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Abstract

Algebraic denotational semantics (ADS) is our approach to describe the semantics of an
imperative programming language in the order sorted equational logic. Using CafeOBJ,
an algebraic specification language, the syntax of an imperative language, Minila, is spec-
ified into modules of sorts, operators and rewriting rules, and its algebraic semantics
are specified by the Environment. The compiler of Minila language is also specified into
a module whose rewriting rules describe the transformation from Minila programs into
sequences of machine instructions. In addition, the semantics of machine language is con-
sidered to guarantee the semantics preservation of the Compiler. The main part of our
research is verifying the correctness of compiler for Minila language using CafeOBJ proof
assistant.

Keywords: ADS, CafeOBJ, Minila, compiler, semantic preservation, correctness, En-
vironment, verification, proof score
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Chapter 1

Introduction

1.1 Background

1.1.1 Imperative Programming Language

“In computer science, imperative programming is a programming paradigm that describes
computation in terms of statements that change a program state. In much the same way
that imperative mood in natural languages expresses commands to take action, impera-
tive programs define sequences of commands for the computer to perform”1. This is one
definition about the imperative programming language. Nowadays, imperative program-
ming languages are utilized widely in the computer industry for calculations with many
examples such as FORTRAN, ALGOL, COBOL, Pascal, C, BASIC, Ada and many more.

A program of imperative language normally is a sequence of order statements, in which
each statement is computed in turn. A storage contains the state before a program
executed is an essential feature of an imperative language. The values, results of the
execution, are usually put into this storage. The storage is an abstract entity which
associates values with the variables of imperative language. A initial state of programs
could be described by variables and the values. After executed, the results could be
accessed from these variables. An imperative language certainly supports some kinds of
statements including assignment, sequential, conditional, iterative, procedure calls etc.

There are many approaches to describe the semantics of imperative languages which can
be divided into three groups: operation, axiom and denotation. An operational semantics
describes the meaning of an imperative languague by describing a way of executing its
programs. This could be done by giving an interpreter or a compiler for the language. In
axiomatic approaches, programming language features are defined by writing axioms in
some logical system. First order logic is the most popular, since it is the logical system
most widely used in mathematics and its foundations. And the last one, denotational
approaches build models of language features, these models are called denotations. The
denotation of an imperative program is constructed by composing the denotations of sub
components.

1http://en.wikipedia.org/wiki/Imperative programming language

5



1.1.2 Algebraic Denotational Semantics

Our approach might be called algebraic denotational semantics [9] which is abbreviated
as ADS. This approach combines aspects of denotational, axiomatic and operational se-
mantics. The denotational aspect arises because everything specified has a denotation
in an algebra; the axiomatic aspect arises from the fact that we specify these algebras
using equations; and the operational aspect arises from the fact that we symbolically ex-
ecute programs using the term rewriting facility of OBJ, a famous algebraic specification
language.

If an imperative programming language is specified as a model which is denoted by a
Program algebra and the storage of this language is denoted by a Store algebra, then the
semantics of this language which described in ADS will be formalized as follows

Formalization 1.1.1 ; : Store Program → Store

The ”:” notation separates the syntax of operation which declared by ” ; ” and the
rest of fomulas. In the form of the ” ; ” operation, the underbars are place holders that
indicate where input entities of algebra Store and Program go, respectively. The ”→”
notation indicates that entities on the left are the input algebras and one entity on the
right (Store) is the output algebra.

Intuitively, when an imperative programming language is considered with respect in a
storage, the behaviours of this program will effect on the state of the storage. In the ADS
context, the formalization 1.1.1 shows that after the Program is considered with respect
to the left Store, semantics of this Program is specified by the right Store.

In this document, we will consider the CafeOBJ specification language in order to
specify the algebras semantics of an imperative programming language and a storage.
Moreover, it could be used to verify properties of this languague.

1.1.3 CafeOBJ

CafeOBJ [3] is a most advanced formal specification language which is an implementation
of OBJ algebraic specification language. It inherits many advanced features from OBJ
such as flexible mix-fix syntax, powerful and clear typing sytem with ordered sorts, pa-
rameterised modules and views for instantiating the parameters and module expressions.
CafeOBJ is a language for writing formal specifications of models for wide varieties of
software and systems. Because of an executable language, properties of systems could be
verified by writing and executing proof scores in CafeOBJ.

In order to specify imperative language, we introduce to some basic denotations in
CafeOBJ language. Now, we begin with the signature, a collection of sorts and operation’s
declarations.

Example 1.1.3.1 Let’s consider the signature of the data type of natural number which
is defined by Peone.

mod! BASIC-NAT {
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[Zero NzNat < Nat]

op 0 : -> Zero {constr}

op s : Nat -> NzNat {constr}

...

In this example, Zero and NzNat are sorts which denote zero number and non zero number,
respectly. Intuitively, zero or non zero numbers are all considered as general natural
numbers, therefore Zero and NzNat are subsorts of the Nat, generall natural numbers,
and the subsort relation is denoted by the ”<” symbol. This is the order sorted
signatures feature of CafeOBJ language.

The succesor of a natural number is a non zero number which is declared

op s : Nat -> NzNat {constr}

where CafeOBJ keyword ”op” indicates that the syntax of an operation is being declared,
with the output sort after the ”→” and the input sorts listed between the ”:” and the
”→”. The s is called a pre-fix operator (function) of CafeOBJ. There are other structures
such as the in-fix, post-fix and mix-fix syntax. In this document, the in-fix and mix-fix
operators are mainly used, an example is showed as follows,

op _=_ : Nat Nat -> Bool

op if_then_else_fi : Exp Stm Stm -> Stm

We will explain in detail these operators in next sections.
Modules are the basic building blocks of CafeOBJ. Roughly, a module is a CafeOBJ

structure which contains sorts, operation’s declarations (operators) and re-writing rules.
Modules usually specify models, the denotations of algebras in CafeOBJ lanuguage.
CafeOBJ also supports the parameterized modules feature, a module might have many
parameters, and the importation feature, one module could import other modules.

Example 1.1.3.2 A basic natural number only has data sorts and comparation opera-
tions. It’s specified by a module as follows,

mod! BASIC-NAT {

[Zero NzNat < Nat]

op 0 : -> Zero {constr}

op s : Nat -> NzNat {constr}

--

op _=_ : Nat Nat -> Bool {comm}

op _<_ : Nat Nat -> Bool

-- _=_

eq (0 = s(N:Nat)) = false .

eq (N:Nat = N) = true .

eq (s(M:Nat) = s(N:Nat)) = (M = N) .

-- _<_

eq (N:Nat < N) = false .
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eq 0 < s(N:Nat) = true .

eq s(M:Nat) < 0 = false .

eq s(M:Nat) < s(N:Nat) = M < N .

}

A operation declared by op sentences is defined by some re-writing rules. Re-writing
rules, the sentences begining with a ”eq” keyword specify the semantic or meaning of
operations. In above example, three re-writing rules,

eq (0 = s(N:Nat)) = false .

eq (N:Nat = N) = true .

eq (s(M:Nat) = s(N:Nat)) = (M = N) .

specify the semantics of equations between two numbers.
Using CafeOBJ, an imperative language is constructed from many components, each

component is a algebra which denoted by a model. These models will be specified into
modules. However, we will show in detail specifications of each module in next chapter.
Now, we introduce one important component of an imperative language which is called
”compiler”.

1.1.4 Compiler

There are gaps between the natural language of humanity and the language for comput-
ers (the computer code). Therefore, it’s very difficult for people to write and understand
programs using computer codes. In order to make the programming more simple, pro-
gramming language should be built close to the human language (high level language).
After that, written programs will be transform into the languages that computer could
understand (low level language). The transformation may occur in many steps from
high level to low level languages. Each step of transformation is done by a program
called ”Compiler”. Because the intention of programmer is described by programming
languages but the execution is done by computer languages, there might have a differ-
ence when transforming. As a result, Compilers must sure that the intention is preserved
at computer language. This is a big challenge for building a Compiler of programming
language.

A compiler of an imperative programming language is a program which transforms
programs writing in the imperative language(the source language) into another computer
language (the target language). One significant property of a compiler is that the target
language preserves the semantics of the source language and it’s called the correctness.
Nowadays, almost all imperative languages have own compilers, therefore verifications of
the compiler’s correctness become very important. Many approaches were proposed and
we now consider an appoach which is first introduced by Morris [1].

In this diagram, the nodes are algebras and the arrows are homomorphisms. Not
only the source, target languages but also the source, target semantics are specified into
algebra modules. The compiler which translates the source language into target language
is defined by equations which are specified by re-writing rules in CafeOBJ. The notation ψ
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source
language

target
language

source
semantics

target
semantics

compiler

decoding

ψ φ
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�

Figure 1.1: The Morris Correctness Diagram

and φ used to specify the algebraic semantics of the source and target language, respectly
are also defined by equations that specified by re-writing rules. The decoding arrow means
that the semantic of a target program will represent in some adequate way the semantic
of the corresponding source program (and not require it to be exactly the same), and this
is a definition about the correctness of a compiler for an imperative language.

In the Morris diagram, the source an target are theoretical languages that might accept
a program containing unlimited statements. However, in practice, the number statements
of a giving source program is finite. Moreover, a Compiler must sure that all source
programs that be transformed into target programs will terminate with limited time.
Compiler could be seen as a total function in mathematics. In contrast, the ψ and φ are
partial functions, they might not return the value (not be terminated) depending on the
condition of source programms and target programs. The non-termination of ψ and φ
execution will be considered carefully in this research.

In the next section, we define an imperative programming language which is called
Minila. And in detail, we will consider the correctness diagram of Minila’s Compiler
which based on the idea of the Morris’s diagram.

1.2 Minila

1.2.1 Definition

Minila (Mini-language) is an imperative programming language. It’s quite simple but
having many essential features of an imperative language. In this document, Minila
language is considered as the ”source” language in the Morris’s diagram (Figure 1.1)

Minila has a storage which contains variables and corresponding values, the data value
is only the natural number. CafeOBJ’s specification of the storage is called Environment,
which is a list of pairs of a variable and a natural number. The objects of natural number,
variable and Environment are specified into BASIC-NAT, VAR and ENV modules, respectly.
Minila also has expressions which are constructed from natural numbers, variables or
combinations of two expressions. The combinations of expressions are addition (denoted
by ++ symbol), subtraction (−−), multiplication (∗∗), division (//), modulo (%%) and
comparations including equal (===), not equal (! ==), less than (<<), greater than
(>>), and (&&), and or (||). The expression object is specified into the EXP module.

Minila language supports some statement structures of an imperative programming
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language including empty statement, assignment, sequential, conditional and iterative
statements. A Minila program is a list of statements which has form such as S1 S2 · · ·Sn.
Statement Si could be one of structures as follows

+ estm (empty statement)

+ v(i) := E ; (assignment statement)

+ if E then Sa else Sb fi (conditional statement)

+ while E do S od (iterative statement)

+ for v(i) from Ea to Eb do S od (iterative statement)

+ repeat S until E (iterative statement)

In above structures, v(i) is a varible with the index i, E,Ea, Eb are expressions and
S, Sa, Sb are statements. The statement object of Minila is specified into a STM module.
The empty statement of Minila does nothing, it means that the semantics of programs
will not be changed when this statement is executed.

This is an example of a Minila program, which is written in CafeOBJ language

v(0) := 0 ; v(s(0)) := s(0) ; while v(0) << s(s(s(0))) do

v(0) := v(0) ++ s(0) ;

v(s(0)) := v(s(0)) ** v(0) ;

od .

