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Abstract

The OSEK/VDX operating system is a real-time operating system widely used in the
automotive applications. Due to the standardized system services as specified in the
specification, it can reduce the effort to port application software and the development
cost. However, the specification itself does not prescribe any particular implementation
language of the system services and leaves a certain amount of flexibility. Therefore,
conformance testing is needed to test whether or not an OSEK implementation is correct
with respect to the specification.

This thesis deals with an original approach to conformance testing for OSEK OS. The
main goal is to develop a method to automatic generation of test cases by model checking
technique. Because a formal model of OSEK OS called as design model of OSEK OS
is available, we consider making full use of it as a test oracle in this method. Starting
point is to extract conformance requirements from the specification. The extracted con-
formance requirements are described in a precise and unambiguous manner by using a
formal specification language. Test model is constructed based on the formalized confor-
mance requirements. By model checking the test model with the design model, on the
one hand, if the extracted conformance requirements are not correct with respect to the
design model, correction of them are needed according to the checking result, on the other
hand, if no violation is detected, exhaustive state space searching will be conducted and
then test cases can be automatically generated from the witnesses.

Based on the proposed approach, test model can be constructed in a systematic way. We
can assure the correctness of the test purposes with respect to the design model of OSEK
OS. Moreover, the generated test cases from test model can achieve the corresponding
test purposes. Therefore, test quality can be significantly enhanced.
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Chapter 1

Introduction

1.1 Motivation

The OSEK/VDX operating system (further called OSEK OS)[gro05] is a real time oper-
ating system widely used in the automotive applications. The OSEK OS specification has
been provided by the OSEK/VDX group, a joint project of the automotive companies in
Europe, which aimed at establishing an industry standard for an open architecture for
distributed control units in vehicles.

To achieve high portability and re-usability of automotive application software, the OSEK
OS specification defines a set of interfaces between the application software and the OS
by system services. Due to the standardized system services, it can reduce the effort to
port application software as well as save the development cost. On the other hand, the
specification itself does not restrict any implementation language of the system services.
Moreover, the specification leaves a certain amount of flexibility. It is the responsibility
of OS developers to define implementation specific issues. As a result, it may raise the
risk that an OSEK OS implementation does not comply with the OSEK OS specification.
Therefore, it must be possible to ascertain that the implementations of OSEK OS really
conform to the specification of OSEK OS. One way to do this is by testing these OSEK
OS implementations. This activity is known as conformance testing.

In order to support checking the conformance of OSEK OS implementations to the OSEK
OS specification, the OSEK/VDX group has founded a project named MODISTARC[gro99].
In this project, a standard conformance testing methodology has been developed. It serves
as the basis for the development of the test specifications and test tools. However, we
found that based on this methodology, it is difficult to assure the correctness of the ex-
tracted test purposes with respect to the OSEK OS specification without verifying them.
Even though test purposes are correct, it is still difficult to make sure that test cases
can achieve the corresponding test purposes without validating them. Furthermore, it is
also difficult to obtain exhaustive test cases since test cases are designed manually. As a
consequence, test quality might be impacted for these shortages.
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On the other hand, in recent years, we have developed a formal model of OSEK OS. This
formal model is called as the design model of OSEK OS. It was written in PROMELA[GMP04],
which is an accept language of model checker SPIN[Hol04]. In the design model, it models
the functionality of system services as specified in the OSEK specification so that it can
manipulate such as task state or resource state by calling the system services. In other
related researches, we have done a huge number of experiments by model checking the
design model of OSEK OS. Thus we have got sufficient confidence that it conforms to the
OSEK OS specification. We think that the design model of OSEK OS can be used not
only in the design stage but also in the test stage.

1.2 Objective

The main goal of this thesis is to propose a new approach to conformance testing for
OSEK OS. In the proposed approach, we will concentrate mainly on developing a method
to automatic generation of test cases by using model checking technique. Based on the
proposed approach, the correctness of test purposes can be assured. Moreover, the gen-
erated test cases can achieve the corresponding test purposes. Therefore, test quality can
be significantly enhanced.

1.3 Structure of the Thesis

This thesis is organized as follows: Chapter 2 introduces the background of this work.
Then in Chapter 3, the overview of proposed approach is presented and the process of
test generation is defined. Chapter 4 introduces the details of conformance requirements
and the formal test specification. Chapter 5 presents the test model which is a key role
for generation of test cases. In chapter 6, the experimental results are shown. Finally,
Chapter 7 concludes this work.

2



Chapter 2

Background

2.1 OSEK/VDX

2.1.1 OSEK/VDX Group

OSEK/VDX has been founded as a joint project of the German OSEK group and the
French VDX group since 1994. The project aimed at establishing an industry standard for
an open architecture for distributed control units in vehicles. Various parts were proposed
for the standard: OS (the basic services of the real-time kernel), COM (the communication
services), NM (the Network Management services). This thesis deals with the OS part.
For more information about OSEK/VDX refer to [gro05].

2.1.2 OSEK OS Overview

The OSEK OS provides several service groups which are structured in terms of function-
ality.

• Task management

• Resource management

• Event management

• Interrupt management

• Alarms

• Intra processor message handling

• Error treatment

This section gives a brief overview of OSEK OS. Most attention is spent on task manage-
ment and resource management, since this work concentrates mainly on these functions
of OSEK OS.

3



Task management The OSEK OS provides two different types of tasks, namely basic
tasks and extended tasks. There are two main differences between basic tasks and ex-
tended tasks. One difference is that basic tasks might be allowed to support the multiple
requesting of task activation whereas extended tasks are not. Multiple requesting of task
activation means that the OSEK OS receives and records parallel activation of a basic
task already activated. Another difference is that extended tasks are allowed to wait for
events whereas basic tasks are not. Basic tasks have three states, shown in figure 2.1.

Running

Ready

Suspended

terminate

startpreempt

activate

Figure 2.1: Basic task state model

The OSEK OS prescribes that all the OS objects must be defined statically during the
system design. Tasks created as suspended state at the system generation time then
wait for being activated. They become ready state after activation by calling some OS
system services. At any point in time, only one task selected by the scheduler can be
in the running state. The running task may terminate its execution and changed into
suspended state or ready state by calling some OS system services. Comparing with basic
tasks, extended tasks has the additional waiting state, shown in figure 2.2. The waiting
state allows the processor to be released and to be reassigned to other task without the
need to terminate the running extended task.

Conformance classes The OSEK OS specifies the concept of conformance class to
describe different features of OS. The conformance classes define four kinds of the kernel
to provide better scaling of the system so as to adapt to different requirements. They are
determined by three main attributes:

• supporting of extended tasks or basic tasks only

• multiple requesting of activation of a basic task

4



Running

Ready

SuspendedWaiting

terminate

startpreempt

activaterelease

wait

Figure 2.2: extended task state model

• the number of tasks per priority level

Scheduling policy The OSEK OS supports three types of scheduling policies which
are described as follows:

• Full-preemptive scheduling: the currently running task can be rescheduled and
changed into ready state as soon as a higher priority task has got ready.

• Non-preemptive scheduling: with non-preemptive scheduling, the currently running
task can still be in the running state even though in the case of a higher task has
got ready.

• Mixed-preemptive scheduling: tasks with full preemptive and tasks with non pre-
emptive both exist in the same system. The scheduler is invoked depending on the
policy of the currently running task which means if the task is non preemptive, non
preemptive scheduling is performed and if the task uses full-preemptive scheduling
policy, the running task can be rescheduled at any location.

Resource management The OSEK OS provides resource service to co-ordinate con-
current accesses of several tasks or interrupt service routines to access the critical section.
The resource access protocol, namely priority ceiling protocol, is used to provide mutually
exclusive access and prevent priority inversion and deadlock. According to this protocol,
the priority ceiling is assigned to the resource statically at the system generation time. Its
value is equal to the highest priority of all tasks (or ISR) accessing the resource. When
a task gets a resource, its priority might be raised to the resource priority, so that other
tasks which might share the same resource as the running task do not enter the running
state, due to their lower or equal priority than the running task.

5



2.1.3 System Services

One goal of OSEK/VDX is to establish the standard to work against recurring expenses
in development as well as incompatible interfaces defined by different manufactures. This
is intended to be achieved by creating a set of abstract and application independent in-
terfaces which do not rely on any specific hardware. To achieve high portability and
re-usability of application software, the OSEK OS specification defines a set of interfaces
between the application software and the OS by standardized system services. Thus the
OSEK OS specification can be regarded as an interface specification defining system ser-
vices to use within applications.

This section gives a brief introduction into some of the system services defined in the
OSEK OS specification. In this work, we focus on five system services (ActivateTask,
TerminateTask, ChainTask, GetResource, ReleaseResource) which belong to the service
groups of task management and resource management.

• ActivateTask: The main function of this system service is to cause the activation
of the target task. If the target task is in the suspended state, it will be transferred
into the ready state. On the other hand, if the target task is not in the suspended
state and supports multiple activation requests, the activation will be recorded.
Furthermore, it will enforce a rescheduling in the case of the calling task is full-
preemptive scheduling.

• TerminateTask: The main function of this system service is to cause the termi-
nation of the calling task. If the calling task does not support multiple activation
requests, it will become suspended state. However, if the calling task supports mul-
tiple activation requests and multiple activation requests have been recorded, the
calling task will transferred into ready state. Finally, once the system service is
called successfully, it will enforce a rescheduling.

• ChainTask: This system service is the combination of ActivateTask and Termi-
nateTask. The main function of it is to cause the termination of the calling task and
the activation of the target task immediately. If the calling task is identical with
the target task, this does not result in multiple activation requests. As far as the
system service is called successfully, it will enforce a rescheduling.

• GetResource: This system services causes the occupation of target resource by
the calling task.

• ReleaseResource:This system service causes the releasing of target resource by
the calling task.

2.2 Conformance Testing

Software testing is an essential activity in any kind of software development process. By
applying a set of experiments to a system implementation(implementation under test-

6



IUT), sufficient confidence of its correct function is gained.

There exists many strategies of software testing with multiple aims. In [Mye08] , two
of the most prevalent strategies, namely black-box testing and white-box testing are de-
fined. White-box testing, also referred to as structural testing, is to examine the internal
structure of the program. Test data are derived from an examine of the program’s logic.
On the other hand, black-box testing, also called functional testing, in the sense that
we do not concern about the internal behavior and structure of the program, instead,
concentrate on checking correct functionality with respect to the specification. Test data
are solely derived from the specifications.

In this thesis, we are interested in so-called conformance testing, which is a kind of
black-box testing. The aim of conformance testing is to check that whether or not an
implementation conforms to its specification.

2.2.1 MODISTARC

To support checking the conformance of OSEK OS implementations, OSEK/VDX group
has founded another project named MODISTARC[gro99]. In the MODISTARC project,
a standard conformance testing methodology has been developed. It serves as the basis
for the development of the test specifications and test tools. The standard methodology
defines a framework in which sets of tests, called test suites, should be defined and gen-
erated, including test suites for OS as well as COM and NM.

According to the standard conformance testing methodology, definition of the confor-
mance testing for OSEK OS is a two-stage process:

• definition of the test purposes

• definition of the test cases

In the first stage, the test purposes are developed by analyzing the OSEK OS specification
and extracting testable assertions. Testable assertions are, on the one hand observable
actions (task switches, interrupts, etc.) performed by the OS, on the other hand the
correctness of the return status of OS services. These assertions build the basis on which
the test cases and the test suite are developed. The assembly of the test purposes makes
up the test plan.

In the second stage, test cases which specify the sequence of the interactions between
the test application and the implementation are defined to verify one or more test pur-
poses. The assembly of the test cases makes up the test suite.

Problems of MODISTARC’s Methodology In the official document of OS Test
Plan provided by OSEK/VDX, the test purposes are listed in a table containing for each
assertion:

7



• a sequence number used as a reference for test suite traceability,

• the description of the test purpose extracted from the specification,

• the variants of the specification to which the purpose applies,

• a reference to the paragraph in the specification allowing traceability to be provided
against the specification.

Figure 2.3 shows an example of the test purposes in the OS Test Plan.

Figure 2.3: Test purposes of MODISTARC

As mentioned in the previous section, the test purposes should consist of the observable
actions performed by the OS and return status of OS services. The inconsistency between
two different definitions of the test purposes in the same document do exist.

Moreover, according to the standard conformance testing methodology, test cases are
generated by using the Classification Tree Method. Figure 2.4 shows a part of the test
cases defined in the OS Test Plan. The test purposes do not exist in the test cases, which
is inconsistent with the description of the test cases in the previous section.

Figure 2.4: Test cases of MODISTARC

2.3 Model Checking

Model checking[BK+08, CGP, Cla97] is an automatic technique for formal verification of
finite-state reactive systems. By modeling the reactive systems as finite-state automata

8



and formulating the properties in temporal logic, an efficient search procedure is used to
determine automatically whether the model violates the property or not. If the state space
exploration shows no property violations, then correctness with regard to the property
is proved. When a property violation is detected, a counterexample will be generated to
illustrate the property violation.

2.3.1 Testing with Model Checking

With the growing significance of computer systems within industry and wider society,
techniques that assist in the production of reliable software are becoming increasingly im-
portant. On the one hand, testing still remains the most important method to verify the
quality of software. One the other hand, formal verification start playing an important
role to assure the correctness of software.

At first sight, formal verification and testing seem to be quite different things. On the one
hand, formal verification is a static activity that involves analyzing system models, with
the analysis completely covering all paths in a model. In contrast, testing is a dynamic
activity that studies the real-world system itself, that is its implementation or source
code, but often cover only a limited number of system paths.

