.

KB
1 3
2 4
6
KB* > SKB

5

Figure 4.3: Relation between KB, KB* and SKB

For any given sequent I' — A, each of Arrows 1,2,3,4,5 and 6 means the following:

1. (Soundness) . If I' = A is provable in KB* then it is valid in KB.

2. (Completeness) : If 'y D A*is valid in KB then I' — A is provable in KB*.
3. (Soundness) : If ' — A is provable in SKB then I', D A* is valid in KB.
4. (Completeness) : IfI', D A*is valid in KB then I' — A is provable in SKB.
5. (Soundness) : If I' = A is provable in SKB then it is provable in KB*.
6. (Completeness) : If ' — A is provable in KB* then it is provable in SKB.

What we would like to highlight is Arrow 6, that is, it is desirable a conversion proofs

of SKB to those of KB*. An internal subformula of a formula A is a subformula of

34

some formula C such that CIC' is a subformula is of A. For example, [(p is an internal
subformula of OOp. This definition is due to Takano in [35]. In addition, when a formula
OC' is an internal subformula of a formula A, we call C' a proper internal subformula of
A. For example, proper internal subformulas of CIJCp are [p and p, among which Up is
called a mazimal proper internal subformula of CICICIp.

Our interest is how to convert (cut)r, (cut)g and (d)p. Let A = {p1, - ,p,} and
E={p1, - ,pu}.- A conversion of (cut); goes as follows:

1. Replace B with [J and eliminate f :

OF, WA, WL A - OA WS, 50, 64,5, 4 A,OF A, BILA - OA WS 40,5
Or, OA, I, A — OA, BS, 10,2 (cut).

2. Add contraction and exchange rules :

Or, 0A, O, A — OA,0%,Q,4,5,4 A, 00, 04,010, A — OA,05,Q, =
Or, OA, 0T, A — OA, 0%, Q,=

3. We can obtain as follows :

Or,04,000,A — 0OA,0%,Q,5, 4, A
O0,0A, 00, A — OA, 0%, Q, 2, A A,00,04,00,A — OA,O%,Q, =
Or, 0T, OA, OA, OIL, OIL, A, A — OA,OA, 0%, 0%, Q,Q, =, =
D (e=), (=), (e—=),(—e)
Or,0A4, 00, A — OA, 0%, 0, =

(=), (=e)

(cut)

We can convert of (cut)p similarly. A conversion from (O)p goes as follows:

1. Replace B with [J and eliminate f :

B, A — WA, WA, 10,2 ()5

Q, CQ, 0; C Sub(I‘ U {Az}), D(Q - Qz) N Sub(I‘z @] {Az}) =0 (]. <1< m)

2. Add weakening and exchange rules :

OT, A = OA,,--- 04,0,

3. We can obtain as follows :
I'—> Ai, DQZ'
ar o4, (s
(w =), (= w), (e =), (= e)
O0, A — OAy,--- ,04,,,Q,=

35

Example 2 In the following, we will convert a proof of SKB of p — [0=[I-p to that of
KB of it.
1. A given proof of SKB of p — O-—p :

O-p — O-p,p

_— (=)
— —0-p,0-p,p O-p — O-p
————— s e)
—p — =0-p,0-p — =0-p,0-p
(Ms (Ms
M-p,p — B-0O-p, {-O-p, f-p (= = H-p,p —» B-O-p, f-O-p,p (= =) p — B=0O-p, B-p, §-p = -) p — B-0O-p,W-p,p (= =)
.ﬁp,p*) .ﬁDﬁp,ﬁﬁDﬁp,ﬁﬁp, —-p ﬁp,.ﬁp,p% .ﬁDﬁp,ﬂﬁDﬁp (cut) P — .ﬁDﬁp,.ﬁp,ﬂﬁp, —-p -p,p — .ﬁDﬁp,.ﬁp (ut)
O-p,p — B=O-p, —O—p o E p — B-O-p, O-p - R
- _— (=
p — B=0O-p, }=0-p, -0O-p -O-p,p —» B=0O-p (cut)
p — O-0O-p cwtr
*
2. Convert each of rules of SKB to those of KB* :
. p = O=O-p,O0-0-
e o L e =) (= e)(e =) (= o)
p — O-0O-p
The remainder is as follows:
O-p — O-p,p
_— (>)
— —=0-p,0-p,p O-p — O-p
L = T 7 () — (=
—p = =0O-p,0-p — =0-p,0-p
-0 (O
O-p, p — O=O=p, =O=p, —p Em))B = O-0O-p, —p ((R>;
O-p - O-0O-p,—p —p,p = O=0-p, =0O-p,p p — O=0O-p,d-p, —p p — O=-0-p,0-p,p
(= =) (= =) () —m8M—— (= =)
O-p,p = O=0=p, =0=, -p, -p —-p,d-p,p = O=0-p, -O-p (cut) p = O=0=p,0-p, -p, —p —p,p = O=0-p,0-p (cut)
O=p,0-p, p, p = O=0-p,0-0-p, 20=p, -O-p (R1) p,p = HO=0=p,0-0-p,0-p,O-p (R1)
O-p,p — O-0O-p,-O-p () p — O0-0O-p,0-p ()
— = . . e ¥
p — O-0-p, =0O-p, -0O-p —O-p,p — O-0Op

p,p = O=0O=p,0-0O-p
where (r1) denotes « =), (= o), (e =), (=) and (r2) denotes (w —), (= w), (¢ =), (= ¢)-

3. In addition, for readability’s sake, to simplify the above proof is required and we can
obtain the following proof of KB*:

O-p — O-p

—— (=)

— =0=p,0-p p—p
(., O

— O-0-p, -p ()8 =p,p — (=)

t
p — O=0O-p (cut)

Though it is possible to convert each of rules of SKB to that of KB, converted
proofs will be larger without simplification. In SKB, cut formulas are always taken
from internal subformulas. Actually, in every application of (cut);, or (cut)g, a maximal
proper internal subformula suffices for the cut formula. Taking into account that, we can
eliminate unnecessary applications of (cut)y and (cut)g from proofs of SKB. Elimination
of unnecessary applications of cut rule will be one way of simplification. Since applications

of rules depends much on the context, we need more to discuss simplification.

4.3 A sequent system for K4B

In this section, we introduce a sequent system for K4B based on Takano’s sequent system
for K4B. As we know, the modal logic K4B can be defined by adding the axiom 4 to

36

the modal logic KB. The axiom 4 makes the accessibility relation to Kripke frames,
transitive. Therefore in constructing model graphs, we have to keep in mind that the

accessibility relation is not only symmetric but also transitive in this case.

4.3.1 SK4B

In the following, we will introduce a sequent system for K4B, called SK4B, which has the
auxiliary modal operator B (but without £). As we discussed in Chapter 3, transitivity

would cause loops as follows:

O-004 s 0A. A -
O-0A,-0A — A,04 \° :
Ooi o044 (7 Dse

We can see that once [l-formulas in the left hand side of a sequent, they disappear
by any application of (— O)spr. To avoid such loops caused by transitivity, we use
history of the form (CJII|OX) like that of Chapter 3. Each of sequents also carries history.
Let H denote a history (CII|OY). Initial sequents of SK4B are sequents of the form
A — A, A H. Rules of inference of SK4B are given in Figure 4.4.

Here, BII denotes the set {lA|A € II}. Similarly to the case of SKB, we call each
of (O), and (O); transitional rule and call others static rules. The upper sequent of each
of (), and (O); is also taken 'or’~branch. In (cut); and (cut)g, the sets A and = are
disjoint, respectively. Also in the previous case, cut formula is taken from Cformula
in the lower sequent of (cut)y, or (cut)g. Similarly to the case of SKB, the subformula
property in the strict sense does not hold in SK4B, but we can see that for a sequent
[' = A (¢|e), any formula occurring in all proofs of I' — A (¢|e), including any formula

occurring in all histories, is in (' U A)S¥4B* where
(T UA)SKB = Suh(TUA) U {BA | DA € Sub(TUA)}

The proof-search procedure determined by SK4B goes similarly to that of SKB.
Here, we note that as for applications of rules of SK4B, every application of (T) is meant
to have priority over any application of (cut),, in order to avoid redundant applications of
(cut)r. For example, assuming that we ignore B, when we apply (7') after an application

of (cut)r, we can have the following :

A, A > 0OB,tB,BH B,A,0A4 — OB H
0A, A = B H

(7) OA, A > B H (T)t
OA > OB H (cut)z

OA, A — OB A, A H (cut)r

OA = OB, 1A, A H

37

initial sequent

TA— AAHM
static rule
LABAH PoAABH LASABH
TANBSAH N7 rSaaven Y ToaaspH (7P
T > A AN A= AN
T Asan) oA Ax)
' - AAABH I'B—>AAH I''A—- A BH A
TS AAANBH (=)
VAAB—-AH I'B—>AAH F,A—>A,B’H(v_>)
[VAVB—> AH
VAAB—AH I'B—>AAH F—>A,A,B’H(D_>)
T A>B > AH
O, BA HO A - COA RV, = AH AOC BA RO A —->TCOA RV, = H (cut)
OO0, A, B3, A — OA, B0, = H cutir
O, B> A - DA RA RV, = A H A,DF,I@,A%DA,IA,I\I/,EH()
OF, W, A — OA, A B, = H cutir
AEpl:"'apn75£q17"'an
mAAT > AMBH
Oir S AmBH D)
transitional rule
Or, T — 00,0A, A, (Or|0x, 0e) e Or, T — 06,0A, A, (Or|0Ox, 00) =

.Fapla"' yPn — .Ala"' 7.Am7.A7q17"' » di <DF|DE>
00 = 04y, -+ ,0A;,--- .04, 06 N0 =0, OA C 08

Or,T — 06,4, (Orj0ey -~ O, T — 06, A, (Or|06)
.Fapla"' yPn — .Ala"' a.Amaqla"' y qi <DH|DE>

t

0o =0A4,,--- ,04,,--- ,0A,, O cadr
38
Figure 4.4: Sequent system for K4B : SK4B

We can see that the left uppermost sequent is a initial sequent. If we apply (T") before an

application of (cut); using B, we can have the following:

HAA—WEB tBBH BERAA—MBH
WA A—-0OBH (1)
OA OB H

(cut)p

By using B also in (T), (cut);, is make to be unapplicable and hence we can avoid redun-

dant applications of (cut);. That is why (7') is meant to have priority over (cut);,.

4.3.2 Model graphs for SK4B

We need to modify the technical machinery given in Subsection 4.2.2 so as to deal with

sequents with histories. We will define model graphs for the sequent system SK4B.
Lemma 4.3.1 FEach static rule of SK4B s invertible in SK4B.

Proof) Similarly to Theorem 4.2.1. O

For sequents I'1 — A; H and I's; — Ay H with the same history, we say that I'; —
Ay Hoisin Ty — Ay H, when 'y C I'y and Ay € A,. In this case, we write ['; —
Ay H C Ty — Ay H. Asequent I' = A H is closed with respect to a rule (r) if whenever
(an instance of) the lower sequent of (r) isin I' — A #, so is (a corresponding instance
of) at least one of the upper sequents of (r). SK4B-saturated sequents are defined like
SKB-saturated sequents.

Lemma 4.3.2 (saturation lemma) Suppose that a sequent T' — A H is not provable
in SK4B. Then, there is an effective procedure to construct some SK4B-saturated (I' —
A) H withT — A C (I — A)*, where a((T' — A)*), s((T — A)*) C (T'U A)SKB,

Proof) Similarly to Theorem 4.2.2. Note that any application of the static rules does
not change history. O

Lemma 4.3.3 If a sequent I' — A H is closed with respect to all static rules of SK4B
then I' — A is subformula—complete.

Proof) Clear. O

Definition 4.3.4 Let W be a nonempty set and R be a binary relation on W, that is
R CW x W. Then a K4B-model graph for a sequent I' — A (ele) is a finite K4B~
frame (W, R) such that all w;H; € W are SK4B—-saturated sequents, where a(w;), s(w;) C
(' U A)SK4B gng

39

1. T' = A Cwqy for some woyHy € W,

2. if MA € s(w;) then there exists some wjH; € W with (w;H;)R(w;H;) and
A € s(wy),

3. if (wiH;)R(w;MH;) and BA € a(w;) then A € a(w;).
When no confusion occurs, we call each K4B-model graph simply, a model graph.

Lemma 4.3.5 (satisfiability lemma) If (W, R) is a model graph for I' — A (e|e) then
there exists a KdB-model (W, R, |E) such that w =T, D A* for some wH € W.

Proof) Similarly to Theorem 4.2.5. O

4.3.3 Completeness of SK4B

In this section, we will show soundness and completeness of SK4B. As before, WA is

interpreted as [JA.
Theorem 4.3.6 The sequent system SK4B is sound with respect to K4B—frames.

Proof) By induction on the length of a given proof. In the following, histories are omitted

for brevity’s sake. We need to show
e every initial sequent is valid,

e in every rule, if each upper sequent of the rule is valid then the lower sequent is

valid.

Base Case Trivial.

Induction Step Suppose that each upper sequent of each rule is valid. We show the

above for the following two cases.

1. Case (T'). Suppose that (BAA AAT,) DO (A* v OB) is valid in a given K4B—
frame (W, R). In addition, suppose that for wy € W, wy = OA AT,. Then, for
any w; such that woRw,, wy Rwy holds since R is symmetric. Since R is transitive,
woRw; and wy Rwy imply woRwy. Since wy = OA and woRwy, wy = A. Therefore,
wo E OAANAAT, and hence wy = MAAAAT,. Since wy = (BAANANAT,) D (A*VOB)
from the assumption, we have wy = A* v OB. Thus, (DA AT*) D (A* v OB) is

valid.

40

2. Case (O);. Suppose that for some i, (). AT,) D (HO)* Vv A4; is valid in a
given K4B—frame (W, R). We assume that the lower sequent of (O); is of the form
Hl, A — WO, =, where A and = are sets of propositional variables. Suppose that for
wo € W, wy = (WD), A A,. Then, for any w; such that woRw,, w; |= ',. Here, for
any wy such that wy Rws, woRw, since R is transitive. From wy = (WD), we = T,.
Therefore, for any ws such that w;Rws, wy | Ty, that is wy = (OT),. From the
assumption, wy = ((OI). AT,) D (OO)* vV A;. Hence, wy = (0O)* V A; for all w,

such that woRw;.

(a) The case where for some possible world w; which is one of possible worlds w
such that woRw, w; = (OO)*. Since R is symmetric, wy Rwy. From w; =
(dO)*, wy = ©*. In addition, for any w3 such that wyRws, wy Rws since R is
transitive. From w; = (0O)*, ws = ©*. Since w; = ©* for any ws such that
woRws, wy = (OO)*. in other words, w, = (HWO)*.

(b) Otherwise. The case where for all w; such that wyRw;, w; | A; always holds.
In this case, wy = OA;. Hence, wy = OA; V ---V sqA; V --- vV OA,,, that is
wy = (dO0)*. Therefore, wy = (WO)*.

Thus, in either case wy = (WMO)* and hence wy = (WO)*V =. Thus, (A, A (HT),) D
(MO)* Vv =) is valid.

We can show other cases similarly to the above. O

Lemma 4.3.7 If a sequent I' — A (ele) is not provable in SK4B, then there ezists a
finite K4B-model (W, R, =) such that w = Ty, D A* for some wH € W.

Proof) Suppose that I' — A #, is not provable in SK4B, where #, is (e|e). We give a
way to construction of finite a K4B-model graph (W, R) for I' — A H, with a symmetric
and transitive relation R. The first step is to create a SK4B-saturated wy Hy from
I' - A Ho with T — A C wy, where a(wy), s(wy) € (I' U A)SK4B* This is possible by
Lemma 4.3.2. Then we construct a K4B-model graph for I' — A from wy H, as follows:

1. If no formula of the form MA in s(wy), then (W, R) = ({woHo}, D) is the desired
model graph since this is a K4B-frame and all the properties of model graphs in
Definition 4.3.4 are satisfied.

