JAIST Repository

https://dspace.jaist.ac.jp/

iUy UUg o

Title 000

Author(s) a, o0

Citation

Issue Date 2011-03

Type Thesis or Dissertation

Text version aut hor

URL http://hdl . handle.net/ 101119/ 9630
Rights

Description Supervisor: ggooo, oooooono, 00

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Efficient Block Distribution method for the
Hierarchical Cache Systems

Huh Younsuk (0910055)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 8, 2011

Keywords: Hierarchical cache, Block distribution, Multicore processor.

1 Background

Many modern cache designs use the Inclusion Property to manage their
hierarchical cache. Because the lower level cache always holds copies of the
upper layer cache, Inclusion property managed caches are very efficient in
reducing the cache coherence complexity[1], but has a drawback of using
extra cache capacity resources due to the redundant copies[2][3]. This was
not a problem in the case of a single core processor due to the fact that the
capacity of the lower level cache was very large compared to the capacity of
the upper level cache. But in the case of a multi-core processor that each
has an independent upper level cache, the total capacity of the upper level
cache cannot be negligible in comparsion to the lower level cache. On the
other hand, cache designs using the Exclusion Property makes the best use
of the lower cache capacity by eliminating redundant copies on the lower
level cache[2][3], but has a drawback of increased overhead in coherence
management due to the complexity|[1].

In this research I propose a method of block distribution for hierarchical
caches to achieve efficient use of cache resources and reduced overhead by
simple coherence management. I have implemented a simulator capable of
simulating the proposed method and the conventional method. Using the

Copyright (© 2011 by Huh Younsuk



simulator, I compared the results of the execution time and cache misses
to evaluate the efficiency of the proposed method.

2 Block distribution using locality information

In this research, I propose a method of distributing data to the cache levels
according to the data access patterns. Blocks that consist of data that have
frequent and long term accesses are likely to be referenced soon after they
have been evicted. Therefore, these blocks are distributed both to the
upper level cache and the lower level cache. Blocks that consist of data
that have infrequent accesses but have long term accesses are distributed
to the lower level cache, and are not distributed to the uper level cache to
avoid evicting blocks consisting of data with frequent accesses in the upper
level cache. To deal with the spatial locality of these blocks, theses blocks
are also distributed in the buffer. Blocks that consist of data that have
frequent accesses but do have long term accesses are distributed to the
upper level cache, and are not distributed to the lower level cache to avoid
evicting blocks consisting of data with long term accesses in the lower level
cache. Blocks that consist of data that are accessed only a few times are
not distributed to the caches to avoid evicting blocks consisting of data
with higher access rates. To deal with the spatial locality of these blocks,
theses blocks are distributed to the buffer. Blocks containing data shared
among processors are always distributed to the lower level cache to simplify
the coherency management. Distribution to the upper level cache depends
on the previously described access patterns. The proposed method uses
a buffer memory. The buffer is accessed in parallel with the upper level
cache, and deals with blocks consisting of data only with spatial locality.
Therefore, a small buffer size consisting of only a few blocks is sufficient
for this matter. We assume the size of the buffer able to have equivalent
or faster access time in comparsion to the upper level cache.

3 Simulation

To evaluate the efficiency of the proposed method, I have implemented a
multicore(2core) processor simulator capable of simulating the proposed

2



method. The implemented simulator is based on a SPARC architecture
version 8 instruction set[4]. The cache memory of the simulator is a hi-
erarchy cache consisting of separated instruction / data L1 caches and a
shared L2 cache with an additional data buffer. The SPLASH-2[5] ker-
nel programs were used for the evaluation. Simulation of the benchmark
programs was performed by executing two programs simultaneously, and
by executing a single parallel program. The performance is illustrated by
comparing the execution time and cache misses of the proposed method
and conventional method.

4 Conclusion

In this research I proposed a method of efficient block distribution to reduce
loss in capacity by redundant copies in Inclusion property caches, and
solve complex coherence management in Exclusion property caches. Also,
I have illustrated the efficiency of the proposed method by implementing a
simulator of the proposed method and executing benchmark programs on
the simulator.

References

[1] J.-L. Baer and W.-H. Wang. On the inclusion properties for multi-level
cache hierarchies. SIGARCH Comput. Archit. News, 16:73-80, May
1988.

[2] Ying Zheng, B. T. Davis, and M. Jordan. Performance evaluation of
exclusive cache hierarchies. In Proceedings of the 2004 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software,
pages 89-96, Washington, DC, USA, 2004. IEEE Computer Society.

[3] Manoj Franklin Mohamed M. Zahran, Kursad Albayraktaroglu. Non-
inclusion property in multi-level caches revisited, June 2007.

[4] The SPARC' Architecture Manual, 1991,1992.

[5] Stanford parallel applications for shared memory (splash-2).