However, during the past decade, a new consensus has developed in both academic and
industrial areas, that is, using formal verification to support testing. The most impor-
tant role for formal verification in testing is the automated generation of test cases, since
manual testing takes a lot of effort and is error prone. Due to the ability to generate wit-
nesses and counterexamples, model checking is the formal verification technology of choice.

Testing using model checking is a model-based testing technique. The model-based ap-
proach to software testing encompasses the creation of an abstract model, which is used
to automatically create test cases. At the same time the model tells us the expected
outcome, thus solving the test oracle problem. In [FWA09, HBB+09], the achievements
made for testing using model checking have been well surveyed. To our knowledge, there
still exists several obstacles in this area. For example, most work evolves around a set
of small, well known example applications. In addition, in most work on model based
testing, the existence of a suitable formal model is assumed. However, the creation and
confirmation of the correctness of this model is one of the most difficult parts of the whole
development process.

9



Chapter 3

Proposed Approach

3.1 Overview of Proposed Approach

In this work, we will propose a new approach to conformance testing for OSEK OS.
Figure 3.1 shows the overview of the proposed approach. At first, test requirements will
be extracted from the OSEK OS specification. By using a formal specification language,
the extracted test requirements will be described in a precise and unambiguous manner.
On the other hand, since a formal model of OSEK OS which is called as the design model
of OSEK OS has been developed and assured to conform to the OSEK OS specification,
we consider taking advantage of the existence of this formal model and use it as a test
oracle. Therefore, we will translate the formal test specification into the test model.
By model checking the test model with the design model of OSEK OS, exhaustive state
space searching will be conducted and then test cases can be automatically generated
from the witnesses. Then, we can use the generated test cases to test whether or not an
implementation conforms to the OSEK OS specification.

3.2 Preliminaries

3.2.1 Model Checker SPIN

The model checking tool which we will use in this work is called SPIN[Hol04, Hol02]. To
our knowledge, SPIN has become one of the most widely used model checkers in both
academic and industrial areas during the past decade. This tool can be used to perform
a very efficient verification of a system model against usual safety properties (like ab-
sence of deadlock) as well as complex liveness requirements expressed in linear temporal
logic (LTL). The system model is specified in the verification language PROMELA (a
Process Meta Language). PROMELA[GMP04] is a non-deterministic modeling language
designed for describing systems composed of concurrent processes that communicate asyn-
chronously. Syntax elements are borrowed from Dijkstra’s guarded language, Hoare’s CSP
language and C programming language.

10



Test
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Formalization
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Generation

Development
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Figure 3.1: Overview of Proposed Approach

3.2.2 Z-Notation

Z-notation[Spi92, PTS96, II93] is a formal specification language which is based on the
set theory and the first order predicate logic. In this section, we introduce some notations
which are used in this thesis.

Schema Schema is one of the principal features of Z to specify the data of a sys-
tem and the operations on the data. The form of schema is shown below:

ExampleA
a : N
b : N

a ≥ b
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The schema consists of two parts, the part above the central dividing line is known as the
signature and the part below the line is known as the predicate. The signature introduces
variables and assigns them a set theoretic type. The schema above named ExampleA
introduces two variables a and b and states that a and b are two natural numbers. The
predicate of a schema refers to the variables introduced in the schema or global variables
in other schema and relates the values of these variable to each other. The predicate in
the schema above asserts that a is greater than or equal to b.

The signature in a schema can introduce variables of any set theoretic type. They range
from natural numbers up to complicated high-order functions. Whenever functions and
relations are defined in a signature, their type is designated by the types of their domains
and range, together with a symbol which gives the type of the function or relation.

Free type Free type is allowed to declare a set with a finite number of members.
In the declaration the members are separated by the | symbol. For example,

Cars ::= Toyota | Honda | Nissan | Suzuki

defines the set of cars which has four members.

Schema inclusion The means by which schemas can be referred to by other schemas
is known as schema inclusion. As an example consider the schema below:

ExampleB
ExampleA
c : N
d : N

c ≥ d
a + c ≥ b + d

In the schema ExampleB, it introduces two new fresh variables c and d of natural num-
bers, and states that c is greater than or equal to d in the predicate part. Since ExampleA
is included in the signature part of ExampleB, ExampleB can refer to a and b from Ex-
ampleA. The effect of including one schema in the signatures of another schema is to form
the union of their signatures and to conjoin their predicates.

Other notations Some other notations are also used in this thesis. They are summa-
rized in table 3.1.
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Notation Explanation
¬ P negation

P ∧ Q conjunction
P ∨ Q disjunction
P ⇒ Q implication
P ⇔ Q equivalence
∀ x : T • P universal quantifier
∃ x : T • P existential quantifier
∃1 x : T • P unique existence

dom R domain
X → Y total function

N set of natural numbers
N1 set of positive natural numbers

seq S set of the finite sequences of S
〈 〉 empty set

head S first element of seq S

Table 3.1: Summary of other notations

3.3 Design Model of OSEK OS

In recent years, we have developed a formal model of OSEK OS in PROMELA named
the design model of OSEK OS. The design model of OSEK OS consists of variables rep-
resenting the OS objects (e.g. task), the finite state automata modeling the functionality
of OS system services and controlling the ready queue. See the overview of the design
model of OSEK OS in figure 3.2.

OS 
System Services

(ActivateTask,
TerminateTask,
GetResource,
SetEvent,etc)

Tasks

Resources

events

ISRs

0

0

0

0

1

1

1

1

2

...

...

...

...2

N_TASK

N_RES

N_EVT

N_ISR

0 1 ... N_PRIO_TASK
Ready 
queue

... ... ...

enq deq

... ... ... ... ... ...

turn

Design Model of OSEK OS

Environment Models

OS service calls

Figure 3.2: Overview of the design model of OSEK OS
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Variables of the OS objects Task information including such as task identifier, task
state and task priority, resource information as well as other OS objects information are
stored in the arrays, respectively. The variable turn stores the task identifier of the cur-
rently running task. All task identifiers which are ready for execution are stored in the
ready queue. The ready queue must be reordered according to task priorities after adding
a new task or removing some task. The automata enq and deq provide mechanisms to
control the ready queue.

OS system services Each OS system service is modeled by a finite state automaton
representing its functionality as specified in the OSEK OS specification. The automata of
system services are waiting in their initial states until they are invoked by outside stimuli.
Then they can manipulate such as tasks states or other OS objects states as well as ready
queue. As an example of OS system service, we introduce ActivateTask(id) modeled in
the design model of OSEK OS. The automaton of ActivateTask system service is depicted
in figure 3.3.

S0

S1

S2

S4

S6

S9S7

S3

S10

S8

get_index_state(id)

ret_ix != NOINDEX ret_ix == NOINDEX

tsk_state[ret_ix].act 
< OS_ACTMAX

!(tsk_state[ret_ix].act 
< OS_ACTMAX)

tsk_state[ret_ix] == 
SUSPENDED

tsk_state[ret_ix] == READY
 && tsk_state[ret_ix].btask

tsk_state[ret_ix] == READY 
&& tsk_state[ret_ix].!btask

ercd = E_OS_LIMIT

enq_prio
ercd = E_OK

enq_prio
tskstate[ret_ix].tsta
t = Ready
..
ercd = E_OK

ercd = E_OS_LIMIT

ercd = E_OS_ID

S11

Schedule

S5

tsk_state[ret_ix].actcnt++

Figure 3.3: Automaton of ActivateTask system service
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In [YA10], a method of modeling the outside environments has been proposed and a
tool for generating all possible environments has been implemented. According to this
method, huge amounts of experiments by model checking the design model of OSEK OS
with environment models have been done. Therefore, we have sufficient confidence that
the design model is correct and it conforms to the OSEK OS specification.

3.4 TGT: Test Case Generation Tool

Besides the design model of OSEK OS, we also developed a tool named test case generation
tool, abbreviate to TGT. Figure 3.4 shows the mechanism of TGT for deriving sequences
of called system services from the design model of OSEK OS automatically.

Design Model

ActivateTask(){
}
TerminateTask(){
}
ChainTask(){
}
GetResource(){
}
.......

Test Model 
TaskA call ActivateTask()

TaskA call TerminateTask()

TaskB call ChainTask()
.........
.........

SPIN

TGT

Sequence of 
called system services

Test Tree
Model Checking

Figure 3.4: Mechanism of TGT

Because OS is a kind of reactive system, generally speaking, it always waits for external
stimuli. Suppose that there exists a test model, that in this test model, some system
services that are modeled in the design model of OSEK OS are going to be invoked. By
model checking the test model with the design model of OSEK OS, some task states
or other OS objects states might be changed according to the functionality of system
services. Meanwhile, by using the exhaustive state search function of SPIN, all of possible
reachable states and invoked system services can be accessed and checked. The witness of
searching these states and system services can be recorded on the nodes and edges of the
test tree in figure 3.4, respectively. As a consequence, sequence of called system services
in this test tree can be derived by TGT automatically.

3.5 Test Generation Process

In the proposed approach, we concentrate mainly on the generation of test cases. There-
fore, a test generation process is needed to be defined. Figure 3.5 shows the overall view
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of test generation process.
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2. 3.
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OK

Figure 3.5: Test Generation Process

The whole process of test generation includes five steps as follows:

1. Extract the conformance requirements from the OSEK OS specification. In gen-
eral, before testing a system implementation, the requirements of testing must be
clarified. From conformance testing point of view, in order to test whether an imple-
mentation conforms to its specification, at first, the meaning of conformance should
be clearly defined. According to the [Ray87, Tre92, Tre], conformance requirements
make up of two kinds of requirements, namely static conformance requirements
and dynamic conformance requirements. Thus a conforming implementation is one
which satisfies both static conformance requirements and dynamic conformance re-
quirements. In this work, we re-use these concepts and define the conformance
requirements in the context of the OSEK OS specification.

2. Formalize the extracted conformance requirements. To remove ambiguous and give
a precise description of the conformance requirements, we choose Z-notation as a
formal specification language to formalized the extracted conformance requirements.
The formalism is called as the formal test specification.

3. Construct test model based on the formal test specification. Since the design model
of OSEK OS is available, we consider taking advantage of the existence of this
model and use it as a test oracle for the generation of test cases to test OSEK
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implementations. The test model will be implemented in PROMELA. Furthermore,
to achieve automatic translation from the formal test specification to the test model,
a translation algorithm is proposed.

4. Make correction of the conformance requirements. Since the OSEK OS specification
does not state so-called conformance requirements explicitly, we have to extract the
conformance requirements based on our knowledge of the specification. As a result,
it is possible that the extracted conformance requirements are not correct with
respect to the design model of OSEK OS. By model checking the test model with
the design model of OSEK OS, we can get feedback from the checking result. If a
violation is detected, SPIN will stop searching and report the violation place in the
test model. Therefore, we can make correction of the corresponding conformance
requirements according to the checking result.

5. Use TGT to generate test cases. If all the extracted conformance requirements are
correct with respect to the design model of OSEK OS, by model checking the test
model with the design model of OSEK OS, no violations will be reported, instead,
the exhaustive state space searching will be conducted and the witnesses will be
generated. Then we can use TGT to derive the exhaustive test cases from the
witnesses.
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Chapter 4

Formal Test Specification

4.1 Overview of Formal Test Specification

According to the test generation process, the starting point of conformance testing is
to extract the conformance requirements, including the static conformance requirements
and the dynamic conformance requirements from the OSEK OS specification. Since the
OSEK OS specification does not state so-called conformance requirements explicitly, at
first, we should give the definition of these two kinds of conformance requirements. Ac-
cording to the definitions, the conformance requirements are extracted from the OSEK
OS specification.

To provide a precise and unambiguous description of the extracted conformance require-
ments, we choose Z-notation to formalize them. The formalism is called as the formal
test specification. Another intended purpose of the formal test specification is to serve as
a basis for constructing the test model. Figure 4.1 shows the overview of the formal test
specification.

Formal test specification consists of four parts:

• Data Definition

• Data Declaration

• System Configuration Specification

• Test Purpose Specification

System configuration specification makes up of the formalized static conformance require-
ments extracted from the OSEK OS specification as well as the concrete system config-
uration. Concrete system configuration is a kind of test environment consisting of the
OS objects and some other OSEK OS information which should satisfy the specific static
conformance requirements. Test purpose specification consists of the formalized test pur-
poses and some formal definitions of the generic OS objects and the system services that
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Figure 4.1: Overview of Formal Test Specification

are used in the formalized test purposes. Furthermore, in order to formalize the extracted
requirements, the OS primitive objects such as task and resource and some other OSEK
OS information should be formally defined and declared. They are specified in the data
definition and data declaration parts. In next section, we introduce the details of the data
definition and data declaration parts.

4.2 Data Definition and Data Declaration

Firstly, the task object is specified by a schema as below:
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TASK
tskid : N
tsktype : TaskType
schpol : SchPol
MAXMULTIACT : N
tskstate : TaskState
tskpri : N
multiactcnt : N
tskdpri : N
tskrscstate : RscState
tskrscid : N

The signature part of schema TASK introduces some variables which represent the corre-
sponding attributes of a task object. The meanings of each variable are shown as follows:

• tskid : identifier of a task which is specified as a natural number.

• tsktype: type of a task. Its type is a free data type named TaskType defined as
below. TaskType is a set containing exactly two values representing basic task and
extended task.

– TaskType ::= Basic | Extended

• schpol : scheduling policy of a task. Its type is a free data type named SchPol defined
as below. SchPol is a set containing exactly two values representing non-preemptive
and full-preemptive.