The program is created from three statements, two assignment and one while statements.
The while statement contains two assignment statements inside. When this program
is executed, one component of Minila language, called Interpreter, directly describles
the semantics of each statement of this program into Environment. The Environment
containing semantics of this program is as follows,

((< v(s(0)) , s(s(s(s(s(s(0)))))) >) | ((< v(0) , s(s(s(0))) >) |

((< v(s(0)) , s(s(0)) >) | ((< v(0) , s(s(0)) >) |

((< v(s(0)) , s(0) >) | ((< v(0) , s(0) >) |

((< v(s(0)) , s(0) >) | ((< v(0) , 0 >) | empty))))))))

A Machine language that defined as sequences of machine instructions is determined
as a ”target” language in the Morris diagram (Figure 1.1). Intuitively, instructions of the
Machine language are divided into three groups. The data modification group contains
{push,load,store} instructions. The mathematical operation contains {multiply,divide},
{mod,add,minus,lessThan,greaterThan,equal,and,or} instructions. The control group
contains {jump,bjump,jumpOnCond,quit} instructions, especially the ”quit” instruction
is added at the end to terminate Machine programs. The Machine instructions of the
above Minila program is as follows,
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(push(0) | (store(v(0)) | (push(s(0)) | (store(v(s(0))) | (load(v(0)) |

(push(s(s(s(0)))) | (lessThan | (jumpOnCond(s(s(0))) |

(jump(s(s(s(s(s(s(s(s(s(s(0))))))))))) | (load(v(0)) | (push(s(0)) | (add |

(store(v(0)) | (load(v(s(0))) | (load(v(0)) | (multiply | (store(v(s(0))) |

(bjump(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))) |

(quit | nil)))))))))))))))))))

Similar to Minila language, the Machine language requires a Virtual Machine to describe
the semantics of its programs. After executed, the Environment returned by the Virtual
Machine has the value as same as the above Environment of the Interpreter. In this
example, two returned Environments are semantically equivalent.

1.2.2 The correctness of Minila’s Compiler

Compiler of Minila must sure that a sequence of machine instructions that generated
from a Minila program preserves the semantic of this program. However, the semantics
of Minila programs and machine instructions are specified into Environments by apply
Interpreter and Virtual Machine, respectly. Therefore, verifying the correctness of Com-
piler in particular is just comparing two Environments of corresponding Minila program
and machine instructions. The Compiler’s correctness is defined as follows

Definition 1.2.1 When a machine instruction sequence is generated from an arbitrary
Minila program, the Compiler must satisfy that the Environment returned from execution
of this program by Interpreter is semantically equivalent to the Environment returned from
execution of corresponding instruction sequence by Virtual Machine.

This definition is illustrated by the following diagram,

Minila
programs

Machine
Instructions

Environment Environment

Compiler

compile

≡

interpret Interpreter vm Virtual
Machine

⊙
⊙ ⊙

⊙
??

-

�

Figure 1.2: The Correctness of Minila’s Compiler Diagram

In this diagram, all nodes are algebras which are specified by CafeOBJ modules and the
arrows denote algebraic functions. Using CafeOBJ specification, the arrows are specified
into Interpreter, Compiler and Virtual Machine modules that contain re-writing rules
defined the meaning of interpret, compile and vm functions, respectly. The ”≡” symbol
means the semantic equivalence between two Environments. On other words, it indicates
the correctness of Compiler for Minila language.
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1.3 Motivation

As mentioned in the background section, the imperative programming language and its
compiler have signification role in the computer science. Compiler verification is big chal-
lenge of high-assurance software. In this document, we attempt to verify the correctness
of compiler for Minila language. The research utilizes CafeOBJ language for specification
and verification. The specific objectives are as follows,

• Specify the Minila language and its components.

The Compiler, Environment, Interpreter, Virtual Machine etc.

• Formalize the correctness of Compiler.

• Verify the correctness property by conducting proof scores.

The successfull verification will be an important evidence for the compiler verification of
imperative programming language.

This document contains 4 chapters. Chapter 1 introduces the background, the Minila
and the motivation. Chapter 2 shows specifications of the Minila and its components in
detail. Chapter 3 demonstrates the main part of this research, verifying the correctness
of Compiler for Minila language. And chapter 4 shows the conclusion.

12



Chapter 2

Specification

2.1 Previous Works

Before showing specifications, we should mention agains previous achievements. In pre-
vious works, we verified the correctness of Compiler for expressions of Minila language.
Because just focused on the expression aspect, the specifications and verifications are too
limited. The storage feature of imperative language (the Environment) did not consider
in previous specifications. Expressions were be evaluated without the information of En-
vironment. In summary, the current specifications and verifications are too different with
that of previous works. We will show the differences in next sections, but now we continue
showing current specifications.

2.2 Specifications

In the example 1.1.3.2, the BASIC-NAT module doesn’t declare combinations of many
natural numbers. However, we need some arithmetic operations for further evaluations,
hence the PNAT module is constructed as follows,

mod! PNAT principal-sort Nat {

pr(BASIC-NAT)

--

op _+_ : Nat Nat -> Nat {comm assoc}

op _*_ : Nat Nat -> Nat {comm assoc}

op sd : Nat Nat -> Nat

op _quo_ : Nat NzNat -> Nat

op _rem_ : Nat NzNat -> Nat

-- _+_

eq 0 + N:Nat = N .

eq s(M:Nat) + N:Nat = s(M + N) .

-- _*_

eq 0 * N:Nat = 0 .

13



eq s(M:Nat) * N:Nat = N + (M * N) .

-- sd

eq sd(0,N:Nat) = N .

eq sd(s(M:Nat),0) = s(M) .

eq sd(s(M:Nat),s(N:Nat)) = sd(M,N) .

-- quo

eq M:Nat quo s(N:Nat) = (if M < s(N) then 0 else s(sd(M,s(N)) quo s(N)) fi) .

-- rem

eq M:Nat rem s(N:Nat) = (if M < s(N) then M else sd(M,s(N)) rem s(N) fi) .

}

Using the importation feature, pr(BASIC-NAT), the PNAT module inherits all properties
of the BASIC-NAT. It also declares some arithmetic operators, ”+” for the addition, ”*”
for the subtraction, sd for the symmentric difference, quo for the division and rem for the
modulo.

In the PNAT module, the quo is specified with the second input belongs NzNat sort, it
means the divisor of division is not zero. A divisor equals zero is an exception case in
PNAT; the same things also exist for the rem operator. In this document, these exeptions
will be ignored because natural numbers only used for specifying the values. Therefore,
the value of data should be well-defined and in general, its exceptions could not effect on
the exceptions of Minila language.

2.2.1 Minila language

When considering the whole language, the role of Enviroment is very important, effecting
not only on the initial state but also the semantics of programs. Therefore, we have to
refine previous works, as well as adding the effects of Environment into Minila’s specifi-
cations. Let’s begin with a basic component of Minila language, the variable.

Variable

A function v(i) with the index i is a natural number determines the name of Minila’s
variables. The variable is specified as follows,

mod! VAR {

pr(BASIC-NAT)

[Var]

--

op v : Nat -> Var {constr} .

op _=_ : Var Var -> Bool {comm} .

eq (V:Var = V) = true .

eq (v(N1:Nat) = v(N2:Nat)) = if (N1 = N2) then true else false fi .

}

14



Note 2.2.1. We use upper case letters to distinguish objects’ name. Names with all upper
case (i.e. VAR) are module’s names but names with first upper case (i.e. Var) are sort’s
names.

Variable requires natural numbers to index its name. An index is just a basic number
which does not contain arithmetic operations, hence the BASIC-NAT is imported into the
VAR module replaced for the PNAT. The operator v specifies the function v(i) and it’s the
form of sort Var. Therefore, we use the ”constr” attribute of CafeOBJ, constructure of
a sort, for the v operator.

The name of variables could be compared by using the = operator. The equation
between two names has the commutativity property, so it’s declared with comm attribute.
Two names are determined same if both are similar or having a same index, and this
meaning is already defined by re-writing rules. However, a Minila variable is a pair of the
name and its value, hence it’s specified by a module called ”Entry”.

Entry

mod! ENTRY principal-sort Entry {

pr(BASIC-NAT) pr(VAR)

[Entry]

--

op <_,_> : Var Nat -> Entry

op _=_ : Entry Entry -> Bool {comm} .

-- equations

eq (< V1:Var , N1:Nat > = < V2:Var , N2:Nat >) = ((V1 = V2) and (N1 = N2)) .

}

The value of a variable is also a basic natural number, so the BASIC-NAT is imported.
Two variables are determined equal if they have the similar name and the same value.

Expression

A Minila expression is defined as a natural number, a variable or the combinations of
expressions. It is specified as follows

mod! EXP {

pr(BASIC-NAT) pr(VAR)

[Nat Var < Exp ]

[Exp ExpErr < ExpFull]

--

op exp-err : -> ExpErr

--

op _=_ : ExpFull ExpFull -> Bool {comm} .

eq (E:ExpFull = E) = true .

eq (E:Exp = exp-err) = false .
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-- _++_

op _++_ : Exp Exp -> Exp {l-assoc prec: 30}

-- _--_

op _--_ : Exp Exp -> Exp {l-assoc prec: 30}

-- _**_

op _**_ : Exp Exp -> Exp {l-assoc prec: 29}

-- _//_

op _//_ : Exp Exp -> Exp {l-assoc prec: 29}

-- _%%_

op _%%_ : Exp Exp -> Exp {l-assoc prec: 29}

-- _===_

op _===_ : Exp Exp -> Exp {l-assoc prec: 31}

-- _!==_

op _!==_ : Exp Exp -> Exp {l-assoc prec: 31}

-- _<<_

op _<<_ : Exp Exp -> Exp {l-assoc prec: 31}

-- _>>_

op _>>_ : Exp Exp -> Exp {l-assoc prec: 31}

-- _&&_

op _&&_ : Exp Exp -> Exp {l-assoc prec: 32}

-- _||_

op _||_ : Exp Exp -> Exp {l-assoc prec: 32}

}

In the EXP module, the Nat and Var are subsorts of the Exp which denotes expressions.
Consequently, every instants belong Nat or Var are considered as expressions. Moreover,
an expression is the combination of two expressions by many operations which denoted by
{ ++, −−, ∗∗, //, %%, ===, ! ==, <<, >>, &&, || } operators. In order that opera-
tors of the natural number don’t appear inside expressions, the EXP imports the BASIC-NAT
module replace for the PNAT. It means that expressions containing ”{+, sd, ∗, quo, rem}”
will cause errors.

When the complex combinations of many expressions with different kinds of operators
are evaluated, the operators need associativity and precedence propterties. In the EXP,
they are specified by l-assoc (left associativity) and prec: attributes. The number
after prec: is bigger, the precedence of corresponding operator is lower. For example,
e1 ++ e2 ∗∗ e3 // e4 is evaluated as (e1 ++ ((e2 ∗∗ e3) // e4)) with e1, e2, e3, e4 are
expressions.

Intuitively, the Minila expressions have the data type is natural numbers. Therefore,
there are exceptions (i.e. second input of the ”//” operator equals zero) when we evaluate
combinations of the expressions. We will consider in detail methods for exceptions at sec-
tion 2.4. The value of a Minila expression is evaluated with respect into an Environment,
hence the semantics of operations are not defined by re-writing rules in the EXP. It’ll be
evaluated inside the Interpreter and the Compiler which will be shown in next sections.
Now, we consider basic structures of Minila programs, the Statement.
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Statement

From the definition 1.2.1, the syntax structure of Minila statements are formilized into
operators in CafeOBJ. However, the empty statement is determined as a constant, an
operator without input sorts. The specification in STM module is as follows,

mod! STM {

pr(EXP)

[Stm]

--

op estm : -> Stm {constr} . -- empty statement

op _=_ : Stm Stm -> Bool .

--

eq (S:Stm = S) = true .

-- assignment statement

op _:=_; : Var Exp -> Stm {constr}

-- if statement

op if_then_else_fi : Exp Stm Stm -> Stm

-- while statement

op while_do_od : Exp Stm -> Stm

-- repeat statement

op repeat_until_ : Stm Exp -> Stm

-- for statement

op for_ from _ to _do_od : Var Exp Exp Stm -> Stm

-- sequential statement

op (_ _) : Stm Stm -> Stm {r-assoc id: estm}

}

The empty and assignment statement are considered as the basic structure of Minila’s
statements because their structures do not depend on other statements. Therefore, they
are declared with the constr attribute.

