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Abstract

This thesis is concerned with fault tree analysis (FTA) and formal methods for more
efficient and precise requirements engineering, i.e., how to develop the fault trees in a
formal correct way, and how to combine FTA and formal methods in a consistent way to
assist system analysis, design, and verification.

In this thesis, focused on the incorrectness problem of traditional fault trees, we first
propose a new formal fault tree construction model based on monotonicity of temporal
logic, and demonstrate how to formally model, specify, and verify a system based on the
analyzing results of fault trees with observational transition system (OTS) of CafeOBJ
(a wide spectrum specification language based on multiple logical foundations). And as
a complement of theorem proving technique of CafeOBJ, we also discuss how to model-
check OTSs with Maude (a sibling language of CafeOBJ). A new formal fault tree analysis
is then proposed based on the OTS model in order to make the combination of safety
analysis (FTA) and requirements analysis (formal system specification and verification
with OTS/CafeOBJ) more consistent. Finally, we present some further discussion and
analysis of formal fault tree semantics and demonstrate how to transform the results of
fault tree analysis into formal system specifications by using the common signature and
framework of OTS.

The technical contributions of our work are as follows.

• We carry out our study on a unified platform — OTS/CafeOBJ, which makes the
combination of FTA and formal system specification and verification more smooth
and consistent.

– We identify decomposition of fault events as a core issue that guarantees the
correctness of the fault trees, i.e., the sub events must formally result in their
top event through the given logic gate. As for a solution, we propose a for-
mal fault tree construction model based on temporal logic to guarantee the
correctness of the fault trees.

– We propose an approach to derive concrete requirements (safety assumptions
and commitments) from FTA so as to guild and assist system design and
verification;

– We demonstrate how to write fault tree specification and realize automatic
calculation of minimal cut sets of fault trees with term rewriting system (TRS)
of CafeOBJ;

– We demonstrate how to formally model, specify, and verify OTSs with CafeOBJ
based on the analyzing results of FTA.
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– Most importantly, we further propose a novel formal fault tree analysis by
introducing the basic concepts of OTS. The point is that, by using a common
framework of OTS, it is possible to use the results of fault tree analysis directly,
when specifying and verifying the system with OTS/CafeOBJ. Therefore, we
build a common semantic model for safety analysis and software requirements
specifications.

• In addition, as a complement of theorem proving technique provided by CafeOBJ, we
also demonstrate how to model-check OTSs with Maude, which makes our method
more complete.

Key Words: Fault Tree Analysis, Formal Methods, Requirements Engineering, The-
orem Proving, Model Checking, CafeOBJ, Maude
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Chapter 1

Introduction

This thesis is concerned with fault tree analysis (FTA) and formal methods for more
efficient and precise requirements engineering, i.e., how to develop the fault trees in a in-
structive formal way with respect to complex system analyses, and how to combine FTA
and formal methods in a consistent way as for system analysis, design, and verification.

As we know, nowadays the high-flying development of information and software tech-
nologies helps us develop more complex and more powerful systems to improve our lives
and to realize our dreams, such as exploring Mars; but on the other hand, more serious
accidents have occurred than before because of the same reason, that is to say, even tiny
flaw or mistake may cause fatal accidents, such as the space shuttle Columbia Tragedy
in 2003. It is a crucial issue for both engineers and designers to check the correctness,
consistency, and accuracy between system implementation and initial requirements, so as
to guarantee that the important system safety properties are really preserved using formal
methods.

Within the field of requirements engineering and system safety analysis, a number of
useful techniques have been developed. Examples of them are fault tree analysis (FTA)
[VGRH81], failure mode and effects analysis (FMEA) [Rei83], hazard and operability
analysis (HAZOP) [FMNP85], and state machine hazard analysis (SMHA) [Lev87]. These
methods have different coverage and validity, for instance, FTA is primarily a means for
analyzing causes of hazards, while FMEA was developed by reliability engineers to permit
them to predict equipment reliability, and it is a form of reliability analysis that focus on
successful functions rather than hazards and risks. So in requirements engineering and
system safety analysis, we often need to use several methods at the same time during the
life of the project. But in this thesis, we focus on FTA and formal methods with CafeOBJ
[FNT00, DF98] (a wide spectrum specification language based on multiple logical foun-
dations), and concern ourselves with the correctness of the fault tree with respect to
complex system analyses, and the combination of FTA and CafeOBJ as for more efficient
requirements engineering. To this end, we proposed two formal fault tree construction
models based on temporal logic and OTS, respectively, discussed how to write the formal
specifications of the fault trees and realize automated logic deduction and calculation of
minimal cut sets of the fault trees with term rewriting system (TRS) of CafeOBJ, and
introduced how to formally model, specify, and verify the system as well as its impor-
tant safety properties based on the analyzing results of FTA with observational transition
system (OTS) of CafeOBJ.
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In the following sections of this chapter, we will first briefly introduce the history and
development of FTA, and then focus on the problems of traditional FTA, a survey of
current formal works on FTA will be presented. Based on the above discussion and the
problems of current formal FTAs, we will carry out our research motivations and targets.
Finally we will present the organization of this thesis.

1.1 History and Development of Fault Tree Analysis

Fault Tree Analysis (FTA) is originally developed in 1961 by H. A. Watson at Bell
Telephone Laboratories to evaluate the Minuteman Launch Control System for an unau-
thorized missile launch [WL61]. Boolean logic method had been used in FTA to analyze
the relationships between events/hazards. Then, the engineers of Boeing Company devel-
oped the procedure further and became its foremost proponents. After that, it has been
supported by a rich body of research and widely used in the aerospace, electronics, and
nuclear industries. One of the important handbooks of FTA, ”Fault Tree Handbook” was
written by U.S. Nuclear Regulatory Commission (NRC) in 1981 to serve as a text for the
system safety and reliability course [VGRH81]. It could be looked as the first combination
of material on fault tree construction and evaluation.

FTA is a top-down approach whose input consists of knowledge of the system’s func-
tions as well as its failure modes and their effects. The result of the analysis is a set of
combinations of component failures that can result in a specific malfunction. The ap-
proach is graphical, constructing fault trees using standardized (Boolean) logic symbols.
An important concept of FTA is Cut Sets, that is, a set of basic events enough to cause the
system to fail . The goal of the analysis is to find the Minimal Cut Set, which represents
the basic events that will cause the system to fail and which cannot be reduced in number
- that is, a cut set that does not contain another cut set .

FTA can be used both in qualitative and quantitative analysis. The purpose of quali-
tative analysis is to reduce the minimal cut sets; while the quantitative analysis of fault
trees uses the minimal cut sets to calculate the probability of occurrence of the top event
from the probability of occurrence of the basic events [HK00, Sho90] . Or in reverse, given
the system reliability (the negation of the probability of occurrence of the fault event)
and development budget/cost, calculate and maximize the reliability of each basic event
[XFH03], which is a kind of software reliability allocation problem.

Although FTA was originally developed to analyze hardware hazards in general, it
also provides a useful qualitative design aid for software systems as well [HH86] . Similar
to the analysis of hardware systems in which the basic events are usually associated with
physical component failures, the basic events of a software system represent software
modules which might produce an incorrect result or accept an invalid input, or a basic
event can represent the incorrect setting of an initialization parameter by a user or a
buffer overflow [Lyu95]. It can help designers understand the potential failure modes of
a software system, and provides a logical structure for the placement of exception tests.

On a lower level, FTA might also be applied to the code/program statement analysis
to aid in safety validation. For instance, McIntee has shown how it can be applied to
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assembly language programs [McI83], while Taylor [Tay82] and Leveson et al. [LH83]
have demonstrated the technique on software written in higher-level languages, and some
more recent works can be in [MJC+99] and [Liu00] with respect to Ada95 and SOFL
(a formal specification language) respectively. These methods are called Software Fault
Tree Analysis (SFTA) . The goal of SFTA is either to find paths through the code from
particular inputs to the hazardous outputs, or prove that such paths do not exist using
designed templates for program statements. In fact, SFTA is a graphical application of
axiomatic verification where the postconditions describe the hazardous conditions rather
than the correctness conditions [Lev91] .

In addition to the detailed analysis of single-version critical software, fault tree models
are useful for analyzing the failure modes of fault-tolerant software systems. Here, the
basic events are considered as fault activation scenarios that will result in system-level
failures. Three qualitative fault tree models for distributed recovery block (DRB) [KW89],
N-version programming (NVP) [AC77, CA78, Avi85], and N self-checking programming
(NSCP) [LABK90, DB93] system respectively, together with a quantitative assessment of
the probability of failure using a common set of assumptions and parameter values are
discussed in [Lyu95, pages 627–645]. A more complete analysis of these three systems
(DRB, NVP, and NSCP) that considers the dynamic reconfiguration of the system con-
figuration in response to hard permanent faults by introducing and combining Markov
model with FTA can be found in [DL95] .

1.2 Problems of Traditional FTA

The advantages associated with the use of fault trees are the graphical and mathematical
foundations, which give rise to good qualitative and quantitative solution methods, and
thus it provides a common framework for comparative analysis in requirements engineer-
ing [Lyu95]. However, like any other model or method, FTA also has several limitations
as follows.

One criticism is that the fault trees are often constructed after the system has been
well analyzed and designed, since to develop the correct and useful fault trees usually
requires detailed knowledge of the system. For example, in an electrical system analysis,
without a precise operation diagram of the system, it is impossible to develop the fault
tree with respect to a specific hazard or undesired event. However, from the point of
view of requirements engineering, it is more desired that FTA can be applied in the early
design stages of the system life cycle, and thus the results of FTA can be used to assist
the system design. This problem often happens in hardware system analyses using FTA,
and some people think that it may be better to spend time ensuring that the design cri-
teria have been incorporated rather than building fault trees in case we have already well
defined all the operations and criteria of the system [Ham80]. One use for FTA in the
design stage is that at the system level to trace system hazards to individual sub-systems
or modules, such as FTA for software system analyses as we introduced in the last section.

Another criticism is that FTA is a simplified representation of a generally very complex
process: Its relative simplicity can be deceptive [Lee80]. For example, the technique is
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particularly suited to discrete events, such as a valve opening or closing, but time- and
rate-dependent events, such as changes in critical process variables, degrees of failure
(partial failure), and dynamic behavior are not so easily represented [ea83]. This is because
FTA was originally developed for hardware system analyses, and its logic foundation is
simple propositional logic. To solve this problem, a dynamic fault tree has been defined,
which used a Markov chain for solution [DBB92].

Problems may also occur when time spans or chronological ordering of events should
be specified in some realtime systems, since the fault tree is generally a snapshot of the
state of the system at one point in time [Lev95]. As a treatment to this problem, some
special gates such as INHIBIT and PRIORITY-AND have been proposed [VGRH81].
However, some researchers think that this complicates the evaluation of the tree, and
somewhat negates one important advantage of FTA – the ease with which the trees can
be read and understood and thus reviewed by domain experts and used by designers.
And they think that if chronology is important, using a model and analysis technique
that involves backward or forward search may be more appropriate than forcefitting this
into a hierarchical, top-down modeling technique [Lev95].

Traditional FTA does not represent the transitions between states, and it is difficult
to handle complex system states which consist of event combinations rather than com-
ponent state itself [Div87]. This is because in traditional FTA, each node (event) was
defined as a single system or component fault state (which seems enough for hardware
system analyses), while in complex system analyses, an undesired event often consists
of a combination of several normal states/events, it is difficult to decompose such event
without the concept of state transition.

An important and related issue is that generally speaking, FTA does not provide
precise formal semantics to verify the correctness of its descriptions. This situation stems
from that FTA was originally developed as a graphical and informal method for the
engineers to analyze hardware systems. The advantage of informal and graphical method
is obvious as its disadvantage, that is, on one hand, it can quickly provide a good first-hand
communication platform for the domain experts and designers, but on the other hand,
without formal semantics supporting, it is quite difficult to persuade people to accept
the correctness and completeness of the result. It seems to be a common problem as to
the safety analysis techniques mentioned in the beginning of this chapter: As Leveson has
said, “Perhaps the most important fact to keep in mind is that very little validation of any
of these techniques has been done, and so all results should be treated with appropriate
skepticism” [Lev95].

Further considering this problem, it results from the difference and complexity between
hardware and software systems, that is, unlike hardware systems in which it is quite easy
to directly decompose a system fault event into some component failures, a fault event in
a software system are more difficult to deal with in case the fault event consists of complex
logic formulas. If we still first decompose the fault event and construct the fault tree in
an informal way (or by intuition), just like the hardware fault tree analysis, a subsequent
stand-alone formal verification and refinement of the fault tree is unavoidable. It is a
kind of patch work that seems easy to begin with, but ends up being much harder and
more complicated. Even so, some new problems and unnecessary side conditions will be
introduced as we have proved in this thesis.

4



Additional criticisms of FTA relate to its quantitative aspects. For example, common-
cause failures may cause problems and lead to orders-of-magnitude errors in the calculated
failure probability [McC81]. However, since the quantitative analysis of fault tree is not
the main concern of this thesis, we did not discuss this issue in detail here.

1.3 Related Works on Formal Fault Tree Analysis

Focused on the limitations of traditional fault tree analysis mentioned in above section,
recently several formal fault tree models have been developed, which can be classified into
the following categories.

System model for safety and requirements analyses with FTA

As we discussed in the last section, FTA was often criticized because the fault trees were
usually developed after the system design state, and thus the effect of FTA is doubted
to some extent. To this end, Kirsten M. Hansen and Anders P. Ravn proposed a system
model for fault tree analysis and program development [HR98]. The model was formalized
in a real-time, interval logic, based on a conventional dynamic systems model with states
evolving over time. Fault trees were interpreted as temporal formulas after giving different
semantics to the constructs such as leaves, nodes and logic gates, and it was shown how
such formulas can be used to derive safety requirements for software components.

In [HR98], Hansen et al. have shown how fault tree analysis and system design could
be made to interact much effectively by a railway interlocking system example. The
point is that, through the formulation of software safety requirements, FTA can provide
a feedback to the system design, which also inspires our work in this thesis.

Dynamic fault tree models

The first dynamic fault tree model was proposed J. B. Dugan et al., which was served to
analyze fault tolerant computer systems [DBB92]. In this model, fault tree has capability
to model complex dynamic relationships between failures, such as failure sequences, func-
tional dependencies, in which a Markov chain is used for solution. A software package for
the analysis of dynamic fault tree models, called DIFtree was also developed by Dugan’s
group [DVG97].

Related work can also be found in [MDCS98], which further extended DIFtree analysis
capability to model several different distribution of time to failure, including fixed prob-
abilities (no time component), exponential (constant hazard rate), Weibull (time varying
hazard rate), and log normal. It is an extension of dynamic fault tree modeling technique
for the reliability analysis of computer based systems.

The formal semantics of dynamic fault tree was defined in [CSD00], in which Z specifi-
cation language and denotational semantics techniques were used to represent the formal
specification of dynamic fault trees.
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Temporal semantics of fault trees

Traditional FTA was based on Boolean logic to represent the fault trees (logic gates and
events), assuming that there is no time-delay between the inputs (sub-events) and output
(event) of a logic gate. Such an assumption rarely causes problems in hardware system
analyses, in which the flow usually is virtually instantaneous (such as an electric circuit).
Another assumption is that once a fault occurs, then it will exist forever, i,e., considering
all systems as nonrepairable. In other words, once the sub-events occur, then the output
event will always hold.

However, in complex system analyses where the flow is not instantaneous, such as-
sumptions may cause troubles or misunderstanding as we discussed in the last section.
To this end, G. Bruns and S. Anderson proposed two other temporal semantics for gates
of fault trees [BA93]. One took causality between the inputs and output of a gate to be
only sufficient, not necessary or immediate, i.e., once the gate condition is satisfied, the
gate output must eventually occur, using the temporal logic operator Eventually (which
means some time in the future); The other treated causality as only necessary, that is,
if the gate output happens, then the inputs must have happened some time in the past,
using the temporal operator Once 1.

Another work can be found in [HR98] as we introduced above – system model for
safety and requirements analyses with FTA. In [HR98], the fault trees were interpreted as
temporal formulas after giving different semantics to the constructs, i.e., events and logic
gates. However, since the main intention of Hansen’s work was to show how such formulas
can be used to derive safety requirements for software components, it did not consider the
time-delay between the inputs and output of the logic gates. For example, a AND-gate

was defined as in a form of A
def
= B1 ∧ . . . ∧ Bn, where A and Bi(i = 1, . . . , n) denoted

the output and input event, respectively. The temporal logic was mainly introduced to
interpreted the events and the safety requirements of the trees 2.

In [STR02], G. Schellhorn, A. Thums and W. Reif further defined a subtle formal
semantics of fault trees, which allowed cause-consequence relations among events in ad-
dition to Boolean decomposition. In this model, formal completeness and correctness
conditions (corresponding to necessary and sufficient conditions in traditional FTA) for
logic gates are given, using Interval Temporal Logic with continuous semantics. However,
their method is still the same as traditional formal fault tree analyses, that is, first build-
ing the informal fault tree by intuition, then verifying the correctness and completeness
conditions of the fault tree according to defined formal semantics.

Combination of FTA and other formal methods

In addition to providing different formal semantics and specifications of fault trees, re-
searchers also tried to combine FTA with other formal methods, such as model checking
and Petri-Nets, so as to formally verify the results of FTA and improve requirements
analyses. Examples of them are as follows.

1In [BA93], it used the temporal operator Prev rather than Once, however, this is easy to cause
confusing with the standard temporal logic operator Previous, which means in the previous state [MP95].
Therefore, here we revised the notation based on the explanation of [BA93].

2A special case is the PRIORITY AND-gate, in which the input events must occur in a left to right
order so as to cause output event, here, temporal operator Eventually was introduced to represent the
order of the input events as used in [HR98]
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• Andreas Schäfer presented a semantics for fault tree analysis in the real-time interval
logic Duration Calculus with Liveness (DCL) [sch03]. And the properties of the
fault tree was checked automatically by model-checking of Phase Automata [Tap01,
DT03]. In addition, an profit of the combination of FTA and model checking was
shown in the case study of a single track line segment system, that is, instead of
model-checking a complex top-event directly, FTA can be used as a decomposition
method to find the manageable and basic events to check, which is more efficiently.

• Guy Helmer, and Johnny Wong et al. proposed an integration model of software
fault tree analysis and Colored Petri Nets (CPNs) [HWS+00]. In this model, soft-
ware fault trees (SFTs) was augmented with nodes in terms of trust, temporal, and
contextual relationships to describe intrusions of an agent-based intrusion detection
system (IDS), while CPNs for intrusion detection were built using CPN templates
created from the augmented SFTs.

• Axel Lankenau and Oliver Meyer proposed a general verification approach for reac-
tive systems, which was based on a CSP specification of a fault tree that observes
the behaviour of the target system [LM99]. A template for the modeling of fault
tree leaves and nodes was given, and it was demonstrated by a mobile robotics
system. This work also demonstrated the benefit of the integration of informal re-
quirements, the semi-formal fault tree technique and the formal verification using a
model checking as for more efficient requirements engineering.

• Another related work is Axel van Lamsweerde’s obstacle analysis of goal-oriented
requirements engineering [vLL00, vL01], which uses a temporal logic variant of the
regression procedure found in [vL91] as well as the tree structure to formally deduce
the possible obstacles with respect to a specific goal. It can be viewed as a kind of
goal-anchored obstacle tree analysis rather than standard fault tree analysis. The
point is that it effectively avoids the incorrectness problem of traditional fault tree
analysis thanks to the formal regression procedure [vL91], which inspires our work
for the formal fault tree construction.

In short, the above formal FTAs provided valuable and useful experiences as for FTA
and formal methods in requirements engineering, and some of them inspired our work
in this thesis, such as the idea of deriving software requirements from safety analyses
with FTA [HR98], the temporal logic semantics of fault trees [BA93, STR02], and the
combination of FTA and formal verification techniques [sch03, HWS+00, LM99]. How-
ever, these works mainly focused on providing more precise formal semantics for fault
tree constructors or different fault tree models, they seldom considered how to formally
construct the fault tree in a deductive manner. The common method is to develop the
formal model and the fault trees as separate documents. That is to say, building up the
fault trees is driven by intuition, while the events and sub-events of a gate are formalized
afterward with respect to the formal model [RST00]. This approach is effective for quickly
constructing a fault tree, but the informal construction creates problems later, when ver-
ifying its correctness. And that is why a stand-alone formal verification and refinement
of the fault tree is unavoidable in these methods.

As we discussed in the last section, It is a kind of patch work that seems easy to begin
with, but ends up being much harder and more complicated. To this end, we bring out
our research motivation and targets in the next section.

7



1.4 Research Motivation and Targets

As discussed above, FTA is widely used in requirements analyses as a safety analysis
technique thanks to its qualitative and quantitative methods as well as rich graphical
supports. However, with respect to complex system analyses, traditional FTA should be
improved and augmented, such as introducing formal temporal semantics for the fault
trees as some researchers have done. A neglected problem is that, most of the formal
FTAs focused on providing more precise formal semantics for the fault tree constructors,
such as nodes, leaves, and logic gates, while few of them paid attention to the formal fault
tree construction.

In other words, the common sense is still regarding FTA as a semi-formal method,
and thus separating fault tree construction and verification as separated processes. The
advantage of this approach is obvious, that is, it can quickly construct the fault trees
as a communication platform for the experts and designers. But it makes the formal
verification of the fault trees much more difficult, just like a kind of patch work.

For example, in [STR02], Schellhorn et al. noticed that sometimes the correctness con-
dition was unprovable, in that the sub-events could not formally result in the top event
through a logic gate. They found that such gates typically represent design decisions, in
which all states described by the sub-events were considered already faulty regardless of
side conditions. This fact has led traditional formalization attempts of fault trees either
to require only the completeness condition [HRS94] (i.e. neglect the correctness condi-
tion in this case), or make the side conditions explicit in the fault tree by introducing
an INHIBIT-gate [STR02]. But in that case, finding and confirming such side conditions
may become another problem, especially if the gate is in the bottom layer of a large and
complex informal fault tree. Even so, another problem may appear, that is, how can we
ensure such side conditions are really necessary?

In addition, as we know, a common roadblock to the adoption of formal methods in
system analysis is the difficult and tedious work of logic proving and deduction. Pro-
viding a lightweight formal method to deduce/develop fault trees as well as their formal
specifications with the support of an automated logic deduction mechanism is another
important task we want to attack. The significance here is not only to provide relief for
engineers from difficult and tedious logic proving and deduction; more importantly, the
formal specification of the fault tree is also a very important formal document per se for
the subsequent formal system modeling, specifying and verifying. From this point of view,
an executable formal language is preferred than other notational formal languages, such
as Z. And this is the reason why we choose CafeOBJ [FS95, FN97, DF98], an executable
algebraic specification language which is a modern successor of OBJ [JWM+00, FGJM85],
in our study.

Another important issue is how, after finding the basic fault events that will result
in system failure, to ensure that such safety properties (the negations of the basic fault
events) will be preserved in the system. In other words, can we formally prove that the
basic fault events (related to design failures) will never occur in our revised system? This
formal verification work is quite important since it can not only greatly and efficiently
enhance system safety, but it also helps us pay more attention to other aspects or fault
events of the system (the basic events related to physical failures and human errors); that
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is, we can have a more definite object in view to allocate our resources more efficiently
and reasonably in terms of different system safety properties. This issue has been referred
partially in some previous formal FTAs, such as in [HR98], Hansen proposed the concepts
of safety assumption and commitment to distinguish the basic events related to physical
failures (human errors) and design failures, respectively, but it did not further discuss the
formal verification of the design failures; and in [sch03, LM99], the combination of FTA
and model-checking was proposed to verify the properties of fault trees, but they did not
distinguish different fault events as for the whole safety requirements analyses.

Therefore, in the work described in this thesis, we concentrate our attention on the
following topics (targets).

• Firstly, based on our previous work [XFH04b, XFH04a, XFH04c] and further com-
prehensive analysis of the problems caused by traditional methods, we further im-
prove and complete our formal fault tree construction model based on monotonic-
ity of temporal logic [MP95] as well as the idea of Lamsweerde’s obstacle analy-
sis [vLL00]. In our model, the correctness of the fault tree is guaranteed by the
construction process itself, along with the sub-events are deduced recursively and
inductively by finding hidden domain rules at the design stage, giving the designers
the opportunity to revise their system design in a timely fashion.

• Secondly, we demonstrate how CafeOBJ [FS95, FN97, DF98], can be used as an
integrated powerful tool with the formal fault tree model for requirements engi-
neering: it is not only useful to write the formal fault tree specifications in which
we encapsulate some automatic logic deduction functions into the system built-in
modules , but is also powerful to formally model, specify, and verify a system as
well as its important safety properties discovered in the fault tree model.

• Thirdly, as we know, with respect to finite system analyses, model-checking tech-
nique is easier and more practical than theorem proving technique. To this end, we
demonstrate how to model-check OTSs with Maude as a complement of theorem
proving technique of CafeOBJ.

• Last but not least, to make the combination of FTA and OTS/CafeOBJ more con-
sistently and smoothly, we further propose a novel formal fault tree analysis model
by introducing the basic concepts of OTS, which has the ability to represent tran-
sitions between states and deal with complex events that consists of a combination
of events rather than component failures (one of the limitations of traditional FTA
as we discussed in Section 1.2). An important motivation of this study is that, as
we know, a common framework is important whenever engineers and designers from
multiple disciplines need to work together, therefore to propose a formal fault tree
analysis model by using the common framework of OTS is really desired, which can
efficiently smooth the transformation between FTA and formal system specification
and verification with OTS/CafeOBJ. From this point of view, it is more than an
alternative (to the formal fault tree construction model based on temporal logic we
proposed) but a significant improvement for the engineers (especially those who are
not familiar with temporal logic).
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1.5 Thesis Organization

The rest of this thesis is organized as follows.

• Chapter 2 provides some preliminaries on fault tree analysis, temporal logic, and
CafeOBJ. It constitutes the rationale of this thesis and provides a quick reference
for readers who are not familiar with these fields.

• Chapter 3 first deeply analyzes the origin and harm of traditional construction
methods, i.e., the incorrectness problem, based on a radio-based crossing control
system example. Then, it elaborates our formal fault tree construction method
based on monotonicity of temporal logic in detail. Finally, it presents how to derive
concrete safety assumption and commitment from FTA for the subsequent system
formal specification and verification.

• Chapter 4 demonstrates how to use CafeOBJ as an integrated tool to implement
the automated logical deduction and formal specification of fault tree construction,
along with the formal modeling, specification, and verification of the system as
well as its important safety properties. Model-checking OTSs with Maude is then
discussed as a complement of theorem proving technique of CafeOBJ. A discussion
and analysis of the combination of FTA and OTS/CafeOBJ(Maude) is presented at
the end of this chapter.

• Chapter 5 further proposes a novel formal fault tree analysis model by introducing
the basic concepts of OTS (called FTA/OTS), in which the formal semantics of
events of fault trees are redefined, as well as the definition of transition rules and
corresponding decomposition patterns of sub-events are provided.

• Chapter 6 presents some further discussions and analyses of formal fault tree se-
mantics, and demonstrates how to transform the results of FTA/OTS into formal
system specifications with OTS/CafeOBJ.

• Chapter 7 summarizes this thesis, and discusses some related and future works.

• Appendixes include the complete CafeOBJ and Maude codes as well as the experi-
mental results discussed in Chapter 4 for reference.
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Chapter 2

Preliminaries

2.1 Background of Fault Tree Analysis

Fault tree analysis [VGRH81] is a deductive safety analysis technique which is applied
during the design phase. The technique was first developed in the 1960s to facilitate
analysis of the Minuteman missile system [WL61] and has been supported by a rich body
of research since its inception.

A fault tree analysis can be simply understood as an top-down analytical technique,
whereby an undesired state of the system is specified (usually a state that is critical from a
safety standpoint), and the system is then analyzed in the context of its environment and
operation to find all credible ways in which the undesired top event can occur [VGRH81].
The top event is resolved into its constituent causes, connected by logic gates that denote
the type of relationship of the input causes required for the output top event, such as
AND, OR, and EXCLUSIVE OR. The causes are called fault events that are associated
with component hardware or software failures, human errors, or any other related events
which can result in the undesired top event. The fault events then should be further
resolved until basic events are identified, which represent basic initiating faults requiring
no further development/resolution. The extent of the analysis, i.e., which components are
considered basic, depends on the abstraction level chosen.

It should be noted that a fault tree is not a model of all possible system failures or
all possible causes for system failure. A fault tree is developed from a top event which
corresponds to a specific system failure mode, and the fault tree includes only the faults
contributing to this top event. Therefore, in system analysis, we need to develop and
analyze various fault trees with respect to different system failure modes.

Moreover, It is also important to point out that the faults of a fault tree are not ex-
haustive — they cover only the faults that are assessed by analysts, in other words, the
completeness of the faults depends on the understanding and analysis of the analysts.

2.1.1 Fault Tree Symbols

A typical fault tree is composed of a number of standardized symbols, which is shown
in Figure 2.1. There are several variations and extensions, but in this thesis we limit
ourselves to the following symbols.
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BASIC EVENT: A basic initiating fault requiring no further development.

INTERMEDIATE EVENT: An event that results from a combination
of events through a logic gate.

UNDEVELOPED EVENT: An event which is not further developed
either because it is of insufficient consequence or because information is
unavailable.

CONDITIONING EVENT: Specific conditions that apply to any logic
gates(usually used with PRIORITY AND and INHIBIT gate).

AND-gate: The output fault in the top node occurs only when all the
input children faults occur.

OR-gate: The output fault in the top node occurs only when one or
more the input children faults occur.

PRIORITY AND-gate: The output fault in the top node occurs only
when the input children faults occur in a left to right order

EXCLUSIVE OR-gate: The output fault in the top node occurs only
when exactly one of the input children faults occurs.

INHIBIT-gate: The Output fault in the top node only occurs if the
input children fault occurs in the presence of an enabling condition, i.e. a
CONDITIONAL EVENT.

Figure 2.1: Fault tree symbols

2.1.2 Fault Tree Construction Fundamentals

In Section 2.1.1, we introduced the symbols which are used to construct the fault tree.
In this section we discuss some fundamental concepts and rules for proper fault tree
construction.

Fault Occurrence vs. Fault Existence

In the discussion of the fault tree gates in Section 2.1.1, we have spoken of the occurrence
of faults. A fault may be repairable or not, depending on the nature of the system. If no
repair, a fault that occurs will continue to exist. It is important to distinguish between
the occurrence of a fault and its existence in a repairable system, but this distinction is of
importance only in fault tree quantification [VGRH81]. And from the viewpoint of fault
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Figure 2.2: System illustrating “Immediate Cause” concept

tree construction, we need concern ourselves only with the phenomenon of occurrence,
i.e., supposing all systems are nonrepairable.

Component Fault Categories

In hardware system analysis, it is useful for fault tree analyst to classify component faults
into three categories: primary, secondary and command [VGRH81].

• A primary fault is any fault of a component that occurs in an environment for which
the component is qualified; e.g., a pressure tank, designed to withstand pressures
up to and including a pressure p0, ruptures at some pressure p ≤ p0 because of a
defective weld.

• A Secondary fault is any fault of a component that occurs in an environment for
which it has not been qualified, i.e., the component fails in a situation which exceeds
the conditions for which it has been designed; e.g., in the above example of the
pressure tank, ruptures under a pressure p > p0.

• In contrast to that the primary and secondary faults are generally component fail-
ures, a command fault is a fault with the proper operation of a component but at
the wrong time or in the wrong place.

The Concept of “Immediate Cause”

In fault tree construction, an important concept of the fault resolution is to find the
immediate, necessary, and sufficient causes for the occurrence of the fault event. It
should be noted that these are not the basic causes of the event but the immediate causes
or immediate mechanisms for the event [VGRH81].

The “immediate cause” concept is sometimes called the “Think Small” Rule because
of the methodical, one-step-at-a-time approach, and the motivation is to ensure that no
fault event in the sequence is overlooked.

As an example to further illustrate the “immediate cause” concept, consider the simple
system in Figure 2.2, which is taken from [VGRH81].
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no signal to E

no output from D

internal fault 

of D

there is no input to 

D

no input from B no input from C

Figure 2.3: Fault tree for system illustrating “Immediate Cause” concept

The system is supposed to operate in the following way: a signal to A triggers an
output from A which provides inputs to B and C. B and C then pass a signal to D which
finally passes a signal to E. A, B, C, and D can be considered as dynamic subsystems.
Furthermore, a signal from either B or C or both of them to D will trigger its output to
E. Therefore, the system has redundancy in this portion. The system can be interpreted
quite generally, such as an electrical system in which the subsystems are analog modules,
or a piping system in which A, B, C, and D are valves, and so on.

If we Choose the top event as “no signal to E”, and assume that there is no transmitting
failures in the system. The immediate cause of the event, “no signal to E”, is then defined
as “no output from D”. It should be noted that we can not directly list the event, “no input
to D” as the immediate cause of “no signal to E”, which violates the “one-step-at-a-time”
approach, and some fault events will be overlooked.

Then, we focus on the sub-top event “no output from D”, and its immediate causes
are the union of the following two events:

(1) “There is an input to D but no output from D.”
(2) “There is no input to D.”
Notice here if we directly listed the event, “no input to D” as the immediate cause of

“no signal to E” as mentioned above, then the event (1) is missed in this case.
Suppose our limit of resolution is the subsystem level, then event (1) (which can be

rephrased as “D fails to perform its proper function due to some fault internal to D”, or
in short, “internal failures in D”) is not analyzed further and constitutes a basic event of
our fault tree. Analyzing event (2) and its immediate causes recursively in an analogous
way, we derive a fault tree shown in Figure 2.3.

Basic Rules for Fault Tree Construction

In the beginning, the construction of fault trees was thought of as an art more than a
science. But after a period of years practices, people have realized that successful fault
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trees were all drawn in accordance with the following basic rules [VGRH81].

Rule 2.1 (Ground Rule I) Write the statements that are entered in the event boxes as
faults; state precisely what the fault is and when it occurs.

Rule 2.2 (Ground Rule II) If the answer to the question, “Can this fault consist of a
component failure?” is “Yes,” classify the event as a “state-of-component fault.” If the
answer is “No,” classify the event as a “state-of-system fault.”

If the fault event is classified as “state-of-component,” add an OR-gate below the event
and look for primary, secondary and command modes. If the fault event is classified as
‘state-of-system,” look for the minimal necessary and sufficient immediate cause or causes.