– SchPol ::= NON PREE | FULL PREE

• MAXMULTIACT : maximal value of multiple activation requests of a task which is
specified as a natural number assigned at the system generation time.

• tskstate: current state of a task. Its type is a free data type named TaskState defined
as below. TaskState is a set containing four values.

– TaskState ::= Suspended | Ready | Running |Waiting

• tskpri : priority of a task which is specified as a natural number assigned at the
system generation time.

• multiactcnt : current value of multiple activation requests of a task which is specified
as a natural number.

• tskdpri : priority of a task occupying one or more resources which is specified as a
natural number.
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• tskrscstate: whether or not a task is occupying some resources. Its type is a free
data type named RscState defined as below. RscState is a set containing exactly
two values.

– RscState ::= Free | Occupy

• tskrscid : identifier of a resource occupied by a task which is specified as a natural
number.

Secondly, the resource object is defined by a schema as below:

RESOURCE
rscid : N
rscstate : RscState
rscpri : N
rsctskid : N

The signature part of schema RESOURCE introduces some variables which represent the
corresponding attributes of a resource object. The meanings of each variable are shown
as follows:

• rscid : identifier of a resource which is specified as a natural number.

• rscstate: current state of a resource. Its type is a free data type RscState.

• rscpri : ceiling priority of a resource which is specified as a natural number assigned
at the system generation time.

• rsctskid : identifier of a task occupying this resource which is specified as a natural
number.

Moreover, two other free data types named CFClass and StatusType are defined.

• CFClass is a set containing exactly four values representing the conformance classes.

– CFClass ::= BCC 1 | BCC 2 | ECC 1 | ECC 2

• StatusType is a set representing the return values from the system services. Notice
that, since some system services as specified in the OSEK OS specification do not
return any value in the case of being called successfully. Therefore, E OS NORET
is added for this purpose.
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– StatusType ::= E OK | E OS ACCESS | E OS CALLEVEL | E OS ID

| E OS LIMIT | E OS NOFUNC | E OS RESOURCE

| E OS STATE | E OS VALUE | E OS NORET

Then, declaration of the OS Objects in an application on top of an OSEK OS is specified
by a schema as below:

OSEK OS Objects
TskNum : N
RscNum : N
Task : N1 → TASK
Resource : N1 → RESOURCE
cfclass : CFClass
MaxTskMultiCnt : N1

tskempty : N
rscempty : N

∀ i , j : 1..TskNum • i 6= j ⇒ (Task(i)).tskid 6= (Task(j )).tskid
∀ i , j : 1..RscNum • i 6= j ⇒ (Resource(i)).rscid 6= (Resource(j )).rscid
∀ i : 1..TskNum • (Task(i)).tskid 6= tskempty
∀ i : 1..RscNum • (Resource(i)).rscid 6= rscempty

The signature part of schema OSEK OS Objects introduces some variables. The mean-
ings of each variable are shown as follows:

• TskNum: number of tasks in an application on top of an OSEK OS which is specified
as a positive natural number.

• RscNum: number of resources in an application on top of an OSEK OS which is
specified as a positive natural number.

• Task : a set of tasks in an application on top of an OSEK OS. It is modeled by
a function from the set N1 of positive natural numbers to TASK. The fact that
task identifiers are different from each other is specified by the first predicate in the
predicate part of this schema.

• Resource: a set of resources in an application on top of an OSEK OS. It is modeled
by a function from the set N1 of positive natural numbers to RESOURCE. The
fact that resource identifiers are different from each other is specified by the second
predicate in the predicate part of this schema.

• cfclass : conformance class of an OSEK OS. Its type is a free data type CFClass .

• MaxTskMultiCnt : maximal value of multiple activation requests of tasks in an ap-
plication on top of an OSEK OS which is specified as a positive natural number.
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• tskempty : a special task identifier. The fact that no task identifier in the application
is same as this one is specified by the third predicate in the predicate part of this
schema.

• rscempty : a special resource identifier. The fact that no resource identifier in the
application is same as this one is specified by the last predicate in the predicate part
of this schema.

4.3 System Configuration Specification

In this section, we present the details of system configuration specification. The system
configuration specification consists of two parts. One part are the formalized static con-
formance requirements extracted from the OSEK OS specification. The other part is the
concrete system configuration. The concrete system configuration is a kind of test envi-
ronment including the concrete values of some OSEK information and the instantiated
OS objects that should satisfy the static conformance requirements.

4.3.1 Definition of Static Conformance Requirements

It is the common case that most specifications leave open a lot of options, which may or
may not be implemented in a specific implementation. An implementer selects a set of
options for implementation and is required for listing them in some document. Generally,
it may exist some restrictions on the selection of options. Furthermore, each option may
allow the different minimum capabilities of an implementation. Such kind of restrictions
and corresponding minimum capabilities should be defined as the static conformance re-
quirements of a specification. In other words, static conformance requirements define
requirements on the minimum capabilities of a specific option that an implementation is
to provide, and on the combination and consistency of different options.

With respect to the OSEK OS specification, in order to achieve high scalability of appli-
cations executed on top of an OSEK OS, four conformance classes (BCC1, BCC2, ECC1,
ECC2) are defined so as to meet different requirements concerning functionality and ca-
pability of the OSEK OS. On the one hand, the minimum requirements determined by
several attributes for each conformance class are different with each other. On the other
hand, the OSEK OS specification prescribes that it is mandatory to implement the com-
plete conformance classes. It means that if an OSEK OS implementation conforms to the
specification, it should satisfy the minimum requirements of each conformance class.

Therefore, the definition of static conformance requirements in the context of the OSEK
OS specification is given as:

Static conformance requirements define the requirements on the minimum
capabilities of each specific conformance class as specified in the OSEK OS

specification.
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4.3.2 Formalization of Static Conformance Requirements

Once we have given the definition of static conformance requirements, the next step is to
extract them from the OSEK OS specification and use Z-notation to formalize them.

According to the OSEK OS specification, the minimum capabilities of each specific con-
formance class is determined by several attributes. They are summarized in table 4.1.

Conformance Class Task Type Multi Act. Tasks / priority
BCC1 Basic No 1
BCC2 Basic Yes(Basic) Many
ECC1 Basic + Extended No 1
ECC2 Basic + Extended Yes(Basic) Many

Table 4.1: OSEK OS conformance classes summary

The formalism of static conformance requirements is a schema named Stc Cfm Req in
Appendix A. In this section, we introduce the details about how to formalize the mini-
mum capabilities of each specific conformance class.

For the case of BCC1, the OSEK OS only supports the basic task, and limits to one
activation request per task and task per priority, while all tasks have different priorities.

Two predicates are applied to formalize the requirements of BCC1 as follows:

1. ∀ i : 1...TskNum • 0 < Task(i).MAXMULTIACT 6 MaxTskMultiCnt

2. cfclass = BCC 1⇒ (MaxTskMultiCnt = 1) ∧ (∀ i : 1...TskNum • (Task(i)).tsktype =
Basic) ∧ (∀ i , j : 1...TskNum • i 6= j ⇒ (Task(i)).tskpri 6= (Task(j )).tskpri)

For the case of BCC2, the OSEK OS only supports the basic task, and allows the mul-
tiple requesting of task activation and more than one task per priority.

Two predicates are applied to formalize the requirements of BCC2 as follows:

1. ∀ i : 1...TskNum • 0 < Task(i).MAXMULTIACT 6 MaxTskMultiCnt

2. cfclass = BCC 2⇒ (MaxTskMultiCnt > 1) ∧ (∀ i : 1...TskNum • (Task(i)).tsktype =
Basic)

For the case of ECC1, the OSEK OS supports the basic task as well as the extended
tasks, and limits to one activation request per task and task per priority, while all tasks
have different priorities.
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Three predicates are applied to formalize the requirements of ECC1 as follows:

1. ∀ i : 1...TskNum • (Task(i)).tsktype = Extended ⇒ (Task(i)).MAXMULTIACT =
1

2. ∀ i : 1...TskNum • 0 < Task(i).MAXMULTIACT 6 MaxTskMultiCnt

3. cfclass = ECC 1⇒ (MaxTskMultiCnt = 1) ∧ (∀ i : 1...TskNum • (Task(i)).tsktype =
Basic ∨ (Task(i)).tsktype = Extended))
∧ (∀ i , j : 1...TskNum • i 6= j ⇒ (Task(i)).tskpri 6= (Task(j )).tskpri)

For the case of ECC2, the OSEK OS supports the basic task as well as the extended
tasks, and multiple requesting of task activation and more than one task per priority are
allowed for basic tasks.

Three predicates are applied to formalize the requirements of ECC2 as follows:

1. ∀ i : 1...TskNum • (Task(i)).tsktype = Extended ⇒ (Task(i)).MAXMULTIACT =
1

2. ∀ i : 1...TskNum • 0 < Task(i).MAXMULTIACT 6 MaxTskMultiCnt

3. cfclass = ECC 2⇒ (MaxTskMultiCnt > 1) ∧ (∀ i : 1...TskNum • (Task(i)).tsktype =
Basic ∨ (Task(i)).tsktype = Extended))

4.3.3 Concrete System Configuration

Since the OS is a kind of reactive system, to test such kind of system, in general, it is
needed to build some test applications that the boundaries of them are clearly defined.
With regards to the OSEK OS, for example, we need to clear defined the number of tasks,
and other objects used to invoke the system services. Furthermore, the concrete initial
values assigned to the corresponding attributes of OS objects are needed to be decided.

In this work, concrete system configuration includes the concrete values as follows:

1. Conformance class

2. Maximal value of multiple activation requests of tasks

3. Number of tasks

4. Number of resources

5. Initial values of OS objects

- task: identifier, type, the scheduling policy, maximal value of multiple activa-
tion requests, priority
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- resource: identifier, priority

Moreover, they should satisfy the corresponding static conformance requirements. We
show an example of concrete system configuration as follows. In order to keep the consis-
tency, we use the schema to specify the concrete system configuration.

Concrete Sys Cfg
OSEK OS Objects
Stc Cfm Req

cfclass = BCC 1
MaxTskMultiCnt = 1
TskNum = 1
RscNum = 1
(Task(1)).tskid = 1
(Task(1)).tsktype = Basic
(Task(1)).schpol = FULL PREE
(Task(1)).MAXMULTIACT = 1
(Task(1)).tskpri = 2
(Resource(1)).rscid = 1
(Resource(1)).rscpri = 2

However, for this example, if the task type is changed to extended, it will not be a con-
crete system configuration because the BCC1 only support basic tasks.

As a matter of fact, the number of concrete system configuration is unbounded, in the
formal test specification, we just give an example of it.

4.4 Test Purpose Specification

Once the static conformance requirements have been extracted and formalized, the next
step is to extract dynamic conformance requirements and formalize them by Z-notation.
In this section we present the details of test purpose specification.

4.4.1 Definition of Dynamic Conformance Requirements

Like the case of the static conformance requirements, the so-called dynamic conformance
requirements are also not stated explicitly in the OSEK OS specification. With regards to
the reactive systems, dynamic conformance requirements define the requirements on the
observable behavior of implementations in the interaction with their environments. With
respect to the OSEK OS, it interacts with outside environments by the system services
defined in the specification.
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Therefore, the definition of dynamic conformance requirements in the context of the OSEK
OS specification is given as:

Dynamic conformance requirements define the requirements on the
observable behavior of OSEK implementations in the interaction with their

environments by the system services as specified in the OSEK OS
specification.

Thus we focus on the system services and extract dynamic conformance requirements
from them. In this work, we introduce the concept of test purpose and make it relate to
the dynamic conformance requirements.

4.4.2 Definition of Test Purpose

In this section, the definition of test purpose is given and the relationship between test
purpose and the dynamic conformance requirements is shown by a case study. After that,
we introduce the details of formalization of test purposes in Z-notation. Moreover, in
order to realize the automatic translation from test purposes to the test model, the syn-
tax of test purpose has been described by BNF (Backus Normal Form) in the Appendix B.

The definition of test purpose is given as:

Test purpose is a set of dynamic conformance requirements, focusing on
the pre-state, pre-condition, post-state and return value of a specific

system service as specified in the OSEK OS specification.

To better understanding of the definition of test purpose, we study an example. The
description of the system service ActivateTask in the OSEK OS specification is shown in
figure 4.2.

Because it does not state any dynamic conformance requirements explicitly in this system
service, at first, we need to extract them based on our knowledge of the specification.
Here, some of them are listed as follows:

1. If the called task is in the suspended state, it should be transferred into the ready
state.

2. If the scheduling policy of the calling task is full-preemptive, rescheduling should
happen.

3. If the system service is called successfully, the return status should be E OK.

4. etc,.
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Figure 4.2: Description of ActivateTask in the OSEK OS specification

Secondly, an example of generic test case designed based on the dynamic conformance
requirements list above is shown in figure 4.3.

TargetTask

Running

Suspended Ready

ActivateTask(TargetTask)

priority

Full-preemptive scheduling

CallingTask Running

Figure 4.3: an example of generic test case

Two generic tasks are referred in this example of test case. The task which is in the
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running state and ready to call the system service is regarded as the CallingTask. The
task which will be activated by calling the system service is regarded as the TargetTask.
Suppose that the scheduling policy of CallingTask is full-preemptive, and the priority of
CallingTask is higher than the priority of TargetTask. TargetTask is in the suspended
state before the system service is called. If CallingTask calls ActivateTask, state of Tar-
getTask should be transferred from suspended state into ready state according to the
first dynamic conformance requirement. Due to the scheduling policy of CallingTask,
rescheduling should happen according to the second dynamic conformance requirement.
Since the priority of CallingTask is higher than the priority of TargetTask, both of them
are still in the states which are equal to the state before rescheduling. Finally, the sys-
tem service should return E OK because of the succeeding in calling the system service
according to the third dynamic conformance requirement.