The sequential statement, denoted by ”( )”, describes that two statements are consti-
tuted as a statement with the r-assoc (right associativity) attribute. The id (identity)
attribute is estm means that two empty statements are constituted an empty statement.
Intuitively, with definition of the sequential statement, a list of statetements are consid-
ered as a statement. Comparing with the definition that a Minila program is a list of
statement, we have the following definition.

Formalization 2.2.1 A Minila program is considered as a Minila statement.

A program ⇐⇒ A statement

From now, a statement is used to instead of Minila programs. And the correctness of
Compiler for Minila programs becomes the correctness of Compiler for the statements,
which will be mentioned in detail in further sections.
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2.2.2 Environment

The Environment model is a denotation of the Store entity in the formalization 1.1.1.
The Environment contains variables and the data values which is utilized to describe the
semantics of Minila programs. Therefore, the semantic of a program is specified with
respect into an Environment.

An implementation of the Environment model is a list of pairs of variables and the
values, hence before considering the specification of Environment, we should refer to
specification of a general list, which is specified in a LIST module as follows,

mod! LIST (M :: EQTRIV) {

pr(PNAT)

[Nil NnList < ListNormal]

[ListNormal ListErr < ListHalt]

[ListHalt ListNonHalt < List]

--

op nil : -> Nil {constr} .

op list-err : -> ListErr {constr} .

op list-non-halt : -> ListNonHalt {constr} .

op _|_ : Elt.M ListNormal -> NnList {constr} .

--

op _=_ : List List -> Bool {comm}

op _@_ : ListNormal ListNormal -> ListNormal {assoc}

op nth : ListNormal Nat -> Elt.M

op len : ListNormal -> Nat

-- _=_

eq (nil = (X:Elt.M | L:ListNormal)) = false .

eq ((X:Elt.M | L:ListNormal) = (Y:Elt.M | L1:ListNormal)) =

if (X = Y) then L = L1 else false fi .

eq (L:List = L) = true .

eq (L:ListNormal = list-err) = false .

eq (L1:ListHalt = list-non-halt) = false .

-- _@_

eq nil @ L:ListNormal = L .

eq (X:Elt.M | L1:ListNormal) @ L:ListNormal = X | (L1 @ L) .

-- nth

eq nth((X:Elt.M | L:ListNormal),0) = X .

eq nth((X:Elt.M | L:ListNormal),NN:NzNat) = nth(L,sd(NN,s(0))) .

-- len

eq len(nil) = 0 .

eq len(X:Elt.M | L:ListNormal) = s(0) + len(L) .

eq len(L1:ListNormal @ L:ListNormal) = len(L1) + len(L) .

}

The LIST module is a parameterized module [3]. LIST is a general list, which has one
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parameter declared as M::EQTRIV. The M is specified as an abstract element of EQTRIV

module which has the Elt sort and the = operator,

mod* EQTRIV {

[Elt]

op _=_ : Elt Elt -> Bool .

}

The sort hierachy of LIST is quite complicated

[Nil NnList < ListNormal]

[ListNormal ListErr < ListHalt]

[ListHalt ListNonHalt < List]

because it’s used to describe the Environment Hierachy as section 2.2
An element of List sort is the nil (an empty list) or the | syntax and these forms are

determined as constr forms. Other constr forms including list-err and list-non-halt

are determined as exception cases which are used for section 2.4.
The general LIST supports some operations, the = for equations, the @ for combinations

of lists, the nth outputs the first element of a given list, and the len calculates the number
elements of a given list.

A view is a mapping from the EQTRIV into the ENTRY module

view EQTRIV2ENTRY from EQTRIV to ENTRY {

sort Elt -> Entry,

op (_=_) -> (_=_)

}

and be used as an instant replaced for the parameter M. The general List now, becomes a
list of Entrys and it’s an implementation of the Environment which is specified as follows

mod! ENV principal-sort Env {

pr(PNAT) pr(EXP)

pr(LIST(EQTRIV2ENTRY) * {

sort Nil -> Empty,

sort List -> Env,

sort ListNonHalt -> EnvNonHalt,

sort ListHalt -> EnvHalt,

sort ListNormal -> EnvNormal,

sort ListErr -> EnvErr,

op nil -> empty,

op list-err -> env-err,

op list-non-halt -> env-non-halt

})

--
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op update : Var Nat EnvNormal -> EnvNormal

op update : Var ExpFull Env -> Env

--

op lookup : Var EnvNormal -> ExpFull .

-- update: insert into Env even if the variable already .

eq update(V:Var,Exp:Exp,env-err) = env-err .

eq update(V:Var,Exp:Exp,env-non-halt) = env-non-halt .

eq update(V:Var,exp-err,EV:Env) = env-err .

eq update(V:Var,N:Nat,EV:EnvNormal) = (< V , N > | EV) .

-- lookup

eq lookup(V:Var,empty) = exp-err .

eq lookup(V:Var,< V1:Var,N1:Nat > | E:EnvNormal) =

if V1 = V then N1 else lookup(V,E) fi .

}

In the ENV module, after imported, the specific List with Entry parameter changes the
sorts’ name and these sorts become sorts of the ENV. Variables inside the Env sort are
modified by using update and lookup operators. The update is just adding a new pair
of variable and value into the Environment. In general, variables or expressions of Minila
language are evaluated with respect into an Env sort. This is exactly what we mentioned
before at the definition of Minila language.

2.2.3 Machine language

A Machine language is defined as an ordered sequence of machine instructions. A sequence
of instructions of the Machine language is considered as a list of commands. A Command

sort denotes all kinds of instructions and is specified in a COMMAND module as follows,

Command

mod! COMMAND principal-sort Command {

pr(BASIC-NAT) pr(VAR)

[Command]

--

op push : Nat -> Command

op load : Var -> Command

op store : Var -> Command

op add : -> Command

op minus : -> Command

op multiply : -> Command

op divide : -> Command

op mod : -> Command

op lessThan : -> Command

op greaterThan : -> Command
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op equal : -> Command

op notEqual : -> Command

op and : -> Command

op or : -> Command

op jump : Nat -> Command

op bjump : Nat -> Command

op jumpOnCond : Nat -> Command

op quit : -> Command

--

op _=_ : Command Command -> Bool

vars N1 N2 : Nat

vars V1 V2 : Var

eq (C:Command = C) = true .

eq (push(N1) = push(N2)) = (if N1 = N2 then true else false fi) .

eq (load(V1) = load(V2)) = if (V1 = V2) then true else false fi .

eq (store(V1) = store(V2)) = if (V1 = V2) then true else false fi .

eq (jump(N1) = jump(N2)) = if N1 = N2 then true else false fi .

eq (bjump(N1) = bjump(N2)) = if N1 = N2 then true else false fi .

eq (jumpOnCond(N1) = jumpOnCond(N2)) = if N1 = N2 then true else false fi .

}

Elements belong the Command might be constants (i.e. add, minus,...) that don’t have
input sorts or normal operators (i.e. push, load,...). We also define the equation between
two commands, it will be used when the Machine language is compared.

The Machine language is defined as a list of instructions (commands), therefore we use
the LIST module again with the parameter is a view from the EQTRIV to the COMMAND

module

view EQTRIV2COMMAND from EQTRIV to COMMAND {

sort Elt -> Command ,

op (_=_) -> (_=_)

}

The CLIST module is specified as a LIST module with actual parameter is the COMMAND.

mod* CLIST principal-sort CList {

pr(LIST(EQTRIV2COMMAND) * {sort ListHalt -> CListHalt,

sort ListNormal -> CList,

sort ListErr -> CListErr,

op list-err -> clist-err,

}

)

}

With above specification, we can conclude that
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Formalization 2.2.2 Machine Instructions ⇐⇒ A CList

From now, we will use a CList when we want to mention about machine instructions.

2.2.4 Compiler

In the diagram 1.2, the Compiler transforms Minila programs into Machine instructions.
It means the Compiler gets a Statement as the input and then outputs a CList. Therefore,
the Compiler is specified as a group of re-writing rules. The COMPILER differs with above
modules such as STM or ENV because it doesn’t have own sorts. The specification of
COMPILER module is as follows,

mod! COMPILER {

pr(BASIC-NAT) pr(STM) pr(CLIST)

op compile : Stm -> CList .

op generator : Stm CList -> CList .

op genForExp : Exp -> CList

--

eq compile(S:Stm) = generator(S,nil) @ (quit | nil) .

-- estm

eq generator(estm,CL:CList) = CL .

-- V := E ;

eq generator(V:Var := E:Exp ; S:Stm,CL:CList)

= generator(S, CL @ genForExp(E) @ (store(V) | nil) ) .

-- if E then S1 else S2 fi

eq generator(if E:Exp then S1:Stm else S2:Stm fi S:Stm,CL:CList)

= generator(S, CL @ genForExp(E)

@ (jumpOnCond(s(s(0))) |

jump(len(generator(S1,nil)) + s(s(0))) | nil)

@ generator(S1,nil)

@ (jump(len(generator(S2,nil)) + s(0)) | nil)

@ generator(S2,nil) ) .

-- while E do S1 od

eq generator(while E:Exp do S1:Stm od Stm:Stm,CL:CList)

= generator(Stm, CL @ genForExp(E)

@ (jumpOnCond(s(s(0))) |

jump(len(generator(S1,nil)) + s(s(0))) | nil)

@ generator(S1,nil)

@ (bjump(len(genForExp(E)) + len(generator(S1,nil))

+ s(s(0))) | nil)) .

-- repeat S1 until E

eq generator((repeat S1:Stm until E:Exp) Stm:Stm,CL:CList)

= generator(Stm, CL @ generator(S1,nil)
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@ genForExp(E)

@ (jumpOnCond(s(s(0))) |

bjump(len(genForExp(E)) + len(generator(S1,nil)) + s(0))

| nil)) .

-- for V from E1 to E2 do S1 od

eq generator(for V:Var from E1:Exp to E2:Exp do S1:Stm od Stm:Stm,CL:CList)

= generator(Stm, CL @ genForExp(E1)

@ (store(V) | load(V) | nil)

@ genForExp(E2)

@ (greaterThan |

jumpOnCond(len(generator(S1,nil)) + s(s(s(s(s(s(0))))))) | nil)

@ generator(S1,nil)

@ (load(V) | push(s(0)) | add | store(V) |

bjump(len(genForExp(E2)) +

len(generator(S1,nil)) + s(s(s(s(s(s(s(0)))))))) | nil) ) .

--

eq genForExp(V:Var) = load(V) | nil .

eq genForExp(N:Nat) = push(N) | nil .

eq genForExp(E1:Exp ** E2:Exp) = genForExp(E1) @ genForExp(E2) @ (multiply | nil) .

eq genForExp(E1:Exp // E2:Exp) = genForExp(E1) @ genForExp(E2) @ (divide | nil) .

eq genForExp(E1:Exp %% E2:Exp) = genForExp(E1) @ genForExp(E2) @ (mod | nil) .

eq genForExp(E1:Exp ++ E2:Exp) = genForExp(E1) @ genForExp(E2) @ (add | nil) .

eq genForExp(E1:Exp -- E2:Exp) = genForExp(E1) @ genForExp(E2) @ (minus | nil) .

eq genForExp(E1:Exp << E2:Exp) = genForExp(E1) @ genForExp(E2) @ (lessThan | nil) .

eq genForExp(E1:Exp >> E2:Exp) = genForExp(E1) @ genForExp(E2) @ (greaterThan | nil) .

eq genForExp(E1:Exp === E2:Exp) = genForExp(E1) @ genForExp(E2) @ (equal | nil) .

eq genForExp(E1:Exp !== E2:Exp) = genForExp(E1) @ genForExp(E2) @ (notEqual | nil) .

eq genForExp(E1:Exp && E2:Exp) = genForExp(E1) @ genForExp(E2) @ (and | nil) .

eq genForExp(E1:Exp || E2:Exp) = genForExp(E1) @ genForExp(E2) @ (or | nil) .

}

The function of Compiler is defined by the compile operator. It gets a Stm as the input
and outputs CList. The compile is considered as a total functions.

op compile : Stm -> CList .