2. Otherwise. Let Ay,---, A, be all formulas such that BA; € s(wy) (1 < i < n).
Since woHy is not provable in SK4B,

.FO — .Al, s ,.An H(),

41

is neither provable in SK4B, where BT’ consists of all B-formulas in a(wg). Apply
(O); to it (if T = 0, we apply (O), instead), and we can obtain

DFU, FO — D@, Az <|:|F0||:|@>,

where 0O = {JA,,--- ,04,,--- ,0A4,}. Since B[, — WA, --- BA, H, is not
provable in SK4B, none of 'y, 'y — 06, A; (OI'y|06O) can be provable in SK4B.
Put

wiH; = (O, Ty — 06, 4;)° (O0|06) and (woHo) R(wiH,),
and stop this process.

We do not need to repeat the above anymore unlike the construction of KB-model
graphs. The process suffices to construct model graphs. Actually, neither (), nor (O),
are applicable to all w; where ¢ # 0, Note that all (0-formulas occurring in wq are stored
in (O, |0O) because wy is subformula—complete.

Next, we will show that modal graphs are constructed by this process. Let W be the
set of all nodes created in this process, and R is the symmetric and transitive closure of
R. Tt remains to show that (W, R) is a K4B-model graph. We need to show properties
1,2 and 3 of mode graphs. In order to show them, first we show the following claims :
For any w;H; € W,

(a) if A € s(w;) then BA € s(wy)
(b) if MA € a(w;) then WA € a(wy).

(a) Suppose that A € s(w;). In this case, JA € s(w;) also holds. By the definition,
OA € Sub(a(wg) U s(wp)) must hold. (Recall forms of (O); and (O)s). Since wy is
subformula—complete, A € a(wy) or OA € s(wy). If OA € a(wp) then OA € a(w;).
Since w; is unprovable, this is a contradiction. Therefore, A € s(wp) and WA € s(wy)

since wy must be closed with respect to (cut)g.

(b) Suppose that BA € a(w;). As above A € Sub(a(wy) U s(wy)) and also A € a(wy)
or JA € s(wp). If OA € s(wp) then A € s(w;). Since w; is unprovable, this is a
contradiction. Therefore, JA € a(wp) and hence BMA € a(wy) since wy must be closed

with respect to (cut)y,.

Now, we show (W, R) satisfies properties 1,2 and 3 of model graphs in Definition 4.3.4.
1. Clear.
2. Suppose that WA € s(w).

1) When w = wy, A € s(w;) holds. Therefore, there exists w; with wyRw; and

s(wy).

42

2) When w = w;, BA € s(w;) holds, MA € s(wy) from (a). Hence, for some
1 <i<n, A€ s(wj) holds from the construction. Since R is transitive,
w; Rwy and woRw; implies w; Rw;. Therefore, there exists w; with w; Rw; and

A € s(wj).
3. Suppose that wRw' and A € a(w).

1) Case w = wy :
i. Case w' = wy : When wyRwy, A € a(wy), since wy is closed with respect
to (T)K4B-
ii. Case w' = w; (i # 0) : When wyRuw;, clear from the construction.
2) Case w=w; (1 #0) :
i. Case w' = 0: When w; Rwy, from (b), BA € a(w;) implies BA € a(wy).
By using the same argument as the case wyRwy, we have A € a(wy).
ii. Case w' = w; : When w;Rw;, from (b), BA € a(w;) implies BA € a(wy).
From the construction, A € a(w;).
iii. Case w' = w; (i # j) : When w;Rw;, from (b), OA € a(w;) implies
O € a(wy). From the construction, there exists w; such that woRw; and
A € a(wy).

Finally, we can obtain K4B-model (W, R, |=) such that wy = ', D A* from Lemma 4.3.5.

Thus, we can obtain completeness of SK4B.
Theorem 4.3.8 The sequent system SK4B is complete with respect to K4B—frames.

Proof) This is shown in Lemma 4.3.7. O

Example 1 As an example, the following figure is a K4B-model for OCp — O—p Vv Og.
It is easily seen that wy(e|e) = OOp D O-p v Oq.

4.3.4 Conversion of proofs of SK4B

Similarly to the conversion of proofs of SKB to those of KB, it is possible to convert
proofs of SK4B to those of K4B*. In this section, we only show a conversion of (O),.
Other rules are also convertible like the conversion of (O);. Let A = {py, -+ ,p,} and

E= {qla"' 7ql}'
A conversion of (), goes as follows:

43

w11 wahy

-

wohyg
p

wo = p, Up, OCp, Bp, BUp — O—=p V Og, U=p, g, B=p,Bq, —p, q

ho = {ele)

wy = p, q, Op, 0C00p, Bp, Bp — T-p, Cg, B-p, Bq, —p

hy = (0p, O0p|O-p, Og)

wy = p, Op, O0p, Bp, BUp — O-p, Ug, B—p, Bq, —p, q

Figure 4.5: A counter-model for Olp D O=p Vv Ug

1. Replace B with [J and eliminate histories:

ar,T — 06, A; (I'|06)
WL, A > WA, - W4, = (OI0%)

(@)

O = {0A4,,--- ,04,,--- ,04,,}, OO C OC

2. Add weakening and exchange rules:

ar,r —» D@,Ai
O, A — OA,,- -, 04,

[1]

3. We can obtain as follows:

ar,r — D@,Ai
Or — 00, 04;
L (= w), (=€)
Or — OAy,---,0A4,,
L (w =), (= w), (¢ =), (= 0)
O, A — OAy, -+ , 04w, =

(— D) kaB-

As we can see, this conversion makes proofs of SK4B larger because of adding struc-
tural rules. Therefore, we need to simplify proofs like the conversion of proofs of SKB.

This will also be a further issue.

44

4.4 Conclusion

In this chapter, we gave proof-search procedures for KB and K4B. In both SKB and
SK4B, each cut formula is restricted to a formula A taken from JA occurring either
side of a lower sequent of cut rules. This will contribute to development of techniques for
implementing of proof-search procedures for KB and K4B. Since completeness of SKB
and SK4B are shown by constructing finite counter-models, the finite model property

for them is also obtained.

4.5 Note

In this chapter, we took up not tableau systems but sequent systems for KB and K4B.
As concerns our work in this chapter, it will be possible to obtain the same result in
tableau system.

As for tableau systems, Fitting gave a tableau system for KB in [5], but it does not
have the analytic superformula property. On the other hand, Nguyen proposed a tableau
system for KB in [26], in which auxiliary modal operator was introduced in order to
obtain the analytic superformula property. Our idea of the auxiliary modal operator f
is due to Nguyen. In the tableau system for KB, cut rules called analytic cut rules are
applicable to formulas of the form [JA or —[JA occurring in a formula set, repeatedly. It
is easily seen that there are possibilities loops cause. To avoid such loops, the auxiliary
modal operator B is introduced in our SKB. Therefore, SKB gives us proofs in there is
no loop caused by applications of cut rule.

In [10], Goré proposed a tableau system for K4B, which has analytic superformula

property. In the tableau system for K4B, the following rules are included :

I —00A
r 04 0-04)

r,OA

[04, A | T,04,-A (sfe0)

T, -0A
[,-0A A | T,-04,-A

(s.fcQ)

It is easily seen that applications of (sfc) and (sfc{) cause loops. Also in our SK4B,
to avoid such loops, B is introduced. Moreover, we can see that redundant applications
of (5) cause loops. In SK4B, to avoid such loops caused by applications of (5), (O),
and (O), are designed so that all O-formulas occurring in the right hand side of lower
sequents remain in the right hand side of upper sequent also after applications of ((J); or
(0)s. We note that the role of (5) is included in (O); or (O),. In addition, As we see, it

45

is simpler to construct SK4B—model graphs than SKB—model graphs. Histories tells us
the reason why we can construct SK4B-model graphs simpler than SKB-model graphs.

46

Chapter 5

Termination and upper bounds of

proof—search procedures for
K4, KB, K4B and S4

In this chapter, we will show termination of proof-search procedures determined by se-
quent systems for K4, KB, K4B and the tableau system CS4+, and give upper bounds
of them. Termination is one of the most important properties of proof—search proce-
dures, and it guarantees that it is possible to estimate an upper bound of the number of
applications of rules in proof—search.

Upper bound of a given proof-search procedure is a function f on the set of natural
numbers such that for any [, f(I) is the total number of applications of rules in proof—
search in the worst case for any formula of length [. In other words, f(I) gives us an
upper bound for the number of required steps in proof-search for a given formula. In
Section 5.2, we first introduce Mouri’s sequent system for K4. Next, we will estimate
an upper bound of the proof-search procedure determined by Mouri’s sequent system for
K4 with an order which guarantees termination of the proof-search procedure. Three
sections from Section 5.3 are devoted to termination and upper bounds of proof-search

procedures determined by K4, KB and K4B, respectively.

5.1 Preliminaries

Let % be any of A, V and D. For a formula A, we define the length ¢(A) of A inductively

as follows:

47

¢(p) = 1 for any propositional variable p,
((A*B) =1+/((A)+{(B),

((=A) =1+ ((A),

((OA) =1+1(A),

((BA) =1+ ((A),

((gA) = 0.

Note that the length of £A is 0. For a set (or multiset) I" with distinct formulas
Apy oo J AL UT) = 0(AL) + -+ -+ L(AR).

Next, we introduce the notion of the modal degree mdeg(A) and the modal depth
mdep(A) of a formula A. The modal degree and the modal depth are defined inductively

as follows:
mdeg(p) =0 mdep(p) =0
mdeg(A x B) = max{mdeg(A), mdeg(B)}, mdep(Ax B ep(A) + mdep(B),
mdeg(—A) = mdeg(A), mdep(—A) = mdep(A)
mdeg(dA) = 1 + mdeg(A), mdep(CJA) = 1 + mdep(A),
mdeg(BA) = 1 + mdeg(A), mdep(BA) =0,
mdeg(tA) = mdep(fA) = 0.

For a set I' = {Al, -+ A, } with distinct formulas Ay, --- | A,.

mdeg(F) = max{mdeg(Al)v e 7mdeg(An)}7
mdep(I') = mdep(Ay) + - - - + mdep(A,,).

For all positive integers xq,---,x, and vy, -+ ,y,, where n > 1, we define the lexico-

graphic orders < over n—tuples of positive integers as follows:
(1,) < (Y1, ,yn) iff for somek <n ((for alli < k (x; =vy;)) and xp < yy).

By abuse of language, we use the same symbol < for these orders. But we can distinguish
them from each other by its context. Each of the lexicographic orders < over over n—
tuples is well-order.

Next, we define multisets. A multiset on over a set X is a function M from X to
natural numbers. Intuitively, M (a) is the number of copies of a € X in M. A multiset M
is finite if there are only finitely many a € X such that M(a) > 0. We use standard set
notation like {a,a, b} as an abbreviation of the multiset {a — 2,b +— 1,c — 0} over the
base set X = {a,b,c}. It will be obvious from the context if we refer to a set or multiset.
As for further information on multisets, see [1].

For a formula A, let Sub,,;(A) denote the multiset of consisting of all occurrences of

subformulas of A.
Lemma 5.1.1 For any formula A, |Sub(A)| < ¢(A) and |Suby,(A)| = ((A).

Proof) Trivial. O

48

Lemma 5.1.2 Let | = ((A) for a given formula A. The upper bound of proof-search
procedure determined by Wang’s system is bounded by 2' — 1. In addition, the upper bound

of the total number of applications of only static rules of SKB or SK4B is bounded by
3h—1

5
Proof) See the tree in Figure 5.1. It expresses a tree generated by applications of the

rules of Wang’s system. Each node denotes a sequent. Each branch is generated by an
application of a rule. We note that each node has two branches in the worst case. The

order of applications of the rules of Wang’s system is inessential.

Figure 5.1: The total number of applications of the rules of Wang’s system

Next, count the total number of branches generated by applications of the rules of Wang’s

system : It is at most
1+24+44---+20 =21,

On the other hand, we note that the total number of leaves is 2'.
Next, recall that in SKB and SK4B, each of (— A), (V —) and (D—) has three
upper sequent. By using the same argument as the case of Wang’s system, we can obtain

the following:

3 -1
5
We note that the total number of leaves is 3. |

14349+ 437" =

We say that a proof (or a tableau) is loop—free if there is no repetition of the same
sequent (or the same formula set) in any path starting from the end sequent (or the root)
and ending at an initial sequent (or a leaf). Also, we call a sequent system (or a tableau

system) which gives us only loop—free proofs (or tableaus), loop—free.

5.2 Termination and the upper bound of Mouri’s se-

quent system for K4

We will discuss termination and the upper bound of the proof-search procedure deter-

mined by Mouri’s sequent system for K4 introduced in [24].

49

5.2.1 Mouri’s sequent system for K4

In this section, we will first explain Mouri’s sequent system for K4 and then show that
the proof-search procedure determined by it always terminates for any given formula.
The sequent system for K4 gives a proof-search procedure for K4, in the sense that it
checks whether a given formula A is provable in K4 or not and moreover gives us a proof
of A if it is provable in K4. In addition, a counter-model for A is constructed by using
information on failed proofs when the proof-search procedure fails to find a proof of A.
(See [24] for the details.)

In this subsection, we follow the notation Mouri used in his paper [24]. We take A, —
and [for logical connectives. Formulas of the form AV B and A D B are regarded as
abbreviations of =(=A A =B) and —(A A =B), respectively. Greek capital letters ', ¥, II
etc. denote (finite, possibly empty) multisets of formulas. The notation CII' denotes the
multiset {{JA|A € T'}.

Now, rules of Mouri’s sequent system for K4 are shown in Figure 5.2. It is slightly
different but not in an essential way from the standard system for K4. Sequents of the
sequent system are expressions of the form I' — A with (OII|OX). We use histories like
those of our tableau system CS4+-. (Note that both I' and A are multisets of formulas.)
The rules (init)s and (init); substantially denote initial sequents. In oder to emphasize

‘or’~branch, double lines are used in (O), and (O),.

O, 1, Pn — Qs G, OA (OL|OT) (th)s(DA C O, 0A £ 0)
oo e = 0 (OO (i
DAB-A@OMOS) 0 Do AAONOY) oA B OOy
F,A/\B—>A<DH|DE>() T > A, AA B (OO|0) (AR)
F—>A,A<DH|DE)(: F,A—>A<DH|DE>(:

T,-A— A @O0ox) * I — A, -A @O0os) ©
Or,T — A, (@r|0s,0e) --- Or,T — A, (000, 06)
Drapla"' » Pn — D@,DA,ql,"' >, 41 <|:|F||:|E> (’

(00 =04, - ,04,,, 06 nOL = §, A C O%)

Or,T - A, (Orjge) - O6T - 4, (Orjge)
Drapla"' yPn — D®7q17"' » g1 <|:|H||:|E> !
(06 = 04, - ,0A,,, 00 2 OI)

Figure 5.2: Mouri’s sequent system for K4

20

In every application of (init)s, (init);, () and (O);, we need to check whether side
conditions are satisfied or not, then we regard expressions like CJA in side conditions
not as multisets but as a set. For instance, both side of the inclusion of the condition
OA C OX of (O), is regarded as sets of formulas. That is why, in every application of
(0)s and (O);, duplications of identical formulas are eliminated from both sides of upper
sequents of (), and (O),.