Rule 2.3 (No Miracles) If the normal functioning of a component propagates a fault
sequence, then it is assumed that the component functions normally.

Rule 2.4 (Complete-the-Gate) All inputs to a particular gate should be completely
defined before further analysis of any one of them is undertaken.

The rule 2.4 states that the fault tree should be developed in levels, and each level must
be completely analyzed before any consideration of its lower level. It helps the analyst
develop the fault tree in a methodical way.

Rule 2.5 (No Gate-to-Gate) Gate inputs should be properly defined fault events,and
gates should not be directly connected to other gates.

The “gate-to-gate” shortcuts may lead to confusion and may demonstrate that the ana-
lyst has an incomplete understanding of the system. Such attempt of shortcutting must
be avoid during the analysis and construction process.

The above concepts and rules are useful and instructive for the proper fault tree
construction, especially in hardware fault tree analysis. However, with respect to software
and integrated system analysis, the situation is more complex and thus some new rules
should be introduced, which we will discuss in Chapter 3.

2.1.3 Minimal Cut Sets and Minimal Path Sets

Analysis of a fault tree begins with an enumeration of the minimal cut sets, i.e., the
smallest combinations of component failures which, if they all occur, will cause the top
event to occur. A cut set is a combination (intersection) of primary events sufficient
for the top event. A minimal cut set is a cut set with no redundant elements, that
is, if any failures is removed from a minimal cut set then it is ceases to be a cut set
[VGRH81, Lyu95].

In contrast, a complemental concept of FTA is minimal path set, which is a small-
est combination (interaction) of basic events whose non-occurrence assures the non-
occurrence of the top event [VGRH81, pages VII-15 – VII-20]. This concept was proposed
from the point of view of reliability when we concerned with the prevention of the top
event. The way to get the minimal path sets is easy and similar to the way of getting
minimal cut sets: first complement the original fault tree (including all the events and
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logic gates) by applying De Morgan’s theorem of Boolean Algebra Laws and get a com-
plemented tree, called the dual of the original fault tree or dual fault tree , then use the
same method (see Algorithm 2.1) to calculate the minimal path sets. In case the minimal
cut sets has already been calculated as a disjunctive normal form (DNF), just negating
the DNF and transforming it into another DNF can also get the minimal cut sets.

By introducing the concepts of minimal cut sets and minimal path sets, it is convenient
to discuss the (global) correctness and completeness of the fault trees. A fault tree is
correct provided that for any minimal cut set, if all the primary events of the minimal cut
set occur, then the top event must occur also. In contrast, a fault tree is complete provided
that for any minimal path set, the non-occurrence of all the primary events of the minimal
path set assures the non-occurrence of the top event. In this thesis, we also discuss (local)
correctness condition and completeness condition of gate, which are used for defining the
semantics of gates. The correctness condition of a gate states that the input events can
logically imply the output event. And in reverse, the completeness condition of a gate
states that the output event can logically imply the input events, i.e., all the causes (input
events) has been listed. Therefore, the global correctness and completeness of fault tree
depend on that all the local correctness and completeness conditions of gates of the fault
tree can be proved, respectively.

Algorithm 2.1 (A top-down algorithm for determining the minimal cut sets)

1. Starts at the top event of the fault tree and constructs the set of cut sets by considering
the gates at its lower level.

• If a gate below the top event is an OR-gate, then split the input events into
different cut sets, one containing each input to the OR-gate.

• If it is a AND-gate, then list all the input events into one cut set.

2. With respect to each intermediate event of the cut sets, regard it as a top event and
repeat the step 1 until the set of basic events is reached.

3. Finally, to get the minimum cut sets from the cut sets, we have to remove the redun-
dancies according to the following rules.

• If two cut sets are the same, then delete one;

• If one cut set is the subset of another, the latter can be removed since it is not a
minimal cut set;

• If a cut set contains the same basic event more than once, then the redundant
entries can be delete.

Actually, the algorithm for determining the minimal cut sets can be understood as a
process of Boolean substitution and absorbtion if we use Boolean equations to represent
the fault tree. First translate the top event to its equivalent Boolean equation, and then
perform the Boolean substitution for the intermediate events repeatedly until the basic
events are reached, finally use two Boolean laws, the distributive law and the law of
absorption, to remove the redundancies [VGRH81, pages VII-15–VII-19].

For better understanding, Figure 2.4 shows an example fault tree whose cut set gener-
ation is shown in Figure 2.5. The undesired top event T occurs when both intermediate
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Figure 2.4: Example fault tree

{T} {E1,E2}

{A,E2} {A,C,E4}

{A,C,A}

{A,C,B}

{E3,E2} {E3,E4}

{B,C,E4}

{B,C,A}

{B,C,B}

{C,C,E4}

{C,C,A}

{C,C,B}

Figure 2.5: Cut set generation for a fault tree
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events E1 and E2 occur, which are connected by a OR-gate and AND-gate respectively
with other intermediate events or basic events. There are four intermediate events and
three basic events in the fault tree, labeled E1 to E4, and A, B, and C respectively.

To get the minimal cut sets of Figure Figure 2.4, let’s first analyze the fault tree from
the top even T. Because T is resolved into its causes E1 and E2 through a AND-gate, it
can be replaced with one set, {E1, E2}. Then we focus on E1, since it resolved into a
basic event A and a intermediate event E3 through a OR-gate, we split the set of {E1,
E2} into two sets, {A, E2} and {E3, E2}. Redo this process until all the basic events are
reached, we get all the six cut sets of the fault tree, i.e. {A, C, B}, {A, C, B}, {B, C, A},
{B, C, B}, {C, C, A}, and {C, C, B} (the generation process of the cut sets is shown in
Figure 2.5). Since there are some redundant entries in the resulting cut sets, we can use
the absorption rules of Algorithm 2.1 to delete the redundant entries and cut sets, and
finally we get two minimal cut sets of the fault tree, {A, C} and {B, C}.

2.1.4 Quantitative Analysis of Fault Tree

Once the minimal cut sets are obtained, probability analysis can be performed if quanti-
tative results are desired. The quantitative results obtained from the evaluation include:
(a) absolute probabilities, (b) quantitative importance of components and minimal cut
sets, and (c) sensitivity and relative probability evaluations [VGRH81]. The quantitative
evaluations usually are performed in a sequential manner, first determining the compo-
nent failure probabilities/rates, then the minimal cut set probabilities, and finally the
system, i.e., top event probability. If the failure rates are treated as random variables,
then random variable propagation techniques can be used to estimate the variabilities in
system results which result from the failure rate variation. But in this thesis, we limit
ourselves in the qualitative analysis and the formal construction model of the fault trees,
so here we just briefly introduce a simple algorithm to calculate the failure probability as
follows.

Given the component failure probabilities, we can calculate the top event failure prob-
ability. The top event probability can be determined by the set of the minimal cut sets:
the set of minimal cut sets denotes all the factors that will cause the system failure, thus
the system failure probability is the probability of the union of the minimal cut sets.

P

{

⋃

i

Ci

}

(2.1)

where Ci is the minimal cut set. Since there always exist some intersections (same basic
events) between the minimal cut sets, so the system failure probability is not equal to the
sum of minimal cut set probabilities. If we simply add the minimal cut set probabilities
together, the system failure probability would be overvalued because we count some basic
events for several times.

To solve this problem, there are some methods to evaluate the Equation 2.1, the
simplest way is including-excluding method, which is the general principle to calculate
the probability of the union of two events:

P{A ∪B} = P{A}+ P{B} − P{A ∩ B} (2.2)

So we get the refined algorithm below [Lyu95].

18



P

{

n
⋃

i=1

Ci

}

=

n
∑

i=1

P{Ci}

−
∑

i<j

P{Ci ∪ Cj}

+
∑

i<j<k

P{Ci ∩ Cj ∩ Ck}

∓ · · ·

±P

{

n
⋂

i=1

Ci

}

(2.3)

In addition, with respect to software reliability allocation, a fault tree allocation model
has been developed [XFH03]. It is a kind of inverse calculation of system failure probabil-
ity, i.e., dealing with the setting of reliability goals for individual components such that a
specified system reliability goal is met and the component goals are well balanced among
themselves [MIO87].

2.2 Temporal Logic Foundations

The formal semantics of our formal fault tree construction model is based on Temporal
Logic [MP92] with real-time restrictions [Koy92]. In this thesis, we will use the following
classical temporal operators (shown in Figure 2.6).

Symbol Name Explanation

Next Operator in the next state

Previous Operator in the previous state

Eventually Operator some time in the future

Once Operator some time in the past

Henceforth Operator always in the future

Has-always-been Operator has always been in the past

Figure 2.6: Temporal logic operator symbols

For each of the operators and sub-formulas allowed in a temporal formula, we introduce
a definition of its interpretation in a given model. This definition is based on the notion
of a formula p holding at a time position j, j ≥ 0, in a sequence σ, denoted by

(σ, j) |= p

Where j ∈ T , and T denotes a linear temporal structure assumed to be discrete in
this thesis for sake of simplicity. The semantics of the above temporal operators are then
defined as usual [MP92] as shown in Figure 2.7.

We will also use the standard logical connectives ∧ (and), ∨ (or), ¬ (not),→ (implies),
↔ (equivalent), ⇒ (strongly implies), ⇔ (strongly equivalent), with
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(σ, j) |= p iff (σ, j + 1) |= p

(σ, j) |= p iff (j > 0) and (σ, j − 1) |= p

(σ, j) |= p iff (σ, k) |= p for some k,≥ j

(σ, j) |= p iff (σ, k) |= p for some k, 0 ≤ k ≤ j

(σ, j) |= p iff (σ, k) |= p for all k, k ≥ j

(σ, j) |= p iff (σ, k) |= p for all k, 0 ≤ k ≤ j

Figure 2.7: Semantics of temporal logic operators

p⇒ q iff (p→ q)
p⇔ q iff (p↔ q)

Note thus that there is an implicit outer -operator in every strong implication.

Moreover, there are some important distribution properties of the nonimmediate opera-
tors, i.e., excluding the next/previous operators. Some of these operators have a universal
character while others have an existential character. For example, the unary operators

and are universal, while the unary operators and are existential. The uni-
versal operators are distributed over conjunction and universal quantifications, while the
existential operators are distributed over disjunction and existential quantifications.

This is expressed by the following properties, stated for the future operators and
.

DP1. (p ∧ q)⇔ ( p) ∧ ( q)

DP2. (∀u : p)⇔ ∀u : p

DP3. (p ∨ q)⇔ ( p) ∨ ( q)

DP4. (∃u : p)⇔ ∃u : p

Some often used entailments are:

E1. p⇒ p

E2. p⇒ p

E3. p⇒ p

E4. p⇒ p

And in requirements engineering we often need to introduce real-time restrictions.
Bounded versions of the above temporal operators are therefore introduced, in the style
advocated by [Koy92], such as:

≤d (some time in future within deadline d)

≤d (always in future up to deadline d)

≥d (always in the past over deadline d)

To define such operators, the temporal structure T is enriched with a metric domain
D and a temporal distance function dist : T × T → D, which has all desired properties
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of a metrics [Koy92]. A frequent choice is as follows.

T : the set of naturals
D: {d: there exists a natural n such that d = n × u }, where u

denotes some chosen time unit
dist(j, k): |k − j| × u

Multiple units can be used (e.g., second, day, week); they are implicitly converted into
some smallest unit. The -operator (next-operator) then yields the nearest subsequent
time position according to this smallest unit.

The semantics of the real-time operators is then defined accordingly, e.g.,

(σ, j) |= ≤dp iff (σ, k) |= p for some k ≥ j with dist(j, k) ≤ d

(σ, j) |= ≤dp iff (σ, k) |= p for all k ≥ j such that dist(j, k) ≤ d

An important property of temporal logic that we will use in our formal fault tree
construction model, i.e., monotonicity [MP92, pages 202–204], is as follows.

Monotonicity

Let ϕ(u) be a formula scheme with one or more occurrences of the sentence symbol u.
We define an occurrence of u to be positive (of positive polarity) in ϕ if it does not

occur in a subformula of the form p ↔ q and it is embedded in an even (explicit or
implicit) number of negations. Note that an occurrence of u in p in the context p → q
counts as an (implicit) negation, because p → q is equivalent to (¬p) ∨ q. Similarly, an
occurrence of u in ϕ is defined to be negative (of negative polarity) if it does not occur in
a subformula of the form p↔ q and it is embedded in an odd number of negations.

There are two general monotonicity properties for the case that all occurrences of u
in ϕ(u) have uniform polarity, i.e., are all positive or all negative.

Claim 2.1 (positive polarity) If all occurrences of u in ϕ(u) are positive, then

(p⇒ q)→ (ϕ(p)⇒ ϕ(q))

is valid.

Claim 2.2 (negative polarity) If all occurrences of u in ϕ(u) are negative, then

(p⇒ q)→ (ϕ(q)⇒ ϕ(p))

is valid.

And for completeness, we also list substitutivity as a property, restricted to the com-
putations for which p⇔ q.

Claim 2.3 (substitution) For an arbitrary formula ϕ(u),

(p⇔ q)→ (ϕ(p)⇔ ϕ(q))

is valid.
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2.3 CafeOBJ and Observational Transition System

In this section we present a brief overview of the CafeOBJ [FS95, FN97, DF98] and the
basic concepts of Observational Transition System (OTS) as well as its description in
CafeOBJ. The intention is to provide readers who are not familiar with CafeOBJ and
parallel computational models with a perceptual understanding and useful references.
The OTS model will be used to formally model, specify, and verify the distributed and
parallel systems with CafeOBJ in the subsequent chapters, combined with our formal
fault tree construction model.

2.3.1 Introduction of CafeOBJ

CafeOBJ is an executable, industrial strength, algebraic specification language which is
a modern successor of OBJ [JWM+00, FGJM85], incorporating several new algebraic
specification paradigms. It is perhaps the most famous algebraic language. Its definition
is given in [DF98]. CafeOBJ is intended to be mainly used for system specification, the
formal verification of specifications, rapid prototyping, programming, etc. Following is a
brief overview of its underlying logic as well as some most important features.

Underlying Logic of CafeOBJ

CafeOBJ is a specification language based on three-way extensions to many-sorted equa-
tional logic: the underlying logic is order-sorted, not just many-sorted; it admits unidi-
rectional transitions, as well as equations; it also accommodates hidden sorts, on top of
ordinary, visible sorts. A subset of CafeOBJ is executable, where the operational seman-
tics is given by a conditional order-sorted term rewriting system. These theoretical bases
are indispensable to employ CafeOBJ properly. Fortunately, there is an ample literature
on these subjects, and we are able to refer the readers to, e.g., [EM85, MG86] (for basics
of algebraic specifications), [GM89, GD94a] (for order-sorted logic) , [GM97] (for hidden
sorts) , [JR97] (for coinduction) , [Mes91] (for rewriting logic) , [GB92] (for institutions)
, and [Klo87, DJ90] (for term rewriting systems) , as primers. The logical aspects of
CafeOBJ are explained in detail in [DF96] and [DF98].

For a very brief introduction, we just highlight a couple of features of CafeOBJ.
CafeOBJ is an offspring of the family of algebraic specification techniques. A specifi-
cation is a text, usually of formal syntax. It denotes an algebraic system constructed out
of sorts (or data types) and sorted (or typed) operators. The system is characterized
by the axioms in the specification. An axiom was traditionally a plain equation (“es-
sentially algebraic”), but is now construed much more broadly. For example, CafeOBJ
accommodates conditional equations, directed transitions, and (limited) use of disequality.

The underlying logic of CafeOBJ is as follows.

Order-Sorted Logic [GM89]
A sort may be a subset of another sort. For example, natural numbers may be
embedded into rational numbers. This embedding makes valid the assertion that
3 equals 6/2. It also realizes “operator inheritance”, in the sense that an opera-
tor declared on rational numbers are automatically declared on natural numbers.
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Moreover, the subsort relation offers a simple way to define partial operations and
exception handling.

Rewriting Logic [Mes91]
In addition to equality, which is subject to the law of symmetry, you may use tran-
sition relations, which are directed in one way only. State transitions are naturally
formalized by those relations. In particular, transition relations are useful to repre-
sent concurrency and/or indeterminacy.

Hidden Sorts [GM97]
There are two kinds of equivalence. One is a minimal equivalence, which identifies
terms (elements) iff they are the same under the given equational theory. The
other equivalence, employed for so-called hidden sorts, is behavioral: two terms are
equivalent iff they behave identically under the given set of observations.

Important features of CafeOBJ

Now we present a brief overview of the main features of CafeOBJ, all of them reflected
in the above logical semantics. These should be understood in their combination rather
than as separated features. Combining some of these features (sometimes all of them!)
result in new specification/programming paradigms that are often more powerful than
the simple sum of the paradigms corresponding to the individual features.

Equational Specification and Programming
This is inherited from OBJ [JWM+00, FGJM85] and constitutes the basis of the lan-
guage, with the other features somehow built on top of it. As with OBJ, CafeOBJ
is executable (by term rewriting), which provides an elegant, declarative way of
functional programming, often referred as algebraic programming. As with OBJ,
CafeOBJ permits the equational specification modulo to include several equational
theories such as associativity, commutativity, identity, idempotence, and combina-
tions among all these. This feature is reflected at the execution level by the term
rewriting modulo of such equational theories.

Behavioural Specification
Behavioural specification [GD94b, GM97, DF00] provides a novel generalization of
ordinary algebraic specification. Behavioural specification characterises how objects
(and systems) behave, not how they are implemented. This new form of abstraction
can be very powerful in the specification and verification of software systems since
it naturally embeds other useful paradigms such as concurrency, object-orientation,
constraints, nondeterminism, etc. (see [GM97] for details). Behavioural abstraction
is achieved by using specifications with hidden sorts and a behavioural concept of
satisfaction based on the idea of indistinguishability of states that are observation-
ally the same, which also generalizes process algebra and transition systems (see
[GM97]). CafeOBJ directly supports behavioural specification and its proof theory
through special language constructs, such as

• Hidden sorts (for states of systems)

• Behavioral operations (for direct “actions” and “observations” on states of
systems)
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• Behavioral coherence declarations for (non-behavioral) operations (which may
be either derived (indirect) “observations” or “constructors” on states of sys-
tems), and

• Behavioral axioms (stating behavioral satisfaction)

Behavioural specification is reflected at the execution level by the concept of be-
havioural rewriting [DF00, DF98] which refines ordinary rewriting with a condition
ensuring the correctness of the use of behavioural equations in the proving strict
equalities.

Rewriting Logic Specification
Rewriting logic specification in CafeOBJ is based on a simplified version of Meseguer’s
rewriting logic (abbreviated RWL) [Mes92] specification framework for concurrent
systems which gives a non-trivial extension of traditional algebraic specification to-
wards concurrency. RWL incorporates many different models of concurrency in a
natural, simple, and elegant way, thus giving CafeOBJ a wide range of applications.
From a methodological perspective, CafeOBJ develops the use of RWL transitions
for specifying and verifying the properties of declarative encoding of algorithms (see
[DF98]) as well as for specifying and verifying transition systems.

Module System
The basic building blocks of CafeOBJ are modules. The principles of the CafeOBJ
module system are inherited from OBJ which builds on ideas first realized in the
language Clear, most notably its institutions [BG80]. CafeOBJ module system
features include:

• Several kinds of imports

• Sharing for multiple imports

• Parameterized programming allowing

– Multiple parameters

– Views for parameter instantiation

– Integration of CafeOBJ specification with executable code in a lower level
language

• Module expressions

However, the theory supporting the CafeOBJ module system represents an up-
dating of the original Clear/OBJ concepts to the more sophisticated situation of
multi-paradigm systems involving theory morphisms across institution embeddings
[Dia98], and the concrete design of the language revise the OBJ view on importation
modes and parameters [DF98].

Powerful Type System
CafeOBJ has a type system that allows subtypes based on order sorted algebra
(abbreviated OSA) [GM89, GD94a] . This provides a mathematically rigorous form
of runtime type checking and error handling, giving CafeOBJ a syntactic flexibil-
ity comparable to that of untyped languages, while preserving all the advantages
of strong typing. The order sorted feature of CafeOBJ not only greatly increases
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expressivity, but it might also provide a rigorous framework for multiple data rep-
resentations and automatic coercions among them [GD94a]. CafeOBJ does not
directly do partial operations but rather handles them by using error sorts and a
sort membership predicate in the style of membership equational logic (abbreviated
MEL) [Mes97] . The semantics of specifications with partial operations is given by
MEL.

The above introduction to CafeOBJ features may be a little hard to understand be-
cause of some mathematic and technical terminology, interested readers can find further
information in the references or by accessing http://www.ldl.jaist.ac.jp/cafeobj/. This
CafeOBJ home page provides pointers to various aspects of the CafeOBJ research, in-
cluding theoretical works, methodological works, the system, manuals, examples, and
various applications.

2.3.2 Basic Computational Models: Transition Systems

UNITY [CM98] is a parallel computational model, and a specification and programming
logic. It provides a proof system based on the logic that is an extension of Floyd-Hoare
Logic [Flo67, Hoa69] to parallel programs, and is also influenced by temporal logic [MP92].
UNITY has a minimum notational machinery to represent the parallel computational
model.

UNITY models are reformulated in the same manner as the definition of fair transition
systems [MP92, MP95], which are called observational transition systems, or OTS’s. We
can use an OTS to model a parallel and distributed system. An OTS S = 〈V, I, T 〉
consists of:

• V: A set of typed variables. Each variable has its own type. The variables (or their
possible values) form the state space Σ of S , and a state of S is a point, or an
element of Σ.

• I: The initial condition. This condition specifies the initial values of the variables.
Since some variables may not be specified by I, S may have more than one initial
state.

• T : A set of transition rules. Each transition rule τ ∈ Σ is a function τ : Σ →
Σ mapping each state s ∈ Σ into a successor state τ(s) ∈ Σ. Transition rules
are generally defined together with conditions on which the transition rules are
effectively executed, namely that their execution can change states of S. If the
condition of a transition rule is false in a state of S, namely that the transition rule
is not effective in the state, its execution does not change the state.

As defined above, an OTS is deterministic with respect to each transition rule. That
is, given a state of s ∈ Σ and a transition rule τ ∈ Σ, exactly one successor state τ(s) ∈ Σ
is determined. The reason is that, our purpose is not only to describe an OTS as a model
in CafeOBJ, but also to verify that the system has some safety properties based on the
CafeOBJ document with the help of CafeOBJ system. Hence, from this viewpoint, a
deterministic transition system is more appropriate to CafeOBJ aided verification than
a nondeterministic one, because CafeOBJ system does not support nondeterministic ex-
ecution or term rewriting. Moreover, if nondetermination of a transition rule is needed,
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we can easily achieve this by dividing the transition rule into multiple ones each of which
is deterministic.

Similar to UNITY, an execution starts from one initial state and goes on forever;
in each step of execution a transition rule is chosen nondeterministically and executed.
Nondeterministic selection is constrained by the same fairness rule above. Given an
OTS, a set of infinite sequences of states are obtained from execution, constrained by the
fairness rule of OTS. Such an infinite sequence of states is called a computation of the
OTS. More specifically, a computation of an OTS S is an infinite sequence s0, s1, · · · of
states satisfying:

• Initiation: For each v ∈ V, v satisfies I in s0.

• Consecution: For each i ∈ {0, 1, . . .}, si+1 = τ(si) for some τ ∈ T .

• Fairness: For each τ ∈ T , there exist an infinite number of indexes i ∈ {0, 1, . . .}
such that si+1 = τ(si).

A state of an OTS is called reachable if it appears in a computation of the OTS.
The concept effectiveness is similar to enabledness used in description of transition

systems in temporal logic such as TLA [Lam94] or in a precondition-effect style such as
I/O automata [Lyn96].

2.3.3 Description of OTS in CafeOBJ

As introduced in Section 2.3.1, CafeOBJ is mainly based on two logical foundations:
initial and hidden algebra [GM97]. Initial algebra is used to specify abstract data types
such as integers; while hidden algebra is used to specify objects in object-orientation.
Corresponding to it, there are two kinds of sorts (types in programming languages) in
CafeOBJ: visible and hidden sorts. A visible sort represents an abstract data type, and
a hidden sort represents the state space of an object. Two kinds of operations are used
for hidden sorts: action and observation, corresponding to so-called methods in object-
orientation. An action can change a state of an object. It takes a state of an object
and zero or more data, and returns another (possibly the same) state of the object. An
observation can be used to observe the value of a data component in an object. It takes
a state of an object and zero or more data, and returns the value of a data component in
the object; it does not change the state of the object.

Declarations of visible sorts are enclosed with ‘[’ and ‘]’, and those of hidden sorts
with ‘*[’ and ‘]*’. Declarations of observations and actions starts with ‘bop’ or ‘bops’,
and those of other operations with ‘op’ or ‘ops’. After bop or op (or bops or ops), an
operator is written (or more than one operator is written), followed by ‘:’ and a sequence
of sorts (i.e. sorts of the operators’ arguments), and ended with ‘->’ and one sort (i.e. sort
of the operators’ results). Definitions of equations start with ‘eq’, and those of conditional
ones with ‘ceq’. After eq, two expressions, or terms connected by ‘=’ are written, ended
with a full stop ‘.’. After ceq, two terms connected by ‘=’ are written, followed by if and
a term denoting a condition, and ended with a full stop ‘.’.

Since objects can be regarded as transition systems, an OTS can be naturally de-
scribed in CafeOBJ. The state space of an OTS is denoted by a hidden sort. For better
understanding, we give a simple bank account system as a running example as follows.
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Account

Int

Nat

balance

deposit, withdraw

Figure 2.8: Bank account abstract machine

We specify a bank account object (abstract machine) in Figure 2.8. The (set of)
states of the account abstract machine form a hidden sort Account. The account abstract
machine has two actions: deposit and withdraw, and one observation balance. Hidden
sorts are represented as gray ellipsoidal disks, actions and observations are represented
by thick arrows.

The CafeOBJ specification of the bank account abstract machine is as follows:

mod* ACCOUNT {

protecting(INT) -- protecting means to import the designated module

-- INT (a built-in integer module in CafeOBJ), it

-- is often abbreviated as "pr".

*[ Account ]* -- hidden sort

bop balance : Account -> Nat -- observation

bops deposit withdraw : Account Nat -> Account -- action

var N : Nat -- Nat is a built-in visible sort in CafeOBJ

var A : Account

eq balance(deposit(A,N)) = balance(A) + N .

ceq balance(withdraw(A,N)) = balance(A) - N if N <= balance(A) .

ceq balance(withdraw(A,N)) = balance(A) if balance(A) < N .

}

In the above example, observation balance is defined as bop balance : Account ->

Nat, where Account is the hidden sort denoting the state space of the account OTS, and
Nat is the visible sort denoting natural numbers. Transitions rules deposit and withdraw

are defined as actions to change the object state. Sometimes we need a operation to denote
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any initial state, such as op init : -> Sys, where Sys is a hidden sort denoting the
state space of an OTS (in this example we have no).

In conclusion, in description of an OTS in CafeOBJ, we first write the signature of
the specification of the OTS, declaring sorts and operations, next write equations defining
the initial values of the observations, and then write equations defining how a state of the
OTS changes after each action is executed in that state [OF02].
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Chapter 3

Formal Fault Tree Construction and
Analysis

3.1 Incorrect Problem Analysis

As we discussed in the Introduction Chapter, traditional formal fault tree analyses often
focused on providing formal semantics for fault tree constructors, such as different logic
gates; and the common method is to develop the formal model and the fault trees as
separate documents. That is to say, building up the fault trees is driven by intuition,
while the events and sub-events of a gate are formalized afterward with respect to the
formal model [RST00]. This approach is effective for quickly constructing a fault tree,
but the informal construction creates problems later, when verifying its correctness.

For example, in [STR02], Schellhorn et al. noticed that sometimes the correctness con-
dition was unprovable, in that the sub-events could not formally result in the top event
through a logic gate. They found that such gates typically represent design decisions, in
which all states described by the sub-events were considered already faulty regardless of
side conditions. This fact has led traditional formalization attempts of fault trees either
to require only the completeness condition [HRS94] (i.e. neglect the correctness condi-
tion in this case), or make the side conditions explicit in the fault tree by introducing
an INHIBIT-gate [STR02]. But in that case, finding and confirming such side conditions
may become another problem, especially if the gate is in the bottom layer of a large and
complex informal fault tree. Furthermore, how can we ensure such side conditions are
really necessary?

As an example, in order to better understand the problems caused by traditional
formal FTA construction methods, we use a radio-based crossing control system as an
running example, and its informal description are as follows.

3.1.1 The Radio-based Crossing Control System

The German railway organisation, Deutsche Bahn, uses a novel technology to control level
crossings: the de-centralized radio-based level crossing control [bet96]. An overview of
this system is given in Figure 3.1, and its brief informal description is as follows [RST00,
STR02].

Shortly before the train arrives at the ‘latest braking point’ (latest point at which it
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Figure 3.1: Radio-based crossing control system

is possible for the train to stop before the crossing), it sends a ‘secure’ signal to the level
crossing in order to check the status of the crossing. When the level crossing receives the
command ‘secure’, it switches on the traffic lights, and then closes the barriers. After
they have been closed, the level crossing is safe for a certain period of time and a ‘release’
signal is sent to the train, which indicates that the train may pass the crossing. The ‘stop’
signal on the train route, indicating an insecure crossing, is also initiated by computation
and communication.

After the train has passed the crossing, it sends back a ‘passed ’ signal, which allows the
crossing to open the barriers and switch back to its initial state. If no signal is received,
the crossing waits for some minutes and then opens the barriers to protect cars against
endless waiting (and is then unsafe).

The level crossing periodically performs self-diagnosis and automatically informs the
central office about defects and problems. The central office is responsible for repair and
for providing route descriptions for trains. These descriptions indicate the positions of
level crossings and maximum speed on the route.

The main difference between this technology and traditional level crossing controls is
that signals and sensors along the route are replaced by radio communication and software
computations in the trains and at the level crossings. So, some system safety-critical
issues are shifted from hardware to software while cheaper and more flexible solutions are
offered. But this also brings out another important safety issue: we can use fault tolerance
technology or spare parts to prevent hardware failures, but now software defects found
in the fault tree should be taken more seriously. To prevent such software failures, we
should first revise the system design, and then use formal methods to prove that those
failures will be prevented in the revised system. This is exactly what we discussed in the
Introduction section and will analyze in detail below.

3.1.2 Problem Analysis

Based on the introduction above, let’s first present a fault tree model of the crossing
control system, using the traditional FTA method (see Figure 3.2, which is taken from
[STR02]).

To avoid a collision hazard, we can construct an informal fault tree by intuition as
shown in Figure 3.2. The method for drawing this fault tree is as follows. First, we define
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train on crossing,
barriers not closed

not release, but train
does not brake

release, barriers not
closed

brakes defect
no brake signal, no

release

crossing sends
release, barriers not

closed

barriers opening
although release

Figure 3.2: FTA for the hazard collision

the top event, i.e. collision as train on crossing, barriers not closed. This event occurs
if either the train does not brake before the crossing despite it has no ‘release’ signal,
or the crossing does send a ‘release’ signal regardless of that the barriers are not closed.
The right sub-event is then further attributed to two possibilities. One is that when the
crossing sends the ‘release’ signal, the barriers are open; the other is that the barriers are
opening even the ‘release’ signal has been sent because of timeout or receiving a ‘passed’
signal (not further developed here and represented as an undeveloped event in Figure 3.2).
The left sub-event has again two reason. Either the brakes are defective or they have not
received a ‘brake’ signal from the train control, and so on.

As mentioned before, the traditional method for building a fault tree is efficient and
the result is easy to understand and communicate. But at the same time, it causes
some hidden problems for subsequent formal analysis. In this example, Schellhorn et al.
found that the correctness of the topmost OR-gate was unprovable, where the formal
specification of the top event is:

OnCrossing(tr) ∧ ¬Closed(ba) (3.1)

While the right sub-event is defined as:

Release(tr) ∧ ¬Closed(ba) (3.2)

where ‘tr ’ and ‘ba’ denote ‘train’ and ‘barriers’ respectively.

Intuitively, we could not prove the correctness condition of this OR-gate, namely
“(3.2) ⇒ (3.1)”, because (3.2) lacks the side-condition “OnCrossing(tr)” and is not
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although release

train on
crossing

release,
barriers not close

Figure 3.3: Revised fault tree for hazard collision

enough to imply (3.1). To correct this problem, Schellhorn proposed explicitly mak-
ing this point in the fault tree by introducing an INHIBIT-gate between (3.1) and (3.2)
with the side condition “χ := OnCrossing(tr)” (the revised fault tree is shown in Fig-
ure 3.3)[STR02].

Note that we used the word ‘intuitively ’ in the last paragraph, because we think that,
strictly speaking, in this example (3.2) itself is enough to imply (3.1); we will give our
detailed proof in the next Section. Of course, Schellhorn’s solution to this problem is
instructive. But even so, other problems may arise: How can we discover all of the side-
conditions, especially in a large and complex fault tree? Furthermore, how can we ensure
that such side-conditions are necessary?

Another problem in Figure 3.2 is whether the basic event, “brakes defect,” is enough
to cause the top event, “collision” to occur. What if, in such conditions, the train receives
the ‘release’ signal and the barriers are closed? We know in this case the collision will not
occur, whether the brakes are defective or not. This ex-ample may be quibbling, because
obviously “brakes defect” is an unacceptable faulty event and we could not let it occur;
it could be explained as the sort of design decision we mentioned in the Introduction
section. But as we know, in safety-critical system analysis, we can not neglect any minor
side-conditions, even to a faulty event; to do so could result in major hazards or interfere
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with our taking accurate and correct precautions.
After careful study, we find that the incorrectness problem stems from how to decom-

pose a complex event consisting of a combination of several sub-formulas. As we know,
FTA was originally developed to analyze hardware systems; in that case, it is quite easy
to directly decompose a hardware component failure into some sub-component failures.
But in software and integrated system analysis, this situation changes. This is illustrated
in (3.1), in which the collision was defined as a conjunct of two sub-events; in this case,
we can not simply decompose it by an AND-gate since each sub-event alone no longer
describes a fault event. This is also our motivation for this study. Our formal fault tree
construction model, illustrated below, can effectively solve these problems.

3.2 Formal Fault Tree Construction based on Tem-

poral Logic

This section presents our formal fault tree construction model. It is based on a temporal
logic variant of the regression procedure found in [vL91], which has also been widely
applied for obstacles analysis in goal-oriented requirements engineering [vLL00, vLDL98].