However, the compile creates a list of commands by calling the generator operator
and the output obtained by the generator is added with the quit command,

eq compile(S:Stm) = generator(S,nil) @ (quit | nil) .

Depending on the syntax of each statement, there are corresponding re-writing rules for
the generator. When evaluating a statement that contains expressions (i.e. assignment,
if or while statements), the generator will call a genForExp operator. Then, depending on

23



the giving expression is a number, a varible or combinations of expressions, the genForExp
will use the proper re-writing rules to tranform that expression into a list of commands.

We already have the STM module (specification of Minila programs), the CLIST module
(specification of Machine instructions), and the COMPILER module which defines re-writing
rules for transformation from a Stm into a CList. Now we need to verify that semantics
of the CList whether equal semantics of the corresponding Stm or not. In order to do
that, we compare two Enviroments that are obtained after executed the Stm and CList.
We will consider an Interpreter and a Virtual Machine to execute the Stm and CList,
respectly.

When executing an arbitrary statement Stm, we must consider all cases which might
happen. The normal case is when the execution returns a well-form Environment, a list
of pairs of variables and values. Besides, there are two situations which are determined
as exceptions, or called errors.

+ variables or expressions inside the given Stm have errors. As a result, this Stm makes
the returned Environment become an error Environment.

+ A given Stm has an infinite loop caused by specific conditions of while or repeat
statements. Therefore, when executing Stm, there are no Environment returned.

To solve the exception, called Error Handling, we will design new sorts that denotes
the error entities.

2.2.5 Sort Hierachy

In the EXP module at 2.2.1, we have a sort hierachy for expressions,

[Exp ExpErr < ExpFull]

op exp-err : -> ExpErr

All normal expressions are elements of the Exp sort. However, when we detect errors in
expressions, all these expressions are denoted by the exp-err which belongs the ExpErr

sort. The ExpErr is a dedicated sort for error expressions, but here only one constant
exp-err is the denotation for every instants of error expressions. The method solves a
problem that an expression belongs the sort ExpFull (it maybe belongs the ExpErr) but
if it not equal exp-err, it’s not an error expression.

The equation between two expressions also defines that an element of sort Exp does not
equal the exp-err constant

eq (E:Exp = exp-err) = false .

from this, we illutrate the sort hierachy for expressions as follows
The sort hierachy not only specifies dedicate sorts for error cases, but also describes

the relation between the normal cases and error cases. Furthermore, The Case Splitting
(3.2.2) will become clear and more accurate based on the architecture of sort hierachies.
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Figure 2.1: Sort hierachy for the Expression

2.3 Environment Hierachy

Now, we consider another sort hierachy used for the Environment, called Environment
Hierachy. It’s more complicated than sort hierachy for the expression, and already defined
in the LIST module but the sorts are renamed in the ENV module. The Environment
Hierachy is

[EnvNormal EnvErr < EnvHalt]

[EnvHalt EnvNonHalt < Env]

The sort relation of Environment Hierachy is illustrated as follows

Figure 2.2: The Environment Hierachy

When the execution of a Stm terminates without errors, the returned Environment is
a list of pairs of variables and values, which has a well-form oganization. All well-form
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Environments belong the EnvNormal sort. However, when the execution of a Stm reaches
an error, the execution is terminated and the returned Environment is determined as
an error Environment. All instants of the error Environment are specified by only one
constant env-err which is declared at op env-err : -> EnvErr. And, similar to the
expression case, an arbitrary element of EnvNormal sort is not equal to the env-err.
It’s already defined in the LIST moduleat eq (L:ListNormal = list-err) = false .

Because the excution of above cases are terminated and having a specific Environment,
the EnvNormal and EnvErr are determined as subsorts of the EnvHalt.

There is a case that a Stm has infinite loop because of while or repeat statement inside
the Stm. As a result, the execution will not terminate (non-termination), and no specific
Environment is obtained for this case. However, the Environment for this Stm execution
could be determined as a element that belongs of the EnvNonHalt sort. We use a constant
env-non-halt to denote those Environments. Finally, the env-non-halt is different with
an element of the EnvHalt sort, and aldready defined in the LIST module by

eq (L:ListHalt = list-non-halt) = false .

In general, we have three dedicated sorts: EnvNormal, EnvErr and EnvNonHalt. Each of
them describles specific semantic of Minila programs. The semantics of a normal program
is specified by an element of EnvNormal sort, the semantics of error programs are specified
by the env-err of EnvErr sort. And when programs don’t have errors but they are not
terminate, the semantics are specified by the env-non-halt of EnvNonHalt sort.

In this research, the termination is really a big problem for verifications, hence we
emphazise the termination aspect in the Environment Hierachy. In this context, the error
Environment, EnvErr, is specified as a termination Environment and it’s a subsort of the
EnvHalt. This is contrary with the EnvNonHalt, non-termination Environment.

However, if EnvErr and EnvNonHalt are considered with error aspect, we will have
another sort hierachy for Environment. Intuitively, the infinite loop Stm is a statement
without error, therefore it could be determined as a normal statement. We illustrate an
alternative of sort hierachy for Environment as follows.

This hierachy explained another aspect of the sort hierachy for Environment. We will
have the global view about programs of Minila language, as well as deep understand for
sort hierachy of an issue. In this document, we focus on the termination program, hence
we choose the first design for the Environment Hierachy.

2.4 Error Handling

There are some reasons for the error of expressions. Because an expression might be
constructed from variables, error varibles will make the expression error. However, we
assume that the v(i), variable’s name, does not have errors. Therefore there only have
one error case, that is when a looking variable does not exist in a given Environement,
which is specified in ENV module at 2.2.2

eq lookup(V:Var,empty) = exp-err .
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Figure 2.3: The alternative sort hierachy for Environment

eq lookup(V:Var,< V1:Var,N1:Nat > | E:EnvNormal) =

if V1 = V then N1 else lookup(V,E) fi .

the lookup operator finds given variable V:Var from the head of an Environment. It
returns the value N1:Nat if the V already exists. However it will return exp-err when
reaching to the tail of the Environment, empty. For simple specification, we use exp-err

which for error expressions to denote the error variable. Consequently, we don’t need to
design a sort hierachy for the variables.

2.4.1 Interpreter

Another reason which makes expressions error is the arithmetic calculations of expressions.
There are some operators which might cause errors such as the //, %% with a second
input is evaluated as 0 or the ”−−” operator with the first input is less than the second
input. All operators for expressions are defined at INTERPRETER module, but we illustrate
with some operators as follows,

mod! INTERPRETER {

pr(PNAT) pr(STM) pr(ENV)

...

op evalExp : Nat EnvNormal -> Nat .

op evalExp : Exp Env -> ExpFull .

...

eq evalExp(N:Nat,EV:EnvNormal) = N .

eq evalExp(V:Var,EV:EnvNormal) =

if (lookup(V,EV) = exp-err) then exp-err else lookup(V,EV) fi .

...
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eq evalExp(E1:Exp -- E2:Exp,EV:EnvNormal) =

if (evalExp(E1,EV) = exp-err or evalExp(E2,EV) = exp-err)

then exp-err else if (evalExp(E1,EV) < evalExp(E2,EV))

then exp-err else sd(evalExp(E1,EV),evalExp(E2,EV)) fi fi .

...

}

the evalExp is a operator which evaluate the value of an expression. When the expression
is a natural number N:Nat, it is evaluated as N. We declare the evalExp for this case by

op evalExp : Nat ExpNormal -> Nat .

When the expression is a varible V:Var, there are two cases. If the V is not be found
(lookup(V,EV) = exp-err) then that expression is evaluated as exp-err, otherwise it is
evaluated by the value of lookup(V,EV).

When the expression is (E1:Exp -- E2:Exp), it’s easy to conclude that when E1 or
E2 are exp-err then that expression is exp-err. Moreover, when the minuend E1 is less
than the subtrachend E2, (evalExp(E1,EV) < evalExp(E2,EV)), it means the expression
is exp-err. The < operator of natural number is required, therefore the INTERPRETER

module must import the PNAT than the BASIC-NAT.
In both variables and combination of expressions, the output value of expressions might

be a normal value (E:Exp) or an error value (exp-err:ExpErr). Therefore, we must
declare the evalExp for this meaning by

op evalExp : Exp Env -> ExpFull

the sort ExpFull is declared to cover Exp and ExpErr subcases (Fig. 2.1) With different
Nat or Exp input sort, the output sort of the evalExp is different, Nat or ExpFull. The
correspondence between the input and output sort is a technique of the Error Handling.

The INTERPRETER uses the interpret operator to specify the semantics of a Stm state-
ment. The interpret will call an immediate operator, eval, to do its work. Depending on
a specific structure of the Stm, the eval does different tasks, doing nothing for estm state-
ment or calling evalAssign, evalIf, evalWhile, evalFor, evalRepeat for assign,
if , while, for, repeat, respectly. We declare these operators as follow,

op interpret : Stm Env -> Env

op eval : Stm Env -> Env

op evalAssign : Var Nat EnvNormal -> EnvNormal

op evalAssign : Var ExpFull Env -> Env

op evalIf : Exp Stm Stm Env -> Env

op evalWhile : Exp Stm Env -> Env

op evalRepeat : Stm Exp Env -> Env

op evalFor : Var Exp Stm Env -> Env .

With only the evalAssign, the output Environment could be determined as EnvNormal

with the Nat, EnvNormal input sorts. The output Environment of other operators could
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not determined clearly as EnvNormal, EnvErr or EnvNonHalt because it depends on the
specific input Stm and Env.

The output Environment will be the env-err if a input Stm contains an expression
which is evaluated as exp-err or a input Environment is the env-err. The output
Environment will be the env-non-halt if a input Stm contains infinite loop While or
Repeat statements or a input Environment is the env-non-halt. We take the specification
of While statement as an example,

ceq eval(S:Stm,EV:Env) = EV if (EV = env-non-halt or EV = env-err) .

--

eq eval(while E:Exp do S1:Stm od S:Stm,EV:EnvNormal) =

eval(S,evalWhile(E,S1,EV)) .

--

eq evalWhile(E:Exp,S1:Stm,EV:Env)

= if (EV = env-non-halt)

then env-non-halt

else if (EV = env-err or evalExp(E,EV) = exp-err)

then env-err

else if not(evalExp(E,EV) = 0)

then evalWhile(E,S1,eval(S1,EV))

else eval(estm,EV) fi fi fi .

The first eval equation is a conditional equation which check the input Environment
is env-non-halt or env-err with a general Stm input. If the condition happens, the exe-
cuttion will be stopped here and the output Environment will be the input Environment.
After this conditional equation, other eval equations are specified with the EV:EnvNormal
input like the second equation. The input statement of the second eval is a sequential
statement which contain a While statement and a general S:Stm following. Therefore,
the eval operator will be repeated for the general S but the input Environment is a result
Environment of execution for the While by calling the evalWhile.

If looking at the second equation, the EV:EnvNormal is directly transfered into the
evalWhile of the third equation. However, the input Environment of evalWhile operator
is not a EV:EnvNormal. Our experiments show that the input must be a general Environ-
ment, EV:Env. Therefore, the evalWhile checks the input EV:Env for env-non-halt or
env-err first. It also checks that evaluation of the E:Exp with respect into EV is exp-err
or not. The input E expression of the While always is element of a normal Exp sort. We
only know this E is an error expression or not after evaluated by the evalExp operator.
If the expression in While statement is an error expression, the output Environment for
this statement is env-err.

In summary, the input Environment of the eval or evalWhile operators must be consid-
ered as a general EV:Env even though it’s transfered with a EV:EnvNormal from previous
operators. The EV must be checked to be env-non-halt or env-err in specifications of
every operators. This is our experiments for Error Handling.
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2.4.2 Virtual Machine

Similar to the Interpreter, a Virtual Machine is a function which describes algebraic se-
mantics of the Machine language. After executed a CList, the specification of an arbitrary
Machine language, the semantics of this CList is specified by an output Environment.
However, for doing the CList’s execution, a new structure called a stack is required. The
stack is implemented as a list of natural numbers. Therefore, a view from the EQTRIV

module to the PNAT

view EQTRIV2PNAT from EQTRIV to PNAT {

sort Elt -> Nat,

op (_=_) -> (_=_),

}

is used as a actual parameter of the LIST.
A STACK module for the stack is specified as follows,

mod* STACK {

pr(EXP)

inc(LIST(EQTRIV2PNAT) * { sort ListHalt -> Stack,

sort ListNormal -> StackNormal,

sort ListErr -> StackErr,

op nil -> empstk,

op list-err -> stkErr

}

)

-- define for StackErr cases

op _|_ : ExpFull Stack -> StackErr .