As we can see, the subformula property holds in this system because it is a cut—free
system. Mouri proved that his sequent system is sound and complete with respect to any
K4-frame in [24]. Therefore, the sequent system gives us a proof-search procedure for
K4. We say that a formula A is provable in K4 when the proof-search procedure find a
proof of A, in which every initial sequent contains a formula which appears in both sides
of the sequent. Otherwise, we say that A is unprovable.

The proof—search procedure determined by Mouri’s sequent system will proceed by
generating one or two instances of the upper sequent of each rule from a given instance
of the lower sequent of the rule. In other words, proof-search proceeds from bottom to
top. Hereafter, application of rules is done from bottom to top.

Here, we remark the order of applying rules of Mouri’s sequent system in proof-search.
The rules (init), and (init), have priority over other rules. That is, we must check first
whether each of topmost sequents is an initial one or not. We can see from the form of
each lower sequent of (O), and (), that it is possible to apply each of (O)s and (O),
only when we cannot apply any of (AL), (AR), (=L) and (—R) any more. On the other
hand, we can apply (AL), (AR), (—L) and (—R) in any order.

5.2.2 Termination of Mouri’s sequent system for K4

We will show termination of the proof—search procedure determined by Mouri’s sequent
system. Although its termination is discussed already in his paper [24], we will give here an
alternative proof of termination, which leads us to an estimation of its upper bound. The
point is that any automatic application of rules eventually terminates without redundant

loop—checking, and shows us whether a given formula is provable or not.

Theorem 5.2.1 The proof-search procedure determined by Mouri’s sequent system for

K4 always terminates for any given formula, no matter how rules are applied.

Proof) Let A be any given formula. We show that the proof-search for proofs of A always
terminates. Since the subformula property holds in the sequent system, any formula
occurring in a proof of A, if exists, belongs to Sub(A). Let ¢ = |Sub(A)|. For any sequent
[' — A(OII|OY) occurring in a proof of A, we define the degree D(I' — A(OII|OX)) of
' — A(OII|OY), which is a triple of natural numbers, as follows:

D(T — A@IOL)) = (c — [T, ¢ — |05, 4T UA)).

ol

We note that both ¢ — |OII| and ¢ — |OX| are positive.

Now, we can show that every application of rules decreases strictly the value of the
degree D. Since the lexicographic order < is well-order, we have the termination of
the proof-search procedure. The following table shows that each application of the rules

decreases the triples with respect to the lexicographic order:

c— O] c¢—|OX] ¢TUA)
(AL) = = <
(AR) = = <
(=L) = = <
(—R) = = <
(0)s = < -
() < - -

The interpretation is obvious: (O), and (O), strictly decrease ¢ — |OII| and ¢ — |O%],
respectively. Others leave ¢c—|OII| and ¢—|O%| unchanged but strictly decrease ¢(I" — A).

Thus, we can obtain our theorem.

5.2.3 Upper bound of Mouri’s sequent system for K4

In estimating the upper bound of the proof-search procedure determined by Mouri’s
sequent system, we use a lexicographic order, which guarantees termination of the proof-
search procedure (without redundant loop—checking), to measure the upper bound.

Now, we give an estimation of the upper bound of proof-search procedure determined
by Mouri’s sequent system for K4 in terms of the length of a given formula A.

Each application of (AR) generates two upper sequents, that is, two branches. How-
ever, for simplicity’s sake, first ignoring the branching by each application of (AR), we
will estimate the upper bound of the proof-search procedure. Then, taking the branching

by (AR) into account, we will briefly discuss a more exact estimation of the upper bound.

Simple estimation

By analyzing the proof of termination of Mouri’s sequent system for K4, an upper bound
for the number of required steps in the proof-search will be estimated in terms of the
length of a given formula A. The underlying idea is based on the lexicographic order used
in the proof of termination in the previous section. For a given formula A, let fix4(A)
denote the upper bound of the proof-search procedure determined by Mouri’s sequent
system for K4.

Theorem 5.2.2 Let | = ((A) for a given formula A. Then fka(A) is bounded by 21" .
In other words, the proof-search procedure determined by Mouri’s sequent system for K4
terminates within 21" steps.

52

Proof) To show this, consider the degree of any possible sequents occurring in all proofs

of A. Recall that the degree of sequent is as follows:
DT — AIIOX)) = (¢ — |0, ¢— |O%], (T UA),

where ¢ = |Sub(A)|. Here, we ignore the branching by (AR). It enables us to estimate the
total number of applications of (O)s and (O);, and that of (AL), (AR), (—L) and (=R),
separately. We can see that fx4(A) is the summation of them.

First, in order to estimate the number of applications of ((J); and (), in all possible
proofs of A, we fix ¢(I' U A). Here, see Figure 5.2.3. At worst, (¢ — |OII|,¢ — |O%))
visits not only the point (¢, ¢) but also all points of the shadowed square, in Figure 5.2.3,
with integer coefficients. Moreover, consider an application of either (O)s or (O). Since
upper sequents of these rules must be interpreted as ’or’—branches, there will be many
possibilities of the choice of proofs to be searched. The tree shown in Figure 5.2.3 is the
search tree generated by ’or’~branches. The branches at each node denote ’or’~branches
generated by each application of (O); or (O0);. Let b be the maximal number of possible
‘or’~branches generated by each application of ((J), or (O);. The height of the tree shown
in Figure 5.2.3 is (¢ — 1)c. This means that the total number of applications of (O)
and (OJ); on a path in a proof of A is (¢ — 1)c at worst. Therefore, the total number of

applications of ((J); and (), in the proof-search in the worst case can be estimated at:

~ b{blemhe — 1}

b b2 + ... plee
+ b+ + -

Next, we estimate the total number of (AL), (AR), (L) and (=R). Let s be the total
number of applications of the rules (AL), (AR), (—L) and (—R) in the worst case which
are applied before the next application of either (O), or (O),. Here, recall the order of
the applications of the rules of Mouri’s sequent system in proof-search. Each node of tree
shown in Figure 5.2.3 can be regarded also as possible timing of applications of (AL),
(AR), (=L) and (—R). Since the total number of the nodes of the tree is:

b{ble=1e — 1}
b—1

L4+b+ b0 + o b =14

The total number of applications of (AL), (AR), (L) and (—R) in the worst case can be

estimated at:
bble e — 1}
N O S
S < +] >

Therefore, the summation fx4(A) of the total number of applications of the rules (O)
and (O);, and that of the rules (AL), (AR), (=L) and (—R) in the worst case can be

93

estimated at:

(e—=1)e _ (=1)e
= (3 + 1) . % 45
< (s+1) bV 1) s
c— |O%|
C b (o c)
c—1 "V// .
1] %’
0 1 c c— O]

Figure 5.3: The total number of applications of ((J), and (),

Figure 5.4: The search tree generated by ’or’-branches

Now, it remains to estimate ¢, b and s in terms of the length of A. First, we estimate
b. Since b is the maximal number of possible ’or’~branches by each application of (O)
and (O);, b is estimated to be less than or equal to |Sub(A)|. Next, we will estimate s.
All principal formulas of (AL), (AR), (L) and (—R) are in Sub,,(A). An application
of them strictly decreases the length of sequent by one. Recall that the branches by (AR)
are ignored here. Taking these facts into account, s is estimated to be less than or equal
to [Subpmu(A)|. From Lemma 5.1.1, it follows that ¢ <, b <[and s <. Therefore,

fra(A) < (s+1)-b{p P~ 1} + 5
< I+t -1y 4

ll271+2 + ll27l+1 o l2

21"

IN

o4

Thus, fxa(A) can be bounded by 20" 0

Although this is estimated by ignoring branching by (AR), it gives us a rough estimation

of the upper bound of the number of necessary steps in the proof-search.

Another estimation

Next, taking branching by (AR) into account, we consider the upper bound again. We
have to consider not only ’or-branch’ by (O), and (O), but also branches by (AR). Let
fK4(A) denote the upper bound of this case. We can estimated fK4(A) as follows:

Theorem 5.2.3 Let | = ((A) for a given formula A. Then fK4(A) is bounded by (21)2".

We will omit the proof of Theorem 5.2.3, since more complicated arguments are necessary,
but we will give a strict estimation of the proof-search procedure determined by SKB in

the next section. We can give the proof of Theorem 5.2.3 similarly to it.

5.3 Termination and the upper bound of SKB

In this and subsequent sections, we will show that similar results hold for both SKB and
SK4B.

5.3.1 Termination of SKB

Theorem 5.3.1 The proof-search procedure determined by SKB always terminates for

any given sequent, no matter how rules are applied.

Proof) To show termination of SKB, we define the degree D(I' — A) of a sequent

' = A, which is a triple of positive integers, as follows:
D(T' = A) = (mdeg(I' U A), mdep(T' U A), ¢(T" U A)).

We can show that every application of rules strictly decreases the value of the degree
D with respect to the lexicographic order < over triples of positive integers. In other
words, we can check the values of the degree of each of the upper sequent is less then that

of the lower sequent. Here, we show only the cases for the (cut);, and (— O)p in detail.
Let A = {pla' T 7pn} and = = {(h: T 7QZ}'

Case (cut);, : We compare the modal degree and the modal depth of the left upper

sequent and those of the lower sequent.

U {(MAJURITUAUOAURSUEQ U {tAUZ U {A})
Oru (A} URITU DA URY)
Oru{JA}uRITIUOA URY)
MrU{0A}URITUAUOAURS UEQUE).

mdeg
mdeg
= mdeg

A~~~ /N /N /N

= mdeg

95

On the other hand,

mdep(CdFC U (WA} UBRIIUAUDOAUBE UEQU {fA}U{A} UZ)
= mdep(CT UOA U {A}).

In addition,

mdep(dF U{OA} URITUAUDAUBX UEQUE)
= mdep(dr' U {OA} UTA)
= 1+ mdep(dC U{A} UOA).

We can check this for the right upper sequent similarly.
Case (— Op) : Since 0O; C Sub(I' U {4;}),

mdeg(Or U {A;} UOQ;) = mdeg(I' U {A;}).
On the other hand,
mdeg(OC UAU{OA,, - ,0A4,} UIQUE) = mdeg(Bl' U {0O0A,,--- ,0A,}).
Thus,
mdeg(T' U {A4;}) < mdeg(lI' U {WA,,--- /WA,}).

Other cases can be checked similarly to the above. The following table shows that each
application of the rules strictly decreases the triples with respect to the lexicographic

order:

mdeg(I' UA) mdep(T'UA) (T

U
vl
I
s

J
1
I
I
AN NN AN N AN AN AN C

1
CHRS
I

Q
£
4~
N— N
h
I

=
|

<
<

Q
I~
~

N N N N N N AN N N N /N

U
sy
A

In this table, we can see the following : () g strictly decreases mdeg(I'UA). On the other
hand, (cut), and (cut)g leave mdeg(I' U A) unchanged but strictly decrease mdep(I' UA).
Others leave mdeg(I' U A) and mdep(I' U A) unchanged but strictly decrease ¢(I' U A).

Thus, we can obtain termination of SKB. O

26

Theorem 5.3.2 The sequent system SKB s a loop—free sequent system for KB.

Proof) Take any proof of a sequent I' — A in SKB, and take any path starting from
' -+ A and ending at an initial sequent. Then, from the above argument, the degree of
a sequent in the path is always decreasing when we go up in the path. This implies that
the same sequent never appears twice in it. Thus, SKB is a loop—free system sequent for
KB. O

5.3.2 Upper bound of SKB

Here, we will discuss the upper bound of the proof—search procedure determined by SKB.
Let fsks(A) denote the upper bound of the proof-search procedure determined by SKB.
We give a sketch of the estimation of fskg(A). First, consider the order of applying of
the rules of SKB in proof-search. From the form of each lower sequent of ((J) 5, we can
see that it is impossible to apply ((J) 5 until we cannot apply rules except (1) g any more.
After an application of (), it will be possible to apply rules except () again. During
the proof—search by SKB, this process is repeated as many times as possible. The total
number of applications of rules except ((J)p until next application of (()p can bounded
in Lemma 5.1.2. By counting the total number of branches generated by applications of
the rules of SKB, we can estimate fsxg(A).

Theorem 5.3.3 Let | = ((A) for a given formula A. Then fskp(A) is bounded by
1. 342 In other words, the proof-search procedure determined by SKB terminates

within 11 - 3142) steps.

Proof) Recall the order of applying rules of SKB in proof-search. First, we apply static
rules as many times as possible. Let s be the total number of applications of static rules
in the worst case which are applied before the next application of ((0)p. In addition, let g
be the total number of leaves generated after applying static rules s times. Next, consider
an application of (OJ)g. Since upper sequents of these rules must be interpreted as ’or’—
branches, there will be many possibilities of the choice of proofs. Let b be the maximal
number of possible 'or’~branches generated by of ((0)g. Therefore, we can obtain b - g
nodes after the first application of ()p. After that, we repeat this process for each of
b - g nodes. Let m be how many times this process repeat. The following table shows

branches are generated by applications of rules of SKB.

The number of application The number of branches The number of branches
static rules after application of static rules generated by application of (O)p
S g b-g

2 |s-b-g b-g? b2 g2

m|s-bmt.gm! s-bm L. gm b - g™

— | s-bm.gm _ _

57

Let f; be the total number of application of ((J)p in the worst case and f, be the total

number of application of static rules in the worst case. They can be estimated as follows:

h(h™ — 1)
— 2 ... mzi
fi = h+h"+ +h P
h(h™ —1
f2 = S(1+h+h2+"'+hm)28{1+%},
fskB(4) < fi+fo
h(h™ — 1

e (S+1)'%+S

< (s+1)-h(h™—=1)+s,
where h =10 g.

Now, it remains to estimate s,g,b and m in terms of the length of A. They can be

estimated as follows:

s < 3 -1 (from Lemma 5.1.2),
g < 3 (from Lemma 5.1.2),
b <

h = b-g<Il-3,

m < mdeg(A) <.

Thus, the fskp(A) of the total number of applications of the rules can be estimated at:

fskn(A) -2 (1-t) —1-t*4+t—1, where t =3
[-t2-(1-t)

Ji+1 . gl42)

ININ

5.4 Termination and the upper bound of SK4B

5.4.1 Termination of SK4B

Next, we discuss termination of SK4B.

Theorem 5.4.1 The proof-search procedure determined by SK4B always terminates for

any given sequent, no matter how rules are applied.

Proof) For a sequent I' — A (OII|OX), we define the degree D(I' — A (OII|OX)) of
I' - A (OI|O%), which is a quadruple of positive integers, as follows:

DT — A (OM|O%)) = (¢ — |O1|, ¢ — |O%], mdep(I' U A), ¢(T" U A)),

28

where ¢ = (I' U A)S¥4B* We note that ¢ — |OII| and ¢ — |JY| are always non—negative.

With respect to the lexicographic order < over quadruples of positive integers, every
application of rules strictly decreases the value of the degree D, similarly to Theorem 5.3.1.
The following table shows that each application of the rules strictly decreases the quadru-

ples with respect to the lexicographic order:

c— |0 ¢— 0% mdep(TUA) (T

s

~— — e e

U
b1
Il

|
|
I
NN NN NN NN C

1
CHRS

Q Q

S £
S~ S
N— N

h

|

|

= 1
|
A |
A A A
\ \

o~

O

< — — —

We can see the following : (O), strictly decreases ¢ — |OII|. On the other hands, (O)
leaves ¢ — |OJTI| unchanged but strictly decreases ¢ — |JX%|. In addition, (cut)y, (cut)p and
(T) leave ¢ — |OII| and ¢ — |O%| unchanged but strictly decrease mdep(I' U A). Others
leave ¢ — |OII|, ¢— |OX| and mdep(I' UA) unchanged but strictly decrease ¢(I'UA). Thus,

we can obtain termination of SK4B. O
Theorem 5.4.2 The sequent system SK4B is a loop—free sequent system for K4B.