According to the definition of test purpose, it focuses on the pre-state, pre-condition,
post-state and return value of a specific system service. Therefore, a test purpose derived
from the generic test case above is shown as follows:

• pre-state: CallingTask is in the running state. TargetTask is in the suspended state.

• pre-condition: The scheduling policy of CallingTask is full-preemptive. The priority
of CallingTask is higher than the priority of TargetTask.

• system service: CallingTask calls ActivateTask(TargetTask).

• post-state: CallingTask is in the running state. TargetTask is in the ready state.

• return value: E OK

According to this example, we can conclude the process of developing a test purpose as
follows:

1. Identify and extract the dynamic conformance requirements from the system service.

2. Design a generic test case based on some dynamic conformance requirements.

3. Derive the test purpose from the corresponding generic test case.

4.4.3 Formalization of Test Purpose

To formalize the test purposes, we need to formally define the generic OS objects and the
system services which are used in the test purposes.

At first, the generic OS objects used in the test purposes are specified by a schema
named Test Purpose Objects in the Appendix A. The meanings of each variable and
formalization of them are shown as follows:
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• EmptyTask: a special task that its task identifier is not equal to any task in the
system, which is specified as:

– EmptyTask : TASK

– EmptyTask .tskid = tskempty

• CallingTask: the running task if there exists running task in the system, otherwise
it is the EmptyTask , which is specified as:

– CallingTask : TASK

– ∃1 i : 1..TskNum • (Task(i).tskstate) = Running ⇒ CallingTask = (Task(i))

– ¬ (∃ i : 1..TskNum • (Task(i).tskstate) = Running ⇒ CallingTask = EmptyTask)

• TargetTask: Any task except the running task if there exists the running task in
the system, otherwise it is the EmptyTask .

– TargetTask : TASK

– ∀ i : 1..TskNum • (Task(i).tskstate) 6= Running ∧ CallingTask 6= EmptyTask ⇒
TargetTask = (Task(i))

– CallingTask = EmptyTask ⇒ TargetTask = EmptyTask

• ReadyQueue: ready queue of tasks in the system.

– ReadyQueue : seq TASK

• NextRunTask: first task in the ready queue if the ready queue is not empty, other-
wise, it is the EmptyTask .

– NextRunTask : TASK

– ReadyQueue 6= 〈〉 ⇒ (∃1 i : 1..TskNum • headReadQueue = (Task(i)) ⇒
NextRunTask = Task(i))

– ReadyQueu = 〈〉 ⇒ NextRunTask = EmptyTask

• TargetRsc: any resource in the system.

– TargetRsc : RESOURCE

– ∀ i : 1..RscNum • TargetRsc = (Resource(i))

Secondly, the system services which are used in test purpose are specified by a schema
named Test Purpose SysCalls. The formalization of them are shown as follows:

• ActivateTask: the system call ActivateTask, which is specified as a function type.

– ActivateTask : TASK × TASK → StatusType
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– CallingTask .tskstate = Running ⇔ (CallingTask ,TargetTask) ∈ dom ActivateTask

– CallingTask .tskstate = Running ⇔ (CallingTask ,CallingTask) ∈ dom ActivateTask

• TerminateTask: the system call TerminateTask, which is specified as a function
type.

– TerminateTask : TASK → StatusType

– CallingTask .tskstate = Running ⇔ (CallingTask) ∈ dom TerminateTask

• ChainTask: the system call ChainTask, which is specified as a function type.

– ChainTask : TASK × TASK → StatusType

– CallingTask .tskstate = Running ⇔ (CallingTask ,TargetTask) ∈ dom ChainTask

– CallingTask .tskstate = Running ⇔ (CallingTask ,CallingTask) ∈ dom ChainTask

• GetResource: the system call GetResource, which is specified as a function type.

– GetResource : TASK × RESOURCE → StatusType

– CallingTask .tskstate = Running ⇔ (CallingTask ,TargetRsc) ∈ dom GetResource

• ReleaseResource: the system call ReleaseResource, which is specified as a function
type.

– ReleaseResource : TASK × RESOURCE → StatusType

– CallingTask .tskstate = Running ⇔ (CallingTask ,TargetRsc) ∈ dom ReleaseResource

Once the generic OS objects and the system services are formally defined, the test purposes
can be formalized. The test purpose in the case study is formalized as depicted in figure
4.4.

1

2

3 4
5

Figure 4.4: an example of formalized test purpose

The formalized test purpose consists of five parts:

• Pre-state: CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended
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• Pre-condition: CallingTask .schpol = FULL PREE ∧ TargetTask .tskpri 6 CallingTask .tskpri

• Action: ActivateTask(CallingTask ,TargetTask)

• ReturnValue: E OK

• Post-state: CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready
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Chapter 5

Construction of Test Model

5.1 Overview of Test Model

According to the test generation process, test model should be constructed based on the
formal test specification. Since the design model of OSEK OS is available, we consider
taking advantage of the existence of this model and use it as a test oracle for the gener-
ation of test cases to test OSEK implementations. Moreover, another intended purpose
for constructing the test model is to assure the correctness of the extracted conformance
requirements with respect to the design model of OSEK OS. Because the OSEK OS spec-
ification does not state so-called conformance requirements explicitly, we have extracted
conformance requirements based on our knowledge of the specification. As a consequence,
it is possible that the extracted conformance requirements are not correct with respect to
the design model of OSEK OS. By model checking the test model with the design model
of OSEK OS, we can get feedback from the checking result. If a violation is detected, the
model checker SPIN will report the violation place in the test model, which can help us
to find out the incorrect conformance requirements. See the overview of the test model
depicted in figure 5.1

Test model consists of three parts:

• Data definition part

• OS objects part

• Verification part

As shown in figure 5.1, each part in the test model has the relationship with the corre-
sponding parts in the formal test specification. To achieve automatic translation from the
formal test specification to the test model, a translation algorithm has been proposed.
In next sections, we introduce the details of each part by concentrating on showing the
relationships between the test model and the formal test specification.
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Figure 5.1: Overview of Test Model

5.2 Data Definition Part

The data definition part consists of the definitions of data types used in the test model. On
the one hand, we use macro definitions to define the data types which has been specified
as free data types in the formal test specification. For example, in the data definition
part of the formal test specification, a free data type named TaskType is specified as:

TaskType ::= Basic | Extended

In the test model, the corresponding part in the data definition part is defined as:

#define TaskType bit

#define Basic 1

#define Extended 0

On the other hand, we use structure types to define the data types which are specified
as schema types in the data definition part of the formal test specification. For instance,
in the data definition part of the formal test specification, a schema named TASK is
specified as:
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TASK
tskid : N
tsktype : TaskType
schpol : SchPol
MAXMULTIACT : N
tskstate : TaskState
tskpri : N
multiactcnt : N
tskdpri : N
tskrscstate : RscState
tskrscid : N

In the data definition part of the test model, the corresponding structure type named
TASK is defined as:

typedef TASK{

byte tskid;

TaskType tsktype;

SchPol schpol;

byte MAXMULTIACT;

TaskState tskstate;

byte tskpri;

byte multiactcnt;

byte tskdpri;

RscState tskrscstate;

byte tskrscid;}

The data type N in the schema TASK corresponds to the data type byte in the structure
type TASK. Other data types in the schema are mapped to the corresponding fields of
the structure type in a straightforward way.

5.3 OS Objects Part

The second part of test model is OS objects part. It consists of three parts, with each
part has the relationship with the corresponding part in the formal test specification as
shown in figure 5.1.

The first part is the declaration of the data objects used in the test model. Its cor-
responding part in the formal test specification is the signature part of the schema
OSEK OS Objects. Notice that in the schema OSEK OS Objects, the concrete values of
TskNum and RscNum are not given. However, in the test model, in order to declare the
OS objects Task and Resource, it is necessary to determine the concrete values referred
from the concrete system configuration.
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The second part is the instantiation of the OS objects and other OS information which
are used in the test model. Its corresponding parts in the formal test specification are the
concrete system configuration and the predicate part of the schema OSEK OS Objects.
To check some basic properties which have been specified in the predicate part of the
schema OSEK OS Objects, the predicates are implemented in PROMELA. For example,
one predicate in the schema OSEK OS Objects says that the task identifiers are different
from each other:

∀ i , j : 1..TskNum • i 6= j ⇒ (Task(i)).tskid 6= (Task(j )).tskid

The corresponding PROMELA descriptions are implemented as:

i = 1;

do

:: i < TskNum ->

j = i + 1;

do

:: j < TskNum ->

assert(Task[i].tskid != Task[j].tskid);

j++;

:: else -> break

od;

i++;

:: else -> break

od;

The third part is the implementation of the formalized static conformance requirements
in the system configuration specification. Since the OS objects in the concrete system
configuration should satisfy the requirements of its corresponding conformance class. By
implementing the static conformance requirements, we can check whether or not a con-
crete system configuration is correct. For example, in the schema Stc Cfm Req, the
requirement of conformance class BCC2 is specified as:

cfclass = BCC 2⇒ (MaxTskMultiCnt > 1) ∧ (∀ i : 1...TskNum • (Task(i)).tsktype =
Basic)

The corresponding PROMELA descriptions are implemented as:

cfclass == BCC2 ->

assert(MaxTskMultiCnt >= 1);

i = 1;

do

:: i < TskNum ->

assert(Task[i].tsktype == Basic);

i++

:: else -> break

od;
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5.4 Verification Part

Verification part is the main part of the test model. Its corresponding part in the for-
mal test specification is the test purpose specification as shown in figure 5.1. As the
definition of test purpose in section 4.4.2, test purpose is a set of dynamic conformance
requirements. Therefore, one intended purpose of the verification part is to provide the
mechanism to test whether or not the extracted dynamic conformance requirements are
correct with respect to the design model of OSEK OS. On the other hand, if all the ex-
tracted conformance requirements are correct with respect to the design model of OSEK
OS, by model checking the test model with the design model of OSEK OS, the exhaustive
state space searching will be conducted and the witnesses will be generated. Therefore,
another intended purpose of the verification part is to provide the mechanism to search
the state space as exhaustive as possible. In this section, we present the details of how to
construct the verification part so as to fulfill these two intentions.

At first, the definition of correctness of test purpose with respect to the design model
of OSEK OS is given as:

By model checking the test model with the design model of OSEK OS, if
the pre-state part and pre-condition part of a formalized test purpose are

satisfied, after calling the system service specified in the action part of this
test purpose, the expectant results specified in the post-state part and

returnvalue part of the test purpose should be same as the corresponding
actual results in the design model.

In the early stage of this work, we focus on assuring the correctness of test purposes. As
a result, we have to implement the test models based on the formalized test purposes,
respectively.

At that time, the verification part only consists of one implemented test purpose. The
relationship between a formalized test purpose and its PROMELA implementation in the
verification part is shown in figure 5.2.

To test whether or not a formalized test purpose is correct with respect to the design
model, by model checking the test model with the design model of OSEK OS, the ex-
pectant result specified in the post-state part and returnvalue part of the formalized test
purpose are checked against the corresponding actual result from the design model of
OSEK OS. If the results are not same, SPIN should report a violation. The process are
described as follows:

1. Instantiate the OS objects which can satisfy the pre-state and the pre-condition
of the formalized test purpose. For the test purpose in the figure 5.2, two tasks
named task1 and task2 can be instantiated, which the scheduling policy of task1 is
full-preemptive and the priority of task1 is higher than the priority of task2.
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Figure 5.2: Relationship between a formalized test purpose and its implementation in the
verification part

2. Set the OS objects to the pre-state of the test purpose. For example, let the state
of task1 transfer into the running state by calling the system service.

3. Set the OS objects to the generic OS objects. For example, let task1 and task2 be
the CallingTask and TargetTask, respectively.

4. Get the post-states of the OS objects from the design model after calling the system
service.

5. Use assertion to check the consistency between the two results. For example, if the
post-state of task1 is in the running state and the post-state of task2 is in the ready
state, return value is E OK, no violation will be reported. Otherwise, SPIN will
report a violation to us.

On the one hand, such kind of test model based on only one test purpose is simple and
the incorrect test purpose can be found out in an easy way. On the other hand, some
drawbacks are also obvious. One drawback is that we must not only set the OS objects to
the generic OS objects but also set them to the pre-state manually. Another drawback is
that by model checking the test models, even if the test purpose is correct, the generated
test case only consists of several transitions, which means that model checking are not
used in an effective way. Thus, we need to further improve the verification part. The
ideas of improvement are as follows:

• Translate all formalized test purposes into the verification part.

• After some test purpose is checked, by using a function, the generic OS objects can
be reset, which may satisfy the pre-state and pre-condition of other test purpose.
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According to the ideas above, the pseudo-code of improved verification part is shown as
below:

do

:: Set_TP_Objs();

if

:: Block 1

:: Block 2

:: Block 3

.

.

.

:: Block n

:: else

fi;

od

The formalized test purposes that share the same pre-state and action are translated into
the same block. The functionality of Set TP Objs is to set the OS objects to the generic
OS objects, such as CallingTask, TargetTask and so on.