3.2.1 Basic Concepts of Domain Rule

First, we define an important term in our model, namely domain rule. A domain rule is
a rule about objects or operations in the environment which holds independently of the
software-to-be. More specifically, in our model, it is an indicative statement or formula of
domain knowledge with respect to an occurrence of event(s). For example, with respect
to (3.1) in Section 3.1.2, i.e., OnCrossing(tr) ∧ ¬Closed(ba), one of the domain rules as
for the event OnCrossing(tr) is that:

BypassSignal ∨BrakeFailure ∨Release(tr)⇒ OnCrossing(tr)

which states that either the driver/train bypasses a ‘stop’ signal (illegal driving or misop-
eration), or there is a hardware failure in the brake of the train (physical failure), or
the train receives the ‘release’ signal from the crossing (system design), the train will
eventually run on the crossing. After finding such a domain rule, then we can use it to
formally deduce the corresponding sub-events of (3.1). In fact, the process of formal fault
tree construction is guided by the domain rules to decompose the top event into sub events.

Before discussing how to decompose the fault events using transition rules, let’s briefly
review the monotonicity of temporal logic (see Section 2.2, page 21) as follows.

Let ϕ(u) be a formula scheme with one or more occurrences of the sentence symbol u,
if all occurrences of u in ϕ(u) are positive 1, then (p⇒ q)→ (ϕ(p)⇒ ϕ(q)) is valid.

Here, if we regard the domain rule as p⇒ q, and the fault event as ϕ(q), then we can
reduce the sub-event ϕ(p) by replacing every occurrence of q in the fault event with p,
and the correctness of the reduction/decompositon is guaranteed.

1An occurrence of u to be positive (of positive polarity) in ϕ if it does not occur in a subformula of
the form p↔ q and it is embedded in an even (explicit or implicit) number of negations.
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To illustrate this point, considering the above example, first we rewrite the domain
rule into the following equivalent form:

(BypassSignal ∨BrakeFailure ∨ Release(tr))⇒ OnCrossing(tr)

where the temporal operator means some time in the past or once. Then we can
reduce the sub-event as for the hazard collision as follows:

(BypassSignal ∨ BrakeFailure ∨ Release(tr)) ∧ ¬Closed(ba)

which can be further reduced into three sub-events connected by a OR-gate with the top
event. There is a trivial trouble in the above formula, that is, the temporal operator
is introduced, and it may cause inconvenience for the understanding of the sub-events and
subsequent reduction.

There are two solutions to this problem, one is to use the temporal entailment p⇒ p
and reapply monotonicity so as to eliminate the temporal operator as we once used
in [XFH04a]. However, this solution is based on the assumption that p may hold in the
current state, and the final result does not represent the time-delay between the sub-
events and event, such as Release(tr) ∧ ¬Closed(ba) ⇒ OnCrossing(tr) ∧ ¬Closed(ba),
which may cause confusing even the logic deduction is correct. Therefore, in this thesis,
we introduce another method based on the concept of constraint of transition rule as
follows.

Rule 3.1 (Constraint of Selection of Domain Rule) : Given a fault event R, a do-
main rule D selected to deduce R should obey that: {R, D} 2 false.

More specifically, suppose D
def
= p ⇒ q, where q matches the sub-formula L of R,

then p can not imply any negation of the other sub-formulas of R. In other words, for
any other sub-formula of R, namely M , p ∧M ⇒ M .

The reason is obvious, if {R, D} � false, then we will get some false fault sub-events,
i.e., correct events. Once this happens, we should consider and find another domain rule
for M instead of L. A special case is that there is no domain rule complying with the
constraint, then the fault event R is a false fault event, and need not be further analyzed
and considered in the fault tree.

To illustrate this point, let’s return back the above example, since (BypassSignal ∨
BrakeFailure∨Release(tr))∧¬Closed(ba)⇒ Closed(ba), then we can further deduce
the sub-event into the following form:

((BypassSignal ∨ BrakeFailure ∨ Release(tr)) ∧ ¬Closed(ba))

Moreover, if we introduce temporal semantics to the logic gates (OR-gate in this
example) [BA93], i.e., given a logic gate with some inputs (sub-events) and an output
(top event), its correctness and completeness conditions are as follows:

Correctness Condition : inputs⇒ output

Completeness Condition : output⇒ (inputs)
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OnCrossing(tr) ∧ Open(ba)

BypassSignal ∧ Open(ba) Release(tr) ∧ Open(ba)

D1

BrakeFailure ∧ Open(ba)

Figure 3.4: A formal fault tree for hazard collision

In this thesis, we call the above gates as Delay-gate (Short: D-gate) so as to distinguish
it from the standard gates of fault tree analysis, which are usually defined by Boolean logic
without the time-delay concept. And for simplification, we do not invent new gate symbols
for the D-gates since the time-delay has already been denoted by the corresponding domain
rules. Therefore, to distinguish a gate is a D-gate or a standard gate, we need only
check whether there is a time-delay between the antecedence and consequence of the
corresponding domain rule.

Then we can eliminate the temporal operator in the sub-event for better un-
derstanding and readability and get a fault tree connected by an OR-gate as shown in
Figure 3.4, where the domain rule is recorded on the OR-gate and denoted by D1.

Notice here we have answered the question posed in Section 3.1.2, namely, why we
think that (3.2) itself is enough to logically imply (3.1), i.e., Release(tr)∧¬Closed(ba) ⇒

(OnCrossing ∧ ¬Closed(ba)). The point is that, by introducing monotonicity for
event decomposition and temporal semantics to the logic gates, we can efficiently solve
the incorrectness problem and avoid introducing unnecessary side-conditions.

3.2.2 Formal Fault Tree Construction Model

Based on the above discussion, we bring out our formal fault tree construction model as
follows.

We take a catastrophic failure as the root node of the fault tree, namely R. Assume
the necessary domain rule D for R or the sub-formulas in R take the form of A⇒ C,
the regression procedure for the formal fault tree construction is as follows.

Initial step Define the formal specification of R.

Inductive step
Let A⇒ C be the domain rule selected, with C matching the sub-formula L in
R whose occurrences in R are all positive, and {D, R} 2 false;

Then R := R(A/L), where R(A/L) denotes substituting all the occurrences of L in
R with A.

Iteration step

(1) Decompose the resulting R to some sub-events by an appropriate logic gate;
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(2) Integrate and record the corresponding domain rule into the logic gate for
further revising and rechecking of the correctness and completeness of the fault
tree (Notice: the transition rule itself is not a sub-event, and the relationship
between the domain rule and R should not be simply denoted as a kind of
“AND-gate” as was used in [vLL00], our notation is shown in Figure 3.4);

(3) Then for each sub event, redo the inductive and iteration steps recursively until
a basic event or the chosen abstraction level is reached.

To help engineers construct the fault tree more efficiently, we present two important
general guidelines for selecting the “appropriate logic gate” in iteration step (1) as follows.

• First, the results of the decomposition should be meaningful fault event, and the
logic gate selected should be as simple a standardized one as possible, for better
understanding and readability of the fault tree figure. This decision is made by
domain experts according to the logic structure of R as well as its actual mean-
ing/semantics. Sometimes INHIBIT-gate plays an important role to represent the
normal events as conditions rather than fault events as we will discuss later.

• Second, since one important goal of FTA is to find minimal cut sets, where each
minimal cut set consists of the basic events of one conjunction in the disjunctive nor-
mal form (DNF) of the resulting formula, we recommend transforming R into DNF
before the decomposition if possible. This can help us find more single faulty events
and simplify the succeeding analysis. (we implement this automatic transformation
in the system built-in modules of the fault tree specifications in next section).

To better understand this procedure, we can use the crossing control example from
Section 3.1.1 as an illustration. In the crossing control system, the root node of collision
is formally defined as:

R : OnCrossing(tr) ∧ Open(ba)

Based on the domain rule introduced above,

D1 : (BypassSignal ∨ BrakeFailure ∨Release(tr))⇒ OnCrossing(tr)

We can get three sub-events connected by an OR-gate as follows.

S1a : BypassSignal ∧Open(ba)

S1b : BrakeFailure ∧ Open(ba)

S1c : Release(tr) ∧Open(ba)

Since BypassSignal itself is fault event regardless of Open(ba), then S1a can be fur-
ther decomposed into a basic event BypassSignal connected by an INHIBIT-gate with
condition Open(ba). Notice here, we can not use an AND-gate to decompose S1a, since
the event Open(ba) is not a fault event but a normal state of the barriers. The difference
between INHIBIT-gate and AND-gate is that the condition in INHIBIT-gate is allowed
to describe any set of states, it is not necessary to require it is a fault, otherwise we would
use an AND-gate. Also, the conditions will not occur in the minimal cut sets, thus it
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BrakeFailure

BrakeDefect

(Primay 

Failure)

BrakeDefect

(Secondary Failure)
NoBrakeSingal

Figure 3.5: A fault tree of BrakeFailure

simplifies the problem and helps us focus on the simplified basic events.

The same can be done as to S1b, and with respect to the fault event BrakeFailure,
since it is a component failure, based on the fault tree construction rule introduced in
Section 2.1.2 (Rule 2.2, page 15), it can be directly resolved into three failure modes, i.e.,
primary, secondary and command modes (NoBrakeSignal), by adding an OR-gate below
it as shown in Figure 3.5. But in this analysis, we limited ourselves at this abstraction
level and regarded it as a basic fault event.

Then we focus on S1c, a domain rule to cause the train get a ‘release’ signal, i.e.,
Release(tr), is that the level crossing has sent a ‘release’ signal and there is no radio
communication failure between them (suppose the radio communication time can be elim-
inated or it is not an important factor should be considered in this case).

D2 : Release(cr) ∧ ¬RadioFailure⇒ Release(tr)

And from D2, we get the sub-event S2 as follows.

S2 : Release(cr) ∧ ¬RadioFailure ∧Open(ba)

A subtle issue disclosed in D2 is that the radio communication failure will not cause
the hazard collision in this case. Since the event ¬RadioDefect itself is not a fault event,
an INHIBIT-gate could also be introduced here in which ¬RadioDefect is regarded as a
condition rather than a fault event, and S2 is then resolved as:

S2a : Release(cr) ∧ Open(ba)

Focused on Open(ba), we can derive another domain rule as follows.

D3 : ( ≥dClosed(ba) ∨ Idling(sys) ∨ Passed(cr))⇒ Open(ba)

which states that three possibilities for the barriers to open are either the crossing has
been closed and waiting for the ‘passed ’ signal over a designed time d (and then opens
the barriers to protect cars against endless waiting), or the system is in idling status (no
train ask for pass), or the crossing has just received a ‘passed ’ signal from a train. Use
this transition rule to regress S2a, we get three corresponding sub-events connected by an
OR-gate below.

S3a : Release(cr) ∧ ≥dClosed(ba)
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S3b : Release(cr) ∧ Idling(sys)

S3c : Release(cr) ∧ Passed(cr)

Notice here a subtle system safety design issues is exposed by S3c, which states that
the two events, Release(cr) and Passed(cr) can not occur simultaneously, in other words,
if the crossing sends a ‘release’ signal to a train and let it to pass the crossing, it can not
receive a ‘passed’ signal from another train at this moment. More specifically, it implies
that two trains may enter the crossing area at the same time.

In S3a, the event ≥dClosed(ba) can be regarded as basic fault event, and to solve it
calls for human intervention instead of software or hardware, since it is a conflict between
convenient design and the overriding system safety goal. Here, an INHIBIT-gate can also
be introduced with the condition Release(cr) to simplify the fault tree. With respect to
the events S3b and S3c, they belong to design failures and should be prevented and verified
in the subsequent system design and formal specification. If we choose this abstraction
level to stop our analysis, the whole formal fault tree is shown in Figure 3.6.

As discussed above, our formal construction model is a deductive method which en-
ables us to build the fault tree more precisely and completely. It not only is useful for
finding faulty events while avoiding the incorrectness problems inherent in traditional
methods, but also guides designers and domain experts to elicit the domain rules incre-
mentally.

Traditional methods often build informal fault trees by intuition, then try to separately
establish the formal semantics for the fault tree constructs and check the correctness and
completeness conditions. Our method guarantees the correctness of the fault trees by
the construction process itself, making it more effective and precise. For instance, in our
example the fault event S1b reveals that: the brake failure can result in a collision only
when the barriers are open; otherwise, the brake failure itself is not enough to cause the
collision (Notice, even in our example, we further resolved this event into a basic event
BrakeFailure and a condition Open(ba) connected by an INHIBIT-gate, but it does not
mean that BrakeFailure itself is enough to cause collision based on the semantics of
INHIBIT-gate, that is, BrakeFailure is only the necessary but not sufficient condition).
As discussed in Section 3.1.2, this issue may be trivial in this case, but in other safety-
critical systems, it is very important to define each event accurately and precisely.

3.3 From Safety Analysis to System Design

Traditional fault trees are used to analyze existing system design with respect to safety
prosperities. Instead of first developing a detailed design, and then performing FTA, we
propose that FTA and system design should proceed concurrently and complement each
other. Actually, during fault tree construction, the derived domain rules can be used to
guild the system design and subsequent formal system specification. And the incremental
process of discovering domain rules itself provides an instructive approach to understand
the system more comprehensively step by step as we discussed in the last section. In
this section, inspired by Hansen’s work [HR98], we focus on how to further derive safety
assumption and commitment so as to achieve system safety requirement from the fault
trees.
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R: OnCrossing(tr) ∧ Open(ba)

S1b: BrakeFailure ∧ Open(ba) S1c: Release(tr) ∧ Open(ba)

Open(ba)

D1

BrakeFailure
¬ RadioFailure

S2: Release(cr) ∧ 

¬ RadioFailure ∧ Open(ba)

D2        

S2a: Release(cr) ∧ Open(ba)

S1a: BypassSignal ∧ Open(ba)

D3

S3a: Release(cr) ∧ 

Closed(ba) ≥ d

S3c: 

Release(cr) ∧ 

Passed(cr)

S3b: 

Release(cr) ∧ 

Idling(sys)

Release(cr)

Closed(ba) ≥ d

Open(ba)

BypassSignal

Illustrations :

D1 : (BypassSignal ∨ BrakeFailure ∨Release(tr))⇒ OnCrossing(tr)

D2 : Release(cr) ∧ ¬RadioFailure⇒ Release(tr)

D3 : ( ≥dClosed(ba) ∨ Idling(sys) ∨ Passed(cr))⇒ Open(ba)

Figure 3.6: Formal fault tree of collision based on temporal logic
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Definition 3.1 (Safety Requirement) For each fault tree in which the root is inter-
preted as R, the system should be built to ensure that R never occurs, i.e., the safety
requirement of the system is:

¬R (3.3)

In case there are n fault trees in which the roots are interpreted as R1, . . . , Rn, then the
corresponding safety requirement deduced from these fault trees is

¬R1 ∧ . . . ∧ ¬Rn

i.e., the system should ensure that no top event in any fault tree ever occurs. This corre-
sponding to combining the fault trees by an OR-gate [HR98].

To achieve the safety requirement of the system, ¬R, it is quite naturally to deduce
the corresponding original safety commitment from the minimal cut sets of the fault tree,
where the definition of the original safety commitment is as follows.

Definition 3.2 (Original Safety Commitment) For each fault tree in which the min-
imal cut sets is interpreted as a disjunctive normal form, MCS1∨ . . .∨MCSn, the system
should be implemented and verified to guarantee that each MCSi(i = 1, . . . , n) never oc-
curs, i.e., the original safety commitment of the system is

¬MCS1 ∧ . . . ∧ ¬MCSn (3.4)

Therefore, the relationship between the original safety commitment and safety require-
ment is that:

¬MCS1 ∧ . . . ∧ ¬MCSn ⇒ ¬R (3.5)

which is supported by the fact, i.e., suppose each domain rule used for the fault tree
construction is sufficiently complete, then we can derive the following formula:

R⇒ MCS1 ∨ . . . ∨ MCSn (3.6)

A difference with Hansen’s work [HR98] should be figured out is that, instead of
deriving the global safety commitment gradually from local commitments of individual
components , i.e., logic gates such as AND-, OR-, and PRIORITY AND-gates, we pro-
pose to deuce the original safety commitment from the minimal cut sets of the fault tree
directly. And actually, the summarizing process of local commitments itself consists of
the calculation of minimal cut sets as used in [HR98]. Therefore, we do not introduce
the concept of local commitment in our approach since it would make the calculation of
system safety commitment more complex.

Moreover, (3.5) can be further transformed into another form by using the concepts of
minimal path sets. Suppose we can derive m minimal path sets (MPS) from the resulting
formula of minimal cut sets, then we can get:

MPS1 ∨ . . . ∨ MPSm ⇒ ¬R (3.7)

where each MPSj (j = 1, . . . , m) consists of a conjunction of non-occurrences of primary
fault events bj1 , . . . , bjl

(suppose there are l primary events in MPSj) in a form of

40



¬bj1 ∧ . . . ,∧¬bjl

Therefore, (3.7) provides a kind of checklist for system safety and reliability evalu-
ation, that is, if we can ensure that all the non-occurrences of primary events of some
minimal path sets, the the system is safe.

The reason why we called (3.4) as the original safety commitment of the system is
that, in practice, some basic fault events of the minimal cut sets are uncontrollable or
can not be implemented in the system (software) design, such as the failures related to
hardware defects or human errors. To this end, these failures should be separated from
the original safety commitment, and a concept of safety assumption should be introduced
as follows.

Definition 3.3 (Safety Assumption) Basic fault events that can not be prevented by
system design and implementation should be regarded as uncontrollable failures, and the
negation of these basic fault events should be regarded as safety assumption rather than
safety commitment of the system.

More specifically, three different failures can be added to the list of safety assumptions
as follows.

• Physical failures, such as hardware component defects that are uncontrollable and
unavoidable with respect to software design and implementation, e.g., the event
BrakeFailure in the fault tree of crossing control system.

• Undeveloped events need human intervention as for the solution, such as the event

≥dClosed(ba).

• Errors and misoperations of human being that are usually prevented by correspond-
ing safety regulation rather than system design. For example, with regard to the
event BypassSignal, a corresponding safety regulation ¬BypassSignal should
be made and added to the list of system safety assumption.

Therefore, after removing the uncontrollable failures from the original safety commit-
ment, we can derive a list of safety assumption (SA) and get a refined safety commitment
(SC) of the system, i.e., safety properties only related to system design and implemen-
tation. And the system safety requirement (SR) can be achieved and guaranteed by the
following statement.

SR
def
= (SA⇒ SC) (3.8)

The point is that, by deriving and distinguishing safety assumption and commitment
from the fault tree, designers can get the following two important knowledge as for system
design, implementation, and verification. On one hand, having an explicit assumption list
and adding to this list during fault tree construction can help the designers understand
the system safety more comprehensively, while such an assumption list is usually over-
looked or difficult to discover if we start to design the system directly without FTA or
other hazard analysis techniques. This is because from the point of view of system de-
sign, people usually focus on how to ensure the system will perform successfully, and thus
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some physical failures or human errors are easily be overlooked or not considered into
the system design and specification. Consequently, the corresponding safety regulations
and fault-tolerant precautions will be ignored. This may cause some unexpected hazards
even catastrophes, especially with respect to safety-critical systems. On the other, after
deriving the refined safety commitment, the designers can have definite object in view as
for more efficient system design and safety verification, this is because generally speak-
ing, the basic events of a fault tree (in the refined safety commitment) are simpler, more
specific and manageable compared with the top hazard event (root). Therefore, not only
specific design issues are discovered, but also time and cost can be saved with respect to
the formal verification of safety properties.

To illustrate this point, considering the crossing control system example as shown in
Figure 3.6. The safety requirement (SR) of the fault tree is to ensure that no collision
occurs, i.e.,

SR
def
= (OnCrossing(tr)→ Closed(ba))

which states that when the train is on crossing, the barriers must always be closed.

The minimal cut sets (MCSs) of the fault tree can be derived in a disjunctive normal
form (DNF) as follows.

MCSs
def
= BrakeFailure ∨

BypassSignal ∨

≥dClosed(ba) ∨

(Release(cr) ∧ Idling(sys)) ∨

(Release(cr) ∧ Passed(cr))

Therefore, the original safety commitment (OSC) can be defined as:

OSC
def
= ¬BrakeFailure ∧

¬BypassSignal ∧

¬( ≥dClosed(ba)) ∧

¬(Release(cr) ∧ Idling(sys)) ∧

¬(Release(cr) ∧ Passed(cr))

Then, based on the properties of different failures, we can derive the safety assumption
(SA) and refined safety commitment (SC) that should be further implemented and verified
in the system design as follows.

SA
def
= ¬BrakeFailure ∧

¬BypassSignal ∧

¬( ≥dClosed(ba))

SC
def
= ¬(Release(cr) ∧ Idling(sys)) ∧

¬(Release(cr) ∧ Passed(cr))
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And the system safety requirement can be achieved and guaranteed by the following
statement.

SR
def
= SA⇒ SC

Based on the above discussion and analysis, two kinds of important knowledge have
been discovered as for the system design and implementation as follows.

First, from the list of safety assumption, the system can only be safe in case there is
no violation of the safety assumption, in other words, we know more clear and exactly
about the limitations and restrictions as for the successful performing of the system. In
addition, the corresponding precautions can be made in advance as follows.

• Fault tolerant technique or component should be introduced to prevent the brake
failure, such as spare brakes.

• A safety regulation that drivers must obey the ‘stop’ signal should be established.

• In case the fault event ≥dClosed(ba) occurs, the system should be stopped until
it has been solved by human intervention.

Second, from the refined safety commitment, the system must be designed to ensure
that when the system is idling, it can not response and send a ‘release’ signal to a train.
And we must ensure and verify that there is no mutual exclusion problem in the system,
that is, when the crossing sends a ‘release’ signal to one train, it receives a ‘passed’ signal
from another train. This is the topic that we will discuss in the next chapter, i.e., formal
system modeling, specifying, and verifying with CafeOBJ [FS95, FN97, DF98] and Maude
[CELM96, CDE+02, CDE+03a, CDE+03b].

3.4 Summary

In this chapter, focuses on the incorrectness problem of traditional FTA, we have pre-
sented a formal fault tree construction model, in which the correctness of the fault tree is
guaranteed by the construction process and monotonicity of temporal logic. In addition,
we have also discussed how to further derive safety requirement, safety assumption, and
safety commitment from the fault trees in order to assist the system design, implementa-
tion and verification.

As far as we know, we are the first to explicitly and clearly determine the harm of the
incorrectness problem that can be caused by traditional formal FTA, and we present a
corresponding detailed analysis and solution to this problem.

Compared with traditional FTA [VGRH81]and some of its formal models [HR98,
STR02], the advantages of our formal fault tree construction model are as follows.

• It is a deductive method to build fault trees more precisely and effectively;

• The correctness of our formal fault tree is proved by the construction process itself,
thus avoiding the problems that often arise with traditional methods. At the same
time, it gives designers and domain experts the ability to discover domain rules and
important design principles in an instructive way during the construction process;
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• We integrate the domain rules into the fault tree, which makes the formal fault tree
more reliable and is useful for further revising and rechecking of the fault trees.

It should be noted that in this chapter we mainly focused on the correctness of the
fault tree, which is guaranteed by our formal fault tree construction processes. With re-
spect to the completeness of the fault tree, we agree with that “completeness is a notion
relative to what is known about the domain [vLL00]” and it requires the designers to work
together with the domain experts. However, This problem can be solved to some extent
if we can ensure that for each domain rule we have considered all the possibilities with
respect to its consequence, this is another advantage of our method and why we intro-
duce and record the domain rules explicitly in the fault trees as for revising and rechecking.

It should be also figured out that the temporal regression procedure based on the
monotonicity of temporal logic was first found in [vL91], and was also widely used in
obstacle analysis [vLDL98, vLL00] . The reason we introduce this technique into FTA
and propose a revised formal fault fault tree construction model rather than just using
obstacle analysis is that these two techniques have different focuses and applications. A
comparison of FTA and obstacle analysis is shown in Table 3.1.

FTA Obstacle Analysis

Focus
Hazard analysis: discovery basic
fault events that will result in a
specific system hazard.

Goal-oriented requirements analy-
sis : given a design goal, de-
duce possible obstacles by tempo-
ral logic reasoning.

Graphical
Support

Rich and standard graphical nota-
tions

Simple AND and OR-patterns

Logic
Foundations
and Require-

ments

• An event is an occurrence of a
specific system state (Boolean
predicates)

• Simple and understandable re-
sults

• Lightweight temporal logic de-
duction

• Obstacles are interpreted as
temporal formulas

• Precise but complex results

• Strict temporal logic deduc-
tion, require advanced logic
background

Qualitative
&

Quantitative
Analysis

• Minimal cut sets and minimal
path sets

• System reliability calculation
and allocation

The methods (algorithms) used in
FTA may also be applicable to
OA, however, it is not the main
concern of OA.

Table 3.1: Comparison between FTA and obstacle analysis

As shown in Table 3.1, obstacle analysis focuses on formal reasoning about obstacles
to the satisfaction of goals elaborated in the requirements engineering process. It is based
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◊ (R ∧ □ ¬ S)

◊ (R ∧ □ ¬ P) ◊ (R ∧ □ ¬ Q) ◊ (R ∧ ◊ P ∧ ◊ Q ∧ □ ¬ (P ∧ Q))

 S ⇒ P ∧ Q

Figure 3.7: OR-refinement pattern for obstacles to the achieve goal

on a temporal logic formalization of goals and domain properties, and is integrated into
an existing method for goal-oriented requirements elaboration with the aim of deriving
more realistic, complete and robust requirements specifications [vLL00]. To better under-
stand this technique as well as the difference with standard FTA, we use an example to
illustrate the analyzing processes of obstacle analysis as follows.

Given an achieve goal, say R ⇒ S, the regression procedure of obstacles to this
goal is as follows:

1) Take the negation of the goal which yields:

(NG) (R ∧ ¬S)

2) Suppose a domain theory (assertion) contains the following property:

S ⇒ P ∧Q

And then a logically equivalent formulation is obtained by contraposition:

(D) ¬P ∨ ¬Q⇒ ¬S

3) Regress (NG) through (D) by the monotonicity of temporal logic, and then derive
the following potential obstacle:

(O) (R ∧ (¬P ∨ ¬Q))

This obstacle can be further decomposed into three sub-obstacles by an OR-refinement
[vLL00] as follows, and the generated corresponding obstacle tree (pattern) is shown
in Figure 3.7.

(O1) (R ∧ ¬P )

(O2) (R ∧ ¬Q)

(O3) (R ∧ P ∧ Q ∧ ¬(P ∧Q))

While in fault tree analysis, we need only focus on the hazard ¬S because R is obvi-
ously not a fault event in this case (even we took R∧¬S as the top hazard event, we can
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¬ S

D

¬ P ¬ Q

R ∧ ¬ S

R

Figure 3.8: A fault tree of the achieve goal

use an INHIBIT-gate to simplify it as shown in Figure 3.8), and we do not care that the
hazard ¬S will always or eventually happen in the future, i.e., ¬S or ¬S. Then
based on the same domain rule (assertion) ¬P ∨¬Q⇒ ¬S, we can derive a corresponding
fault tree as shown in Figure 3.8.

The main difference between Figure 3.8 and Figure 3.7 is that, in the convention of
fault tree analysis, each node (fault event) is interpreted as an occurrence of a specific
system state, which are usually denoted by simple Boolean predicates (formulas). Even
in some current formal FTAs with temporal logic, such as [HR98, STR02], the temporal
relationship between the event and sub-events are generally represented by the semantics
of the gates, while not the event itself 2 (we will further discuss the temporal semantics
of fault trees in Section 6.1). The advantage is that in the decomposition of fault events,
we need not involve ourselves in some complex temporal logic deduction such as used in
obstacle analysis, which starts with a temporal goal (formula), and then follows a strict
temporal logic deduction and proving to derive the corresponding obstacles that are also
interpreted as temporal formulas.

For example, as shown in Figure 3.7, the decomposition of obstacle O into the three
sub-obstacles is a little bit difficult because the temporal HENCEFORTH operator
is introduced, and it can not be distributed over disjunction ∨. And in some other cases
when introducing more temporal operators such as Until Operator U and Waiting-for
Operator W [MP92, vLL00], the deduction would be more complex. To solve this prob-
lem, it requires engineers with advanced temporal logic background to some extend (in
[vLL00], it provides some refinement patterns which are verified by using STep [MtSG96]
to assist the obstacle analysis). However, as we figured out above, such difficult issues are
not the concern of fault tree analysis. And in our formal fault tree construction model,
we introduce temporal logic only for the decomposition of fault events, and we introduce
a method to intentionally remove the temporal operator from the resulting sub-events to
the corresponding logic gates. This is the reason that we call the temporal logic deduction

2In this case, some temporal operators may be introduced to represent the events with time duration,
such as discussed in [HR98]. However, these temporal operators are used mainly for more precise deno-
tation rather than temporal logic deduction, i.e., they will not be involved in the subsequent deduction
of sub-events.
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in FTA is lightweight while in obstacle analysis it is strict (heavy).

Another interesting issue is that people may argue that the above example is a kind
of liveness problem (because of the achieve goal R ⇒ S), and it seems to be a bit
unfair to use this example to compare FTA and OA since generally speaking, FTA is used
mainly for safety related problems. This is a misunderstanding of definition of faults in
FTA. We use a real-world example which is taken from [vLL00] to further illustrate this
point.

Consider a meeting schedule system and the goal stating that intended people should
participate to meetings they are aware of and which fit their constraints:

Goal Achieve[InformedParticipantsAttendance]
FormalDef ∀m : Meeting, p : Participant

Intended(p, m) ∧ Informed(p, m) ∧ Convenient(p, m)

⇒ Participates(p, m)

Then using obstacle analysis, we first take the negation of the goal and get a top
obstacle (NG) as follows:

(NG) ∃m : Meeting, p : Participant
Intended(p, m) ∧ Informed(p, m) ∧ Convenient(p, m)

∧ ¬Participates(p, m)

Suppose the domain theory contains the following property:

∀m : Meeting, p : Participant
Participates(p, m)⇒ Holds(m) ∧ Convenient(p, m)

This domain property states that a necessary condition for a person to participate in
a meeting is that the meeting is being held and its data/locations is convenient to her. A
logically equivalent formulation is obtained by contraposition:

(D) ∀m : Meeting, p : Participant
¬[Holds(m) ∧ Convenient(p, m)]⇒ ¬Participates(p, m)

Then we can formally derive the following sub-obstacle by applying the OR-refinement
pattern of Figure 3.7:

(O1) ∃m : Meeting, p : Participant
Intended(p, m) ∧ Informed(p, m) ∧ Convenient(p, m)

∧ ¬Holds(m)

(O3) ∃m : Meeting, p : Participant
Intended(p, m) ∧ Informed(p, m) ∧ Convenient(p, m)

∧ Holds(m) ∧ Conveneient(p, m)

∧ ¬[Holds(m) ∧ Conveneient(p, m)]

These sub-obstacles explains two situations, namely, one where some meeting never
takes place and the other where a participant invited to a meeting whose data/location
was first convenient to her is no longer convenient when the meeting takes places [vLL00].
They correspond to the first and third sub-nodes of the OR-refinement obstacle tree as
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shown in Figure 3.7, the second sub-node, [R ∧ ¬Q] is not considered because of
the contradiction of Convenient(p, m) ∧ ¬Convenient(p, m) in the resulting formula.

The above example explains how OA works to solve the liveness problem. How-
ever, from the point of view of FTA, we need not to consider whether it is a liveness
or safety problem, because we only concern with the occurrence of the undesired system
state, ¬Particiaptes(p, m), i.e., the state that the participant does not attend the meet-
ing. And by applying the same domain rule D, we can directly conclude two basic fault
events, ¬Holds(m) and ¬Convenient(p, m), in which complex temporal deduction are
avoided.

In addition, as a widely used safety analysis technique which has been developed over
40 years, some other benefits of FTA can be briefly concluded as follows.

• FTA provides rich and standard graphical supports, not only limited to simple AND-
and OR-patterns as used in obstacle analysis, which can help engineers understand
and analyze the problem more clearly and efficiently, such as the INHIBIT-gate can
be used to simplify the fault events as we discussed in Section 3.2.2. Some fault
tree analysis programs (tools) have been developed 3, and Microsoft Visio2003 also
provides a template for drawing fault trees 4.

• FTA has accumulated valuable experiences as for system analysis, such as the fault
tree construction fundamentals introduced in Section 2.1.2.

• FTA can be used in not only qualitative analysis, but also quantitative analysis. The
concept of minimal cut sets and algorithms for probabilistic analysis are very useful
in system safety analysis. It should be figured out that these methods (algorithms)
may also be applicable to obstacle analysis, however, this is not the main concern
of obstacle analysis.

In short, our formal fault tree construction model can be regarded as an improvement
and combination of these two techniques, which inherits the merits of standard FTA and
draws on the idea of temporal regression procedure of obstacle analysis to achieve more
efficient and reliable fault tree analysis.

3See http://www.enre.umd.edu/ftap.htm for the links of fault tree programs.
4The fault trees of this thesis are developed by Visio2003.
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Chapter 4

Formal System Specification and
Verification with FTA

As we discussed in the last chapter, engineers often seem to find formal deduction and
proving tedious and difficult work, especially in complex system and fault tree analysis;
thus an executable formal language to write the formal specifications of fault trees which
also provides some automated logical deduction and proving mechanism is most desirable
for them. At the same time, after using FTA to find the important system safety related
problems, i.e., safety commitments, another inevitable and crucial problem is how to fur-
ther revise the system design accordingly and formally verify that such safety properties
have been preserved. In this chapter, we focus on these two important issues and demon-
strate how CafeOBJ [FS95, FN97, DF98], a powerful algebraic specification language,
can be used as an integrated tool with FTA to analyze, find and solve problems more
efficiently and effectively. In addition, as a complement of theorem proving technique
supported by OTS (observational transition system)/ CafeOBJ, we also demonstrate how
to model-check OTSs with Maude [CELM96, CDE+02, CDE+03a, CDE+03b], a sibling
language of CafeOBJ.

4.1 Formal Specification of FTA

In this Section, we discuss how to write the formal specification of the fault tree and au-
tomatically calculate minimal cut sets with Term Rewriting System (TRS) of CafeOBJ.