Proof) Similarly to the proof of Theorem 5.3.2. 0

5.4.2 Upper bound of SK4B

Theorem 5.4.3 Let | = ((A) for a given formula A. Then fskap(A) is bounded by
3L (1+1-3"). In other words, the proof-search procedure determined by SK4B terminates
within 3" - (1 +1-3") steps.

Proof) we can estimate fskxqp(A) similarly to the the upper bound of SKB. First, we
apply static rules as many times as possible. Let s be the total number of applications
of static rules in the worst case which are applied before the next application of (), or

(0);. In addition, let g be the total number of leaves generated after applying static rules

29

s times. Next, consider an application of (O)s or (O);. Since upper sequents of these
rules must be interpreted as 'or’—branches, there will be many possibilities of the choice
of proofs. Let b be the maximal number of possible or’~branches generated by of (O)
or (O);. 1Therefore, we can obtain b- g nodes after the first application of (O), or (O),.
After that, we repeat this process for each of b- ¢ nodes. Let m be how many times this
process repeat. Here, recall the proof of completeness of SK4B. We do not need to apply
(Od); and (O)s more than 2 times. The following table shows how branches are generated

by applications of rules of SK4B.

The number of application The number of branches The number of branches
static rules after application of static rules generated by application of
(@)s or (),
11]s g b-g
2|s-b-g - _

fskap(A) < s+b-g+s-b-g=s+(s+1)-b-g.

Now, it remains to estimate s,¢g and b in terms of the length of A. They can be

estimated as follows:

s < 3'—1 (from Lemma 5.1.2),
g < 3 (from Lemma 5.1.2),
b < I,

Thus, the fsxap(A) of the total number of applications of the rules can be estimated at:

fSK4B(A) 8+(8+1)bg
(3" —1)+3.1-3
3t 4313

3b(1+1-3).

IN NN

5.5 Termination and the upper bound of CS4+

5.5.1 Termination of CS4+

In this section, we will show termination of the proof-search procedure determined by
CS4+. We claim that the same node never appear on each branch from the root to any
node in every CS4-+-tableau for any finite set I'. In fact, we can show in the following

that applications of tableau rules of CS4+ never continue infinitely.

Theorem 5.5.1 The proof-search procedure determined by CS4+ always terminates for

any given set of formulas, no matter how rules are applied.

60

Proof) For a formula A, we first define the degree deg(A) of A inductively as follows:

deg(f) =

deg(p) = for all p € P,

deg(—A) =1+ deg(A),

deg(AN B) =2+ deg(A) + deg(B),
deg(AV B) =2+ deg(A) + deg(B),
deg(A D B) =2+ deg(A) + deg(B),
deg(OA) = 3 - deg(A),

deg(WA) = deg(A).

For a finite set I' = {A4;,--- , A, }, where A; and A; are mutually distinct when i # 7,

deg(T') = Z deg(A
i=1
Next, for any node A(OII|-0OX) in any CS4+-tableau for I', we define the degree
D(A(OI|-0%)) € N? of A(OII|-0X) as follows:
D(A(QII|-05)) = (|04 — |0, [P — [20X], deg(A)).

We note that [T¢S4t*| — |OII| and |[°54**| — |03 are always non—negative.
The following table shows each application of the rules decreases the triples with

respect to the lexicographic order.

DO — (O] D54 — |05 deg(A)

>

U

J J =2
u =

|

I I I

1
<
|
|

~
=
|
|

= < —
< _ _

e N N N N N N N
d
<
~

©w W™
=
Tz

The table shows the following: (S4+); strictly decreases [['“S4t*| — |OII|. On the other
hand, (S4+); leaves |T°S4*| — |OI1| unchanged but strictly decreases |[['°S4+*| — |-O%].
Others leave [['“54+*| —|OI1| and [[¢S4+*| —|=0%| unchanged but strictly decrease deg(A).

Thus, we can obtain termination of CS4+. 0]
Theorem 5.5.2 The tableau system CS4+ is a loop—free tableau system for S4.

Proof) Similarly to the proof of Theorem 5.3.2. 0

61

5.5.2 Upper bound of CS4+

As we have seen already, termination of the proof-search procedure determined by CS4+
is guaranteed by almost the same lexicographic order as Mouri’s sequent system for K4.
Therefore, upper bound of CS4+ can be also estimated similarly to that of Mouri’s sequent
system. Actually, the present author has given a simple estimation of the upper bound
of CS4+ in [21] as follows:

Proposition 5.5.3 Let fesqi (I') denote the upper bound of CS4+ for any finite set T.
Then, fesar(T) can be estimated at (21)%° 341 (21 4 1) — 412, where | = len(T"). In other
words, for the input I' with the length of I, CS4+ terminates in the steps of (2l)9l2+3l+1 .
(21 + 1) — 41* at worst.

5.6 Conclusion

In this chapter we discussed termination and the upper bound of each of proof-search
procedures. Each of proof-search procedures determined by SKB, SK4B and CS4+ has
termination, that is, applications of rules of them never continue infinitely. In Section 5.2,
we estimate the upper bound by using a certain order which guarantees termination of
the proof—search procedure by Mouri’s sequent system for K4. On the other hand, the
upper bound of each of proof-search procedures determined by SKB and SK4B was also

given.

5.7 Note

Proof—search procedures for S4 are proposed also by Heuerding, Seyfried and Zimmer-
mann [11] and Mouri [23]. Upper bound is not explicitly discussed in them.

On the other hand, the time complexity of decision procedure has been discussed
in [33, 3, 19]. Since our result is different from time complexity, it could not be easy to
compare our result with the results of [33, 3, 19]. It will be worth clarifying the relation
between our result and them.

In [33, 3, 19], the time complexity of decision procedures has been discussed. In [33],
it is shown that checking provability in K is in EXPTIME-complete. In [3], it is shown
that Fitting’s translation of S4 to KT can be constructed in deterministic polynomial
time. From the result, a polynomial bound to the length of branches in both tableau
and sequent proof search for S4 and K4 is established. In [19], NPTIME-proof-search
strategies for K45 and S5 are discussed.

On the other hand, in [17, 14, 16], the space complexity of decision procedures for

modal logics are discussed.

62

Chapter 6

Proof—search procedure for temporal

logic K based on sequent system

By utilizing techniques used in Chapters 3 and 4, we will introduce a sequent system for
K. Such a trial will give us a new approach to K;. However, the form of histories in our
sequent system for K; is so complicated that we need to make it simpler. It is a future
work.

In this chapter, we give a proof-search procedure for temporal logic K¢ based on
sequent system. We will show its completeness by giving a way to construct counter—
models. Our approach will also goes on tableau systems. This chapter is organized as
follows: In Sections 6.1 and 6.2, we give a brief survey of temporal logic Ky, its Kripke
semantics for temporal logic introduced before sequent systems for K¢. In Section 6.3,
we introduce our a sequent system SK; for temporal logic, which gives us a proof-search
procedure for temporal logic. In Sections 6.4 and 6.5, we introduce model graphs for SK;
and show the completeness of SK; by using them. In Section 6.6, we show termination

of our sequent system SKy. In Section 6.7, some concluding remarks will be given.

6.1 Temporal logic K;

Temporal logics are widely used in computer science because reasoning about time is the
most natural and intuitive. By possible world semantics, the flow of time is represented
as s frame (W, R), where W is a set of moments of time and R is a binary relation on
W. This semantics can easily represent reflexive, transitive, euclidean, symmetric and
serial. Deferent restriction on R give other temporal logic. As for further information on
temporal logics, see [30, 8, 7].

Here, we adopt two modal operators, called necessity operators, which are the future
operator [F] and the past operator [P]. These necessity operators are interpreted in the

following:

63

[F]A at all future times, A
[P]A at all past times, A

Then, the possibility operator, denoted by (F) and (P), are =[F|— and —[P]-, and
represent “some time in the future” and “some time in the past”, respectively. The

minimal temporal logic Ky is the least normal modal logic containing the following axioms:

A4F : [F]A > [F)[F]A
4P : [P]A S [P)[P)A
CF : A>[F|(P)A
CP : A>[P|(F)A

Axioms 4F and 4P represent transitivity of time. On the other hand, axioms CF and

CP represent the conversion of future and past.

A Kripke frame for temporal logics is a triple (W, Rp, Rp) where W is a non—empty set
of possible worlds and Rr and Rp are binary relations on W, that is Rp, Rp CW x W.
In addition, let (W, Rp, Rp) be a Kripke frame and V' be a mapping from propositional
variables to 2V, called a valuation on (W, Rp, Rp). A Kripke model for temporal logics
is a quadruple (W, R, Rp,V). For a given Kripke model (W, Rr, Rp,V), a relation |=
between an element of W and a formula is defined inductively as follows:

w = p f weVip),
wEAANB iff wEAandw B,
wEAVB iff wEAorwpE B,
wEADB iff wkE Aimplies w = B,
wE A iff wlE A,
wE[F]A iff forall w', wRpw' implies w' = A,
w = [P]A iff for all w', wRpw' implies w' = A.
Proposition 6.1.1 Let (W, Rp, Rp, =) be a model for temporal loiges. Then the follwing
holds.
(1) E[FJADI[F]FIA iff Yu,v,w(uRpv and vRpw imply uRpw),
(2) E[P]JADI[P|[PIA iff Vu,v,w(uRpv and vRpw imply uRpw),
(3) EADI[FNP)A iff Vu,v(uRpv implies vRpu),
(4) EAD[PF)A iff Yu,v(uRpv implies vRpu).

By (3) and (4), R is a converse relation of Rp and thus it is enough to take either of Rp
and Rp. Hence, by taking R = Rp, we can see from axioms of K that the form (W, Ry)
suffices for a frame for K, where Ry is transitive. Then, for any formula A, [F]A and
[P]A are defined as follows:

w [[F]A
w = [P]A

iff for all w, wRrw' implies w' = A,
iff for all w', w'Ryw implies w' = A.

64

6.2 Sequent systems for K;

A sequent system for Ky is devised by Nishimura in [27], though it lacks cut elimination.
This means that the subformula property does not hold in Nishimura’s sequent system.
For example, it is impossible to show that a sequent p — [F|=[P]—p is provable without
any application of cut rule.

[P]=p — [P]=p
= [Pl=p,~[Pl=p _,
— =, [F|=[P]=p =p,p—
p — [F]=[P]-p

In [18], Maruyama, Tojo and Ono proposed sequent systems for temporal epistemic
logics, which will be discussed in Section 6.8, by using Takano’s method introduced in [34].
Let ¥, 11, A and © be sets of formulas. Rules of cut and for [F] and [P] of their systems
are of the following form:

Y=>MAMA AIl—>06
X, 11— A0

(AC)

where A € Sub(XUAUIIUO)

[F]¥,¥ — [PJA,[P]O, A
[F]¥ — [P]A, 0, [F]A

(T1)

where [P]© C Sub(X UAU{A})

[PIS, S — [F]A, [F]O, A
[PIE — [F]A, O, [P]A

(T2)

where [F]© C Sub(X UAU{A})

Though cut elimination theorem does not hold in these systems, they have the sub-
formula property. Still, from our standpoint, there are some deficiencies in them, since
cut rule amy be applied redundantly. Thus, it will be a challenge problem to introduce a
“loop—free” sequent system for Kj.

6.3 Our sequent system SK; for K;

First, we define list. Let e be an arbitrary element. List L is of the following form:

L = [] (empty list)
| e: L (concatenation)

65

We take [z,y,- -] as the abbreviations z =y @ -+~ [].

Instead of M for (J, we introduce auxiliary symbols [F] and [P]. Then, O and O denote
any of [F] and [P], and any of [F] and [P], respectively. Also, for a finite set I, OI" and
0T denote {JA | A € T} and {JA | A € T'}, respectively. A history h is an expression

of the following form:

h = (elelle]e (initial history)
| ([F]I; | [P]ILy || [F]X1 | [P]X2)} (future history)
| (P, [[F]L] P12, | [F]51)% (past history)

where r is natural number. Let H denote a sequence of histories, which is defined induc-

tively as follows:

([F)IIy | [P || [F]% | [P)2e)f = H (future concatenation)
([| [F]IT || [P]22 | [F]E1)% :: H (past concatenation)

We call H a history path. Note that any history path cannot be the empty list. Rules of
our sequent system, called SK¢, except transitional rules is given in Figure 6.1. We call
each of (A =), (= A), (V =), (= V), (D=), (—=D), (= =), (=), (cut), and (cut)g
a static rule, and each of (Fsym), (Fforce), (Ftra), (Fturn), (Fnew), (Psym), (Pforce),
(Ptra), (Pturn) and (Pnew) a transitional rule.

66

initial sequent

A=A AH
static rule
I'VA,B— AH A I - AA BH v NA— A BH
TANBoSAH N7 rSaaven Y Toaaspwa ()
I >AAH A AH
I Asan) ToA-aAn)

' AABH I'B—>AAH TI''A—- A BH (= A)
' - AAANBH

NAAB—AH I'B>AAH TI''A—>ABH (v)
[VAVB—> AH

NVAB—AH I'B>AAH I'>AABH (5-)
[ADB—AH

Or, 04,06, A — OA, OV, 1Q,44,Z, A H A, 00, 04,06, A — OA, 0¥, 4Q,Z H

— — (cut)r,
Or, 0A, 00, A — OA, 0V, £Q,= H
O, 506, A — OA, TA, T, 0, A, Z, A H A, 00,006, A — OA, TA, 00, 10,2 H (et
Or, 00, A — OA, OA, 00, 10,5 H f
AEpl;"' y Pny EEq17"' y @m

Figure 6.1: Sequent system for K; : SKj

67

Now let us explain our transitional rules. Transitional rules are of the following form:

SPHF ... STHF SPHP ... SPHP
SH

where 7,7 > 0. Suppose that S is the following form:

[2PRER 7plamF17mF2 — [F]AhmAQ,ﬁQ,Qb- “ (k-

We define upper sequents (S/H/), called F-moments, and (SFHY), called P-moments,
depending on the form of H.

First, we show conditions of transitional rules. Every formula and set appearing in
conditions will be clear in the definition of transitional rules. Conditions (1), (2), (3) and

(4) are given as follows:

(1): QCQ,

[P]; C Sub(Ty U Ay U{A;}),

[P](Q — Q;) N Sub(l'y UA,U{A;}) =0
(2): Q; CQ,

[F]€; C Sub(l'2 U Ay U{B;}),

[F](Q2— Q) N Sub(Ty UA, U{B;}) =0

(3): for all [F]A; € [F]AY,
[F]A; € [FIS,
([P U [P]A,) C [P]S,
where ; satisfies (1) for each A; such that [F]A; € [F]AY

(4) - for all [P]|B; € [P]A,
[P]B; € [P]S,,
([F19, U [F]A) C [FIS,
where); satisfies (2) for each B; such that [P]B; € [P]A}

The condition (1) says that ; is determined by TI'y, Ay and A;, and it is guaranteed
that €; is maximal by the last condition of (1). Hence, ; is uniquely determined. Also
about (2), similarly to (1). The condition (3) guarantees that, after an application of
transitional rule, all formulas occurring in an upper sequent are included in a history.
About (4), similarly to (3). We note also that €; in (3) and €2; in (4) are determined by
A; and Bj, respectively.

68

1. Case H=1[{c|e]le]e?]:
F-moment :

: no F-moment

1=0
(b) Case [F]A; # 0 : Let [F]A; = {[F]A;,--- ,[F]A,}.