--

ceq (E:ExpFull | Stk:Stack) = stkErr if (E = exp-err) .

eq (V:Var | Stk:Stack) = stkErr .

}

The Virtual Machine uses a vm operator to specify the specifications of a CList with
respect into an Env. The vm transfers its input into a exec operator as well as adding Nat

and Stack sorts with initial values are 0 and empstk, respectly. The exec calls a exec2

operator to do it’s tasks. These operators are declared as follows,

mod! VM {

pr(CLIST) pr(ENV) pr(EXP) pr(STACK)

--

op vm : CList Env -> Env .

op exec : CList Nat Stack Env -> Env

op exec2 : Command CList Nat Stack Env -> Env

The definition of these operators could be referened for more details at the source codes.
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2.4.3 3-steps Detection of Error Handling

A method for Error Handling could be summarized as a 3-steps detection. We use above
specification for expressions as an example to illustrate each step of this method.

• Step 1: Sort hierachy and error constants.
At this first step, we design a sort hierachy for that error situations are denoted by
a sort. In the sort hierachy of expressions, we use the ExpErr sort to denote error
expressions. Moreover, a constant is declared as a element of this sort (e.g. the
exp-err is a element of the ExpErr). There is only one constant for each error sort.
When error situations are detected, all of them are specified by this constant (e.g.
the exp-err). The sort hierachy must show that all elements of a normal sort are
not equal to the error constant. In this example, all elements of Exp sort are not
equal to the exp-err.

• Step 2: Sort difference for operators.

Based on the sort hierachy, operators which used for execution are declared. For
the expressions, the evalExp is declared,
op evalExp : Nat ExpNormal -> Nat .

op evalExp : Exp Env -> ExpFull .

Depending on the input sorts Nat or Exp, the output sort will be Nat or ExpFull,
respectly. This is called the sort difference. At this step, we have just detected the
output sort but we don’t obtain a specific output value. It’ll be done at the next
step.

• Step 3: Re-writing rules for run-time executions.
eq evalExp(V:Var,EV:EnvNormal) =

if (lookup(V,EV) = exp-err) then exp-err else lookup(V,EV) fi .

The ”run-time” means that executions will be done with specific input value. The
equation shows that with a specific V:Var, the run-time execution detemines that
the output will be a normal value or an error expression, denoted by exp-err is
detected. The error detection is defined by re-writing rules inside specifications.

In the 3-steps detection, we could not find the sort difference for some operators such as
the interpret, eval or evalIf operators of Interpreter. Therefore the step 2 could not
be applied. However, another way of the sort difference will be done at the step 3. As a
result, the step 1 and step 3 are enough for Error Handling at that situation.
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Chapter 3

Compiler Verification

In this chapter, we will verify the correctness property of the Compiler for Minila language.
First of all, the correctness of the Compiler must be defined into a formalization, called
theorem. After that, proof scores will be conducted for this theorem. Finally, the proof
assistant of CafeOBJ executes these proof scores. When all proof scores are passed (return
true), it means that the correctness property of the Compiler is satisfied.

Now, we consider the formalization that describes the correctness of Compiler for Minila
language.

3.1 Correctness of Minila’s Compiler

3.1.1 Previous Formalization

In previous works, we have already verified the correctness of Compiler for expressions.
In the previous context, the correctness property could be defined intuitively as follows,

Definition 3.1.1 If the Interpreter returns a natural number as the result of executing
an expression, then the Compiler generates an instruction sequence for the expression and
the Virtual Machine returns for the instruction sequence the same natural number as the
result returned by the Interpreter.

From specifications, we obviously realize that the Interpterter describes algebraic se-
mantics of Minila programs. And the Virtual Machine describes semantics of Machine
language. The Compiler transforms Minila programs into sequences of Machine intruc-
tions, and this’s one way direction. Therefore, in the definition of correctness property,
the value returned by the Interpreter is determined as an assumption for comparing with
the value from Virtual Machine. In other words, the Interpreter is considered as an oracle
in that definition.

In previous works, semantics of expressions are evaluated with no respect to the Envi-
ronment. Therefore, specifications of the Interpreter, Compiler, and Virtual Machine are
quite different with the specifications mentioned in the chapter 2.

op interpret-exp : Exp -> Nat
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op compile-exp : Exp -> CList

op vm-exp : CList -> Nat

Input sort of the interpret-exp is only the Exp. The interpret-exp doesn’t have Env

input sort like the interpret at 2.4.1, and the vm-exp is too. The formalization of the
correctness for Minila’s Compiler in previous works is as follows

Formalization 3.1.1

th-exp(E:Exp,N:Nat) =

( interpret-exp(E) = N implies vm-exp(compile-exp(E)) = N )

Because the Interpreter is as an oracle, we select the implies, a CafeOBJ keyword, to
specify this meaning. The implies indicates that if the Interpreter could not return a
number, the th-exp theorem is trivial.

In fact, previous specifications and verifications could not be used again in this research.
However, they’re really meaningful works, and ideas about the correctness property of
Compiler is still remained in this document.

3.1.2 Formalization for Correctness of The Compiler

At 3.1.2, we have the formal definition of the correctness of Compiler for Minila language.
However, we already know that a Minila program is specified as a S:Stm statement.
Therefore, the correctness of the Compiler for a statement S is defined as a follows,

Definition 3.1.2 The Environment returned after executing an arbitrary S statement
by the Interpreter must have semantic equivalence of the Environment returned by the
Virtual Machine from the execution of instruction sequence which was generated from S
by the Compiler.

In the chapter 2, the Interpreter, Compiler, and Virtual Machine have already been
specified. The summary is showed as follows,

op interpret : Stm Env -> Env .

op compile : Stm -> CList .

op vm : CList Env -> Env .

In constrast to interpret-exp, an Env is required for the interpret. The same thing
happens with the vm. Moreover, a Stm which denotes a Minila statement is considered
replaced for the Exp in previous works. Extentions from the Exp into the Stm and adding
the information of Env make the verifications more complicated. However, the ideas
about the correctness of Compiler will not change, there is an equivalence between two
Environments returned by the Interpreter and Virtual Machined of one statement.

Concerning with the return of Environments, there is a problem that the executions
of some statement might not return Environements both by the Interpreter and Virtual
Machine. This occurs with iterative statements including the while and repeat that might
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be infinite loop. When a statement is infinite loop, called non-termination situation,
it contradicts with a finite statement, termination. The non-termination causes many
problems for verification of the correctness for Minila statement, and the details will be
showed in next sections.

The correctness of the Compiler for Minila language could be formed as follows,

Formalization 3.1.2

(interpret(Stm,Env1) = Env2) iff (vm(compile(Stm),Env1) = Env2)

In practice, the implies relation is enough for definition of the correctness like that de-
fined in previous works. However, we want to emphasize that the correctness of Compiler
for Minila statements is defined as the semantic equivalence between two returned Envi-
ronments. In this formalization, the ”semantic equivalence” is expressed by the iff, the
CafeOBJ keyword. The iff has ”if and only if” meaning, it’s stronger than the implies.

With the non-termination situations, the comparation of semantics could not directly
done because there is no Environment returned. For this reason, results of the interpret

and vm are compared through Env2, an intermediate Environment. When the Stm is
a infinite loop statement, the (interpret(Stm,Env1) = Env2) equation becomes false
and the same thing for the (vm(compile(Stm),Env1) = Env2).

The correctness property is formalized by a theorem called th and declared as an
operator in a THEOREM module. We should have some background about using CafeOBJ
for verifications before considering the th in details in next sections.

3.2 Verification by Using CafeOBJ

In CafeOBJ language, a formalization is verified by executing proof scores. If all proof
scores for a formalization are passed (returned true), it means that this formalization is
validated or succeeded. In other words, the property which specified by this formalization
will be satisfied. Therefore, conducting proof scores is very important for verifications.

3.2.1 Proof Scores

Example 3.2.1.1 This is an example of a proof score

open THEOREM

-- arbitrary values

op var1 : -> Var .

-- assumptions

eq stm = var := var1 ; .

eq lookup(var1,env-normal) = nat . -- var1 was already stored in env-normal

-- check

red th(stm,env-normal,env-halt) .

close
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The proof score is conducted for the th which stored in the THEOREM module, hence it
begins with ”open THEOREM” and ending with ”close” keyword. A sentence with ”--”
keyword at first is a comment which will be not executed by CafeOBJ.

A proof score is usually divided into three segments. An essential segment, called
”check”, contains a sentence with the ”red” (or ”reduce”) keyword at the head. When a
proof score is executed by CafeOBJ, the red will apply re-writing rules in specifications
to reduce the following theorem. In the example, the th is reduced with arbitrary inputs,
stm, env-normal and env-halt.

The arbitrary statement stm is used many times in proof scores, hence it should be
declared in the THEOREM module. In this proof score, we consider a particular case of the
assignment statement, hence ”stm = var := var1 ;” is an assumption. The arbitrary
variable var1 is declared in the ”arbitrary values” segment. In this case, we also assume
that the value of var1 is an arbitrary number which already exists in the env-normal,
hence an assumption for ”lookup(var1,env-normal) = nat” is added. All assumptions
are put into the ”assumptions” segment.

After executed by CafeOBJ, the ”red th(stm,env-normal,env-halt)” returns true.
It means that the th is satisfied with the variable existing in the Environment. However,
there is one more case for the var1, when the var1 does not exist in the env-normal.
Therefore, for that case, we need an another proof score which has an assumption like
”lookup(var1,env-normal) = exp-err”. In general, whether an arbitrary variable ex-
ists in the Environment or not, we split into two cases which have corresponding proof
scores. This method is called Case Splitting.

3.2.2 Case Splitting

A proof score usually requires some assumptions to be able to reduce into true. However,
when adding an assumption for a proof score, we have to conduct another that is a copy of
the proof score but adding contradiction of this assumption. At example 3.2.1.1, when the
”lookup(var1,env-normal) = nat” assumption is adding, we must conduct a following
proof score,

open THEOREM

-- arbitrary values

op var1 : -> Var .

-- assumptions

eq stm = var := var1 ; .

-- (lookup(var1,env-normal) = nat) = false .

-- var1 was not stored in env-normal

eq (lookup(var1,env-normal) = exp-err) = true .

-- check

red th(stm,env-normal,env-halt) .

close

Instuitively, the ”(lookup(var1,env-normal) = exp-err) = true” and the
”lookup(var1,env-normal) = nat” are contradicted. The lookup of var1 returns a
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value nat is the oppsite to that no value is returned which determined as exp-err, an
error situation. There are many form of two assumptions which are contradicted. We must
sure that all cases generated by Case Splitting must be contradicted or complemented.

The Case Splitting is also applied based on the structure of the value sort. For example,
when evaluating the semantic of expression exp with respect to env-normal, the result
might be a natural number or exp-err of the error case. However, a number might be
equal 0 or s(nat), a non zero number. Therefore, we have three cases as follows,

eq evalExp(exp,env-normal) = 0 .

eq evalExp(exp,env-normal) = s(nat) .

eq evalExp(exp,env-normal) = exp-err .

Three cases cover possible values that might be returned. Proof scores for three assump-
tions make the Case Splitting complemented.

There are many forms of Case Splitting for one property. The above example shows
that we need three cases, however if needed, two contradicted assumptions are enough.
We could split as follows,

eq evalExp(exp,env-normal) = 0 .

eq (evalExp(exp,env-normal) = 0) = false .

