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Abstract

Voice activity detection (VAD) is used to detect whether the
acoustic signal belongs to speech or non-speech clusters based
on the statistical distribution of the acoustic features. Tradi-
tional VAD algorithms are applied in a linear transformed space
without any constraint relating to the special characteristics
speech or noise. As a result, the VAD algorithms are not ro-
bust to noise interference. Considering that speech is a special
type of acoustic signal that only occupies a small fraction of the
whole acoustic space, we proposed a new speech feature ex-
traction method by giving constraints on the processing space
as a reproducing kernel Hilbert space (RKHS). In the RKHS,
we regarded the speech estimation as a functional approxima-
tion problem, and estimated the approximation function via a
regularized framework in the RKHS. Under this framework, we
could incorporate the nonlinear mapping functions in the ap-
proximation implicitly via a kernel function. The approxima-
tion function could capture the nonlinear and high-order statis-
tical regularities of the speech. Our VAD algorithm is designed
on the basis of the power energy in this regularized RKHS.
Compared with a baseline and G.729B VAD algorithms, ex-
perimental results showed the promising advantages of our pro-
posed algorithm.

Index Terms: Statistical learning, reproducing kernel Hilbert
space, voice activity detection

1. Introduction

Voice activity detection (VAD) is an algorithm that is used to
detect whether there exists speech events in an acoustic signals.
It is very important and widely used in speech communication
technologies, for example, speech recognition, speech enhance-
ment, and speech coding [1]. The task can be regarded as a
statistical detection problem for speech absence condition Hy
and speech presence condition H; as follows:

Ho:y(t) = v ()

Hi:y(t) = (t)+v(t); M

where y(t) is the observation signal, z(t) is the speech signal,
and v(t) is the non-speech signal (silence or background noise).
Based on Eq. (1), the speech and non-speech can be formulated
in a statistical inference problem as likelihood ratio test [2]. The
decision is made based on the assumption that speech and non-
speech signals are different in their statistical distributions. Al-
though the task is simple, it is a difficult problem in adverse en-
vironments because the background noise may degrade the sta-
tistical properties of the speech signals. Therefore, robust VAD
algorithms are required in real applications. The robustness of
an VAD algorithm means that the VAD can give decisions on
speech and non-speech close to a reference in clean as well as
in noisy environments. Generally speaking, for designing a ro-
bust VAD algorithm, two aspects must be considered, one is the
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noise robust speech features, i.e., in which domain the statistical
detection is applied as used in Eq. (1). The other is the selec-
tion of decision rules, i.e., what kinds of classifiers should be
used to discriminate speech from non-speech based on the fea-
tures [1, 2]. In this study, we mainly focus on the robust feature
aspect for VAD.

Several speech features have been used for VAD, for ex-
ample, the energy level, zero-crossing, pitch, linear prediction
coefficient (LPC) feature, and cepstral feature. Most of them
can work accurately in clean environments, but fail when the
background noise level increases. Recently, noise robust fea-
tures, for example, long temporal statistical features, periodic-
ity measure, and high-order statistics in the LPC residual space
were proposed for VAD in noisy environments [1, 4]. In or-
der to reduce the noise effect, noise reduction algorithms were
applied to speech enhancement, and the VAD was a byproduct
of the algorithms, for example, spectral subtraction, minimum
mean square estimation (MMSE) based noise reduction. Dur-
ing noise reduction, the VAD is used for updating the statistical
estimation of noise, and the estimated noise is used for signal
to noise ratio (SNR) estimation which is used for updating the
VAD. Furthermore, the dynamical state modeling for speech
was also used in designing the VAD, for example, the gener-
alized Autoregressive conditional heteroskedasticity (GARCH)
model, and switch Kanlman filtering [5, 3].