SF = [FID1, Ty — Ay, [P)Asg, [P);)
v . (Fsym)
Hi = [elell [F]A; | [P]Ag, [PC)F]
where (1) (1 <1<mn).
ii. Case [F|T'; # 0 or [P]Ty # 0

Sr

)

HE

[FIT,, T} — A, [P)As, [P]O) (Ftra)
[([FICy | [PIT2 || [F1A; | [P]As, [P1€4)%]

where (1) (1 <1<n).

P-moment :

() : no P-moment
’ o o o

: Let [P]Ay = {[P]By, - ,[P]Bn}.

[PITs, T = [FIA, [PIB;, [FI9) (Psym)
HY = [(e] el [PIB; | [FIALFINE)

where (2) (1 <j <m).

ii. Case [F]['y # 0 or [P]Ty # 0 :

SP = [P|ls, Ty — [F]A,, [P]B;, [FI9;) (Ptra)
HP = [([P|Ts | [FIT) || [P]B; | [F]A, [FIQ;)%
where (2) (1 <j <m).

69

2. Case H = ([F]I1; | [P)IIy || [F]X1 | [P]Xa)} it H' -
F-moment :
(a) Case [F]A; =0 : no F-moment
(b) Case [F]A; # 0 :
i. Case [F|I'y = [F|II; and [P’y = [P]I1; :
A. Case tB € #Q for some B such that [P]B € [P]T'y : Let [F|A; =
{[F1A, - [F]4,}.
SF = [FI0, Ty — Ay, [P]As, [P) (Fforced)
M = ([FIIL | [P, || [F]A; | [P]As, [PIQ0)5 = H

where (1) (1 <n <n).

B. Otherwise : Let [F]A, = [F]A} U[F]AY, where [F]A} N [F]S; = 0
and [F]A” C [F]S,. Let [F]AY = {[F]Ay,-- -, [F]A,}.
SF = [FI0y, Dy — Ay, [P]As, [PI) (Fsym)
HI = ([F0 | [P, || [F]Sy, [F]A; | [P]Ag, [PIQ;)5 = H!

where (1) (1 <i<n).
ii. Case [F]['; 2 [F]H1 or [P]Fz [P]II; (See Note 1) :
Let [F]AL = {[F]AL, -+ [F]A}.

SF

)

HE

[FIT,, Ty — A;, [P]A,, [P) (Fira)
([FITy | [P]Dy || [F]A; | [P]Ag, [P))g = H

where (1) (1 <i<n).

P-moment :

(a) Case [P]Ay =0 : no P-moment
(b) Case [P]Ay # () :
i. Case some ([P]Il, | [F]ﬁ1 | [PIZ | [F]S1)% € H such that [F]y D
[F]ﬁ1 and [P]Ty [P]Hz Let [P]Ay = [P]ALU[P]AY such that [P]AY
satisfying (4) and [P]ALN[P]AY = 0. Let [P]A, = {[P]By, - - - [P|Bn}.

~

)
[PIT2, Ty — [F]Ay, [P]By, [F18;
(

S =) (Pturn)
Hi = ([PIC2 [[FICy [[P1B; | [FIAL [FIQ)p = H
where (2) (1 j < m).
ii. Otherwise : Let [P]Ay = {[P]By,---, [P]Bn}.
S; = [Pl Ty — [F]Ay, [P]B;, [F1

_ o ..) (Pnew)
([PIL2 [[FITy || [P1B; | [F]AL [F]Q)p o H

where (2) (1 <j<m).

"y

70

3. Case H = ([P]Il, | [F]II; || [P]Xs | [F]X1)p it H' -
F-moment :
(a) Case [F]A; =0 : no F-moment
(b) Case [F]A; # 0 :
iih?mmﬂmEJWﬁﬂHﬂi|Hi>EHmMmmuﬂm_
[F]II; and [P]l'y D [P]Ily : Let [F]A; = [F]A]U[F]AY such that [F]AY
satisfying (3) and [F]AN[F]A? = (). Let [F]]A {[F]Ay,--- ,[F]A.}.

SF

)

HE

[FITy, Ty — A;, [P]A,, [P) (Fourn)
([FITy | [P]Dy || [F]A; | [P)Ag, [P)2)} == H

where (1) (1 <i<n).
ii. Otherwise : Let [F]A; = {[F]Ay,---,[F]A,}.

SF = [FIT1,Ty — A;, [P]As, [P) (Fnew)
Hf = ([F|Iy | [P0z || [F]A; | [P]Az,[P]Qz‘>% tH
where (1) (1 <n <n).

P-moment :

(a) Case [P]A, =0
(b) Case [P]A; # ()
i. Case [F|I'y = [F|II; and [P’y = [P]I1; :
A. Case tB € 9 for some A such that [F]A € [F]['; : Let [P]A, =
{mBla T amBm}-

no P-moment

SP

J

"y

[P|ly, Ty — [F]Ay, B, [F19Q;

([P, | [F)Ly || [P]1B; | [F]AL [FIQ)p : H
where (2) (1 <j<m).

B. Otherwise : Let [P]A, = [P]A} U [P]AY, where [P]A, N [P]S, = 0
and [P]A} C [P]X,. Let [P]AL = {[P]By,- - ,[P]Bn}-

) (Pforced)

SP

J

"y

[P|ly, Ty — [F]Ay, B, [F19Q;
([P | [FIT || [P]Se, [P)B; | [F]A [FIQ)5H = H)
where (2) (1 <75 <m).
ii. Case [F]I'; C [F]H1 or [P]Fz [P]II; (See Note 2) :
Let [P]Ay = {[P]B1, -+~ ,[P]Bu}.

(Psym)

Sr

J

"y

[P]0y, Ty — [F]Ay, By, [F]Q;) (Ptra)
([PICy | [T || [P1B; | [F1AL [F1Q))5 = H

where (2) (1 <j<m).

71

Note 1 : The more future we go, the more number of [F]-formulas occurring in the left
hand side of sequents and the less number of [P]-formulas occurring in the left hand side

of sequents. Hence, when the above case does not hold, this case always holds.

Note 2 : The more past we go, the less number of [F'|-formulas occurring in the left hand
side of sequents and the more number of [P]-formulas occurring in the left hand side of

sequents. Hence, when the above case does not hold, this case always holds.

In order to emphasize 'or’~branch, double lines are used in transitional rules (similarly
to CS4+ in Section 3.3).

For a given sequent I' — A, the proof-search procedure determined by SK; goes
similarly to that of SKB by starting from I' — A [(e | € || € | €)%]. We note that a cut
formula is always taken from one of [F]-formulas or [P]-formulas occurring in the lower
sequent of (cut)y, or (cut)g. The subformula property in the strict sense does not hold
in SK¢, but we can see that for a given sequent I' — A [(e | € || € | €)%], any formula
occurring in all proofs of I' — A [{e | € || € | €)%] is in (I' U A)SKB* where

(TUA)TKE =
Sub(T UA) U

{[F]A | [F]A € Sub(T UA)} U

{[PJA | [PJA € Sub(T UA)} U
{#A | [F]A € Sub(TUA) or [P]A € Sub(l'UA)}.

6.4 Model graph for SK;

For the purpose of giving a way to construct counter—-models of formulas mot provable in
SK,, similarly as model graphs for CS4+ in Section 3.4, we will define model graphs for

SKj;. In constructing model graphs, we have to keep the following in mind:
e the axioms 4F and 4P makes the accessibility relation transitive, and

e the axioms CF and CP guarantees that the relations Rrp and Rp are each the

converse of the other, but not that Ry is not symmetric.

These make the construction of counter-models more complicated than those of KB and
K4B.

Lemma 6.4.1 Fach static rule of SKy is invertible in SKg.

Proof) Similarly to Theorem 4.2.1. O

For sequents I'y — A; H and I'y; — Ay H with the same sequence of histories, if
both I'y C I'y and A; C Ay, we say that I'y = Ay H is in 'y — Ay H. Then, we write
' = A1 H C T'y = Ay H to denote it. A sequent I' — A H is closed with respect to

72

a rule (r) if whenever (an instance of) the lower sequent of (r) is in ' = A H, so is (a

corresponding instance of) at least one of the upper sequents of (r).

Lemma 6.4.2 (saturation lemma) Suppose that a sequent T — A H is not provable in
SKy. Then, there is an effective procedure to construct some SKy-saturated (I' — A)* H
with T — A C (I — A)*, where a((I' — A)*), s((I' = A)*) C (T UA)SKe=,

Proof) Similarly to Theorem 4.2.2. O

Lemma 6.4.3 If a sequent I' — A H is closed with respect to all static rules of SK¢ then
I' = A H is subformula—complete.

Proof) Clear. O

Definition 6.4.4 Let W be a nonempty set and Rr be a binary relation on W, that is
R C W x W. Then, a Ki—model graph for a sequent T — A [(e | € || € | €)%] is a
finite K¢—frame (W, Ry) such that each member of W is a SKi—saturated sequent wH
with a(w), s(w) C (L' U A)Ke* gnd

1. T' = A Cwqy for some woyHy € W,

2. if [F|A € s(w;) then there exists some w;H; € W with (w;H;)Rr(w;H;) and
A € s(wj),

3. if (wiH;)Rr(wjH;) and [F]A € a(w;) then A € a(w,),

4. if [P]A € s(w;) then there exists some wjH; € W with (wjH;)Ry(wiH;) and
A € s(wj),

5. if (wjH;)Rr(wiM;) and [P]A € a(w;) then A € a(w,).

As long as no confusion occurs , we call a Ki—model graph simply as a model graph in
the following.

Lemma 6.4.5 (satisfiability lemma) If (W, Rr) is a model graph forT — A (e | € || € | €)°
then there exists a Ky—model (W, Ry, =) such that w =T, D A* for some wH € W.

Proof) Similarly to Theorem 4.2.5. O

73

6.5 Completeness of SK;

In this section, we will show soundness and completeness of SK;. We first need to give

an interpretation of [F)A, [P]A and §A. For a given Kripke model (W, Ry, =), we define

an interpretation of [F|A, [P]A and £A as follows:

w = [F1A iff w = [F]A,
w = [PIA iff w = [P]A,
wEIA iff wE A

This means that [F] and [P] have the same semantics as [F] and [P], respectively, and
has no semantical role, though each of them plays a different syntactical role. We can

show soundness of SKB straightforwardly.
Theorem 6.5.1 The sequent system SKy is sound with respect to K¢—frames.

Proof) Similarly to the proof of Theorem 4.3.6. O
The sketch of proof of completeness of SKy goes similarly to those of SKB and SK4B.

That is, we will show completeness of SK; by showing how to construct a counter-model
of a given unprovable sequent. When (w;H;)Ry(w;H;), (wiH;) is called a past successor

of (w;jH;), and (w;H;) is called a future successor of (w;H;).

Lemma 6.5.2 If a sequent I' — A [(e | € || € | €)%] is not provable in SKy then there
exists a finite K¢—model (W, Ry, =) such that woHg = T D A* for some wyHy € W.

Proof) This proof goes as follows:
1. construction of model graphs,
2. termination of the construction,

3. justification of the fact that our construction gives K¢—model graphs.

Suppose that T' — A H, is not provable in SKy, where H, denotes [{¢ | € || € | €)%]. We
give a way to construct a finite model graph (W, Ry) for T' — AH,. Let (W, Rr) = (0,0)
at the beginning. The first step is to create SKi—saturated wyHo with I' — A C wy,
where a(wyp), s(wp) C (I U A)S¥e*. This is possible by Lemma 6.4.2. We add (woH,) to
w.

We give a way of immediate future and immediate past successors of any node wyHy

(possibly this is wyHy). Since wyHy, is not provable in SKj,

[FTy, [P]Ty — [F|Aq, [P]Ag, 1Q Hy,

74

must not be provable in SK¢, where [F]I'; contains all [F]-formulas in a(wy), [P]T's con-

tains all [P]-formulas in a(wy), [F]A; contains all [F]-formulas in s(wy), [P]Ay contains

all [P]-formulas in s(wy) and £ contains all f—formulas in s(wy).

Our construction depends on the form of Hy.

1. Case Hy, = [{e | € || € | €)%] : In this case, wyH; denotes woHo. If both [F]A,

and [P]A, are empty, then ({woHo}, () is the desired model graph since this is a

K frame and all of properties of model graphs are satisfied.

F—successor :
(a) Case [F]A; =0 : Do nothing. No F-successor.
(b) Case [F]A, # 0 : Let [F]A; = {[F]Ay,--- ,[F]A,}.

i. Case [F]I'y = [P]l'; = () : By using (Fsym), we can obtain

u; = ([F]Fl,Fl — Ai, [P]AQ, [P]QZ)S
H = [{e] el [F14; | [P]Ag [PI)F].

Add (u;HE) to W. Put (woHo)Rr(u;HL).
ii. Case [F|I'y 2 [F|II; or [P]I'y € [P]Il; : By using (Ftra), we can
obtain
u; = ([F]T', 01— A, [P]Ag, [P)8;)°
Hi = [[FITy | [PIT: || [F]A; | [P]As, [P:)5]-
Add (u;HE) to W. Put (woHo)Rr(u;HI).
P—successor :

: Do nothing. No P-successor.

0
(b) Case [P]Ay # (0 : Let [P]Ay = {[P]|Bi, - ,[P]Bn}.

i. Case [F]I'y = [P]l'; = () : By using (Psym), we can obtain

vi = ([Pl T2 = [F]A, [P]B;, [F8)°
M) = [elell [P1B; | [F]AL [FIQ)p).

Add (v;H]) to W. Put (v;H]) Rr(woHs).
ii. Case [F]I'; D [F]II; or [P|l'y C [Pl : By using (Ptra), we can

obtain

vj = ([Pl T2 = [F]A, [P]B;, [F8;)°
HY = [([PIT2 | [FITy || [P1B; | [F1AL [FI€;)p].

Add (v;H]) to W. Put (v;H]) Rr(woHs).

75

2. Case Hy, = ([FIIL, | [P]IL, || [F], | [P]Sa)h == HL ¢ If both [F]A; and [P]A, are

empty then, do nothing. In this case, w;H} is an end—node.

F—successor :

: Do nothing. No F-successor.

i. Case [F|I'y = [F]II, and [P]T'y = [P]IL; :
A. Case tB € #Q for some B such that [P]B € [P]T'y : Let [F|A; =

{[F|A,---,[F]A,}. By using (Ffroced), we can obtain

Uu; = ([F]Fl,Fl — Ai, [P]AQ, [P]QZ)S
i = ([F]I | [Py || [F]A; | [P]Ag, [P]3)% = Hy

Add (u;HE) to W. Put (wiHy) Ry (u;HE).
B. Case thereis nosuch £B : Let [F]A; = [F]A'U[F]A”, where [F]A!N

[FI, = 0 and [F]AY C [F|S,. Let [F]A, = {[F]A,,---,[F]A,}.

By using (Fsym), we can obtain

u; = ([F]Fl,Fl — Ai; [P]AQ, [P]Qz)s
HE = ([F]IL | [P]lLy || [F]S, [F]A; | [P]Ag, [PIQ)H H.

Add (uiHE) to W. Put (wpHy)Rr(u;HY).

Let [F]T'} be the set of all [F]-formulas in a(u;) and [P][, be the
set of all [P]-formulas in a(u;). If [F|I'} = [F|IL;, [P]T}, = [P]I,
and 7 + 1 > 2 then for w'H’ such that w,H, is an immediate past
successor of wiHy, put (wxHg)Rr(w'H').

C. Case neither (Fforced) nor (Fsym) is applicable : In this case, wyHj,
is an end-node. If r = 0 then put (wyHy)Rr(wiHy). If r > 1 then
for w'H' such that w,H; is an immediate past successor of wyHy,
put (weHg)Rr(w'H').

ii. Case [F]T, 2 [F]I, or [P, C [P]I, : Let [F]A; = {[F]A,,--- ,[F]A,}.