When evaluating a statement, there are three cases: the statement terminates in normal,
returns error values, or is trapped in infinite loops. The Environment Hierachy designed
at 2.2 specifies these cases with the sort EnvNormal, EnvErr, EnvNonHalt, respectly.
The Case Splitting for evaluation of stm statement with respect to env-normal by the
eval operator of Interpreter is showed as follows,

eq eval(stm,env-normal) = env1-normal .

eq eval(stm,env-normal) = env-err .

eq eval(stm,env-normal) = env-non-halt .

with env-err and env-non-halt are constants of Env sort. However, the env1-normal

is different, it’s just a declaration for an arbitrary element of EnvNormal sort.
When adding eval(stm,env-normal) = env-non-halt, it means that we assume the

stm is an infinite statement that not return a specific Environment. We only recognize
the property of stm through env-non-halt denotation. It’s really useful for verifications
of the non termination situations.

If proof scores for all cases return true, Case Splitting will be stopped. If not, other
assumptions will be added and we continue applying Case Splitting. In case that a proof
score returns false, adding assumptions are not effected, we have to find some lemmas
to proof this case. We will talk about a technique, called ”Finding Lemmas”, in detail at
section 3.3.2. Now, we will explain in detail the theorem th.
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3.3 Correctness’s Verification

3.3.1 Theorem th

The theorem th is an implementation of definition about the correctness of Compiler
for Minila statements (programs). As a result, verifying the correctness of Compiler for
Minila language is considered as checking proof scores for the th. Theorem th is the detail
of formalization 3.1.2.

The th is specified in THEOREM module as follows,

op th : Stm EnvHalt EnvHalt -> Bool .

th(Stm:Stm,Env1:EnvHalt,Env2:EnvHalt) =

(interpret(Stm,Env1) = Env2) implies (vm(compile(Stm),Env1) = Env2) .

The th have three input sorts, Stm:Stm for an arbitrary statement, Env1:EnvHalt

for an input Environment, and Env2:EnvHalt. The input Environment might be error,
hence Env1 is an element of EnvHalt sort. The Env2 is used to compare with output
Environments which are generated by the interpret or vm. The output of th determined
as a Bool value, it means that if the th returns true for all Stms then the Compiler will
satisfy the correctness property.

Relation between interpret and vm is determined as the implies, it’s not the iff

from formalization 3.1.2. In fact, when conducting proof scores, iff relation is only
satisfied with terminated statements, but the implies is satisfied with all kinds of state-
ments. Therefore, we must determine the implies for verification in general. However,
in previous works, the implies is enough for the correctness of Compiler. And the spirit
of definition of correctness property is still remained in the theorem th4, which will be
explained in next sections.

In order to verify the theorem th for an arbitrary statement Stm, we apply induction
on the Stm with

• Basic Cases: The th will be verified with input Stm is a basic statement including
the empty, assignment, if , while, for and repeat statement.

• Induction Cases: The th will be verified with input Stm is a sequential state-
ment. The sequential statement is constructed with a basic statement including
the assignment, if , while, for, repeat statement at first and the following is an
arbitrary statement.

The Case Splitting technique is applied to make sure that all cases are specified into proof
scores. An arbitrary statement is splitted into many cases for induction as follows,

• Basic Cases: Basic statement

+ stm = estm 1© (Empty statement)

+ stm = var := nat ; 2© (Assignment statement)

+ stm = var := var1 ; 3© (Assignment statement)
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+ stm = var := exp ; 4© (Assignment statement)

+ stm = if exp then stm1 else stm2 if 5©
+ stm = while exp do stm1 od 6©
+ stm = for var from e1 to e2 do stm1 od 7©
+ stm = repeat stm1 until exp . 8©

• Induction Cases: Sequential statement beginning with a basic statement

+ stm = var := nat ; stm*1 (with an assignment statement)

+ stm = var := var1 ; stm*1 ( with an assignment statement)

+ stm = var := exp ; stm*1 ( with an assignment statement)

+ stm = if exp then stm1 else stm2 fi stm*1 (with an If statement)

+ stm = while exp do stm1 od stm*1 ( with a while statement)

+ stm = for var from e1 to e2 do stm1 od stm*1 (with a for statement)

+ stm = repeat stm1 until exp stm*1 (with a repeat statement)

The first proof score will be conducted is for a case that the input Environment is an
error Environment.

open THEOREM

-- check

red th(stm,env-err,env-halt) .

close

This case shows that when we consider an arbitrary statement with respect into an error
Environment, the correctness of Compiler is satisfied without any assumptions. From now,
we only do verifications for an arbitrary normal Environment (env-normal:EnvNormal).

A proof score for the empty statement also returns true without any assumptions.

open THEOREM

-- assumptions

eq stm = estm .

-- check

red th(stm,env-normal,env-halt) .

close

Similarly, the case 2© returns true without any assumptions.

open THEOREM

-- assumptions

eq stm = var := nat ; .

-- check

red th(stm,env-normal,env-halt) .

close
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In the case 3©, after applied Case Splitting, the proof scores all return true (view exam-
ple 3.2.1.1).

However, for the case 4©, after applied Case Splitting many times, all proof scores could
not return true. There are proof scores which return false. Therefore, some lemmas are
required to validate those proof scores.

3.3.2 Finding Lemmas

Conducting lemmas is the most difficult part of verifications. It requires clear under-
standing of the specifications and the meaning of assumptions that added into proof
scores. Occasionally, some candidates are conducted but proof scores could not validated,
it means those are not lemmas. As a result, the experience in verifications is rather useful
for finding proper lemmas. We will show one technique for conducting lemmas as follows.

Building Formalizations

When adding an assumption makes the proof score return false, the contradiction of this
assumption could be used to predict the missing lemmas. However, we have to understand
the meaning of it, adding with meaning of specifications which related to executions of
the current theorem. A formalization is proper if it could be proved by proof scores and
at that time, it’s considered as a lemma.

We illustrate this technique by considering the provement of the 4©. Let’s take a proof
score as follows,

open THEOREM

-- assumptions

eq stm = var := exp ; .

eq evalExp(exp,env-normal) = nat .

-- inv1

eq nth((genForExp(exp) @ (store(var) | (quit | nil))),

s(len(genForExp(exp)))) = quit .

-- th2

eq (exec2(nth((genForExp(exp) @ (store(var) | (quit | nil))),0),

(genForExp(exp) @ (store(var) | (quit | nil))),0,empstk,env-normal)

= ((< var , nat >) | env-normal)) = false .

-- check

red th(stm,env-normal,env-halt) .

close

When adding the 4th assumption, the proof score returns false. Looking at the 4th

assumption, we know that the execution of a list of commands, genForExp(exp) @

(store(var) | (quit | nil)), is not equal with the (< var, nat > | env-normal).
Based on the 2nd assumption, the value of exp is assumed as the nat. Therefore,
the semantic of genForExp(exp) @ (store(var) | (quit | nil)) with respect into
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env-normal is described by ((< var , nat >) | env-normal). From the analysis, if a
formalization that be reduced into contradiction of the 4th assumption,

eq exec2(nth((genForExp(exp) @ (store(var) | (quit | nil))),0),

(genForExp(exp) @ (store(var) | (quit | nil))),0,empstk,env-normal)

= ((< var , nat >) | env-normal) .

is a lemma, called th2, then the th2 will become false by the 4th assumption. It means
the lemma th2 could be used to make this proof score return true.

However, the above equation is just a specific case of the lemma th2, it’s not a proper
formalization. Based on the specification of Virtual Machine, we recognize that ((< var ,

nat >) | env-normal) is reduced from the execution of a list of commands, (store(var)
| (quit | nil)), with the (nat | empstk) stack. The form is as follows,

exec2(nth((store(var) | (quit | nil)),0),

(store(var) | (quit | nil)),0,(nat | empstk),env-normal)

We realize that the value of exp expression returned from evalExp(exp,env-normal) is
put into the empstk stack after executed genForExp(exp) command. Intuitively, when
executing expressions, the value returned by the Interpreter equals with the value done by
the Virtual Machine. This’s quite similar to the correctness of Compiler for expressions
which already verified in previous works. With more analyses, we finally conduct the
formalization of lemma th2 as follows,

eq th2(Exp:Exp,V:Var,Stk:StackNormal,Env:EnvNormal) =

(exec2(nth((genForExp(Exp) @ (store(V) | quit | nil)),0),

(genForExp(Exp) @ (store(V) | quit | nil)),0,Stk,Env)

= exec2(nth((store(V) | quit | nil),0),

(genForExp(Exp) @ (store(V) | quit | nil)),len(genForExp(Exp)),

(evalExp(Exp,Env) | Stk),Env)) .

The th2 shows that an Exp:Exp expression with respect into Env:EnvNormal is executed
by the Virtual Machine (genForExp(Exp)) and by the Interpreter (evalExp(Exp,Env))
has the same value. However, the value is put into the Stk stack after generated by the
exec2 of Virtual Machine.

Now, we use a prefix th (theorem) with a number to name lemmas which related with
the Interpreter and Virtual Machine, and other lemmas will be named different. And we
also conducted some other lemmas, called invariants, which are used frequently to prove
theorems.

eq inv1(CL:CList,CL1:CList,PC:Nat) =

(nth(CL @ CL1,len(CL) + PC) = nth(CL1,PC) ) .

eq inv2(Stm:Stm,CL:CList) =

generator(Stm,CL) = (CL @ generator(Stm,nil)) .

eq sd-lemma(N1:Nat,N2:Nat) = (sd((N1 + N2),N1) = N2) .
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The nth(CL:CList,PC:Nat) returns a command at position PC of the CL list. The inv1

lemma shows that a command at PC of the CL1 is same as a command at position (len(CL)

+ PC) of the (CL @ CL1). The inv2 shows the meaning of the generator function for
an abstract statement Stm. And the sd-lemma means that ((N1 +N2)−N1) = N2 with
N1, N2 are natural numbers.

The th2 lemma is considered for a specific list of commands, (genForExp(Exp) @

(store(V) | quit | nil)), We should conduct a theorem for an arbitrary list of com-
mands.

Generalizing Lemmas

In the th2 theorem, the genForExp(Exp) is at first of a certain list. Therefore, the lemma
th2 should be generalized in which the position of genForExp(Exp) is arbitrary. Finally,
we conduct a theorem th3, a general form than th2, which is specified as follows,

eq th3(Exp:Exp,CL1:CList,CL:CList,Stk:StackNormal,Env:EnvNormal) =

(exec2(nth((genForExp(Exp) @ CL),0),

(CL1 @ genForExp(Exp) @ CL),len(CL1),Stk,Env)

= exec2(nth(CL,0),

(CL1 @ genForExp(Exp) @ CL),(len(CL1) + len(genForExp(Exp))),

(evalExp(Exp,Env) | Stk),Env)) .

The input list, (CL1 @ genForExp(Exp) @ CL), is general. The genForExp(Exp) could
be at everywhere inside the list, and its position is depended on the input CL1 and CL.
When the th3 is validated, the th2 will be straightforward by replacing CL1 is nil and
CL is (store(V) | quit | nil).

In the th3, we have the semantic equivalence of expressions between two executions done
by the Interpreter and Virtual Machine. The evalExp, an operator of the Interpreter,
specifies the semantic of expression Exp with respect to Env. The genForExp, an operator
of the Compiler, transforms Exp into a list of commands. This list then be specified by
the exec2, an operator of the Virtual Machine. It’s clear that the th3 theorem describes
the correctness of Compiler for Minila expressions.

The verification of th3 will be done by checking proof scores for each cases of expression
by applied Case Splitting. The Exp might be {nat, var, e1 ++ e2, e1 -- e2,

e1 ** e2, e1 // e2,e1 %% e2, e1 === e2, e1 !== e2, e1 >> e2, e1 << e2,

e1 && e2, e1 || e2}, with e1 and e2 are expressions.
Proof scores must be conducted for error cases of expressions, an example of those proof

scores is as follows

open THEOREM

-- arbitrary values

ops e1 e2 : -> Exp .

op n1 : -> Nat .

-- assumptions

eq evalExp(e1,env-normal) = n1 .
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--

eq evalExp(e2,env-normal) = 0 .

....