However, most of the current VAD algorithms are applied
in a linear transformed space that extracts the linear statistical
average or correlations of the acoustic signals, for example, the
energy level based VAD relies on the statistical mean estima-
tion of the waveform (first-order statistical information), and
the LPC or power spectrum feature based VAD is based on the
linear correlation estimation of the waveform (second-order sta-
tistical information). Speech is a special type of acoustic signal,
it is produced by the movements of articulatory organs with lin-
guistic structure. Its statistical characteristic is different from
that of noise, and only occupies a small fraction of the signal
subspace of the whole acoustic space. In traditional process-
ing space (via mapping functions), it is possible that the statis-
tical distributions of the speech and non-speech (or noise) are
overlapped since speech and noise may have similar linear or
low-order statistical structures. For designing VAD under noisy
environments, we must give constraints on the mapping func-
tions to get the subspace in which most of the speech infor-
mation is kept while the noise information is discarded. This
consideration is well fit to the functional approximation and
generalization problem in the machine learning theory. In this
study, we propose to use regularization theory similarly as used
in machine learning field to find mapping functions for VAD.
In addition, the mapping functions are chosen in a reproducing
kernel Hilbert space (RKHS), which is used to obtain nonlin-
ear and high-order statistical information of the data [6]. Our
experimental results showed the effectiveness of the proposed
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algorithm.

2. Signal approximation in a reproducing
kernel Hilbert space

The estimation of the clean speech signal from the observation
signal (speech distorted by exterior noise) can be regarded as
a learning problem with statistical inference to estimate a tar-
get function or predictive function for new testing samples. The
main goal for this problem is to select mapping functions from
a possible function sets in a functional space. A good choice of
the function should give good estimation or encode most infor-
mation of clean speech even in adverse noisy conditions. We
start to consider this problem by using learning theory. Mathe-
matically, we represent an observation as follows:

yi = f(xi) +e )

For this observation, we try to approximate or learn the
target function f(-) from an observation data set S
{(xi,4:) ;1 =1,...,1}, x; € R%is a vector, and y; € R is the
response or label information for classification tasks (we will
explain how to construct the data pair (x;, y;) from the noisy ob-
servations later). The finding of the function f(-) is an ill-posed
problem in statistical learning theory since there are many pos-
sibilities for the selection of the mapping functions if there is no
constraint on the functional space. In order to make the problem
to be well posed, we suppose that the f(-) is in a reproducing
kernel Hilbert space with a certain smoothness that can be used
to approximate the speech component as follows [7]:

gi=f(xi) = w'®(x;) 3)

where @(-) is a mapping function that maps a vector to a high
dimensional space, and w is the weighting coefficient vector
that uniquely determines the target function f(-). Hence the
problem is to find a mapping function f(-) by minimizing an
objective function H (f) as follows:

f* = argmin H (f)

- “

H(f)

1 ; (i — 1 ()2 EANFI

There are two components in the objective function H(f), i.e.,
the approximation error and the smoothness of the function
f(-). The ||f||% is the norm of the function in a reproduc-
ing kernel Hilbert space corresponding to a kernel matrix K
constructed from the training data set via the mapping function
®(-). The A is the regularization parameter to make a trade-
off between the approximation error and the smoothness of the
function. Based on the representer theorem [6], the solution
satisfies:

!

fF(x) =YK (x,%i) )
i=1

In Eq. (5), K (-, ) is the kernel function which creates a Gram

matrix K with elements defined as follows:

K (Xn,Xm) = ® (xn)" ® (xm) (6)

In real applications, we do not need to know the mapping func-
tion ®(-) explicitly. We only need to calculate the inner product
of the mapped vectors via kernel functions. The kernel func-
tions can be chosen as the Gaussian kernel function, or polyno-
mial function which are widely used in statistical learning field

[7].
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In Eq. (5), ¢; is the coefficient which depends on the train-
ing data samples. By using the representer theorem, the coeffi-
cient vector can be obtained by solving the problem in Eq. (4)
as follows [7]:

c=(K+NI) 'y,

where I is the identity matrix, the coefficient vector c
[c1,...,ci] ", and the observation vector y = [y1, ...,y " . For
learning a predictive or approximation function in Eq. (4) with
observation sequence y;, we reformulate the data in the form
of training data pair (x;,y;) with the input x formulated as
Xi = [Yi—p, Yi—p+1, .-, Yi—1], where p is the dimension of the
data vector. In our study, by implicitly choosing a nonlinear
mapping via a kernel function, we can approximate the signal
by keeping the nonlinear and high-order statistic information of
the signal in a regularized RKHS.