The reason why we choose CafeOBJ because it is an executable algebraic specification
language which is a modern successor of OBJ [JWM+00, FGJM85], and incorporating
several new algebraic specification paradigms. Its definition is given in [DF98]. CafeOBJ
is intended to be primarily used for system specification, formal verification of specifi-
cations, rapid prototyping, programming, etc (those who are not familiar with CafeOBJ
language and formal specification, can access http://www.ldl.jaist.ac.jp/cafeobj/, or read
[FNT00] and [DF98] and Section 2.3 in this thesis for details).

Our formal fault tree specification consists of two parts. The first is the module (called
TL here) that contains the definitions of logic operators, as well as useful axioms for term
rewriting and system reasoning, such as axioms for reducing Disjunctive Normal Form
(DNF) and absorption axioms for Minimal Cut Sets; the second part contains the speci-
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fication of the fault trees. The former can be looked at as a built-in system module and
it is transparent to the user after having been constructed once and for all; the latter is
to help engineers write the formal specifications of the fault trees and reduce the minimal
cut sets automatically.

As we introduced before, CafeOBJ is a wide spectrum specification language based on
multiple logical foundations, and it provides an integrated, cohesive, and unified approach
to programming/specification. By using CafeOBJ, we can define the logical operators as
we need them; this property enables wide application to many application areas. For
instance, in the collision control system example, we can define the TL module as follows
(a comment starts with ‘--’ or ‘-->’ and terminates at the end of the line in CafeOBJ).

module TL {

[ Formula ]

-- Primitive Boolean operators and logic gates of fault trees

ops True False : -> Formula

op !_ : Formula -> Formula { strat: (0 1) prec: 53 } -- Negation

op _/\_ : Formula Formula -> Formula {assoc comm prec: 55 l-assoc } -- AND-gate

op _\/_ : Formula Formula -> Formula {assoc comm prec: 59 l-assoc } -- OR-gate

op _&_ : Formula Formula -> Formula {prec: 57} -- INHIBIT-gate

-- Temporal operator

op ONCE_ : Formula -> Formula { strat: (0 1) prec: 53 } -- Once operator

vars a b c : Formula

-- Basic axioms for logic deduction

eq False /\ a = False .

eq True /\ a = a .

eq a /\ a = a . -- also a absorption axiom for minimal cut sets

eq a \/ a = a . -- also a absorption axiom for minimal cut sets

eq False \/ a = a .

eq True \/ a = True .

eq a \/ ! a = True .

eq a /\ ! a = False .

-- axioms for Negative Normal Form

eq ! True = False .

eq ! False = True .

eq ! ! a = a .

eq ! (a \/ b) = ! a /\ ! b .

eq ! (a /\ b) = ! a \/ ! b .

-- axioms for Disjunctive Normal Form (DNF)

eq (a \/ b) /\ c = (a /\ c) \/ (b /\ c) .

-- absorption axioms for Minimal Cut Sets

eq a \/ (a /\ b) = a .

-- absorb condition b of INHIBIT-gate in Minimal Cut Sets

eq a & b = a .

-- absorb ONCE operator in the deduction of sub-events
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eq ONCE a = a .

}

As shown above, we can define the logic operators and axioms as we need, and the
TL module is a extensible module with respect to different applications. Here, we only
listed the definitions of AND-gate, OR-gate, and INHIBIT-gate, which are used in the
fault tree of the crossing control system example.

There are three important axioms (equations) for the absorption of minimal cut sets,
i.e.,

eq a /\ a = a .

eq a \/ a = a .

eq a \/ (a /\ b) = a .

which are corresponding to the three absorption rules of Algorithm 2.1 we introduced in
Section 2.1.3 (page 16), i.e.,

• If a cut set contains the same basic event more than once, then the redundant entries
can be delete;

• If two cut sets are the same, then delete one;

• If one cut set is the subset of another, the latter can be removed since it is not a
minimal cut set.

And since the resulting formula of all the minimal cut sets of a fault tree is a disjunc-
tive normal form (DNF), in which each minimal cut set consists of the basic events of one
conjunction, we also listed the axioms for the transformation of DNF as shown above.
Notice here, we presented two other axioms to absorb the temporal operator (ONCE)
and the condition of INHIBIT-gate at the end of TL module. We have demonstrated the
soundness of the absorption of the ONCE operator in the fault tree construction model
in the last chapter (given the temporal semantics to the corresponding logic gates), and
the reason to absorb the conditions of INHIBIT-gates is that such conditions are usually
normal state formulas and do not consist of the minimal cut sets as we discussed before.

After building the TL module according to the requirements of the practical applica-
tion (necessary operators and axioms), we can write the formal specification of the fault
tree as follows.

-- Formal Specification of fault tree and Calculation of Minimal Cut Sets

open TL

[Object]

ops tr cr ba sys : -> Object .

ops OnCrossing Open Release Passed Idling : Object -> Formula .

ops BypassSignal BrakeFailure RadioFailure TimeOut : -> Formula .

op Root : -> Formula .

-- formal specification of fault tree
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eq Root = OnCrossing(tr) /\ Open(ba) .

-- definition of domain rules

eq [D1] : OnCrossing(tr) = ONCE (BypassSignal \/ BrakeFailure \/ Release(tr)) .

eq [D2] : Release(tr) = Release(cr) /\ ! RadioFailure .

eq [D3] : Open(ba) = TimeOut \/ Idling(sys) \/ Passed(cr) .

red Root .

As shown above, writing the formal specifications is quite easy and straightforward
after the TL module has been built: first define the events and nodes of the fault tree,
then use equations to record the domain rules used in event decomposition and fault tree
construction (notice here to simplify the specification, we use TimeOut to represent the

temporal formula ≥dClosed(ba)). The minimal cut sets can be automatically generated
using a simple command ‘red Root .’, and the result is shown as follows.

-- opening module TL.. done._*

-- reduce in %TL : Root

Release(cr) /\ ! RadioFailure /\ Passed(cr) \/

BrakeFailure /\ Passed(cr) \/

BypassSignal /\ Passed(cr) \/

Idling(sys) /\ Release(cr) /\ ! RadioFailure \/

TimeOut /\ Release(cr) /\ ! RadioFailure \/

BrakeFailure /\ Idling(sys) \/

BypassSignal /\ Idling(sys) \/

BrakeFailure /\ TimeOut \/

BypassSignal /\ TimeOut : Formula

(0.000 sec for parse, 13 rewrites(0.093 sec), 313 matches)

People may notice that the above result is different with Figure 3.6, that is, the minimal
cut sets generated by the above fault tree specification are bigger than those in Figure 3.6.
This is because in the above specification, we did not deal with the INHIBIT-gates, and
all the conditional events were not eliminated but further decomposed and introduced into
the minimal cut sets. For example, the event BrakeFailure∧Open(ba) in Figure 3.6 are
further decomposed into three sub-events (minimal cut sets) BrakeFailure∧Passed(cr),
BrakeFailure∧Idling(sys), and BrakeFailure∧T imeOut, supported by the domain rule
D3 for the decomposition of Open(ba). Therefore, the result generated by the fault tree
specification is more complete and precise but not inconsistent compared with Figure 3.6.

However, if people want to simplify the result and eliminate all the conditional event
in the final minimal cut sets, it is also quite easy to achieve this goal by adding some
equations (axioms) to explicitly record the INHIBIT gates and design decisions in the
fault trees. As for this example, we need only introduce four equations as follows.

eq BypassSignal /\ b = BypassSignal & b .

eq BrakeFailure /\ b = BrakeFailure & b .

eq TimeOut /\ b = TimeOut & b .

eq a /\ ! RadioFailure = a & ! RadioFailure .

The first three equations can be called as design decisions, which state that either
BypassSignal or BrakeFailure itself is a fault event regardless of any conditional event b
(where b is a variable representing any event rather than a specific event name). Therefore,
b can be represented as a conditional event connecting with an INHIBIT-gate that finally
should be eliminated from the minimal cut sets, supported by the equation “eq a & b
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= a .” in the TL module. The last equation states that !RadioFailure is normal event
that should be regarded as a conditional event and need not be considered in the minimal
cut sets.

The above four equations are all used to deal with the INHIBIT-gates, but their
structures are different. This is depended on the property of conditional events. Here,
a concept of primary conditional event should be introduced. A primary conditional
event is a normal event that need not be further decomposed in the fault trees. Or more
specifically, there is no domain rule used to decompose it. In the above example, the
event Open(ba) is not a primary conditional event because it is further decomposed in
the other branches of the fault tree, therefore, we can not just simply write it in either of
the following two forms:

eq BrakeFailure /\ Open(ba) = BrakeFailure & Open(ba) .

eq a /\ Open(ba) = a & Open(ba) .

Because the former can not handle the other cases, such as Brakefailure /\ Idling(sys),
in case Open(ba) is rewritten (decomposed) before it; while the latter may delete some
other branches of the fault tree if it is executed before the decomposition of Open(ba).
This is because generally speaking, in the term rewriting system (TRS) of CafeOBJ, we
can not ensure which equation will be used first for term rewriting.

Instead of involving in such troubles, we propose the following solutions to represent
the INHIBIT-gate in the fault tree specification.

• If the conditional event connecting to an INHIBIT-gate is a primary conditional
event, then it can be represented as:

eq a /\ primary-conditional-event = a & primary-conditional-event .

where a is a variable representing any fault event.

• Otherwise we should use a variable b to represent the conditional event, and specify
the specific fault event of the INHIBIT-gate as follows:

eq fault-event /\ b = fault-event & b .

After introducing the corresponding equations to handle the INHIBIT-gates, we can
reduce the simplified minimal cut sets as follows.

-- reduce in %TL : Root

Release(cr) /\ Passed(cr) \/

Idling(sys) /\ Release(cr) \/

TimeOut \/

BrakeFailure \/

BypassSignal : Formula

(0.000 sec for parse, 28 rewrites(0.000 sec), 322 matches)

It should be figured out that in our fault tree specification, we did not follow the
standard way, that is, just simply restating the logic structure and formulas of the fault
tree, such as in the following form:

eq Root = S1a \/ S1b \/ S1c .

eq S1a = BypassSignal /\ Open(ba) .

...
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The above standard specification style strictly records the fault tree structure, and can
be regarded as an restatement of the graphical fault tree. However, such kind of specifi-
cation neglects a most important factor in our formal fault tree construction model, i.e.,
domain rules. It does not provide the ability for fault tree revising and rechecking based
on the domain rules, even the minimal cut sets can also be automatically generated. And
considering such kind of logic structure of the fault tree has already been interpreted well
by the graphical tree, we recommend to record the domain rules rather than logic struc-
ture as for the formal specification of the fault trees – it gives engineers and designers the
ability to revise and recheck the fault tree more efficiently, and helps them focus on the
most important factor of the fault tree, i.e., domain rules.

It should also be noted that in this example, since the fault tree is not complex, the
minimal cut sets can also be quickly calculated by hand using Algorithm 2.1. But with
respect to complex system analysis, it is useful and effective. Moreover, as said above,
such formal specification itself is an important formal documents for system revising and
rechecking, which is the motivation of this study.

4.2 System Modeling, Specifying, and Verifying with

OTS/CafeOBJ

As we discussed in the last chapter, after using FTA to find the important system safety
related problems, another inevitable and crucial problem is how to further revise the
system design accordingly and formally verify that such safety properties (safety com-
mitment) have been preserved. In this section, we focus on this issue and demonstrate
how CafeOBJ, can be used to formally model, specify, and verify a system as well as its
important safety properties with OTS/CafeOBJ 1.

For better understanding, we first present a review and brief description of the ob-
servational transition system (OTS) in CafeOBJ, which has been introduced in detail in
Section 2.3.

Observational transition systems, or OTSs are the definition of transition systems for
writing transition systems in terms of equation [OF03]. We assume that there exists an
universal state space called Υ. We also suppose that each data type used has been defined
beforehand, including the equivalence between two values v1, v2 of the data type denoted
by v1 = v2. An OTS S = 〈O, I, T 〉 consists of:

• O: A set of observers. Each o ∈ O is a function o : Υ → D, where D is a data
type and may be different for each observers. Given an OTS S and two states
v1, v2 ∈ Υ, the equivalence between two states, denoted by v1 =S v2, with respect

to S is defined as v1 =S v2
def
= ∀o ∈ O.o(v1) = o(v2).

• I: A set of initial states such that I ⊂ Υ.

• T : A set of conditional transition rules. Each τ ∈ Σ is a function τ : Υ/ =S→
Υ/ =S on equivalence classes of Υ with respect to =S . Let τ(v) be the representative

1In this section, we only list a part of important codes with respect to the crossing control system
example. The complete CafeOBJ proof scores/codes are listed in Appendix A as for reference.
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element of τ([v]) for each v ∈ Υ and it is called the successor state of v with respect
to τ . The condition cτ for a transition rule τ ∈ T , which is a predicate on states,
is called the effective condition. The effective condition is supposed to satisfy the
following requirement: given a state v ∈ Υ, if cτ is false in v, namely τ is not
effective in v, then v =S τ(v).

Multiple similar observers and transition rules may be indexed. Generally, observers
and transition rules are denoted by oi1,...,im and τj1,...,jn

, respectively, provided that m, n ≥
0 and we assume that there exist data type Dk such that k ∈ Dk (k = i1, . . . , im, j1, . . . , jn).

CafeOBJ [FS95, FN97, DF98] is mainly based on two logical foundations: initial and
hidden algebra [GM97]. Corresponding to the algebra, there are two kinds of sorts in
CafeOBJ: visible and hidden. A visible sort represents an abstract data type, and a
hidden sort represents the state space of an object. Two kinds of operations are used for
hidden sorts: action and observation, corresponding to transition rule and observer of
OTSs, respectively. An action can change the state of an object. While an observation
can be used to observe the value of a data component in an object, it does not change
the state of the object.

4.2.1 System Modeling

Based on the FTA results and the introduction of OTS in CafeOBJ, we modeled the
radio-based crossing control system as an OTS. In this modeling, there are three discrete
variables, t, l, and b, that show the states of the train, the level crossing, and the barriers,
respectively.

The states of the train are sect0, sect1, critical, and sect2.

• sect0: the train is approaching, near enough to the ‘latest braking point’ to send
the ‘secure’ signal to the level crossing.

• sect1: just after the train sends the ‘secure’ signal and until it gets permission (the
‘release’ signal) to enter its critical section from the level crossing (notice here for
simplicity, we integrate the stop state into sect1, that is to say, the train will stop
and stay in sect1 unless it gets a ‘release’ signal).

• critical: the train is passing over the level crossing.

• sect2: the train leaves the level crossing and sends a ‘passed’ signal to the level
crossing.

The states of the level crossing are state0, state1, and state2.

• state0: the level crossing is waiting for a ‘secure’ signal from a train.

• state1: after getting the ‘secure’ signal and until it returns a ‘release’ signal to the
train.

• state2: after the response to the train and until it gets the ‘passed’ signal from the
train. After getting the ‘passed’ signal, the level crossing closes the barriers, and
then enters idling state (state0) waiting for the next train.
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The states of the barriers are only two: open and close.

According to the results of the fault tree analysis, we introduce a Boolean variable
that is defined as follows:

Boolean idling = true

where ‘idling’ is shared by all trains, initially set to true, denoting that the system is
idling and the barriers are open.

There are three pairs of signals between the trains and the level crossing: ‘secure’,
‘release’, and ‘passed’. Thus we can define six transition rules, based upon: 1) what each
transition rule corresponds to in the scenario, 2) the condition under which each transition
rule becomes effective, 3) the states of the train, the level crossing, the barriers, and/or
the idling variable after each transition rule is executed if the transition rule is effective.
The rules are as follows.

Initially, the states of the trains, the level crossing, the barriers, and idling are sect0,
state0, open, and true, respectively.

• tr-send-secure

1) The train sends a ‘secure’ signal to the level crossing.

2) The state of the train is sect0.

3) The state of the train becomes sect1.

• le-get-secure

1) The level crossing gets a ‘secure’ signal from the train.

2) The state of the train is sect1, and idling = true.

3) – idling = false;

– the state of the level crossing is state1;

– the state of the barriers is close.

• le-send-release

1) The level crossing sends the ‘release’ signal to the train.

2) The state of the level crossing is state1.

3) The state of the level crossing becomes state2.

• tr-get-release

1) The train gets the ‘release’ signal from the level crossing and enters its critical
section.

2) The state of the level crossing is state2.

3) The state of the train becomes critical.

• tr-send-passed
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1) The train leaves the level crossing and sends the ‘passed’ signal to the level
crossing.

2) The state of the train is critical.

3) The state of the train becomes sect2.

• le-get-released

1) The level crossing gets the ‘passed’ signal.

2) The state of the train is sect2.

3) – The state of the level crossing returns to state0;

– The state of the train returns to sect0

– idling = true

4.2.2 System Specification

In this section we describe how to specify the OTS for modeling the radio-based crossing
control system in CafeOBJ.

The main part of the signature is shown below.

*[System]*

[Train]

[TState LState BState]

-- any initial state

op init : -> System

-- observations

bop idling : System -> Bool

bop t : System Train -> TState

bop l : System Train -> LState

bop b : System -> BState

-- actions (transition rules)

bop tr-send-secure : System Train -> System

bop le-get-secure : System Train -> System

bop le-send-release : System Train -> System

bop tr-get-release : System Train -> System

bop tr-send-passed : System Train -> System

bop le-get-passed : System Train -> System

In the above signature, a comment starts with ‘--’ and terminates at the end of the
line. Declarations of visible sorts are enclosed with ‘[’ and ‘]’, and those of hidden sorts
with ‘*[’ and ‘]*’. Declarations of observations and actions starts with ‘bop’, and those
of other operations with ‘op’. Hidden sort System represents the state space of the OTS,
and visible sorts Train, TState, LState, and BState represent the trains, the states of
the trains, the states of the level crossing, and the states of the barriers, respectively.
Operations with no arguments are called constants. Constant init denotes any initial
state of the OTS.

We have basically seven sets of equations in the specification: one for any initial state,
and the others for the six actions. The equations defining any initial state, along with
the definitions of CafeOBJ variables used in this specification are as follows.
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var S : System

vars T1 T2 : Train

eq idling(init) = true . -- variant init initially set true

eq t(init, T1) = sect0 . -- any train initially set sect0

eq l(init, T1) = state0 . -- level crossing initially set state0

eq b(init) = open . -- barriers initially set open

The equations which define the six transition rules are as follows.

-- (1) tr-send-secure

ceq t(tr-send-secure(S, T1), T2) = (if (T1 = T2) then sect1 else t(S, T2) fi)

if t(S, T1) = sect0 .

eq l(tr-send-secure(S, T1), T2) = (if (T1 = T2) then l(S, T1) else l(S, T2) fi) .

eq b(tr-send-secure(S, T1)) = b(S) .

eq idling(tr-send-secure(S, T1)) = idling(S) .

ceq tr-send-secure(S, T1) = S if not (t(S, T1) = sect0) .

-- (2) le-get-secure

ceq idling(le-get-secure(S, T1)) = false if t(S, T1) = sect1 and idling(S) .

ceq b(le-get-secure(S, T1)) = close if t(S, T1) = sect1 and idling(S) .

ceq l(le-get-secure(S, T1), T2) = (if (T1 = T2) then state1 else l(S, T2) fi)

if t(S, T1) = sect1 and idling(S) .

eq t(le-get-secure(S, T1), T2) = (if (T1 = T2) then t(S, T1) else t(S, T2) fi) .

ceq le-get-secure(S, T1) = S if not (t(S, T1) = sect1) or not idling(S) .

-- (3) le-send-release

ceq l(le-send-release(S, T1), T2) = (if (T1 = T2) then state2 else l(S, T2) fi)

if l(S, T1) = state1 .

eq b(le-send-release(S, T1)) = b(S) .

eq t(le-send-release(S, T1), T2) = (if (T1 = T2) then t(S, T1) else t(S, T2) fi) .

eq idling(le-send-release(S, T1)) = idling(S) .

ceq le-send-release(S, T1) = S if not (l(S, T1) = state1) .

-- (4) tr-get-release

ceq t(tr-get-release(S, T1), T2) = (if (T1 = T2) then critical else t(S, T2) fi)

if (l(S, T1) = state2) .

eq l(tr-get-release(S, T1), T2) = (if (T1 = T2) then l(S, T1) else l(S, T2) fi) .

eq b(tr-get-release(S, T1)) = b(S) .

eq idling(tr-get-release(S, T1)) = idling(S) .

ceq tr-get-release(S, T1) = S if not (l(S, T1) = state2) .

-- (5) tr-send-passed

ceq t(tr-send-passed(S, T1), T2) = (if (T1 = T2) then sect2 else t(S, T2) fi)

if t(S, T1) = critical .

eq l(tr-send-passed(S, T1), T2) = (if (T1 = T2) then l(S, T1) else l(S, T2) fi) .

eq b(tr-send-passed(S, T1)) = b(S) .

eq idling(tr-send-passed(S, T1)) = idling(S) .

ceq tr-send-passed(S, T1) = S if not (t(S, T1) = critical) .

-- (6) le-get-passed

ceq b(le-get-passed(S, T1)) = open if t(S, T1) = sect2 .

ceq idling(le-get-passed(S, T1)) = true if t(S, T1) = sect2 .

ceq l(le-get-passed(S, T1), T2) = (if (T1 = T2) then state0 else l(S, T2) fi)

if t(S, T1) = sect2 .

ceq t(le-get-passed(S, T1), T2) = (if (T1 = T2) then sect0 else t(S, T2) fi)

if t(S, T1) = sect2 .

ceq le-get-passed(S, T1) = S if not (t(S, T1) = sect2) .
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4.2.3 Verifying Safety Properties

Reviewing the two basic fault events S3b and S3c found in the last chapter, we can derive
two safety claims as follows.

Claim 100 : if the level crossing has sent a ‘release’ signal, then the state of the system
should not be idling. If we focus on the state after the corresponding transition rule
le-send-release is executed, i.e. l(S, T1) = state2, the invariant we want to
prove is:

inv100: (l(S, T1) = state2) implies not (idling(S))

Claim 200 : if the level crossing has sent a ‘release’ signal, then the system can not get
a ‘passed’ signal at this moment. Here, if we focus on the states after the transition
rules le-send-release and le-get-passed have been executed, i.e. l(S, T1) =

state1 and l(S, T2) = state0, we can derive the invariant as follows:

inv200: (l(S, T1) = state2) implies not (l(S, T2) = state0)

Moreover, if we consider another consequence of the transition rule le-get-release,
i.e. idling(S) = true, then inv200 is equal to inv100 in this sense.

The general proof structure of the invariants in CafeOBJ is as follows: An invariant is
proved by INDUCTION on each transition rule applied or executed. If we want to prove
that the system has an invariant P, the proof structure looks like this:

I) Base case

P(init)

II) Inductive cases

(1) P(s) implies P(tr-send-secure(s)) for any s.

(2) P(s) implies P(le-get-secure(s)) for any s.

(3) P(s) implies P(le-send-release(s)) for any s.

(4) P(s) implies P(tr-get-release(s)) for any s.

(5) P(s) implies P(tr-send-passed(s)) for any s.

(6) P(s) implies P(le-get-passed(s)) for any s.

In other words, first we prove the invariant P is true in any initial state, and then try
to prove that it will be preserved by any transition rule. To this end, we should do case
splitting based on the effective conditions of each transition rule. A part of the template
module for case splitting is presented as follows.

-- This module is to specify the s and s’ for induction based on the

-- effective conditions of each transition rule.

mod ICASE1 {

pr(ISTEP) -- ISTEP is the module defining the invariants to prove
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-- arbitrary trains

op t10 : -> Train

-- assumptions for transition rule: tr-send-secure

eq t(s, t10) = sect0 .

-- successor state

eq s’ = tr-send-secure(s, t10) .

}

mod nonICASE1 {

pr(ISTEP)

-- arbitrary trains

op t10 : -> Train

-- assumptions

eq (t(s, t10) = sect0) = false .

-- successor state

eq s’ = tr-send-secure(s, t10) .

}

mod ICASE2 {

pr(ISTEP)

-- arbitrary trains

op t10 : -> Train

-- assumptions for transition rule: le-get-secure

eq t(s, t10) = sect1 .

eq idling(s) = true .

-- successor state

eq s’ = le-get-secure(s, t10) .

}

mod nonICASE2-1 {

pr(ISTEP)

-- arbitrary trains

op t10 : -> Train

-- assumptions

eq (t(s, t10) = sect1) = false .

eq idling(s) = true .

-- successor state

eq s’ = le-get-secure(s, t10) .

}

mod nonICASE2-2 {

pr(ISTEP)

-- arbitrary trains

op t10 : -> Train

-- assumptions

eq (t(s, t10) = sect1) = false .

eq idling(s) = false .

-- successor state

eq s’ = le-get-secure(s, t10) .

}

mod nonICASE2-3 {

pr(ISTEP)

-- arbitrary trains

op t10 : -> Train

-- assumptions

eq (t(s, t10) = sect1) = true .
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eq idling(s) = false .

-- successor state

eq s’ = le-get-secure(s, t10) .

}

......

An important issue is to find lemmas for the invariant to prove in some inductive cases
(transition rules). For example, when we try to prove inv100, we find that it does not
hold in cases (3) and (6) above, thus we need to introduce two lemmas as follows:

-- lemma for inductive case (3)

eq inv310(S, T1) = (l(S, T1) = state1) implies not idling(S) .

-- lemma for inductive case (6)

eq inv320(S, T1, T2) = (t(S, T1) = sect2) and (l(S, T2) = state2) implies (T1 = T2) .

After introducing the lemmas inv310 and inv320, we need to prove the inductive cases
(3) and (6) with respect to the proof of inv100 again as follows:

inv310 implies (P(s) implies P(le-send-release(s)) for any s.)

inv320 implies (P(s) implies P(le-get-passed(s)) for any s.)

And we have proved that these two revised inductive cases hold in the OTS.

Next, we have to prove inv310 and inv320 in the same way. Finally we will have found
and proved all the invariants listed below.

eq inv100(S, T1) = (l(S, T1) = state2) implies not idling(S) .

-- need lemmas inv310 and inv320

eq inv310(S, T1) = (l(S, T1) = state1) implies not idling(S) .

-- need lemma inv330

eq inv320(S, T1, T2) = (t(S, T1) = sect2) and (l(S, T2) = state2)

implies (T1 = T2) .

-- need lemmas inv340 and inv330

eq inv330(S, T1, T2) = (t(S, T1) = sect2) implies not (l(S, T2) = state1) .

-- need lemmas inv360 and inv420

eq inv340(S, T1, T2) = (l(S, T1) = state2) and (t(S, T2) = critical)

implies (T1 = T2) .

-- need lemmas inv350 and inv360

eq inv350(S, T1, T2) = (l(S, T1) = state2) and (l(S, T2) = state2)

implies (T1 = T2) .

-- need lemma inv370

eq inv360(S, T1, T2) = (l(S, T1) = state1) implies not (t(S, T2) = critical) .

-- need lemmas inv370 and inv380

eq inv370(S, T1, T2) = (l(S, T1) = state1) implies not (l(S, T2) = state2) .

-- need lemmas inv390 and inv100

eq inv380(S, T1) = (t(S, T1) = critical) implies not idling(S) .

-- need lemmas inv100 and inv400

eq inv390(S, T1, T2) = (l(S, T1) = state1) and (l(S, T2) = state1)

implies (T1 = T2) .

-- need lemma inv310

eq inv400(S, T1, T2) = (t(S, T1) = sect2) implies not (t(S, T2) = critical) .

-- need lemmas inv320 and inv410

eq inv410(S, T1, T2) = (t(S, T1) = critical) and (t(S, T2) = critical)

implies (T1 = T2) .
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-- need lemma inv340

eq inv420(S, T1) = (t(S, T1) = sect2) implies not idling(S) .

-- need lemmas inv380 and inv430

eq inv430(S, T1, T2) = (t(S, T1) = sect2) and (t(S, T2) = sect2)

implies (T1 = T2) .

-- need lemma inv400

As shown above, we have formally demonstrated that the safety properties (safety
commitment) found in our formal fault tree model are preserved in the OTS; in other
words, the basic fault events S3b and S3c will never occur in our refined system or OTS
(we use the same invariant, inv100, to represent them as discussed above). Moreover, a
typical and stronger safety property of this mutual exclusion algorithm has been proved,
i.e., inv410, which states that more than one train can never enter the same critical section
simultaneously.

4.3 Model-Checking OTSs with Maude

In the last section, we have been successfully applying the OTS/CafeOBJ method to
modeling, specification, verification of the crossing control system based on the analyzing
results of FTA. In the OTS/CafeOBJ method, systems are modeled as observational
transition systems, or OTSs, which are the definition of transition systems for writing
them in terms of equations, and OTSs are written in CafeOBJ. We then verify that
the OTSs have properties (safety commitment found by FTA) by writing proof scores in
CafeOBJ and executing them the CafeOBJ system (see Appendix A).

In the OTS/CafeOBJ method, theorem proving technique is mainly used to verify that
OTSs have properties. There is also model-checking technique [CGP01] to verify that
(usually finite) distributed systems have properties. Although theorem proving technique
would not be totally replaced with model-checking technique, model-checking technique is
generally easier to use and can be used as the complement of theorem proving technique.
To this end, in the section, we introduce how to describe and write OTSs in Maude
[CELM96, CDE+02, CDE+03a, CDE+03b] (a sibling language of CafeOBJ), and how to
model-check them with the Maude LTL model-checker [EMS02]. The crossing control
system example is used to demonstrate the method.

4.3.1 Description of OTSs in Maude

Maude [CELM96, CDE+02, CDE+03a, CDE+03b] is a specification and programming
language based on rewriting logic [Mes92]. Maude is equipped with modern specification
and programming language features such as fast (AC-) rewriting and meta programming.
Maude also has model-checking facilities [EMS02]. The Maude 2.0 distribution includes
the file model-checker.maude in which modules related to model-checking are declared.

Based on the definition of OTS introduced in Section 4.2, we describe how to write
an OTS S = 〈O, I, T 〉 in Maude. O and T are denoted by sorts, say OValue and
TRule, respectively. The state space Υ is denoted by a sort, say Sys. A snapshot of S is
represented by a multiset, or a bag of observers and transition rules. OValue and TRule

are then declared as subsorts of Sys as follows.

subsort OValue TRule < Sys .
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The following operators are used as the constructors of bags:

op none : -> Sys .

op __ : Sys Sys -> Sys [assoc comm id: none] .

Generally, a snapshot of S is as the following form:

ovalue-1 . . . ovalue-M trule-1 . . . trule-N

where ovalue-i(i = 1, . . . , M) is a term denoting an observer, and trule-i(i = 1, . . . , N) is
a term denoting a transition rule.

An observer oi1,...,im ∈ O is denoted by an operator. We assume that the date types
Dk(k = i1, . . . , im) and D are defined and there exist sorts Vk(k = i1, . . . , im) and V
corresponding to the data types. The operator denoting oi1,...,im is declared as follows:

op (o[ ,..., ] = ) : Vi1 ...Vim V -> OValue .

An transition rule τj1,...,jn
∈ T is denoted by an operator. We assume that the date

types Dk(k = j1, . . . , jn) and D are defined and there exist sorts Vk(k = j1, . . . , jn) and V
corresponding to the data types. The operator denoting τj1,...,jn

is declared as follows:

op r : Vj1 ...Vjn
-> TRule .

Transition rules are defined using Maude rules. We suppose that observers needed and
affected by the execution of the transition rule τj1,...,jn

are o1
i1
1
,...,i1m1

, . . . , ol
il
1
,...,ilml

, which are

supposed to be denoted by operators (o1[ ,..., ] = ), . . . , (ol[ ,..., ] = ). Then, the
transition rule τj1,...,jn

denoted by r is generally defined as follows:

crl [rule-r] :

r(Xj1, . . . , Xjn
)

(o1[Xi1
1

, . . . , Xi1m1

] = X1) . . . (ol[Xi1
l
, . . . , Xi1ml

] = Xl)

=>

r(Xj1, . . . , Xjn
)

(o1[Xi1
1

, . . . , Xi1m1

] = X
′

1) . . . (ol[Xi1
l
, . . . , Xi1ml

] = X
′

l )

if c-r(Xj1 , . . . , Xjn
, Xi1

1
, . . . , Xi1m1

, X1, . . . , Xil
1

, . . . , Xilml
, Xl) .

where c-r is the operator denoting cτj1,...,jn
. rule-r is the label of the rule, which is

optional. Xk(k = j1, . . . , jn, i11, . . . , i
1
m1

, 1, . . . , il1, . . . , i
l
ml

, l) is a term or a variable for the

intended sort. X
′

k(k = 1, . . . , l) denotes the value returned by observer ok
ik
1
,...,ikmk

in the

successor state with respect to τj1,...,jn
.

4.3.2 Model-Checking OTSs

We describe how to model-check that an OTS has properties with Maude. We suppose
that the OTS is written in Maude as a module whose name is SYSTEM. We first define state
predicates with which such properties are described. Such state predicates are declared
in a module, say SYSTEM-PREDS, which looks like this
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mod SYSTEM-PREDS is

pr SYSTEM .

inc SATISFACTION .

subsort Sys < State .

...

endm

where the dots · · · indicate the part in which the syntax and semantics of state predicates
are specified.

In the module SATISFACTION (included in the file model-checker.maude), the module
LTL (included in the file model-checker.maude) where the propositional linear temporal
logic (LTL) is described is imported, the sort State that denotes states of a system under
consideration is declared and the following operator is declared:

op _|=_ : State Formula ~> Bool .

The sort Formula is declared in the module LTL, denoting propositional LTL formulas.
The operator is used to define state predicates. That a state predicate denoted by a term
pred holds in a state denoted by state is defined as follows:

eq state |= pred = true .

Generally, state is the following form:

ovalue-1 . . . ovalue-M S

where ovalue-i (i = 1, . . . , M) is a term for OValue and S is a variable for Sys.

We next define propositional LTL formulas denoting properties to be checked for the
OTS and also initial states of the OTS. Such formulas and initial states are described in
a module, say SYSTEM-CHECK, which looks like:

mod SYSTEM-CHECK is

inc SYSTEM-PREDS .

inc MODEL-CHECKER .

inc LTL-SIMPLIFIER .

...

endm

where the dots · · · indicate the part in which operators denoting propositional LTL for-
mulas to be checked for the OTS and initial states of the OTS, and the corresponding
equations are declared.

In the module MODEL-CHECKER (included in the file model-checker.maude), the op-
erator modelCheck is declared, which takes two arguments denoting an initial state and
a propositional LTL formula, and returns the result of the model-checking. In the mod-
ule LTL-SIMPLIFIER (included in the file model-checker.maude), operators and equa-
tions to simplify propositional LTL formulas are declared. It is optional to import
LTL-SIMPLIFIER.