5.5 Translation Algorithm

To achieve the automatic translation from the formalized test purposes in the formal
test specification to the verification part in the test model, we proposed a translation
algorithm. In this section, we show the details of this translation algorithm and use an
example to explain the mechanism of it.

Consider the test purpose specification as a set of formalized test purposes, which is
denoted as:

TPS = {TP1,TP2, ...,TPn}

According to the syntax of test purpose shown in Appendix B, we consider each formalized
test purpose TPi in the TPS as a set containing the Pre-State, Pre-Condition, Action,
Post-State, ReturnValue, which is denoted as:

TPi = {Pre-State,Pre-Condition,Action,Post-State,ReturnValue}

On the other hand, the verification part is considered as a set of blocks, which is denoted
as:

VP = {BLK1,BLK2, ...,BLKm}
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Consider each block as a set that contains Bexp1, Aexp1 and segments, which is denoted
as:

BLKi = {Bexp1,Aexp1, SEG1, SEG2, ..., SEGk}

Bexp1 corresponds to the Pre-state of test purpose. The corresponding part of Aexp1 in
the test purpose is the Action.

Each segment in the block is considered as a set consisting of Bexp2, Bexp3, Bexp4,
which is denoted as:

SEGi = {Bexp2,Bexp3,Bexp4}

Bexp2, Bexp3, Bexp4 correspond to the Pre-Condition, Post-State and ReturnValue of
the test purpose. The syntax of block, segment, Aexp1, Bexp1, Bexp2, Bexp3, Bexp4 can
be referred from Appendix C (The syntax of verification part).

We use an example to demonstrate the translation process according to the translation
algorithm.

Example

Suppose that there are three formalized test purposes in the test purpose specification as
follows:

1. (CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended) ∧
(CallingTask .schpol = NON PREE )
⇒ ActivateTask(CallingTask , TargetTask) = E OK ∧
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready)

2. (CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended) ∧
(CallingTask .schpol = FULL PREE ∧ TargetTask .tskpri 6 CallingTask .tskdpri)
⇒ ActivateTask(CallingTask , TargetTask) = E OK ∧
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready)

3. (CallingTask .tskstate = Running) ∧
(CallingTask .tskrscstate = Free ∧ CallingTask .multiactcnt 6 1)
⇒ TerminateTask(CallingTask) = E OS NORET ∧
(CallingTask .tskstate = Suspended)

Firstly, we translate the first formalized test purpose into the verification part. Each part
of this formalized test purpose can be denoted as follows:

• tp1.Pre-State : CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended

• tp1.Pre-Condition : CallingTask .schpol = NON PREE
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Algorithm 1 Translation Algorithm
tps : TPS ;
tps = {tp1, tp2, ..., tpn};
VP Blocks = {};
tpi : TP ;
blk : BLK ;
seg : SEG ;
function TransRule(tp : TP , blk : BLK , seg : SEG) {

MapOp(tp);
MapPar(tp);
blk .Bexp1 = tp.Pre-State;
blk .Aexp1 = tp.Action;
seg .Bexp2 = tp.Pre-Condition;
seg .Bexp3 = tp.Post-State;
seg .(Bexp4.ReturnValue) = tp.ReturnValue;

}
function TRANS () {

i = 1;
while(i 6 n) {

TransRule(tpi , blk , seg);
if(In VP Blocks(blk .Bexp1, blk .Aexp1) == true) {

blknum = Search Blk(blk .Bexp1, blk .Aexp1);
Add Seg(blknum, blk .Aexp1, seg .Bexp2, seg .Bexp3, seg .Bexp4);

}
else {

Add VP Blocks(blk .Bexp1, blk .Aexp1);
blknum = Add Blk(blk .Bexp1);
Add Seg(blknum, blk .Aexp1, seg .Bexp2, seg .Bexp3, seg .Bexp4);

}
}

}
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• tp1.Action : ActivateTask(CallingTask , TargetTask)

• tp1.Post-State : CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready

• tp1.ReturnValue : E OK

By applying the function TransRule, we can get:

• blk .Bexp1 : CallingTask .tskstate == Running && TargetTask .tskstate == Suspended

• blk .Aexp1 : ActivateTask(CallingTask .tskid , TargetTask .tskid)

• seg .Bexp2 : CallingTask .schpol == NON PREE

• seg .Bexp3 : CallingTask .tskstate == Running && TargetTask .tskstate == Ready

• seg .Bexp4 : ReturnStatus == E OK

Notice that in the function TransRule, there are two other functions named MapOp and
MapPar . By applying MapOp, the operations defined in the syntax of test purpose are
changed to the operations that defined in the syntax of verification part. For example,
‘=’ is changed to ‘==’, and ‘∧’ is changed to ‘&&’, respectively. On the other hand,
by applying MapPar , the parameters defined in the syntax of test purpose are changed
to the parameters defined in the syntax of verification part. For the example above,
‘CallingTask ’ and ‘TargetTask ’ in the tp1.Action are changed to the ‘CallingTask .tskid ’
and ‘TargetTask .tskid ’ in the blk .Aexp1.

Since VP Blocks is empty, In VP Blocks should return false. Then, blk .Bexp1 and
blk .Aexp1 are added into the set VP Blocks by applying Add VP Blocks .

After applying Add Blk and Add Seg , a new block with a new segment is translated
into the verification part as depicted in figure 5.3.

Block 1

Segment 1

Figure 5.3: Verification Part after first step translation

Then, the second formalized test purpose is translated into the verification part. Because
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the Pre-State and the Action of this test purpose is same as those of the first one. It
means that no block is needed to be added. After searching the block number, a new
segment is added into the block identified by blknum. The PROMELA description of
verification part after translating the second formalized test purpose is shown in figure
5.4.

Block 1

Segment 1

Segment 2

Figure 5.4: Verification Part after second step translation

At last, the last formalized test purpose is translated into the verification part. Although
VP Blocks is not empty, the Pre-State and Action of the last test purpose is different
from those of the first test purpose. It means that a new block with a new segment is
added into the verification part. The PROMELA description of verification part after
translating the last formalized test purpose is depicted in figure 5.5.

Block 1

Segment 1

Segment 2

Block 2

Segment 1

Figure 5.5: Verification Part after third step translation
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Chapter 6

Experiment

According to the test generation process as shown in figure 3.5, the conformance re-
quirements are extracted from the OSEK OS specification based on our knowledge of
the specification. Therefore, it is possible that the extracted conformance requirements
are not correct with respect to the design model of OSEK OS. By model checking the
test model with the design model of OSEK OS, we can get feedback from the checking
result. On the one hand, if the extracted conformance requirements are not correct, vio-
lations will be detected. Then, we can make correction of the corresponding conformance
requirements by analysis of the checking result. On the other hand, if the extracted con-
formance requirements are correct with respect to the design model, the exhaustive state
space searching of the test model will be conducted and the witnesses will be generated.
Then, we can use TGT (Test Generation Tool) to derive the test cases from the witnesses.

To evaluate the proposed approach, test purposes have been developed from the sys-
tem services in the scope of task management and resource management. Furthermore,
test cases generated from the test model have been compared with the test cases defined
in the MODISTARC.

6.1 Preparation for Experiment

The first task for preparing the experiments is to add some functions into the design model
of OSEK OS, such as non-preemptive scheduling policy and nested resource occupation
and so on. The aim is to let design model support all the functions specified in the test
purposes.

The details of supporting the non-preemptive scheduling policy are as follows:

• Add a variable named schpol into the TCB(Task control block) in the design model.
It identifies the scheduling policy of a task.

• When declaring a task, its scheduling policy is assigned to schpol.
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• As an example, we show the automaton of refined ActivateTask in figure 6.1. Notice
that inside the red rectangle, if a task is full-preemptive scheduling and the return
status is E OK, Schedule will be called, otherwise, do nothing.

S0

S1

S2

S4

S6

S9S7

S3

S10

S8

ercd = E_OS_EMPTY
get_index_state(id)

ret_ix != NOINDEX ret_ix == NOINDEX

!(tsk_state[ret_ix].act 
< tsk_state[ret_ix].maxcnt)

tsk_state[ret_ix] == 
SUSPENDED

tsk_state[ret_ix] == READY && 
tsk_state[ret_ix].btask

tsk_state[ret_ix] == READY && 
tsk_state[ret_ix].!btask

ercd = E_OS_LIMIT

enq_prio
ercd = E_OK

enq_prio
tskstate[ret_ix].tstat = 
Ready
..
ercd = E_OK

ercd = E_OS_LIMIT

ercd = E_OS_ID

S12

Schedule

tsk_state[ret_ix].act 
< tsk_state[ret_ix].maxcnt

S11

tsk_state[ret_ix].schpol == 0 && 
ercd = E_OK

!(tsk_state[ret_ix].schpol == 0 && 
ercd = E_OK)

S5

tsk_state[ret_ix].actcnt++

Figure 6.1: Automaton of refined ActivateTask system service

To support nested resource occupation, each task in the system is equipped with a stack.
The stack is used to store the resource identifiers occupied by the corresponding task. In
the case of getting a resource, the corresponding resource identifier will be pushed into
the stack. If a task releases a resource, the corresponding resource identifier will be pop
out from the stack.

The second task for preparing the experiments is to improve the TGT. The aim is to
let the generated test cases consist of not only the called system services but also the
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states of tasks and the corresponding return value. Figure 6.2 shows an example of test
case generated by the improved TGT. Furthermore, test purposes can be traced from the
generated test cases.

Figure 6.2: Test case generated by improved TGT

6.2 Development of Test Purposes

In the section 4.4, we have given the definition of test purpose and define the process of
developing a test purpose from the system service.

Therefore, we need to develop the test purposes from the system service by following
the process and then formalize them. After that, the test purposes will be translated
into the test model and checked whether or not they are correct or not. If violations are
detected, the test purposes will be corrected based on the checking results.

At first, we give several examples that show how to develop test purposes from the system
services and make correction if a violation is detected.

Example 1

In this example, the test purpose was developed from the system service ActivateTask.
The description of ActivateTask is shown in figure 4.2.

Some conformance requirements extracted from the system service are shown as follows:

1. If the called task is in the suspended state, it should be transferred into the ready
state.

2. If the scheduling policy of the calling task is non-preemptive, no rescheduling should
happen.
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3. If the system service is called successfully, the return status should be E OK.

Then, an example of generic test case designed based on the conformance requirements
list above is shown in figure 6.3.

ActivateTask(TargetTask)

CallingTask

Suspended Readypriority

Non-preemptive scheduling

TargetTask

RunningRunning

Figure 6.3: Generic test case for example 1

Test purpose derived from the generic test case above is as follows:

• pre-state: CallingTask is in the running state. TargetTask is in the suspended state.

• pre-condition: The scheduling policy of CallingTask is non-preemptive. The priority
of CallingTask is lower than that of TargetTask

• system service: CallingTask calls ActivateTask(TargetTask)

• post-state: CallingTask is in the running state. TargetTask is in the ready state.

• return value: E OK

The next step is to formalize this test purpose. The formalized test purpose is shown as
below:

(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended)
(CallingTask .schpol = NON PREE )
⇒ ActivateTask(CallingTask ,TargetTask) = E OK ∧
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready)

To check this test purpose, the OS objects in the test model can be instantiated as follows:

Task[1].tskid = 1;

Task[1].schpol = NON_PREE;

Task[1].tskpri = 1;

Task[2].tskid = 2;

Task[2].schpol = FULL_PREE;

Task[2].tskpri = 2;
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By model checking the test model with the design model, no violation was reported and
the test purpose is exactly covered by the generated test cases. It means that the test
purpose is correct with the design model of OSEK OS.

Example 2

For the second example, we developed the test purpose from the system service Chain-
Task. The description of ChainTask can be referred from [gro05].

Some conformance requirements extracted from the system service ChainTask are shown
as follows:

1. If the calling task does not have multiple activation requests and does not occupy
any resource, it should be transferred into the suspended state.

2. If the called task is in the suspended state, it should be transferred into the ready
state.

3. If the system service is called successfully, rescheduling should happen and no return
value should be returned.

Then, an example of generic test case designed based on the conformance requirements
list above is shown in figure 6.4.

TargetTask

Running

Suspended Ready

ChainTask(TargetTask)
priority

Non-preemptive scheduling

CallingTask

ReadyNextRunTask Running

Suspended

Figure 6.4: Generic test case for example 2

In the generic test case above, the task which is the first task in the ready queue is
regarded as the NextRunTask. Suppose that the scheduling policy of NextRunTask is
non-preemptive, and its priority is lower than other two tasks in the system.

Test purpose derived from the generic test above is as follows:

• pre-state: CallingTask is in the running state. TargetTask is in the suspended state.
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• pre-condition: CallingTask does not have multiple activation requests and does not
occupy any resource. The scheduling policy of NextRunTask is non-preemptive.
The priority of NextRunTask is lower than those of CallingTask and TargetTask.
The priority of TargetTask is lower than that of CallingTask.

• system service: CallingTask calls ChainTask(TargetTask)

• post-state: CallingTask is in the suspended state. TargetTask is in the ready state.