=

By using (Ftra), we can obtain

wi = ([F]Ty, Ty = A;, [P)Ag, [P)?
M = ((FI | [P | [F1A; | [P1As, [P13)5 i Hy.

P—successor :

: Do nothing. No P-successor.

76

FIIL || [P]Z; | [F]S1)5 € Hy, such that [F]T; D

i. Case some ([P]Il, |
[F]II; and [P]Ty C [P, : Let [P]A, = [P]A, UP]AY such that

[P]AY satisfying (4) and [P]AL N [P]AY = 0.
A. Case [P]A}, =0 : Let @H € W be a node such that

H = ([P]Tl, | [F]L, || [P]S, | [F]£1)% = H' for some H'. (Such &H

must be in W.) Let £Q be the set of all #—formulas in ().

1) Case for all A such that [F]A € [F]II;, $A ¢ 4Q, and for all B
such that [P]B € [P]ls, B & #Q : Put (H) Ry (wpHy).

2) Case Otherwise : Let [P]AY = {[P|Bi,---,[P|Bn}. By using
(Pturn), we can obtain

—

vi = ([Pl Ty = [F]Ay, [P]B;, [F18;)*
M = ([PI02 | [FITy || [P]B; | [F]A [FIQ)p = He.

Add (v;H]) to W. Put (vyH]) Ry (wiHy).-

B. Case [P]A, # 0 : Let [P]A, = {[P]By,---[P]B,}. By using
(Pturn), we can obtain

vi = ([Pl Ty = [F]A, [P]Bj, [F]8;)°
M = ([PI0s | [FITy || [P1B; | [F]A [F1y)p = Hy

Add (v;HY) to W. Put (v; 1) Ry (wiHy).

ii. Otherwise : Let [P]Ay = {[P]By,--,[P]B;}. By using (Pnew), we

can obtain

vi = ([Pl T2 = [F]Ay, [P]B;, [F18;)*
M = (P02 | [FITy || [P]B; | [F]A [F1Q)p = He.

Add (v;H]) to W. Put (v;H]) Rp(wiHy).
3. Case Hy = ([P]lly | [F|IL; || [P)Z2 | [F]X1)p = H}, : Similarly to the above case.

Next we show that this construction terminates. As we can see, nodes are generated
by saturation and applications of transitional rules. From proof of Lemma 6.4.2, we can
see that SKi—saturation always terminates. In Section 6.6, we will show that applications

of transitional rules of SK¢ never continue infinitely.

Let W consist of all nodes generated in the construction. Let Rp be the transitive
closure of Ry. To show that (W, Ry) gives a Ki{—model graph, we need the following

property:

Property Let (wH)Rp(w'H') such that (w'H') is an immediate future successor of (w#H).
1. if [F]A € a(w) then [F]A € a(w') and A € a(w'),

7

2. if [P]A € a(w') then [P]A € a(w) and A € a(w).

We show only Property 1, since we can show Property 2 similarly to Property 1.
Suppose that [F]A € a(w).

e When w'H’ is generated from w# by using (Fsym), (Fforced), (Ftra), (Fturn) or
(Fnew), we can easily see that A € a(w'). In addition, once [F]-formula appear in

the left hand of a sequent, they disappear by any application of (Fsym), (Fforced),
(Ftra), (Fturn) or (Fnew). Therefore, [F]A € a(w').

e When wH is generated by from w'H' by using application of (Psym), (Pforced),
(Ptra), (Pturn) or (Pnew), since [F]A € a(w), [F]A € Sub(a(w’) U s(w')) must
hold. Since w' is subformula—complete, [F|A € a(w') or [F]A € s(w').

Assuming that [F]A € s(w'), since wH is generated from w'H' by using applica-
tion of (Psym), (Pforced), (Ptra), (Pturn) or (Pnew), [F]A € s(w). Since wH is
unprovable, this is a contradiction. Therefore, [F|A € a(w').

On the other hand, since w’ is closed with respect to (cut);, and is subformula—
complete, A € a(w’) or A € s(w’). Assuming that A € s(w'), A € s(w'). Since
[F]A € a(w), by application of (Psym), (Pforced), (Ptra), (Pturn) or (Pnew), A
become [F|A € s(w). Since wH is unprovable, this is a contradiction. Therefore,
A € a(w').

Now, recall the property of K¢-model graph.

1. Clear.

2. Clear from the construction.

3. Suppose that (w;H;)Rr(w;H;) and [F|A € a(w;).

e When (w;#;) is a future successor of (w;H;) or (w;H;) is a past successor of

(w;jH;), by using Property 1. repeatedly, we can see A € a(w,).

e When (w;#;)Rr(w;H;) also holds, from the construction, [F]A € a(w;), A €
a(w;) hold.

e When w,;H; = w;H;, from the construction, [F|A € a(w;) and A € a(w;) hold.
4. Clear from the construction.
5. Similarly to 3 by using Property 2.

Therefore, we can obtain a Ky-model such that wyHo = T's D A* by using Lemma 6.4.5.
O

Thus, we can obtain completeness of SKj.

78

Theorem 6.5.3 The sequent system SKy is complete with respect to K¢—frames.

Example 1 As an example, the following figure is a K¢—model graph for [F|p — [F|-pV
[P]p.

p
wiHy waHs

NN

w3Hs woHy WeH4
p

wo = =, [Flp[Flp — [F]-pV [Plp, [F]=p, [Plp, [F]-p, [Plp,{p. p
Ho=[(e|ell €] €]

wy = p, [Fp, [F]p — —p, [Plp, [Plp
Hi=[[Flp| el [Fl-p | [Plp)¥

W2 = 7P — [F]_'pa [F]_'pap
Ho = [(e | [Flp || [Plp | [F]-p)}]

w3 =—p
Hs =[(e | [Flp || [Plp | €, ([Flp | € || [F]-p | [Plp)}]

Wq =p—> P
Ha=[e | el [Fl=p|ep (e | [Flp |l [Plp | [Fl-p)?]

Figure 6.2: A counter-model for [F]p D [F]-p V [P]p

It is easily seen that wy[(e | € || € | €)%] ¥ [F]p D [F]=p V [P]p.

Example 2 The following is an proof of p — [F]=[P]=p [{e | € || € | €)2]. Let Hy denote
|

[(e | € |l € | €)¢] and H, denote [(e | € || [F]=[P]=p | [P]-p)5].
[Pl=p — [P]-pH: — =[P]-p, [Pl-pH1
— =[P]=p, [P]-pH1 [P]=p = [P]-pH1
p, [P]=p — [F]=[Pl=p, {=[Pl-p, ~pHo —p, [P]=p,p = [F1=[Pl=p, §=[Pl-pHo p = [F1=[P]=p, [P]-p, i=pHo p = [F1=[P]-p, [P]-p, pHo

[PI=p, p — [F]=[P]=p, i=[P]=p, i=p, ~pHo [Pl=p,p = [FI=[Pl-p,{=[Pl=p,pHo p — [F1=[Pl-p,[Pl=p,t=p,=pHo —p,p = [FI=[P]l-p, [Pl-pHo

[P]-p,p — [F]=[P]-p, i=[P]-pHo p — [F]=[P]-p, [P]-pHo

p — [F]=[P]-p, {~[P]-p, =[P]-pHo —[P]=p,p = [F]-[P]-pHo
p = [FI=[Pl=pHo

6.6 Termination of SK;

In this section, we show termination of proof—search of K, that is applications of the rules

of SK; never continue infinitely. Before that, we define the modal depth of [F]A, [P]A, [F]A

79

and [P]A as follows:

mdep([F]A) = 1 4+ mdep(A),
mdep([P]A) = 1+ mdep(A),
mdep([F]A) =0,
mdep([P]A) = 0.

Le(y) =0,
Ll(e:: L) = 1+ LLL).

Theorem 6.6.1 The proof-search procedure determined by SKy always terminates for

any given sequent, no matter how rules are applied.

Proof) To show termination of SK¢, we need to define the degree of each sequent. Let
T be any of C, F and P. The notation] denotes [F] when [denotes [P], otherwise]
denotes [P]. Then, history is of the following form:

(O, | O, || 0% | O%5)5.
Then, history paths H can be written like the following form:

(O, | O, || O, | OS,) =[] or
(OI1, | OI, || O | OX9)) it H' for some history path H'.

Let ¢; = |[(TUA)Ke*| and ¢y = 2.2, For a sequent I' — A H, we define the degree
D(T" — A H), which is a quadruple of positive integers, as follows:

DT - AH)=(cg— LUH), c¢; —|O%,], mdep(T' UA), (T UA)),

where the leftmost history of H is (OII; | I, || O% | ﬁZZVT. We note that ¢y — L{(H)
and ¢; — |0%]| are positive.

Now, we can show that every application of rules of SK; decreases strictly the value
of the degree D. Since the lexicographic order < is well-order, we can obtain termination
of proof-search. The following tables shows that each application of the rules in search

decreases the quadruple with respect to the lexicographic order:

80

b

co— LUH) ¢ — |08 mdep(TUA) (T

|
|
|
NN NN NN NN C

%)
I
<~
NN
~
I

=
I
N A

g Es
0 0
< <
E E
A A A A
A A
| |
| |

)ﬁ
S
=
o
o
=
VANVANVAN
\
\
\

(Pnew) < - - -
From the above table, we can see the following:
Case (Fsym) : (Fsym) leave ¢ — L{(H) unchanged but strictly decrease ¢; — [0].
Case (Ftra) : (Ftra) strictly decrease ¢y — L(H).

Case (Fforced) : Similarly to (Ftra).

Case (Fturn) : Similarly to (Ftra).

(
(
(
Case (Fnew) : Similarly to (Ftra).

(Psym), (Ptra), (Pforced), (Pturn) and (Pturn) are discussed similarly to the above. In
addition, both (cut), and (cut)g leave ¢; — L(H) and ¢; — |O%, | unchanged but strictly
decrease mdep(I' U A). Others leave ¢ — LU(H), ¢; — |O%;| and mdep(I' U A) unchanged
but strictly decrease ¢(I' U A). Thus, we can obtain our theorem. O

We note that termination of SK; shows that the construction in Lemma 6.5.2 also ter-
minates.
6.7 Conclusion

Our work in this chapter shows whether histories can accomplish the alternative loop—

checking, or a possibility of histories to avoid loop—checking. By enhancing histories used

81

in Chapters 3 and 4. we gave a sequent system, called SKy, for the temporal logic K;. We
showed its completeness by giving a way of construction of counter—model like that given
in the previous chapters. It also bring us the finite model property for K;. The sequent
system for SK gives us a proof-search procedure, which decides whether a given formula
provable or not, and gives us a proof of if when it is provable. In addition, we can obtain
a counter—model when is the given formula not provable. Termination of the proof—search
procedure determined by SK; was shown. Since the proof-search procedure determined
by SK; do not need to check the repetition of sequents, it do not cause inefficiency by
that. Therefore, the proof-search procedure determined by SK; seems to be relatively

feasible.

6.8 Note

Temporal logics are very useful for formalizing various notions which appear in computer
science, and they have been investigated recently. Temporal logics are used by combining
with other logics, for example epistemic logics, called temporal epistemic logics. The
development of temporal epistemic logics have been paid much attention recently. In [18],
Maruyama, Tojo and Ono introduced sequent systems for logics of belief and knowledge for
multi-agent models with [F] and [P] as a temporal operators. The proof-search procedure
determined by each of them needs to check the repetition of sequents. Termination of
their sequent systems has not discussed explicitly. In [36] M. Wooldridge, C. Dixon and
M. Fisher introduced tableau systems for temporal epistemic logics with the unary “next”
operator () and the binary “until” operator I/ as temporal operators. In the paper, they
gave a model-search procedure for these logics, which constructs a model for a given

formula when it is satisfiable.

82

Chapter 7

Related works

In this chapter, we refer related works. The dependency relations between our works and
related works are shown in Figure 7.1. Each number of the arrows in the figure denotes

a detailed road map to our sequent system SK;.

Modal Temporal
10
“next”
“until”
Tableau systems > [26] [10] 31]
CS4+ KB K4B :
linear
6 7 12
Y '/ 9 '/ 16
SKB » SK4B » SK;
8 10 15
Sequent systems H 14
KB K¢ | [18]
K4B
K4 [24] 13
34) K, |[27]
S4
23] modular 9
S4 KT nominal | [6]
1] [14]

Figure 7.1: Related works

83

Now, we explain the detailed road map to SKg, though our investigation went along
bold arrows from CS4+ to SKj, that is, in the order of Arrows 6, 9, 15, In the following,
the notation (Q7) denotes Arrow i.

In [23], to avoid loops caused by axiom T, the technique of using an extra moral
operator as a marked version of [0, denoted M in [23]|, was imported from [14] (Q1).
Histories were introduced in [11] to avoid loops caused by axioms T and 4. In [23],
a sequent system for S4 was introduced by combining B and histories (@Q1,2). As for
avoiding loops caused by axiom T, B gains an advantage over histories because we need
to check sets of formulas if we adopt histories. In [24], a proof-search procedure for K4
was given by using history (@3), and a construction of counter-models of K4 was also
proposed.

In [10], tableau systems for some modal logics are shown. By applying B and histories
to a tableau system for S4 shown in [10], CS4+ was introduced (@4). In the proof of
completeness of CS4+, the techniques of M, histories and model graphs were combined
(@4, 5).

In [26], a tableau system for KB is proposed, though the formulation of KB with
tableau systems was an open problem in [10]. The sequent system SKB was introduced
by using the technique of using , which is based on the idea in [26] (Q7). Model graphs for
tableau systems were imported into sequent systems (@6, 7), and model graphs became
available also in sequent systems. In [34], sequent systems for KB and K4B are proposed,
in which the subformula property holds by restricting cut formulas. Our SKB utilized
the idea of [34] (@8).

Model graphs for sequent system were applied also to the proof of completeness of
SK4B (@9). The idea of restriction of cut formulas of [34] was introduced in our SK4B
(@10). Moreover, histories were imported from [24] (@11), and we referred to the way of
construction of model graphs from [10] (@12).

In [27], a sequent system for K is proposed, though the subformula property does not
hold in the sequent system. In [18], by introducing the idea of restriction of cut formulas
of [34] to the sequent system in [27], a sequent system for K; was given, in which the
subformula property holds (@13, 14). By using all techniques so far, we proposed a sequent
system SK; (@15, 16).

As further information, in [36, 31, 2, 6], temporal logics with different formulation
from ours are discussed. In [36], a tableau system, which has “next” operator and “until”
operator as tense operators, are proposed. In [31], a linear temporal logic is discussed
with a tableau system. In [2], a labelled sequent system for a temporal logic are proposed,
which is has neither the axiom 4F nor the 4P. In [6], nominal tense logics are discussed

with sequent systems.

84

Chapter 8

Conclusions and further work

In this chapter, we summarize the results of this thesis and mention further studies.

8.1 Conclusion

1. To facilitate approaching the temporal logic K, we first introduced some techniques

in systems for the modal logics S4, KB and K4B, and gave proof-search procedures

for them.

(a)

Proof-search procedure for S4 (Chapter 3)

We gave a proof-search procedure for S4 based on the tableau system CS4-+,
in which histories was introduced. Moreover, we gave a way of construction
of counter-models of S4, which were given by model graphs, in the proof of

completeness of CS4+.

Proof-search procedure for KB and K4B (Chapter 4)

In the first part of this chapter, we gave a proof-search procedure for KB. It is
determined by the sequent system SKB. On the other hand, in the second part
of this chapter, we gave a proof—search procedure for K4B, which is determined
by the sequent system SK4B. Both proof-search procedures avoid redundant
applications of the cut rule. Model graphs for sequent systems SKB and

SK4B are introduced, by which we can show completeness of these systems.