Propositional LTL formulas are constructed of state predicates declared in SYSTEM-PREDS,
and Boolean connectives and temporal operators declared in LTL. Among temporal oper-
ators are Eventually ( ) denoted by <> , Henceforth ( ) denoted by [] and Leads-to
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(⇒) denoted by |-> .

The term denoting an initial state is generally the following form:

ovalue-1 . . . ovalue-M trule-1 . . . trule-N

where ovalue-i (i = 1, . . . , M) is a term for OValue, and trule-i (i = 1, . . . , N) is a term
for TRule.

Let init be a term denoting an initial state and prop be a term denoting a propositional
LTL formula to be checked. We model-check that all the states reachable from the initial
state satisfies the propositional LTL formula as follows:

red modelCheck(init; prop) .

4.3.3 Case Study: Crossing Control System

Based on the above analysis and the system formal modeling introduced in Section 4.2.1,
we can model the crossing control system with OTS/Maude as follows.

• Observers

– tri (i ∈ T id) returns the state label of a train i, where T id is the set of train
IDs. Each tri initially returns label sect0.

– lei (i ∈ T id) returns the state label of the level crossing with respect to a train
i, where T id is the set of train IDs. Each lei initially returns label state0.

– ba returns the state label of barriers, it initially returns label open.

– idling returns the system Boolean value shared by all trains. It initially returns
true.

• Transition rules

– tr-send-securei (i ∈ T id) denotes that train i sends a ‘secure’ signal to the level
crossing.

– le-get-securei (i ∈ T id) denotes that level crossing gets a ‘secure’ signal from a
train i.

– le-send-releasei (i ∈ T id) denotes that level crossing sends a ‘release’ signal to
a train i.

– tr-get-releasei (i ∈ T id) denotes that train i gets a ‘release’ signal from the
level crossing.

– tr-send-passed i (i ∈ T id) denotes that train i sends a ‘passed’ signal to the
level crossing .

– le-get-passed i (i ∈ T id) denotes that level crossing gets a ‘passed’ signal from
a train i.

The operators denoting the observers and transition rules are declared as follows:
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*** Observable values

op tr[_] =_ : Train TState -> OValue .

op le[_] =_ : Train LState -> OValue .

op ba =_ : BState -> OValue .

op idling =_ : Bool -> OValue .

*** Transition rules

op tr-send-secure : Train -> TRule .

op le-get-secure : Train -> TRule .

op le-send-release : Train -> TRule .

op tr-get-release : Train -> TRule .

op tr-send-passed : Train -> TRule .

op le-get-passed : Train -> TRule .

A comment starts with *** and terminates at the end of the line. Train, TState,
LState, BState, and Bool are the sorts denoting train IDs, state label of train, level
crossing, barriers, and system idling state, respectively.

In the following, let T, TS, LS, BS, and IS be Maude variables for Train, TState,
LState, BState, and Bool, respectively. Operator (transition rule) tr-send-secure is
then defined with these equations:

crl [tr-send-secure] :

tr-send-secure(T) (tr[T] = TS) (le[T] = LS) (ba = BS) (idling = IS)

=> tr-send-secure(T) (tr[T] = sect1) (le[T] = LS) (ba = BS) (idling = IS)

if TS == sect0 .

And we can define the other operators in a similar way as follows.

crl [le-get-secure] :

le-get-secure(T) (tr[T] = TS) (le[T] = LS) (ba = BS) (idling = IS)

=> le-get-secure(T) (tr[T] = TS) (le[T] = state1) (ba = close) (idling = false)

if TS == sect1 and IS == true .

crl [le-send-release] :

le-send-release(T) (tr[T] = TS) (le[T] = LS ) (ba = BS) (idling = IS)

=> le-send-release(T) (tr[T] = TS) (le[T] = state2) (ba = BS) (idling = IS)

if LS == state1 .

crl [tr-get-release] :

tr-get-release(T) (tr[T] = TS) (le[T] = LS) (ba = BS) (idling = IS)

=> tr-get-release(T) (tr[T] = critical) (le[T] = LS) (ba = BS) (idling = IS)

if LS == state2 .

crl [tr-send-passed] :

tr-send-passed(T) (tr[T] = TS) (le[T] = LS) (ba = BS) (idling = IS)

=> tr-send-passed(T) (tr[T] = sect2) (le[T] = LS) (ba = BS) (idling = IS)

if TS == critical .

crl [le-get-passed] :

le-get-passed(T) (tr[T] = TS) (le[T] = LS) (ba = BS) (idling = IS)

=> le-get-passed(T) (tr[T] = sect0) (le[T] = state0) (ba = open) (idling = true)

if TS == sect2 .

Then let the OTS be finite by making the number of trains a fixed number, say three.
We model-check that the finite OTS preserves the safety commitment found in FTA, i.e.,
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¬(Release(cr) ∧ Idling(sys)).

Suppose TC is the module in which the OTS is written. The module TC-PREDS is
declared as follows:

mod TC-PREDS is

pr TC .

inc SATISFACTION .

subsort Sys < State .

op cr-release : Train -> Prop .

op sys-idle : -> Prop .

var T : Train .

var S : Sys .

eq (le[T] = state2) S |= cr-release(T) = true .

eq (idling = true) S |= sys-idle = true .

endm

The module TC-CHECK is declared as follows:

mod TC-CHECK is

inc TC-PREDS .

inc MODEL-CHECKER .

inc LTL-SIMPLIFIER .

ops t1 t2 t3 : -> Train .

op init : -> Sys .

op basic : -> Formula .

eq init =

tr-send-secure(t1) tr-send-secure(t2) tr-send-secure(t3)

le-get-secure(t1) le-get-secure(t2) le-get-secure(t3)

le-send-release(t1) le-send-release(t2) le-send-release(t3)

tr-get-release(t1) tr-get-release(t2) tr-get-release(t3)

tr-send-passed(t1) tr-send-passed(t2) tr-send-passed(t3)

le-get-passed(t1) le-get-passed(t2) le-get-passed(t3)

(tr[t1] = sect0) (tr[t2] = sect0) (tr[t3] = sect0)

(le[t1] = state0) (le[t2] = state0) (le[t3] = state0)

(ba = open)

(idling = true) .

eq basic = ([] ~(cr-release(t1) /\ sys-idle)) /\

([] ~(cr-release(t2) /\ sys-idle)) /\

([] ~(cr-release(t3) /\ sys-idle)) .

endm

The operator basic denotes the safety commitment (corresponding to INV100 in the
proof score of OTS/CafeOBJ). We model-check that the finite OTS has the property as
follows:

red modelCheck(init, basic) .

The result is true, which means that the safety commitment is preserved in this fi-
nite OTS. Moreover, we can also prove that the negation of the root of the fault tree
( ¬(OnCrossing(tr) ∧ Open(ba))) and the mutual exclusion problem (no more than
one train can enter the crossing simultaneously) by introducing the following operators
and equations:
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op tr-oncrossing : Train -> Prop .

op ba-open : -> Prop .

eq (tr[T] = critical) S |= tr-oncrossing(T) = true .

eq (ba = open) S |= ba-open = true .

ops root mutex : -> Formula .

eq root = ([] ~(tr-oncrossing(t1) /\ ba-open)) /\

([] ~(tr-oncrossing(t2) /\ ba-open)) /\

([] ~(tr-oncrossing(t3) /\ ba-open)) .

eq mutex = ([] ~(tr-oncrossing(t1) /\ tr-oncrossing(t2))) /\

([] ~(tr-oncrossing(t2) /\ tr-oncrossing(t3))) /\

([] ~(tr-oncrossing(t1) /\ tr-oncrossing(t3))) .

red modelCheck(init, root) .

red modelCheck(init, mutex) .

The results are both true, which means that the finite OTS surely has the two properties
(the complete codes and experimental results are listed in Appendix B).

Another benefit of using model-checking technique (model-checker.maude) is that it
gives the ability to check some other properties in addition to safety properties (invariants)
found in FTA. For instance, we can quickly check the liveness property (lockout free, i.e.,
once a train sends a ‘secure’ signal, it will eventually get the permission and pass on the
crossing) of the above OTS by introducing the following operators and equations:

op wait : Train -> Prop .

eq (tr[T] = sect1) S |= wait(T) = true .

op lockfree : -> Formula .

eq lockfree = (wait(t1) |-> tr-oncrossing(t1)) /\

(wait(t2) |-> tr-oncrossing(t2)) /\

(wait(t3) |-> tr-oncrossing(t3)) .

red modelCheck(init, lockfree) .

Unfortunately, the result is not true and we get a counterexample. Further analyzing
the counterexample, we found the problem is caused by the competition of the shared
system variable idling, or more specifically, a train may occupy the variable idling and
pass the crossing repeatedly because in the OTS specification we simply reset its state to
the initial state sect0 after the crossing receives the ‘passed’ signal from the train. This
special case may not happen in practice, because it is impossible or unrealistic to assume
that a train can approach the crossing again immediately just after one pass. However,
it explores a potential design defect that should be amended with regard to more reliable
system design and specification. Some classical algorithms for mutual exclusion problem
[Pet81, And90]can be introduced as for solution, such as using a queue or array to manage
and schedule the requests of different trains instead of a simple Boolean variable. And an
introduction of how to specify and verify some classical mutual exclusion algorithms with
CafeOBJ can be found in [OF99].

4.4 Combination of FTA and OTS/CafeOBJ(Maude)

Based on the discussion of formal fault tree construction model (Chapter 3) and for-
mal system specification and verification with OTS/CafeOBJ(Maude), we further present
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detailed analysis about the motivation and advantages of the combination of these two
techniques in this section.

First, let’s review the role of traditional FTA and formal system specification and
verification in requirements engineering, i.e., what can they do from each other’s point of
view.

• FTA

– An system safety analysis technique, which starts from undesired hazards to
analyze, and try to find sufficiently large part of possibilities that will result in
those significant system failure modes.

– Qualitative analysis of FTA can help us figure out minimal cut sets and classify
the basic fault event into different categories, such as physical failures, human
errors, or system design problems. Such kind of analysis is very important to
assist us to understand the system more comprehensively and completely, and
therefore take appropriate precautions.

– Quantitative analysis of FTA can help us to evaluate the system reliability,
given the failure rate of each basic event. And in reverse, it can also guide us
to allocate reliability and system development resources to each sub-system or
module at the system design stage [XFH03].

• Formal System Specification and Verification

– Based on the primary requirements from domain experts and engineers, try
to formalize and refine these requirements more formally and precisely. The
generated formal system specification constitutes the foundation of subsequent
software development and implementation.

– Formal verification can help us formally prove that some important system
properties are preserved in the formal specification.

Most importantly, these two techniques analyze the system and requirements from two
different standpoints: FTA enumerates various ways for system failure from the concept
of failure space, while formal system specification and verification depicts and proves var-
ious ways for system success from the concept of success space. Both of them complement
each other efficiently and make the whole requirements analyses more comprehensive.

However, there are some gaps between these two methods. First of all, traditional FTA
was developed from hardware system analysis, in which generally speaking, a system fault
event can be directly attributed to some components failures. It is difficult to analyze
complex system state that depends on event combinations rather than component state
itself as we pointed out in the last chapter. Moreover, it lacks a formal construction model
to ensure the correctness of the fault trees, therefore, the results of FTA are doubtful and
can not be used for the formal specification and verification directly. To this end, we
develop our formal fault tree construction model based on temporal logic, in which the
correctness of the fault trees is guaranteed by the construction processes. Furthermore,
we also discuss how to derive the safety assumption and commitment from the fault trees,
which can be used to guild the subsequent formal system specification and verification
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Figure 4.1: An overview of FTA and OTS/CafeOBJ

with OTS/CafeOBJ(Maude). An overview of the combination of our formal FTA model
and OTS/CafeOBJ(Maude) is shown in Figure 4.1.

As shown in Figure 4.1, there are several benefits of the combination of our formal
FTA and OTS/CafeOBJ(Maude) as for more efficient requirements analyses as follows.

• Firstly, from the standpoint of FTA, it can provide the following useful infor-
mation to assist the subsequent system formal specification and verification with
OTS/CafeOBJ(Maude).

– The correctness of fault trees is guaranteed by the construction processes, thus
a stand-alone verification of the fault tree itself is unneeded, which can help
analyzers focus their attention on the problem per se.

– The safety assumptions derived from FTA can help the analyzers understand
the system more comprehensively, i.e., the system will only perform success-
fully under what kind of restrictions and assumptions. As we discussed in the
last chapter, such limitation conditions are usually and easily overlooked if we
carry out system design and specification directly without FTA or other hazard
analysis techniques. In addition, it is also useful for taking proper precautions
with respect to the corresponding anticipated failures in a timely fashion, such
as making some regulations to prevent some potential human misoperations.

– FTA also provides more precise and manageable statements (safety commit-
ments) with respect to formal system verification with OTS/CafeOBJ(Maude).
In complex system analysis, such kind of a divide-and-conquer method is espe-
cially a benefit in case the top event is too complex and difficult to be verified.

– The domain rules discovered and defined during the fault tree construction
can be reused to guide the subsequent formal system modeling and specifying.
In other words, these domain rules can also be regarded as important system
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design knowledge and enriched transition rules for formal system specification
with OTS/CafeOBJ(Maude).

• Secondly, from the point of view of OTS/CafeOBJ(Maude), it can further formally
specify and verify the system will work successfully based on the analyzing results
of FTA.

– On one hand, the formal verification can provide a feedback to FTA, that is, af-
ter the formal verification of the derived safety commitment, the corresponding
basic fault events could be neglected (or marked with special symbols) in the
qualitative and quantitative analysis of FTA. Thus, it can help us have a more
definite object in view when allocating development and testing resources.

– On the other, with the support of term rewriting system (TRS) of CafeOBJ,
we can write the formal specification of the fault trees and reduce the minimal
cut sets automatically, which can be regarded as another advantage of the
combination of FTA and CafeOBJ.

It should be noted that in our experience, we recommend to do FTA before formal
system specification and verification, this is based on the following facts in addition to the
above discussion and analysis. First, it is generally easier to attain concurrence on what
constitutes failure than it is to agree on what constitutes success. And another point is
that from a practical standpoint there are generally more ways to success than there are
failure, this is the advantage for the analyst to work in failure space as opposed to success
space [VGRH81]. A good and typical example is the Minuteman missile analysis, only
three fault trees were drawn and it was found that careful analysis of just these three
fault trees covered all the significant failure modes [VGRH81]. And in our example, we
have also demonstrated how FTA can assist the system design and requirements analyses
as discussed in Section 3.3 — From safety analysis to system design.

4.5 Summary

In this chapter we have demonstrated how to formally model, specify, and verify the safety
properties found in FTA with OTS/CafeOBJ. And as an alternative of theorem proving
technique of CafeOBJ, we also discussed how to model checking OTSs with Maude, a
sibling formal language of CafeOBJ.

This chapter can be regarded as the extension of Chapter 3, an overview of the com-
bination of FTA and OTS/CafeOBJ is shown in Figure 4.1. The advantages of the
combination can be concluded briefly as follows (the detailed discussion and analysis can
be found in Section 4.4): On one hand, our formal fault tree analysis provides useful and
instructive information and guidelines for the succeeding formal specification and veri-
fication of the system. On the other, in reverse, supported by OTS/CafeOBJ, we can
formally verify and prove that some basic fault events of the fault tree will never occur
in the refined system, which enables us to focus our attention on other key fault events
or components, having a definite object in view when allocating development and testing
resources.
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We realize that for engineers, there may be a gap between FTA and the formal specifi-
cation and verification process, if they are not familiar with formal methods. To solve this
problem and make our method more practical, we currently are trying to develop some
templates and guidelines which can help designers use formal methods more smoothly
and efficiently. This is also the motivation that we study how to model-check OTSs with
Muade.

In addition, since our formal specification and verification is mainly based OTS/CafeOBJ,
but our formal fault tree construction model is based on temporal logic deduction, it causes
some inconveniences in case experts and designers are not familiar with both techniques.
And actually, the incorrectness problem in traditional FTA mainly originates from the
difficulty of representing state transition and decomposing complex system state which
consists of event combinations rather than component state itself. This brings about an
important issue, that is, can we develop a formal fault tree model based on the framework
of OTS instead of temporal logic?

There are two benefits of this idea. On one hand, it relieves the engineers of advanced
temporal logic background, and helps them develop the fault tree in a comparatively easy
way with basic concepts of OTS. On the other hand, more importantly, it makes the
combination of FTA and OTS/CafeOBJ more consistent, since both of them are based
on the common framework of OTS. Thus the communication between the engineers and
designers as well as the transformation between these two processes is more efficient and
smooth. This is exactly the motivation and goal of our another study discussed in the
next chapter — Formal Fault Tree Analysis of Observational Transition Systems.
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Chapter 5

Formal Fault Tree Analysis of
Observational Transition Systems

This chapter presents our formal fault tree analysis model based on OTS. It focuses on
analyzing state transition systems using fault trees, which seems to be a common problem
of traditional FTA, especially on the representation of state transitions and decomposi-
tion of complex system states which consist of event combinations rather than component
state itself as we figured out in Section 1.2.

The formal FTA model discussed in this chapter can be regarded as a simplification and
revision of our formal fault tree construction model based on temporal logic discussed in
the last chapter. There are two important motivations why we further develop our formal
FTA based on OTS instead of temporal logic as follows. First of all, since our formal
system specification and verification are based on OTS/CafeOBJ, proposing a formal FTA
model based on the same underlying conceptual model — OTS, can make the combination
of FTA and OTS/CafeOBJ more consistent, and thus makes the communication between
the experts and analyzers as well as the transformation between these two processes
more efficient and smooth. Second, as we know, one of the most important advantage of
traditional FTA is that it can be easily drawn and reviewed by experts and then used by
analyzers thanks to its simple Boolean logic and graphic support. To this end, generally
speaking, a formal fault tree model based on classical Boolean logic and basic concepts of
state transition is more desirable than the temporal logic one, which can also be regarded
as an alternative for the experts who are not familiar with temporal logic.

Therefore, to achieve the above goals, we first present a refined formal semantics of
event of fault trees, and then discuss transition rules and sub-event patterns for fault tree
construction, together with corresponding augmented notation and semantics of logic
gates. Finally, a formal FTA of OTS is presented based on the above augmented fault
tree semantics.

5.1 Definitions of Events

In traditional fault tree analysis terminology, the nodes in a fault tree are called fault
events, often meaning the occurrence of one specific undesired system or component
state [VGRH81, Bah97] (see the definition of fault occurrence in Section 2.1.2). The
events can be understood as the root node, intermediate nodes, or leaves in a fault tree
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corresponding to the top event, intermediate events, and basic events respectively (see
Figure 2.1, page 12), depending on the event is classified as “state-of-system” or “state-
of-component” (see Rule 2.2 for fault tree construction, page 15).

But in the sense of OTS, a fault event often refers to a conjunction of several normal
object states, such as in Section 3.1.1, the event Collision was defined as a conjunction of
two normal object states: train on crossing and barriers not closed (see Equation (3.1),
page 31). The point here is how to decompose such conjunct fault event. In numbers of
formal approaches of FTA [HR98, LM99], events are just decomposed according to the
structure of the formula describing the event. But in our example, to resolve the Collision
event, we can not just simply decompose it into two sub-events as Crossing(tr) and
Open(ba), since neither of them is a fault independently and nobody would like to build
a level crossing to ensure that a train never passes the crossing or the barriers are never
open 1. In [RST00], Reif et al. noticed this problem and proposed to “define events and
sub-events of a gate separately, and to check their correct interrelation explicitly”, how-
ever it still did not explicitly state how to derive the sub-events in a instructive formal way.

A related issue is that, transitions between states are not represented in traditional
fault trees [Lev95], and thus it is difficult to resolve a system fault which consists of event
combination (several normal object states) rather than depending on individual compo-
nent failures. This problem also stems from that traditional FTA mainly focuses on fault
occurrence rather than fault existence as for qualitative analysis of fault trees, and thus
all the fault events (states) are considered as nonrepairable (unchangeable) [VGRH81].
This principle is useful for hardware system analysis, but it may cause troubles when
analyzing transition systems which consist of several objects as we figured out above.

To avoid such misunderstanding and solve the decomposition problem, first we define
the event of the fault trees in the sense of OTS as follows.

Suppose the system is modeled as an OTS, and the universal state space of the OTS
is called Υ. And we assume that data types Dk (k = i1, . . . , im) and D are described in
initial algebra and there exist visible sorts Vk (k = i1, . . . , im) and V corresponding to the
data types.

Definition 5.1 (Event) Each event in a fault tree is a specific system or object state,
whose occurrence can be interpreted (observed) by an observation (predicate) oi over a set
of typed parameters in a form of

oi(Xi1, . . . , Xim) = c (5.1)

where Xk (k = i1, . . . , im) is a variable or constant with Vk, and c is a constant with V
representing the value of the observation oi (for simplification, in the following discussions,
we use the short form oi to denote oi(Xi1, . . . , Xim)).

For example, the event a train on crossing can be represented as

pos(T1) = crossing

1Here, one important principle for developing proper fault trees should be stressed, such as figured out
in the fault tree handbook [VGRH81]: “all events/nodes that are linked together on a fault tree should
be written as faults except, those statements that are added as simply remarks (e.g., CONDITIONING
events)”.
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in the sense of OTS, where pos is an observation defined to observe the state of a train, T1
is a variable representing a train, and crossing is a constant representing the observation
value, i.e., the state of the train.

In case there is no parameter in an event, such event usually represents a state of the
system or an object which is unique (only one instance) and independent (its value is
unrelated with any other variables) in the system. For the latter, we need not to intro-
duce an extra variable to represent it since there is only one instance of the object. For
example, in the crossing control system, there are different (more than one) trains but
with only one (a pair of) barriers, therefore, to define the event that the barriers are open,
we can formulate it as bar = open instead of bar(B1) = open or bar(B1, T1) = open for
simplification.

A special case is that the value of an observation belongs to the Boolean sort, i.e., only
true and false, we use two simple forms oi and ¬oi to represent oi = true and oi = false,
respectively. For instance, the event that the brake of a train is broken can be defined in
the following simple form:

err-brake(T1)

Definition 5.2 (Classification of Event) A event can be classified as a normal or fault
event depending on whether it is an undesired fault in the system, and the decision is usu-
ally made by domain experts. The normal events are usually denoted as CONDITIONING
events, while the fault events are denoted as the nodes of the fault trees.

For example, the above event pos(T1) = crossing is a normal event since it is not an
undesired failure in the crossing control system; while the event err-brake(T1) is a fault
event because it is obviously an undesired failure in the system.

However, as discussed in the beginning of this section, some fault events may consist
of a conjunction of several normal events, in which neither of them is a fault event in-
dependently, but their simultaneous occurrences constitute an undesired fault event. To
this end, we propose a concepts of conjunct fault event to distinguish the fault events as
follows.

Definition 5.3 (Conjunct Fault Event) A conjunct fault event is a conjunction of
several normal events, e.g., oi = p ∧ oj = q (p and q are constants corresponding to the
observation values of oi and oj, respectively), in which neither oi = p nor oj = q is a fault
event independently, but their conjunction constitutes an undesired failure in the system.

The importance to distinguish the conjunct fault event is that, in OTS’s, a system
state can be observed by multiple observations and thus get different observational values
from different viewpoints. Therefore, an undesired system fault may consist of a con-
junction of several normal events, such as the above example, a train on crossing and the
barriers are open are not fault events with respect to the train and the barriers, respec-
tively. Without such distinction, it is difficult to resolve a conjunct fault event correctly
using traditional FTA as we discussed above.
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It should be figured out that there are two kinds of normal events proposed in tradi-
tional FTA, i.e., CONDITIONING and EXTERNAL (HOUSE) events [VGRH81]. The
events that are not faults but specific conditions or restrictions are called CONDITIONING-
events; while the events that are normally expected to occur are EXTERNAL-events,
such as a phase change in a dynamic system [VGRH81]. Since the EXTERNAL-events
are not often used and are not involved in our example, we focus our attention on the
CONDITIONING-events that are usually applied to the INHIBIT-gates in this thesis,
which will be discussed in Section 5.3 — Notation and Semantics of Logic Gates.

It is crucial that the safety engineer and the software engineer agree on the interpre-
tation of the contents of events as formulas [HR98]. The above formulas (definitions)
interpret the possible cases of the events in our formal fault tree model, or more specifi-
cally, FTA of observational transition systems.

5.2 Analysis of Transition Rules

In our formal fault tree analysis of OTSs, we define an important term, namely transition
rule.

Definition 5.4 (Transition Rule) Given an event oi = c, a transition rule states all
the immediate effective conditions that will change (rewrite) the value of the observation
oi to c in the successor system state.

A standard transition rule can be represented by the following formula:

A1 ∨A2 ∨ . . . ∨ An => oi = c (5.2)

where each Ah (h = 1, 2, . . . , n) is one possible effective condition which consists of a
conjunction of events, and => denotes a one-step transition or rewrite relation in a sense
of rewriting logic (it should be distinguished from the strongly implies ⇒ of temporal
logic and implies → of Boolean logic).

One important concept of defining transition rules in fault trees is that, we should con-
sider all the possibilities (including physical environment faults such as hardware defects,
human errors, and so on) for the event oi = c. In other words, it holds independently of
the software-to-be and is related to the completeness of FTA. For example, with respect to
the event pos(T1) = crossing, a corresponding transition rule can be defined as follows:

pos(T1) = sect1 ∧ signal-bypass(T1)

∨ pos(T1) = sect1 ∧ err-brake(T1)

∨ pos(T1) = sect1 ∧ level(T1) = state2 ∧ ¬err-comm(T1)

=> pos(T1) = crossing (5.3)

where the constant sect1 is defined as the previous state of crossing of a train, i.e., after
the train sends a ‘secure’ signal and until it gets a ‘release’ signal from the level crossing
to enter the crossing segment; the event signal-bypass(T1) denotes that the driver drives
the train T1 illegally, i.e., bypassing the ‘stop’ signal; the event level(T1) = stat2 denotes
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that the level crossing has sent the ‘release’ signal to the train T1, i.e., the observation
value of the level crossing is state2; and the event ¬err-comm(T1) denotes that there is
no radio communication error between the level crossing and the train T1.

Another important issue is that each transition rule in FTA only concerns with one
event, even the fault event to analyze may be a conjunct fault event which consists of
several normal events. This is because generally speaking, it is very difficult to analyze
and find a transition rule that will change several observation values at the same time
as we discussed before. By using such kind of divide-and-conquer way, we can focus our
attention on one event in each construction step, which is easier and more efficient to
analyze the conjunct fault events and construct the fault trees.

Before discussing how to decompose the conjunct fault event with the transition rule
(the decomposition of the single fault event is straightforward and can be regarded as a
simple instantiation of the conjunct fault event, therefore, in the following discussions we
focus our attention on the conjunct fault event), one important constraint of the transition
rule should be introduced as follows.

5.2.1 Constraint of Transition Rule

Give a conjunct fault event that consists of two normal events 2, oi = p∧ oj = qα (Notice
here we use qα and qβ to denote two different values of the same observation oj . This
is because in practice, an observation may have more than two different values with the
same sort defined beforehand, and only using q and ¬q may cause misunderstanding and
confusing in the following discussions.), and suppose a transition rule for the event oi = p
is as follows:

A1 ∨ A2 ∨ . . . ∨An => oi = p

Then for each Ah (h = 1, 2, . . . , n), it can not change (cause) the value of oj to any qβ,
where qα 6= qβ.

The reason is obvious. If Ah => oi = qβ, then it is impossible to derive the previous
system state (predecessor) of the conjunct fault event. And if Ah violates the constraint,
we should remove Ak from the transition rule. In case no Ah complies with the constraint,
then we should consider another transition rule for the event oj = qα instead of oi = p.

More specifically, the constraint can be classified into the following three sub-cases
depending on whether Ak contains oj = qα or oj = qβ.

1. If Ah contains oj = qα, say Ah ≡ C ∧ oj = qα, where C is a conjunction containing
no observation of oj, then the formula C ∧ oj = qα => oj = qα must hold 3.

2. If Ah contains oj = qβ, say Ai ≡ C ∧oj = qβ, the the transition rule C ∧oj = qβ =>
oj = qα must also hold.

2A conjunct fault event may consists of more than two events, but for better understanding, here we
only discuss this simple case, and the complex cases can be derived straightforward in the same way.

3Some references defined it as a kind of ‘idling transition’ [MP92], but here we call it as a formula
rather than a transition rule because strictly speaking, it does not change the value of oj to qα, and it
just states that even with the effective condition C, the observation value of oj will not be changed in
the successor system state.

77



3. If Ah contains no observation of oj, say Ah ≡ C, then the above two sub-cases may
either or both hold. However, with respect to the second one, i.e., C ∧ oj = qβ =>
oj = qα, it is difficult for us to identify the event oj = qβ and confirm the above
transition rule since there is no knowledge about oj = qβ in Ah at this moment. And
actually, this transition rule can be covered afterwards when analyzing the event
oj = qα. To this end, we only require that the formula C ∧ oj = qα => oj = qα

holds with respect to this sub-case.

Based on the above analysis, we further present the patterns of sub-events to the
conjunct fault event, oi = p ∧ oj = qα, as follows.

5.2.2 Patterns of Sub-events

1. If Ah contains no observation oj, then the sub-event is: Ah ∧ oj = qα.

2. If Ah contains event either oj = qα or oj = qβ, then the sub-event is: Ah.

The proof of the above patterns is straightforward based on the discussion of constraint
of transition rules as follows.

Pattern-1 : Since Ah => oi = p and Ah ∧ oj = qα => oj = qα, then Ah ∧ oj = qα =>
oi = p ∧ oj = qα, and the sub-event is Ah ∧ oj = qα.

Pattern-2 : Since Ah => oi = p and Ah => oj = qα, then Ah => oi = p ∧ oj = qα, and
the sub-event is Ai.

After defining the transition rule and the patterns of sub-events, we discuss how to
decompose the fault events through a ‘one-state regression’ procedure, using the example
of the conjunct fault event, pos(T1) = crossing ∧ bar = open, suppose bar is an obser-
vation defined to observe the state of the barriers with two values (constants): open and
close.

A transition rule for pos(T1) = crossing has already been found as follows.

τ1 : pos(T1) = sect1 ∧ signal-bypass(T1)

∨ pos(T1) = sect1 ∧ err-brake(T1)

∨ pos(T1) = sect1 ∧ level(T1) = state2 ∧ ¬err-comm(T1)

=> pos(T1) = crossing (5.4)

Then based on pattern-1, we get three sub-events below.

pos(T1) = sect1 ∧ signal-bypass(T1) ∧ bar = open ∨

pos(T1) = sect1 ∧ err-brake(T1) ∧ bar = open ∨

pos(T1) = sect1 ∧ level(T1) = state2 ∧ bar = open (5.5)
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5.3 Notation and Semantics of Logic Gates

After discussing the fault events and transition rules for formal fault tree construction,
there is still another problem need to solve, that is, how to represent the relationship and
semantics between the event, sub-events, and transition rules in a proper way.

An important issue is that, in the standard FTA [VGRH81], it requires that causality
never passes through an OR-gate, and the sub-events are just the restatements of the top
event [VGRH81, Lev95] (Actually, we do not strongly agree with this point. To our under-
standing, it is better to use time-delay rather than causality to explain the difference, and
we will discuss this issue in detail in Section 6.1.1). But in our formal fault tree model, if
we decompose a conjunct fault event by a transition rule, and then get several sub-events
connected by a OR-gate, the time-delay (cause-consequence) relationship does exist in
the OR-gate. To distinguish this difference and explicitly represent the transition rules in
the fault trees, we propose the following notations: if the sub-events are regressed though
transition rules, then the the corresponding OR-gate must be labeled with the transition
rule (or its symbol) for fault tree revising and the denotation of causality; otherwise a
standard OR-gate is used.

Actually, this case also happens for other gates, especially when using INHIBIT-gate
to decompose and simplify a fault event. To this end, we further propose two kinds of
logic gates in our formal fault tree model, that is, a gate labeled with a transition rule is
called a Transition gate (or short in T-gate), whose semantics can be interpreted in a form
of Sub-events => Event or Sub-events ⇔ Event (⇒ for the correctness condition,
and ⇐ for the completeness condition of the gate) in the sense of temporal logic; while a
gate with no transition rule is a standard gate of traditional FTA, whose semantics can
be interpreted as Event⇔ Sub-events.

To illustrate the above points, we present an incomplete fault tree based on the hazard
collision pos(T1) = crossing ∧ bar = open, which was discussed with the analysis of
transition rules in the last section (see Figure 5.1).

As shown in Figure 5.1, the first OR-gate is a Transition OR-gate (short in T-OR-
gate), which states that three sub-events of this T-OR-gate are regressed by τ1, and
there is a causality passes through this T-OR-gate. Therefore, the semantics of this
T-OR-gate is different to the standard OR-gate defined in [VGRH81]. And another OR-
gate at the bottom of the fault tree is a standard OR-gate, which corresponds to the
Ground Rule II for fault tree construction (see Section 2.1.2, page 15), i.e., if a fault
event (BrakeFailure(tr)) is classified as “state-of-component,” add an OR-gate below
the event and look for primary, secondary and command modes (no-brake-signal(T1)).
And in this standard OR-gate, there is no cause-consequence relationship between the
event and sub-events.

A similar case is the INHIBIT-gate with the CONDITIONING-event pos(T1) =
sect1 ∧ bar = open, this is also a standard INHIBIT-gate of FTA in which no transi-
tion rule is introduced. Notice here the INHIBIT-gate plays a role to simplify the fault
event, because the sub-event err-brake(T1) can be identified as a fault event regardless
of the CONDITIONING-event pos(T1) = sect1 ∧ bar = open. By using such kind of
simplification, we can focus our attention on the simplified fault event and decrease the
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pos(T1) = crossing ∧ bar = open

pos(T1) = sect1 ∧ 

err-brake(T1) ∧ 

bar = open

pos(T1) = sect1 ∧ 

signal-bypass(T1) ∧ 

bar = open

pos(T1) = sect1 ∧ 

bar = open

err-brake(T1)

brake-defect(T1)

(Primay Failure)

brake-defect(T1)

(Secondary Failure) no-brake-signal(T1)

τ1

pos(T1) = sect1 ∧ 

level(T1) = state2 ∧ 

bar = open

Figure 5.1: Logic gates with transition rules
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complexity of the fault tree efficiently.

5.4 Formal Fault Tree Construction Model of OTS

Based on the above discussion and analysis, we present our formal fault tree construction
model below.