-- check

red th3(e1 // e2,cl1,cl,stk,env-normal) .

close

When value of e2 is 0, the e1 // e2 becomes an error expression.
The th3 should cover the situation that the Exp:Exp with respect to Env:EnvNormal be-

comes an error expression. We have that when the Exp is an error expression, evalExp(Exp,Env)
returns exp-err, then the left hand side of th3 equation returns env-err. Therefore, the
(evalExp(Exp,Env) | Stk) becomes an error stack. This is the reason for definition of
error stacks in STACK module,

op _|_ : ExpFull Stack -> StackErr .

ceq (E:ExpFull | Stk:Stack) = stkErr if (E = exp-err) .

eq (V:Var | Stk:Stack) = stkErr .

Because the th3 is one of two base theorems for verifying the th, the formalization
about correctness of Compiler, covering the error case of expression in th3 theorem is
very meaningful. All proof scores for th3 need only the inv1 as hypothesis, no other
theorems are required.

With the th3, proof scores for the assignment statement of theorem th is trivial. The
th3 is also used for proving of other statements. However, for the conditional and iterative
statements, we need more lemmas for verifications. When verifying iterative statements,
one statement could be executed many times depending on its condition. And the input
Environment will be changed after the statement loops again. We need some specifications
that denotes the value of input Environment after many looping.

3.3.3 More Specifications

Now, we consider the input of theorem th is a while statement as the 6©. The input stm
is as follows,

stm = while exp do stm1 od .

with respect to the env-normal, the input Environment. For the case that the value of
exp with env-normal equals 0,

eq evalExp(exp,env-normal) = 0 .

execution of the stm will terminate and the th4 is trivial for this case.
For the case that the value of exp with env-normal is not equal 0, the execution

executes a local stm1, then the stm is looped again. The local stm1 could be applied as
the induction hypothesis and the eval(stm1,env-normal) might be used for semantics
of stm1 with respect to env-normal. The input Environment for the next execution
of stm becomes eval(stm1,env-normal). In general, after many looping times, the
Environment has a form as follows,
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eval(stm1,eval(stm1,...(eval(stm1,env-normal)))) .

The general form of input Environment after N looping times will be specified by
create-env operator in module THEOREM-CONDITION as follows,

mod THEOREM-CONDITION {

...

op create-env : Stm Env Nat -> Env

eq create-env(Stm:Stm,EV:EnvNormal,0) = EV .

eq create-env(Stm:Stm,EV:EnvNormal,s(N:Nat))

= eval(Stm,create-env(Stm,EV,N)) .

...

}

The create-env(stm1,env-normal,N) is a returned Environment after doing the stm1 N
times with respect to env-normal. It’s clear that the create-env(stm1,env-normal,N)

might be an error or non-termination Environment, respectly env-err or env-non-halt.
Besides with the create-env, we define other functions that indicates the condition of

expressions, exactly the evaluation of exp with respect to env-normal after executed the
Stm N times. The specifications are also in the THEOREM-CONDITION module as follows,

op notZero : Exp Stm EnvNormal Nat -> Bool .

eq notZero(Exp:Exp,Stm:Stm,EV:EnvNormal,0)

= not (evalExp(Exp,EV) = 0 or evalExp(Exp,EV) = exp-err) .

eq notZero(Exp:Exp,Stm:Stm,EV:EnvNormal,s(N:Nat)) =

not (create-env(Stm,EV,s(N)) = env-non-halt or

create-env(Stm,EV,s(N)) = env-err)

and (if (evalExp(Exp,create-env(Stm,EV,s(N))) = 0 or

evalExp(Exp,create-env(Stm,EV,s(N))) = exp-err)

then false

else notZero(Exp,Stm,EV,N)

fi) .

--

op notZeroEqZero : Exp Stm EnvNormal Nat -> Bool .

eq notZeroEqZero(Exp:Exp,Stm:Stm,EV:EnvNormal,0) = (evalExp(Exp,EV) = 0) .

eq notZeroEqZero(Exp:Exp,Stm:Stm,EV:EnvNormal,s(N:Nat)) =

not (create-env(Stm,EV,s(N)) = env-non-halt or

create-env(Stm,EV,s(N)) = env-err)

and (notZero(Exp,Stm,EV,N) and

evalExp(Exp,create-env(Stm,EV,s(N))) = 0) .

--

op existEqZero : Exp Stm EnvNormal Nat -> Bool

eq existEqZero(Exp:Exp,Stm:Stm,EV:EnvNormal,N:Nat) =

not (create-env(Stm,EV,N) = env-non-halt or

create-env(Stm,EV,N) = env-err)

and (evalExp(Exp,create-env(Stm,EV,N)) = 0) .
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In mathematics, the above functions means that

• notZero(Exp:Exp,Stm:Stm,EV:EnvNormal,N:Nat):
∀k ∈ Nat, k ≤ N , evalExp(Exp,create-env(Stm,EV,k)) > 0

• notZeroEqZero(Exp:Exp,Stm:Stm,EV:EnvNormal,N:Nat):
∀k ∈ Nat, k < N , (evalExp(Exp,create-env(Stm,EV,k)) > 0) and

(evalExp(Exp,create-env(Stm,EV,N)) = 0)

• existEqZero(Exp:Exp,Stm:Stm,EV:EnvNormal,k:Nat):
∃k ∈ Nat, evalExp(Exp,create-env(Stm,EV,k)) = 0

Intuitively, if notZero(Exp,Stm,EV,N) is true, the Stm will be loop N times, but we
don’t know it terminates or loops again at the N + 1 times. If notZeroEqZero(Exp,Stm,EV,N)
is true, the Stm certainly termintes after looping N - 1 times. The existEqZero is quite
different with others, the counter k has ”exist” than ”for all” property. In general, if
existEqZero(Exp,Stm,EV,N) is true, the Stm definitely terminates, however we don’t
know exactly when the termination happens (at least N times). Specifications of these
functions are too complicated because we must limited exp-err value of the evalExp

function, and env-non-halt, env-err of the create-env. The specifications must be
sured that all error or non-termination situations are not occured.

We have a lemmas about the relation between the notZeroEqZero and existEqZero

as follows,

N ∈Nat, ∃M ≤ N , existEqZero(Exp,Stm,EV,N) −→ notZeroEqZero(Exp,Stm,EV,M)

eq notZeroEqZero-lemma(Exp:Exp,Stm:Stm,EV:EnvNormal,N:Nat,M:Nat) =

existEqZero(Exp,Stm,EV,N) implies

(M < s(N) implies notZeroEqZero(Exp,Stm,EV,M)) .

Because the notZeroEqZero-lemma requires the existing of value M, we apply ”witness”
technique for provement. This technique claims that we just find a counterexample of
value M and adding into proof scores. If proof scores are success, then the lemma is
satisfied. Here is an example of proof scores using the witness method.

--> 1.i)

open THEOREM

op m : -> Nat .

-- assumptions

-- this is a witness .

eq m = 0 .

-- check

red notZeroEqZero-lemma(exp,stm,env-normal,0,m) .

close
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In Base Case of the notZeroEqZero-lemma, N = 0, the existEqZero(Exp,Stm,EV,N)

becomes evalExp(Exp,EV) = 0. Becase of the existing of M, if we choose m = 0, the (M <

s(N)) becomes true, and the notZeroEqZero(Exp,Stm,EV,M) becomes evalExp(Exp,EV)
= 0. The proof score is success and m = 0 is considered as a witness.

The proof scores for notZeroEqZero-lemma require another lemma, called notZero-lemma,
It’s defined as follows,

N ∈Nat, ∃M ≤ N ,
not (notZero(Exp,Stm,EV,N)) −→ evalExp(Exp,create-env(Stm,EV,M)) = 0 .

eq notZero-lemma(Exp:Exp,Stm:Stm,EV:EnvNormal,N:Nat,M:Nat) =

(not notZero(Exp,Stm,EV,N) and

not (evalExp(Exp,create-env(Stm,EV,N)) = exp-err) and

not ( create-env(Stm,EV,N) = env-non-halt or

create-env(Stm,EV,N) = env-err) )

implies (M < s(N) implies notZeroEqZero(Exp,Stm,EV,M)) .

And this lemma is also proved by applied the witness technique.
Intuitively, execution of a while statement will terminate if the existEqZero becomes

true with existing N. This is contrary to the non-termination situation when the while
statement loops for ever. On other words, if the notZero is true for an arbitrary number
N, the non-termination situation happens. There is a contradiction between notZero and
existEqZero which is specified as follows

• ∃N ∈Nat, existEqZero(Exp,Stm,EV,N) = true

• ∀N ∈Nat, notZero(Exp,Stm,EV,N) = true

The contradiction tells that a while statement could be splitted into two cases based on
the existEqZero and notZero. We see in detail at the next section.

When the notZero is true for an arbitrary number N, the while statement is infinite
loops. This could be defined as follows,

eq definition(Exp:Exp,Stm:Stm,EV:EnvNormal,N:Nat) =

notZero(Exp,Stm,EV,N)

implies (interpret(while Exp do Stm od,EV) = env-non-halt) .

We didn’t specify the env-non-halt in specifications of the Interpreter or Virtual Ma-
chine. As a result, the proof scores for non-termination situations might not be proved
because the missing information of env-non-halt. However, with this definition, the
env-non-halt state could be known. We notice that the definition is just for the In-
terpreter execution because the notZero condition could be determined. For the Virtual
Machine, the execution for sequence of commands only terminate when it meets the quit

command which usually at the end of the sequence. The sequence of commands without
the quit might terminate or not. Therefore, non-termination execution could not be de-
termined for a sequence of commands. On other words, the condition of non-termination

45



of the Minila statement can not be preserved on corresponding sequence of commands of
the Machine language.

Even though having more specifications of the existEqZero or notZero, proof scores
of the th for conditional and iterative statements could not be success. We need another
lemma that describes a theorem for a general statement.

3.3.4 Theorem th4

Similar to theorem th3, the th4 considers list of commands for a general statement,
Stm:Stm. Based on the ideas of th3, we finally form a formalization of the th4 as follows,

eq th4(Stm:Stm,CL1:CList,CL:CList,Stk:StackNormal,EV:EnvNormal) =

not (eval(Stm,EV) = env-non-halt) implies

(exec2(nth((generator(Stm,nil) @ CL),0),

(CL1 @ generator(Stm,nil) @ CL),len(CL1),Stk,EV)

= exec2(nth(CL,0),

(CL1 @ generator(Stm,nil) @ CL),

len(generator(Stm,nil)) + len(CL1),Stk,eval(Stm,EV))) .

The structure of th4 is quite similar to the th3. The th4 considers a general list, (CL1 @

generator(Stm,nil) @ CL), in which the position of generator(Stm,nil) is arbitrary.
In the th4, the Interpreter specifies semantics of statement Stm with respect to EV by
executing eval(Stm,EV). And the Virtual Machine executes the list of commands that
generated by generator(Stm,nil) of the Compiler. This execution is done by the exec2

operator.
However, for an infinite loop statement, the execution will not terminate, it means

that the left hand side of th4 equation will not return an Environment even if applied
Case Splitting many times. Similarly, the eval(Stm,EV) could not return a specific
Environment, and the right hand side of th4 equation might be not detemined. In this
situation, comparing the value of both sides is impossible. Therefore, the th4 should
not cover infinite loop statements, or non-termination situations. These situations are
denoted by the env-non-halt of EnvNonHalt sort in the Enviroment Hierachy at 2.2.
And in theorem th4, the exception for infinite loop statements is expressed by following
condition,

not (eval(Stm,EV) = env-non-halt)

it means when Stm is an infinite loop statement, this condition becomes false and the
th4 is trivial.

When building the theorem th4, we tried not to include the above condition, but
the provement was not success. When applied Case Splitting for all cases of a while
statement, the execution of the right hand side of th4 equation could be determined as
env-non-halt for infinite statements. However, we realized that the execution of left
hand side will not stop if continuing apply Case Splitting. Finally, the th4 equation could
not be verified. We already know that the exec2, is execution of the Virtual Machine
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for sequence of commands. Moreover, we could not determined when the sequence of
commands corresponding to a while statement terminate. This might be an explanation
for requirement of the condition of theorem th4.