• return value: no return value is returned

The formalized test purpose is shown as below:

(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended)
(CallingTask .tskrscstate = Free ∧ CallingTask .multiactcnt 6 1 ∧
NextRunTask .tskpri < TargetTask .tskpri ∧ NextRunTask .schpol = NON PREE )
⇒ ChainTask(CallingTask ,TargetTask) = E OS NORET ∧
(CallingTask .tskstate = Suspended ∧ TargetTask .tskstate = Ready)

To check this test purpose, the OS objects in the test model can be instantiated as follows:

Task[1].tskid = 1;

Task[1].schpol = FULL_PREE;

Task[1].tskpri = 3;

Task[2].tskid = 2;

Task[2].schpol = FULL_PREE;

Task[2].tskpri = 2;

Task[3].tskid = 3;

Task[3].schpol = NON_PREE;

Task[3].tskpri = 1;

By model checking the test model with the design model, a violation was detected and
SPIN outputted the checking result as follows:

pan: assertion violated (((CallingTask.tskstate==1)&&(TargetTask.tskstate==2))

&&(ReturnStatus==9)) (at depth 7040)

According to the checking result, this test purpose is not correct with respect to the
design model of OSEK. After analysis of the system service in the specification and the
design model more carefully, we found the reason. Our original understanding is that
the rescheduling of ChainTask is ahead of activating the target task. Thus NextRunTask
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will be transferred into the running state as soon as CallingTask is terminated, after that
even though TargetTask is activated and the priority of TargetTask is higher than that of
NextRunTask, due to the non-preemptive scheduling policy of NextRunTask, TargetTask
should still in the ready state. However, in the design model, the rescheduling is after
activating the target task. This means that the state of target task should be transferred
into the running state due to the higher priority. Therefore, we corrected the formalized
test purpose as follows:

(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended)
(CallingTask .tskrscstate = Free ∧ CallingTask .multiactcnt 6 1 ∧
NextRunTask .tskpri < TargetTask .tskpri)
⇒ ChainTask(CallingTask ,TargetTask) = E OS NORET ∧
(CallingTask .tskstate = Suspended ∧ TargetTask .tskstate = Running)

By model checking the test model with the design model, no violation was detected and
the test purpose was exactly covered by the generated test cases. It means that the test
purpose is correct with the design model of OSEK OS.

Example 3

For the third example, the test purpose was developed from the system service GetRe-
source. The description of GetResource can be referred from [gro05].

The conformance requirements extracted from the system service GetResource are shown
as follows:

1. If the target resource is not occupied by any task and the priority of calling task is
not higher than the ceiling priority of the target resource, the target resource will
be occupied by the calling task.

2. If the system service is called successfully, the return status should be E OK.

Then, an example of generic test case designed based on the conformance requirements
list above is shown in figure 6.5.

GetResource(TargetResource)

CallingTask

Free Occupypriority

TaskResource

RunningRunning

Figure 6.5: Generic test case for example 3
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Test purpose derived from the generic test above is shown as follows:

• pre-state: CallingTask is in the running state. TargetResource is free.

• pre-condition: The priority of CallingTask is not higher than the ceiling priority of
TargetResource

• system service: CallingTask calls GetResource(TargetResource)

• post-state: CallingTask is in the running state. TargetResource is occupied.

• return value: E OK

The formalized test purpose is shown as below:

(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Free)
(CallingTask .tskpri 6 TargetRsc.rscpri)
⇒ GetResource(CallingTask ,TargetRsc) = E OK ∧
(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Occupy)

To check this test purpose, the OS objects in the test model can be instantiated as follows:

Task[1].tskid = 1;

Task[1].schpol = FULL_PREE;

Task[1].tskpri = 1;

Resource[1].rscid = 1;

Resource[1].rscpri = 2;

By model checking the test model with the design model, no violation was reported and
the test purpose was exactly covered by the generated test cases. It means that the test
purpose is correct with the design model of OSEK OS.

However, when we tried to instantiate another task like that:

Task[2].tskid = 2;

Task[2].schpol = FULL_PREE;

Task[2].tskpri = 3;

The priority of Task[2] is higher than that of Task[1]. By model checking the test model
with the design model again, a violation was detected and SPIN outputted the checking
result as follows:

pan: assertion violated (((CallingTask.tskstate==2)&&(TargetTask.tskstate==3))

&&(ReturnStatus==0)) (at depth 4441)
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From the checking result, we found that the violation is not caused by the new added test
purpose which related to the GetResource. After analysis of the generated test cases, we
found the reason of violation was related to another test purpose as below:

(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended)
(CallingTask .schpol = FULL PREE ∧ TargetTask .tskpri > CallingTask .tskpri)
⇒ ActivateTask(CallingTask ,TargetTask) = E OK ∧
(CallingTask .tskstate = Ready ∧ TargetTask .tskstate = Running)

In this test purpose, it says that if the priority of TargetTask is higher than that of
CallingTask and the scheduling policy of CallingTask is full-preemptive, then Calling-
Task will be transferred into the ready state while TargetTask will be transferred into
the running state. Nevertheless, what will happen if CallingTask occupying a resource
that the ceiling priority of this resource is not lower than the priority of TargetTask. For
this example, suppose that Task[1] is occupying the Resource[1], according to the ceiling
protocol, the priority of Task[1] should be raised to the ceiling priority of the Resource[1].
Therefore, after calling ActivateTask, CallingTask should be still in the running state while
TargetTask will be transferred into the ready state because the current priority of Task[1]
is equal to the priority of Task[2]. Thus we made correction of this test purpose as follows:

(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended)
(CallingTask .schpol = FULL PREE ∧ TargetTask .tskpri > CallingTask .tskdpri)
⇒ ActivateTask(CallingTask ,TargetTask) = E OK ∧
(CallingTask .tskstate = Ready ∧ TargetTask .tskstate = Running)

In the corrected test purpose above, CallingTask.tskdpri means the current priority of
CallingTask. If CallingTask does not occupy any resource, its value should be equal to
the initial priority, otherwise, it should be equal to the highest ceiling priority of the
resource among which are occupied by CallingTask. On the other hand, to check the
corrected test purpose, the priority of Task[2] was changed to 3, which is higher than the
ceiling priority of Resource[1], so that the pre-condition can be satisfied in the case of
Task[1] occupies Resource[1].

By model checking the test model with the design model, no violation was reported
and the test purpose was exactly covered by the generated test cases. It means that the
test purpose is correct with the design model of OSEK OS.

In this work, we have developed the test purposes from the system services in the scope
of task management and resource management, including ActivateTask, TerminateTask,
ChainTask, GetResource, ReleaseResource. The total numbers of developed test purposes
for each system service are summarized in table 6.1. The formalization of them can be
referred from Appendix A.
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System Service Num. of. TP
ActivateTask 7

TerminateTask 4
ChainTask 21

GetResource 3
ReleaseResource 7

Table 6.1: Numbers of Formalized Test Purposes

To get sufficient confidence of the correctness of the formalized test purposes summarized
in the table above, we need to check them in a more systematic way. On the one hand,
it is almost impossible to check the formalized test purposes under all the variants of
concrete system configuration. For example, suppose that the test environment consists
of three tasks without resource, there exists more than 2000 variants. On the other hand,
we still can choose some variants within some bounded range to check the formalized test
purposes. It needs us to make some selection strategies to choose the variants.

At first, task patterns in the OSEK OS can be summarized as shown in table 6.2.

Table 6.2: Task Patterns of OSEK OS

As shown in the table above, there are six patterns of task in the OSEK OS. Since the
main difference between basic tasks and extended tasks is that extended tasks have waiting
state so as to be allowed to wait for events, in the scope of task management and resource
management, the functions of two tasks are same. Therefore, basic tasks are selected.
On the other hand, multiple activation requests includes the situation of limiting to one
activation request, thus the task patterns that support multiple activation requests are
selected. Then, we make the selection strategies as follows:

1. Selected task patterns: Ptn03 and Ptn04 (listed in table 6.2)

2. Priority relationship: priority of non-preemptive task is lower than that of full-
preemptive task.
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3. Add resource into the concrete system configuration which can cover the test pur-
poses most.

The results of checking the formalized test purpose can be referred from Appendix D.
Here, we explain the meaning of pattern name in each result table.

For the case of Tsk:3 Rsc:0, the meaning of pattern name, for example Ptn03 Ptn04 Ptn03
(GT LT EQ) is as follows:

• Ptn03 Ptn04 Ptn03: Task1 is the task of Ptn03, Task2 is the task of Ptn04, Task3
is the task of Ptn03.

• GT: priority of Task1 is higher than that of Task2.

• LT: priority of Task2 is lower than that of Task3.

• EQ: priority of Task1 is equal to that of Task3.

For the case of Tsk:3 Rsc:1, the meaning of pattern name, for example Ptn03 Ptn04 Ptn03
GT LT GT (GT LT EQ) is as follows:

• Ptn03 Ptn04 Ptn03 GT LT GT: Task1 is the task of Ptn03, Task2 is the task of
Ptn04, Task3 is the task of Ptn03. Priority of Task1 is higher than that of Task2.
Priority of Task2 is lower than that of Task3. Priority of Task1 is higher than that
of Task3

• GT: priority of Task1 is higher than the ceiling priority of Resource 1.

• LT: priority of Task2 is lower than the ceiling priority of Resource 1.

• EQ: priority of Task3 is equal to the ceiling priority of Resource 1.

For the case of Tsk:3 Rsc:2, the meaning of pattern name, for example Ptn03 Ptn04 Ptn03
LT LT LT (LT LT GT )(LT LT EQ LT ) is as follows:

• Ptn03 Ptn04 Ptn03 LT LT LT(LT LT GT): Task1 is the task of Ptn03, Task2
is the task of Ptn04, Task3 is the task of Ptn03. Priority of Task1 is lower than that
of Task2. Priority of Task2 is lower than that of Task3. Priority of Task1 is lower
than that of Task3. Priority of Task1 is lower than the ceiling priority of Resource
1. Priority of Task2 is lower than the ceiling priority of Resource 1. Priority of
Task3 is higher than the ceiling priority of Resource 1.

• LT: Priority of Task1 is lower than the ceiling priority of Resource 2.

• LT: Priority of Task2 is lower than the ceiling priority of Resource 2.
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• EQ: Priority of Task3 is equal to the ceiling priority of Resource 2.

• LT: Ceiling priority of Resource 1 is lower than the ceiling priority of Resource 2.

From the result table of Tsk:3 Rsc:0, 44 variants are selected in the case of task number
is 3 and no resource according to the selection strategies. The variants that in the blue
color can cover the test purposes most. Therefore, we add the resource into these concrete
system configurations.

From the result table of Tsk:3 Rsc:1, 7 variants which can cover all the possibilities
of the priority relationship among the tasks and resources are selected for each variants
selected from the result table Tsk:3 Rsc:0. The variants that in the blue color can cover
the test purposes most. Therefore, we add another resource into this concrete system
configuration.

We have checked all the formalized test purposes under 94 variants. All the formalized
test purposes have been covered and checked. Furthermore, no violation was detected, so
that we have gotten sufficient confidence of the correctness of the test purposes.

6.3 Comparison with MODISTARC

To evaluate the proposed approach, we tried to compare the test cases generated from
test model with the test cases defined in the MODISTARC. In order to compare them,
we need to give some definitions beforehand.

Firstly, system state is defined as a set of tasks states. For example, if there are three
tasks in a system, which are identified by task1, task2, and task3. Suppose that task1
is in the running state, task2 is in the ready state and task3 is in the suspended state.
System state is denoted like (Run,Rdy , Sus), where Run represents that task1 is in the
running state, Rdy represents that task2 is in the ready state, Sus represents that task3
is in the suspended state. Then, pre-state is defined as the system state before calling a
system service, while post-state is defined as the system state after calling a system service.

Based on the definitions above, we can consider the system transition as a set containing
pre-state, system service, post-state which can be denoted as:

ST = {pre-state, systemservice, post-state}

Then, test case is considered as a set of system transitions, which is denoted as:

TC = {ST1, ST2, ..., STn}

For the example of test case shown in the figure 6.2, it can be denoted as follows:
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ST1 = {(Run, Sus),ActivateTask(Task2), (Run,Rdy)}
ST2 = {(Run,Rdy),ActivateTask(Task2), (Run,Rdy)}

TC = {ST1, ST2}

We choose a test case defined in the MODISTARC as shown in figure 6.6. According to
the definition above, this test case can be considered as a set of system transitions, which
are denoted as follows:

ST1 = {(Run, Sus , Sus),ActivateTask(Task3), (Rdy , Sus ,Run)}
ST2 = {(Rdy , Sus ,Run),ActivateTask(Task2), (Rdy ,Rdy ,Run)}

ST3 = {(Rdy ,Rdy ,Run),TerminateTask(Task3), (Rdy ,Run, Sus)}
ST4 = {(Rdy ,Run, Sus),TerminateTask(Task2), (Run, Sus , Sus)}
ST5 = {(Run, Sus , Sus),TerminateTask(Task1), (Sus , Sus , Sus)}

TCmodi = {ST1, ST2, ST3, ST4, ST5}

Figure 6.6: Test Case defined in the MODISTARC

On the other hand, in order to compare the test cases generated from the test model with
the test case above, the OS objects in the test model are needed to be instantiated as
follows:
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Task[1].tskid = 1;

Task[1].schpol = FULL_PREE;

Task[1].tskpri = 1;

Task[2].tskid = 2;

Task[2].schpol = FULL_PREE;

Task[2].tskpri = 2;

Task[3].tskid = 3;

Task[3].schpol = FULL_PREE;

Task[3].tskpri = 3;

Furthermore, we have constructed the test model based on the formalized test purposes
which are implied by the test case in figure 6.6. Three formalized test purposes are selected
as follows:

1. (CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended)
(CallingTask .schpol = FULL PREE ∧ TargetTask .tskpri 6 CallingTask .tskdpri)
⇒ ActivateTask(CallingTask ,TargetTask) = E OK ∧
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready)

2. (CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended)
(CallingTask .schpol = FULL PREE ∧ TargetTask .tskpri > CallingTask .tskdpri)
⇒ ActivateTask(CallingTask ,TargetTask) = E OK ∧
(CallingTask .tskstate = Ready ∧ TargetTask .tskstate = Running)

3. (CallingTask .tskstate = Running)
(CallingTask .tskrscstate = Free ∧ CallingTask .multiactcnt 6 1)
⇒ TerminateTask(CallingTask) = E OS NORET ∧
(CallingTask .tskstate = Suspended)

By model checking the test model with the design model of OSEK OS, no violation was
detected, instead, the exhaustive state space searching was conducted and the witnesses
were generated. Then, test case was derived from the witnesses by the improved TGT.