We take a catastrophic failure as the root node of the fault tree, namely R. Assume
R is a conjunct fault event consisting of two normal events, i.e., oi = p ∧ oj = qα, the
regression procedure for the formal fault tree construction is as follows (in case R is not a
conjunct fault event that consists of only one fault event oi = p, the regression procedure is
straightforward and can be regarded as a simple instantiation of the following procedure).

Initial step Define the formal specification of R ≡ oi = p ∧ oj = qα.

Regression step
Let A1 ∨ . . . ∨ An ⇒ oi = p be the transition rule selected, and Ah (h = 1, . . . , n)
complies with the constraint, that is, Ah 6=> oj = qβ, where qβ denotes any other
observation value of oj except qα.

• For each Ah, if Ah does not contain oj = qα or any oj = qβ, then Mh :=
Ah ∧ oj = qα, else Mh := Ah, where Mh is a intermediate variable.

• R := M1 ∨M2 ∨ . . . ∨Mn

Iteration step

(1) Decompose the resulting R to some sub-events by an appropriate logic gate or
edge;

(2) Integrate and record the corresponding transition rule into the logic gate or
edge for further revision;

(3) Then for each sub event, redo the inductive and iteration steps recursively until
a basic event or the chosen abstraction level is reached.

To better understand the above formal fault tree construction model and procedure,
we can use the crossing control example from Section 3.1.1 as an illustration. In the
crossing control system, the root node of collision is formally defined as:

R : pos(T1) = crossing ∧ bar = open

Then we focus on the event “pos(T1) = crossing” to analyze which conditions will
cause a collision to occur. We get the following transition rule:

τ1 : pos(T1) = sect1 ∧ signal-bypass(T1)

∨ pos(T1) = sect1 ∧ err-brake(T1)

∨ pos(T1) = sect1 ∧ level(T1) = state2 ∧ ¬err-comm(T1)

=> pos(T1) = crossing
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This transition rule complies with the constraint, i.e., neither of Ah will change the
value of bar, and We thereby formally derive the following formula:

pos(T1) = sect1 ∧ signal-bypass(T1) ∧ bar = open ∨

pos(T1) = sect1 ∧ err-brake(T1) ∧ bar = open ∨

pos(T1) = sect1 ∧ level(T1) = state2 ∧ ¬err-comm(T1) ∧ bar = open

According to the structure of this formula, we thereby obtain three sub-events by adding
an T-OR-gate with the root node R.

S1a : pos(T1) = sect1 ∧ signal-bypass(T1) ∧ bar = open

S1b : pos(T1) = sect1 ∧ err-brake(S, T1) ∧ bar = open

S1c : pos(T1) = sect1 ∧ level(T1) = state2 ∧ ¬err-comm(T1) ∧ bar = open

Here, we regard signal-bypass(T1) and err-brake(T1) as basic fault events, and since
either pos(T1) = sect1 or bar = open is a normal event, and their conjunction does
not constitute a conjunct fault event, an INHIBIT-gate with the CONDITIONING-event
pos(T1) = sect1∧ bar = open can be introduced to further simplify S1a and S1b as shown
in Figure 5.2. Two basic events B1 and B2 with a CONDITIONING-event C1 is defined
as follows.

B1 : signal-bypass(T1)

B2 : err-brake(T1)

C1 : pos(T1) = sect1 ∧ bar = open

It should be figured out that, the function range of an CONDITIONING-event is
limited to the specific logic gate that it connects to. In other words, an event which is
regarded as a CONDITIONING-event for a specific logic gate does not mean that, this
event can also be identified as a global CONDITIONING-event in the fault trees.

Then we focus on S1c, it can also be simplified by an INHIBIT-gate, and we get a
simplified conjunct fault event S1cs and a CONDITIONING-event C2 as follows.

S1cs : level(T1) = state2 ∧ bar = open

C2 : pos(T1) = sect1 ∧ ¬err-comm(T1)

We regard C2 as a CONDITIONING-event because S1cs can be identified as a conjunct
fault event (the level crossing has sent a ‘release’ permission to a train, but the barriers
are still open), and both pos(T1) = sect1 (a train is waiting for the ‘release’ permission
to pass the crossing) and ¬err-comm(T1) (no radio communication error occurs) as well
as their conjunction are normal events.

Focused on the event level(T1) = state2 of S1cs, one transition rule to cause the level
crossing to send a ‘release’ signal to a train is that, the level crossing has accepted and
confirmed a ‘secure’ signal from the train, i.e., level(T1) = state1. The corresponding
transition rule τ2 is defined as follows.
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Figure 5.2: Formal fault tree of hazard collision based on OTS
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τ2 : level(T1) = state1 => level(T1) = state2

And from τ2, we get a sub-event S2 as follows.

S2 : level(T1) = state1 ∧ bar = open

Notice here we should use a edge rather than a logic gate to connect S1cs and S2, and
the transition rule τ2 should also be labeled besides the edge for revising.

Further analysis will try to regress level(T1) = state1, and we would get a tran-
sition as follows, that is, if a train has sent a ‘secure’ signal to the level crossing (de-
noted by pos(T1) = sect1), and there is no radio communication error (denoted by
¬err-comm(T1)), and the barriers are open (denoted by bar = open), the crossing will
accept this request (notice here bar = open is regarded as shared variable to ensure that
there is no train on the crossing at this moment, which is equal to the variable Idling(sys)
discussed in Section 3.2.2).

pos(T1) = sect1 ∧ ¬err-comm(T1) ∧ bar = open => level(T1) = state1

However, based on the system design knowledge, we know that once the crossing has
accepted a ‘secure’ request, then it must close the barriers until it gets a ‘passed’ signal
from the train. In other words, A => qβ with respect to S2, which violates the constraint
of the transition rule. Therefore, we should focus on bar = open and derive another
transition rule as follows.

τ3 : timeout(S, T2) ∨ pos(S, T2) = sect2 ∧ ¬err-comm(S, T2) => bar(S) = open

which states that two possibilities for the barriers to open are either a time-out event
timeout(T2) (the crossing has been closed and waiting for a ‘passed ’ signal over a designed
time d, and then opens the barriers to protect cars against endless waiting) occurs, or
another train T2 sends a ‘passed ’ signal (denoted by pos(T2) = sect2) and there is no
radio communication error (denoted by ¬err-comm(T2)). Use this transition rule to
regress S2, we get two corresponding sub-events connected by an T-OR-gate below.

S3a : level(T1) = state1 ∧ timeout(T2)

S3b : level(T1) = state1 ∧ pos(T2) = sect2 ∧ ¬err-comm(T2)

Notice here a subtle system safety design issues is exposed by S3b, which states that
the two events, level(T1) = state1 and pos(T2) = sect2 can not occur simultaneously, in
other words, if the crossing confirm and accepts a ‘secure’ request from one train, it can
not receive a ‘passed’ signal from another train at this moment.

Keep doing analysis in the similar way, finally we derive all the transition rules and
events as follows, and the entire fault tree is shown in Figure 5.2. And for better under-
standing, we list the explanation of the observations and events in Tabel 5.1.

B3 : timeout(T2)

C3 : level(T1) = state1
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Observation Values Explanation

pos(T1) sect1
A train has sent a ‘secure’ signal to the level cross-
ing and is waiting for the ‘release’ signal before the
crossing track segment.

crossing
After getting the ‘release’ signal, a train is passing
on the crossing

sect2
A train has passed the crossing and sent a ‘passed’
signal to the level crossing.

level(T1) state1
The level crossing has accepted a ‘secure’ request
from a train.

state2
The level crossing has sent a ‘release’ permission
to a train.

bar open The barriers are open.
close The barriers are close.

signal-bypass(T1) Boolean
The driver of a train bypasses a ‘stop’ signal and
enters the level crossing illegally.

err-brake(T1) Boolean The brake of a train is broken.
timeout(T1) Boolean A time-out fault occurs.

err-comm(T1) Boolean
A radio communication error occurs between the
level crossing and a train.

Table 5.1: Illustration of observations and events

S3bs : level(T1) = state1 ∧ pos(T2) = sect2

C4 : ¬err-comm(T2)

τ4 : pos(T2) = crossing => pos(T2) = sect2

S4 : level(T1) = state1 ∧ pos(T2) = crossing

τ5 : pos(T1) = sect1 ∧ ¬err-comm(T1) ∧ bar = open => level(T1) = state1

B4 : bar = open ∧ pos(T2) = crossing

C5 : pos(T1) = sect1 ∧ ¬err-comm(T1)

It should be noted that as for S4, we focused on level(T1) = state1 instead of
pos(T2) = crossing because we have found the transition rule for pos(T1) = crossing
before (Notice here T1 and T2 are just variables denoting different trains, so the above
two formulas/events can be understood as the same). An subtle issue is that finally we
get B4, which is equal to the Root node, R, i.e., pos(T1) = crossing ∧ bar = open. Here,
an important system safety issue was disclosed, that is, the fault events linked on the
branch from R to B4 are mutual dependent (shown in Figure 5.2). And in contrast, the
corresponding safety properties or invariants (the negations of the fault events which are
related to system design compared with those fault events linked on the other branches)
are also mutual dependent.

Therefore, from Figure 5.2, we can get the following important information, while
most of them are difficult to find by tradition FTA.
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• Three basic events, signal-bypass(T1), err-brake(T1), and timeout(T1) should be
taken into account with respect to hazard collision, and their corresponding condi-
tions (CONDITIONING-events connected with the corresponding INHIBIT-gates)
are also useful for taking precautions.

• Some mutual exclusion problems have been discovered , such as the event S4, which
states that when a train on the crossing, the crossing can not responds a ‘secure’
request from another train.

• An mutual dependency relation between the fault events has been discovered, which
has also been demonstrated in our formal verification in the last Chapter.

• All the transition rules founded in FTA can be reused in subsequent system formal
modeling and verifying, together with deep understanding of the system and pri-
mary design scheme followed by the stepwise and instructive fault tree construction
processes.

• Last but not least, the correctness and completeness of the fault tree are guaranteed
by the transition rules, which makes it possible to revise and recheck the fault tree
in a easy and instructive way.

5.5 Summary

In this chapter focused on the incorrectness problem of traditional FTA, we have presented
an approach to formal fault tree construction based on the OTS model. In our model,
the semantics of fault events has been defined, and as for the conjunct fault events that
seems difficult to analyze by traditional FTA, an one-state regression procedure has been
proposed, by introducing the concept of transition rules. Therefore, the correctness of the
fault tree is guaranteed by the transition rules and the fault tree construction process.

Compared with traditional FTA [VGRH81]and some of its formal models [HR98,
STR02], the advantages of our formal fault tree construction model are as follows.

• It is a deductive method to build fault trees more precisely and effectively;

• The correctness of our formal fault tree is proved by the construction process it-
self, thus avoiding the problems that often arise with traditional methods. At the
same time, it gives designers and domain experts the ability to discover transition
rules and important design principles in an instructive way during the construction
process;

• We integrate the transition rules into the fault tree, which makes the formal fault
tree more complete and is useful for further revising and rechecking of the fault
trees.

Compared with our formal fault tree construction model of temporal logic (or short
in FTA/TL) proposed in Chapter 3, there are two important benefits of this formal fault
tree analysis of observation transition systems (or short in FTA/OTS). First of all, since
currently our research is mainly based on OTS/CafeOBJ, it makes the combination of
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these two techniques and the transformation from system safety analysis to formal system
specification and verification more consistent and efficient. In addition, it also provides
an alternative for experts who are not familiar with temporal logic.

The combination of FTA and OTS/CafeOBJ is an important issue because it provides
an approach/mechanism to transform the results of safety analysis into formal system
specification (requirements analysis) more efficiently and effectively. In the next chapter,
we will further discuss how to transform the results of FTA/OTS into formal system
specification with OTS/CafeOBJ, and how to link fault tree analysis to program design
and development by using the common signature and understanding model of OTS.

And as a complement and extension of the formal fault tree models proposed in this
thesis, in the next chapter, we are also tying to present some objective analysis and
comparison between our formal fault tree models and some other existing formal FTAs
based on temporal logic.
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Chapter 6

Analysis of Formal FTAs and
Requirements Specifications

In this chapter, we are trying to present an analysis of different formal FTAs, and we
focus our attention on the following two issues.

• Temporal semantics of fault trees. Currently, several temporal semantics have been
proposed for formal fault tree analysis [BA93, HR98, STR02], and our formal fault
tree construction models are also based on temporal logic 1, therefore, it is necessary
to analyze the difference between these methods as well as the role of temporal logic
in fault tree analysis.

• Global correctness and completeness of fault trees. Once temporal semantics has
been introduced for fault tree constructors (logic gates and edges), the proof of global
correctness and completeness of the fault trees becomes an non-trivial problem, and
it generally is more complicated compared with the traditional fault trees which are
based on simple Boolean logic. Therefore, we will try to prove the global correctness
and completeness of our two proposed formal fault tree models.

• The combination between fault tree analysis and formal system specification and
verification, i.e., how to link the safety analysis to requirements specification and
verification in a consistent way. This issue is important because in practice, a
common framework (model) should be provided for engineers and designers from
multiple disciplines to work together more efficiently as for more effective and precise
requirements analysis.

Therefore, in the work described here, we first present an objective analysis of dif-
ferent formal FTAs, especially on the role of temporal logic for fault trees. Then, we
prove the global correctness and completeness of our two formal FTA models. Finally we
focus on how to link fault tree analysis to program design and development, propose a
transformation from the results of fault tree analysis to formal system specifications with
OTS/CafeOBJ, by using the common signature and understanding model, OTS. This
chapter can be regarded as an extension and complement of our formal fault tree analyses
proposed in this thesis, which aims at an important issue of requirements analysis, that is,

1One is based on the monotonicity of temporal logic, the other is based on the OTS model which can
also be interpreted by temporal logic.
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B1 B2

Figure 6.1: Fault tree with PRIORITY AND-gate

what is and how to provide a nice formalism for fault trees to support both more reliable
safety analysis and more efficient requirement analysis? And we demonstrate that our
FTA/OTS model can be a good solution for this problem.

6.1 Temporal Semantics of Fault Trees

In this thesis, we have proposed two formal fault tree models based on linear temporal logic
(LTL) and classical propositional logic with the basic concepts of observational transition
system (OTS), and the latter can also be interpreted by temporal logic2. Some other
formal works of fault trees with temporal logic can be found in [HR98, STR02, BA93],
and a discussion about the advantages as well as disadvantages of supporting fault tree
analysis with or without temporal logic can be found in [BA93]. In this section, we will
first introduce and further analyze the difference of different semantics of fault trees in
detail, and then present our formal semantics of fault trees proposed in this thesis, which
constitutes the basis of the proof of the global correctness and completeness of the fault
trees discussed in the next section.

6.1.1 The Role of Temporal Logic in FTA

There are three main timing issues in fault trees: timing-order between sub-events, timing-
relation between event and its sub-events, and synchronism and asynchronism of sub-
events. In addition, a related issue is the causality of AND- and OR-gates, which seems
to be a vague issue in traditional FTA [VGRH81, Lev95].

Timing-order between sub-events

This case usually happens when defining the formal semantics of PRIORITY AND-gate,
which requires that the (output) event occurs when all of the (input) sub-events occur in
a specific (usually left-to-right) order. For example, in [HR98], the formal semantics of a
fault tree with PRIORITY AND-gate (see Figure 6.1) is defined as follows.

A
def
= B1 ∧ ( B2)

The above temporal formula explicitly specifies that B1 and B2 occur in a left-to-right
order by introducing the temporal Eventually operator .

2In this case, we can use the temporal Next operator to represent the transition between states.
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Figure 6.2: Fault tree with AND-gate and CONDITIONING-event

Another solution to represent such timing-order without temporal logic can be found
in the Fault Tree Handbook [VGRH81], that is, by introducing a CONDITIONING event
C connecting to a standard AND-gate, in which the semantics of C can be interpreted
by a predicate as “B1 occurs before B2”. The corresponding fault tree is pictured in
Figure 6.2 , and the semantics of the tree can be interpreted in an equivalent form by
propositional logic as follows.

A
def
= B1 ∧ B2 ∧ C

Timing-relation between sub-events and event

Generally speaking, traditional FTA does not consider time delays between sub-events
(causes) and events (consequences), this is mainly due to the fact, that only hardware
systems are analyzed in the fault tree handbook [VGRH81]. In this case, time delay is
not an important issue, and a system fault state can be simply partitioned into some
component failures, such as a circuit system.

This problem becomes an important issue when we want to to make the fault tree
specification more precise, and to distinguish the time-delay explicitly from the immediate
cases. To this end, some researchers propose to define two different semantics and gates to
represent and distinguish the immediate and time-delay relation between the sub-events
and event [BA93, Gór94, STR02]. For example, in [BA93], G. Bruns et al. propose two
temporal semantics for gates, and here we use a fault tree with AND-gate for illustration
as follows.

Given a fault tree with AND-gate which is pictured in Figure 6.3, if there is no time-
delay between the sub-events B1 and B2 and the top event A, the semantics of this fault
tree can be defined as:

A
def
= B1 ∧B2

In case the time-delay should be considered and explicitly specified, i.e., B1 and B2 happen
before A, then the semantics of it can be defined by the following temporal formulas:

sufficient condition (local correctness) : B1 ∧ B2 ⇒ A

necessary condition (local completeness) : A⇒ (B1 ∧ B2)

And in [STR02], G. Schellhorn et al. further propose two different gates to distinguish
this difference. One is the standard gates of traditional FTA, called decomposition gates
(short: D-gates); the other is cause-consequence gates (short: C-gates) which require that
the cause must occur before the consequence, and more subtle semantics are defined for
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Figure 6.3: Fault tree with AND-gate

the C-gates based on Interval Temporal Logic (ITL).

However, such time-delay issue is disputed by some other researchers because they
think that it allows an optimistic interpretation of fault trees in the sense that a system
failure may be avoid if the operator intervenes fast enough, has enough luck, etc., while
such speed, luck, and the like should not be design parameters in safety critical systems
[HR98]. Therefore, Hansen et al., suggest to take the pessimistic semantics for fault trees,
i.e., neglecting the time-delay between the sub-events and event even such a delay may
exist.

To our experience, the time-delay should be explicitly represented when we use tran-
sition rules (domain rules with time-delay between the antecedence and consequence) to
decompose a (conjunct) fault event. And we use transition gates (short: T-gates) and
delay gates (short: D-gates) to distinguish the standard gates, especially the standard
OR-gate that requires no causality and time-delay between the sub-events and output
event [VGRH81]. This is an issue related to the difference of causality between standard
AND- and OR-gates that we will discuss later.

Another issue is that if we introduce time-delay into the fault tree semantics, the
minimal cut sets can not generally be obtained [BA93] (mostly because the temporal
Eventually operator can not be distributed over conjunction/AND-gate), and the global
correctness of the fault trees can not be proved considering the synchronism of the sub-
events of AND-gate [STR02]. This is an issue we will discuss in Section ??.

Synchronism and asynchronism of sub-events

This problem has been firstly noticed by Hansen et al. in [HR98], and in [STR02], G.
Schellhorn et al. further proposed a kind of Asynchronous Cause-consequence And-gate
(short: AC-AND-gate). The synchronism and asynchronism of sub-events are usually
considered in AND-gate because sometimes we should distinguish whether the sub-events
occur simultaneously or not to cause the output event; while in OR-gate, we need not
consider such difference.

For example, with respect to the fault tree with AND-gate as shown in Figure 6.3, the
standard semantics of it is defined as follows,

A
def
= B1 ∧B2
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which states (supposes) that A occurs iff B1 and B2 occur simultaneously.
If we consider a more liberal interpretation of this AND-gate in which B1 and B2

need not occur simultaneously, we get the following semantics, which is defined as the
AC-AND-gate in [STR02].

A
def
= B1 ∧ B2

However, this interpretation has been finally rejected by G. Hansen et al. because
they think that the above formula remembers both occurrences of B1 and B2, such that
if B2 becomes true 1 year after B1, then A holds, and they think this is not the intended
meaning of an AND-gate [HR98].

Furthermore, to our understanding, even B1 and B2 occurred asynchronously, one
important fact is that, when A occurs, both B1 and B2 must (still) hold at this observa-
tional time. This is the intended meaning of an AND-gate. From this point of view, we
think that it is not necessary to distinguish the difference and increase the complexity of
the problem. Even in some special cases where the asynchronism must be specified, we
can also use CONDITIONING-event instead of developing additional gates to solve this
problem.

Causality of AND- and OR-gate

We focus on causality of AND- and OR-gate because it is an vague issue in traditional
FTA. For example, there are several important statements in [VGRH81, Lev95]:

It is important to understand that causality never passes through an OR-gate
([VGRH81, page IV-5]).

One way to detect improperly drawn fault trees is to look for cases in which
causality passes through an OR-gate. This is an indication of missing AND-
gate and is a sign of improper logic in the conduct of the analysis ([VGRH81,
page IV-6])

The input events to an OR-gate do not cause the event above the gate, but are
simply re-expressions of the output event. In contrast, the events attached to
the AND-gate are the causes of the event above the gate [VGRH81] ([Lev95,
pages 318–320]).

However, in these literatures, they did not explain the reason clearly, and there was
no concrete example to demonstrate and support these points. This brings us some
interesting questions:

• Why causality can not exist in the OR-gate but does exist in the AND-gate? Can
we find some examples to illustrate the reason behind?

• In case causality passes through an OR-gate, what would happen? Is it really a
serious problem and a sign of improper logic in the conduct of the analysis in every
case?

To answer the above questions, we first analyze why causality may not exist in an
OR-gate but must exist in an AND-gate, and then try to demonstrate that in some cases,
it is also convenient to specify the input events to an OR-gate as the causes of the output
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Figure 6.4: Causality of OR-gate

event, and it will not cause big troubles or serious problems as warned by [VGRH81].

Suppose a standard OR-gate consists of two input events B1 and B2 and an output
event A, the semantics of this OR-gate can be interpreted as A = B1 ∨ B2, which states
that the fault space of A can be simply divided/paritioned as an union of two sub fault
space of B1 and B2 (see Figure 6.4). In this case, it is safe to say that there is no causality
between the input events and the output event, because the semantics of the OR-gate
can be understood as a fault space partition (from higher abstract fault to lower concrete
failures). A typical example of this case is using an OR-gate to divide a component fault
into three sub fault spaces, i.e., primary fault, second fault, and command fault of the
component [VGRH81, page V-3].

In contrast, could we interpret the output event A of an AND-gate as an intersection
of the two input events B1 and B2? If so, then we can conclude that causality may also
not exist in the AND-gate. To answer this question, let’s consider the right graph of
Figure 6.5, if the fault space of event A can be interpreted as an intersection of the fault
spaces of B1 and B2, then the above hypothesis holds, and the semantics of the AND-gate
can be defined as A = B1 ∧ B2 similarly.

However, if we consider this graph and the relationship between A and B1 and B2 more
seriously, we will find a structural mistake, i.e., the output event A is a lower concrete
failure rather than a higher abstract fault of the input events B1 and B2. This of course
violates the top-down analyzing approach of standard FTA, and it is obviously unrealistic
to attribute a lower level event (such as a component failures) to some higher level events
(such as some system-level faults) with an AND-gate in the convention of FTA. Therefore,
if we follow the top-down method of FTA, the output event of an AND-gate can never
be defined as an intersection of the input events. In contrast, the input events must be
defined as the causes of the output event, and the semantics of the AND-gate can be
interpreted as B1 ∧B2 ↔ A 3.

After studying the difference of causality between AND- and OR-gate, we try to
analyze the possible harm by introducing causality into the OR-gate as figured out in
[VGRH81].

3Notice here we use → to denote the causality as well as the correctness of the AND-gate, while the
← can be understood as the completeness of the AND-gate.
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A

B1 B2

AB1 B2

Figure 6.5: Causality of AND-gate

A

B1 and B2 B3 and B4

Figure 6.6: Fault tree missing AND-gate

Suppose a system consists of four components b1, b2, b3, and b4, and assume the
component faults are named as B1, B2, B2, and B4, respectively. Suppose a system
hazard A may be caused either if both B1 and B2 occur, or if both B3 and B4 occur.
A corresponding fault tree then can be drawn as shown in Figure 6.6. The problem of
Figure 6.6 is that each input event consists of two component faults, and both of them
can be regarded as the causes with respect to the output event A, in other words, the
causality passes through the OR-gate of the fault tree. From this point of view, it violates
the definition of standard OR-gate. To solve this problem, we can introduce two more
INTERMEDIATE events (M1 and M2) and two AND-gates, and a revised fault tree is
shown in Figure 6.7.

There are two benefits of the revised fault tree (see Figure 6.7) compared with Fig-
ure 6.6. One is that by introducing one more abstraction level and two INTERMEDIATE
events M1 and M2, it makes the analysis more complete, and at the same time, causality
does not passes through the corresponding OR-gate because M1 and M2 can be interpreted
as two sub fault spaces (restatements) of A. The other is by adding two AND-gates, we
can guarantee that each node of the fault tree consists of a simple component fault rather
than a conjunction of two component faults as shown in Figure 6.6, which makes the logic
structure of the fault tree more clear and understandable.

The above example seems to support the argument posted in page 92, i.e., once causal-
ity exists in an OR-gate, it is an indication of a missing AND-gate and is a sign of the
use of improper logic in the conduct of the analysis [VGRH81]. However, if we consider
another special case using the same example above, i.e., suppose the system hazard A will
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Figure 6.7: Fault tree adding AND-gate
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B4B3B2B1

A

M4M3M2M1

B1 B3 B4B2

Figure 6.8: Special OR-gate

happen if one or more of the component faults Bi(i = 1, . . . , 4) occur. With respect to
this specific case, since each single component fault is enough to cause the system hazard
A, it is convenient and quite natural to use an OR-gate to depict their logic relationship,
and the semantics of the generated fault tree can be interpreted as B1∨B2∨B3∨B4 ↔ A,
in which causality does exist (see the lefthand fault tree of Figure 6.8).

People may argue the causality problem of this OR-gate, and to remedy it, a similar
solution is to introduce four INTERMEDIATE events (see the righthand fault tree of
Figure 6.8). However, with regard to this special case, we think it is unnecessary to stiffly
follow the no causality rule, since the introduced INTERMEDIATE events are exactly
the same meaning of the component faults (the only difference may be the abstraction
levels), and such a solution seems only to make the analysis more complex by introducing
redundant levels and events without any benefits.

Moreover, to our understanding, even with respect to the standard OR-gate, the input
events (restatements) can also be interpreted as the causes of the output event from a
more general viewpoint. Therefore it is unnecessary to insist on the importance of no
causality in OR-gate as claimed by [VGRH81, Lev95], since sometimes it may cause con-
fusing and inconvenience as shown in the above example.
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Correctness condition Completeness condition

AND-gate a ∧ b⇒ R R⇒ a ∧ b
OR-gate (a ∨ b)⇒ R R⇒ (a ∨ b)

INHIBIT-gate (a ∧ C)⇒ R R⇒ a

D-AND-gate a ∧ b⇒ R R⇒ a ∧ b

D-OR-gate (a ∨ b)⇒ R R⇒ (a ∨ b)

D-INHIBIT-gate (a ∧ C)⇒ R R⇒ a

T-AND-gate a ∧ b⇒ R R⇒ a ∧ b

T-OR-gate (a ∨ b)⇒ R R⇒ (a ∨ b)

T-INHIBIT-gate (a ∧ C)⇒ R R⇒ a

Table 6.1: Semantics of gates

Based on the above discussion and analysis, we propose that all the input events of
AND- and OR-gates are the causes of their output event, respectively. And instead of
emphasizing the causality, we think it is more important to distinguish the time-delay
issue of different gates. As discussed before, a gate with time-delay usually represents
that the input events are decomposed by a domain or transition rule, which is called
D- or T-gate in our formal fault tree models. In contrast, a gate with no time-delay is
then a gate of standard FTA, such as the standard OR-gate, it is obvious that there is
no time-delay between the output event and the input events if we just use partitioning
(fault space splitting) to decompose the output event 4.

6.1.2 Formal Semantics of FTA/TL and FTA/OTS

Based on the above discussions, we present the formal semantics of our two formal fault
tree models: fault tree analysis based on temporal logic (FTA/TL, Chapter 3) and obser-
vational transition system (FTA/OTS, Chapter 5).

In our formal fault tree models, we use the concepts of D-gate and T-gate to represent
the time-delay between the input events and output event, while asynchronism is not
considered, and we propose that causality passes through both AND- and OR-gates.
Therefore, by using temporal logic, we present the formal semantics of three kinds of logic
gates (standard gate, D-gate, and T-gate) discussed in this thesis in Table 6.1, where a, b
denote the input events, R denotes the output event, and C denotes the CONDITIONING
event.

In Table 6.1, the correctness condition of each gate (or called local correctness) guar-
antees that if the input events (causes) happen, the output event (consequence) must
happen too. The completeness condition (or called local completeness) guarantees that
all input fault events have been listed: the output event must not happen without the
input fault events. Notice here we use the term of “input fault events” instead of “input
events” in the completeness conditions because completeness is a concept related to safety
analysis, and from the point of view of safety, we do not care about the input normal

4Notice here the input events can be understood as not only the restatements, but also the causes of
the output event.
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events (i.e., CONDITIONING-events). In other words, to ensure the output event never
happen, we usually prevent that the input fault events will never happen (suppose the
completeness condition is satisfied), while not to prevent the CONDITIONING-events.
The difference is shown between the completeness conditions of AND- and INHIBIT-gates.

Another related issue is the definition of minimal cut set. In standard FTA, the
minimal cut set is defined as a combination of primary fault events ‘sufficient’ for the top
event [VGRH81]. This definition seems no problem if we limit the analysis to only AND-
and OR-gates such as discussed in [VGRH81]. However, in case a fault tree consists of
CONDITIONING events and some other gates, e.g., INHIBIT-gate, such a definition is
not precise enough and may cause confusion and contradiction.

To this end, based on Table 6.1, we further propose two kinds of minimal cut sets of
fault trees as follows.

Sufficient Minimal Cut Set : A sufficient minimal cut set SMCS is a smallest combi-
nation of primary events (including CONDITIONING events) which, if they occur,
will cause the top event to occur.

Necessary Minimal Cut Set : A necessary minimal cut set NMCS is a smallest com-
bination of only primary fault events which, if the top event occurs, then they must
also occur.

The SMCSs can be calculated by the correctness conditions of gates, while the NMCSs
can be calculated by the completeness conditions of gates, respectively. Moreover, from
NMCSs, it is straightforward to derive the minimal path sets (the complements of the
minimal cut sets), which is important for the prevention of the top event [VGRH81, pages
VII-15 – VII-20] and is related to the global completeness of the fault tree that we will
discuss in the next section.

6.2 Global Correctness and Completeness of Fault

Trees

After analyzing the formal semantics of fault trees, in this section, we discuss and prove
the global correctness and completeness of the fault trees.

Firstly, we present an informal description of the global correctness and completeness
of the fault trees as follows.

global correctness of fault tree : If all (local) correctness conditions of gates can be
proved, then the following holds: if all the primary events of some sufficient minimal
cut sets occur, then the top event must also occur.

global completeness of fault tree : If all (local) completeness conditions of gates can
be proved, then the following holds: if all the primary fault events of some minimal
path sets do not occur(in other words, if for each necessary minimal cut set it is
possible to guarantee the non-occurrence of at least one primary fault event), then
the top event will never occur.
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Figure 6.9: Correctness of D-AND-gates

With respect to standard FTA, the proof is straightforward since no temporal se-
mantics are introduced. However, if we introduce temporal semantics for the gates (e.g.,
D-gates and T-gates), the proof becomes complex. In [BA93], G. Bruns et al. found that
once time-delay was introduced for the gates (corresponding to the D-gates in Table 6.1),
even the minimal cut sets (corresponding to SMCSs defined in the last section) could not
generally be derived. This is because the temporal Eventually operator can not be
distributed over conjunction, and so as to make the calculation of SMCSs over cascaded
AND-gates very difficult.

With regard to this problem, we propose to overlook the temporal semantics of gates
when calculating the SMCSs, and then to prove the global correctness based on the gen-
erated SMCSs afterwards. Similar solution can also be found in [STR02]. However, even
the SMCSs can be calculated as usual by overlooking temporal semantics, the proof of
the global correctness is still a hard work. A simple example can be used to illustrate this
point as follows.

Suppose a fault tree consists of two D-AND-gates (see Figure 6.9), and assume the
local correctness conditions are proved, i.e., a∧ b⇒ R, c∧ d⇒ b. Our goal is then
to prove that a ∧ c ∧ d⇒ R holds, where a, c, d constitute the minimal cut set of the
fault tree. However, this goal (global correctness) can not be proved because we can not
prove that a ∧ b⇒ R based on the local correctness conditions.

Similar attempt can also be found in [STR02], and they (G. Schellhorn et al.) stated
that the global correctness could not hold neither for standard AND-gate nor for D-AND-
gate, but only for asynchronous AND-gate. But in our formal fault tree models (FTA/TL
and FTA/OTS), the asynchronous AND-gate is not supported. This brings us a problem:
should we give up the attempt (the proof of global correctness)?

In contrast, the proof of the global correctness (considering D-AND-gate) is relatively
easy. Using the same example, we can easily prove that ( ¬a∨ ¬c∨ ¬d)⇒ ¬R
holds, where ¬a,¬c, and ¬d are the three minimal path sets of the fault tree. But with
respect to our FTA/OTS, since we use temporal Next operator instead of Eventually
operator to interpret the semantics of T-gates, the above formula of global correctness
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does not hold too.

Therefore, focused on the above problems, by using structural induction over the size
of the fault tree, we have finally proved the following theorems for the global correct-
ness and completeness with respect to FTA/TL and FTA/OTS, respectively. The proofs
have been verified formally using Maude LTL (Linear Temporal Logic) tautology checker
[EMS02, CDE+03a].