Termination and upper bounds of proof-search procedures for KB, K4B and
S4 (Chapter 5)

Termination of proof—search procedures for each of K4, KB, K4B and S4 was
shown. It guarantees that SKB, SK4B and CS4+ are loop—free systems. In
addition, we estimated upper bounds of them. Estimation of upper bound

would contribute to implementation of proof—search procedures.

85

2. Proof-search procedure for Ky (Chapter 6)
In this chapter, by enhancing histories to sequences of histories, we gave a proof—
search procedure for K; based on our sequent system SK;. The proof-search pro-
cedure avoids redundant applications of the cut rule. In the proof of completeness
of SK¢, we gave a way of construction of counter-models for a unprovable formula

with model graphs.

Our work investigated a possibility of histories to avoid loop—checking. By making
checking histories the alternative loop—checking, we put histories to trial on K;. Actually,
a simpler sequent system for K had been proposed before SK; was introduced. However,
the present author found that the simper system had a crucial deficiency in histories
because of alternating applications of rules on operators [F| and [P]. That is why histories
was enhanced. Eventually, such an approach to K brought us a complicated system SKj,

though we did not need loop—checking.

8.2 Further work

We can say that our work of S4, KB and K4B are acceptable. However, though we men-
tioned alternating applications of rules on operators [F] and [P], it is not clear whether
that would really cause loops nor not in Maruyama, Tojo and Ono’s system for Ky intro-
duced in Section 6.2. In other words, it is not evident whether such a problem is inevitable
or not. This should be clarified.

Further work is as follows:

e First of all, we need to simplify the sequent system SK;. Transitional rules of it
are so complicated that we require to refine them. In order to do it, one way would
be to analyze histories. Also, another new techniques might give us a practical
system for K;. In contrast, we need to clarify whether loop—free systems for K
must intrinsically be complicated or not. This issue is not only the most interesting

but also the most important.

After we succeed in simplifying SKy, the following will be practical further work:

— Fusion of temporal logic and other logics
It will be possible to combine SK; with other logics. Since temporal logics
and epistemic logics are very useful for formalizing various notions appearing
in computer science, for example it will be possible to improve Maruyama,

Tojo and Ono’s sequent systems for temporal epistemic logics with SKj.

86

— Implementation
Indeed, Mouri constructed a proof assistant system xpe (X window system
Proof Editor) and implemented proof-search procedures for K4,S4 etc. on
xpe. (See [25] for the details.) It will be possible to implement our proof-
search procedures for KB, K4B and K; on xpe. By implementation, it will be

also possible to assess efficiency of them.

e As another further work, the conversion of SKB and SK4B is desired, though we
discussed in Sections 4.2.4 and 4.3.4. Since it is still hard to read proofs converted
by ways discussed in the sections, we need simplification of proofs. It will make

more available our proof—search procedures determined by SKB and SK4B.

87

Bibliography

1]

2]

3]

[10]

[11]

F. Baader and T. Nipkow, Term Rewriting and All That, Cambridge University
Press, 1998.

N. Bonnette and R. Goré A Labelled sequent system for tense logic Ky, in Proceedings
of the Australian Joint Conference on Artificial Intelligence, LNAT 1052, pp. 71-82,
Springer Verlag, 1998.

S. Cerrito and M. C. Mayer, A polynomial translation of S/ into T and contraction—
free tableauz for S4, Logic Journal of the IGPL, 5(2):287-303, Oxford University
Press 1997.

M. C. Fitting, Tableau methods of proof for modal logics, Norte Dame Journal of
Formal Logic 13, pp.237-247, 1972.

M. C. Fitting, Proof of Methods for Modal and Intuitionistic Logics, D.Reidel
Publishing Co., Dordrecht, 1983.

S. Demri, Sequent calculi for nominal tense logics: a step towards mechanization?,
in Proceedings of Analytic Tableaux and Related Methods (TABLEAUX ’99), LNAI
1617, pp. 140-154, Springer Verlag, 1999.

D. Gabbay, I. Hodkinson and M. Reynolds, Temporal Logic Mathematical Founda-

tions and Computational Aspects, volume 1, Oxford University Press, 1994.

R. Goldblatt, Logics of Time and Computation, Second Edition, CLSI Lecture Note
No.7, Center for the Study of Language and Information, Stanford University, 1992.

R. Goré, Cut—free sequent and tableau systems for propositional Diodorean modal
logics, Studia Logica 53:433-457, 1994.

R. Goré, Tableau methods for modal and temporal logics, in Handbook of Tableau
Methods, eds. by Marcello D’Agostino, Dov M.Gabby, Reiner H&ihnle, Joachim
Posegga, Kluwer Academic Publishers, 1999.

A. Heuerding, M. Seyfried and H. Zimmermann, Efficient loop—check for back-

ward proof search in some non—classical propositional logics, in Proceedings of the

88

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

5th Workshop on Theorem Proving with Analytic Tableaux and Related Methods
(TABLEAUX 96), LNCS 1071, pp. 210-225, Springer Verlag, 1996.

K. J. J. Hintikka, Form and content in quantification theory, Acta Philosophica
Fennica, 8:3-55, 1955.

J. Hudelmaier, On a contraction free sequent calculus for the modal Logic S/, in
Proceedings of the 3rd Workshop on Theorem Proving with Analytic Tableaux and
Related Methods. Technical Report TR-94/5, Department of Computing, Imperial
College of Science, Technology and Medicine, London, 1994.

J. Hudelmaier, Improved decision procedures for the modal logics K, T and Sj, in
Proceeding of the 9th International Workshop, Computer Science Logic '95, LNCS
1092, pp. 320-334, Springer Verlag, 1996.

T. Kobayashi, Theorem proving in non—classical logics, Master’s thesis, Department

of Computer and Information Sciences, Ibaraki University, 1994.

M. Kracht, Notes on the space requirements for checking satisfiability in modal logics,
in Proceeding of the 4th International Workshop, Advances in Modal Logic (AiML
2002), pp. 205221, CSLI.

R. E. Ladner, The computational complexity of provability in systems of modal propo-
sitional logic, STAM Journal on Computing, 6(3):467-480, 1977.

A. Maruyama, S. Tojo and H. Ono, Decidability of temporal epistemic logics for
multi—agent models, in Proceeding of the ICLP’01 workshop on Computational Logics
in Multi-Agent systems, pp. 31-40, 2001.

F. Massacci, Single step tableaux for modal logics, computational properties, com-
plezity and methodology, Journal of Automated Reasoning, 24(3):319-364, 2000.

T. Matsumoto and H. Ono, Theorem prover for modal logics with tableau method, in
Proceedings of International Workshop, Rewriting in Proof and Computation (RPC
'01), pp. 42-59, 2001.

T. Matsumoto, A tableau system for modal logic S4 with an efficient proof-search
procedure, in Proceedings of the 5th JSSST Workshop on Programming and Pro-
gramming Languages (PPL2003), pp. 75-86, 2003.

M. Mouri, Theorem provers with counter models and xzpe, Bulletin of the Section of
Logic, 30(2):79-86, 2001.

89

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

M. Mouri, An efficient construction of counter—models for modal logic S4, in Pro-
ceedings of International Workshop, Rewriting in Proof and Computation (RPC ’01),
pp. 247-256, 2001.

M. Mouri, Constructing counter-models for modal logic K4 from refutation trees,
Bulletin of the Section of Logic, 31(2):81-90, 2002.

M. Mouri, the URL is of xpe is: http://www. jaist.ac.jp/ “mouri/.

L. A. Nguyen, Analytic tableau systems and interpolation for the modal logics KB,
KDB, K5, KD5, Studia Logica 69, pp. 41-57, 2001.

H. Nishimura, A study of some tense logics by Gentzen’s sequential method, Publica-
tions of the Research Institute for Mathematical Science, Kyoto University 16, pp.
343-353, 1980.

H. Ono, Proof-theoretical methods in nonclassical logic — an introduction, Theories
of Types and Proofs, eds. by M. Takahashi et al, MSJ Memoir 2, Mathematical
Society of Japan, pp. 207-254, 1998.

L. Pinto and R. Dyckhoff, Loop—free construction of counter—-models for intuitionistic
propositional logic, Symposia Gaussiana, Conf. A (M. Behara, R. Fritsch and R.G.
Lintz, editors), Walter de Gruyter & Co., Berlin, pp. 225-232, 1995.

N. Rescher and A. Urquhart, Temporal Logic, Springer Verlag, 1971.

P. Schmitt and J. Goubault-Larrecq, A Tableau system for linear—time temporal logic,
in Proceedings of the 3rd Workshop Tools and Algorithms for the Construction and
Analysis of Systems (TACAS '97), LNCS 1217, pp. 130144, Springer Verlag, 1997.

R. M. Smullyan, First-Order Logic, Springer Verlag, 1968. Revised edition, Dover
Press, 1994.

E. Spaan, Complexity of Modal Logics, PhD thesis, Department of Mathematics

and Computer Science, University of Amsterdam, 1993.

M. Takano, Subformula property as a substitute for cut—elimination in modal propo-
sitional logics, Mathematica Japonica 37, pp. 1129-1145, 1992.

M. Takano, A modified subformula property for the modal logics K5 and KD, Bul-
letin of the Section of Logic, 30(2):115-122, 2001.

M. Wooldridge, C. Dixon and M. Fisher, A tableau—based proof method for temporal
logics of knowledge and belief, Journal of Applied Non—-Classical Logics 8, pp. 225-
258, 1998.

90

[37] H. Wang, A survey of mathematical logic, Studies in Logic and the Foundations of
Mathematics, North—Holland, Amsterdam, 1963.

91

Publications

Refereed Paper in Journal
[1] T. Matsumoto, Time complexity of a proof-search procedure for K4, Bulletin of the
Section of Logic, (32)4:201-211, (Dec. 2003).
International Conference Paper

[2] T. Matsumoto and H. Ono, Theorem prover for modal logics with tableau method,
Proceedings of International Workshop, Rewriting in Proof and Computation (RPC
'01), pp. 42-59, (Oct. 2001).

Refereed Domestic Conference Paper

[3] T. Matsumoto, A tableau system for modal logic S/ with an efficient proof-search
procedure, Proceedings of the 5th JSSST Workshop on Programming and Program-
ming Languages (PPL2003), pp. 75-86, (Mar. 2003).

Domestic Conference Papers

[4] A. Maruyama and T. Matsumoto, Tableau system and theorem prover for temporal
logic Kt, Proceedings of the 35th MLG meeting, pp. 30-32, (Jan. 2002).

[5] T. Matsumoto, A model tableau system for S4, Proceedings of the 36th MLG meet-
ing, pp. 16-17, (Dec. 2002).

[6] T. Matsumoto, Improved sequent system for KB, Proceedings of the 37th MLG
meeting, pp. 26-29, (Dec. 2003).

Domestic Conference

[7] T. Matsumoto, Improved sequent system for KB, the 23rd TRS meeting, (Sep.
2003).

92

Appendix A

Implementation of our proof—search

procedure

In this chapter, we will briefly show an implementation of our proof-search procedure
based on tableau system. It covers classical logic, modal logics K, KD, KT, K4 and
S4, and simply a prototype of the implementation. The proof-search procedure is im-
plemented in Standard ML of New Jersey (abbreviated SML/NJ). Standard ML of New

Jersey is available in the following:
http://www.smlnj.org//index.html

The detail is omitted. As for further information on SML/NJ, see this web site. The
reader is supposed to be familiar with SML/NJ.

A.1 Introduction

The proof-search procedure is constituted of the following six files.

sources.cm . File of list of all source files

load.sml : File to start up

utility.sml : File in which utility functions are defined
formula.sml . File in which the data structure of formulas is defined
tableau_tree.sml : File in which the data structure of tableaus is defined
tableau_prover.sml : File in which the main function is defined

The source codes are shown in Section A.5.

93

A.2 Syntax
The data structure of formula is defined as follows:

datatype formula = AND of formula * formula
| OR of formula * formula
| IMPLY of formula * formula
| NOT of formula

| BOX of formula

| FOR of string

| FALSE ;

For example, the following formulas:

e (OR (FOR "p", NOT (FOR "p")))

e (IMPLY (BOX (FOR "A"),BOX (BOX (FOR "A"))))

denote (p VvV —p) and (OA D OOA), respectively.

The data structure of tableau is defined as follows:
type name_of_rule = string ;

type node = formula list
formula list
formula list

formula list

* X ¥ X ¥

string list

string list ;
type history = formula list * formula list ;

datatype tree = Node of name_of_rule * node * history * tree list

| Leaf of formula list ;

For example, a tableau for p V —p is denoted as follows:

Node
("NOT-OR", ([NOT (OR (FOR "p",NOT (FOR "p")))1,[1,01,01,01,[1),Cd,L[D,
[Node
("NOT", ([NOT (NOT (FOR "p")>1,01,01,01,01,["p"1),([1,01),
[Node ("p",(01,01,01,01,0["p"1,["p"1),([1,01), [Leaf [FALSEI])1)ID)

This tableau is as follows:

94

Tﬁpa¢)<de> C;;)
P, p (ele)
9

Moreover, a tableau for [p D UUp is denoted as follows:

Node

("NOT-IMPLY",
(INOT (IMPLY (BOX (FOR "A"),BOX (BOX (FOR "A"))))1,01,01,01,01,01),

(f1,IH,

[Node
(vT", (L1, (FOR "A"]1,[],[BOX (FOR "A™)],[1,01),(1,[1),

[Node
("s4t", (1,01, [FOR "A"],[BOX (FOR "A™)I1,["A"1,[1),([1,[1),

[Node
(vT", (L1, (FOR "A"]1,[],[FOR "A"],[],[1),
([FOR "A"],[BOX (FOR "A™)1),

[Node
("S4S" , ([] , [] , [FOR "A"] , [FDR. "A"] , ["A"] , []) ,

([FOR "A"],[BOX (FOR "AM1),

[Node
(T, (01, [FOR "A"1,01,01,01,["A"D),

([FOR "A"],[FOR "A",BOX (FOR "A™)1),

[Node
("F",([1,01,[FOR "A"],[],["A"],["A"]),

([FOR "A"], [FOR "A",BOX (FOR "A™)1),
[Leaf [FALSEIDD DD

This tableau is as follows:

—(0A > O0A) (ele)
0A, ~O0A (e|e) (=2)
WA A -O0A (ele) (()54)
0A,-0A (JA|-O0A) (T)t
WA, A -0OA (OA|-O0A) (54
0A,-A (OA|-O0A, -OA) (T)S
WA, A -A (JA-O0A, -OA)
7 (f)

95

A.3 Hello, good—bye

A.3.1 Starting up

After invoking SML/NJ, type use "load.sml" to load all functions for our proof-search

procedure.