After comparing the system states in the generated test case with the system states
in the TCmodi , we conclude that TCmodi is a subset of the test case generated from the
test model.

6.4 Evaluation

By developing the test purpose from the system services, we showed that the proposed
approach provides an effective way to assure the correctness of test purposes with respect
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to the design model of OSEK OS. The error message outputted by SPIN can help us to
trace the incorrect test purpose in the test model. Furthermore, the actual result from
the design model provides useful debug information for correction of the test purpose.
Thus we make full use of the design model of OSEK OS to assure the correctness of test
purposes. On the other hand, since it is impossible to check the test purposes under
infinite variants, in other words, we can only assure the correctness of test purposes in
the range of selected variants.

With regards to the generated test case from the test model, each system transition in a
test case can achieve a corresponding test purpose. This promises the correctness of test
cases. Moreover, by comparing with the test cases in the MODISTARC, we showed that
test case generated from test model includes the test case defined in the MODISTARC if
the developed test purposes can cover the conformance requirement implied by the test
case define in the MODISTARC. However, since the test cases are derived from the wit-
nesses, it results in generating considerable identical test cases. If a test case is a prefix
of another test case, it is not necessary to select the shorter one.
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Chapter 7

Conclusion

7.1 Summary

In this work, an original approach for automatic generation of test cases from the test
model using model checking has been proposed. The main features of the proposed
approach are summarized as follows:

• Conformance requirements can be extracted from the OSEK OS specification, since
we have given the meaning of conformance and defined the conformance require-
ments in the context of OSEK OS.

• Conformance requirements can be described in a precise and unambiguous man-
ner. Static conformance requirements and the test purposes developed from the
system service in the scope of task management and resource management have
been formalized in the Z-notation.

• Test model can be constructed in a systematic way. Test model has been constructed
based on the formal test specification and a translation algorithm have been pro-
posed to achieve the automatic translation from the formalized test purposes into
the verification part in the test model.

• Test cases can be automatic generated from the test model. By model checking the
test model with the design model, test cases can be derived from the witnesses of
checking result by TGT. The generated test cases can be assured to achieve the test
purposes.

7.2 Discussion

In the course of this work, a few problems have been discussed. One is the test oracle
problem. In general, test oracle is used to generate expected results for each test input.
However, in this work, the design model of OSEK OS has been used as a test oracle in
an ad hoc way. We compare the results in the design model with the expectant result in

59



the test purpose to determine whether the test purpose is correct or not. The intention is
that, comparing with the test purposes which have been developed based on our knowledge
of the specification, the design model is a much more reliable formalism that promises
the consistency with the specification. Even though it is rarely possible to prove the
functional equivalence between design model and the specification. Another problem is
the exhaustiveness of test cases. On the one hand, we have generated test cases from
the test model by using the exhaustive state space searching function of model checking
tool. It is reasonable to say that the generated test cases are exhaustive. However, on
the other hand, such kind of exhaustiveness should be formal defined. Furthermore, the
exhaustiveness problem can be discussed from different point of view. From the theoretics
point of view, exhaustive space can be formally defined based on the system states and
transitions. From practice point of view, the full conformance requirements can be used
to define the exhaustive space.

7.3 Future Works

This work can be extended in several directions as follows:

• Develop test purposes from other functionality of OSEK OS, such as event manage-
ment and interrupt management.

• Develop a formal framework of conformance testing for OSEK OS. In this thesis,
we have given the definitions of conformance requirements, test purpose and the
correctness of test purpose in natural language. As for the future work, formal
definitions of them can be given and formal prove can be conducted to show the
correctness of test purpose.

• Implement a tool to translate formal test specification into the test model. We
have given a translation algorithm to translate the formalized test purposes into the
verification part in the test model. The whole part of translation can be achieved
by implementing a tool.

• Develop a technique to the problem of test case selection. Test cases derived from
the witnesses result in identical test cases. If a test case is a prefix of another test
case, it is not necessary to select the shorter one.
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Appendix A

Formal Test Specification

A.1 Data Definition and Data Declaration

CFClass ::= BCC 1 | BCC 2 | ECC 1 | ECC 2
.
StatusType ::= E OK | E OS ACCESS | E OS CALLEVEL | E OS ID

| E OS LIMIT | E OS NOFUNC | E OS RESOURCE
| E OS STATE | E OS VALUE | E OS NORET

.
TaskType ::= Basic | Extended
.
TaskState ::= Suspended | Ready | Running |Waiting
.
SchPol ::= NON PREE | FULL PREE
.
RscState ::= Free | Occupy

TASK
tskid : N
tsktype : TaskType
schpol : SchPol
MAXMULTIACT : N
tskstate : TaskState
tskpri : N
multiactcnt : N
tskdpri : N
tskrscstate : RscState
tskrscid : N
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RESOURCE
rscid : N
rscstate : RscState
rscpri : N
rsctskid : N

OSEK OS Objects
TskNum : N
RscNum : N
Task : N1 → TASK
Resource : N1 → RESOURCE
cfclass : CFClass
MaxTskMultiCnt : N1

tskempty : N
rscempty : N

∀ i , j : 1..TskNum • i 6= j ⇒ (Task(i)).tskid 6= (Task(j )).tskid
∀ i , j : 1..RscNum • i 6= j ⇒ (Resource(i)).rscid 6= (Resource(j )).rscid
∀ i : 1..TskNum • (Task(i)).tskid 6= tskempty
∀ i : 1..RscNum • (Resource(i)).rscid 6= rscempty
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A.2 System Configuration Specification

Stc Cfm Req
OSEK OS Objects

∀ i : 1..TskNum • (Task(i)).tsktype = Extended ⇒ (Task(i)).MAXMULTIACT = 1
∀ i : 1..TskNum • 0 < (Task(i)).MAXMULTIACT 6 MaxTskMultiCnt
.
cfclass = BCC 1⇒ (MaxTskMultiCnt = 1) ∧
(∀ i : 1..TskNum • (Task(i)).tsktype = Basic) ∧
(∀ i , j : 1..TskNum • i 6= j ⇒ (Task(i)).tskpri 6= (Task(j )).tskpri)
.
cfclass = BCC 2⇒ (MaxTskMultiCnt > 1) ∧
(∀ i : 1..TskNum • (Task(i)).tsktype = Basic)
.
cfclass = ECC 1⇒ (MaxTskMultiCnt = 1) ∧
(∀ i : 1..TskNum • ((Task(i)).tsktype = Basic ∨ (Task(i)).tsktype = Extended)) ∧
(∀ i , j : 1..TskNum • i 6= j ⇒ (Task(i)).tskpri 6= (Task(j )).tskpri)
.
cfclass = ECC 2⇒ (MaxTskMultiCnt > 1) ∧
(∀ i : 1..TskNum • ((Task(i)).tsktype = Basic ∨ (Task(i)).tsktype = Extended))
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A.3 Test Purpose Specification

Test Purpose Objects
OSEK OS Objects
CallingTask : TASK
TargetTask : TASK
NextRunTask : TASK
EmptyTask : TASK
ReadyQueue : seq TASK
TargetRsc : RESOURCE

EmptyTask .tskid = tskempty
.
∃1 i : 1..TskNum • (Task(i)).tskstate = Running ⇒ CallingTask = (Task(i))
¬ (∃ i : 1..TskNum • (Task(i)).tskstate = Running)⇒ CallingTask = EmptyTask
.
∀ i : 1..TskNum • (Task(i)).tskstate 6= Running ∧ CallingTask 6= EmptyTask
⇒ TargetTask = (Task(i))
CallingTask = EmptyTask ⇒ TargetTask = EmptyTask
.
ReadyQueue 6= 〈〉 ⇒ (∃1 i : 1..TskNum • head ReadyQueue = (Task(i))
⇒ NextRunTask = (Task(i)))
ReadyQueue = 〈〉 ⇒ NextRunTask = EmptyTask
.
∀ i : 1..RscNum • TargetRsc = (Resource(i))

Test Purpose SysCalls
Test Purpose Objects
ActivateTask : TASK × TASK → StatusType
TerminateTask : TASK → StatusType
ChainTask : TASK × TASK → StatusType
GetResource : TASK × RESOURCE → StatusType
ReleaseResource : TASK × RESOURCE → StatusType

CallingTask .tskstate = Running ⇔ (CallingTask ,TargetTask) ∈ dom ActivateTask
CallingTask .tskstate = Running ⇔ (CallingTask ,CallingTask) ∈ dom ActivateTask
CallingTask .tskstate = Running ⇔ (CallingTask) ∈ dom TerminateTask
CallingTask .tskstate = Running ⇔ (CallingTask ,TargetTask) ∈ dom ChainTask
CallingTask .tskstate = Running ⇔ (CallingTask ,CallingTask) ∈ dom ChainTask
CallingTask .tskstate = Running ⇔ (CallingTask ,TargetRsc) ∈ dom GetResource
CallingTask .tskstate = Running ⇔ (CallingTask ,TargetRsc) ∈ dom ReleaseResource
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TP for ActivateTask
Test Purpose SysCalls

(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended) ∧
(CallingTask .schpol = NON PREE )
⇒ ActivateTask(CallingTask ,TargetTask) = E OK ∧
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready)
.
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended) ∧
(CallingTask .schpol = FULL PREE ∧ TargetTask .tskpri 6 CallingTask .tskdpri)
⇒ ActivateTask(CallingTask ,TargetTask) = E OK ∧
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready)
.
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended) ∧
(CallingTask .schpol = FULL PREE ∧ TargetTask .tskpri > CallingTask .tskdpri)
⇒ ActivateTask(CallingTask ,TargetTask) = E OK ∧
(CallingTask .tskstate = Ready ∧ TargetTask .tskstate = Running)
.
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready) ∧
(TargetTask .multiactcnt < TargetTask .MAXMULTIACT )
⇒ ActivateTask(CallingTask ,TargetTask) = E OK ∧
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready)
.
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready) ∧
(TargetTask .multiactcnt = TargetTask .MAXMULTIACT )
⇒ ActivateTask(CallingTask ,TargetTask) = E OS LIMIT ∧
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready)
.
(CallingTask .tskstate = Running) ∧
(CallingTask .multiactcnt < CallingTask .MAXMULTIACT )
⇒ ActivateTask(CallingTask ,CallingTask) = E OK ∧
(CallingTask .tskstate = Running)
.
(CallingTask .tskstate = Running) ∧
(CallingTask .multiactcnt = CallingTask .MAXMULTIACT )
⇒ ActivateTask(CallingTask ,CallingTask) = E OS LIMIT ∧
(CallingTask .tskstate = Running)
.
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TP for TerminateTask
Test Purpose SysCalls

(CallingTask .tskstate = Running) ∧
(CallingTask .tskrscstate = Occupy)
⇒ TerminateTask(CallingTask) = E OS RESOURCE ∧
(CallingTask .tskstate = Running)
.
(CallingTask .tskstate = Running) ∧
(CallingTask .tskrscstate = Free ∧ CallingTask .multiactcnt 6 1)
⇒ TerminateTask(CallingTask) = E OS NORET ∧
(CallingTask .tskstate = Suspended)
.
(CallingTask .tskstate = Running) ∧
(CallingTask .tskrscstate = Free ∧ CallingTask .multiactcnt > 1 ∧
CallingTask .tskid 6= NextRunTask .tskid)
⇒ TerminateTask(CallingTask) = E OS NORET ∧
(CallingTask .tskstate = Ready)
.
(CallingTask .tskstate = Running) ∧
(CallingTask .tskrscstate = Free ∧ CallingTask .multiactcnt > 1 ∧
CallingTask .tskid = NextRunTask .tskid)
⇒ TerminateTask(CallingTask) = E OS NORET ∧
(CallingTask .tskstate = Running)
.
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TP for ChainTask Part01
Test Purpose SysCalls