• FTA/TL (fault tree consists of D-gates and standard gates)

Global Correctness : If for all gates the correctness conditions hold, then for
any SMCS Si which consists of a conjunction of primary events in a form of
bi1 ∧ . . . ∧ bin , and suppose R is the top (Root) event, the following formulas
hold:

(bi1 ∧ . . . ∧ bin → R) (6.1)

bi1 ∧ . . . ∧ bin ⇒ R (6.2)

Global Completeness : If for all gates the completeness conditions hold, then for
any minimal path set Pj which consists of a conjunction of the negations of
primary fault events in a form of ¬bj1 ∧ . . .∧¬bjn

, the following formula holds:

¬bj1 ∧ . . . ∧ ¬bjn
⇒ ¬R (6.3)

• FTA/OTS (fault tree consists of T-gates and standard gates)

Global Correctness : If for all gates the correctness conditions hold, then for
any SMCS Si which consists of a conjunction of primary events in a form of
bi1 ∧ . . . ∧ bin , the following formulas hold:

[l−lbi1
]bi1 ∧ . . . ∧ [l−lbin

]bin ⇒ [l]R (6.4)

(bi1 ∧ . . . ∧ bin → R) (6.5)

where lbik
(k = 1, . . . , n) denotes the transition length of the primary event bik ,

i.e., the number of T-gates and T-edges existing in the path from R to bik , and

l denotes the longest transition length among bik , [l] is the abbreviation of
l temporal Next operators.

Global Completeness : If for all gates the completeness conditions hold, then for
any minimal path set Pj which consists of a conjunction of the negations of
primary fault events in a form of ¬bj1 ∧ . . .∧¬bjn

, the following formula holds:

¬bj1 ∧ . . . ∧ ¬bjn
⇒ [l]¬R (6.6)

( ¬bj1 ∧ . . . ∧ ¬bjn
) ∧ (¬R ∧ ¬ex1

∧ . . . ∧ ¬exy
)⇒ ¬R (6.7)
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where ex1
, . . . , exy

denote all the intermediate events of the sub dual (comple-
mented) tree with respect to the minimal path set Pj

5.

Notice:

• (6.1) and (6.5) should be regarded as a kind of weaker correctness, since it just
states that if all the primary events of a sufficient minimal cut set occur, then it is
possible for the root event to occur.

• (6.2) only works for traditional fault tree analysis based on the assumption that,
a fault event once occurs, it will always hold and there is no other events will
repair (change) the fault (see Section 2.1.2: Fault Occurrence vs. Fault Existence)
[VGRH81, page V-1 – V-2]. However, this assumption does not hold in our FTA/TL
and FTA/OTS in case conjunct fault events are introduced.

• (6.7) is a refinement of (6.6), which states that if the non-occurrence of all the
primary fault events of one minimal path set can be always guaranteed, and the
non-occurrence of the root event and all the intermediate events of the sub dual tree
of the minimal path set can be guaranteed at the current state, then the system
will always be safe. The second condition can be regarded as a kind of initialization
(initial case) in the sense of theorem proving by induction. In contrast, without
the second condition, (6.6) can only ensure that after l transitions, the system will
always be safe even we have guaranteed that all the primary fault events will not
happen from now on, which seems to be not strong enough for system safety analysis.

6.3 From FTA to Formal System Specification with

OTS/CafeOBJ

In this section, we will discuss how to transform fault tree (specification) into formal
system specification with OTS/CafeOBJ. Our intention is to provide a nice formalism of
fault trees, and so as to combine the safety analysis and formal system specification with
OTS/CafeOBJ (requirements analysis) more consistently and smoothly.

Since we have proposed a formal fault tree model based on OTS, which uses the
same underlying conceptual model of formal system specification with OTS/CafeOBJ,
the transformation and interaction between these two techniques and processes becomes
possible. On one hand, the results of FTA can be used not only limited to safety analy-
sis, but more importantly, it also contributes and constitutes the core part of the formal
specification of the system. On the other hand, the complemented and refined formal
system specification can assist us to further revise the fault trees and get more reliable
safety analysis.

To achieve this goal, a common signature for both fault trees and formal specification
with OTS/CafeOBJ should be provided, and a transformation from the transition rules

5The dual of the original fault tree can be obtained directly from the original tree by complementing
all the events and substituting OR-gates for AND-gates and vice versa [VGRH81], and thus with respect
to each minimal path set, we can divide the generated dual tree by OR-gates and derive a corresponding
sub dual tree.
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of fault trees to axioms (actions) of OTS/CafeOBJ should be studied. In the following
discussions, we will use the fault tree developed in the last chapter (see Figure 5.2, page 83)
as an example to illustrate the above issues.

6.3.1 Common Signature for Fault Trees and OTS/CafeOBJ

An OTS S = 〈O, I, T 〉 described in CafeOBJ usually consists of two parts, one is the
signature part including the definition of sorts and operators, the observations o ∈ O and
transitions τ ∈ T of the OTS are also denoted (declared) by CafeOBJ observation and
action operation (operator)s, respectively; the other is the axioms part which consists of
a set of equations describing how the values of the observations are changed by actions,
i.e., the definition of actions.

In our FTA/OTS model, there are two important constructors (integrants): events
and transition rules for event decomposition. A event in FTA/OTS is defined as an
observation value over a set of typed variable, therefore, it is quite natural to transform
the events into CafeOBJ observation operations as follows.

Suppose OTS S is described in CafeOBJ, and the universal state space Υ is denoted
by a hidden sort, say Sys, by declaring *[Sys]*. And we assume that data types Dk

(k = i1, . . . , im) and D are described in initial algebra and there exist visible sorts Vk

(k = i1, . . . , im) and V corresponding to the data types. An event of fault tree can be
observed by an observation oi as follows.

oi(S, Xi1, . . . , Xim) = c (6.8)

where S is a variable belonging to the hidden sort Sys 6, Xk (k = i1, . . . , im) is a variable
with Vk, and c is a constant with V representing the value of the observation oi.

Correspondingly, the CafeOBJ specification denoting the observation oi and the event
can be declared straightforward as follows:

op c : -> V

bop oi : Sys Vi1 . . . Vim -> V

It should be noted that with respect to a set of events discovered in the fault trees
which are observed (based on) by the same observation oi, we need not to define a set
of corresponding observations in the CafeOBJ signature. Instead of that, we need only
to declare that all of the values of the observation oi as a set of constants with the same
data type V . For example, suppose there are n events observed by the same oi as follows.

oi(S, Xi1 , . . . , Xim) = c1

...

oi(S, Xi1 , . . . , Xim) = cn

6Notice here we add the variable S with Sys in oi in the sense of OTS/CafeOBJ, which is omitted in
the definition of event in the fault trees (see (5.1), page 74).
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where c1, . . . , cn are constants with V representing different observation values of oi.
Then, in the CafeOBJ specification, we need only to declare as follows.

ops c1 · · · cn : -> V

bop oi : Sys Vi1 . . . Vim -> V

For example, with respect to the events based on the observation pos(S, T1) in Ta-
ble 5.1 (page 85): pos(S, T1) = sect1, pos(S, T1) = crossing, and pos(S, T1) = sect2, the
corresponding CafeOBJ specification can be declared as follows.

ops sect1 crossing sect2 : -> TState -- states of a train

bop pos : SYS Train -> TState

A transition rule τi found in FTA is denoted by a CafeOBJ action operation. We
assume that data types Dk (k = i1, . . . , im) and D are described in initial algebra and
there exist visible sorts Vk (k = i1, . . . , im) and V corresponding to the data types. The
CafeOBJ action operation denoting τi is declared as follows.

bop ai : Sys Vi1 . . . Vim -> Sys

where Vk (k = i1, . . . , im) represents the data type of the variable Xk (k = i1, . . . , im)
declared in τi.

For example, a transition rule τ5 found in the fault tree in the last chapter, i.e.,

pos(S, T1) = sect1 ∧ ¬err-comm(S, T1) ∧ bar(S) = open => level(S, T1) = state1

can be declared in the CafeOBJ specification as follows.

bop a5 : Sys Train -> Sys -- the level crossing accepts a ‘secure’

-- request from a train

Therefore, the fault trees developed by our FTA/OTS provide all the necessary and
concrete information to write the formal specification (signature part) with OTS/CafeOBJ.
In other words, since they share a common signature framework (the fault tree signature
can be regarded as a core subset of the signature in OTS/CafeOBJ), the transformation
between them is straightforward as we demonstrated above. For instance, with respect
to the fault tree developed in the last chapter (see Figure 5.2, page 83; and Table 5.1,
page 85), we can easily and quickly construct the signature of the OTS with CafeOBJ as
shown in Figure 6.10.

6.3.2 From Transition Rules to Axioms

The second part of the formal system specification with OTS/CafeOBJ is the axioms,
which defines the variables and (conditional) equations describing how the observation
values are changed by the execution of actions. In this section, we discuss how to trans-
form the transition rules of fault trees into the axioms of CafeOBJ specification.
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-- sorts and constants declaration

[Train] -- sort denoting different trains

[TState] -- sort denoting train state

ops sect1 crossing sect2 : -> TState

[LState] -- sort denoting level crossing state

ops state1 state2 : -> LState

[BState] -- sort denoting barriers state

ops open close : -> BState

*[Sys]* -- hidden sort denoting universal system state

-- declaration of observations

bop pos : Sys Train -> TState

bop level : Sys Train -> LState

bop bar : Sys -> BState

bop signal-bypass : Sys Train -> Bool

bop err-brake : Sys Train -> Bool

bop timeout : Sys Train -> Bool

bop err-comm : Sys Train -> Bool

-- declaration of actions

bop a1 : Sys Train -> Sys -- cause a train on crossing

bop a2 : Sys Train -> Sys -- the level crossing sends a ‘release’ signal to a train

bop a3 : Sys Train -> Sys -- cause the barriers to open

bop a4 : Sys Train -> Sys -- a train sends a ‘passed’ signal to the level crossing

bop a5 : Sys Train -> Sys -- the level crossing accepts a ‘secure’ signal from a train

Figure 6.10: Signature of OTS/CafeOBJ from FTA/OTS
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Suppose an observation oi and an action aj are declared in CafeOBJ as follows:

bop oi : Sys Vi1 . . . Vim -> V

bop aj : Sys Vj1 . . . Vjm
-> Sys

The conditional equation defining that the value of oi may be changed by aj can be
described in CafeOBJ generally as follows:

ceq oi (aj (S, Xj1, . . ., Xjm
), Xi1, . . ., Xim)

= e-aj(S, Xj1, . . ., Xjm
, Xi1, . . ., Xim) if c-aj(S, Xj1, . . ., Xjm

) .
where e-aj(S, Xj1, . . ., Xjm

, Xi1, . . ., Xim) means a term (consisting of S, Xj1, . . .,
Xjm

, Xi1, . . ., Xim) corresponding to the value of oi in the successor state, and c-aj(S,

Xj1, . . ., Xjm
) means a term (consisting of S, Xj1, . . ., Xjm

) corresponding the effective
condition of aj .

And a transition rule in fault trees is usually defined in the following form.

A => oi = c

where A is a disjunctive normal form consisting of a set of effective conditions for the
event oi = c. Therefore, it is quite naturally to transform a transition rule of the fault
trees into the axioms of CafeOBJ, just regarding A as c-aj(S, Xj1, . . ., Xjm

), and the
value c as e-aj(S, Xj1, . . ., Xjm

, Xi1, . . ., Xim), respectively.

For example, with respect to the transition rule (declared as a5 in the signature of
CafeOBJ in the last section)

pos(S, T1) = sect1 ∧ ¬err-comm(S, T1) ∧ bar(S) = open => level(S, T1) = state1

The corresponding axioms can be described in CafeOBJ as follows.

var S : Sys

vars T1 T2 : Train

ceq level(a5(S, T1), T2) = (if (T1 = T2) then state1 else level(S, T2) fi)

if (pos(S, T1) = sect1 and not err-comm(S, T1) and bar(S) = open) .

It should be noted that in the above condition equation, we discussed the possibility
whether T1 = T2, this is because in the OTS of the crossing control system, there may
be more than one train in the system.

If the value of oi is not affected by executing aj in any state (regardless of the truth
value of c-aj(S, Xj1, . . ., Xjm

) or A), which is the case when using the transition rule
to decompose a conjunct fault event (i.e., the constraint of transition rules defined in the
last chapter), the following equation is declared:

eq oi (aj (S, Xj1, . . ., Xjm
), Xi1, . . ., Xim) = oi(S, Xi1, . . ., Xim) .
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-- variables

var S : Sys

vars T1 T2 : Train

-- transition rule a1: train passes on crossing

ceq pos(a1(S, T1), T2) = (if (T1 = T2) then crossing else pos(S, T2) fi)

if ((pos(S, T1) = sect1 and signal-bypass(S, T1) = true)

or (pos(S, T1 = sect1) and err-brake(T1))

or (pos(S, T1) = sect1 and level(S, T1) = state2) and not err-comm(S, T1)) .

eq bar(a1(S, T1)) = bar(S) .

-- transition rule a2: level crossing send ‘release’ signal

ceq level(a2(S, T1), T2) = (if (T1 = T2) then state2 else level(S, T2) fi)

if (level(S, T1) = state1) .

eq bar(a1(S, T1)) = bar(S) .

-- transition rule a3: barriers open

ceq bar(a3(S, T1)) = open

if (timeout(S, T1) or (pos(S, T1) = sect2 and not err-comm(S, T1))) .

ceq level(a3(S, T1), T2) = (if (T1 = T2) then state0 else level(S, T2) fi) .

if (timeout(S, T1) or (pos(S, T1) = sect2 and not err-comm(S, T1))) .

-- transition rule a4: train passed crossing

ceq pos(a4(S, T1), T2) = (if (T1 = T2) then sect2 else pos(S, T2) fi)

if (pos(S, T1) = crossing) .

eq level(a4(S, T1), T2) = level(S, T2) .

-- transition rule a5: level crossing accepts ‘secure’ request

ceq level(a5(S, T1), T2) = (if (T1 = T2) then state1 else level(S, T2) fi)

if (pos(S, T1) = sect1 and not err-comm(S, T1) and bar(S) = open) .

eq pos(a5(S, T1), T2) = pos(S, T2) .

Figure 6.11: Axioms of OTS/CafeOBJ from FTA/OTS

For example, with respect to the conjunct fault event level(S, T1) = state1∧pos(S, T2) =
crossing, we know that the transition rule τ5 (or a5 in CafeOBJ signature) will not change
the value of pos(S, T2) based on the constraint of the transition rule, so the following
equation can be declared in the axioms of CafeOBJ specification.

eq pos(a5(S, T1), T2) = pos(S, T2) .

And in a similar way, we can develop all the axioms with respect to the transition
rules found in Figure 5.2 (page 83) as shown in Fiugre 6.11.

It should be noted that with respect to the transition rule τ3 (or a3 in Figure 6.11),
after receiving a ‘passed’ signal or an occurrence of a timeout event from (or of) a train, the
level crossing should be set to an initial state state0 with respect to the train. However,
the state state0 has not been discovered in Figure 5.2 and Table 5.1, therefore, we should
complement state0 as a constant into the signature of OTS/CafeOBJ (Figure 6.10) with
sort LState.
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6.3.3 Complement Formal Specification for Formal Verification

After the transformation from the events and transition rules of fault trees into the signa-
ture and axioms of CafeOBJ specification, we derive the core part of the formal system
specification (short: core specification) with OTS/CafeOBJ. The transformation itself is
straightforward thanks to the common signature and concepts shared by both FTA/OTS
and OTS/CafeOBJ. Therefore, we demonstrate and provide an approach from safety
analysis to requirements analysis more efficiently and smoothly.

However, the generated core specification may not be complete as for the subsequent
important process — formal verification with OTS/CafeOBJ (called proof scores in the
sense of OTS/CafeOBJ). Based on our experiences, there are three portions should be
complemented as follows.

Firstly, each action defined in the CafeOBJ specification should cover all the obser-
vations, i.e., the value of each observation will or will not be affected by the execution
of the action. In the last section, we only focus on the transition rule and the corre-
sponding event (conjunct fault event or non-conjunct fault event) to decompose, and the
generated axioms (equations of the action) may not cover all the observations defined in
the OTS. Therefore, we should complement the axioms for each action. For example,
with respect to the action a5 discussed in the last section, we only analyzed its effect to
the observations level(Sys, Train) and pos(Sys, Train) based on the conjunct fault
event level(S, T1) = state1∧ pos(S, T2) = crossing. To make the specification complete,
we should further analyze whether this transition rule will affect the value of the other
observations, such as bar(Sys), err-brake(Sys, Train), and so on. The complemented
axioms for this transition rule (action a5) are declared as follows.

ceq level(a5(S, T1), T2) = (if (T1 = T2) then state1 else level(S, T2) fi)

if (pos(S, T1) = sect1 and not err-comm(S, T1) and bar(S) = open) .

eq pos(a5(S, T1), T2) = pos(S, T2) .

eq bar(a5(S, T1)) = close . -- a5 will close the barriers

eq signal-bypass(a5(S, T1), T2) = signal-bypass(S, T2) .

eq err-brake(a5(S, T1), T2) = err-brake(S, T2) .

eq err-comm(a5(S, T1), T2) = err-comm(S, T2) .

eq timeout(a5(S, T1), T2) = timeout(S, T2) .

Actually, the last four equations declared above can be added to each action if we
classify their corresponding events are uncontrollable fault events in the fault trees, that
is, the values of these observations will not be affected by any action in the OTS.

Similarly, we can develop the complementary axioms for all the transition rules listed
in Figure 6.11 as shown in Figure 6.12.

Secondly, we should specify the initial state for the system and each observation. A
constant init can be declared to denote any initial state as follows:

op init : -> Sys
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-- complementary axioms for a1

eq level(a1(S, T1), T2) = level(S, T2) .

eq signal-bypass(a1(S, T1), T2) = signal-bypass(S, T2) .

eq err-brake(a1(S, T1), T2) = err-brake(S, T2) .

eq err-comm(a1(S, T1), T2) = err-comm(S, T2) .

eq timeout(a1(S, T1), T2) = timeout(S, T2) .

-- complementary axioms for a2

eq pos(a2(S, T1), T2) = pos(S, T2) .

eq signal-bypass(a2(S, T1), T2) = signal-bypass(S, T2) .

eq err-brake(a2(S, T1), T2) = err-brake(S, T2) .

eq err-comm(a2(S, T1), T2) = err-comm(S, T2) .

eq timeout(a2(S, T1), T2) = timeout(S, T2) .

-- complementary axioms for a3

ceq pos(a3(S, T1), T2) = (if (T1 = T2) then sect1 else pos(S, T2) fi)

if (timeout(S, T1) or (pos(S, T1) = sect2 and not err-comm(S, T1))) .

-- set the state of T1 to its initial state sect1

eq signal-bypass(a3(S, T1), T2) = signal-bypass(S, T2) .

eq err-brake(a3(S, T1), T2) = err-brake(S, T2) .

eq err-comm(a3(S, T1), T2) = err-comm(S, T2) .

eq timeout(a3(S, T1), T2) = timeout(S, T2) .

-- complementary axioms for a4

eq bar(a4(S, T1)) = bar(S) .

eq signal-bypass(a4(S, T1), T2) = signal-bypass(S, T2) .

eq err-brake(a4(S, T1), T2) = err-brake(S, T2) .

eq err-comm(a4(S, T1), T2) = err-comm(S, T2) .

eq timeout(a4(S, T1), T2) = timeout(S, T2) .

-- complementary axioms for a5

eq bar(a5(S, T1)) = close .

eq signal-bypass(a5(S, T1), T2) = signal-bypass(S, T2) .

eq err-brake(a5(S, T1), T2) = err-brake(S, T2) .

eq err-comm(a5(S, T1), T2) = err-comm(S, T2) .

eq timeout(a5(S, T1), T2) = timeout(S, T2) .

Figure 6.12: Complementary axioms of transition rules
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op init : -> Sys

eq bar(init) = open .

eq pos(init, T1) = sect1 .

eq level(init, T1) = state0 .

eq signal-bypass(init, T1) = false .

eq err-brake(init, T1) = false .

eq err-comm(init, T1) = false .

eq timeout(init, T1) = false .

Figure 6.13: Initial values of OTS

And the initial value of each observation should also be defined in CafeOBJ in the
following form:

eq oi(init, Xi1, . . ., Xim) = c0 .
where c0 means a constant with V (the sort denoting the value of oi). For example, we
can set the initial value of bar(S) as open (i.e., suppose the initial state of the barriers
are open) as follows:

eq bar(init) = open .

With respect to the uncontrollable fault events found in the fault trees, as we discussed
in Chapter 3, we should make the negations of these fault events as safety assumptions
for safety analysis and verification. Therefore, in the CafeOBJ specification, we need only
to specify that the initial values of the corresponding observations are false (and we have
already discussed that the values of these observations will not be affect by any action).
Therefore, we can get all the initial states of the observations defined in Figure 6.10 as
shown in Fiugure 6.13.

Last, we should check whether the OTS can be reset. For example, after the level
crossing has got a ‘passed’ signal from one train, is there an action resetting the level
crossing to its initial value (state)? Since the fault trees focus on the discovering of (basic)
fault events, such reset issues (transition rules) may be overlooked or not considered in
the fault trees. We should check and complement the specification by adding equations
or actions if this problem happens. In addition, some other issues may related to whether
there exist deadlocks or livelocks in the OTS, but these problems are unrelated with the
fault trees, so we do not discuss them here. With respect to our example, since the
states the level crossing, train, and barriers can be reset by transition rule a3, we can
combine the results of Figure 6.10, Figure 6.11, Figure 6.12, and Figure 6.13, and then
get a complete formal specification of OTS with CafeOBJ for the fault tree depicted in
Figure 5.2.

6.3.4 Combination of FTA/OTS and OTS/CafeOBJ

In the above sections, we discussed and demonstrated how to transform the analyzing
results of the fault trees (or called fault tree specification) into the formal system speci-
fication with OTS/CafeOBJ. In this section, we make a short summary about the com-
bination of FTA/OTS and OTS/CafeOBJ, and discuss how these two techniques can
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Figure 6.14: Combination of FTA/OTS and OTS/CafeOBJ

work together and complement each other as for more efficient and effective safety and
requirements analyses. An overview of the combination of these two techniques is shown
in Figure 6.14.

As shown in Figure 6.14, there are several benefits of the combination between the
FTA/OTS and OTS/CafeOBJ as follows.

• First of all, since the fault trees are constructed and specified based on the OTS
model and signature, it is quite natural and straightforward to transform the fault
tree specification into the formal system specification with OTS/CafeOBJ. In other
words, we link fault tree analysis to program development in a consistent and smooth
way, by requiring that both use the same system model, i.e., OTS model. The
significance of this connection and transformation can be further interpreted as
follows:

– By using a common model and signature, it is possible to use the results of the
fault tree analysis directly, when specifying and designing the software.
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– It is known that a common framework is important whenever engineers from
multiple disciplines need to work together [HR98], therefore a common inter-
pretation to terms used in safety analysis and in requirements formulation is
really important and should be provided.

– It is also possible to formally prove that a system (program) is safe, i.e., that
it does not cause the system to violates its safety goals (the negation of the
top hazard events of the fault trees), if we can guarantee that all the basic
fault events will not happen (or make as safety assumptions with respect to
the uncontrollable failures).

• In reverse, after developing formal system specifications (requirements specifica-
tions) from the fault trees, we can use the augmented formal requirements specifica-
tions to further revise the fault trees, i.e., to check the correctness and consistency
of the fault trees, so as to achieve more reliable fault trees. Such kind of feedback
and interaction is possible also because of the common model, and thus more precise
and reliable safety analysis can be achieved.

• In addition, the results of the fault tree analysis are also useful for the formal
verification (proof scores) with OTS/CafeOBJ.

– On one hand, by using fault tree analysis, we can discover as much as possible
uncontrollable basic fault events (failures such as hardware defects, human
errors, and physical environment failures), the negations of these failures can
be made as a list of safety assumptions with respect to the formal verification
of system safety requirements.

– On the other hand, by using fault tree analysis, we can decompose a complex
and abstract system safety goal into some smaller and more manageable sub-
goals, i.e., concrete safety commitments which usually consist of the negations
of the basic conjunct fault events. Such kind of divide-and-conquer method
can efficiently decrease the difficulty and complexity of formal verification as
for some complex systems and problems.

6.4 Summary

In this chapter, we discussed some temporal logic semantics of fault trees, and presented an
analysis of the role of temporal logic in FTA. Based on the analysis, we proposed a simple
logic semantics for our FTA/OTS based on classical propositional logic and basic concepts
of observational transition systems. Then we focused on how to link fault tree analysis to
program development (system requirements specifications), demonstrated how to trans-
form the fault tree specifications into formal system specifications with OTS/CafeOBJ.
An analysis of the combination of the FTA/OTS and OTS/CafeOBJ was concluded in
Section 6.3.4.

To our understanding, to ensure the correctness of the fault trees, providing an un-
derstandable formal construction model as well as simple logic semantics is more efficient
and better than the approach that first build the fault trees by intuition (in an informal
way), and then verify its correctness afterwards by some complex logic semantics defined
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for the fault trees. This is the main motivation why we further refine our formal fault tree
model from temporal logic to the OTS model. Another motivation is inspired by Hansan’s
work [HR98], that is, trying to link the fault tree analysis to program development by
providing a common system model for both of them.

Hansan’s work contributes an approach from safety analysis (with FTA) to Software
requirements based on duration calculus and interval temporal logic (ITL) for the inter-
pretation of both fault trees and software requirements [HR98]. However, it does not
discuss how to ensure the correctness of the fault trees and how to derive the concrete
formal system specifications from the fault trees.

Another related work about the formal semantics and specifications of fault trees can
be found in [CSD00] (D. Coppoit, K. J. Sullivan and J. B. Dugan, 2000), which presents
an approach to write the formal specification of dynamic fault trees with Z specification
language. However, as we known, Z itself is not an executable formal language, which
limits its usage if we want to prove some safety properties based on the formal system (or
fault tree) specifications. In addition, Coppoit et al. do not consider the decomposition
problem with respect to the conjunct fault events because their attention is focused on
the formal semantics of dynamic fault trees.

Some other formal works on fault trees mainly focus on the formal semantics (usually
with temporal logic) of fault trees, such as [STR02, BA93], while as far as we know, none
of them focus on how to connect the fault tree analysis with program development. And
even with the temporal semantics of fault trees, some issues are still disputed as we dis-
cussed in Section 6.1.

In a nutshell, thanks to the advantages and properties of OTS/CafeOBJ, our work
presents an approach from safety analysis to program development (requirements specifi-
cations and verifications), which makes engineers and designers from multiple disciplines
work together more efficiently and effectively, and makes it possible to achieve more reli-
able and efficient safety and requirements analysis.
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Chapter 7

Conclusions

7.1 Contributions

This dissertation has developed techniques to achieve more reliable formal fault tree analy-
sis as well as more efficient requirements analysis. Three important issues have been ad-
dressed, that is, the correctness of the fault trees, the combination of fault tree analysis
and formal methods with CafeOBJ and Maude, and the transformation from the results
of fault tree analysis into formal system specifications with OTS/CafeOBJ by using the
common framework of OTS. The technical contributions of this dissertation can be con-
cluded as follows.

1. It identifies decomposition of fault events as a core issue that guarantees the cor-
rectness of the fault trees, i.e., the sub events must formally result in their top event
through the given logic gate. And for solution, it proposes two formal fault tree
construction models based on temporal logic and observational transition systems,
respectively. The advantages of the formal fault tree construction models proposed
in this dissertation are as follows:

• It (both of the two models) is a heuristic and deductive method to build fault
trees more precisely and effectively;

• The correctness of the generated fault trees is proved by the construction
process itself, rather than requiring a stand-alone verification, and thus avoid-
ing the problems that often arise with traditional methods. At the same time,
it gives designers and domain experts the ability to discover domain (transi-
tion) rules and previously unnoticed design deficiencies during the construction
process;

• It integrates (records) the domain (transition) rules into the fault trees, which
makes the analysis more complete and is useful for revising and rechecking of
the fault trees;

• The formal construction model based on classical propositional logic and basic
concepts of OTS provides an alternative for engineers who are not familiar with
temporal logic, and thus it complements the model of temporal logic one for
different applications.
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2. It presents a study on the combination of fault tree analysis and formal methods
with CafeOBJ and Maude.

• It proposes an approach to derive concrete requirements (safety assumptions
and commitments) from FTA so as to guild and assist the subsequent system
design and verification;

• It demonstrates how to write fault tree specification and realize automatic
calculation of minimal cut sets of fault trees with term rewriting system (TRS)
of CafeOBJ;

• It demonstrates how to formally model, specify, and verify OTSs with CafeOBJ
based on the analyzing results of FTA. And as a complement of theorem proving
technique provided by CafeOBJ, it also demonstrates how to model-check OTSs
with Maude (a sibling language of CafeOBJ).

3. Most important, it further proposes a novel formal fault tree analysis based on
OTS. The point is that, by using a common framework of OTS, it is possible to use
the results of fault tree analysis directly, when specifying and verifying the system
with OTS/CafeOBJ. The transformation from fault tree specifications into formal
system specifications with OTS/CafeOBJ is demonstrated. Therefore, it presents
an approach to link safety analysis and requirements analysis in a consistent and
smooth way, and it provides a common framework for engineers and designers from
multiple disciplines to work together more efficiently and effectively.

7.2 Future Directions

Due to the complexity of acquiring reliable and precise safety analysis and requirements
specifications, it is not a trivial task to develop a common framework that can support
and link both of these two important processes in program (system) development. In
this dissertation, we mainly focus on developing techniques to achieve both reliability
and efficiency for requirements engineering, by combining fault tree analysis and formal
methods with CafeOBJ. And in our future work, we will further improve our research by
focusing on the following aspects:

• Although we have demonstrated that the transformation from the results of fault
trees into the formal CafeOBJ specifications is straightforward, by using the com-
mon framework of OTS, it still may be a hard work for engineers who are not
familiar with formal languages. To this end, we are trying to develop some tem-
plates which can help the engineers derive formal system specifications more easily
and efficiently. And a longer-term goal is to develop a semi-automatic environment
for the interaction of FTA and OTS/CafeOBJ.

• Fault tree analysis can also be used in verifying formal specifications (or programs)
itself in addition to system safety and reliability analysis, some typical cases are using
software fault trees to verify Ada programs [MJC+99, Lev91] and SOFL formal
specifications [Liu00]. Inspired by these works, we are trying to carry out some
studies on verifying CafeOBJ specifications using FTA.
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• As we know, a hard task of formal verification with theorem proving technique of
CafeOBJ is finding lemmas by hand. Generally speaking, it is a time-consuming
and intellectual hard work, especially in complex system analysis. To attack this
problem, an automatic theorem proving tool of CafeOBJ is in developing by some
other members of our group (this is also one of the motivations why we study how
to model-check OTSs with Maude as for finite state systems in this dissertation). In
our experiences, fault tree analysis can also be used to assist in finding lemmas and
their relations at a lower abstraction level, given a complete and consistent formal
specification of the system. This study is related with the above one, i.e., verifying
CafeOBJ specifications using fault tree analysis.

• We realize that our method has not yet been applied in full scale industrial practice,
although it has been demonstrated by one case in this dissertation. Our next step
is trying to find more (big scale) case studies to further improve our work.

• In addition, since this dissertation covers only the main research of our work, some of
other studies are not included, such as knowledge management, software reliability
allocation using fault tree analysis, and data mining (see Publications at the end of
the dissertation). How to improve these studies and find some new interdisciplinary
topics is also one of our future works.
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Appendix A

Proof Scores of CafeOBJ

This appendix includes the complete CafeOBJ codes (proof score) with respect to the
crossing control system discussed in Section 4.2. The whole proof score consists of four
important CafeOBJ files (with the suffix “.mod”) as follows.

TrainCrossing.mod : The specification of the railway crossing control system.

TCInvariants.mod : Definition of the invariants (safety property and corresponding
lemmas) to prove.

TCIcases.mod : Case splitting for induction based on the effective conditions of each
transition rule defined in the specification of the crossing control system (Train-
Crossing.mod).

TCproof100.mod : Proof of INV100, i.e., the safety property we want to prove. We
do not list the other 13 proof files of the corresponding lemmas, since they can be
easily derived and written in a similar way.

A.1 TrainCrossing.mod

-- A Radio-based crossing control system is informally described as follows.

-- Shortly before the train arrives at the ‘latest braking point’ (latest point at

-- which it is possible for the train to stop before the crossing), it sends a

-- ‘secure’ signal to the level crossing in order to check the status of the level

-- crossing.

-- When the level crossing receives the command ‘secure’, it instructs the barriers

-- to close. After the barriers have been closed, the level crossing is safe for

-- a certain period of time and a ‘release’ signal is sent to the train, which

-- indicates that the train may pass the crossing; Otherwise the train should stop

-- until it gets the ‘release’ signal.

-- When the train has passed the crossing, it sends a ‘passed’ signal to the

-- crossing, which allows the crossing to open the barriers and switch back to

-- its initial state.

-- Based on the above informal description, a formal Modeling and specifying of

115



-- this crossing control system can be made as follows.

-- The states of the train are sect0, sect1, critical, and sect2.

-- sect0: the train is approaching near enough to the ‘latest braking point’

-- and sends ‘secure’ signal to the level crossing;

-- sect1: just after the train sent the ‘secure’ signal and until it gets the

-- permission (‘release’ signal) to enter its critical section from the level

-- crossing;

-- critical: the train is passing over the level crossing;

-- sect2: the train leaves the level crossing and sends ‘passed’ signal to

-- the level crossing.

-- The states of the level crossing are state0, state1 and state2.

-- state0: the level crossing is waiting for a ‘secure’ signal from a train;

-- state1: after getting the ‘secure’ signal and until the level crossing responds

-- a ‘release’ signal to the train;

-- state2: after the response to the train and until the level crossing gets

-- the ‘passed’ signal from the train.

-- after getting the ‘passed’ signal, the level crossing closes the barriers,

-- and then enters idling state waiting for the next train.

-- There are two status of the barriers: open and close, initially set to open.

-- Notice here we look the barriers as an integrated part of the leveling crossing,

-- in other words, we ignore the the communication as well as its time delay between

-- them since it is trivial in this analysis.

-- A Boolean variable is defined to solve the mutual exclusion problem as follows:

-- Boolean idling = true;

-- idling is shared by all trains (processes), initially set to true, which means

-- that the level crossing is in state0 and the barriers are opened.

-- Six transition rules are used below.

--

-- * tr-send-secure: The train sends ’secure’ signal to the level crossing.

-- - effective conditions: the state of the train is sect0

-- - results: the state of the train gets sect1

-- * le-get-secure: The level crossing gets ’secure’ signal from the train.

-- - effective conditions: the state of the train is sect1.

-- - results: if idling = true then

-- idling = false;

-- barriers = close;

-- the state of the level crossing gets state1

-- else

-- any values are not changed

-- fi

-- * le-send-release: the level crossing sends the ’release’ signal to the train.