In the th4, the value of eval(Stm,EV) is replaced for the value is generated by the
exec2 of Virtual Machine. It shows that semantics of a statement Stm that are gener-
ated by the Interpreter and the Virtual Machine are equivalent. However, the th4 also
confirms that the input Stm is limited with finite loop statements by the termination
condition. The correctness defined by the th4 is the semantic equivalence between two
Environments returned by the Interpreter and Virtual Machine. This show that the basis
of definition 3.1.2 is still remained.

Formalizing the th4 is an important step for proving the th, the main object of this
research. Intuitively, the th4 is a specific case of the th2. The accepted statements of
th4 are just finite statements, that is a subset of Minila statement. The condition of
th4 is one reason of that the iff relation is not satisfied for the th. By applied Case
Splitting for non termination situations, only (interpret(Stm,Env1) = Env2) becomes
false and the th is trivial with the implies relation.

We use induction on the input statement to prove the theorem th4. The Stm:Stm for
Basic Cases and Induction Cases applies by Case Splitting like doing with the th at 3.3.1.
Proof scores for empty, assignment and if statements are success without many problems.

The significance of Environment Hiearchy

In practice, a statement could not be determined as an infinite loop statement at begin-
ning. When doing verifications, even though a statement is infinite loop, we must conduct
proof scores to make sure that the correctness property is statisfied with this statement.
Obviously, a general statement might belong the finite group or infinite group. On other
words, there’re only two cases, termination and non-terminiation. Applied Case Split-
ting for the statement object requires hierachy of Environment which is desiged like the
Environment Hierachy at 2.2. With the Environment Hiearachy, a statement is finite or
infinite loop statement is not important. The termination and non-termination situations
are just cases which will be verified seperately by proof scores. When we add assumptions
about the semantic of a general statement, proof scores are required for three cases based
on the Environment Hierachy,

eq eval(stm,env-normal) = env1-normal .

eq eval(stm,env-normal) = env-err .

eq eval(stm,env-normal) = env-non-halt .

When proof scores for three cases are all satisfied, it means that we covered all statement
of Minila language.

Among the Minila statements, some kinds of statements is conducted form sub-statements
such as the if statement,

stm = if exp then stm1 else stm2 fi .

47



The stm is based on the stm1 and stm2. For execution of the stm, the returned Environ-
ment from the stm1 or stm2 is necessary. However, the stm1 or stm2 are just the general
statements which maybe finite or infinite statements. With the Environment Hierachy,
three values of Case Splitting could range all statements that the stm1 or stm2 might be.
These cases are used as induction hypotheses for provement of the stm. In general, the
Environment Hierachy is very important for verifications not only of the th but also of
the th4, and other theorems.

Verification of the While statement

Verifications of the While (iterative) statement is more difficult than other statements.
Applying Case Splitting for conducting proof scores of the th4 is more complicate than
for other theorems. The finite or infinite of While statement are splitted into two cases
which based on the assumptions of existEqZero and notZero. From the source code of
proof scrores we see that there are three assumptions for two splitted cases,

eq existEqZero(exp,stm1,env-normal,0) = true .

eq existEqZero(exp,stm1,env-normal,s(nat)) = true .

eq notZero(exp,stm1,env-normal,k) = true .

The existEqZero should be considered with zero and non-zero values. For zero case of
the existEqZero, the equivalent assumptions,

eq evalExp(exp,env-normal) = 0 .

is replaced. And we might replace an assumption by group of equivalent assumptions,
such as

eq notZeroEqZero(exp,stm1,env-normal,s(nat)) = true .

is replaced by three assumptions

eq eval(stm1,create-env(stm1,env-normal,nat)) = env1-normal .

eq notZero(exp,stm1,env-normal,nat) = true .

eq evalExp(exp,env1-normal) = 0 .

Finally, for the infinite case of the While statement, described by the notZero assump-
tion, the definition of env-non-halt,

red definition(exp,stm1,env-normal,k)

implies th4(stm,cl1,cl,stk,env-normal) .

is used for provement of the th4. This definition is needed because it’s a unique informa-
tion about specification of the env-non-halt.
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The relation iff for theorem th1, but implies for the th

We could realize that the th4 is a general form of the theorem th1 as follows,

eq th1(Stm:Stm,EV:EnvNormal,EV2:EnvHalt) =

not(interpret(Stm,EV) = env-non-halt)

implies ( interpret(Stm,EV) = EV2 iff vm(compile(Stm),EV) = EV2 ) .

it’s exactly a specific case of the theorem th with the condition accepts only finite loop
statements, not (interpret(Stm,EV) = env-non-halt).

We could see that the th4 (or th1) satifies iff relation, however the iff could not
validated in theorem th when the non-termination condition is removed. The th only
satifies the weaker implies relation.

eq th(Stm:Stm,Env1:EnvHalt,Env2:EnvHalt) =

(interpret(Stm,Env1) = Env2) implies (vm(compile(Stm),Env1) = Env2) .

Looking at inside the proof scores of the th4 and the th for find the reason, we rec-
ognize that when applied Case Splitting into existEqZero and notZero cases of the
while statement, the notZero indicate the non-termination situations. Based on speci-
fications, with notZero assumption, we could not determined interpret(Stm,EV) and
vm(compile(Stm),EV) are returned Environment or not because the Case Splitting will
repeat forever. That why we need the definition,

eq definition(Exp:Exp,Stm:Stm,EV:EnvNormal,N:Nat) =

notZero(Exp,Stm,EV,N)

implies (interpret(while Exp do Stm od,EV) = env-non-halt) .

mentioned in above section. This is a definition for the meaning of while statement. With
this definition as hypothesis, the th1 (or th4) is validated. However the th could not
validate with the iff relation because the rightside, vm(compile(Stm),Env1) = Env2,
of th could become false. There is no definition for the Virtual Machine in this case. It
means the th only satified with the implies relation. In our opinion, the definition for
while statement could not preserved when it’s transformed by Compiler, and this might
be reasonable answer for the different relation between the th1 and th.

When proof scores of th4 are all validated, the th4 could be used to verify other lemmas.
With theorem th4, the proof scores of the th are trivial. Besides with the th2, th3, and
th4 there are other theorems for verification of the th that is in detail at the source code.

The complete verifications of the th show that the correctness of Compiler for Minila
language is validated. It is the main object of this research. In summary, other theorems
for verifications of the corrrectness in this document could be found at the source code.
The summary diagram that shows relation between theorems and lemmas used in this
document is as follows,
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Figure 3.1: Theorem Relation Diagram

3.3.5 The source code

In this research, specifications is all stored in ”minila.mod” file, proof scores for each
theorem are all put into a separete file. For an example, all proof scores for theorem th

is in file ”th.mod”. The source code (specifications and proof scores) is compressed in zip
file, ”minila.zip”.

The CafeOBJ version 2009 Feb 23 is used for this research. When execute ”in minila.mod”
to run the specification, there output some warnings. We already realized those warnings,
however it’s not effect on the verification of proof scores. We let an warning

[Warning]: axiom : exec2(mod,CL:CList,PC:Nat,(N2:Nat | (N1:Nat |

Stk:StackNormal)),EV:EnvNormal) = (if (not (N2 = 0)) then

exec(CL,(PC + s(0)),((N1 rem N2) | Stk),EV) else env-err fi)

contains error operators............* done.

In specifications, the rem operation is defined with N2 belongs NzNat. However, in above
equation, we could see that the not (N2 = 0) was already added as a condition before
doing the rem. Therefore, if N2 equals 0, the rem could not be run. The CafeOBJ
language could not detected this meaning in the equation, hence it alerts a warning. The
same things happen with other equations in the specifications. After run ”in minila.mod”
command, we could do verification by executing proof scores for each theorem. For an
example, ”in th.mod” for verifying the main theorm th. All proof scores of all theorems
return true means that the correctness of Compiler for Minila statements is verified.

50



Chapter 4

Conclusion

4.1 Summary

In this research, we completely specified the Minila language, the Compiler and other
related components such as the Environment, Interpreter or Virtual Machine. We also
considered problems of specification such as the Error Handling and the sort hiearchy,
especilly the Environment Hierachy. Furthermore, the correctness of Compiler for Minila
language were defined and formalized as the theorem th, it’s the extension and improve-
ment of the definition in previous works. The proof scores for theorm th and the others
were all success. It means the correctness of Compiler for Minila language were already
verified by using CafeOBJ language. The success verification for Minila language is an
important achievement for verifying the correctness of compiler for an imperative pro-
gramming language in general.

4.1.1 Completed Specifications

Specifications of the Minila and others are all stored in the ”minila.mod” file. In total,
there are about 850 lines for specifications. The specifications also contains the Error
Handling and Environment Hierachy.

Error Handling

When defining a programming language, exception (error) situations should be considered.
Therefore, the Error Handling is a important part of specifications. In this document, we
already introduced 3-step error detection method, which might be a technique for solving
error problems. This technique could be used when specify other programming language
in general.

Environment Hierachy

Environment Hierachy is one possible method when specify and verify the statement of
Minila language, especially for the infinite looping statement. With this hierachy, the finite
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and infinite statements are determined as two cases of Case Splitting that corresponding
with the terminated Environment and non-termination Environment. Proof scores are just
conducted for each cases like normal situations of Case Splitting. And in this document,
Environment Hierachy is very useful for verification of the correctness of Compiler.

4.1.2 Completed Verfications

Verifying the correctness of Compiler for Minila language is expressed in proof scores. In
this documents, proof scores were already verified. We have more than 10.000 lines of
proof scores in total. The th3 and th4 are two theorems that should be noticed. Roughly,
the th3 covers the correctness of Compiler for expressions that were verified in previous
works. And the th4 showed the semantic equivalence when executed by the Interpreter
and Virtual Machine of finite statements. The th4 specifies the correctness of Compiler
for termination situations. Even though the th only satisfied the ”implies” than ”iff”
relation, the completed verification of th claims that the Compiler of Minila language
satisfies the correctness property. On other words, the correctness of Compiler for an
imperative programming language is validated in this research with Minila as an given
imperative language.

4.2 Related Works

The correctness of compilers was first considered in [11] but it focused only on the arith-
metric expressions of programming language. Thereafter, there are many efforts for ver-
ifying the correctness of compilers for whole programming languages. Many potential
approaches are proposed such as denotational semantics [13][18], refinement calculus [14],
structural operational semantics [5].

Our research is quite close to the ”An Algerbraic Approach to Compiler Design” [1][2].
In that document, a reasoning (the source) language and a compiler were defined by
using the algebraic approach. The source language also considered complex statement
structures such as the Arbort, Miracle, Nondeterminism etc. The correctness property
was verified by the OBJ3, an implementation of the OBJ specification language [10].

Many projects demonstrated on a concrete implementation of the source and target
language. They focused on the realistic aspect of programming language and the Compiler
closed to the implementation for concrete language.

Leroy [19] verified a compiler from Cminor (a C-like imperative langauge) to Power PC
assembly code, using the Cop proof assistant both for programming the compiler and for
proving its correctness.

Strecker [15] and Klein and Kipkow [8] verified non-optimizing byte-code compilers from
a subset of Java to a subset of the Java Virtual Machine using Isabelle/HOL. They did
not address compiler optimizations nor generation of actual machine code.

In the context of the German Verisoft initiative, Leinenbach [4] and Strecker [16] for-
mally verified a compiler for a C-like language called C0 down to DLX assembly code
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using the Isabelle/HOL proof assistant. This compiler appears to work in a single pass
and to generate unoptimized code.

The Verifix project [7] proposed the constructions of mathematically correct compilers.
The only part that led to a machine-checked proof was the formal verfication in PVS of
a compiler for a subset of Common Lisp to Transputer code.

4.3 Future Research

Because of the short time of Master’s research, this document only considered the Minila
language with essential, simple features. In future, we shall concentrate on complex struc-
tures of imperative programming language such as procedure calls or pointer. Moreover,
we study about the code optimization and more on mechanisation of the algebraic deno-
tational semantics
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