(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended) ∧
(CallingTask .tskrscstate = Free ∧ CallingTask .multiactcnt 6 1 ∧
NextRunTask .tskid = tskempty)
⇒ ChainTask(CallingTask ,TargetTask) = E OS NORET ∧
(CallingTask .tskstate = Suspended ∧ TargetTask .tskstate = Running)
.
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended) ∧
(CallingTask .tskrscstate = Free ∧ CallingTask .multiactcnt 6 1 ∧
NextRunTask .tskid 6= tskempty ∧ NextRunTask .tskdpri > TargetTask .tskpri)
⇒ ChainTask(CallingTask ,TargetTask) = E OS NORET ∧
(CallingTask .tskstate = Suspended ∧ TargetTask .tskstate = Ready)
.
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended) ∧
(CallingTask .tskrscstate = Free ∧ CallingTask .multiactcnt 6 1 ∧
NextRunTask .tskid 6= tskempty ∧ NextRunTask .tskdpri < TargetTask .tskpri)
⇒ ChainTask(CallingTask ,TargetTask) = E OS NORET ∧
(CallingTask .tskstate = Suspended ∧ TargetTask .tskstate = Running)
.
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended) ∧
(CallingTask .tskrscstate = Free ∧ CallingTask .multiactcnt > 1 ∧
CallingTask .tskid 6= NextRunTask .tskid ∧ NextRunTask .tskdpri > TargetTask .tskpri)
⇒ ChainTask(CallingTask ,TargetTask) = E OS NORET ∧
(CallingTask .tskstate = Ready ∧ TargetTask .tskstate = Ready)
.
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended) ∧
(CallingTask .tskrscstate = Free ∧ CallingTask .multiactcnt > 1 ∧
CallingTask .tskid 6= NextRunTask .tskid ∧ NextRunTask .tskdpri < TargetTask .tskpri)
⇒ ChainTask(CallingTask ,TargetTask) = E OS NORET ∧
(CallingTask .tskstate = Ready ∧ TargetTask .tskstate = Running)
.
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended) ∧
(CallingTask .tskrscstate = Free ∧ CallingTask .multiactcnt > 1 ∧
CallingTask .tskid = NextRunTask .tskid ∧ NextRunTask .tskdpri > TargetTask .tskpri)
⇒ ChainTask(CallingTask ,TargetTask) = E OS NORET ∧
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready)
.
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended) ∧
(CallingTask .tskrscstate = Free ∧ CallingTask .multiactcnt > 1 ∧
CallingTask .tskid = NextRunTask .tskid ∧ NextRunTask .tskdpri < TargetTask .tskpri)
⇒ ChainTask(CallingTask ,TargetTask) = E OS NORET ∧
(CallingTask .tskstate = Ready ∧ TargetTask .tskstate = Running)
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TP for ChainTask Part02
Test Purpose SysCalls

(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready) ∧
(CallingTask .tskrscstate = Free ∧
TargetTask .multiactcnt < TargetTask .MAXMULTIACT ∧
CallingTask .multiactcnt 6 1 ∧ NextRunTask .tskid 6= TargetTask .tskid)
⇒ ChainTask(CallingTask ,TargetTask) = E OS NORET ∧
(CallingTask .tskstate = Suspended ∧ TargetTask .tskstate = Ready)
.
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready) ∧
(CallingTask .tskrscstate = Free ∧
TargetTask .multiactcnt < TargetTask .MAXMULTIACT ∧
CallingTask .multiactcnt 6 1 ∧ NextRunTask .tskid = TargetTask .tskid)
⇒ ChainTask(CallingTask ,TargetTask) = E OS NORET ∧
(CallingTask .tskstate = Suspended ∧ TargetTask .tskstate = Running)
.
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready) ∧
(CallingTask .tskrscstate = Free ∧
TargetTask .multiactcnt < TargetTask .MAXMULTIACT ∧
CallingTask .multiactcnt > 1 ∧ CallingTask .tskid 6= NextRunTask .tskid ∧
NextRunTask .tskid 6= TargeTask .tskid)
⇒ ChainTask(CallingTask ,TargetTask) = E OS NORET ∧
(CallingTask .tskstate = Ready ∧ TargetTask .tskstate = Ready)
.
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready) ∧
(CallingTask .tskrscstate = Free ∧
TargetTask .multiactcnt < TargetTask .MAXMULTIACT ∧
CallingTask .multiactcnt > 1 ∧ CallingTask .tskid 6= NextRunTask .tskid ∧
NextRunTask .tskid = TargeTask .tskid)
⇒ ChainTask(CallingTask ,TargetTask) = E OS NORET ∧
(CallingTask .tskstate = Ready ∧ TargetTask .tskstate = Running)
.
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready) ∧
(CallingTask .tskrscstate = Free ∧
TargetTask .multiactcnt < TargetTask .MAXMULTIACT ∧
CallingTask .multiactcnt > 1 ∧ CallingTask .tskid = NextRunTask .tskid)
⇒ ChainTask(CallingTask ,TargetTask) = E OS NORET ∧
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready)
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TP for ChainTask Part03
Test Purpose SysCalls

(CallingTask .tskstate = Running) ∧
(CallingTask .tskrscstate = Free ∧
CallingTask .multiactcnt < CallingTask .MAXMULTIACT ∧
NextRunTask .tskid = tskempty)
⇒ ChainTask(CallingTask ,CallingTask) = E OS NORET ∧
(CallingTask .tskstate = Running)
.
(CallingTask .tskstate = Running) ∧
(CallingTask .tskrscstate = Free ∧
CallingTask .multiactcnt < CallingTask .MAXMULTIACT ∧
NextRunTask .tskid 6= tskempty ∧ CallingTask .tskid 6= NextRunTask .tskid ∧
CallingTask .tskdpri 6 NextRunTask .tskpri)
⇒ ChainTask(CallingTask ,CallingTask) = E OS NORET ∧
(CallingTask .tskstate = Ready)
.
(CallingTask .tskstate = Running) ∧
(CallingTask .tskrscstate = Free ∧
CallingTask .multiactcnt < CallingTask .MAXMULTIACT ∧
NextRunTask .tskid 6= tskempty ∧ CallingTask .tskid 6= NextRunTask .tskid ∧
CallingTask .tskdpri > NextRunTask .tskpri)
⇒ ChainTask(CallingTask ,CallingTask) = E OS NORET ∧
(CallingTask .tskstate = Running)
.
(CallingTask .tskstate = Running) ∧
(CallingTask .tskrscstate = Free ∧
CallingTask .multiactcnt < CallingTask .MAXMULTIACT ∧
NextRunTask .tskid 6= tskempty ∧ CallingTask .tskid = NextRunTask .tskid)
⇒ ChainTask(CallingTask ,CallingTask) = E OS NORET ∧
(CallingTask .tskstate = Running)
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TP for ChainTask Part04
Test Purpose SysCalls

(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended) ∧
(CallingTask .tskrscstate = Occupy)
⇒ ChainTask(CallingTask ,TargetTask) = E OS RESOURCE ∧
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Suspended)
.
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready) ∧
(CallingTask .tskrscstate = Occupy)
⇒ ChainTask(CallingTask ,TargetTask) = E OS RESOURCE ∧
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready)
.
(CallingTask .tskstate = Running) ∧
(CallingTask .tskrscstate = Occupy)
⇒ ChainTask(CallingTask ,CallingTask) = E OS RESOURCE ∧
(CallingTask .tskstate = Running)
.
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready) ∧
(CallingTask .tskrscstate = Free ∧
TargetTask .multiactcnt = TargetTask .MAXMULTIACT )
⇒ ChainTask(CallingTask ,TargetTask) = E OS LIMIT ∧
(CallingTask .tskstate = Running ∧ TargetTask .tskstate = Ready)
.
(CallingTask .tskstate = Running) ∧
(CallingTask .tskrscstate = Free ∧
CallingTask .multiactcnt = CallingTask .MAXMULTIACT )
⇒ ChainTask(CallingTask ,CallingTask) = E OS LIMIT ∧
(CallingTask .tskstate = Running)
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TP for GetResource
Test Purpose SysCalls

(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Occupy)
⇒ GetResource(CallingTask ,TargetRsc) = E OS ACCESS ∧
(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Occupy)
.
(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Free) ∧
(CallingTask .tskpri 6 TargetRsc.rscpri)
⇒ GetResource(CallingTask ,TargetRsc) = E OK ∧
(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Occupy)
.
(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Free) ∧
(CallingTask .tskpri > TargetRsc.rscpri)
⇒ GetResource(CallingTask ,TargetRsc) = E OS ACCESS ∧
(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Free)
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TP for ReleaseResource
∆Test Purpose SysCalls

(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Free)
⇒ ReleaseResource(CallingTask ,TargetRsc) = E OS NOFUNC ∧
(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Free)
.
(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Occupy) ∧
(CallingTask .tskpri = TargetRsc.rscpri ∧ CallingTask .tskrscid = TargetRsc.rscid)
⇒ ReleaseResource(CallingTask ,TargetRsc) = E OK ∧
(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Free)
.
(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Occupy) ∧
(CallingTask .tskpri < TargetRsc.rscpri ∧ CallingTask .tskrscid = TargetRsc.rscid ∧
CallingTask .schpol = NON PREE )
⇒ ReleaseResource(CallingTask ,TargetRsc) = E OK ∧
(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Free)
.
(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Occupy) ∧
(CallingTask .tskpri < TargetRsc.rscpri ∧ CallingTask .tskrscid = TargetRsc.rscid ∧
CallingTask .schpol = FULL PREE ∧ CallingTask .tskid = NextRunTask .tskid)
⇒ ReleaseResource(CallingTask ,TargetRsc) = E OK ∧
(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Free)
.
(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Occupy) ∧
(CallingTask .tskpri < TargetRsc.rscpri ∧ CallingTask .tskrscid = TargetRsc.rscid ∧
CallingTask .schpol = FULL PREE ∧ CallingTask .tskid 6= NextRunTask .tskid)
⇒ ReleaseResource(CallingTask ,TargetRsc) = E OK ∧
(CallingTask .tskstate = Ready ∧ TargetRsc.rscstate = Free)
.
(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Occupy) ∧
(CallingTask .tskpri 6 TargetRsc.rscpri ∧ CallingTask .tskrscid 6= TargetRsc.rscid)
⇒ ReleaseResource(CallingTask ,TargetRsc) = E OS ACCESS ∧
(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Occupy)
.
(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Occupy) ∧
(CallingTask .tskpri > TargetRsc.rscpri)
⇒ ReleaseResource(CallingTask ,TargetRsc) = E OS ACCESS ∧
(CallingTask .tskstate = Running ∧ TargetRsc.rscstate = Occupy)
.
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Appendix B

Syntax of Test Purpose

TestPurpose ::= Pre-State Op1 Pre-Condition Op2 Action Op3 ReturnValue Op1 Post-State

Pre-State ::= Exp1

Pre-Condition ::= Exp2

Action ::= ActName’(’ Par ’)’

Post-State ::= Exp1

Par ::= Task | Resource | Par ’, ’ Par

Exp1 ::= ObjName’.’ObjState Op3 StateValue | Exp1 Op1 Exp1

Exp2 ::= ObjName’.’ObjAttr Op3 AttrValue
| ObjName’.’ObjAttr Op4 ObjName’.’ObjAttr
| Exp2 Op1 Exp2 | ε

ObjName ::= CallingTask | TargetTask | NextRunTask | TargetRsc

ObjState ::= tskstate | rscstate

StateValue ::= Suspended | Ready | Running | Waiting | Free | Occupy

ObjAttr ::= tskid | tsktype | schpol | tskpri | tskdpri
| multiactcnt | MAXMULTIACT | tskrscstate | rscid

AttrValue ::= Basic | Extended | NON PREE | FULL PREE | Free | Occupy | 1
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ActName ::= ActivateTask | TerminateTask
| ChainTask | GetResource | ReleaseResource

Task ::= CallingTask | TargetTask | NextRunTask

Resource ::= TargetRsc

ReturnValue ::= E OK | E OS ACCESS | E OS LIMIT
| E OS NOFUNC | E OS RESOURCE | E OS NORET

Op1 ::= ’ ∧ ’ | ε

Op2 ::= ’⇒ ’

Op3 ::= ’ = ’

Op4 ::= ’ ≤ ’ | ’ ≥ ’ | ’ > ’ | ’ < ’ | ’ 6= ’
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Appendix C

Syntax of Verification Part

VeriPart ::= do
::Set TP Objs();

if
:: Block
:: else
fi ;

od ;

Block ::= ’(’ Bexp1 ’)’ Op2

if
:: Segment
:: else
fi ;
| Block

:: Block

Segment ::= ’(’ Bexp2 ’)’ Op2

Aexp1;
Get TP Objs();
assert ’(’ Bexp3 Op1 Bexp4 ’)’;
| Segment

:: Segment

Bexp1 ::= ObjName’.’ObjState Op3 StateValue | Bexp1 Op1 Bexp1

Bexp2 ::= ObjName’.’ObjAttr Op3 AttrValue
| ObjName’.’ObjAttr Op4 ObjName’.’ObjAttr
| Bexp2 Op1 Bexp2 | true

Aexp1 ::= ActName’(’ Par ’)’
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Bexp3 ::= ObjName’.’ObjState Op3 StateValue | Bexp3 Op1 Bexp3

Bexp4 ::= ReturnStatus Op3 ReturnValue

Par ::= Task.tskid | Resource.rscid | Par ’, ’ Par

ObjName ::= CallingTask | TargetTask | NextRunTask | TargetRsc

ObjState ::= tskstate | rscstate

StateValue ::= Suspended | Ready | Running | Waiting | Free | Occupy

ObjAttr ::= tskid | tsktype | schpol | tskpri | tskdpri
| multiactcnt | MAXMULTIACT | tskrscstate | rscid

AttrValue ::= Basic | Extended | NON PREE | FULL PREE | Free | Occupy | 1

ActName ::= ActivateTask | TerminateTask
| ChainTask | GetResource | ReleaseResource

Task ::= CallingTask | TargetTask | NextRunTask

Resource ::= TargetRsc

ReturnValue ::= E OK | E OS ACCESS | E OS LIMIT
| E OS NOFUNC | E OS RESOURCE | E OS NORET

Op1 ::= ’&&’ | ε

Op2 ::= ’→ ’

Op3 ::= ’ == ’

Op4 ::= ’ <= ’ | ’ >= ’ | ’ > ’ | ’ < ’ | ’! = ’
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Appendix D

Result Table
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