O]

3. Voice activity detection based on the
power energy in the reproducing kernel
Hilbert space

The power energy of speech signal is often used as one of the
most simple features for VAD algorithms. The power energy in
the original input space (waveform) for one frame is defined as

follows:
Al ! 2
E. == 2

For a zero mean signal, it is the variance of the signal. For
clean speech signal, it works quite well for VAD with energy
threshold methods. However, for noisy signal, the noise and
speech energies are mixed together, it is difficult to use this en-
ergy based method for VAD. Considering that the mapped sig-
nal in the RKHS, the speech information is well kept while most
of the noise information is discarded (due to the smoothness
constraint of the mapping functions), we can apply the simple
power energy threshold methods for VAD in the RKHS. From
Eq. (3), we can see that the mapped signal is uniquely deter-
mined by the coefficient w. The energy is defined as the norm
of the mapping function f(-) in the RKHS as follows:

®

A
ERKHs=||f||§( =wlw=cTKc 9)
Based on this definition of the power energy in the RKHS, we
can simply design a classifier for VAD. The performance of the

VAD is expected to be robust in noisy environments.

4. Evaluations

In this section, we test the performance of our proposed pro-
cessing for VAD, and compare the performance with those of
a baseline and the standard G.729B VAD algorithms [10]. In
our proposed algorithm, the polynomial function with degree
two is used for the kernel function in Eq. (6). The regulariza-
tion parameter A in Eq. (4) is set to be 0.5. In construction of
the Gram matrix K, we first make frame-based data vectors as
segments with 32 ms frame length, and 16 ms frame rate from
the observation sequence. Moreover, in each segment, the ker-
nel matrix is constructed by a moving shift window (length of
5 ms) with kernel function. The parameter setting for the base-
line experiment (energy level based VAD with Otsu’s method
for threshold selection) is the same as used in [9]. Before doing
the VAD experiments for detection rate evaluation, we show
some examples to see the effect of the discriminative ability
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Figure 1: Probability distributions of the log power energy of speech and non-speech in the original input space for the clean (upper-left)
and noisy (lower-left) utterances, in the regularized RKHS for the clean (upper-right) and noisy (lower-right) utterances.
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Figure 2: VAD for a clean speech in the original input space (left panel), and noisy utterance (SNR=10 dB) in the original input space

(middle panel) and the regularized RKHS (right panel).

between speech and non-speech after the proposed processing
intuitively.

4.1. Separability of the distributions between speech and
non-speech segments

One clean utterance and its noisy one with signal to noise ratio
(SNR) 10 dB (train noise) from CENSREC-1-C [11, 9] (con-
catenation of utterances) were used for VAD test. The utterance
has duration about 30 seconds. The speech and non-speech seg-
ments were first collected for the clean and noisy utterances
based on the reference VAD, respectively. Based on the col-
lected speech and non-speech segments, their distributions of
frame log power energy were estimated (normalized histogram
of the log energy distribution) in the original input space and
regularized RKHS, respectively. The separability of the distri-
butions between speech and non-speech segments can be used
as an index to predict the goodness of the VAD algorithm. The
distributions are shown in Fig. 1 for the original input space
(left column) and regularized RKHS (right column). Compar-
ing the two panels in the left column of Fig. 1, we can see that
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for the noisy condition in the original input space there are large
overlaps of the probability distributions between the speech and
non-speech clusters. Large misclassification will occur (large
false alarm for speech and non-speech detections) for the VAD
designed in this space. Comparing the two panels in the right
column of Fig. 1, we can see that even for noisy condition, the
good separability of the distributions between the speech and
non-speech clusters is kept well in the regularized RKHS. Intu-
itively, we can expect a robust VAD performance in this RKHS.