Standard ML of New Jersey, Version 110.0.3, January 30, 1998 [CM; autoload enabled]

- use "load.sml" ;

val it = () : unit

A.3.2 Quitting

As we know, type as follows:

- [CTRL-D]
h

A.4 Proof-search

A.4.1 Selecting logic

We can select logic from K, KD, KT, K4 and S4. Our targeting logic is determined by

a variable Logic, which can be the following value:

CPC : classical logic

K : modal logic K
KD : modal logic KD
KT : modal logic KT
K4 : modal logic K4
S4 : modal logic S4

The dafault value of Logic is CPC. To select other logic, type Logic := (logic) as follows:

- !Logic ;
val it = CPC : logic
- Logic := 54 ;

val it = () : unit
- !Logic ;
val it = S4 : logic

96

A.4.2 Sample dialogue

For proof-saerch, we use the function prove. If a proof-search succeeds, prove returns
a tableau, otherwise, it returns an exception UNPROVABLE. A sample dialogue for proof-
search is shown in the following:

- !Logic ;
val it = CPC : logic
- prove (OR (FOR "p", NOT (FOR "p"))) ;
val it =

Node

("NOT-OR", ([NOT (OR (FOR "p",NOT (FOR "p")))1,[1,01,01,01,01),(C01,[1),
[Node
("NOT", ([NOT (NOT (FOR "p")>1,01,01,01,01,["p"1), (01,01,
[Node ("F",([1,01,01,00,0"p"1,["p"1),([1,0]),[Leaf [FALSE]1)1)1)

: tree
- val axiom_k = IMPLY (BOX (IMPLY (FOR "A",FOR "B")),IMPLY (BOX (FOR "A"),BOX (FOR "B"))) ;
val axiom_k =

IMPLY (BOX (IMPLY (FOR "A",FOR "B")),IMPLY (BOX (FOR "A"),BOX (FOR "B")))

: formula

- prove axiom_k ;

uncaught exception UNPROVABLE
raised at: tableau_prover.sml:71.22-71.32
- Logic :=K ;
val it = () : unit
- prove axiom_k ;
val it =
Node
("NOT-IMPLY",
([NOT
(IMPLY
(BOX (IMPLY (FOR "A",FOR "B")),
IMPLY (BOX (FOR "A"),BOX (FOR "B™))))1,[1,[1,01,01,00),(01,[D,
[Node
("NOT-IMPLY",
([NOT (IMPLY (BOX (FOR "A"),BOX (FOR "B")))I1,
[IMPLY (FOR "A",FOR "B")1,01,[1,01,01),C01,0D),
[Node
("K",([1,[FOR "A",IMPLY (FOR "A",FOR "B")],[1,[FOR "B"1,[1,01),
(1,0,
[Node
("1MpPLY", ([IMPLY (FOR "A",FOR "B™)1,[1,[1,01,["A"1,["B"]),
aa,m,
[Node
("F",(01,0,01,01,C"A"1,C"A","B"]),([1,[1), [Leaf [FALSE]]l),
Node
(v, (01,00,00,00,CB", ™A], ["B"]),([]1,1),
[Leaf [FALSE]1)1)1)1)]1) : tree

97

A.5 Source codes

Source codes are shown in the following.

A.5.1 sources.cm

(%

% sources.cm
*)
Group is
utility.sml
formula.sml

tableau_tree.sml

tableau_prover.sml

98

A.5.2 1load.sml

% load.sml

*)

Compiler.Control.Print.printDepth := 5000 ;
Compiler.Control.Print.printLength := 5000 ;
Compiler.Control.Print.stringDepth := 5000 ;
Compiler.Control.Print.linewidth := 5000 ;

CM.make() ;

open Prover ;

99

A.5.3 utility.sml
(%

*

* utility.sml

*)

structure Utility =
struct

fun is_inset x ys = List.exists (fny => x =y) ys;
fun is_subset [] [| = true

| is_subset [] ys = true

| is_subset xs [| = false

| is_subset (x::xs) ys = (is_inset x ys) andalso (is_subset xs ys) ;
fun is_prop_subset xs ys = not (is_subset ys xs) ;

fun add x xs = if (is_inset x xs) then xs else (x :: xs) ;

fun elim (x, [J) =]
| elim (x, y::ys) = if x = y then elim (x, ys) else y :: (elim (x, ys)) ;

100

A.5.4 formula.sml
(%

*

* formula.sml

*)

structure Formula =

struct

datatype formula =
AND of formula * formula
| OR of formula * formula
| IMPLY of formula * formula
| NOT of formula
| BOX of formula
| FOR of string
| FALSE ;

fun len (AND (A, B)) =1+ (len A) + (len B)

| len (OR (A, B)) =1+ (len A) + (len B)

| len (IMPLY (A, B)) =1+ (len A) + (len B)
| len (NOT A) =1+ (len A)

| len (BOX A) =1+ (len A)

| len (FALSE) =1

| len (FOR A) =1;

fun get_longest As =
let
fun longest (A, la, []) = A
| longest (A, la, B::Bs) =
let
vallb =len B
in
if (la > = 1b) then
longest (A, la, Bs)
else
longest (B, 1b, Bs)

end

101

val top = hd As

mn

longest (top, len top, t1 As)

end ;

102

A.5.5 tableau_tree.sml

(%

% tableau_tree.sml

*)

structure Tree =

struct
open Formula ;

(x logics %)
datatype logic =
CpPC

| K

| KD

| KT

| K4

| 545

val Logic = ref CPC ; (x default logic x)

type node =

formula list % (* list of formulas to decompose)

formula list * (* list of active positive modalized formulas x)
formula list % (* list of inactive positive modalized formulas x)
formula list % (* list of negative modalized fromulas x)

string list * (* list of positive literals x)

string list ; (x list of negative literals x)

type name_of rule = string ;

type history = formula list * formula list ;
datatype tree =
Node of name_of_rule * node * history * tree list
| Leaf of formula list ;

val InitNode = ([}, [J, [], [, [I, []) : node ;

103

fun node_to_set (remains, active_posmod, inactive_posmod, negmod, poss, negs)
remains @
(map (fn A => BOX A) (active_posmod @ inactive_posmod)) @
map (fn A => NOT (BOX A)) negmod) @

(
(map (fn A => FOR A) poss) @
(map (fn A => NOT (FOR A)) negs) ;
end ; (¥ ————— End of structure ————— %)
(¢ —————————— EOF -————————— %)

104

A.5.6 tableau prover.sml
(%

*

*

tableau_prover.sml

structure Prover =

struct

open Utility ;
open Tree ;

exception NO_RULE ;
exception UNPROVABLE ;
exception T_SATURATED ;

(* history)
val InitHist = ([], []) : history ;

fun judge [] negs = false
| judge poss [] = false

| judge (pos::poss) negs = (is_inset pos negs) orelse (judge poss negs) ;

fun classical_rules A =

case A of
(AND (B, ©)) => ("AND", [[B, C]))
| (OR (B, ©)) => ("OR", [[B], [C]])

| IMPLY (B, C)) => ("IMPLY", [NOT B, [C]))
| (NOT (AND (B, C))) => ("NOT-AND", [[NOT B], [NOT C]])
| (NOT (OR (B, C))) => ("NOT-OR", [NOT B, NOT C]])
| (NOT (IMPLY (B, C))) => ("NOT-IMPLY", [[B, NOT C]))
| (NOT (NOT B)) => ("NOT", [[B]])
| - => raise NO_RULE ;
fun make_node []
(anode as (remains, active_posmod, inactive_posmod, negmod, poss, negs)) = anode
| make_node (A::As)

105

(anode as (remains, active_posmod, inactive_posmod, negmod, poss, negs)) =
case A of

(BOX B) =>

if (is_inset B active_posmod) then make_node As anode

else make_node As

(remains, B::active_posmod, inactive_posmod, negmod, poss, negs)
| (NOT (BOX B)) =>

if (is-inset B negmod) then make_node As anode

else make_node As

(remains, active_posmod, inactive_posmod, B::negmod, poss, negs)
| (FOR B) =>

if (is_inset B poss) then make_node As anode

else make_node As

(remains, active_posmod, inactive_posmod, negmod, B::poss, negs)
| (NOT (FOR B)) =>

if (is_inset B negs) then make node As anode

else make_node As

(remains, active_posmod, inactive_posmod, negmod, poss, B::negs)
| - =>

if (is_inset A remains) then

make_node As anode

else

make_node As

(A:remains, active_posmod, inactive_posmod, negmod, poss, negs) ;

fun apply_tableau
(anode as ([], active_posmod, inactive_posmod, negmod, poss, negs)) hist =
(if (judge poss negs) then
Node ("F", anode, hist, [Leaf [FALSE]])
else
(case ('Logic) of
CPC => raise UNPROVABLE
| K => tableau_modal rule K_KD
(active_posmod, inactive_posmod, negmod, poss, negs) hist
| KT => tableau_modal_rule KT
(active_posmod, inactive_posmod, negmod, poss, negs) hist
| KD => tableau_modal rule K_KD
(active_posmod, inactive_posmod, negmod, poss, negs) hist
| K4 => tableau_modal_rule_.K4

106

(active_posmod, inactive_posmod, negmod, poss, negs) hist
| S4 => tableau_modal rule_S4
(active_posmod, inactive_posmod, negmod, poss, negs) hist))
| apply-tableau
(anode as ((A::As), active_posmod, inactive_posmod, negmod, poss, negs)) hist =
(if (judge poss negs) then
Node ("F", anode, hist, [Leaf [FALSE]])
else
(let
val target = get_longest (A::As)
val (rule, newbranches) = ((classical_rules target)
handle NO_RULE => raise UNPROVABLE)
val remain = elim (target, A::As)
in
Node (rule, anode, hist,
map (fo b =>
apply_tableau (make_node b
(remain, active_posmod, inactive_posmod, negmod, poss, negs)) hist)
newbranches)
end))
and
(* K+ and KD+)
tableau_modal rule K_KD
(active_posmod, inactive_posmod, negmod, poss, negs) hist =
(let
val event = ([NOT (hd negmod)]
handle Empty =>
if ('Logic) = KD then [] else raise UNPROVABLE)
val new_posmod_event = active_posmod @ inactive_posmod @ event
val newnode =
if (null new_posmod_event) then
raise UNPROVABLE
else
make_node (new_posmod_event) InitNode

val rule = (case (!Logic) of

K => "K"
| KD => "Kp"
| KT => "K"

| - => raise NO_RULE)

107

in
Node (rule, ([], active_posmod, inactive_posmod, negmod, poss, negs), hist,
[apply_tableau newnode hist])
handle UNPROVABLE =>
let
(x elimination of loop by (KD))
val new_negmod = (tl negmod) handle Empty => raise UNPROVABLE
in
(tableau_modal_rule_ K_KD
(active_posmod, inactive_posmod, new_negmod, poss, negs) hist)
end
end)
and
(x T %)
tableau_modal_rule_T (active_posmod, inactive_posmod, negmod, poss, negs) hist =
(if (null active_posmod) then
raise T_SATURATED
else
let
val active = get_longest active_posmod
val new_active_posmod = elim (active, active_posmod)
val new_node =
make_node [active]
([, new_active_posmod, add active inactive_posmod, negmod, poss, negs)
in
Node ("T", ([], active_posmod, inactive_posmod, negmod, poss, negs), hist,
[apply_tableau new_node hist])
end)
and
(x KT+ %)
tableau_modal_rule KT
(anode as (active_posmod, inactive_posmod, negmod, poss, negs)) hist =
(tableau_modal_rule_T anode hist
handle T_SATURATED => tableau_modal rule_ K_KD anode hist)
and
(x (K44)t, (K4)s *)
tableau_modal _rule_K4
(anode as (active_posmod, inactive_posmod, negmod, poss, negs))
(hist as (valid, invalid)) =

108

(let
val event = (hd negmod) handle Empty => raise UNPROVABLE

val new_node =

make_node ((NOT event)::active_posmod) ([], active_posmod, [], [], [], [])
in
(if (is_prop-subset valid active_posmod) then
(x (K44)t)
let
val new_hist = (active_posmod, [event])
in
Node ("K4t", ([], active_posmod, inactive_posmod, negmod, poss, negs), hist,
[apply_tableau new_node new_hist])
end
else
if (is_inset event invalid) then
tableau_modal rule_K4
(active_posmod, inactive_posmod, tl negmod, poss, negs) hist
else
(x (K4+)s *)
let
val new_hist = (valid, add event invalid)
in
Node ("K4s", ([], active_posmod, inactive_posmod, negmod, poss, negs), hist,
[apply_tableau new_node new_hist])
end)
handle UNPROVABLE =>
tableau_modal_rule_K4
(active_posmod, inactive_posmod, tl negmod, poss, negs) hist
end)
and

(x (S4+)t, (S4)s *)
tableau_modal _rule_S4
(anode as (active_posmod, inactive_posmod, negmod, poss, negs))
(hist as (valid, invalid)) =
(tableau_modal_rule_T anode hist
handle T_-SATURATED =>

let

val event = (hd negmod) handle Empty => raise UNPROVABLE

val new_active_posmod = inactive_posmod

109

val new_node = make_node [NOT event] ([], new_active_posmod, [], [], [, [])
in
(if (is_prop_subset valid inactive_posmod) then
(* (S44+)t %)
let
val new_hist = (new_active_posmod, [event])
in
Node ("s4t", ([], active_posmod, inactive_posmod, negmod, poss, negs), hist,
[apply_tableau new_node new_hist])
end
else
if (is_inset event invalid) then
tableau_modal_rule_S4
(active_posmod, inactive_posmod, tl negmod, poss, negs) hist
else
(* (S4+)s)
let
val new_hist = (valid, add event invalid)
in
Node ("S4s", ([], active_posmod, inactive_posmod, negmod, poss, negs), hist,
[apply_tableau new_node new_hist])
end)
handle UNPROVABLE =>
tableau_modal rule_S4
(active_posmod, inactive_posmod, tl negmod, poss, negs) hist
end) ;

fun prove A = apply_tableau (make_node [NOT A] InitNode) InitHist ;

110

A.5.7 example.sml

Eamples of formulas are given in this file.
(%
*

*x example.sml

*)

local
open Formula

in
val A = FOR "A"
val B = FOR "B"
val C = FOR "C"
val D = FOR "D"

(* formulas *)

val AK = IMPLY (

val AD = IMPLY (BOX A, NOT (BOX (NOT A)))
val AT = IMPLY (BOX A, A)

val A4 = IMPLY (BOX A, BOX (BOX A))

val fl = OR (A, NOT A)

val 2 = IMPLY (IMPLY (IMPLY (A, B), A), A)

val 3 = OR (NOT (BOX (NOT (BOX A))), BOX A)
(* ——— 13 causes loops in S4 and K4 ——— x)

end ;

111

BOX (IMPLY (A, B)), IMPLY (BOX A, BOX B)) (x axiom K)

(x axiom D x)

(* axiom T x)

(x axiom 4 x)

(* exclusive middle x)
(x Peirce x)

(* unprovable x)

Appendix B

Theorem provers

In this chapter, we will give brief survey of some theorem provers. We can get information

on theorem provers from the following site:
http://www-formal.stanford.edu/clt/ARS/ars-db.html

In this site, a database of existing mechanized reasoning systems is shown. It is possible
to get a lot of informative knowledge on mechanized reasoning from the site. Next, we

will briefly show the following three theorem provers:
e The Logics Workbench (LWB)
e The Stanford Temporal Prover (STeP)

e X window system Proof Editor (xpe)

B.1 The Logics Workbench

The Logics Workbench (LWB) is developed at the University of Bern in Switzerland, and
it covers classical and non-classical propositional logics. The session with the LWB goes
interactively. The LWB is available from the following site:

http://www.lwb.unibe.ch/

B.2 The Stanford Temporal Prover

The Stanford Temporal Prover (STeP) is developed by the REACT research group of
Stanford University to support the computer—aided formal verification of reactive, real—
time and hybrid systems based on their temporal specification. The STeP is available

from the following site:

http://www-step.stanford.edu/

112

B.3 X window system Proof Editor

The X window system Proof Editor (xpe) is a proof assistant system developed by Mouri
of Tokyo Denki University. The xpe has a graphical user interface and is compatible
with a proof figure macros, called proof.sty, for XTEX. We can edit proofs with the xpe,
and formulas are input into the xpe in KTEX. Proof-search procedures for classical logic,
some modal logics and some substructural logics are implemented on the xpe. The xpe

facilitates writing proofs in [ATEXand is available from the following site:
http://www.jaist.ac.jp/ “mouri/

The proof figure macros proof.sty is developed by Tatsuta of National Institute of

Informatics in Japan and available from the following URL:

http://research.nii.ac.jp/ tatsuta/proof-sty.html

113