-- - effective conditions: the state of the level crossing is state1

-- - results: the state of the level crossing gets state2;

-- * tr-get-release: the train gets the ’release’ signal from the level crossing

-- and enters its critical section.

-- - effective conditions: the state of the level crossing is state2

-- - results: the state of the train gets critical;

-- * tr-send-passed: The train leaves the level crossing and sends the ’passed’
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-- signal to the level crossing.

-- - effective conditions: the state of the train is critical.

-- - results: the state of the train gets sect2.

-- * le-get-passed: The level crossing gets the ’passed’ signal

-- - effective conditions: the state of the train is sect2.

-- - results: (1) barriers = open;

-- (2) the state of the level crossing gets state0;

-- (3) idling = true

-- ***************************************

-- Formal Specification begins

mod! TRAIN {

[Train]

op _=_ : Train Train -> Bool {comm}

var T : Train

eq (T = T) = true .

}

mod! TSTATE{

[TState] -- sort of Train state

ops sect0 sect1 critical sect2 : -> TState

op _=_ : TState TState -> Bool {comm}

var TS : TState

eq (TS = TS) = true .

eq (sect0 = sect1) = false .

eq (sect0 = sect2) = false .

eq (sect0 = critical) = false .

eq (critical = sect1) = false .

eq (critical = sect2) = false .

eq (sect1 = sect2) = false .

}

mod! LSTATE{

[LState] -- sort of Level Crossing state

ops state0 state1 state2 : -> LState

op _=_ : LState LState -> Bool {comm}

var LS : LState

eq (LS = LS) = true .

eq (state0 = state1) = false .

eq (state0 = state2) = false .

eq (state1 = state2) = false .

}

mod! BSTATE{

[BState] -- sort of Barriers state

ops open close : -> BState

op _=_ : BState BState -> Bool {comm}

var BS : BState

eq (BS = BS) = true .

eq (open = close) = false .

}

--

-- The formal model is described in module TC.

--
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-- - Hidden sort ‘System’ denotes the state space.

-- - Constant ‘init’ denotes any initial state.

-- - Operator ‘idling’ denotes variable idling

-- module TrainCrossing (TC) System

mod* TC {

pr(TRAIN + TSTATE + LSTATE + BSTATE)

*[System]*

-- any initial state

op init : -> System

-- observations

bop idling : System -> Bool

bop t : System Train -> TState

bop l : System Train -> LState

-- bop l : System -> LState

bop b : System -> BState

-- actions (transition rules)

bop tr-send-secure : System Train -> System

bop le-get-secure : System Train -> System

bop le-send-release : System Train -> System

bop tr-get-release : System Train -> System

bop tr-send-passed : System Train -> System

bop le-get-passed : System Train -> System

-- CafeOBJ variables

var S : System

vars T1 T2 : Train

-- for any initial state

eq idling(init) = true .

eq t(init, T1) = sect0 . -- any train initially set sect0

eq l(init, T1) = state0 . -- level crossing initially set state0

-- eq l(init) = state0 . -- level crossing initially set state0

eq b(init) = open . -- barriers initially set open

-- * traisition rules

-- * (1) tr-send-secure

ceq t(tr-send-secure(S, T1), T2) = (if (T1 = T2) then sect1 else t(S, T2) fi)

if t(S, T1) = sect0 .

eq l(tr-send-secure(S, T1), T2) = (if (T1 = T2) then l(S, T1) else l(S, T2) fi) .

eq b(tr-send-secure(S, T1)) = b(S) .

eq idling(tr-send-secure(S, T1)) = idling(S) .

ceq tr-send-secure(S, T1) = S if not (t(S, T1) = sect0) .

-- * (2) le-get-secure

ceq idling(le-get-secure(S, T1)) = false if t(S, T1) = sect1 and idling(S) .

ceq b(le-get-secure(S, T1)) = close if t(S, T1) = sect1 and idling(S) .

ceq l(le-get-secure(S, T1), T2) = (if (T1 = T2) then state1 else l(S, T2) fi)

if t(S, T1) = sect1 and idling(S) .

eq t(le-get-secure(S, T1), T2) = (if (T1 = T2) then t(S, T1) else t(S, T2) fi) .

ceq le-get-secure(S, T1) = S if not (t(S, T1) = sect1) or not idling(S) .

-- * (3) le-send-release

ceq l(le-send-release(S, T1), T2) = (if (T1 = T2) then state2 else l(S, T2) fi)

if l(S, T1) = state1 .
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eq b(le-send-release(S, T1)) = b(S) .

eq t(le-send-release(S, T1), T2) = (if (T1 = T2) then t(S, T1) else t(S, T2) fi) .

eq idling(le-send-release(S, T1)) = idling(S) .

ceq le-send-release(S, T1) = S if not (l(S, T1) = state1) .

-- * (4) tr-get-release

ceq t(tr-get-release(S, T1), T2) = (if (T1 = T2) then critical else t(S, T2) fi)

if (l(S, T1) = state2) .

eq l(tr-get-release(S, T1), T2) = (if (T1 = T2) then l(S, T1) else l(S, T2) fi) .

eq b(tr-get-release(S, T1)) = b(S) .

eq idling(tr-get-release(S, T1)) = idling(S) .

ceq tr-get-release(S, T1) = S if not (l(S, T1) = state2) .

-- * (5) tr-send-passed

ceq t(tr-send-passed(S, T1), T2) = (if (T1 = T2) then sect2 else t(S, T2) fi)

if t(S, T1) = critical .

eq l(tr-send-passed(S, T1), T2) = (if (T1 = T2) then l(S, T1) else l(S, T2) fi) .

eq b(tr-send-passed(S, T1)) = b(S) .

eq idling(tr-send-passed(S, T1)) = idling(S) .

ceq tr-send-passed(S, T1) = S if not (t(S, T1) = critical) .

-- * (6) le-get-passed

ceq b(le-get-passed(S, T1)) = open if t(S, T1) = sect2 .

ceq idling(le-get-passed(S, T1)) = true if t(S, T1) = sect2 .

ceq l(le-get-passed(S, T1), T2) = (if (T1 = T2) then state0 else l(S, T2) fi)

if t(S, T1) = sect2 .

ceq t(le-get-passed(S, T1), T2) = (if (T1 = T2) then sect0 else t(S, T2) fi)

if t(S, T1) = sect2 .

ceq le-get-passed(S, T1) = S if not (t(S, T1) = sect2) .

-- Formal Specification ends

}

A.2 TCInvariants.mod

-- Based on the analysis result of our fault tree, the safety properties

-- that we want to prove are as follows.

-- modified by XJW040325

-- Claim 100: if the level crossing has sent a ’release’ signal, then the

-- state of the system should not be idling.

-- Here, we need to focus on the result of the transition rule le-send-release,

-- i.e. l(S, T1) = state2

-- invariant (l(S, T1) = state2) implies not (idling(S))

-- Claim 200: if the level crossing has sent a ’release’ signal, then the system

-- could not get a ’passed’ signal at this moment.

-- Here, let’s focus on the results of the transition rules le-send-release and

-- le-get-passed, i.e. l(S, T1) = state1 and l(S, T2) = state0, respectively. We can

-- derive our invariant as follows.

-- invariant (l(S, T1) = state2) implies not (l(S, T2) = state0)

-- * Moreover, if we consider another consequence of the transition rule

-- le-get-release, i.e., idling(S) = true, then inv200 is equal to inv100 in this
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-- sense.

mod INV {

pr(TC)

-- arbirtrary trains

ops p q : -> Train

op inv100 : System Train -> Bool -- need inv310, inv320

op inv310 : System Train -> Bool -- need inv330

op inv320 : System Train Train -> Bool -- need inv340, inv330

op inv330 : System Train Train -> Bool -- need inv360, inv420

op inv340 : System Train Train -> Bool -- need inv350, inv360

op inv350 : System Train Train -> Bool -- need inv370

op inv360 : System Train Train -> Bool -- need inv370, inv380

op inv370 : System Train Train -> Bool -- need inv390, inv100

op inv380 : System Train -> Bool -- need inv100, inv400

op inv390 : System Train Train -> Bool -- need inv310

op inv400 : System Train Train -> Bool -- need inv320, inv410

op inv410 : System Train Train -> Bool -- need inv340

op inv420 : System Train -> Bool -- need inv380, inv430

op inv430 : System Train Train -> Bool -- need inv400

-- CafeOBJ variables

var S : System

vars T1 T2 : Train

-- define invariants to prove

eq inv100(S, T1) = (l(S, T1) = state2) implies not idling(S) .

eq inv310(S, T1) = (l(S, T1) = state1) implies not idling(S) .

eq inv320(S, T1, T2) = (t(S, T1) = sect2) and (l(S, T2) = state2)

implies (T1 = T2) .

eq inv330(S, T1, T2) = (t(S, T1) = sect2) implies not (l(S, T2) = state1) .

eq inv340(S, T1, T2) = (l(S, T1) = state2) and (t(S, T2) = critical)

implies (T1 = T2) .

eq inv350(S, T1, T2) = (l(S, T1) = state2) and (l(S, T2) = state2)

implies (T1 = T2) .

eq inv360(S, T1, T2) = (l(S, T1) = state1) implies not (t(S, T2) = critical) .

eq inv370(S, T1, T2) = (l(S, T1) = state1) implies not (l(S, T2) = state2) .

eq inv380(S, T1) = (t(S, T1) = critical) implies not idling(S) .

eq inv390(S, T1, T2) = (l(S, T1) = state1) and (l(S, T2) = state1)

implies (T1 = T2) .

eq inv400(S, T1, T2) = (t(S, T1) = sect2) implies not (t(S, T2) = critical) .

eq inv410(S, T1, T2) = (t(S, T1) = critical) and (t(S, T2) = critical)

implies (T1 = T2) .

eq inv420(S, T1) = (t(S, T1) = sect2) implies not idling(S) .

eq inv430(S, T1, T2) = (t(S, T1) = sect2) and (t(S, T2) = sect2)

implies (T1 = T2) .

}

-- Invariants are proved by INDUCTION on the numbers of transition rules

-- applied or executed.

--

-- If we prove that the system has invariant P by induction on the number of

-- transition rules applied, the proof structure looks like this:
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--

-- I) Base case

-- P(init)

-- II) Inductive cases

-- 1. P(s) implies P(tr-send-secure(s)) for any s.

-- 2. P(s) implies P(le-get-secure(s)) for any s.

-- 3. P(s) implies P(le-send-release(s)) for any s.

-- 4. P(s) implies P(tr-get-release(s)) for any s.

-- 5. P(s) implies P(tr-send-passed(s)) for any s.

-- 6. P(s) implies P(le-get-passed(s)) for any s.

--

-- Predicates to prove in each inductive step are defined as CafeOBJ terms in

-- module ISTEP.

--

mod ISTEP {

pr(INV)

-- arbitrary System states

ops s s’ : -> System

-- declare predicates to prove in inductive step

op istep100 : Train -> Bool

ops istep310 istep380 istep420 : Train -> Bool

ops istep320 istep330 istep340 istep350 istep360 istep370 istep390

istep400 istep410 istep430 : Train Train -> Bool

-- CafeOBJ variables

vars T1 T2 : Train

-- define predicates to prove in inductive step

eq istep100(T1) = inv100(s, T1) implies inv100(s’, T1) .

-- lemmas should be proved for the above predicates

eq istep310(T1) = inv310(s, T1) implies inv310(s’, T1) .

eq istep320(T1, T2) = inv320(s, T1, T2) implies inv320(s’, T1, T2) .

eq istep330(T1, T2) = inv330(s, T1, T2) implies inv330(s’, T1, T2) .

eq istep340(T1, T2) = inv340(s, T1, T2) implies inv340(s’, T1, T2) .

eq istep350(T1, T2) = inv350(s, T1, T2) implies inv350(s’, T1, T2) .

eq istep360(T1, T2) = inv360(s, T1, T2) implies inv360(s’, T1, T2) .

eq istep370(T1, T2) = inv370(s, T1, T2) implies inv370(s’, T1, T2) .

eq istep380(T1) = inv380(s, T1) implies inv380(s’, T1) .

eq istep390(T1, T2) = inv390(s, T1, T2) implies inv390(s’, T1, T2) .

eq istep400(T1, T2) = inv400(s, T1, T2) implies inv400(s’, T1, T2) .

eq istep410(T1, T2) = inv410(s, T1, T2) implies inv410(s’, T1, T2) .

eq istep420(T1) = inv420(s, T1) implies inv420(s’, T1) .

eq istep430(T1, T2) = inv430(s, T1, T2) implies inv430(s’, T1, T2) .

}

A.3 TCIcases.mod

-- modified by XJW040323

-- This file is to specify the s and s’ for induction based on the

-- effective conditions of each transition rule.

mod ICASE1 {

pr(ISTEP)

-- arbitrary trains
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op t10 : -> Train

-- assumptions for tr-send-secure

eq t(s, t10) = sect0 .

-- successor state

eq s’ = tr-send-secure(s, t10) .

}

mod nonICASE1 {

pr(ISTEP)

-- arbitrary trains

op t10 : -> Train

-- assumptions

eq (t(s, t10) = sect0) = false .

-- successor state

eq s’ = tr-send-secure(s, t10) .

}

mod ICASE2 {

pr(ISTEP)

-- arbitrary trains

op t10 : -> Train

-- assumptions for le-get-secure

eq t(s, t10) = sect1 .

eq idling(s) = true .

-- successor state

eq s’ = le-get-secure(s, t10) .

}

mod nonICASE2-1 {

pr(ISTEP)

-- arbitrary trains

op t10 : -> Train

-- assumptions

eq (t(s, t10) = sect1) = false .

eq idling(s) = true .

-- successor state

eq s’ = le-get-secure(s, t10) .

}

mod nonICASE2-2 {

pr(ISTEP)

-- arbitrary trains

op t10 : -> Train

-- assumptions

eq (t(s, t10) = sect1) = false .

eq idling(s) = false .

-- successor state

eq s’ = le-get-secure(s, t10) .

}

mod nonICASE2-3 {

pr(ISTEP)

-- arbitrary trains

op t10 : -> Train

-- assumptions

eq (t(s, t10) = sect1) = true .

eq idling(s) = false .
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-- successor state

eq s’ = le-get-secure(s, t10) .

}

mod ICASE3 {

pr(ISTEP)

-- arbitrary trains

op t10 : -> Train

-- assumptions for le-send-release

-- eq l(s) = state1 .

eq l(s, t10) = state1 .

-- successor state

eq s’ = le-send-release(s, t10) .

}

mod nonICASE3 {

pr(ISTEP)

-- arbitrary trains

op t10 : -> Train

-- assumptions

-- eq (l(s) = state1) = false .

eq (l(s, t10) = state1) = false .

-- successor state

eq s’ = le-send-release(s, t10) .

}

mod ICASE4 {

pr(ISTEP)

-- arbitrary trains

op t10 : -> Train

-- assumptions for tr-get-release

-- eq l(s) = state2 .

eq l(s, t10) = state2 .

-- successor state

eq s’ = tr-get-release(s, t10) .

}

mod nonICASE4 {

pr(ISTEP)

-- arbitrary trains

op t10 : -> Train

-- assumptions

-- eq (l(s) = state2) = false .

eq (l(s, t10) = state2) = false .

-- successor state

eq s’ = tr-get-release(s, t10) .

}

mod ICASE5 {

pr(ISTEP)

-- arbitrary trains

op t10 : -> Train

-- assumptions for tr-send-passed

eq t(s, t10) = critical .

-- successor state

eq s’ = tr-send-passed(s, t10) .

}
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mod nonICASE5 {

pr(ISTEP)

-- arbitrary trains

op t10 : -> Train

-- assumptions

eq (t(s, t10) = critical) = false .

-- successor state

eq s’ = tr-send-passed(s, t10) .

}

mod ICASE6 {

pr(ISTEP)

-- arbitrary trains

op t10 : -> Train

-- assumptions for le-get-passed

eq t(s, t10) = sect2 .

-- successor state

eq s’ = le-get-passed(s, t10) .

}

mod nonICASE6 {

pr(ISTEP)

-- arbitrary trains

op t10 : -> Train

-- assumptions

eq (t(s, t10) = sect2) = false .

-- successor state

eq s’ = le-get-passed(s, t10) .

}

A.4 TCProof100.mod

-- modified by XJW040324

-- Case Analyses

-- In a proof score, we use constants to denote arbitrary objects.

--

-- Invariants and actions usually have arguments other than one denoting states

-- such as p, q, and t10 of inv200(s,p,q) and tr-send-secure(s,t10).

-- We have to show invariants for not only any state but also any such

-- arguments. Constants are usually used to denote arbitrary objects

-- such as states and processes.

--

-- Constants, such as s, denoting arbitrary states are declared in module ISTEP.

-- Constants, such as p and q, denoting arbitrary trains are declared in module INV.

-- Constants, such as t10, denoting arbitrary trains are declared in ICASE module.

-- 1) tr-send-secure(s,t10)

mod EICASE1 { pr(ICASE1)

-- Basic predicates

op bp1 : -> Bool

#define bp1 ::= (p = t10) .
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-- Exhaustiveness check

op check : -> Bool

eq check = bp1 or not bp1 .

}

-- Case splitting

mod ICASE1-1 { pr(EICASE1)

eq p = t10 .

}

--

mod ICASE1-2 { pr(EICASE1)

eq bp1 = false .

}

-- 2) le-get-secure(s,t10)

mod EICASE2 { pr(ICASE2)

-- Basic predicates

op bp1 : -> Bool

#define bp1 ::= (p = t10) .

-- Exhaustiveness check

op check : -> Bool

eq check = bp1 or not bp1 .

}

-- Case splitting

mod ICASE2-1 { pr(EICASE2)

eq bp1 = true .

}

--

mod ICASE2-2 { pr(EICASE2)

eq bp1 = false .

}

-- 3) le-send-release(s,t10)

mod EICASE3 { pr(ICASE3)

-- Basic predicates

op bp1 : -> Bool

#define bp1 ::= (p = t10) .

-- Exhaustiveness check

op check : -> Bool

eq check = bp1 or not bp1 .

}

-- Case splitting

mod ICASE3-1 { pr(EICASE3)

eq p = t10 .

}

--

mod ICASE3-2 { pr(EICASE3)

eq bp1 = false .

}

-- 4) tr-get-release(s,t10)

mod EICASE4 { pr(ICASE4)

-- Basic predicates

op bp1 : -> Bool

#define bp1 ::= (p = t10) .
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-- Exhaustiveness check

op check : -> Bool

eq check = bp1 or not bp1 .

}

-- Case splitting

mod ICASE4-1 { pr(EICASE4)

eq p = t10 .

}

--

mod ICASE4-2 { pr(EICASE4)

eq bp1 = false .

}

-- 5) tr-send-passed(s,t10)

mod EICASE5 { pr(ICASE5)

-- Basic predicates

op bp1 : -> Bool

#define bp1 ::= (p = t10) .

-- Exhaustiveness check

op check : -> Bool

eq check = bp1 or not bp1 .

}

-- Case splitting

mod ICASE5-1 { pr(EICASE5)

eq p = t10 .

}

--

mod ICASE5-2 { pr(EICASE5)

eq bp1 = false .

}

-- 6) le-send-release(s,t10)

mod EICASE6 { pr(ICASE6)

-- Basic predicates

op bp1 : -> Bool

#define bp1 ::= (p = t10) .

-- Exhaustiveness check

op check : -> Bool

eq check = bp1 or not bp1 .

}

-- Case splitting

mod ICASE6-1 { pr(EICASE6)

eq bp1 = true .

}

--

mod ICASE6-2 { pr(EICASE6)

eq bp1 = false .

}

-- Exhaustiveness Check

red in EICASE1 : check .

red in EICASE2 : check .

red in EICASE3 : check .

red in EICASE4 : check .
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red in EICASE5 : check .

red in EICASE6 : check .

-- End of Exhaustiveness Check

-- Proof

-- I) Base case

red in INV : inv100(init,p) .

-- II) Inductive cases

red in ICASE1-1 : istep100(p) .

red in ICASE1-2 : istep100(p) .

red in nonICASE1 : istep100(p) .

red in ICASE2-1 : istep100(p) .

red in ICASE2-2 : istep100(p) .

red in nonICASE2-1 : istep100(p) .

red in nonICASE2-2 : istep100(p) .

red in nonICASE2-3 : istep100(p) .

-- red in ICASE3-1 : istep100(p) .

red in ICASE3-1 : inv310(s,p) implies istep100(p) .

red in ICASE3-2 : istep100(p) .

red in nonICASE3 : istep100(p) .

red in ICASE4-1 : istep100(p) .

red in ICASE4-2 : istep100(p) .

red in nonICASE4 : istep100(p) .

red in ICASE5-1 : istep100(p) .

red in ICASE5-2 : istep100(p) .

red in nonICASE5 : istep100(p) .

red in ICASE6-1 : istep100(p) .

-- red in ICASE6-2 : istep100(p) .

red in ICASE6-2 : inv320(s,t10,p) implies istep100(p) .

red in nonICASE6 : istep100(p) .

A.5 Experimental Result

In this section, we present the experimental result of the proof of INV100. The results of
the proof of other invariants are not listed here because of the same consideration, i.e.,
the proofs of those invariants are similar to the proof of INV100.

To execute the proof is very simply, just using a command “input” (or “in” for short)
of CafeOBJ to read the above four files sequently, and the result is shown below.

CafeOBJ> in TrainCrossing.mod

processing input : d:\xjw\cafeobj\train-crossing\phd\TrainCrossing.mod

-- defining module! TRAIN..._.* done.

-- defining module! TSTATE......._.......* done.

-- defining module! LSTATE......_....* done.

-- defining module! BSTATE....._..* done.

-- defining module* TC_*..............._..................................*

** system failed to prove =*= is a congruence of TC done.

CafeOBJ> in TCInvariants.mod

processing input : d:\xjw\cafeobj\train-crossing\phd\TCInvariants.mod

-- defining module INV..................._..............* done.

-- defining module ISTEP.................._..............* done.

CafeOBJ> in TCIcases.mod
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processing input : d:\xjw\cafeobj\train-crossing\phd\TCIcases.mod

-- defining module ICASE1.._..* done.

-- defining module nonICASE1.._..* done.

-- defining module ICASE2.._...* done.

-- defining module nonICASE2-1.._...* done.

-- defining module nonICASE2-2.._...* done.

-- defining module nonICASE2-3.._...* done.

-- defining module ICASE3.._..* done.

-- defining module nonICASE3.._..* done.

-- defining module ICASE4.._..* done.

-- defining module nonICASE4.._..* done.

-- defining module ICASE5.._..* done.

-- defining module nonICASE5.._..* done.

-- defining module ICASE6.._..* done.

-- defining module nonICASE6.._..* done.

CafeOBJ> in TCProof100.mod

processing input : d:\xjw\cafeobj\train-crossing\phd\TCProof100.mod

-- defining module EICASE1.._.._.* done.

-- defining module ICASE1-1._.* done.

-- defining module ICASE1-2._.* done.

-- defining module EICASE2.._.._.* done.

-- defining module ICASE2-1._.* done.

-- defining module ICASE2-2._.* done.

-- defining module EICASE3.._.._.* done.

-- defining module ICASE3-1._.* done.

-- defining module ICASE3-2._.* done.

-- defining module EICASE4.._.._.* done.

-- defining module ICASE4-1._.* done.

-- defining module ICASE4-2._.* done.

-- defining module EICASE5.._.._.* done.

-- defining module ICASE5-1._.* done.

-- defining module ICASE5-2._.* done.

-- defining module EICASE6.._.._.* done.

-- defining module ICASE6-1._.* done.

-- defining module ICASE6-2._.* done.

-- reduce in EICASE1 : check

true : Bool

(0.000 sec for parse, 10 rewrites(0.000 sec), 38 matches)

-- reduce in EICASE2 : check

true : Bool

(0.000 sec for parse, 10 rewrites(0.000 sec), 38 matches)

-- reduce in EICASE3 : check

true : Bool

(0.000 sec for parse, 10 rewrites(0.000 sec), 38 matches)

-- reduce in EICASE4 : check

true : Bool

(0.000 sec for parse, 10 rewrites(0.000 sec), 38 matches)

-- reduce in EICASE5 : check

true : Bool

(0.000 sec for parse, 10 rewrites(0.016 sec), 38 matches)

-- reduce in EICASE6 : check

true : Bool

(0.000 sec for parse, 10 rewrites(0.000 sec), 38 matches)

-- reduce in INV : inv100(init,p)
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true : Bool

(0.000 sec for parse, 10 rewrites(0.000 sec), 15 matches)

-- reduce in ICASE1-1 : istep100(p)

true : Bool

(0.015 sec for parse, 33 rewrites(0.000 sec), 158 matches)

-- reduce in ICASE1-2 : istep100(p)

true : Bool

(0.000 sec for parse, 32 rewrites(0.000 sec), 158 matches)

-- reduce in nonICASE1 : istep100(p)

true : Bool

(0.000 sec for parse, 24 rewrites(0.016 sec), 159 matches)

-- reduce in ICASE2-1 : istep100(p)

true : Bool

(0.000 sec for parse, 49 rewrites(0.000 sec), 99 matches)

-- reduce in ICASE2-2 : istep100(p)

true : Bool

(0.000 sec for parse, 48 rewrites(0.000 sec), 116 matches)

-- reduce in nonICASE2-1 : istep100(p)

true : Bool

(0.000 sec for parse, 28 rewrites(0.000 sec), 101 matches)

-- reduce in nonICASE2-2 : istep100(p)

true : Bool

(0.000 sec for parse, 30 rewrites(0.000 sec), 103 matches)

-- reduce in nonICASE2-3 : istep100(p)

true : Bool

(0.000 sec for parse, 30 rewrites(0.000 sec), 103 matches)

-- reduce in ICASE3-1 : inv310(s,p) implies istep100(p)

true : Bool

(0.000 sec for parse, 49 rewrites(0.000 sec), 133 matches)

-- reduce in ICASE3-2 : istep100(p)

true : Bool

(0.000 sec for parse, 34 rewrites(0.000 sec), 153 matches)

-- reduce in nonICASE3 : istep100(p)

true : Bool

(0.000 sec for parse, 24 rewrites(0.000 sec), 161 matches)

-- reduce in ICASE4-1 : istep100(p)

true : Bool

(0.000 sec for parse, 35 rewrites(0.000 sec), 95 matches)

-- reduce in ICASE4-2 : istep100(p)

true : Bool

(0.000 sec for parse, 32 rewrites(0.000 sec), 153 matches)

-- reduce in nonICASE4 : istep100(p)

true : Bool

(0.000 sec for parse, 24 rewrites(0.016 sec), 161 matches)

-- reduce in ICASE5-1 : istep100(p)

true : Bool

(0.000 sec for parse, 33 rewrites(0.000 sec), 166 matches)

-- reduce in ICASE5-2 : istep100(p)

true : Bool

(0.000 sec for parse, 32 rewrites(0.000 sec), 166 matches)

-- reduce in nonICASE5 : istep100(p)

true : Bool

(0.000 sec for parse, 24 rewrites(0.000 sec), 159 matches)

-- reduce in ICASE6-1 : istep100(p)

true : Bool

(0.000 sec for parse, 37 rewrites(0.000 sec), 119 matches)

-- reduce in ICASE6-2 : inv320(s,t10,p) implies istep100(p)
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true : Bool

(0.000 sec for parse, 59 rewrites(0.016 sec), 281 matches)

-- reduce in nonICASE6 : istep100(p)

true : Bool

(0.000 sec for parse, 24 rewrites(0.000 sec), 159 matches)

CafeOBJ>

As shown above, the result of each sub-case for induction is true, therefore, we have
proved that INV100 always hold in the system with two lemmas, INV310 (in ICASE3-1)
and INV320 (in ICASE6-2).
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Appendix B

Model-checking Crossing Control
System with Maude

In this appendix, we list the model-checking codes of the crossing control system with
Maude as for reference below.

fmod TRAIN is

sort Train .

endfm

fmod TSTATE is --- train state

sort TState .

ops sect0 sect1 critical sect2 : -> TState .

endfm

fmod LSTATE is --- level crossing state

sort LState .

ops state0 state1 state2 : -> LState .

endfm

fmod BSTATE is --- barrier state

sort BState .

ops open close : -> BState .

endfm

--- module TrainCrossing (TC) System

mod TC is

pr TRAIN .

pr TSTATE .

pr LSTATE .

pr BSTATE .

sorts TRule OValue Sys .

subsorts TRule OValue < Sys .

*** Configuration

op none : -> Sys .

op __ : Sys Sys -> Sys [assoc comm id: none] .

*** Observable values

op tr[_] =_ : Train TState -> OValue .

op le[_] =_ : Train LState -> OValue .

op ba =_ : BState -> OValue .

op idling =_ : Bool -> OValue .
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*** Transition rules

op tr-send-secure : Train -> TRule .

op le-get-secure : Train -> TRule .

op le-send-release : Train -> TRule .

op tr-get-release : Train -> TRule .

op tr-send-passed : Train -> TRule .

op le-get-passed : Train -> TRule .

*** Maude variables

var T : Train .

var TS : TState .

var LS : LState .

var BS : BState .

var IS : Bool . --- system idling variant

*** tr-send-secure

crl [tr-send-secure] :

tr-send-secure(T) (tr[T] = TS) (le[T] = LS) (ba = BS) (idling = IS)

=> tr-send-secure(T) (tr[T] = sect1) (le[T] = LS) (ba = BS) (idling = IS)

if TS == sect0 .

*** le-get-secure

crl [le-get-secure] :

le-get-secure(T) (tr[T] = TS) (le[T] = LS) (ba = BS) (idling = IS)

=> le-get-secure(T) (tr[T] = TS) (le[T] = state1) (ba = close) (idling = false)

if TS == sect1 and IS == true .

*** le-send-release

crl [le-send-release] :

le-send-release(T) (tr[T] = TS) (le[T] = LS ) (ba = BS) (idling = IS)

=> le-send-release(T) (tr[T] = TS) (le[T] = state2) (ba = BS) (idling = IS)

if LS == state1 .

*** tr-get-release

crl [tr-get-release] :

tr-get-release(T) (tr[T] = TS) (le[T] = LS) (ba = BS) (idling = IS)

=> tr-get-release(T) (tr[T] = critical) (le[T] = LS) (ba = BS) (idling = IS)

if LS == state2 .

*** tr-send-passed

crl [tr-send-passed] :

tr-send-passed(T) (tr[T] = TS) (le[T] = LS) (ba = BS) (idling = IS)

=> tr-send-passed(T) (tr[T] = sect2) (le[T] = LS) (ba = BS) (idling = IS)

if TS == critical .

*** le-get-passed

crl [le-get-passed] :

le-get-passed(T) (tr[T] = TS) (le[T] = LS) (ba = BS) (idling = IS)

=> le-get-passed(T) (tr[T] = sect0) (le[T] = state0) (ba = open) (idling = true)

if TS == sect2 .

endm

mod TC-PREDS is

pr TC .

inc SATISFACTION .

subsort Sys < State .

op wait : Train -> Prop .

op tr-oncrossing : Train -> Prop .

op ba-open : -> Prop .

op cr-release : Train -> Prop .

op sys-idle : -> Prop .
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var T : Train .

var S : Sys .

eq (tr[T] = sect1) S |= wait(T) = true .

eq (tr[T] = critical) S |= tr-oncrossing(T) = true .

eq (ba = open) S |= ba-open = true .

eq (le[T] = state2) S |= cr-release(T) = true .

eq (idling = true) S |= sys-idle = true .

endm

mod TC-CHECK is

inc TC-PREDS .

inc MODEL-CHECKER .

inc LTL-SIMPLIFIER .

ops t1 t2 t3 : -> Train .

op init : -> Sys .

op mutex : -> Formula .

ops root basic : -> Formula .

eq init =

tr-send-secure(t1) tr-send-secure(t2) tr-send-secure(t3)

le-get-secure(t1) le-get-secure(t2) le-get-secure(t3)

le-send-release(t1) le-send-release(t2) le-send-release(t3)

tr-get-release(t1) tr-get-release(t2) tr-get-release(t3)

tr-send-passed(t1) tr-send-passed(t2) tr-send-passed(t3)

le-get-passed(t1) le-get-passed(t2) le-get-passed(t3)

(tr[t1] = sect0) (tr[t2] = sect0) (tr[t3] = sect0)

(le[t1] = state0) (le[t2] = state0) (le[t3] = state0)

(ba = open)

(idling = true) .

eq basic = ([] ~(cr-release(t1) /\ sys-idle)) /\

([] ~(cr-release(t2) /\ sys-idle)) /\

([] ~(cr-release(t3) /\ sys-idle)) .

eq root = ([] ~(tr-oncrossing(t1) /\ ba-open)) /\

([] ~(tr-oncrossing(t2) /\ ba-open)) /\

([] ~(tr-oncrossing(t3) /\ ba-open)) .

eq mutex = ([] ~(tr-oncrossing(t1) /\ tr-oncrossing(t2))) /\

([] ~(tr-oncrossing(t2) /\ tr-oncrossing(t3))) /\

([] ~(tr-oncrossing(t1) /\ tr-oncrossing(t3))) .

endm

red modelCheck(init, basic) .

red modelCheck(init, root) .

red modelCheck(init, mutex) .

And the experimental results are listed below, which shows that the properties are all
preserved in the OTS.

d:\XJW\maude\train-crossing> maude

maude

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 2.1.1 built: Jul 30 2004 09:23:31

Copyright 1997-2004 SRI International

Fri Apr 8 13:11:48 2005

Maude> in model-checker.maude

==========================================
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fmod LTL

==========================================

fmod LTL-SIMPLIFIER

==========================================

fmod SAT-SOLVER

==========================================

fmod SATISFACTION

==========================================

fmod MODEL-CHECKER Maude> in TC.maude

==========================================

---> Formal Specification begins

==========================================

fmod TRAIN

==========================================

fmod TSTATE

==========================================

fmod LSTATE

==========================================

fmod BSTATE

==========================================

mod TC

==========================================

mod TC-PREDS

==========================================

mod TC-CHECK

==========================================

reduce in TC-CHECK : modelCheck(init, basic) . rewrites: 1638 in

6574226999ms cpu (0ms real) (0 rewrites/second) result Bool: true

==========================================

reduce in TC-CHECK : modelCheck(init, root) . rewrites: 1638 in

4290626999ms cpu (0ms real) (0 rewrites/second) result Bool: true

==========================================

reduce in TC-CHECK : modelCheck(init, mutex) . rewrites: 1636 in

4290626999ms cpu (999ms real) (0 rewrites/second) result Bool: true
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