An example of the VAD results for a clean and noisy utter-
ances (SNR=10 dB) in the original input space and the regular-
ized RKHS are shown in Fig. 2. Comparing the VAD result
for clean speech (left panel) and noisy speech (middle panel),
we can see that in the original input space, several speech seg-
ments are not accurately detected in noisy environments. But as
shown in left panel of this figure, we can see that the detections
of speech segments are more accurate around the marked peri-
ods (the VAD results are labeled on the noisy waveform for the
convenience of comparison), i.e., in the regularized RKHS, the
performance of VAD is better than that of in the original input
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Figure 3: ROC curves of the VAD algorithms for high and low
SNR conditions.

space.

4.2. Voice activity detection experiments

In our VAD experiments, the CENSREC-1-C data corpus is
used which is a Japanese continuous data corpus (digit strings)
designed for testing VAD algorithms in noisy environments [9].
Two data sets, i.e., set A and set B, are used. Set A is composed
of four noisy conditions of subway, babble, car and exhibition
noise, and set B is composed of another four noisy conditions
of restaurant, street, airport, and station noise. In the testing,
two types of SNR conditions are used, i.e., high SNR condition
which is composed of noise conditions with SNR 20, 15, and 10
dB, and low SNR condition which is composed of noise condi-
tions with SNR 5, 0 and -5 dB. In each SNR condition, there
are 104 speech data files. The frame level evaluation measure is
used in testing the VAD algorithms. In this evaluation measure,
two indexes named as False Rejection Rate (FRR) and False
Acceptance Rate (FAR) are defined as follows:

A NFR

FRR= x 100

(%) (10)

s

A Nra

FAR= x 100

‘ (%) an

In Egs. (10) and (11), the Ns, Nins, N¥r, and Nga are the
total number of speech frames, the total number of nonspeech
frames, the number of speech frames detected as non-speech
frames, and the number of nonspeech frames detected as speech
frames, respectively. By varying the threshold as defined using
Otsu’s method [9], we calculate the VAD results, and measure
the performance based on the FRR and FAR. We average all
the results for all noise types for the high and low SNR con-
ditions. The final performance evaluation is represented as the
receiver operating characteristic (ROC) curve. For comparison,
the VAD in the original input space based on the Otsu’s method,
and G.729B VAD method [10] are also used. The results are
shown in Fig. 3. In this figure, the z-axis is the value of 100-
FAR, and the y-axis is the vaule of 100-FRR. From this figure,
we can see that in high SNR condition, the performance is al-
most similar for the baseline VAD and regularized RKHS based
VAD, as well as the G.729B VAD (only one diamond-point in
the 100-FAR and 100-FRR coordinate). In the low SNR condi-
tion, all the performances degrade compared with those in the
high SNR condition. The G.729B VAD (the star-point) per-
forms a little lower than that of the baseline VAD. Our pro-
posed VAD in the regularized RKHS, performs the best among
the compared three algorithms.
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5. Conclusion and discussions

In this study, we proposed an RKHS based method for VAD.
In the RKHS, we regarded the estimation of clean speech from
noisy observations as a functional approximation problem, and
by introducing the smoothness constraint of the mapping func-
tion in the RKHS, we could obtain a mapped space in which
most of the speech information is kept while noise informa-
tion is smoothed. Based on the algorithm in the RKHS, we
did not need the mapping function explicitly by only introduc-
ing a kernel function constructed from the observation signal.
By choosing the kernel function, we could easily incorporate
the nonlinear and high-order statistic information of the signal
in the features. Our preliminary experiments showed that the
proposed VAD algorithm could outperform the traditional VAD
algorithms.

In the proposed algorithm, several problems need to be fur-
ther investigated. First of all, the parameter selection problem,
for example, the regularization parameter A in Eq. (4), the ker-
nel function K (-,-) in Eq. (5). In our study, these parame-
ters were manually chosen with reference to the final VAD re-
sults. In addition, considering the non-stationarity problem of
the noise, we need to find an adaptive algorithm to update the
construction of the kernel matrix. In the future, we will further
develop our algorithm by considering all these questions.
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